WO2006035589A1 - 作業車両の原動機制御装置 - Google Patents

作業車両の原動機制御装置 Download PDF

Info

Publication number
WO2006035589A1
WO2006035589A1 PCT/JP2005/016627 JP2005016627W WO2006035589A1 WO 2006035589 A1 WO2006035589 A1 WO 2006035589A1 JP 2005016627 W JP2005016627 W JP 2005016627W WO 2006035589 A1 WO2006035589 A1 WO 2006035589A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
rotational speed
prime mover
engine
low
Prior art date
Application number
PCT/JP2005/016627
Other languages
English (en)
French (fr)
Inventor
Kazuhiro Ichimura
Original Assignee
Hitachi Construction Machinery Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co., Ltd. filed Critical Hitachi Construction Machinery Co., Ltd.
Priority to JP2006537665A priority Critical patent/JP4331208B2/ja
Priority to EP05781972.4A priority patent/EP1801396B1/en
Priority to US11/663,847 priority patent/US7757486B2/en
Publication of WO2006035589A1 publication Critical patent/WO2006035589A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/04Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2246Control of prime movers, e.g. depending on the hydraulic load of work tools

Definitions

  • the present invention relates to a prime mover control device for a work vehicle such as a wheeled hydraulic excavator.
  • Patent Document 1 Japanese Patent No. 3073896
  • a prime mover control device for a work vehicle prohibits the hydraulic pump driven by the prime mover, the hydraulic actuator driven by the pressure oil from the hydraulic pump, and the driving of the hydraulic actuator by the hydraulic oil of the hydraulic pump force.
  • a rotation speed command means for commanding the rotation speed of the prime mover within a range where the low idle rotation speed is set as a lower limit by the operation of the operator can be further provided.
  • the rotational speed of the prime mover is controlled to a low speed rotational speed.
  • the rotational speed of the prime mover can be controlled to the commanded rotational speed.
  • a braking device for braking the hydraulic actuator, and a braking detection means for detecting whether the braking device is activated or not.
  • the operation of the drive prohibiting means is detected by the drive prohibition detecting means
  • the low idle rotational speed is commanded by the rotational speed command means
  • the operation of the braking device is detected by the brake detecting means. Then, the rotational speed of the prime mover can be controlled to a low speed.
  • the prime mover control device When the hydraulic actuator is a traveling motor that rotates according to the amount of operation of the traveling pedal, the prime mover control device according to the present invention is capable of traveling in which the traveling motor can be rotated by operating the traveling pedal and in a neutral state in which rotation is not possible.
  • the travel selection means for selecting the state and the travel selectable state by the travel selection means allow the flow of pressure oil to the hydraulic pump power travel motor, and if the neutral state is selected by the travel selection means, the hydraulic pressure
  • the vehicle may further include travel control means for prohibiting the flow of pressure oil from the pump to the travel motor.
  • a water temperature detection means for detecting the engine cooling water temperature and a first setting for setting the low speed rotation speed according to the engine cooling water temperature so that the lower the engine cooling water temperature detected by the water temperature detection means, the lower the low speed rotation speed.
  • a means for controlling the rotational speed of the prime mover to a low speed it is preferable to control the rotational speed set by the first setting means.
  • setting means for controlling the speed of the prime mover to a low speed. It is preferable to control the number of revolutions set by a fixed means.
  • a start detection means for detecting the start of the prime mover is further provided, and until the predetermined time has elapsed after the start of the prime mover is detected by the start detection means, switching of the revolution speed of the prime mover to a low speed revolution is prohibited and the start detection is performed.
  • the starting of the prime mover is detected by the means and a predetermined time has elapsed, switching to a low speed can be permitted.
  • a warm-up determination means for determining completion of the warm-up operation of the prime mover, and prohibits the switching of the rotational speed of the prime mover to a low speed until the warm-up determination means determines completion of the warm-up operation.
  • the rotational speed of the prime mover When at least the non-operation of the drive prohibiting means is detected by the drive prohibition detecting means, it is preferable to control the rotational speed of the prime mover to a set rotational speed equal to or higher than the low idle rotational speed. If the non-operation of the drive prohibition means is detected by the drive prohibition detection means while the motor speed is controlled at a low speed, the motor speed is gradually reduced to the command speed by the rotation speed command means. You can also increase the amount of calories.
  • the speed of the prime mover is gradually increased to that command speed, and when the speed is less than the set speed, It is preferable to immediately increase the motor speed to the command speed.
  • the command speed set by the rotation speed command means is higher than the low idle speed. At this time, the motor speed is controlled to the set speed.
  • actuator drive command means for outputting a drive command for the hydraulic actuator is provided, and the motor speed is controlled to the set speed on condition that the drive command is not output by the actuator drive command means, and the drive command is output. Then, it is preferable to control the motor speed to the command speed.
  • the hydraulic actuator is driven by at least the hydraulic oil of the hydraulic pump force.
  • the speed of the prime mover is controlled to be lower and lower than the minimum speed (low idle speed) that can drive the hydraulic actuator.
  • the engine speed can be made lower than the low idle speed while the load is not applied to the hydraulic pump, and fuel consumption can be improved while preventing engine stall.
  • FIG. 1 is a block diagram showing a configuration of a prime mover control device according to a first embodiment of the present invention.
  • FIG. 2 is a hydraulic circuit diagram for driving the hydraulic actuator mounted on the work vehicle according to the first embodiment.
  • FIG. 3 is a hydraulic circuit diagram for driving a hydraulic actuator mounted on a work vehicle according to a second embodiment.
  • FIG. 4 is a block diagram showing a configuration of a prime mover control device according to a second embodiment of the present invention.
  • FIG. 5 is a hydraulic circuit diagram for driving a hydraulic actuator mounted on a work vehicle according to a third embodiment.
  • FIG. 6 is a block diagram showing a configuration of a prime mover control device according to a third embodiment of the present invention.
  • FIG. 7 is a diagram showing a modification of FIG.
  • FIG. 8 is a block diagram showing a configuration of a prime mover control device according to a fourth embodiment of the present invention.
  • FIG. 9 is a block diagram showing a configuration of a prime mover control device according to a fifth embodiment of the present invention.
  • FIG. 10 is a diagram showing a modification of FIG.
  • FIG. 11 is a diagram showing another modification of FIG.
  • FIG. 12 is a block diagram showing a configuration of a prime mover control device according to a sixth embodiment of the present invention.
  • FIG. 13 is a flowchart showing processing in the slow-up processing circuit of FIG.
  • FIG. 14 is a block diagram showing a configuration of a prime mover control device according to a seventh embodiment of the present invention.
  • a first embodiment of a prime mover control device for a work vehicle according to the present invention will be described below with reference to FIGS.
  • FIG. 1 is a block diagram showing the configuration of the prime mover control device according to the first embodiment.
  • This prime mover control device is a work vehicle having a hydraulic actuator (for example, a hydraulic excavator). Etc.).
  • FIG. 2 is a hydraulic circuit diagram for driving the hydraulic actuator 5.
  • Pressure oil from a hydraulic pump 2 driven by the engine 1 is supplied to a hydraulic actuator 5 such as a hydraulic cylinder or a hydraulic motor via a lock valve 3 and a control valve 4.
  • the hydraulic actuator 5 is a hydraulic cylinder that drives a working device such as a boom and an arm, a revolving body, and a hydraulic motor that drives the traveling body.
  • the lock valve 3 is a two-position switching valve that can be switched between a communication position that guides the hydraulic oil from the hydraulic pump 2 to the control valve 4 and a shut-off position that blocks the supply of pressure oil to the control valve 4. It can be switched by the operation.
  • the gate lock lever 6 is provided at the entrance of the cab and is operated to a release position that prevents the passenger from getting on and off and a lock position that allows the passenger to get on and off.
  • the gate opening lever 6 is operated to the release position, the lock valve 3 is switched to the communication position, and when the gate trotting lever 6 is operated to the lock position, the lock valve 3 is switched to the blocking position.
  • the control valve 4 is switched by operating the operation lever 7 and controls the flow of pressure oil from the lock knob 3 to the hydraulic actuator 5.
  • the configuration of the hydraulic circuit is not limited to that shown in FIG.
  • the control valve 4 is configured as a hydraulic pilot type switching valve, a pilot circuit that generates a pilot pressure according to the operation amount of the operation lever 7 is provided, and the control valve 4 is switched by the pilot pressure according to the operation amount of the operation lever 7 You may do it.
  • the lock valve 3 may be arranged in the pilot circuit.
  • the cab is provided with a fuel lever 8 for commanding the engine speed.
  • the fuel lever 8 can be operated between idle and full, and the operation amount (operation stroke amount or operation angle) of the fuel lever 8 is detected by the operation amount detector 11.
  • Manipulation amount detector 11 signal S is input to the function generation circuit 12 and the signal generation circuit 13, respectively.
  • the function generator circuit 12 stores in advance the relationship (characteristic L1) of the target engine speed N of the engine 1 with respect to the manipulated variable S.
  • the function generator circuit 12 outputs the target engine speed N corresponding to the manipulated variable S. To do.
  • the characteristic L1 As the manipulated variable S increases, the target rotational speed N increases proportionally from the low idle rotational speed NL to the rated rotational speed N1.
  • the low idle speed NL is defined as any hydraulic actuating function by operating the operating lever 7. This is the minimum speed of engine 1 that does not stall when the motor 5 is driven. For example, it is set to lOOOrpm.
  • the rated speed N1 is 2000 rpm, for example.
  • the signal generating circuit 13 outputs a high signal when the low idle speed NL is commanded by the fuel lever 8, and outputs a low signal when a speed higher than the low idle speed NL is commanded.
  • the gate lock lever 6 is provided with a limit switch 14.
  • the limit switch 14 is turned on when the gate lock lever 6 is operated to the lock position, and the limit switch 14 is turned off when the gate lock lever 6 is operated to the release position.
  • Signals from the limit switch 14 and the signal generation circuit 13 are input to the AND circuit 15, and the AND circuit 15 switches the switching circuit 16 in accordance with these input signals. That is, when a high signal is input from the signal generation circuit 13 and an ON signal of the limit switch 14 is input, the AND circuit 15 switches the switching circuit 16 to the terminal b side.
  • the switching circuit 16 outputs the rotational speed NS (referred to as super low idle rotational speed) preset in the setting circuit 17 as the target rotational speed.
  • the AND circuit 15 switches the switching circuit 16 to the terminal a side.
  • the switching circuit 16 outputs the target rotational speed from the function generation circuit 12.
  • the super low idle rotational speed NS is the low rotational speed of the engine 1 that is not stalled even if the air conditioner or auxiliary equipment is operated when the hydraulic pump 2 that does not drive the hydraulic actuator 5 is in a no-load state. . In this state, it is not necessary to consider the drive of the hydraulic actuator 5! Therefore, the super low idle speed NS is set to, for example, 600 rpm, which is lower than the low idle speed NL described above.
  • This rotational speed is the rotational speed at which engine stall occurs when the load due to the driving of the hydraulic actuator 5 is applied to the engine 1.
  • the idle rotational speed should be reduced below the low idle rotational speed NL by the output required to drive the hydraulic actuator 5. Can do.
  • the governor 21 of the engine 1 is connected to the pulse motor 23 via the link mechanism 22, and the engine speed is controlled by the rotation of the Norse motor 23.
  • a potentiometer 24 is connected to the governor 21 via a link mechanism 22, and the governor lever angle corresponding to the engine speed is detected by the potentiometer 24 and output to the servo control circuit 25.
  • Servo control circuit 25 is the number of revolutions detected by potentiometer 24 and output from switching circuit 16.
  • a control signal is output to the pulse motor 23 so that the target rotation speed is reached, and the rotation of the pulse motor 23 is controlled.
  • the operator operates the gate lock lever 6 to the release position.
  • the valve valve 3 is switched to the communication position (the lock valve is not activated), the hydraulic actuator 5 is allowed to be driven by the operation of the operation lever 7, the limit switch 14 is turned off, and the switching circuit 16 is connected to the terminal a side. Can be switched to.
  • the target rotation speed N corresponding to the operation amount of the fuel lever 8 is output from the switching circuit 16, and the engine speed is controlled to the target rotation speed N by the servo control circuit 25. For example, if the fuel lever 8 is operated idle, the engine speed is controlled to the low idle speed NL, and if it is fully operated, the engine speed is controlled to the rated speed N1.
  • the hydraulic actuator 5 is a working hydraulic cylinder and hydraulic motor. And a traveling hydraulic motor (hereinafter referred to as a traveling motor).
  • a traveling hydraulic motor hereinafter referred to as a traveling motor.
  • the hydraulic cylinder and hydraulic motor for work are switched between Z operation and non-operation by the lock valve 3 and the gate lock lever 6, and the traveling motor is switched from non-running by the brake switch 18 described later. For example, it is applied to a wheeled hydraulic excavator.
  • FIG. 3 is a traveling hydraulic circuit diagram of a work vehicle (for example, a wheel-type hydraulic excavator) to which the prime mover control device according to the second embodiment is applied.
  • the traveling pedal 31 can be operated forward and backward, and when the traveling pedal 31 is operated forward, the switching valve 32 is switched to the forward side, and the hydraulic oil from the hydraulic pump 2 is applied to the traveling motor 33. Supplied and the vehicle travels forward. On the contrary, when the travel pedal 31 is depressed backward, the switching valve 32 is switched to the reverse side, and the vehicle travels backward.
  • FIG. 4 is a block diagram showing the configuration of the prime mover control device according to the second embodiment.
  • a limit switch 14, a signal generation circuit 13, and a brake switch 18 are connected to the AND circuit 15.
  • the brake switch 18 is a switch that can be switched to the travel, work, and parking positions. When the brake switch 18 is switched to the travel position (T terminal), both the work brake and parking brake (not shown) are released. The parking brake is activated when switched to the parking position (P terminal), and the work brake is activated when switched to the working position (W terminal).
  • the AND circuit 15 receives signals from the P and W terminals of the brake switch 18, that is, a signal corresponding to the operating state of the brake. This brake switch 18 controls the operation Z non-operation of the traveling motor 23.
  • the state where both work and traveling are prohibited that is, the gate lock lever 6 is operated to the lock position (lock valve operation), and the fuel lever 8 is operated to the idle
  • the brake switch 18 is switched to the parking or working position (brake operation)
  • the switching circuit 16 is switched to the terminal b side, and the engine speed force S is controlled to the super low idle speed NS.
  • the traveling motor 33 does not rotate even when the traveling pedal 31 is operated under the super low idle rotational speed NS, so that the hydraulic pump 2 is not loaded and the engine stall can be prevented.
  • a third embodiment of a prime mover control device for a work vehicle according to the present invention will be described with reference to FIGS.
  • FIG. 5 is a hydraulic circuit diagram for traveling a work vehicle to which the prime mover control device according to the third embodiment is applied.
  • the second embodiment is applied to a work vehicle in which pressure oil is supplied to the traveling motor 33 by the front stepping operation and the rear stepping operation of the traveling pedal 31, the third embodiment is applied to the traveling pedal 31.
  • This is applied to a work vehicle in which pressure oil is supplied to the travel motor 33 by the stepping operation of the forward and backward switching valves 34.
  • the forward / reverse switching valve 34 (electromagnetic switching valve) is switched to the forward, reverse, and neutral positions by operating the forward / reverse switching switch 19 (Fig. 6).
  • Switching valve 32 is a hydraulic pilot type switching valve
  • the pilot valve 35 is driven according to the amount of operation, and pressure oil (pilot pressure) from the hydraulic source 36 is driven.
  • the switching valve 32 is switched to the forward or reverse side, the pressure oil from the hydraulic pump 2 is supplied to the travel motor 33, and the vehicle travels forward or backward.
  • the forward / reverse switching valve 34 is switched to the neutral position, the pilot pressure does not act on the switching valve 32 even if the travel pedal 31 is operated, and the travel motor 33 is not driven.
  • FIG. 6 is a block diagram showing the configuration of the prime mover control device according to the third embodiment.
  • a forward / reverse switching switch 19 is connected to the AND circuit 15 instead of the brake switch 18.
  • the forward / reverse selector switch 19 is a switch that can be switched between forward, reverse, and neutral positions.
  • the forward / reverse switching valve 34 When switched to the forward position (F terminal) or reverse position (R terminal), the forward / reverse switching valve 34 is set to the forward position or reverse position. It is switched and forward traveling or reverse traveling is enabled by operating the traveling pedal 31.
  • the forward / reverse switching valve 34 is switched to the neutral position, and travel by operating the travel pedal 31 becomes impossible.
  • the AND circuit 15 receives a signal corresponding to the N terminal force of the forward / reverse switching switch 19, that is, a signal corresponding to the state in which the vehicle cannot travel.
  • both work and travel are prohibited, that is, the gate.
  • the lock lever 6 is operated to the lock position (lock valve operation)
  • the fuel lever 8 is operated to the idle position
  • the forward / reverse switching switch 19 is operated to the neutral position (forward / reverse switching valve neutral)
  • the switching circuit 16 is switched to the terminal b side, and the engine speed is controlled to the parlow idle speed NS.
  • the traveling motor 33 does not rotate even if the traveling pedal 31 is operated under the super low idle rotational speed NS! Therefore, the hydraulic pump 2 is not loaded and the engine stall can be prevented.
  • the forward / reverse switching switch 19 is switched to the forward or reverse position.
  • the switching circuit 16 is switched to the terminal a side, and the engine speed is controlled to a speed corresponding to the operation amount of the fuel lever 8.
  • the engine speed becomes at least the low idle speed NL or more, and the engine stall can be prevented.
  • a relationship is set in advance so that the target rotational speed increases as the amount of operation of the travel pedal 31 increases, and when the forward / reverse switching switch 19 is switched to the forward or reverse position, the engine rotational speed is You can control it!
  • the forward / reverse switching switch 19 and the brake switch 18 are connected to the AND circuit 15, respectively, a high signal is input from the signal generating circuit 13, and the ON signal of the limit switch 14 is
  • the switching circuit 16 is switched to the terminal b side. Also good. As a result, even if the brake is operated, unless the forward / reverse switching valve 34 is switched to the neutral position, the super low idle rotational speed NS does not occur, and engine stall can be reliably prevented.
  • a fourth embodiment of the prime mover control apparatus for work vehicles according to the present invention will be described with reference to FIG.
  • the super low idle speed NS is corrected according to the engine coolant temperature and the hydraulic oil temperature. In other words, if the engine coolant temperature is low, the engine 1 is not warmed, so the engine output is not sufficient, and if the hydraulic oil temperature is low, the oil viscosity is high and the pump load increases. In this case, engine stall is likely to occur, so the super low idle speed NS is corrected to a higher value.
  • FIG. 8 is a block diagram showing the configuration of the prime mover control device according to the fourth embodiment. The same parts as those in FIG. 1 are denoted by the same reference numerals, and the differences from the first embodiment will be mainly described below.
  • the prime mover control device is provided with a water temperature sensor 41 for detecting the engine cooling water temperature and a hydraulic oil temperature sensor 42 for detecting the hydraulic oil temperature. Signals from the sensors 41 and 42 are input to function generation circuits 43 and 44, respectively.
  • the function generating circuit 43 stores in advance the relationship (characteristic L2) of the target engine speed of the engine 1 with respect to the engine coolant temperature as shown in the figure, and the function generating circuit 44 stores in advance the engine temperature with respect to the hydraulic oil temperature as shown in the figure.
  • the relationship of target speed (characteristic L3) is memorized.
  • the target speed decreases from the low idle speed NL to the minimum speed Nmin as the engine coolant temperature increases, and according to characteristic L3, the target speed force increases as the hydraulic oil temperature increases. Decrease from one idle speed NL to the minimum speed Nmin.
  • the minimum rotational speed Nmin corresponds to the super low idle rotational speed NS in the first embodiment, that is, the super low idle rotational speed when engine cooling water temperature and hydraulic oil temperature are not taken into consideration.
  • the maximum value selection circuit 46 uses the minimum rotation speed Nmin set in the setting circuit 45 and the maximum value of the target rotation speed output from the function generators 43 and 44 as the correction value for the super low idle rotation speed NS. Choose as.
  • the AND circuit 15 switches the switching circuit 16 to the terminal b side when the gate lock lever 6 is operated to the locked position and the fuel lever 8 is operated to idle. As a result, the engine speed is controlled to the speed selected by the maximum value selection circuit 46.
  • the switching circuit 16 is switched to the terminal a side. As a result, the engine speed is controlled to a speed corresponding to the amount of operation of the fuel lever 8.
  • the function generation circuits 43 and 44 are respectively connected to the hydraulic oil temperature and the hydraulic oil temperature.
  • the target rotation speed corresponding to the coolant temperature is output, and the maximum value selection circuit 46 selects the larger value.
  • the super low idle speed NS is corrected to a higher value according to the temperature, so that the engine stall can be reliably prevented.
  • the switching circuit 16 is switched in accordance with the operation of the gate lock lever 6 and the fuel lever 8, but the above-described diagram is obtained only by the operation of the gate lock lever 6 and the fuel lever 8. As with 4, 6, and 7, the switching circuit 16 may be switched according to the operation of the brake switch 18 and forward / reverse switch 19.
  • the engine cooling water temperature is low when the engine is started and that the engine speed is the super low idle speed NS.
  • the engine cooling water temperature is low and the engine key switch is turned on and engine 1 is started, there is a possibility that engine idling will be reduced if the engine speed is low but the engine speed is not stable. In such a case, the engine speed is not set to the super low idle speed NS.
  • FIG. 9 is a block diagram showing the configuration of the prime mover control device according to the fifth embodiment.
  • the AND circuit 51 receives a signal from the engine key switch 52, that is, the engine key switch off signal (0) or the on signal (1), and the flag 0 or the flag set by the flag set circuit 53.
  • the flag 1 set by the flag set circuit 54 is input.
  • the timer 55 starts counting.
  • the judgment circuit 56 judges that the engine key switch 52 is turned on ⁇ off, that is, flag 1 ⁇ flag 0.
  • the flag setting circuit 53 sets flag 0, and the reset circuit 57 resets the timer 55. To do.
  • the switching circuit 58 switches to the signal generation circuit 59 side until the timer 55 counts a predetermined time.
  • the predetermined time is the time required to reach an engine speed that does not cause an engine stall even if the engine speed is lowered to the super low idle speed NS, and is set to about 15 minutes, for example.
  • the signal generation circuit 59 outputs a low signal (0), and the signal generation circuit 60 outputs a high signal (1).
  • the signal generation circuit 61 outputs a high signal (1) when the temperature of the water temperature sensor 41 is equal to or higher than a predetermined value, and outputs a low signal (0) when the temperature is lower than the predetermined value.
  • the predetermined value is the engine coolant temperature that does not stall even when the engine speed is reduced to the super low idle speed NS, in other words, the engine coolant temperature when the warm-up operation is almost finished.
  • the OR circuit 62 receives a signal from the signal generation circuit 61 and a signal from the switching circuit 58. When a high signal of at least one of the signal generation circuit 61 and the switching circuit 58 is input to the OR circuit 62, the switching switch 63 is turned on and the flag set circuit 54 sets the flag 1.
  • the switching circuit 16 is switched to the terminal a side.
  • the switching switch 63 is turned off. As a result, the switching circuit 16 is switched to the terminal b side.
  • the switching circuit 16 when the engine is started in a state where the engine coolant temperature is lower than a predetermined value, only the low signal is input to the OR circuit 62, and the switching switch 63 is turned off. As a result, even when the gate lock lever 6 is operated to the locked position and the fuel lever 8 is operated to the idle state, the switching circuit 16 maintains the terminal a side, so that the engine speed is the super low idle speed NS. In other words, it is controlled to the low idle speed NL. As a result, engine stall at engine start can be prevented.
  • the signal generating circuit 61 A high signal is input to the key circuit 62, and the switch 63 is turned on.
  • the super low idle speed NS is controlled before the predetermined time elapses, and fuel consumption can be further improved.
  • the engine key switch 52 is turned on after a long time after the engine key switch 52 is turned off, the engine 1 may not be completely cooled and the engine coolant temperature may be higher than a predetermined value. In this case, when the engine key switch 52 is turned on, the engine speed is immediately controlled to the super low idle speed NS.
  • the engine speed is set to the super low idle speed NS until the warm-up operation is completed.
  • the engine speed is controlled to at least the low idle speed NL or higher.
  • engine stall at engine start can be prevented.
  • the predetermined time has elapsed or even before the predetermined time has elapsed, if the engine cooling water temperature exceeds the predetermined value, it is allowed to reach the super low idle speed NS. Can be improved.
  • the switching circuit 16 is switched in accordance with the operation of the gate lock lever 6 and the fuel lever 8, but the above-described diagram is obtained only by the operation of the gate lock lever 6 and the fuel lever 8. As with 4, 6, and 7, the switching circuit 16 may be switched according to the operation of the brake switch 18 and forward / reverse switch 19.
  • the operation of the lock valve 3 prohibits the hydraulic actuator 5 from being driven by the hydraulic oil from the hydraulic pump 2, but other drive prohibiting means are used. Also good.
  • the limit switch 14 detects the operation Z non-operation of the lock valve 3, the drive prohibition detection means is not limited to this.
  • the gate lock lever 6 is operated to the locked position and the fuel lever 8 is operated to idle, the engine speed is controlled to the super-open idle speed NS, but as shown in FIG. Lock lever 6 force
  • the engine speed may be controlled to the super low idle speed NS only on the condition that it is operated to the S lock position.
  • the configuration of the speed control means is not limited to the above.
  • the force that activates the lock valve 3 in conjunction with the operation of the gate lock lever 6 Z is deactivated.
  • a super low switch 9 is provided as shown in Fig. 11.
  • the lock knob 3 may be activated or deactivated by operating the super low switch 9. In this case, the operation Z of the lock valve 3 is not detected by the super low switch 9.
  • the fuel lever 8 is operated other than idling (for example, Even if the engine is fully operated, the engine speed is controlled to the super low idle speed NS.
  • the gate lock lever 6 is operated to the release position and the target engine speed N corresponding to the operation amount of the fuel lever 8 is immediately output as the engine speed command value, the fuel supply amount increases at a stretch and An excessive load (stress) is applied, which is undesirable in terms of engine strength and engine performance.
  • the sixth embodiment controls the returning operation of the engine speed as follows.
  • FIG. 12 is a block diagram showing the configuration of the prime mover control device according to the sixth embodiment.
  • the same parts as those in FIG. 10 are denoted by the same reference numerals, and the characteristic configuration will be mainly described below.
  • the signal from the limit switch 14 is input to the judgment circuit 71, and the judgment circuit 71 turns the limit switch 14 from on (gate lock lever lock) to off (gate lock lever release), that is, a flag. 1 ⁇ Flag 0 is determined.
  • the target rotational speed N corresponding to the operation amount S which is a signal from the function generation circuit 12, is input to the signal generation circuit 72 and also to the slow-up processing circuit 73.
  • the signal generation circuit 72 outputs a high signal (1) when the target rotational speed N is equal to or higher than a predetermined rotational speed N2, and outputs a low signal (0) when the target rotational speed N is less than the set rotational speed N2.
  • the set rotational speed N2 is an upper limit value of the target rotational speed N that does not cause a problem for the engine even if the engine rotational speed is increased from the super low idle rotational speed NS at once, and is set to 1400, for example.
  • the slow-up processing circuit 73 outputs the target rotational speed to the switching circuit 75 by a process described later, and at the same time, the AND circuit 74 terminates the process.
  • the AND circuit 74 switches the switching circuit 75 in accordance with signals from the determination circuit 71, the function generation circuit 72, and the slow-up processing circuit 73.
  • AND circuit 74 connects switching circuit 75 to terminal b. Switch to the side. As a result, the switching circuit 75 outputs the target rotational speed from the slow-up processing circuit 73 to the servo control circuit 25. On the other hand, under other conditions, the AND circuit 74 switches the switching circuit 75 to the terminal a side. As a result, the switching circuit 75 outputs the target rotational speed from the switching circuit 16 to the servo control circuit 25. Note that the switching circuit 75 also outputs the target rotational speed to the slow-up processing circuit 73 as the previous value. As described above, the servo control circuit 25 controls the rotation of the pulse motor 23 in accordance with the target rotational speed.
  • step S1 the target rotational speed N corresponding to the operation amount S of the fuel lever 8 is read, and in step S2, the previous value output by the switching circuit 75 is read.
  • step S3 it is determined whether or not the target rotational speed N is greater than the previous value. If step S3 is affirmed, the process proceeds to step S4, where a predetermined value ⁇ is added to the previous value, and this is output as the target rotational speed.
  • the predetermined value ⁇ is set to a rate of increase of the target rotational speed N by manual operation of the fuel lever 8 (for example, lOOrpmZsec), and the target rotational speed increases proportionally at a rate of ⁇ N.
  • step S5 a non-end flag is output.
  • step S6 is advanced and the target rotational speed N corresponding to the manipulated variable S is output as the target rotational speed.
  • an end flag is output in step S7.
  • the switching circuit 16 when the gate lock lever 6 is operated to the locked position, the switching circuit 16 is switched to the terminal b side regardless of the operating position of the fuel lever 8, and the switching circuit 75 is connected to the terminal b. Switched to the a side, the engine speed is controlled to the super low idle speed NS.
  • the switching circuit 16 When the gate lock lever 6 is operated to the release position, the switching circuit 16 is switched to the terminal a side, and the target rotational speed N corresponding to the operation amount of the fuel lever 8 is input to the switching circuit 75. At this time, if the target rotational speed N is equal to or higher than the set rotational speed N2, the switching circuit 75 is switched to the terminal b side, and the engine rotational speed slow-up process is started.
  • step S4 the target rotational speed output from the slow-up processing circuit 73 gradually increases (step S4), and the engine rotational speed gradually increases. This prevents the engine from being overloaded.
  • step S7 an end flag is output (step S7), and the switching circuit 75 is switched to the terminal a side. As a result, the engine speed is controlled to the target speed N.
  • the switching circuit 75 is switched to the terminal a side, and the switching circuit From 75, the target speed N is output as is.
  • the engine speed is immediately controlled to a speed corresponding to the amount of operation of the fuel lever 8, and work can be performed quickly.
  • the difference between the super low idle speed NS and the target speed N is small, it is problematic to increase the engine speed to the target speed N at once.
  • the engine speed is gradually increased from the super low idle speed NS to the target speed N by the release operation of the gate lock lever 6. It is possible to prevent an excessive load force from being applied to the engine. If the target engine speed N is smaller than the set engine speed N2, the engine speed is increased from the super low idle engine speed NS to the target engine speed N at a stroke. Immediate control to the target rotational speed N enables quick work.
  • a seventh embodiment of the prime mover control apparatus for work vehicles according to the present invention will be described with reference to FIG.
  • FIG. 14 is a block diagram showing the configuration of the prime mover control device according to the seventh embodiment. The same parts as those in FIG. 10 are denoted by the same reference numerals, and the characteristic configuration will be mainly described below.
  • the OR circuit 82 is supplied with a signal from the auto idle switch 81 that commands auto idle control and a signal from the OR circuit 91.
  • auto idle control when the engine speed is high and the control lever 7 is in the neutral state for a predetermined time t, the engine speed is controlled to a predetermined set speed (auto idle speed N3). In this state, when the operation lever 7 is operated, the engine speed is returned to the high speed, and is configured as follows.
  • the operation amount detector 83 detects the operation amount of the operation lever 7.
  • the signal generation circuit 84 outputs a high signal (1) to the switching circuit 86 when the operation lever 7 is not operated (neutral), and outputs a low signal (0) when the operation lever 7 is operated.
  • the OR circuit 82 switches the switching circuit 86 to the terminal b side when the auto idle switch 81 is ON or a high signal is output from the OR circuit 91, and switches the switching circuit 86 to the terminal a side under other conditions. In a state where the switching circuit 86 is switched to the terminal b side, when a high signal is output from the signal generation circuit 84, the timer 87 starts a power count, and when a low signal is output, the timer is reset. The timer is also reset when the switching circuit 86 is switched to the terminal a side.
  • the timer 87 When the timer 87 counts a predetermined time t (for example, 3 seconds), it outputs a high signal (1) to the switching circuit 88 and switches the switching circuit 88 to the terminal b side. Before the elapse of the predetermined time t, a low signal (0) is output, and the switching circuit 88 is switched to the terminal a side.
  • switching circuit 88 When switching circuit 88 switches to terminal b, it outputs auto idle speed N3 set in signal generation circuit 90, and when switching to terminal a, rated circuit speed N1 is set in signal generation circuit 89. Is output.
  • the auto idle speed N3 is set to 1400 rpm, for example, similarly to the set speed N2 of the sixth embodiment.
  • the signal from the timer 87 and the signal from the limit switch 14 are input to the OR circuit 91. After the timer 87 counts t for a predetermined time or when the limit switch 14 is turned ON, the OR circuit 82 is high. Output a signal.
  • the switching circuit 16 is switched to the terminal a side by releasing the gate lock lever 6 and outputs the rated rotational speed N1 set in the signal generating circuit 92 in advance. To help. Also, when the gate lock lever 6 is locked, it is switched to the terminal b side, and the super speed per idle speed NS is output.
  • the minimum value selection circuit 95 selects the minimum value for the rotational speed output from the switching circuit 88, the rotational speed output from the function generation circuit 12, and the medium force of the rotational speed output from the switching circuit 16, and sets it as the target rotational speed. Output to servo control circuit 25.
  • the switching circuit 16 when the gate lock lever 6 is locked, the switching circuit 16 is switched to the terminal b side, and the super low idle rotation speed NS is output from the switching circuit 16.
  • the switching circuit 86 When the gate lock lever 6 is locked, the switching circuit 86 is switched to the terminal b side, and when the operation lever 7 is operated to the neutral position for a predetermined time t, the switching circuit 88 outputs the auto idle speed N3.
  • the minimum value selection circuit 95 selects the super mouth idle speed NS, and the engine speed is controlled to the super low idle speed NS.
  • the gate lock lever 6 When the gate lock lever 6 is released in this state, if the target speed N by operating the fuel lever 8 is greater than the set speed N3, the minimum value selection circuit 95 selects the auto idle speed N3, The engine speed is controlled to auto idle speed N3. As a result, the amount of increase in engine speed is limited, and the load on the engine can be reduced.
  • the switching circuit 88 When the operation lever 7 is operated in this state, the switching circuit 88 is switched to the terminal a side, and the engine speed is controlled to the target speed N corresponding to the operation amount of the fuel lever 8.
  • the minimum value selection circuit 95 is output from the function generation circuit 12.
  • the target engine speed N is selected, and the engine speed is controlled to the target engine speed N corresponding to the operation amount of the fuel lever 8. In this case, operating the operating lever 7 does not change the engine speed.
  • the above operation is independent of the operation of the auto idle switch 81.
  • the engine speed is controlled from the super low idle speed NS to the auto idle speed N3 by the release operation of the gate lock lever 6, so that the engine It is possible to prevent an excessive load force from being applied. Also, since the auto idle speed N3 is controlled until the control lever 7 is operated (auto idle control), Fuel consumption and noise can be reduced. If the target speed N is smaller than the set speed N3, the engine speed is controlled to the target speed N regardless of the operation of the control lever 7. The number can be immediately controlled to the target speed N.
  • the target rotational speed is commanded within the range where the low idle rotational speed NL is set to the lower limit by operating the fuel lever 8.
  • the composition is not limited to this.
  • the characteristic L1 for setting the target rotational speed is an example, and the target rotational speed corresponding to the operation amount of the fuel lever 8 may be set by other characteristics.
  • the engine speed is controlled to at least the set speed higher than the low idle speed NL when the non-operation of the lock valve 3 is detected, the engine speed is set to a value other than the command value commanded by the operator. The number may be controlled.
  • the operation Z of the parking brake and the work brake is detected by operating the brake switch 18, but the configuration of the brake detection means is not limited to this.
  • the hydraulic actuator 5 other than the travel motor 33 may be provided with a braking device, and when the operation of this braking device is detected, the engine speed may be controlled to the super low idle speed NS.
  • the forward / reverse switching switch 19 selects a travelable state in which the travel motor 33 can rotate and a neutral state in which the travel motor 33 cannot rotate.
  • the switching valve 34 and the switching valve 32 are switched to allow or prohibit the flow of pressure oil from the hydraulic pump 2 to the traveling motor 33, the configuration of the traveling selection means and the traveling control means is not limited to this.
  • the higher value of the target rotational speed set according to the engine coolant temperature and the target rotational speed set according to the hydraulic oil temperature is set to the super low idle rotational speed NS.
  • the target rotational speed set according to the engine coolant temperature or the target rotational speed set according to the hydraulic oil temperature may be set as the correction value for the super low idle rotational speed.
  • the engine cooling water temperature is detected by the water temperature sensor 41
  • the configuration of the water temperature detection means is not limited to this.
  • the hydraulic oil temperature is detected by the hydraulic oil temperature sensor 42
  • the configuration of the oil temperature detecting means is not limited to this.
  • Special setting for target speed The characteristics L2 and L3 are examples, and the target speed may be set according to the engine coolant temperature and hydraulic oil temperature depending on other characteristics.
  • the engine speed when the engine speed is restored from the super low idle speed NS, when the target speed N by operating the fuel lever 8 is higher than the auto idle speed N3, The engine speed is controlled to the auto idle speed N3.
  • the engine speed is controlled to be higher than the low idle speed NL and lower than the target speed N by operating the fuel lever 8, the auto idle speed It may be controlled to a rotational speed other than the number. That is, in the above-described embodiment, the set rotational speed N3 may be determined separately without performing the force automatic idle control using the set rotational speed N3 when performing the automatic idle control.
  • the hydraulic actuator drive command is output by the operating lever 7, the configuration of the actuator drive command is not limited to this.
  • the present invention is similarly applicable to other work vehicles having a hydraulic pump 2 driven by the engine 1 and a hydraulic actuator 5 driven by pressure oil from the hydraulic pump 2.
  • a hydraulic pump 2 driven by the engine 1
  • a hydraulic actuator 5 driven by pressure oil from the hydraulic pump 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Operation Control Of Excavators (AREA)
  • Component Parts Of Construction Machinery (AREA)
  • Control Of Transmission Device (AREA)

Abstract

 本発明は、原動機1により駆動される油圧ポンプ2と、油圧ポンプ2からの圧油により駆動する油圧アクチュエータ5と、油圧ポンプ2からの圧油による油圧アクチュエータ5の駆動を禁止する駆動禁止手段3と、駆動禁止手段3の作動/非作動を検出する駆動禁止検出手段14と、少なくとも駆動禁止検出手段14により駆動禁止手段3の作動が検出されると、原動機1の回転数を、油圧アクチュエータ5を駆動可能な最小回転数(ローアイドル回転数NL)よりも低い低速回転数NSに制御する回転数制御手段12~16とを備える。

Description

明 細 書
作業車両の原動機制御装置
技術分野
[0001] 本発明は、ホイール式油圧ショベル等の作業車両の原動機制御装置に関する。
背景技術
[0002] 従来、操作レバーが中立位置に操作されるとエンジン回転数を所定回転数まで低 減するようにした装置が知られて 、る(例えば特許文献 1参照)。これによれば操作レ バーを中立位置に固定するためのロック機構を設け、ロック機構が解除された状態で 操作レバーが中立位置に操作されるとエンジン回転数を上記所定回転数に制御す る。ロック機構が作動した状態ではエンジン回転数を上記所定回転数よりも低い回転 数 (以下、ローアイドル回転数と呼ぶ)に制御する。ここで、ローアイドル回転数はェン ジンのアクセル位置をアイドリング位置よりも僅か〖こ高速側に設定したときの回転数で あり、油圧ァクチユエータを駆動してもエンストしない最小の回転数である。
[0003] 特許文献 1:特許第 3073896号公報
発明の開示
発明が解決しょうとする課題
[0004] し力しながら、上記公報記載の装置では、ロック機構が作動した状態でエンジン回 転数をローアイドル回転数に制御するため、エンジン回転数を十分に低減していると は言えず、燃費のさらなる改善の余地がある。
課題を解決するための手段
[0005] 本発明による作業車両の原動機制御装置は、原動機により駆動される油圧ポンプ と、油圧ポンプからの圧油により駆動する油圧ァクチユエータと、油圧ポンプ力 の圧 油による油圧ァクチユエータの駆動を禁止する駆動禁止手段と、駆動禁止手段の作 動 Z非作動を検出する駆動禁止検出手段と、少なくとも駆動禁止検出手段により駆 動禁止手段の作動が検出されると、原動機の回転数を、油圧ァクチユエータを駆動 可能な最小回転数 (以下、これをローアイドル回転数と呼ぶ)よりも低 ヽ低速回転数 に制御する回転数制御手段とを備えることを特徴とする。 オペレータの操作によりローアイドル回転数を下限とした範囲内で原動機の回転数 を指令する回転数指令手段をさらに備えることもできる。この原動機制御装置では、 駆動禁止検出手段により駆動禁止手段の作動が検出され、かつ、回転数指令手段 によりローアイドル回転数が指令されると、原動機の回転数を低速回転数に制御し、 回転数指令手段によりローアイドル回転数より高い回転数が指令されると、原動機の 回転数をこの指令された回転数に制御することができる。
油圧ァクチユエータを制動する制動装置と、制動装置の作動 z非作動を検出する 制動検出手段をさらに備えてもよい。この原動機制御装置では、駆動禁止検出手段 により駆動禁止手段の作動が検出され、かつ、回転数指令手段によりローアイドル回 転数が指令され、かつ、制動検出手段により制動装置の作動が検出されると、原動 機の回転数を低速回転数に制御することができる。
油圧ァクチユエータを走行ペダルの操作量に応じて回転する走行モータとする場 合、本発明による原動機制御装置は、走行ペダルの操作による走行モータの回転が 可能な走行可能状態と回転が不可能な中立状態とを選択する走行選択手段と、走 行選択手段により走行可能状態が選択されると油圧ポンプ力 走行モータへの圧油 の流れを許容し、走行選択手段により中立状態が選択されると油圧ポンプから走行 モータへの圧油の流れを禁止する走行制御手段とをさらに備えることができる。この 原動機制御装置では、駆動禁止検出手段により駆動禁止手段の作動が検出され、 かつ、回転数指令手段によりローアイドル回転数が指令され、かつ、走行選択手段 により中立状態が指令されると、原動機の回転数を低速回転数に制御することができ る。
エンジン冷却水温を検出する水温検出手段と、水温検出手段により検出されたェ ンジン冷却水温が低 、ほど低速回転数が高くなるようにエンジン冷却水温に応じて 低速回転数を設定する第 1の設定手段とをさらに備え、原動機の回転数を低速回転 数に制御するとき、第 1の設定手段で設定された回転数に制御することが好ましい。 作動油温を検出する油温検出手段と、油温検出手段により検出された作動油温が 低 、ほど低速回転数が高くなるように作動油温に応じて低速回転数を設定する第 2 の設定手段とをさらに備え、原動機の回転数を低速回転数に制御するとき、第 2の設 定手段で設定された回転数に制御することが好ま 、。
原動機の始動を検出する始動検出手段をさらに備え、始動検出手段により原動機 の始動が検出されて力 所定時間が経過するまでは、原動機の回転数の低速回転 数への切換を禁止し、始動検出手段により原動機の始動が検出されて力 所定時間 が経過すると、低速回転数への切換を許容することもできる。
原動機の暖機運転の完了を判定する暖機判定手段をさらに備え、暖機判定手段 により暖機運転の完了が判定されるまでは、原動機の回転数の低速回転数への切 換を禁止し、暖機判定手段により暖機運転の完了が判定されると、低速回転数への 切換を許容することもできる。
少なくとも駆動禁止検出手段により駆動禁止手段の非作動が検出されると、原動機 の回転数を、ローアイドル回転数以上の設定回転数に制御することが好ましい。 原動機の回転数を低速回転数に制御した状態で駆動禁止検出手段により駆動禁 止手段の非作動が検出されると、原動機の回転数を、回転数指令手段による指令回 転数まで徐々〖こ増カロさせることもできる。
この場合、回転数指令手段による指令回転数がローアイドル回転数よりも高い設定 回転数以上のときに、原動機の回転数をその指令回転数まで徐々に増加させ、設定 回転数未満のときに、原動機の回転数をその指令回転数まで即座に増加させること が好ましい。
原動機の回転数を低速回転数に制御した状態で駆動禁止検出手段により駆動禁 止手段の非作動が検出されると、回転数指令手段による指令回転数がローアイドル 回転数よりも高い設定回転数以上のときに、原動機の回転数を該設定回転数に制御 することちでさる。
この場合、油圧ァクチユエータの駆動指令を出力するァクチユエータ駆動指令手段 を備え、ァクチユエータ駆動指令手段により駆動指令が出力されないことを条件とし て原動機の回転数を設定回転数に制御し、駆動指令が出力されると原動機の回転 数を指令回転数に制御することが好まし 、。
発明の効果
本発明によれば、少なくとも油圧ポンプ力 の圧油による油圧ァクチユエ一タの駆 動が禁止されると、原動機の回転数を、油圧ァクチユエータを駆動可能な最小回転 数 (ローアイドル回転数)よりも低 ヽ低速回転数に制御するようにした。これにより油圧 ポンプに負荷が力からない状態で原動機回転数をローアイドル回転数よりも低くする ことができ、エンストを防止しつつ燃費を向上することができる。
図面の簡単な説明
[0007] [図 1]本発明の第 1の実施の形態に係る原動機制御装置の構成を示すブロック図。
[図 2]第 1の実施の形態に係る作業車両に搭載された油圧ァクチユエータの駆動用 油圧回路図。
[図 3]第 2の実施の形態に係る作業車両に搭載された油圧ァクチユエータの駆動用 油圧回路図。
[図 4]本発明の第 2の実施の形態に係る原動機制御装置の構成を示すブロック図。
[図 5]第 3の実施の形態に係る作業車両に搭載された油圧ァクチユエータの駆動用 油圧回路図。
[図 6]本発明の第 3の実施の形態に係る原動機制御装置の構成を示すブロック図。
[図 7]図 6の変形例を示す図。
[図 8]本発明の第 4の実施の形態に係る原動機制御装置の構成を示すブロック図。
[図 9]本発明の第 5の実施の形態に係る原動機制御装置の構成を示すブロック図。
[図 10]図 1の変形例を示す図。
[図 11]図 1の他の変形例を示す図。
[図 12]本発明の第 6の実施の形態に係る原動機制御装置の構成を示すブロック図。
[図 13]図 6のスローアップ処理回路における処理を示すフローチャート。
[図 14]本発明の第 7の実施の形態に係る原動機制御装置の構成を示すブロック図。 発明を実施するための最良の形態
[0008] 第 1の実施の形態
以下、図 1, 2を参照して本発明による作業車両の原動機制御装置の第 1の実施の 形態について説明する。
図 1は第 1の実施の形態に係る原動機制御装置の構成を示すブロック図である。こ の原動機制御装置は、油圧ァクチユエータを有する作業車両 (例えば油圧ショベル など)に搭載される。
[0009] 図 2は油圧ァクチユエータ 5の駆動用油圧回路図である。エンジン 1によって駆動さ れる油圧ポンプ 2からの圧油はロックノ レブ 3、制御弁 4を介して油圧シリンダや油圧 モータ等の油圧ァクチユエータ 5に供給される。この油圧ァクチユエータ 5は、例えば クローラ式走行装置をもつ油圧ショベルでは、ブーム、アーム等の作業装置を駆動 する油圧シリンダおよび旋回体、走行体を駆動する油圧モータである。ロックバルブ 3は油圧ポンプ 2からの圧油を制御弁 4に導く連通位置と制御弁 4への圧油の供給を 阻止する遮断位置とに切り換え可能な 2位置切換弁であり、ゲートロックレバー 6の操 作によって切り換えられる。ゲートロックレバー 6は運転室の入口に設けられ、乗員の 乗降を妨げる解除位置と乗員の乗降を許容するロック位置とに操作される。ゲート口 ックレバー 6が解除位置に操作されるとロックバルブ 3が連通位置に切り換えられ、ゲ 一トロッタレバー 6がロック位置に操作されるとロックバルブ 3が遮断位置に切り換えら れる。
[0010] 制御弁 4は操作レバー 7の操作によって切り換えられ、ロックノ レブ 3から油圧ァク チユエータ 5への圧油の流れを制御する。なお、油圧回路の構成は図 2のものに限ら ない。例えば制御弁 4を油圧パイロット式切換弁として構成し、操作レバー 7の操作量 に応じたパイロット圧を発生するパイロット回路を設け、操作レバー 7の操作量に応じ たパイロット圧により制御弁 4を切り換えるようにしてもよい。この場合、ロックバルブ 3 をパイロット回路に配置してもよい。
[0011] 図 1に示すように運転室にはエンジン回転数を指令するための燃料レバー 8が設け られる。燃料レバー 8はアイドルとフルの間で操作可能であり、燃料レバー 8の操作量 (操作ストローク量または操作角度)は操作量検出器 11によって検出される。操作量 検出器 11力もの信号 Sは関数発生回路 12および信号発生回路 13にそれぞれ入力 される。関数発生回路 12には予め図示のように操作量 Sに対するエンジン 1の目標 回転数 Nの関係 (特性 L1)が記憶され、関数発生回路 12は操作量 Sに応じた目標回 転数 Nを出力する。特性 L1によれば、操作量 Sの増加に伴い目標回転数 Nがローァ ィドル回転数 NLから定格回転数 N1まで比例的に増加している。
[0012] ローアイドル回転数 NLとは、操作レバー 7の操作によりいずれかの油圧ァクチユエ ータ 5を駆動してもエンストしないエンジン 1の最小回転数であり、例えば lOOOrpmに 設定される。なお、定格回転数 N1は例えば 2000rpmである。信号発生回路 13は燃 料レバー 8によりローアイドル回転数 NLが指令されるとハイ信号を出力し、ローアイド ル回転数 NLより高い回転数が指令されるとロー信号を出力する。
[0013] ゲートロックレバー 6にはリミットスィッチ 14が設けられ、ゲートロックレバー 6がロック 位置に操作されるとリミットスィッチ 14がオンし、解除位置に操作されるとリミットスイツ チ 14がオフする。アンド回路 15にはリミットスィッチ 14および信号発生回路 13からの 信号が入力され、これら入力信号に応じてアンド回路 15は切換回路 16を切り換える 。すなわち信号発生回路 13からハイ信号が入力され、かつ、リミットスィッチ 14のオン 信号が入力されるとアンド回路 15は切換回路 16を端子 b側に切り換える。これにより 切換回路 16は予め設定回路 17に設定された回転数 NS (スーパーローアイドル回転 数と呼ぶ)を目標回転数として出力する。一方、信号発生回路 13からロー信号が入 力され、あるいはリミットスィッチ 14のオフ信号が入力されるとアンド回路 15は切換回 路 16を端子 a側に切り換える。これにより切換回路 16は関数発生回路 12からの目標 回転数を出力する。
[0014] スーパーローアイドル回転数 NSとは、油圧ァクチユエータ 5を駆動しない油圧ポン プ 2の無負荷状態のときに、エアコンや補機類を動作させてもエンストしないエンジン 1の低速回転数である。この状態では油圧ァクチユエータ 5の駆動を考慮する必要が な!、ので、スーパーローアイドル回転数 NSは上述したローアイドル回転数 NLよりも 低ぐ例えば 600rpmに設定される。この回転数は油圧ァクチユエータ 5の駆動による 負荷がエンジン 1に作用すればエンストを起こす回転数であり、油圧ァクチユエータ 5 の駆動に要する出力分だけアイドル回転数をローアイドル回転数 NLよりも低減する ことができる。
[0015] エンジン 1のガバナ 21はリンク機構 22を介してパルスモータ 23に接続され、ノルス モータ 23の回転によりエンジン回転数が制御される。また、ガバナ 21にはリンク機構 22を介してポテンショメータ 24が接続され、ポテンショメータ 24によりエンジン回転数 に応じたガバナレバー角度が検出され、サーボ制御回路 25に出力される。サーボ制 御回路 25はポテンショメータ 24で検出した回転数が切換回路 16から出力された目 標回転数となるようにパルスモータ 23に制御信号を出力し、ノ ルスモータ 23の回転 を制御する。
[0016] 次に、第 1の実施の形態に係る原動機制御装置の主要な動作を説明する。
作業時にはオペレータはゲートロックレバー 6を解除位置に操作する。これにより口 ックバルブ 3が連通位置に切り換えられ (ロックバルブ非作動)、操作レバー 7の操作 による油圧ァクチユエータ 5の駆動が許容されるとともに、リミットスィッチ 14がオフさ れ、切換回路 16が端子 a側に切り換えられる。その結果、切換回路 16からは燃料レ バー 8の操作量に応じた目標回転数 Nが出力され、サーボ制御回路 25でエンジン 回転数が目標回転数 Nに制御される。例えば燃料レバー 8をアイドルに操作するとェ ンジン回転数はローアイドル回転数 NLに制御され、フルに操作すると定格回転数 N 1に制御される。
[0017] 作業を中断する場合等、非作業時にはオペレータはゲートロックレバー 6をロック位 置に操作する。これによりロックバルブ 3が遮断位置に切り換えられ (ロックバルブ作 動)、操作レバー 7の操作による油圧ァクチユエータ 5の駆動が禁止され、リミットスィ ツチ 14がオンされる。このとき燃料レバー 8がアイドルに操作されると、切換回路 16が 端子 b側に切り換えられる。このため切換回路 16からはスーパーローアイドル回転数 NSが目標回転数として出力され、エンジン回転数がスーパーローアイドル回転数 NS に制御される。その結果、燃費およびエンジン騒音を低減することができる。この場 合、誤って操作レバー 7を操作しても油圧ァクチユエータ 5には油圧ポンプ 2からの圧 油が供給されず、エンジン出力が不足することによるエンストを防止することができる
[0018] 作業の中断後、作業を再開する場合、オペレータは燃料レバー 8をアイドルに操作 したままゲートロックレバー 6を解除位置に操作する。これによりリミットスィッチ 14がォ フされて、切換回路 16が端子 a側に切り換えられ、エンジン回転数はローアイドル回 転数 NLに制御される。次いで、オペレータは燃料レバー 8をフル側に操作し、ェンジ ン回転数をその操作量に応じた回転数まで上昇させた後、操作レバー 7を操作して 油圧ァクチユエータ 5を駆動する。これによりエンジン出力が不足することなく作業を 行うことができ、エンストを防止できる。なお、ゲートロックレバー 6を解除位置に操作 した後、燃料レバー 8をアイドルに操作した状態で操作レバー 7を操作しても、エンス トすることなく油圧ァクチユエータ 5を駆動することができる。
[0019] 一方、ゲートロックレバー 6を解除位置に操作する前に燃料レバー 8をフル側に操 作すると切換回路 16が端子 a側に切り換わり、エンジン回転数はその燃料レバー 8の 操作量に応じた回転数に制御される。この状態でゲートロックレバー 6を解除位置に 操作して操作レバー 7を操作すると、油圧ァクチユエータ 5に圧油が供給され、エンス トすることなく油圧ァクチユエータ 5を駆動することができる。すなわちゲートロックレバ 一 6と燃料レバー 8の操作順序に拘わらず、操作レバー 7を操作する際はエンジン回 転数は少なくともローアイドル回転数 NL以上であり、スーパーローアイドル回転数 NS の下で油圧ァクチユエータ 5に圧油が供給されることがないので、エンストすることなく 作業を行うことができる。
[0020] 以上の第 1の実施の形態によれば以下のような作用効果を奏することができる。
(1)油圧ァクチユエータ 5への圧油の供給が不可能な非作業状態が検出されると、ェ アコン,補機類,無負荷状態のポンプ等を駆動する必要最低限の回転数 (スーパー ローアイドル回転数 NS)にエンジン回転数を制御するようにした。これにより燃費が向 上するとともに騒音を抑えることができる。
(2)ゲートロックレバー 6の操作によりロックバルブ 3が遮断位置に切り換えられると(口 ックバルブ作動)、エンジン回転数をスーパーローアイドル回転数 NSに制御するよう にしたので、スーパーローアイドル回転数 NSの下で油圧ァクチユエータ 5に圧油が 供給されることはなぐエンストを防止することができる。
(3)ゲートロックレバー 6がロック位置に操作され、かつ燃料レバー 8がアイドルに操 作されるとスーパーローアイドル回転数 NSに制御するようにしたので、燃料レバー 8 の操作により最小回転数が要求された場合にのみスーパーローアイドル回転数 NS に制御され、不所望なエンジン回転数の低下を防止することができる。
[0021] 第 2の実施の形態
図 3, 4を参照して本発明による作業車両の原動機制御装置の第 2の実施の形態 について説明する。
第 2の実施の形態では油圧ァクチユエータ 5が作業用の油圧シリンダ、油圧モータ と、走行用の油圧モータ(以下走行モータという)である。作業用の油圧シリンダ、油 圧モータは上述したようにロックバルブ 3,ゲートロックレバー 6によって動作 Z非動作 が切り換えられ、走行モータは後述するブレーキスィッチ 18などによって走行 Z非走 行が切り換えられるものであり、例えばホイール式の油圧ショベルなどに適用される。
[0022] 図 3は、第 2の実施の形態に係る原動機制御装置が適用される作業車両 (例えばホ ィール式油圧ショベル)の走行用油圧回路図である。図 3において、走行ペダル 31 は前踏み操作および後踏み操作が可能であり、走行ペダル 31を前踏み操作すると 切換弁 32が前進側に切り換えられて油圧ポンプ 2からの圧油が走行モータ 33に供 給され、車両が前進走行する。反対に走行ペダル 31を後踏み操作すると切換弁 32 が後進側に切り換えられ、車両が後進走行する。このような車両にあっては、ェンジ ン回転数を上述したスーパーローアイドル回転数 NSに制御した状態で走行ペダル 3 1を踏み込み操作すると、油圧ポンプ 2に負荷が作用してエンストするおそれがある。 そこで、第 2の実施の形態では以下のようにエンストを防止する。
[0023] 図 4は、第 2の実施の形態に係る原動機制御装置の構成を示すブロック図である。
なお、図 1と同一の箇所には同一の符号を付し、以下では第 1の実施の形態との相 違点を主に説明する。
[0024] 図 4に示すように、アンド回路 15にはリミットスィッチ 14と信号発生回路 13とブレー キスイッチ 18が接続されている。ブレーキスィッチ 18は走行,作業,および駐車位置 に切換可能なスィッチであり、走行位置 (T端子)に切り換えられると図示しない作業 ブレーキおよび駐車ブレーキがともに解除する。駐車位置 (P端子)に切り換えられる と駐車ブレーキが作動し、作業位置 (W端子)に切り換えられると作業ブレーキが作 動する。アンド回路 15にはブレーキスィッチ 18の P端子と W端子力もの信号、すなわ ちブレーキの作動状態に対応した信号が入力される。このブレーキスィッチ 18は、走 行モータ 23の動作 Z非動作を制御するものである。
[0025] 信号発生回路 13からハイ信号が入力され、かつ、リミットスィッチ 14のオン信号が 入力され、かつ、ブレーキスィッチ 18の P端子または W端子力も信号が入力されると 、アンド回路 15は切換回路 16を端子 b側に切り換える。これにより切換回路 16はス 一パーローアイドル回転数 NSを目標回転数として出力する。一方、信号発生回路 1 3からロー信号が入力され、あるいはリミットスィッチ 14のオフ信号が入力され、あるい はブレーキスィッチ 18の P端子または W端子からの信号が入力されない (T端子に切 り換えられた状態)と、アンド回路 15は切換回路 16を端子 a側に切り換える。これによ り切換回路 16は関数発生回路 12からの目標回転数を出力する。
[0026] 第 2の実施の形態では、作業および走行がともに禁止された状態、すなわちゲート ロックレバー 6がロック位置に操作され(ロックバルブ作動)、かつ、燃料レバー 8がァ ィドルに操作され、かつ、ブレーキスィッチ 18が駐車または作業位置に切り換えられ ると (ブレーキ作動)、切換回路 16が端子 b側に切り換えられ、エンジン回転数力 Sスー パーローアイドル回転数 NSに制御される。これによりスーパーローアイドル回転数 N Sの下で走行ペダル 31を操作しても走行モータ 33は回転しな!、ので、油圧ポンプ 2 に負荷はかからず、エンストを防止することができる。
[0027] この状態力も車両走行を開始するときは、ブレーキスィッチ 18を走行位置に切り換 える。これにより切換回路 16は端子 a側に切り換えられ、エンジン回転数は燃料レバ 一 8の操作量に応じた回転数に制御される。その結果、エンジン回転数は少なくとも ローアイドル回転数 NL以上となり、走行時のエンストを防止することができる。なお、 走行ペダル 31の操作量の増加に伴い目標回転数が増加するような関係を予め設定 し、ブレーキスィッチ 18が走行位置に切り換えられたときはこの関係にしたがってェ ンジン回転数を制御するようにしてもよ!、。
[0028] 第 3の実施の形態
図 5〜7を参照して本発明による作業車両の原動機制御装置の第 3の実施の形態 について説明する。
図 5は、第 3の実施の形態に係る原動機制御装置が適用される作業車両の走行用 油圧回路図である。第 2の実施の形態は、走行ペダル 31の前踏み操作および後踏 み操作により走行モータ 33に圧油を供給するような作業車両に適用したが、第 3の 実施の形態は、走行ペダル 31の踏み込み操作と前後進切換バルブ 34の切換操作 により走行モータ 33に圧油を供給するような作業車両に適用する。
[0029] 前後進切換バルブ 34 (電磁切換弁)は前後進切換スィッチ 19 (図 6)の操作により 前進,後進,および中立位置に切り換えられる。切換弁 32は油圧パイロット式切換弁 であり、前後進切換バルブ 34が前進または後進位置に切り換えられた状態で走行 ペダル 31を操作するとその操作量に応じてノ ィロット弁 35が駆動され、油圧源 36か らの圧油(パイロット圧)が切換弁 32のパイロットポートに作用する。これにより切換弁 32が前進側または後進側に切り換えられ、油圧ポンプ 2からの圧油が走行モータ 33 に供給され、車両が前進または後進走行する。前後進切換バルブ 34が中立位置に 切り換えられた状態では走行ペダル 31を操作しても切換弁 32にパイロット圧は作用 せず、走行モータ 33は駆動されない。
[0030] 図 6は、第 3の実施の形態に係る原動機制御装置の構成を示すブロック図である。
なお、図 3と同一の箇所には同一の符号を付し、以下では第 2の実施の形態との相 違点を主に説明する。
[0031] 図 6に示すように、第 3の実施の形態では、アンド回路 15にブレーキスィッチ 18の 代わりに前後進切換スィッチ 19が接続されている。前後進切換スィッチ 19は前進, 後進,および中立位置に切換可能なスィッチであり、前進位置 (F端子)または後進 位置 (R端子)に切り換えられると前後進切換バルブ 34は前進位置または後進位置 に切り換えられ、走行ペダル 31の操作による前進走行または後進走行が可能となる 。中立位置 (N端子)に切り換えられると前後進切換バルブ 34は中立位置に切り換え られ、走行ペダル 31の操作による走行が不可能となる。アンド回路 15には前後進切 換スィッチ 19の N端子力もの信号、すなわち走行不可能状態に対応した信号が入 力される。
[0032] 信号発生回路 13からハイ信号が入力され、かつ、リミットスィッチ 14のオン信号が 入力され、かつ、前後進切換スィッチ 19の N端子力 信号が入力されると、アンド回 路 15は切換回路 16を端子 b側に切り換える。これにより切換回路 16はスーパーロー アイドル回転数 NSを目標回転数として出力する。一方、信号発生回路 13からロー信 号が入力され、あるいはリミットスィッチ 14のオフ信号が入力され、あるいは前後進切 換スィッチ 19の N端子力もの信号が入力されない (F端子または R端子に切り換えた 状態)と、アンド回路 15は切換回路 16を端子 a側に切り換える。これにより切換回路 1 6は関数発生回路 12からの目標回転数を出力する。
[0033] 第 3の実施の形態では、作業および走行がともに禁止された状態、すなわちゲート ロックレバー 6がロック位置に操作され(ロックバルブ作動)、かつ、燃料レバー 8がァ ィドルに操作され、かつ、前後進切換スィッチ 19が中立位置に操作されると (前後進 切換バルブ中立)、切換回路 16が端子 b側に切り換えられ、エンジン回転数カ^ー パーローアイドル回転数 NSに制御される。これによりスーパーローアイドル回転数 N Sの下で走行ペダル 31を操作しても走行モータ 33は回転しな!、ので、油圧ポンプ 2 に負荷はかからず、エンストを防止することができる。
[0034] この状態力も車両走行を開始するときは、前後進切換スィッチ 19を前進または後進 位置に切り換える。これにより切換回路 16が端子 a側に切り換えられ、エンジン回転 数が燃料レバー 8の操作量に応じた回転数に制御される。その結果、エンジン回転 数は少なくともローアイドル回転数 NL以上となり、走行時のエンストを防止することが できる。なお、走行ペダル 31の操作量の増加に伴い目標回転数が増加するような関 係を予め設定し、前後進切換スィッチ 19が前進または後進位置に切り換えられたと きはこの関係にしたがってエンジン回転数を制御するようにしてもよ!、。
[0035] 図 7に示すようにアンド回路 15に前後進切換スィッチ 19とブレーキスィッチ 18をそ れぞれ接続し、信号発生回路 13からハイ信号が入力され、かつ、リミットスィッチ 14 のオン信号が入力され、かつ、ブレーキスィッチ 18の P端子または W端子力も信号が 入力され、かつ、前後進切換スィッチ 19の N端子力 信号が入力されると、切換回路 16を端子 b側に切り換えるようにしてもよい。これによりブレーキが作動しても前後進 切換バルブ 34が中立位置に切り換えられない限りはスーパーローアイドル回転数 N Sとはならず、エンストを確実に防止することができる。
[0036] 第 4の実施の形態
図 8を参照して本発明による作業車両の原動機制御装置の第 4の実施の形態につ いて説明する。
第 4の実施の形態では、エンジン冷却水温と作動油温に応じてスーパーローアイド ル回転数 NSを補正する。すなわちエンジン冷却水温が低いとエンジン 1が暖まって いないためエンジン出力が十分とはいえず、また、作動油温が低いと油の粘性が高 いためポンプ負荷が大きくなる。そこで、このような場合にはエンストが発生しやすく なるので、スーパーローアイドル回転数 NSを高めの値に補正する。 [0037] 図 8は、第 4の実施の形態に係る原動機制御装置の構成を示すブロック図である。 なお、図 1と同一の箇所には同一の符号を付し、以下では第 1の実施の形態との相 違点を主に説明する。
[0038] 図 8に示すように、第 4の実施の形態に係る原動機制御装置にはエンジン冷却水 温を検出する水温センサ 41と作動油温を検出する作動油温センサ 42が設けられ、 これらセンサ 41, 42からの信号はそれぞれ関数発生回路 43, 44に入力される。関 数発生回路 43には予め図示のようにエンジン冷却水温に対するエンジン 1の目標回 転数の関係 (特性 L2)が記憶され、関数発生回路 44には予め図示のように作動油 温に対するエンジンの目標回転数の関係(特性 L3)が記憶されて 、る。特性 L2によ れば、エンジン冷却水温の増加に伴い目標回転数がローアイドル回転数 NLから最 小回転数 Nminまで減少し、特性 L3によれば、作動油温の増加に伴い目標回転数 力 一アイドル回転数 NLから最小回転数 Nminまで減少する。なお、最小回転数 Nm inは、第 1の実施の形態におけるスーパーローアイドル回転数 NS、すなわちエンジン 冷却水温や作動油温を考慮しない場合のスーパーローアイドル回転数に相当する。
[0039] 最大値選択回路 46は、設定回路 45に設定された最小回転数 Nminと関数発生器 43, 44からそれぞれ出力された目標回転数の最大値を、スーパーローアイドル回転 数 NSの補正値として選択する。アンド回路 15はゲートロックレバー 6がロック位置に 操作され、かつ、燃料レバー 8がアイドルに操作されると切換回路 16を端子 b側に切 り換える。これにより最大値選択回路 46で選択された回転数にエンジン回転数が制 御される。一方、ゲートロックレバー 6が解除位置に操作され、あるいは、燃料レバー 8がアイドル以外に操作されると切換回路 16を端子 a側に切り換える。これにより燃料 レバー 8の操作量に応じた回転数にエンジン回転数が制御される。
[0040] 第 4の実施の形態では、気候や作業場所等の条件が異なることによりエンジン冷却 水温または作動油温が通常よりも低い場合に、関数発生回路 43, 44はそれぞれ作 動油温および冷却水温に応じた目標回転数を出力し、最大値選択回路 46はその大 きい方の値を選択する。これにより冷却水温または作動油温が低くエンジンにかかる 負荷が大きい場合に、スーパーローアイドル回転数 NSがその温度に応じた高めの値 に補正されるので、エンストを確実に防止することができる。 [0041] このように第 4の実施の形態では、エンジン冷却水温と作動油温が低 、ほど、つまり エンジン 1に負荷が力かりやすい条件のときほど、スーパーローアイドル回転数 NSを 高くした。これによりエンストを防止しつつ、燃費および騒音を効果的に低減すること ができる。
[0042] なお、図 8ではゲートロックレバー 6と燃料レバー 8の操作に応じて切換回路 16を切 り換えるようにしたが、ゲートロックレバー 6と燃料レバー 8の操作だけでなぐ上述し た図 4, 6, 7と同様、ブレーキスィッチ 18や前後進切換スィッチ 19の操作に応じて切 換回路 16を切り換えるようにしてもょ 、。
[0043] 第 5の実施の形態
図 9を参照して本発明による作業車両の原動機制御装置の第 5の実施の形態につ いて説明する。
第 5の実施の形態では、エンジン始動時にエンジン冷却水温が低 、とエンジン回 転数がスーパーローアイドル回転数 NSとなることを禁止する。すなわちエンジン冷却 水温が低!、状態でエンジンキースィッチをオンしてエンジン 1を始動した際、エンジン 回転数が安定していないにも拘わらずアイドル回転数を低くするとエンストするおそ れがあるため、このような場合にはエンジン回転数をスーパーローアイドル回転数 NS とはしない。
[0044] 図 9は、第 5の実施の形態に係る原動機制御装置の構成を示すブロック図である。
なお、図 1と同一の箇所には同一の符号を付し、以下では第 1の実施の形態との相 違点を主に説明する。
[0045] アンド回路 51にはエンジンキースィッチ 52からの信号、すなわちエンジンキースィ ツチのオフ信号 (0)またはオン信号(1)が入力されるとともに、フラグセット回路 53で セットされたフラグ 0またはフラグセット回路 54でセットされたフラグ 1が入力される。ァ ンド回路 51にエンジンキースィッチ 52のオン信号(1)とフラグ 0が入力されるとタイマ 55がカウントを開始する。判定回路 56はエンジンキースィッチ 52のオン→オフ、すな わちフラグ 1→フラグ 0を判定し、これが判定されるとフラグセット回路 53はフラグ 0を セットし、リセット回路 57はタイマ 55をリセットする。
[0046] 切換回路 58は、タイマ 55が所定時間を計時するまでは信号発生回路 59側に切り 換えられ、所定時間を計時すると信号発生回路 60側に切り換えられる。なお、所定 時間は、エンジン回転数をスーパーローアイドル回転数 NSに下げてもエンストしない 程度のエンジン回転数となるのに要する時間であり、例えば 15分程度に設定される 。信号発生回路 59はロー信号 (0)を出力し、信号発生回路 60はハイ信号(1)を出 力する。
[0047] 信号発生回路 61は水温センサ 41の温度が所定値以上のときにハイ信号(1)を出 力し、所定値未満のときにロー信号 (0)を出力する。なお、所定値は、エンジン回転 数をスーパーローアイドル回転数 NSに下げてもエンストしない程度のエンジン冷却 水温、換言すれば暖機運転がほぼ終了した時点のエンジン冷却水温である。オア回 路 62には信号発生回路 61からの信号と切換回路 58からの信号が入力される。オア 回路 62に信号発生回路 61および切換回路 58の少なくともいずれかのハイ信号が入 力されると、切換スィッチ 63がオンされるとともに、フラグセット回路 54がフラグ 1をセ ットする。これにより切換回路 16が端子 a側に切り換えられる。一方、オア回路 62に 信号発生回路 61からのロー信号および切換回路 58からのロー信号が入力されると 切換スィッチ 63がオフされる。これにより切換回路 16が端子 b側に切り換えられる。
[0048] 第 5の実施の形態では、エンジン冷却水温が所定値より低い状態でエンジンを始 動すると、オア回路 62にロー信号のみが入力されて切換スィッチ 63がオフされる。こ れによりゲートロックレバー 6がロック位置に操作され、かつ燃料レバー 8がアイドルに 操作された場合でも切換回路 16は端子 a側を維持するため、エンジン回転数はスー パーローアイドル回転数 NSとはならず、ローアイドル回転数 NLに制御される。その 結果、エンジン始動時のエンストを防止することができる。
[0049] エンジン 1を始動して力 所定時間が経過すると暖機運転が終了し、エンジン回転 数が安定する。この状態ではオア回路 62には切換回路 58からハイ信号が入力され 、切換スィッチ 63がオンされる。このときゲートロックレバー 6がロック位置に操作され 、かつ燃料レバー 8がアイドルに操作されていれば、切換回路 16は端子 b側に切り換 えられ、エンジン回転数がスーパーローアイドル回転数 NSに制御される。これにより 始動時のエンストを防止しつつ燃費を低減することができる。この場合、所定時間を 計時する前であってもエンジン冷却水温が所定値を越えると信号発生回路 61からォ ァ回路 62にハイ信号が入力され、切換スィッチ 63がオンされる。これにより所定時間 を経過する前にスーパーローアイドル回転数 NSに制御され、燃費を一段と向上する ことができる。
[0050] なお、エンジンキースィッチ 52をオフした後、それほど時間をおかずにエンジンキ 一スィッチ 52をオンする場合、エンジン 1は完全に冷えておらず、エンジン冷却水温 が所定値より高いことがある。この場合、エンジンキースィッチ 52のオン時にエンジン 回転数は即座にスーパーローアイドル回転数 NSに制御される。
[0051] このように第 5の実施の形態では、エンジン 1を始動して力 所定時間が経過するま で、ある ヽは暖機運転が完了するまでエンジン回転数がスーパーローアイドル回転 数 NSとなることを禁止し、エンジン回転数を少なくともローアイドル回転数 NL以上に 制御するようにした。これによりエンジン始動時のエンストを防止することができる。ま た、所定時間が経過した後、あるいは所定時間が経過する前であってもエンジン冷 却水温が所定値以上になるとスーパーローアイドル回転数 NSとなることを許容する ので、燃費を効果的に向上することができる。
[0052] なお、図 9ではゲートロックレバー 6と燃料レバー 8の操作に応じて切換回路 16を切 り換えるようにしたが、ゲートロックレバー 6と燃料レバー 8の操作だけでなぐ上述し た図 4, 6, 7と同様、ブレーキスィッチ 18や前後進切換スィッチ 19の操作に応じて切 換回路 16を切り換えるようにしてもょ 、。
[0053] 上記実施の形態(図 1, 2)では、ロックバルブ 3の作動により油圧ポンプ 2からの圧 油による油圧ァクチユエータ 5の駆動を禁止するようにしたが、他の駆動禁止手段を 用いてもよい。また、リミットスィッチ 14によりロックバルブ 3の作動 Z非作動を検出し たが、駆動禁止検出手段はこれに限らない。ゲートロックレバー 6がロック位置に操作 され、かつ、燃料レバー 8がアイドルに操作されたときにエンジン回転数をスーパー口 一アイドル回転数 NSに制御するようにしたが、図 10に示すようにゲートロックレバー 6 力 Sロック位置に操作されたことのみを条件としてエンジン回転数をスーパーローアイド ル回転数 NSに制御するようにしてもよい。すなわち、少なくとも駆動禁止手段の作動 が検出されるとエンジン回転数をスーパーローアイドル回転数 NS (低速回転数)に制 御するのであれば、回転数制御手段の構成は上述したものに限らない。 [0054] 上記実施の形態(図 2)では、ゲートロックレバー 6の操作に連動してロックバルブ 3 を作動 Z非作動するようにした力 例えば、図 11に示すようにスーパーロースイッチ 9 を設け、スーパーロースイッチ 9の操作によりロックノ レブ 3を作動 Z非作動するよう にしてもよい。この場合、スーパーロースイッチ 9によりロックバルブ 3の作動 Z非作動 が検出される。
[0055] 第 6の実施の形態
図 12, 13を参照して本発明による作業車両の原動機制御装置の第 6の実施の形 態について説明する。
上述したようにゲートロックレバー 6がロック位置に操作されたことのみを条件として エンジン回転数をスーパーローアイドル回転数 NSに制御する場合(図 10)、燃料レ バー 8がアイドル以外に操作 (例えばフル操作)されてもエンジン回転数はスーパー ローアイドル回転数 NSに制御される。この状態でゲートロックレバー 6が解除位置に 操作され、燃料レバー 8の操作量に応じた目標回転数 Nを即座にエンジン回転数の 指令値として出力すると、燃料供給量が一気に増加してエンジンに過大な負荷 (スト レス)がかかり、エンジン強度上およびエンジン性能上、好ましくない。この点を考慮 して第 6の実施の形態では以下のようにエンジン回転数の復帰動作を制御する。
[0056] 図 12は、第 6の実施の形態に係る原動機制御装置の構成を示すブロック図である 。なお、図 10と同一の箇所には同一の符号を付し、以下ではその特徴的な構成を主 に説明する。
[0057] 図 12に示すようにリミットスィッチ 14からの信号は判定回路 71に入力され、判定回 路 71はリミットスィッチ 14のオン(ゲートロックレバーロック)→オフ(ゲートロックレバー 解除)、すなわちフラグ 1→フラグ 0を判定する。関数発生回路 12からの信号である 操作量 Sに応じた目標回転数 Nは、信号発生回路 72に入力されるとともにスローアツ プ処理回路 73に入力される。信号発生回路 72は目標回転数 Nが予め設定された回 転数 N2以上のときにハイ信号(1)を出力し、設定回転数 N2未満のときにロー信号( 0)を出力する。ここで、設定回転数 N2は、エンジン回転数をスーパーローアイドル 回転数 NSから一気に上昇させてもエンジンにとって問題とならない目標回転数 Nの 上限値であり、例えば 1400回転に設定される。 [0058] スローアップ処理回路 73は後述する処理により切換回路 75に目標回転数を出力 するとともに、アンド回路 74に処理の終了 Z非終了を示す終了フラグ(1)または非終 了フラグ (0)を反転して出力する。アンド回路 74は判定回路 71,関数発生回路 72, およびスローアップ処理回路 73からの信号に応じて切換回路 75を切り換える。すな わち判定回路 71および関数発生回路 72からフラグ 1が入力され、スローアップ処理 回路 73からフラグ 0 (反転後のフラグ 1)が入力されると、アンド回路 74は切換回路 75 を端子 b側に切り換える。これにより切換回路 75はスローアップ処理回路 73からの目 標回転数をサーボ制御回路 25に出力する。一方、これ以外の条件では、アンド回路 74は切換回路 75を端子 a側に切り換える。これにより切換回路 75は切換回路 16か らの目標回転数をサーボ制御回路 25に出力する。なお、切換回路 75はスローアツ プ処理回路 73にも目標回転数を前回値として出力する。サーボ制御回路 25は上述 したのと同様、目標回転数に応じてパルスモータ 23の回転を制御する。
[0059] 図 13のフローチャートによりスローアップ処理回路 73における処理を説明する。ま ず、ステップ S1で燃料レバー 8の操作量 Sに応じた目標回転数 Nを読み込み、ステツ プ S2で切換回路 75が出力した前回値を読み込む。次いで、ステップ S3で目標回転 数 Nが前回値より大きいか否かを判定する。ステップ S3が肯定されるとステップ S4に 進み、予め定めた所定値 Δ Νを前回値に加算し、これを目標回転数として出力する 。なお、所定値 Δ Νは、燃料レバー 8の手動操作による目標回転数 Nの増加の割合( 例えば lOOrpmZsec)に設定され、 Δ Nの割合で目標回転数は比例的に増加する。 ステップ S5では非終了フラグを出力する。一方、ステップ S3が否定されるとステップ S6〖こ進み、目標回転数として操作量 Sに応じた目標回転数 Nを出力する。次いで、 ステップ S7で終了フラグを出力する。
[0060] 第 6の実施の形態では、ゲートロックレバー 6をロック位置に操作すると、燃料レバ 一 8の操作位置に拘わらず切換回路 16が端子 b側に切り換えられ、かつ、切換回路 75が端子 a側に切り換えられて、エンジン回転数がスーパーローアイドル回転数 NS に制御される。ゲートロックレバー 6を解除位置に操作すると切換回路 16が端子 a側 に切り換えられ、切換回路 75に燃料レバー 8の操作量に応じた目標回転数 Nが入力 される。 [0061] このとき、目標回転数 Nが設定回転数 N2以上であれば、切換回路 75が端子 b側に 切り換えられ、エンジン回転数のスローアップ処理が開始される。すなわち、スローァ ップ処理回路 73から出力される目標回転数が徐々に大きくなり(ステップ S4)、ェン ジン回転数が徐々に増加する。これによりエンジンに過大な負荷が力かることを防ぐ ことができる。スローアップ処理回路 73からの目標回転数が燃料レバー 8の操作量に 応じた目標回転数 Nに達すると、終了フラグが出力され (ステップ S7)、切換回路 75 が端子 a側に切り換えられる。これによりエンジン回転数が目標回転数 Nに制御され る。
[0062] 一方、ゲートロックレバー 6を解除操作した際に、燃料レバー 8の操作による目標回 転数 Nが設定回転数 N2より小さければ、切換回路 75は端子 a側に切り換えられ、切 換回路 75から目標回転数 Nがそのまま出力される。これによりエンジン回転数が直 ちに燃料レバー 8の操作量に応じた回転数に制御され、迅速に作業を行うことができ る。この場合、スーパーローアイドル回転数 NSと目標回転数 Nの差は小さいため、ェ ンジン回転数を目標回転数 Nまで一気に増加させても問題な 、。
[0063] このように第 6の実施の形態によれば、ゲートロックレバー 6の解除操作によりェンジ ン回転数をスーパーローアイドル回転数 NSから目標回転数 Nまで徐々に増加させる ようにしたので、エンジンに過大な負荷力かかることを防止できる。また、目標回転数 Nが設定回転数 N2より小さければ、スーパーローアイドル回転数 NSから目標回転 数 Nまで一気に増加させるようにしたので、エンジンに対する負荷がそれほど大きく ならない場合には、エンジン回転数を即座に目標回転数 Nに制御することができ、迅 速な作業が可能である。
[0064] 第 7の実施の形態
図 14を参照して本発明による作業車両の原動機制御装置の第 7の実施の形態に ついて説明する。
第 6の実施の形態では、エンジン回転数の復帰動作の際に、エンジン回転数をス 一パーローアイドル回転数 NSから目標回転数 Nまで徐々に増加させるようにした力 第 7の実施の形態では、エンジン回転数を目標回転数 Nよりも低 、設定回転数 (ォー トアイドル回転数)まで増加させる。 [0065] 図 14は、第 7の実施の形態に係る原動機制御装置の構成を示すブロック図である 。なお、図 10と同一の箇所には同一の符号を付し、以下ではその特徴的な構成を主 に説明する。
[0066] オア回路 82には、オートアイドル制御を指令するオートアイドルスィッチ 81からの信 号とオア回路 91からの信号が入力される。オートアイドル制御とは、エンジン回転数 が高速回転しかつ操作レバー 7が中立の状態が所定時間 t継続したときに、エンジン 回転数を予め定めた設定回転数 (オートアイドル回転数 N3)に制御し、その状態か ら操作レバー 7が操作されるとエンジン回転数を高速回転数に復帰させる制御であり 、以下のように構成される。
[0067] 操作量検出器 83は操作レバー 7の操作量を検出する。信号発生回路 84は操作レ バー 7が非操作(中立)のときに切換回路 86にハイ信号(1)を出力し、操作レバー 7 が操作されるとロー信号 (0)を出力する。オア回路 82は、オートアイドルスィッチ 81 がオンまたはオア回路 91からハイ信号が出力されると切換回路 86を端子 b側に切り 換え、他の条件では切換回路 86を端子 a側に切り換える。切換回路 86が端子 b側に 切り換えられた状態で、信号発生回路 84からハイ信号が出力されるとタイマ 87が力 ゥントを開始し、ロー信号が出力されるとタイマをリセットする。切換回路 86が端子 a側 に切り換えられたときもタイマをリセットする。
[0068] タイマ 87は所定時間 t (例えば 3秒間)をカウントすると切換回路 88にハイ信号(1) を出力し、切換回路 88を端子 b側に切り換える。所定時間 tの経過前はロー信号 (0) を出力し、切換回路 88を端子 a側に切り換える。切換回路 88は端子 b側に切り換わ ると信号発生回路 90に設定されたオートアイドル回転数 N3を出力し、端子 a側に切 り換わると信号発生回路 89に設定された定格回転数 N1を出力する。オートアイドル 回転数 N3は、例えば第 6の実施の形態の設定回転数 N2と同様、 1400rpmに設定 される。
[0069] オア回路 91にはタイマ 87からの信号とリミットスィッチ 14からの信号が入力され、タ イマ 87が所定時間 tをカウントした後、あるいはリミットスィッチ 14がオンされるとオア 回路 82にハイ信号を出力する。切換回路 16はゲートロックレバー 6の解除操作によ り端子 a側に切り換えられ、予め信号発生回路 92に設定された定格回転数 N1を出 力する。また、ゲートロックレバー 6のロック操作により端子 b側に切り換えられ、スーパ 一口一アイドル回転数 NSを出力する。最小値選択回路 95は、切換回路 88から出力 された回転数と関数発生回路 12から出力された回転数と切換回路 16から出力され た回転数の中力も最小値を選択し、目標回転数としてサーボ制御回路 25に出力す る。
[0070] 第 7の実施の形態では、ゲートロックレバー 6をロック操作すると切換回路 16が端子 b側に切り換えられ、切換回路 16からスーパーローアイドル回転数 NSが出力される。 また、ゲートロックレバー 6をロック操作すると切換回路 86が端子 b側に切り換えられ、 操作レバー 7を中立位置に操作した状態が所定時間 t継続すると、切換回路 88から オートアイドル回転数 N3が出力される。このとき、最小値選択回路 95はスーパー口 一アイドル回転数 NSを選択し、エンジン回転数がスーパーローアイドル回転数 NSに 制御される。
[0071] この状態でゲートロックレバー 6を解除操作すると、燃料レバー 8の操作による目標 回転数 Nが設定回転数 N3より大きければ、最小値選択回路 95はオートアイドル回 転数 N3を選択し、エンジン回転数がオートアイドル回転数 N3に制御される。これに よりエンジン回転数の増加量が制限され、エンジンにかかる負荷を低減することがで きる。この状態で操作レバー 7を操作すると、切換回路 88が端子 a側に切り換えられ、 エンジン回転数が燃料レバー 8の操作量に応じた目標回転数 Nに制御される。
[0072] 一方、ゲートロックレバー 6を解除操作した際に、燃料レバー 8の操作による目標回 転数 Nが設定回転数 N3より小さければ、最小値選択回路 95は関数発生回路 12か ら出力された目標回転数 Nを選択し、エンジン回転数が燃料レバー 8の操作量に応 じた目標回転数 Nに制御される。この場合は操作レバー 7を操作してもエンジン回転 数は変化しない。なお、以上の動作はオートアイドルスィッチ 81の操作とは無関係で ある。
[0073] このように第 7の実施の形態によれば、ゲートロックレバー 6の解除操作によりェンジ ン回転数をスーパーローアイドル回転数 NSからオートアイドル回転数 N3に制御する ようにしたので、エンジンに過大な負荷力かかることを防止できる。また、操作レバー 7が操作されるまでオートアイドル回転数 N3に制御するので (オートアイドル制御)、 燃費および騒音を低減することができる。目標回転数 Nが設定回転数 N3より小さけ れば、操作レバー 7の操作に拘わらずエンジン回転数を目標回転数 Nに制御するの で、エンジンに対する負荷がそれほど大きくない場合には、エンジン回転数を即座に 目標回転数 Nに制御することができる。
[0074] なお、上記実施の形態(図 1)では、燃料レバー 8の操作によりローアイドル回転数 NLを下限とした範囲内で目標回転数を指令するようにしたが、回転数指令手段の構 成はこれに限らない。 目標回転数を設定する特性 L1は一例であって、他の特性によ り燃料レバー 8の操作量に応じた目標回転数を設定してもよい。また、ロックバルブ 3 の非作動が検出されると少なくともローアイドル回転数 NL以上の設定回転数にェン ジン回転数を制御するのであれば、オペレータが指令した指令値以外の値にェンジ ン回転数を制御してもよい。
[0075] 上記実施の形態(図 4)では、ブレーキスィッチ 18の操作により駐車ブレーキと作業 ブレーキの作動 Z非作動を検出したが、制動検出手段の構成はこれに限らない。走 行モータ 33以外の油圧ァクチユエータ 5にも制動装置を設け、この制動装置の作動 が検出されるとエンジン回転数をスーパーローアイドル回転数 NSに制御するようにし てもよい。
[0076] 上記実施の形態(図 5, 6)では、前後進切換スィッチ 19により走行モータ 33の回転 が可能な走行可能状態と回転が不可能な中立状態とを選択し、この選択により前後 進切換バルブ 34および切換弁 32を切り換え、油圧ポンプ 2から走行モータ 33への 圧油の流れを許容または禁止するようにしたが、走行選択手段および走行制御手段 の構成はこれに限らない。
[0077] 上記実施の形態(図 8)では、エンジン冷却水温に応じて設定された目標回転数と 作動油温に応じて設定された目標回転数の高い方の値をスーパーローアイドル回転 数 NSの補正値として設定したが、エンジン冷却水温に応じて設定された目標回転数 、または作動油温に応じて設定された目標回転数をスーパーローアイドル回転数の 補正値として設定してもよい。水温センサ 41によりエンジン冷却水温を検出するよう にしたが、水温検出手段の構成はこれに限らない。作動油温センサ 42により作動油 温を検出したが、油温検出手段の構成はこれに限らない。 目標回転数を設定する特 性 L2, L3は一例であって、他の特性によりエンジン冷却水温および作動油温に応じ た目標回転数を設定してもよ ヽ。
[0078] 上記実施の形態(図 9)では、エンジン 1の始動が検出されて力 所定時間経過後 または水温センサ 41の検出値が所定値以上になるとスーパーローアイドル回転数 N Sへの切換を許容した力 エンジン 1の始動が検出されて力 所定時間を経過したと きのみ、あるいは水温センサ 41の検出値が所定値以上になったときのみスーパー口 一アイドル回転数 NSへの切換を許容するようにしてもよ!、。エンジンキースィッチ 52 によりエンジン 1の始動を検出した力 他の始動検出手段を用いてもよい。水温セン サ 41により暖機運転の完了を検出したが、他の暖機判定手段を用いてもよい。
[0079] 上記実施の形態(図 12)では、スーパーローアイドル回転数 NSからエンジン回転 数を復帰させる際に、燃料レバー 8の操作量に応じた目標回転数 N、すなわち指令 回転数まで比例的に増加させるようにした力 エンジン回転数を徐々に増カロさせるの であれば、回転数の増加パターンは上述したものに限らない。
[0080] 上記実施の形態(図 14)では、スーパーローアイドル回転数 NSからエンジン回転 数を復帰させる際に、燃料レバー 8の操作による目標回転数 Nがオートアイドル回転 数 N3より高いときは、エンジン回転数をオートアイドル回転数 N3に制御するようにし たが、ローアイドル回転数 NLよりも高くかつ燃料レバー 8の操作による目標回転数 N より低い回転数に制御するのであれば、オートアイドル回転数以外の回転数に制御 してもよい。すなわち上記実施の形態では、オートアイドル制御を行う場合の設定回 転数 N3を流用した力 オートアイドル制御を行わずに別途設定回転数 N3を定めて もよい。操作レバー 7により油圧ァクチユエータの駆動指令を出力するようにしたが、 ァクチユエータ駆動指令の構成はこれに限らない。
産業上の利用可能性
[0081] 本発明は、エンジン 1により駆動される油圧ポンプ 2と、油圧ポンプ 2からの圧油によ り駆動する油圧ァクチユエータ 5とを有する他の作業車両にも同様に適用可能である 本出願は日本国特許出願 2004— 279087号を基礎とし、その内容は引用文とし てここに含まれる。

Claims

請求の範囲
[1] 原動機により駆動される油圧ポンプと、
前記油圧ポンプからの圧油により駆動する油圧ァクチユエータと、
前記油圧ポンプからの圧油による前記油圧ァクチユエータの駆動を禁止する駆動 禁止手段と、
前記駆動禁止手段の作動 Z非作動を検出する駆動禁止検出手段と、 少なくとも前記駆動禁止検出手段により前記駆動禁止手段の作動が検出されると、 前記原動機の回転数を、前記油圧ァクチユエータを駆動可能な最小回転数 (以下、 これをローアイドル回転数と呼ぶ)よりも低い低速回転数に制御する回転数制御手段 とを備える作業車両の原動機制御装置。
[2] 請求項 1に記載の作業車両の原動機制御装置にお!、て、
オペレータの操作により前記ローアイドル回転数を下限とした範囲内で前記原動機 の回転数を指令する回転数指令手段をさらに備え、
前記回転数制御手段は、前記駆動禁止検出手段により前記駆動禁止手段の作動 が検出され、かつ、前記回転数指令手段により前記ローアイドル回転数が指令される と、前記原動機の回転数を前記低速回転数に制御し、前記回転数指令手段により前 記ローアイドル回転数より高い回転数が指令されると、前記原動機の回転数をこの指 令された回転数に制御する。
[3] 請求項 2に記載の作業車両の原動機制御装置において、
前記油圧ァクチユエータを制動する制動装置と、
前記制動装置の作動 Z非作動を検出する制動検出手段をさらに備え、 前記回転数制御手段は、前記駆動禁止検出手段により前記駆動禁止手段の作動 が検出され、かつ、前記回転数指令手段により前記ローアイドル回転数が指令され、 かつ、前記制動検出手段により制動装置の作動が検出されると、前記原動機の回転 数を前記低速回転数に制御する。
[4] 請求項 2または 3に記載の作業車両の原動機制御装置にお 、て、
前記油圧ァクチユエータは走行ペダルの操作量に応じて回転する走行モータであ り、 前記走行ペダルの操作による前記走行モータの回転が可能な走行可能状態と回 転が不可能な中立状態とを選択する走行選択手段と、
前記走行選択手段により走行可能状態が選択されると前記油圧ポンプから前記走 行モータへの圧油の流れを許容し、前記走行選択手段により中立状態が選択される と前記油圧ポンプから前記走行モータへの圧油の流れを禁止する走行制御手段とを さらに備え、
前記回転数制御手段は、前記駆動禁止検出手段により前記駆動禁止手段の作動 が検出され、かつ、前記回転数指令手段により前記ローアイドル回転数が指令され、 かつ、前記走行選択手段により中立状態が指令されると、前記原動機の回転数を前 記低速回転数に制御する。
[5] 請求項 1〜4のいずれか 1項記載の作業車両の原動機制御装置において、
エンジン冷却水温を検出する水温検出手段と、
前記水温検出手段により検出されたエンジン冷却水温が低いほど前記低速回転数 が高くなるようにエンジン冷却水温に応じて前記低速回転数を設定する第 1の設定 手段とをさらに備え、
前記回転数制御手段は、前記原動機の回転数を前記低速回転数に制御するとき 、前記第 1の設定手段で設定された回転数に制御する。
[6] 請求項 1〜5のいずれか 1項記載の作業車両の原動機制御装置において、
作動油温を検出する油温検出手段と、
前記油温検出手段により検出された作動油温が低いほど前記低速回転数が高くな るように作動油温に応じて前記低速回転数を設定する第 2の設定手段とをさらに備え 前記回転数制御手段は、前記原動機の回転数を前記低速回転数に制御するとき
、前記第 2の設定手段で設定された回転数に制御する。
[7] 請求項 1〜6のいずれか 1項記載の作業車両の原動機制御装置において、
前記原動機の始動を検出する始動検出手段をさらに備え、
前記回転数制御手段は、前記始動検出手段により前記原動機の始動が検出され てから所定時間が経過するまでは、前記原動機の回転数の前記低速回転数への切 換を禁止し、前記始動検出手段により原動機の始動が検出されてから前記所定時間 が経過すると、前記低速回転数への切換を許容する。
[8] 請求項 1〜7のいずれか 1項記載の作業車両の原動機制御装置において、
前記原動機の暖機運転の完了を判定する暖機判定手段をさらに備え、 前記回転数制御手段は、前記暖機判定手段により暖機運転の完了が判定されるま では、前記原動機の回転数の前記低速回転数への切換を禁止し、前記暖機判定手 段により暖機運転の完了が判定されると、前記低速回転数への切換を許容する。
[9] 請求項 1〜8のいずれか 1項記載の作業車両の原動機制御装置において、
前記回転数制御手段は、少なくとも前記駆動禁止検出手段により前記駆動禁止手 段の非作動が検出されると、前記原動機の回転数を、前記ローアイドル回転数以上 の設定回転数に制御する。
[10] 請求項 1, 5〜8のいずれか 1項記載の作業車両の原動機制御装置において、 オペレータの操作により前記ローアイドル回転数を下限とした範囲内で前記原動機 の回転数を指令する回転数指令手段をさらに備え、
前記回転数制御手段は、前記原動機の回転数を前記低速回転数に制御した状態 で前記駆動禁止検出手段により前記駆動禁止手段の非作動が検出されると、前記 原動機の回転数を、前記回転数指令手段による指令回転数まで徐々に増加させる。
[11] 請求項 10に記載の作業車両の原動機制御装置において、
前記回転数制御手段は、前記回転数指令手段による指令回転数が前記ローアイド ル回転数よりも高い設定回転数以上のときに、前記原動機の回転数をその指令回転 数まで徐々に増加させ、前記設定回転数未満のときに、前記原動機の回転数をその 指令回転数まで即座に増加させる。
[12] 請求項 1, 5〜8のいずれか 1項に記載の作業車両の原動機制御装置において、 オペレータの操作により前記ローアイドル回転数を下限とした範囲内で前記原動機 の回転数を指令する回転数指令手段をさらに備え、
前記回転数制御手段は、前記原動機の回転数を前記低速回転数に制御した状態 で前記駆動禁止検出手段により前記駆動禁止手段の非作動が検出されると、前記 回転数指令手段による指令回転数が前記ローアイドル回転数よりも高い設定回転数 以上のときに、前記原動機の回転数を該設定回転数に制御する。
請求項 12に記載の作業車両の原動機制御装置において、
前記油圧ァクチユエータの駆動指令を出力するァクチユエータ駆動指令手段を備 え、
前記回転数制御手段は、ァクチユエータ駆動指令手段により駆動指令が出力され ないことを条件として前記原動機の回転数を前記設定回転数に制御し、駆動指令が 出力されると前記原動機の回転数を前記指令回転数に制御する。
PCT/JP2005/016627 2004-09-27 2005-09-09 作業車両の原動機制御装置 WO2006035589A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006537665A JP4331208B2 (ja) 2004-09-27 2005-09-09 作業車両の原動機制御装置
EP05781972.4A EP1801396B1 (en) 2004-09-27 2005-09-09 Engine control device for working vehicle
US11/663,847 US7757486B2 (en) 2004-09-27 2005-09-09 Engine control device for work vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004279087 2004-09-27
JP2004-279087 2004-09-27

Publications (1)

Publication Number Publication Date
WO2006035589A1 true WO2006035589A1 (ja) 2006-04-06

Family

ID=36118742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016627 WO2006035589A1 (ja) 2004-09-27 2005-09-09 作業車両の原動機制御装置

Country Status (4)

Country Link
US (1) US7757486B2 (ja)
EP (2) EP2385235B1 (ja)
JP (2) JP4331208B2 (ja)
WO (1) WO2006035589A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008150965A (ja) * 2006-12-14 2008-07-03 Hitachi Constr Mach Co Ltd 建設機械のエンジン制御装置
JP2008174096A (ja) * 2007-01-18 2008-07-31 Denso Corp 車両用表示装置
WO2008147357A1 (en) 2007-05-31 2008-12-04 Caterpillar Inc. System and method for engine load management
US20090182475A1 (en) * 2008-01-10 2009-07-16 Komatsu Ltd. Work vehicle
JP2009281077A (ja) * 2008-05-23 2009-12-03 Kobelco Cranes Co Ltd 建設機械
WO2010092732A1 (ja) * 2009-02-16 2010-08-19 ヤンマー株式会社 エンジン
JP2012097751A (ja) * 2011-12-14 2012-05-24 Komatsu Ltd 作業機械
WO2012153586A1 (ja) * 2011-05-11 2012-11-15 日立建機株式会社 建設機械の制御システム
JP2018017034A (ja) * 2016-07-28 2018-02-01 株式会社日立建機ティエラ 建設機械

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101508786B1 (ko) 2008-12-23 2015-04-06 두산인프라코어 주식회사 건설 기계 조작 레버의 안전 조작 제어방법
JP5718611B2 (ja) * 2010-10-19 2015-05-13 ニチユ三菱フォークリフト株式会社 車両、及びその制御方法
JP5523368B2 (ja) * 2011-02-10 2014-06-18 日立建機株式会社 作業機械の電源制御回路
JP5882066B2 (ja) * 2012-01-19 2016-03-09 日立建機株式会社 作業車両の制御装置
JP5705755B2 (ja) * 2012-01-19 2015-04-22 日立建機株式会社 作業機械の油圧制御装置
US9739243B2 (en) * 2012-02-10 2017-08-22 Ford Gloabl Technologies, LLC Methods and systems for fuel vapor control
KR20150105961A (ko) * 2013-01-23 2015-09-18 볼보 컨스트럭션 이큅먼트 에이비 건설기계의 주행속도 제어방법
GB2522050B (en) * 2014-01-13 2016-12-14 Jc Bamford Excavators Ltd A method of operating a material handling machine
JP6389101B2 (ja) * 2014-10-29 2018-09-12 古河ユニック株式会社 車両搭載型クレーンの圧油供給量制御装置およびこれを備える車両搭載型クレーン
WO2016153089A1 (ko) * 2015-03-23 2016-09-29 볼보 컨스트럭션 이큅먼트 에이비 건설기계의 엔진 아이들링 제어 시스템
WO2017010484A1 (ja) * 2015-07-13 2017-01-19 住友建機株式会社 道路機械
US20170138287A1 (en) * 2015-11-17 2017-05-18 Deere-Hitachi Construction Machinery Corp. Controlling an engine speed of a work vehicle
JP6485391B2 (ja) * 2016-03-11 2019-03-20 株式会社豊田自動織機 荷役車両
US11105070B2 (en) * 2017-03-31 2021-08-31 Hitachi Construction Machinery Co., Ltd. Hydraulic work machine
JP6769936B2 (ja) * 2017-08-31 2020-10-14 日立建機株式会社 ハイブリッド作業機械
WO2021173940A1 (en) * 2020-02-27 2021-09-02 Cnh Industrial America Llc System and method for heating the hydraulic fluid of an electric work vehicle
US11434622B2 (en) * 2020-10-27 2022-09-06 Deere & Company Hydraulic fluid temperature-dependent control of engine speeds in self-propelled work vehicles
CN113374001B (zh) * 2021-06-07 2023-01-24 潍柴动力股份有限公司 挖掘机转速控制方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05214995A (ja) * 1992-02-06 1993-08-24 Toyota Motor Corp 内燃機関のアイドル回転数制御方法
JPH0821285A (ja) * 1994-07-08 1996-01-23 Daihatsu Motor Co Ltd アイドルアップ制御方法
JP3073896B2 (ja) * 1994-12-05 2000-08-07 株式会社クボタ 作業車のアクセル位置自動変更構造
JP2002030954A (ja) * 2001-04-24 2002-01-31 Hitachi Constr Mach Co Ltd 油圧走行車両の原動機回転数制御装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58137043A (ja) 1982-02-09 1983-08-15 Fujitsu Ltd 表示制御方式
KR100188882B1 (ko) * 1993-06-30 1999-06-01 토니 헬샴 내연기관 및 유압펌프의 자동예열시스템
JPH11351007A (ja) 1998-06-10 1999-12-21 Hitachi Constr Mach Co Ltd 作業車両の原動機回転数制御装置および方法
EP1361378B1 (en) * 2001-01-19 2009-05-06 Hitachi Construction Machinery Co., Ltd. Hydraulic motor trouble detector and hydraulically driven vehicle
JP4504604B2 (ja) * 2001-09-20 2010-07-14 本田技研工業株式会社 汎用エンジンの制御装置
US6694240B1 (en) 2002-08-29 2004-02-17 Caterpillar Inc Control system for and method of operating a work machine
JP4010255B2 (ja) * 2003-02-07 2007-11-21 コベルコ建機株式会社 建設機械の制御装置
JP4130599B2 (ja) 2003-03-13 2008-08-06 株式会社東芝 レーザ光照射装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05214995A (ja) * 1992-02-06 1993-08-24 Toyota Motor Corp 内燃機関のアイドル回転数制御方法
JPH0821285A (ja) * 1994-07-08 1996-01-23 Daihatsu Motor Co Ltd アイドルアップ制御方法
JP3073896B2 (ja) * 1994-12-05 2000-08-07 株式会社クボタ 作業車のアクセル位置自動変更構造
JP2002030954A (ja) * 2001-04-24 2002-01-31 Hitachi Constr Mach Co Ltd 油圧走行車両の原動機回転数制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1801396A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008150965A (ja) * 2006-12-14 2008-07-03 Hitachi Constr Mach Co Ltd 建設機械のエンジン制御装置
JP2008174096A (ja) * 2007-01-18 2008-07-31 Denso Corp 車両用表示装置
WO2008147357A1 (en) 2007-05-31 2008-12-04 Caterpillar Inc. System and method for engine load management
EP2150886A1 (en) * 2007-05-31 2010-02-10 Caterpillar, Inc. System and method for engine load management
EP2150886B1 (en) * 2007-05-31 2015-07-22 Caterpillar, Inc. System and method for engine load management
US8287433B2 (en) * 2008-01-10 2012-10-16 Komatsu Ltd. Work vehicle
US20090182475A1 (en) * 2008-01-10 2009-07-16 Komatsu Ltd. Work vehicle
JP2009281077A (ja) * 2008-05-23 2009-12-03 Kobelco Cranes Co Ltd 建設機械
WO2010092732A1 (ja) * 2009-02-16 2010-08-19 ヤンマー株式会社 エンジン
WO2012153586A1 (ja) * 2011-05-11 2012-11-15 日立建機株式会社 建設機械の制御システム
JP2012237131A (ja) * 2011-05-11 2012-12-06 Hitachi Constr Mach Co Ltd 建設機械の制御システム
CN103534421A (zh) * 2011-05-11 2014-01-22 日立建机株式会社 工程机械的控制系统
US9260838B2 (en) 2011-05-11 2016-02-16 Hitachi Construction Machinery Co., Ltd. Control system for construction machine
JP2012097751A (ja) * 2011-12-14 2012-05-24 Komatsu Ltd 作業機械
JP2018017034A (ja) * 2016-07-28 2018-02-01 株式会社日立建機ティエラ 建設機械

Also Published As

Publication number Publication date
EP2385235A2 (en) 2011-11-09
EP1801396B1 (en) 2013-12-04
EP1801396A1 (en) 2007-06-27
JP4331208B2 (ja) 2009-09-16
JP2009085225A (ja) 2009-04-23
JP4787873B2 (ja) 2011-10-05
EP2385235A3 (en) 2012-05-02
US20080254939A1 (en) 2008-10-16
JPWO2006035589A1 (ja) 2008-05-15
EP1801396A4 (en) 2009-06-17
US7757486B2 (en) 2010-07-20
EP2385235B1 (en) 2013-10-23

Similar Documents

Publication Publication Date Title
JP4331208B2 (ja) 作業車両の原動機制御装置
US8955472B2 (en) Work vehicle and control method for work vehicle
JP4651467B2 (ja) 冷却用油圧駆動ファンの制御装置および制御方法
JP5134238B2 (ja) 作業車両のエンジン負荷制御装置
JP3902627B2 (ja) 建設機械の原動機制御装置
KR101882404B1 (ko) 건설 기계
US10336338B2 (en) Work vehicle
WO2019188415A1 (ja) 作業車両
JPWO2002057662A1 (ja) 油圧モータの故障検出装置および油圧駆動車両
JP4115994B2 (ja) 建設機械の制御装置および入力トルク演算方法
JP4825006B2 (ja) 油圧回路の制御装置
JP2003343325A (ja) 作業車両
JP2010163946A (ja) 作業車両の原動機制御装置
WO1992007145A1 (en) System for controlling number of rotations of prime mover in hydraulically driven vehicle
JP3650100B2 (ja) 油圧モータの故障検出装置
JP2008057468A (ja) 作業機械のエンジン制御装置
JP2008057469A (ja) 作業機械のエンジン制御装置
JPH11351007A (ja) 作業車両の原動機回転数制御装置および方法
JP4064019B2 (ja) 建設機械のエンジン制御装置
JP2001295675A (ja) 油圧走行車両
JP2008144640A (ja) 建設機械の暖機装置
JP4922053B2 (ja) 冷却ファン駆動制御装置および建設機械
JP2634330B2 (ja) 油圧駆動車両の原動機回転数制御装置
JP2680744B2 (ja) 油圧走行車両の油圧駆動装置
JPH02279836A (ja) 油圧式建設機械の原動機回転数制御装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006537665

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005781972

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005781972

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11663847

Country of ref document: US