WO2006033207A1 - タンデムポンプの無負荷運転装置 - Google Patents

タンデムポンプの無負荷運転装置 Download PDF

Info

Publication number
WO2006033207A1
WO2006033207A1 PCT/JP2005/014610 JP2005014610W WO2006033207A1 WO 2006033207 A1 WO2006033207 A1 WO 2006033207A1 JP 2005014610 W JP2005014610 W JP 2005014610W WO 2006033207 A1 WO2006033207 A1 WO 2006033207A1
Authority
WO
WIPO (PCT)
Prior art keywords
spool
pressure
oil
fluid supply
flow path
Prior art date
Application number
PCT/JP2005/014610
Other languages
English (en)
French (fr)
Inventor
Takeshi Houji
Original Assignee
Tbk Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tbk Co., Ltd. filed Critical Tbk Co., Ltd.
Priority to EP05770828A priority Critical patent/EP1806504A1/en
Priority to US11/574,827 priority patent/US20080107545A1/en
Priority to JP2006536326A priority patent/JPWO2006033207A1/ja
Publication of WO2006033207A1 publication Critical patent/WO2006033207A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/06Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations specially adapted for stopping, starting, idling or no-load operation
    • F04C14/065Capacity control using a multiplicity of units or pumping capacities, e.g. multiple chambers, individually switchable or controllable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B23/00Pumping installations or systems
    • F04B23/04Combinations of two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/24Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • F04C14/26Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/56Number of pump/machine units in operation

Definitions

  • the present invention relates to a tandem pump having two fluid pumps that are driven simultaneously by one drive source, and configured to supply pressure fluid discharged from both fluid pumps to a fluid supply target. More specifically, when the amount of fluid supply increases and the pressure in the fluid supply path reaches the no-load operation start pressure, one fluid pump is operated without load to reduce the power of the drive source.
  • the present invention relates to a pump no-load operation device. Background art
  • the tandem pump has two fluid pumps that are driven simultaneously by one drive source, and can discharge pressure oil of the same or different pressure from the discharge ports of the two fluid pumps.
  • Such a tandem pump can connect two discharge ports to two different actuators and operate these actuators separately.
  • the pressure oil discharged from both pumps can be combined to form one fluid.
  • the latter tandem pump for example, it is provided in an automobile engine, and oil (engine oil) for lubrication and cooling is applied to each part of the engine.
  • Oil pump installed in V In this configuration, the drive shaft of the tandem pump is driven by a gear attached to the crankshaft of the engine.
  • the oil discharged from both oil pumps When oil flows into the oil supply path, the engine speed is large, and the discharge oil flow rates of both oil pumps are large, drain the oil discharged from both oil pumps to bring them to the no-load operation state, and discharge the other oil pump. Only oil is supplied into the oil supply path. In such a configuration, a sufficient supply amount of lubricating oil can be secured even when the engine speed is low, so that each engine 13 can be sufficiently lubricated even when the vehicle is traveling at a low speed.
  • Such tandem pumps are disclosed in, for example, Japanese Patent Application Laid-Open No. 10-1 1 3 1 751, Japanese Patent Application Laid-Open No. 2 0 1-1 3 2 6 2 4 and the like.
  • FIG. 7 shows an example of a conventional tandem pump no-load operation device.
  • the main pump ⁇ 1 and the secondary oil pump P 2 are driven simultaneously by one drive source (engine M).
  • the main oil supply path L 1 extending from the discharge port of the main oil pump P 1 is connected to an oil supply target (for example, an oil gallery provided in the engine block) OB through a line filter (not shown).
  • the secondary oil supply path L 2 extending from the discharge port of the secondary oil pump P 2 is connected to an intermediate portion of the main oil supply path L 1.
  • the secondary oil supply passage L 2 is provided with a check valve CV that prevents the flow of operation from the primary oil supply passage L 1 to the secondary oil pump P 2 side. Check valve CV at the secondary oil supply ⁇ L 2 And an auxiliary oil pump P 2 are installed.
  • the unload valve AV is closed, and the discharge oil of the secondary oil pump P 2 passes through the check knob CV. Therefore, the oil discharged from the main and sub oil pumps PI and P2 is sent from the main oil supply path L1 to the oil supply target OB in a combined state.
  • the check valve CV and unload valve AV provided in the sub oil supply path L 2 and the relief bar / rev (pressure regulator valve) provided in the main oil supply path L 1 are used. Since each LV was configured as a separate valve, the degree of layout freedom was limited during circuit design, making it difficult to make the entire device compact.
  • the present invention has been made in view of such problems, and provides a no-load operation device for a tandem pump that has a function equivalent to that of the prior art and is capable of achieving compactness of the entire device. "It is aimed at T. Means to solve the problem
  • a no-load operation device for a tandem pump includes a main fluid pump (for example, main oil pump 7 in the embodiment) and a sub fluid pump (for example, sub oil pump 8 in the embodiment) that are simultaneously driven by a drive source.
  • the tandem pump provided and the fluid supply target (for example, from the discharge port of the main fluid pump)
  • a main fluid supply path for example, a main oil supply path 9 in the embodiment
  • OB oil supply target
  • an intermediate portion of the main fluid supply path extending from the discharge port of the sub-fluid pump.
  • a connected sub-fluid supply path for example, a sub-oil supply path 1 ⁇ in the embodiment
  • a valve pore constituting a part of the sub-fluid supply path
  • a movably fitted and inserted into the valve bore A spool that has an internal flow path that extends in the axial direction, and a biasing member that biases the spool toward the connection portion side with the main fluid supply path in the valve bore (for example, the embodiment)
  • the inside of the valve bore is movably disposed on the side closer to the main fluid supply path than the spool in the valve bore, and an end portion of the spool is inside the spool.
  • a drain flow path is connected to the valve pore, and the spool receives a pressure in the main fluid supply path and can move against a biasing force of the biasing member,
  • the spool is moved to the connection portion side with the main fluid supply path by the biasing force of the biasing member, The communication is cut off and the sub-fluid supply rod is communicated with the main fluid supply path via the internal flow path. Further, the pressure in the main fluid supply path rises to exceed the no-load operation start pressure.
  • the spool is moved while being squeezed by the urging member to connect the sub-fluid supply path to the drain flow path, and the pressure oil in the sub-fluid supply path is Before it is drained
  • the poppet is moved to a position where it abuts against and closes the end of the internal flow path of the spool due to a pressure difference between the sub-fluid flow path and the main fluid flow path. ing. Further, in the no-load operation device of the tandem pump, a drain combined flow path that opens to both the main fluid supply path and the outer peripheral surface of the poppet is provided inside the poppet.
  • the spool When the pressure in the main fluid supply passage exceeds the no-load operation start pressure and reaches a relief setting pressure higher than this, the spool receives the pressing force of the relief setting pressure and receives the drain combined flow. It is preferable that the hydraulic fluid in the main fluid supply passage is drained from the drain passage by being moved to a position where the passage is connected to the drain passage.
  • the pressure oil in the sub-fluid supply path passes through the internal flow path of the spool and flows into the main stream. Enter 3 ⁇ 4f5 into the body supply path. At this time, the oil discharged from the main and sub fluid pumps is sent to the fluid supply object in a merged state.
  • the spool moves in the direction opposite to the urging direction by the urging member, and the pressure oil in the sub fluid supply path is removed.
  • the sub-fluid pump closes the internal flow path of the spool by contacting with the spool.
  • the sub-fluid pump is in a no-load operation state, and only the oil discharged from the main fluid pump is sent to the fluid supply target.
  • the sub-fluid pump is brought into the no-load operation state and the drive source This is necessary while maintaining the same function as in the past, which is to reduce power (and to relieve the pressure oil in the main fluid supply passage when the pressure in the main fluid supply passage reaches the relief set pressure). Since the component spool, urging member and poppet are provided in one valve bore, the layout is more flexible when designing the circuit, and the overall size of the equipment is compact. Can be achieved. Brief Description of Drawings
  • FIG. 1 is a cross-sectional view showing the configuration of a tandem pump non-A load operating device according to an embodiment of the present invention.
  • FIG. 2 is a partially exploded sectional view of the no-load operation device.
  • FIG. 3 is an exploded perspective view of components provided in the valve body.
  • Fig. 4 is a view showing an example of the operation positions of the spool and the poppet when the oil discharged from the main and sub oil pumps is fed to the target for supply of the old oil
  • Fig. 5 is a diagram showing the sub oil pump
  • FIG. 5 is a diagram showing an example of the operation positions of the spool and the pov when the oil is in a no-load operation state and only the discharged oil of the main oil pump is sent to the oil supply target.
  • FIG. 6 is a diagram showing an example of the operating positions of the spool and the poppet when the discharge pressure in the discharge passage reaches the relief set pressure and a part of the discharge pressure of the main oil pump is drained. .
  • FIG. 7 is a hydraulic circuit diagram showing a configuration example of a conventional no-load operation device of a tandem pump.
  • FIG. 1 shows a no-load operation device of a tandem pump according to an embodiment of the present invention.
  • This no-load operation device is installed in an automobile engine and is supplied with oil (engine oil) for lubricating and cooling each part of the engine (for example, oil gallery provided in an engine block not shown) OB It is assembled to the pump body 1, which is one of the crankcases of the engine.
  • a pump chamber 2 is formed in the pump body 1, and a tandem pump 3 is installed here.
  • Tandem pump 3 includes a driving gear 4 and two driven gears (first driven gear 5 and second driven gear 6) circumscribingly engaged with the driving gear 4 on both sides thereof.
  • the driving gear 4 is driven by a driving shaft 4 a or
  • the first and second driven gears 5 and 6 are rotatably supported by driven shafts 5a and 6a, respectively.
  • the drive gear 4 rotates in the direction of the arrow shown in FIG. 1 (counterclockwise) when the drive shaft 4 a is driven by an engine crankshaft (not shown).
  • the first driven gear 5 and the second driven gear 6 rotate in the direction of the arrow (clockwise) shown in FIG.
  • the driving gear 4 and the first driven gear 5, and the driving gear 4 and the second driven gear 6 constitute a conventionally known gear pump. That is, when the drive gear 4 rotates and the first driven gear 5 (or the second driven gear 6) rotates by this, the hydraulic oil flows from the low pressure portion generated by the rotation, and the high pressure portion Hydraulic fluid is discharged from
  • the portion above the engagement portion between the drive gear 4 and the first driven gear 5 is the suction port 7a
  • the portion below the engagement portion is the discharge port 7b.
  • a portion below the engagement portion between the drive gear 4 and the second driven gear 6 is a suction port 8 a and a portion above the engagement portion is a discharge port 8 b.
  • the oil pump composed of the drive gear 4 and the first driven gear 5 is called the main oil pump 7
  • the oil pump composed of the drive gear 4 and the second driven gear 6 is called the sub oil pump 8
  • Port 7 a is the inlet of the main oil pump 7 and outlet 7 b is the outlet of the main oil pump 7
  • inlet 8 a is the inlet of the auxiliary oil pump 8
  • outlet 8 b is the outlet of the auxiliary oil pump 8 Will be described.
  • the tandem pump 3 includes the main oil pump 7 and the sub oil pump 8 that are simultaneously driven by one drive source (engine).
  • the main oil supply passage 9 extends to the discharge P 7 b of the main oil pump 7.
  • the auxiliary oil supply passage 10 0 connects to the discharge port 8 b of the sub oil pump 8. 1 0 b, 1 0 c) are extended.
  • the main oil supply passage 9 is connected to an oil supply target OB (not shown), and the sub oil supply passages 10 (1 0 a, 1 0 b, 1 0 c) are connected to the main oil supply passage 9 as shown in FIG. It is connected to the middle part.
  • the first oil suction path 1 1 connected to the suction port 7a of the main oil pump 7 is connected to the oil pan T, and the second oil suction path 1 2 connected to the suction port 8a of the sub oil pump 8 is the first.
  • a valve bore 13 extends in the secondary oil supply path 10 so as to constitute a part of the secondary oil supply path 10, and a cylindrical spool 20 as a whole is placed in the valve bore 13. (See also Figure 2 and Figure 3.)
  • the spool 20 is provided on an intermediate part 22 having an internal flow path 21 extending in the axial direction, and on the left side of the intermediate part 22 (left side in FIG. 1).
  • a bottomed cylindrical spring accommodating portion 23 that opens to the left, and is arranged in the norbore bore 13 so as to be movable in the direction in which the secondary oil supply passage 10 extends.
  • the right side portion of the spring 30 disposed in the spring accommodating space 14 formed in the pump body 1 is accommodated, and the spool 20 is the spring 30. Therefore, it is always urged to the right (main oil supply passage 9 side).
  • a hollow cylindrical spool stopper 51 and a disc-shaped biasing force adjuster 5 2 are accommodated, and a plate mounting groove 15 provided in the pump body 1 5 is attached to the end plate 5 3.
  • the spring accommodating space 14 is closed. Note that the urging force of the spring 3 ° can be adjusted as appropriate by exchanging and using the laying force adjustment tool 52 of different thickness.
  • a spool contact surface 1 3 a is formed in a step shape at the right end of the valve pore 13, and a poppet accommodating bore 1 3 d is formed on the right side thereof.
  • the poppet accommodating bore 13 d and the opening 13 e at the right end thereof constitute a part of the auxiliary oil supply passage 10.
  • the spool 20 receives the urging force of the spring 30 and moves to the right in the valve bore 13 to end the main oil supply passage 9 side of the spool 20 (the right side in Fig. 1) 2 8 (Fig. 2 (Refer to) Spool contact surface 1 formed on valve bore 1 3
  • the position of the spool 20 at this time is referred to as the “initial position” of the spool 20 below.
  • the spool 20 is located at the leftmost position in the valve bore 13 because the end 2 3 a of the spring housing 2 3 is the end 5 1 a of the spool stopper 5 1 (see FIGS. 1 and 2). (Refer to) from the right side, and this is called “maximum leftward movement position”.
  • a bottomed cylindrical poppet 40 opened to the main oil supply passage 9 side is disposed in the poppet receiving bore 1 3 d. It can be moved in the direction along the axis of the spool 20 within the spool receiving pore 13d.
  • the poppet 40 includes a body portion 4 1 having a large outer diameter, and a seat portion 4 2 having an outer diameter smaller than the body portion 41 located on the left side (spool 20 side) of the body portion 41.
  • the sheet portion 42 is formed with a plurality of communication holes 43 b that penetrate in the radial direction.
  • the seat part 42 enters the right opening part 21a of the spool 20 from the right side (from the main oil supply path 9 side). Poppet 4 0 seat
  • a spool port portion 25 having a smaller outer diameter than both sides in the axial direction is provided at a substantially central portion of the intermediate portion 22 of the spool 20.
  • Left and right spool land portions 26a and 26b are formed on the left and right sides of the spool port portion 25, respectively. These left and right spool land portions 26a and 26b are connected to the valve pores 13 (13b, 1 3 c) Insert into the fitting.
  • the left spool land portion 26 a is provided with a plurality of communication holes 27 along the outer peripheral surface, and these communication holes 27 are connected to the internal flow path 21.
  • a drain opening 29 that penetrates in the radial direction is formed in the right spool land portion 26 b on the right side of the spool rod portion 25, and this drain opening 29 is also connected to the internal flow path 21. Yes.
  • the sub oil supply path 1 0 consists of the part inside the valve pore 13 (referred to as flow path 1 0 b) and the part from the discharge port 8 b of the sub oil pump 8 to the valve bore 1 3 (flow path 1 0 a And the force communication hole 2 7 that is divided into the part from the valve bore 13 to the main oil supply passage 9 (referred to as flow passage 1 0 c). Is always connected to the flow path 10 a even if it has moved from to the “maximum leftward movement position”.
  • the space between the outer peripheral surface of the spool port portion 2 5 and the seat bore 1 3 b of the valve pore 1 3 forms a hydraulic oil passage 16, which is the second oil suction passage 1. 2 is connected to the drain flow path 17 leading to the oil pan T.
  • the communication between the flow path 10 a and the hydraulic oil path 16 is Although the spool land portion 26 is blocked by fitting with the seat bore 13 b, the flow path 10 a communicates with the hydraulic oil passage 16 in a state where the spool 20 further moves leftward.
  • the assembly of this no-load operating device is carried out by inserting poppet 40, spool 20, spring 30, spool stopper in the valve bore 13 (and spool pore 13d) of pump body 1.
  • 5 1 and urging force adjuster 5 2 are inserted in this order, and the urging force adjuster 5 2 is pressed with a finger so that the spring 30 is contracted and the end plate 5 3 is attached to the pump body 1 plate. Insert into groove 15
  • the main oil pump 7 and secondary oil pump 8 perform pump operation. Specifically, the main oil pump 7 sucks oil in the oil pan T from the suction port 7a and discharges it from the discharge port 7b. The auxiliary oil pump 8 sucks the oil in the oil pan T from the suction port 8a and discharges it from the discharge port 8b.
  • the oil supply target OB that is the supply destination of these discharged oils is the oil gallery in the engine block, and the supply pressure increases as the amount of oil supplied increases. For this reason, when the engine speed is low, the discharge oil flow rates of the main and sub oil pumps 7 and 8 are also small, so the pressure in the oil supply passages 9 and 10 is also small.
  • the discharge pressure from the auxiliary oil pump 8 acts on the internal flow path 21 to urge the spool 20 to the left. For this reason, the spool 20 piles on the urging force of the spring 30 and moves to the left of the initial position. Since the discharge pressure is small, the amount of movement is small, and as shown in FIG.
  • the spool 20 further moves to the left.
  • the pressure in the oil supply passages 9 and 10 reaches the no-load operation start pressure, as shown in FIG. 5, the spool land portion 26 and the right end portion are located in the flow passage 10a,
  • the flow path 10 a communicates with the hydraulic oil passage 16, and a part of the oil discharged from the sub oil pump 8 passes from the flow path 10 0 a through the hydraulic oil passage 1 6 and the drain flow path 17 to the oil pan T Will be returned to. That is, the spool 20 is piled in an urging force by the spring 30 and moves to the left to connect the secondary oil supply path 10 to the drain flow path 17 so that the secondary oil supply path 10 a Drain pressure oil.
  • the poppet 40 is pushed by the pressure in the main oil supply passage 9 and urges the spool 20 to the left, so the spool 20 moves further to the left and the flow path 1 0
  • the flow rate of the pressure oil returned to the oil pan T through the hydraulic oil passage 1 6 and the drain passage 1 7 increases from the a, and the discharge oil from the auxiliary oil pump 8 returns to the oil pan T in its entirety. .
  • the auxiliary oil pump 8 enters a no-load operation state, and the power of the drive source (engine) that drives the tandem pump 3 is reduced. At this time, only the discharge oil from the main oil pump 7 is sent from the main oil supply passage 9 to the oil supply target OB, but the discharge oil flow rate of the main oil pump 7 has already reached a sufficient level. Therefore, it is possible to secure the necessary amount of lubricating oil supplied to the oil supply target OB.
  • the discharge pressure in the discharge passage 9 also increases.
  • This discharge pressure acts on the poppet 40. To do. Therefore, the poppet 40 moves while receiving the pressure in the main oil supply passage 9 (and the passage 10 c) and pressing the spool 20 leftward.
  • the drain opening 29 provided in the right spool land 26b of the spool 20 opens into the drain passage 17 and Part of the pressure oil in the main oil supply path 9 passes from the flow path 10 c to the drain combined flow path 4 3 in the poppet 40 and the drain opening 29 provided in the spool 20.
  • the drain operation (relief operation) of the pressure oil in the main oil supply passage 9 by the spool 20 and the poppet 40 is a relief valve (pressure regulation). This relief operation prevents the pressure in the main oil supply passage 9 from exceeding the preset maximum pressure (relief pressure setting), ensuring circuit safety. Is done.
  • the “no-load operation start pressure” at which the auxiliary oil pump 8 starts no-load operation as described above and the “relief set pressure” at which the pressure oil in the main oil supply passage 9 starts relief are: It can be set arbitrarily depending on the spring characteristics and initial displacement of the spring 30 (displacement of the spring 30 when the spool 20 is in the initial position). Therefore, when changing the above-mentioned no-load operation start pressure or relief set pressure, replace the spring 30 with a spring having a different spring characteristic, or replace the biasing force adjuster 52 with a different thickness. do it.
  • the sub oil pump 8 when the pressure in the sub oil supply passage 10 reaches the no load operation start pressure, the sub oil pump 8 is set in the no load operation state to drive the power source.
  • the pressure in the main oil supply passage 9 ⁇ reaches the relief set pressure, the main oil While maintaining the same function as the conventional system of relieving the pressure oil in the basin 9, the necessary components such as the spool 20, spring 20, and poppet 40 are within one valve pore 13. Therefore, it is possible to increase the degree of freedom of layout at the time of circuit design and to make the entire device compact.
  • the drain combined flow path 4 3 that opens to both the main oil supply path 9 and the outer peripheral surface of the poppet 40 is provided inside the poppet 40, and the valve bore 1 3 is provided with a drain opening 29, and when the pressure in the main oil supply passage 9 reaches the relief set pressure, the drain combined passage 4 3 is connected to the drain opening 29 and inside the main oil supply passage 9
  • the spunole 20, the poppet 40, and the spring 30 also functioned as a relief valve.
  • the drain opening 29 may be eliminated, and a separate relief valve may be provided in the main oil supply passage 9.
  • the present invention is provided in an automobile engine, and is used as an oil pump for lubricating and cooling oil in various parts of the engine to an oil supply target OB such as an oil gallery.
  • an oil supply target in this apparatus can be used as a fluid actuator, and can be used as an apparatus for controlling the operating speed of the actuator according to the load.
  • the fluid discharged and supplied by the tandem pump is oil.
  • this fluid is not limited to oil, and may be water or air.
  • the two fluid pumps constituting the tandem pump consisted of gear pumps. If two fluid pumps are driven simultaneously by one drive source, other types of pumps (for example, vane pumps, piston pumps, etc.) It doesn't matter.

Abstract

 主オイル供給路9内の圧力が無負荷運転開始圧よりも小さいときには、副オイル供給路10内の圧油はスプール20の内部流路21を通過して主オイル供給路9内に流入する。このとき主副両オイルポンプ7,8からの吐出油は合流した状態でオイル供給対象OBへ送られる。主オイル供給路9内の圧力が上昇して上記無負荷運転開始圧に達したときには、スプール20はスプリング30による付勢方向とは反対の方向に移動して副オイル供給路10内の圧油をドレンし、ポペット40はスプール20と接触してスプール20の内部流路21を閉止する。このとき副オイルポンプ8は無負荷運転状態となり、主オイルポンプ7の吐出油のみがオイル供給対象OBに送られる。

Description

m 糸田 タンデムポンプの無負荷運転装置 技術分野
本発明は、 1つの駆動源により同時に駆動される 2つの流体ポンプを備 え、 両流体ポンプが吐出する圧油を合流させて流体供給対象に供給する構 成のタンデムポンプに関する。 さらに詳しくは、 流体の供給量が増大して 流体供給路内の圧力が無負荷運転開始圧に達したときには一方の流体ボン プを無負荷運転させて駆動源の動力節減を図るようにしたタンデムポンプ の無負荷運転装置に関する。 背景技術
タンデムポンプは 1つの駆動源により同時に駆動される 2つの流体ポン プを備えており、 2つの流体ポンプそれぞれの吐出口から同一の或いは異 なる圧力の圧油を吐出させることができる。 このようなタンデムポンプは 2つの吐出口をそれぞれを異なる 2つのァクチユエータに繋いでこれらァ クチユエータを別々に作動させるようにすることもできるが、 両ポンプが 吐出する圧油を合流させて 1つの流体供給対象に供給することにより、 流 体ポンプ 2つ分の流量が得られるようにすることもできる。 後者のタンデ ムポンプの使用例としては、 例えば自動車用エンジンに備えられ、 ェンジ ン各部に潤滑及び冷却のためのオイル (エンジンオイル) をエンジンプロ
Vク内に設けられたオイルギャラ V一に供給するオイルポンプがある。 こ れは、 エンジンのクランクシャフトに取り付けたギヤによりタンデムボン プの駆動軸を駆動する構成となっている。 エンジン回転数が小さく、 両ォ ィルポンプからの吐出油流量が小さいときには、 両オイルポンプの吐出油 がオイル供給路内に合流され、 エンジン回転数が大きく、 両オイルポンプ の吐出油流量が大きいときには、 両オイルポンプの一方の吐出油をドレン して無負荷運転状態とし、 他方のオイルポンプの吐出油のみがオイル供給 路内に供給される。 この うな構成では、 エンジンの回転数が小さいとき でも十分な潤滑油供給量を確保することできるので、 車両が低速走行して いるときでもエンジン各き 13を十分に潤滑等することができる。 このような タンデムポンプは、 例えま、、 特開平 1 0— 1 3 1 7 5 1号公報、 特開 2 0 0 1 - 1 3 2 6 2 4号公幸艮等に開示されている。
図 7には従来知られたタンデムポンプの無負荷運転装置の一例を示して いる。 図 7において、 主; ^ィノレポンプ P 1 と副オイルポンプ P 2は 1つの 駆動源 (エンジン M) に り同時に駆動されるようになっている。 主オイ ルポンプ P 1の吐出口から延びた主オイル供給路 L 1は図示しないライン フィルタを介してオイル 給対象 (例えば、 エンジンブロック内に設けら れたオイルギャラリー) O Bに繋がっている。 また、 副オイルポンプ P 2 の吐出口から延びた副オイル供給路 L 2は主オイル供給路 L 1の中間部に 接続されている。 副オイノレ供給路 L 2には主オイル供給路 L 1から副オイ ルポンプ P 2側への作動 の流入を防止するチェックバルブ C Vが介装さ れており、 副オイル供給洛 L 2におけるチェックバルブ C Vと副オイルポ ンプ P 2との間にはアン —ドバ^^プ A Vが設置されている。
ここで、 エンジンの回奉云数が小さく、 主オイル供給路 L 1内の圧力が小 さいときにはアンロードバルブ A Vは閉じた状態となり、 副オイルポンプ P 2の吐出油はチェックノ ルプ C Vを通って主オイル供給路 L 1に流れる ので、 主副両オイルポンプ P I , P 2の吐出油は合流した状態で主オイル 供給路 L 1からオイル供給対象 O Bへ送られる。 一方、 エンジンの回転数 が大きくなつて両オイル ンプの吐出油流量が増え、 主オイル供給路 L 1 内の圧力が無負荷運転開 台圧以上になると、 主オイル供給路 L 1内の圧油 がパイ口ット油路 L Pを介してアンロードバルブ A Vのスプールを押圧し てこれを開放させ、 副オイル供給路 L 2内の作動油がドレン姻に開放され て、 副オイルポンプ P 2は無負荷状態となる。 このとき副オイル供給路 L 2内の圧力は低下してチェックバ/レブ C Vが副オイル供給路 L 2を閉止す るので、 オイル供給対象 O Bには主オイルポンプ P 1の吐出油のみが供給 される。 また、 主オイル供給路 L 1中にはリ リーフバルブ (プレツシャレ ギユレータバルブ) L Vが設けられており、 主オイル供給路 L 1内の圧力 がリ リーフ設定圧以上にならないようになつている。 発明の開示
発明が解決しよう とする課題
上記従来におけるタンデムポンプでは、 副オイル供給路 L 2中に設けら れるチェックバルブ C V及びアンロードバルブ A V、 更には主オイル供給 路 L 1中に設けられるリ リーフバ /レブ (プレツシャレギュレータバルブ) L Vはそれぞれ別個のバルブとして構成されていたため、 回路設計時にお けるレイァゥ トの自由度が制限され、 装置全体のコンパク ト化を図りにく いという問題があった。
本発明はこのような問題に鑑みてなされたものであり、 従来と同等の機 能を有しつつ、 装置全体のコンパク ト化を図ることが可能な構成のタンデ ムポンプの無負荷運転装置を提供" Tることを目的としている。 課題を解決するための手段
本発明に係るタンデムポンプの無負荷運転装置は、 駆動源により同時に 駆動される主流体ポンプ (例えば、 実施形態における主オイルポンプ 7 ) 及び副流体ポンプ (例えば、 実施 態における副オイルポンプ 8 ) を備え たタンデムポンプと、 前記主流体 ンプの吐出口から流体供給対象 (例え ば、 実施形態におけるオイル供給対象 O B ) へ延びた主流体供給路 (例え ば、 実施形態における主オイル供給路 9 ) と、 前記副流体ポンプの吐出口 から延びて前記主流体供給路の中間 に接続された副流体供給路(例えば、 実施形態における副オイル供給路 1 ◦) と、 前記副流体供給路の一部を構 成するバルブポアと、 前記バルブボア内に移動自在に嵌合挿入して配設さ れ、 軸方向に延びた内部流路を有し スプールと、 前記スプールを前記バ ルプボア内において前記主流体供給路との接続部側に向けて付勢する付勢 部材 (例えば、 実施形態におけるスプリ ング 3 0 ) と、 前記バルブボア内 における前記スプールよりも前記主流体供給路との接続部側において前記 バルブポア内を移動自在に配設され、 端部が前記スプールの前記内部流路 の端部に当接してこれを塞ぐ位置と fir記内部流路の端部から離間してこれ を開放する位置とに移動可能なポペ トとを備えて構成される。 さらに、 前記バルブポアにはドレン流路が繋カ つて設けられており、 前記スプール は前記主流体供給路内の圧力を受けて前記付勢部材の付勢力に抗して移動 可能であり、 前記主流体供給路内の IE力が無負荷運転開始圧よりも小さい ときには、 前記スプールは前記付勢き 材の付勢力により前記主流体供給路 との接続部側に移動され、 前記ドレン流路との連通を遮断するとともに前 記内部流路を介して前記副流体供給洛と前記主流体供給路とを連通させ、 さらに、 前記主流体供給路内の圧力 上昇して前記無負荷運転開始圧を超 えたときに、前記スプールは前記付勢部材による付勢に杭して移動されて、 前記副流体供給路を前記ドレン流路に接続させるように構成され、 前記副 流体供給路内の圧油がドレンされ.ることにより生じる前記副流体流路およ び前記主流体流路内の圧力の差により 前記ポぺットは前記スプールの前記 内部流路の端部に当接してこれを塞ぐ位置に移動されるように構成されて いる。 また、 上記タンデムポンプの無負荷運転装置において、 前記ポペッ トの 内部には、 前記主流体供給路と前記ポぺットの外周面との双方に開口する ドレン兼用流路が設けられており、 前記主流体供給路内の圧力が前記無負 荷運転開始圧を超えてこれより高圧のリ リーフ設定圧に達したとき、 前記 スプールは前記リ リーフ設定圧の押圧力を受けて前記ドレン兼用流路を前 記ドレン流路と接続させる位置まで移動されて、 前記主流体供給路内の圧 油を前記ドレン流路からドレンするようになっているのが好ましい。 発明の効果
本発明に係るタンデムポンプの無負荷運転装置では、 主流体供給路内の 圧力が無負荷運転開始圧よりも小さいときには、 副流体供給路内の圧油は スプールの内部流路を通過して主流体供給路内に ¾f5入する。 このとき主副 両流体ポンプからの吐出油は合流した状態で流体供給对象へ送られる。 主 流体供給路内の圧力が上昇して上記無負荷運転開 台圧に達したときには、 スプールは付勢部材による付勢方向とは反対の方向に移動して副流体供給 路内の圧油をドレンし、 ポぺットはスプールと接角虫してスプールの内部流 路を閉止する。 このとき副流体ポンプは無負荷運転状態となり、 主流体ポ ンプの吐出油のみが流体供給対象に送られる。 このように本発明に係るタ ンデムポンプの無負荷運転装置では、 副流体供給路内の圧力が上昇して無 負荷運転開始圧に達したときには副流体ポンプを無負荷運転状態にして駆 動源の動力節減を行う (更には主流体供給路内の圧力がリ リーフ設定圧に 達したときには主流体供給路内の圧油をリ リーフさせる) という従来と同 等の機能を維持しつつ、 必要な構成品であるスプール、 付勢部材及びポぺ ットが 1つのバルブボア内に備えられた構成を有しているので、 回路設計 時におけるレイアウ トの自由度が高くなり、 装匱全体のコンパク ト化を図 ることが可能となる。 図面の簡単な説明
図 1は、 本発明の一実施形態に係るタンデムポンプの無 A荷運転装置の 構成を示す断面図である。
図 2は、 上記無負荷運転装置の部分分解断面図である。
図 3は、 バルブボディ内に備えられる構成品の分解斜視図である。 図 4は、 主副両オイルポンプの吐出油が合流した状態で才ィル供給対象 へ送られるときのスプール及びポぺッ トの動作位置の一例を示す図である 図 5は、 副オイルポンプが無負荷運転状態となって主オイルポンプの吐 出油のみがオイル供給対象へ送られるときのスプール及びポベッ トの動作 位置の一例を示す図である。
図 6は、 吐出流路内の吐出圧がリ リーフ設定圧に達して主オイルポンプ の吐出圧の一部がドレンされるときのスプール及びポぺッ トの動作位置の 一例を示す図である。
図 7は、 従来におけるタンデムポンプの無負荷運転装置の構成例を示す 油圧回路図である。 発明を実施するための最良の形態
以下、 図面を参照して本発明の好ましい実施形態について説明する。 図 1は本発明の一実施形態に係るタンデムポンプの無負荷運 装置を示して いる。 この無負荷運転装置は自動車用エンジンに備えられてエンジン各部 の潤滑及び冷却のためのオイル (エンジンオイル) をオイ/レ供給対象 (例 えば、 図示しないエンジンブロック内に設けられたオイルギャラリー) O B へ圧送するものであり、 エンジンのクランクケースの一 からなるポン プボディ 1に組み付けられている。 ポンプボディ 1にはポンプ室 2が形成 されており、 ここにタンデムポンプ 3が設置されている。 タンデムポンプ 3は、 駆動歯車 4と、 その両側において駆動歯車 4と外接嚙合する 2つの 従動歯車 (第 1従動歯車 5及び第 2従動歯車 6 ) とからなり、 駆動歯車 4 は駆動軸 4 aにより、 また第 1及び第 2従動歯車 5, 6はそれぞれ従動軸 5 a , 6 aにより回転自在に支持されている。 駆動歯車 4は駆動軸 4 aが エンジンのクランクシャフ ト (図示せず) により駆動されて、 図 1中に示 す矢印の方向 (反時計回り) に回転する。 第 1従動歯車 5及び第 2従動歯 車 6は駆動歯車 4の回転に従って、 それぞれ図 1中に示す矢印の方向 (時 計回り) に回転する。
駆動歯車 4および第 1従動歯車 5、 また駆動歯車 4および第 2従動歯車 6はそれぞれ従来知られた歯車ポンプを構成している。 すなわち、 駆動歯 車 4が回転し、 これによつて第 1従動歯車 5 (或いは第 2従動齊車 6が) 回転すると、 その回転によって生じた低圧部から作動油が流入するととも に、 高圧部から作動油が吐出する。 本実施形態では、 駆動歯車 4と第 1従 動歯車 5との嚙合部よりも上側の部分が吸入口 7 a となり、 嚙合部よりも 下側の部分が吐出口 7 b となる。 また、 駆動歯車 4と第 2従動歯車 6との 嚙合部よりも下側の部分が吸入口 8 a となり、 嚙合部よりも上側の部分が 吐出口 8 bとなる。 ここで、 駆動歯車 4と第 1従動歯車 5 とから構成され るオイルポンプを主オイルポンプ 7、 駆動歯車 4と第 2従動歯車 6とから 構成されるオイルポンプを副オイルポンプ 8と称し、 吸入口 7 aを主オイ ルポンプ 7の吸入口、 吐出口 7 bを主オイルポンプ 7の吐出口、 吸入口 8 aを副オイルポンプ 8の吸入口、 吐出口 8 bを副オイルポンプ 8の吐出口 として説明する。
上記のようにタンデムポンプ 3は 1つの駆動源 (エンジン) により同時 に駆動される主オイルポンプ 7及び副オイルポンプ 8を備える。 そして、 主オイルポンプ 7の吐出 P 7 bに繋がって主オイル供給路 9が延びており . 副オイルポンプ 8の吐出口 8 bに繋がって副オイル供給路 1 0 ( 1 0 a, 1 0 b , 1 0 c ) が延びている。 主オイル供給路 9は図示しないオイル供 給対象 O Bに繋がっており、 副オイル供給路 1 0 ( 1 0 a , 1 0 b , 1 0 c ) は図 1に示すように、 主オイル供給路 9の中間部に接続されている。 また、 主オイルポンプ 7の吸入口 7 aに繋がる第 1オイル吸入路 1 1はォ ィルパン Tに繋がっており、 副オイルポンプ 8の吸入口 8 aに繋がる第 2 オイル吸入路 1 2は第 1オイル吸入路 1 1の中間部に接続されている。 副オイル供給路 1 0中には、 この副オイル供給路 1 0の一部を構成する ようにバルブボア 1 3が延びており、 このバルブボア 1 3内には全体とし て円筒状のスプール 2 0が揷設されている (図 2及び図 3も参照) 。 この スプール 2 0は、 図 1に示すように、 軸方向に延びた内部流路 2 1を有し た中間部 2 2と、 この中間部 2 2の左側 (図 1における左側) に設けられ て左方に開口した有底円筒状のスプリング収容部 2 3とを有しており、 ノ ルブボア 1 3内において副オイル供給路 1 0の延びる方向に移動自在に配 設されている。 スプリング収容部 2 3内には、 ポンプボディ 1内に形成さ れたスプリング収容空間 1 4内に配設されたスプリング 3 0の右側部分が 収容されており、 スプール 2 0はこのスプリ ング 3 0により常時右方 (主 オイル供給路 9側) に付勢されるようになっている。 スプリング収容空間 1 4内には中空円筒状のスプールストッパ 5 1及び円盤状の付勢力調整具 5 2が収容され、 ポンプボディ 1に設けられたプレート取り付け溝 1 5内 に取り付けられたェンドプレート 5 3によってスプリング収容空間 1 4が 閉じられている。 なお、 厚さの異なる敷設力調整具 5 2を交換使用するこ とによりスプリ ング 3 ◦の付勢力を適宜調整できる。
バルブポア 1 3の右端部にはスプール当接面 1 3 aが段差状に形成され、 その右側にポぺット収容ボア 1 3 dが形成されている。 なお後述するよ う に、 ポぺット収容ボア 1 3 dおよびその右端部の開口 1 3 eが副オイル供 給路 1 0の一部を構成する。 スプール 2 0はスプリング 3 0の付勢力を受けてバルブボア 1 3内で右 側に移動して、 スプール 2 0の主オイル供給路 9側 (図 1では紙面右側) の端部 2 8 (図 2参照) がバルブボア 1 3に形成されたスプール当接面 1
3 a (図 2参照) に当接するまで移動可能であり、 このときのスプール 2 0の位置を、 以下、 スプール 2 0の 「初期位置」 と称する。 なお、 スプー ル 2 0がバルブボア 1 3内で最も左側の位置に位置するのは、 スプリング 収容部 2 3の端部 2 3 aがスプールストッパ 5 1の端部 5 1 a (図 1及び 図 2参照) に右方から当接したときであり、 これを 「最大左動位置」 と称 する。
ポぺッ ト収容ボア 1 3 d内には主オイル供給路 9側に開口した有底筒状 のポぺッ ト 4 0が配設されており、 このポぺッ ト 4 0は、 ポぺッ ト収容ポ ァ 1 3 d内をスプール 2 0の軸に沿った方向に移動自在となっている。 ポ ペッ ト 4 0は外径の大きい胴部 4 1 と、 この胴部 4 1の左側 (スプール 2 0側) 'に位置して胴部 4 1よりも小さい外径のシート部 4 2とを有してな り、 シート部 4 2には径方向に貫通した複数の連通孔 4 3 bが形成されて いる。
シート部 4 2はスプール 2 0の右側開口部 2 1 a内に右方から (主オイ ル供給路 9側から) 入り込むようになつている。 ポぺッ ト 4 0のシート部
4 2が右側開口部 2 1 a内に入り込んでスプール 2 0の内部流路 2 1内に 形成された弁座部 2 4から離間した状態では、 スプール 2 0の内部流路 2
1は連通孔 4 3 bを介してポぺッ ト 4 0の内部空間 4 3 b と連通し、 さら には副オイル供給路 1 0 cを通って主オイル供給路 9と連通する (この状 態ではポペッ ト 4 0が開放位置に位置すると称する) 。 一方、 シート部 4 2が弁座部 2 4に接触した状態では、 スプール 2 0の内部流路 2 1はポぺ ット 4 0によりこの部分で閉止される (この状態ではポペッ ト 4 0が閉塞 位置に位置すると称する) 。 なお、 ポペッ ト 4 0の内部空間 4 3 a とポぺ ッ ト 4 0シート部 4 2の外周部に設けられた複数の連通孔 4 3 bとにより 形成される流路をドレン兼用連通路 4 3と称する。 このため、 ポペット 4 0のシート部 4 2がスプール 2 0の弁座部 2 4から離間した状態では、 図 1に示すように、 スプール 2 0の内部流路 2 1はポぺット 4 0の上記ドレ ン兼用連通路 4 3および副オイル供給路 1 0 cを介して主オイル供給路 9 と連通する。
スプール 2 0の中間部 2 2のほぼ中央部分にはその軸方向両側よりも外 径の小さいスプール口ッ ド部 2 5が設けられている。 このスプール口 ッ ド 部 2 5の左右には左右スプールランド部 2 6 a , 2 6 bが形成されており、 これら左右スプールランド部 2 6 a, 2 6 bはバルブポア 1 3 ( 1 3 b , 1 3 c ) 内に嵌合揷入される。 左スプールランド部 2 6 aには、 外周面に 沿って複数個の連通孔 2 7が設けられており、 これら連通孔 2 7は内部流 路 2 1と繋がっている。 また、 スプールロッド部 2 5の右方の右スプール ランド部 2 6 bには径方向に貫通するドレン用開口 2 9が形成されており このドレン用開口 2 9も内部流路 2 1と繋がっている。
副オイル供給路 1 0をバルブポア 1 3内からなる部分 (流路 1 0 bとす る) と、 副オイルポンプ 8の吐出口 8 bからバルブボア 1 3に至るまでの 部分 (流路 1 0 aとする) と、 バルブボア 1 3から主オイル供給路 9に至 るまでの部分(流路 1 0 cとする) とに分けて説明する力 連通孔 2 7は、 スプール 2 0が「初期位置」から「最大左動位置」まで移動したとしても、 常に流路 1 0 aに繋がって位置している。
スプール口 ッド部 2 5の外周面とバルブポア 1 3のシー トボア 1 3 b と の間の空間は作動油通路 1 6を形成しており、 この作動油通路 1 6は第 2 オイル吸入路 1 2を介してオイルパン Tに通ずるドレン流路 1 7に繋がつ ている。 スプール 2 0が初期位置に位置した状態、 或いは初期位置より少 量だけ左方に移動した状態では、 .流路 1 0 aと作動油通路 1 6との連通は スプールランド部 2 6がシートボア 1 3 bと嵌合することによって阻止さ れるが、 スプール 2 0が更に左方に移動した状態では、 流路 1 0 a と作動 油通路 1 6とは連通する。
この無負荷運転装置の組み立ては、 図 2に示すように、 ポンプボディ 1 のバルブボア 1 3 (およびスプールポア 1 3 d ) 内にポペッ ト 4 0、 スプ ール 2 0、 スプリ ング 3 0、 スプールス トッパ 5 1及び付勢力調整具 5 2 をこの順で挿入したうえで、 付勢力調整具 5 2を指で押圧することにより スプリング 3 0を縮めた状態でェンドプレート 5 3をポンプボディ 1のプ レート取り付け溝 1 5内に挿入して行う。
このような構成を有するタンデムポンプ 3の無負荷運転装置において駆 動歯車 4が回転駆動されると、 駆動歯車 4と嚙合した第 1従動歯車 5及び 第 2従動歯車 6も回転し、 主オイルポンプ 7と副オイルポンプ 8はそれぞ れポンプ作動を行う。 具体的には、 主オイルポンプ 7はオイルパン T内の オイルを吸入口 7 aより吸入し、 吐出口 7 bから吐出する。 また副オイル ポンプ 8はオイルパン T内のオイルを吸入口 8 aより吸入し、 吐出口 8 b から吐出する。
これら吐出油の供給先となるオイル供給対象 O Bはエンジンブロック内 のオイルギャラリ一であり、 供給油量の増加に応じて供給圧が高くなる構 成である。 このため、 エンジンの回転数が小さいときには、 主副両オイル ポンプ 7 , 8の吐出油流量も小さいので、 オイル供給路 9, 1 0内の圧力 も小さい。 ここで、 副オイルポンプ 8からの吐出圧は内部流路 2 1に作用 してスプール 2 0を左方へ付勢するように作用する。 このため、 スプール 2 0はスプリング 3 0の付勢力に杭して初期位置より も左方へ移動するこ とになる力 吐出圧が小さいためその移動量が小さく、図 4に示すように、 副オイル供給路 1 0 a と作動油通路 1 6 との連通がスプールランド部 2 6 とシート部 1 3 bとの嵌合によって阻止される。 この間は、 流路 1 0 a内 に吐出された油はその全量がスプール 2 0の内部流路 2 1内に流入するこ とになる。
このようにして内部流路 2 1内に流入した副オイルポンプ 8からの吐出 油は、 ポペッ ト 4 0を主オイル供給路 9側に押しのけて (ポペッ ト 4 0の シート部 4 2をスプール 2 0の弁座部 2 4から離間させて) 主オイル供給 路 9内に流入する (図 4の矢印で示す油の流れ参照) 。 このため、 主オイ ルポンプ 7からの吐出油と副オイルポンプ 8からの吐出油は合流した状態 で主オイル供給路 9からオイル供給対象 O Bへ送られる。 このとき主副両 オイルポンプ 7, 8の吐出油流量はそれぞれ小さいが、 双方合流されてォ ィル供給対象 O Bへ送られるので、 全体としては十分な潤滑油供給量を確 保できる。
次に、 エンジンの回転数が上がってく ると、 主副両オイルポンプ 7 , 8 の吐出油流量も増大するので、 オイル供給路 9, 1 0内の圧力も上昇して くる。 これによりスプール 2 0は更に左方へ移動する。 そして、 オイル供 給路 9 , 1 0内の圧力が無負荷運転開始圧に達したときには、 図 5に示す ように、 スプールランド部 2 6右端部までが流路 1 0 a内に位置し、 流路 1 0 a と作動油通路 1 6とは連通して、 副オイルポンプ 8の吐出油の一部 が流路 1 0 aから作動油通路 1 6及びドレン流路 1 7を経てオイルパン T に戻されるようになる。 すなわち、 スプール 2 0はスプリング 3 0による 付勢に杭して左方向に移動して副オイル供給路 1 0をドレン流路 1 7に接 続することにより、 副オイル供給路 1 0 a内の圧油をドレンする。
これにより副オイル供給路 1 0 aおよびスプール 2 0の内部流路 2 1内 の圧力は低下する。 この結果、 主オイル供給路 9内の圧力と副オイル供給 路 1 0 a内の圧力との間には差圧が生ずるので、 ポぺッ ト 4 0は左方へ移 動し、 スプール 2 0の弁座部 2 4に押し付けられる。 これにより主オイノレ 供給路 9と副オイル供給路 1 0 aとの連通はポぺッ ト 4 0により遮断され た状態となり、 しかも、 ポペッ ト 4 0は主オイル供給路 9内の圧力に押さ れてスプール 2 0を左方へ付勢するので、 スプール 2 0はますます左方へ 移動し、 流路 1 0 aから作動油通路 1 6及びドレン流路 1 7を経てオイル パン Tに戻される圧油の流量は増大し、 副オイルポンプ 8からの吐出油は 全量がオイルパン Tに戻されるようになる。
これにより副オイルポンプ 8は無負荷運転状態となり、 タンデムポンプ 3を駆動する駆動源 (エンジン) の動力が節減される。 なお、 このとき主 オイルポンプ 7からの吐出油のみが主オイル供給路 9からオイル供給対象 O Bへ送られることになるが、 主オイルポンプ 7の吐出油流量は既に十分 な大きさに達しているので、 オイル供給対象 O Bに必要な潤滑油供給量を 確保することができる。
この後更にエンジンの回転数が上がって主オイルポンプ 7からの吐出油 流量が一層増大するのに応じて吐出流路 9内の吐出圧も増大するが、 この 吐出圧はポペッ ト 4 0に作用する。 このため、 ポペッ ト 4 0は主オイル供 給路 9 (及び流路 1 0 c ) 内の圧力を受けてスプール 2 0を左方向に押圧 しながら移動する。 そして主オイルポンプ 7からの吐出圧がリ リーフ設定 圧に達すると、 スプール 2 0の右スプールランド部 2 6 bに設けられたド レン用開口 2 9がドレン流路 1 7内に開口し、 主オイル供給路 9内の圧油 の一部は流路 1 0 cからポぺッ ト 4 0内のドレン兼用流路 4 3及びスプー ル 2 0に設けられたドレン用開口 2 9を通ってドレン兼用流路 1 7内へ流 れ、 オイルパン Tに戻される (図 6参照) 。 すなわち、 主オイル供給路 9 内の圧力がリ リーフ設定圧以上となると、 ドレン兼用流路 4 3はドレン用 開口 2 9を介してドレン流路 1 7と接続し、 主オイル供給路 9内の圧油を ドレンする。
ごのようなスプール 2 0及ぴポぺッ ト 4 0による主オイル供給路 9内の 圧油のドレン動作 (リ リーフ動作) はリ リーフバルブ (プレツシャレギュ レータバルブ) としての働きをなすものであり、 このようなリリーフ動作 により、主オイル供給路 9内の圧力が予め定めた最大圧(リ リーフ設定圧) を超えることが防止され、 回路の安全が確保される。
なお、 上記のように主オイル供給路 9内の圧油がリ リーフされる状態か らエンジンの回転数が下がると、 ポペッ ト 4 0がスプール 2 0を左方へ付 勢する付勢力は弱まり、 スプール 2 0はスプリ ング 3 0の付勢力により右 方へ移動する。 そして、 スプール 2 0に形成されたドレン用開口 2 9がバ ルブボア 1 3のシートボア 1 3 cにより閉止されるようになると、 主オイ ル供給路 9内の圧油がドレン流路 1 7内へ流れることはなくなり、 上記リ リーフ動作は終了する (図 5参照) 。 また、 更にエンジン回転数が下がる とスプール 2 0はスプリング 3 0の付勢力により一層右方へ移動する。 そ して、 スプーノレ 2 0のスプールランド部 2 6がポンプボディ 1のシートポ 7 1 3 bと対向するようになると、副オイル供給路 1 0内 (流路 1 0 a内) の圧油がドレン流路 1 7へ流れることはなくなり、 副オイルポンプ 8の無 負荷運転状態は終了する (図 4参照) 。
なお、 上記のように副オイルポンプ 8が無負荷運転を開始する 「無負荷 運転開始圧」 と、 主オイル供給路 9内の圧油がリ リーフを開始する 「リ リ ーフ設定圧」 はスプリング 3 0のばね特性や初期変位 (スプール 2 0が初 期位置にあるときのスプリング 3 0の変位) によって任意に設定すること ができる。 このため上記無負荷運転開始圧やリ リーフ設定圧を変更すると きには、 スプリ ング 3 0をばね特性の異なるものに交換するか、 或いは付 勢力調整具 5 2を厚さの異なるものに交換すればよい。
このよ うに本実施形態において示したタンデムポンプの無負荷運転装置 では、 副オイル供給路 1 0内の圧力が無負荷運転開始圧に達したときには 副オイルポンプ 8を無負荷運転状態にして駆動源の動力節減を行い、 更に は主オイル供給路 9內の圧力がリ リーフ設定圧に達したときには主オイル 供翁路 9内の圧油をリ リーフさせるという従来と同等の機能を維持しつつ、 必要な構成品であるスプール 2 0、 スプリング 2 0及びポぺット 4 0が 1 つのバルブポア 1 3内に備えられた構成を有しているので、 回路設計時に おけるレイァゥトの自由度が高くなり、 装置全体のコンパク ト化を図るこ と;^可能である。
:なお、 上述の実施形態では、 ポペット 4 0の内部に、 主オイル供給路 9 とポぺット 4 0の外周面との双方に開口するドレン兼用流路 4 3を設ける と ともに、 バルブボア 1 3にドレン用開口 2 9を設け、 主オイル供給路 9 内の圧力がリ リーフ設定圧に達したとき、 ドレン兼用流路 4 3がドレン用 開口 2 9に接続して主オイル供給路 9内の圧油がドレンされるようになつ ており、 スプーノレ 2 0、 ポペッ ト 4 0及びスプリ ング 3 0がリ リーフバル ブとしての機能をも果たす構成となっていたが、 上記ドレン兼用流路 4 3 及びドレン用開口 2 9を廃して、 主オイル供給路 9中に別途リ リーフバル ブを設けるようにしてもよい。 このような構成ではリ リーフバルブは別途 必要となるものの、 従来の構成におけるチェックバルブ及びアンロードバ ルブの機能を発揮する構成品であるスプール、 ポぺット及びスプリングが 1つのバルブポア内に収容された構成となるので、 従来に比して構成が簡 単になるという効果は十分に得られる。
これまで本発明の好ましい実施形態について説明してきたが、 本発明の 範囲は上述の実施形態に示したものに限定されない。 例えば、 上述の実施 形態では、 本発明が自動車用エンジンに備えられてエンジン各部の潤滑及 び冷却のためのオイルをオイルギャラリ一などのオイル供給対象 O Bへ圧 送するためのものとして用いられる例を示したが、 これは一例であり、 ォ ィ /レが供給される対象は特に限定されない。 したがって、 本装置における オイルの供給対象を流体ァクチユエータとし、 負荷に応じたァクチユエ一 タの動作速度等を制御する装置として使用することも可能である。 また、 上述の実施形態では、 タンデムポンプが吐出供給する流体はオイルであつ たが、 この流体はオイルに限られず、 水や空気等であってもよい。 また、 タンデムポンプを構成する 2つの流体ポンプは歯車ポンプからなっていた 、 1つの駆動源により同時に駆動される 2つの流体ポンプであれば、 他 の形態のポンプ (例えばべーンポンプやピス トンポンプ等) であっても構 わない。

Claims

言青 求 の 範 困 . 駆動源により同 B寺に駆動される主流体ポンプ及び副流体ポンプを備え たタンデムポンプと、
前記主流体ポンプの吐出口から流体供給対象へ延びた主流体供給路と、 前記副流体ポンプの吐出口から延びて前記主流体供給路の中間部に接 続された副流体供給路と、
前記副流体供給路の一部を構成するバルブポアと、
前記バルブポア内に移動自在に嵌合揷入して配設され、 軸方向に延び た内部流路を有したスプールと、
前記スプールを前記バルブポア内において前記主流体供給路との接続 部側に向けて付勢する付勢部材と、
前記バルブポア内における前記スプールよりも前記主流体供給路との 接続部側において前記バルブポア内を移動自在に酉己設され、 端部が前記 スプールの前記内咅流路の端部に当接してこれを塞ぐ閉塞位置と前記 内部流路の端部から離間してこれを開放する開放位置とに移動可能な ホぺットとを備 、
前記バルブボアにはドレン流路が繋がって設けられており、 前記スプ ールは前記主流体供給路内の圧力を受けて前記付勢部材の付勢力に抗 して移動可能であり、
前記主流体供給路内の圧力が無負荷運転開始圧よりも小さいときには、 前記スプールは前言己付勢部材の付勢力により前記主流体供給路との接 続部側に移動され、 前記ドレン流路との連通を遮断するとともに前記内 部流路を介して前言己副流体供給路と前記主流体供給路とを連通させ、 前記主流体供給路内の圧力が上昇して前記無負荷運転開始圧を超えた ときに、 前記スプールは前記付勢部材による付勢に抗して移動されて、 前記副流体供給路を前記ドレン流路に接続させるように構成され、 前記 副流体供給路内の圧油がドレンされることにより生じる前記副流体流 路および前記主流体流路内の圧力の差により 前記ポぺットは前記スプ ールは前記閉塞位置に移動されるように構成されていることを特徴と するタンデムポンプの無負荷運転装置。 . 前記タンデムポンプが駆動源により駆動される駆動歯車とこの駆動歯 車と外接嚙合する第 1従動歯車及び第 2従 ¾歯車とから構成される歯 車ポンプからなることを特徴とする請求項 1 に記載のタンデムポンプ の無負荷運転装置。 . 前記スプールは前記内部流路を有した中間部と前記中間部の片側にお いて前記付勢部材の付勢力を受ける付勢部ネオ収容部とから構成され、 前記中間部の外周部における軸方向中央部に小径のスプール口ッド部 が設けられるとと もに、 このスプールロッ ド部の左右にスプールランド 部が設けられており、 前記左右スプールランド部が前記バルブポアと嵌 合して前記スプールが前記バルブボア内に移動自在に揷入配設されて いることを特徴とする請求項 1に記載のタンデムポンプの無負荷運転 装置。 . 前記左スプールランド部には、 外周面に莨通して前記内部流路に連通 する連通孔が設けられており、 前記連通孔は前記スプールの移動範囲内 において常に前記副流体通路における前記釗流体ポンプの吐出口側に 繋がることを特徴とする請求項 3に記載のタンデムポンプの無負荷運 転装置。
5 . 前記主流体供給路内の圧力が前記無負荷運転開始圧を超えて前記スプ ールが前記付勢部材による付勢に抗して移動されたときに、 前記スブー ルロッド部を介して前記副流体供給路を前記ドレン流路に接続させる ように構成されている'ことを特徴とする請求項 3もしくは 4に記載の タンデムポンプの無負荷運転装置。
6 . 前記ポペッ トの内部には、 前記主流体供給路と前記ポペットの外周面 との双方に開口するドレン兼用流路が設けられており、 前記主流体供給 路内の圧力が前記無負荷運転開始圧を超えてこれより高圧のリ リーフ 設定圧に達したとき、 前記スプールは前記リ リーフ設定圧の押圧力を受 けて前記ドレン兼用流路を前記ドレン流路と接続させる位置まで移動 されて、 前記主流体供給路内の圧油を前記ドレシ流路からドレンするよ うになっていることを特徴とする請求項 1記載のタンデムポンプの無 負荷運転装置。
7 . 前記スプールは前記内部流路を有した中間部と前記中間部の片側にお いて前記付勢部材の付勢力を受ける付勢部材収容部とから構成され、 前記中間部の外周部における軸方向中央部に小径のスプール口ッド部 が設けられると ともに、 このスプール口 ッ ド部の左右にスプールランド 部が設けられており、 前記左右スプーノレランド部が前記バルブボアと嵌 合して前記スプールが前記バルブボア内に移動自在に揷入配設されて いることを特徴とする請求項 6に記載のタンデムポンプの無負荷運転 装置。 8 . 前記右スプールランド部には外周面に貫通して前記内部流路における 前記ポぺットにより閉塞される部分より 前記主流体供給路側の部分に 連通するドレン用開口が設けられており、
前記主流体供給路内の圧力が前記リ リーフ設定圧に達したとき、 前記 スプールは前記リ リーフ設定圧の押圧力を受けて前記ドレン用開口が 前記ドレン流路と連通する位置まで移動されて前記ドレン兼用流路を . 前記ドレン流路と接続させるように構成されていることを特徴とする 請求項 7に記載のタンデムポンプの無負荷運転装置。
PCT/JP2005/014610 2004-09-22 2005-08-03 タンデムポンプの無負荷運転装置 WO2006033207A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05770828A EP1806504A1 (en) 2004-09-22 2005-08-03 No-load operation system of tadem pump
US11/574,827 US20080107545A1 (en) 2004-09-22 2005-08-03 Tandem Pump No-Load Operation Device
JP2006536326A JPWO2006033207A1 (ja) 2004-09-22 2005-08-03 タンデムポンプの無負荷運転装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004274855 2004-09-22
JP2004-274855 2004-09-22

Publications (1)

Publication Number Publication Date
WO2006033207A1 true WO2006033207A1 (ja) 2006-03-30

Family

ID=36089971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014610 WO2006033207A1 (ja) 2004-09-22 2005-08-03 タンデムポンプの無負荷運転装置

Country Status (5)

Country Link
US (1) US20080107545A1 (ja)
EP (1) EP1806504A1 (ja)
JP (1) JPWO2006033207A1 (ja)
CN (1) CN100419267C (ja)
WO (1) WO2006033207A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045482A (ja) * 2006-08-15 2008-02-28 Tbk:Kk タンデムポンプのバルブ構造
EP1927754B1 (de) * 2006-12-01 2019-02-20 Robert Bosch Gmbh Innenzahnradpumpe

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5232842B2 (ja) * 2010-09-16 2013-07-10 株式会社山田製作所 可変流量オイルポンプ
JP5232843B2 (ja) * 2010-09-16 2013-07-10 株式会社山田製作所 可変流量オイルポンプ
JP5923361B2 (ja) 2012-03-28 2016-05-24 株式会社山田製作所 可変流量オイルポンプを備えたエンジン
CN103277505B (zh) * 2013-05-30 2015-10-28 长城汽车股份有限公司 汽车、自动变速器及混合动力液压控制系统
CN105370567B (zh) * 2015-12-14 2017-08-29 贵州红林机械有限公司 自动分压式双联齿轮泵
US9657561B1 (en) 2016-01-06 2017-05-23 Isodrill, Inc. Downhole power conversion and management using a dynamically variable displacement pump
US9464482B1 (en) 2016-01-06 2016-10-11 Isodrill, Llc Rotary steerable drilling tool
CN106050763B (zh) * 2016-08-15 2018-01-05 阜新北鑫星液压有限公司 一种转控恒流液压油泵

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04234588A (ja) * 1990-09-27 1992-08-24 Borg Warner Automot Inc 複容積流体ポンプ
JP2002070757A (ja) * 2000-08-31 2002-03-08 Tokico Ltd 可変容量ギヤポンプ
JP2003328958A (ja) * 2002-05-14 2003-11-19 Society Of Japanese Aerospace Co Inc 直列並列切り替え用ダブルギアポンプおよび切り替え回路

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2669256A (en) * 1951-10-26 1954-02-16 Bendix Aviat Corp Fluid-metering valve for hydraulic motor control systems
US2887060A (en) * 1953-06-22 1959-05-19 American Brake Shoe Co Variable volume pumping mechanism
US3692432A (en) * 1970-12-22 1972-09-19 Ford Motor Co Two-stage positive displacement pump
US3985472A (en) * 1975-04-23 1976-10-12 International Harvester Company Combined fixed and variable displacement pump system
US4204811A (en) * 1977-08-19 1980-05-27 The Garrett Corporation Fluid pumping system
US4245964A (en) * 1978-11-08 1981-01-20 United Technologies Corporation Efficiency fluid pumping system including sequential unloading of a plurality of pumps by a single pressure responsive control valve
US4478043A (en) * 1982-01-18 1984-10-23 The Garrett Corporation Method for controlling the operation of an hydraulic assist turbocharger
US4502845A (en) * 1983-03-24 1985-03-05 General Motors Corporation Multistage gear pump and control valve arrangement
US5338161A (en) * 1991-06-19 1994-08-16 Dana Corporation Gear pump having internal bypass valve
US5241826A (en) * 1992-07-21 1993-09-07 Stearns Charles F Fixed geometry variable displacement pump system
KR100243893B1 (ko) * 1993-09-30 2000-03-02 다나까 도미오 기어펌프
US5797732A (en) * 1993-12-28 1998-08-25 Unisia Jecs Corporation Variable capacity pump having a pressure responsive relief valve arrangement
JP3815805B2 (ja) * 1994-11-15 2006-08-30 富士重工業株式会社 自動変速機のポンプ吐出量制御装置
JPH09126157A (ja) * 1995-08-29 1997-05-13 Aisin Seiki Co Ltd タンデムポンプ装置
JPH10131751A (ja) * 1996-10-29 1998-05-19 Aisin Seiki Co Ltd タンデムポンプ装置
KR100221591B1 (ko) * 1997-03-22 1999-09-15 토니헬 보조 펌프 구조
US6186750B1 (en) * 1999-04-27 2001-02-13 Borgwarner, Inc. Oil pump control valve spool with pilot pressure relief valve
US6206044B1 (en) * 1999-12-09 2001-03-27 Eaton Corporation By-pass solenoid with integral check valve
FR2826069B1 (fr) * 2001-06-15 2004-03-12 Renault Pompe volumetrique a double engrenage
JP3968266B2 (ja) * 2002-04-30 2007-08-29 株式会社東芝 液圧発生装置
WO2004046534A1 (en) * 2002-11-18 2004-06-03 Breeden Robert H Solenoid regulated pump assembly

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04234588A (ja) * 1990-09-27 1992-08-24 Borg Warner Automot Inc 複容積流体ポンプ
JP2002070757A (ja) * 2000-08-31 2002-03-08 Tokico Ltd 可変容量ギヤポンプ
JP2003328958A (ja) * 2002-05-14 2003-11-19 Society Of Japanese Aerospace Co Inc 直列並列切り替え用ダブルギアポンプおよび切り替え回路

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045482A (ja) * 2006-08-15 2008-02-28 Tbk:Kk タンデムポンプのバルブ構造
US7677263B2 (en) 2006-08-15 2010-03-16 Tbk Co., Ltd. Tandem pump valve structure
EP1927754B1 (de) * 2006-12-01 2019-02-20 Robert Bosch Gmbh Innenzahnradpumpe

Also Published As

Publication number Publication date
US20080107545A1 (en) 2008-05-08
EP1806504A1 (en) 2007-07-11
CN100419267C (zh) 2008-09-17
CN101027485A (zh) 2007-08-29
JPWO2006033207A1 (ja) 2008-05-15

Similar Documents

Publication Publication Date Title
WO2006033207A1 (ja) タンデムポンプの無負荷運転装置
JP5116546B2 (ja) 可変容量型ベーンポンプ
US8342815B2 (en) Oil pump
JP4776203B2 (ja) 可変目標調整器を備えた可変容量形ベーンポンプ
JP2006153033A (ja) ポンプ装置及び油圧無段変速装置
JP2009257167A (ja) 可変容量型ベーンポンプ
JP2011220414A (ja) リリーフ圧力変更機能付きリリーフバルブ
JP5007085B2 (ja) タンデムポンプのバルブ構造
JP5598706B2 (ja) リリーフバルブ
US8827659B2 (en) Oil supply apparatus
US11493036B2 (en) Spool valve used in a variable vane pump
WO1998005545A1 (fr) Vanne de regulation du debit d'une pompe hydraulique
JPH10266978A (ja) ベーンポンプ
JP6821257B2 (ja) 切替弁装置
WO2015111482A1 (ja) 可変容量形オイルポンプ
JP6469156B2 (ja) 流体圧回路
JP6974082B2 (ja) 油圧制御装置、ポンプおよび内燃機関への作動油供給システム
JP6567678B2 (ja) 可変容量形オイルポンプ
US6966181B2 (en) Hydrostatic transmission
JP2010090807A (ja) 二連式ベーンポンプ
KR102065567B1 (ko) 오일펌프 시스템
JP3854801B2 (ja) 可変容量形ポンプ
WO1996001951A1 (fr) Soupape de compensation de pression
JP3962506B2 (ja) ポンプ組付型リリーフバルブ
JP2019065964A (ja) 油圧制御装置及び動力伝達装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006536326

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11574827

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580031960.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005770828

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005770828

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11574827

Country of ref document: US