WO2015111482A1 - 可変容量形オイルポンプ - Google Patents

可変容量形オイルポンプ Download PDF

Info

Publication number
WO2015111482A1
WO2015111482A1 PCT/JP2015/050794 JP2015050794W WO2015111482A1 WO 2015111482 A1 WO2015111482 A1 WO 2015111482A1 JP 2015050794 W JP2015050794 W JP 2015050794W WO 2015111482 A1 WO2015111482 A1 WO 2015111482A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
pump
control
control hydraulic
oil pump
Prior art date
Application number
PCT/JP2015/050794
Other languages
English (en)
French (fr)
Inventor
理志 屋木
伊藤 慎一郎
高木 登
壽 小野
裕基 西田
Original Assignee
トヨタ自動車株式会社
アイシン精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社, アイシン精機株式会社 filed Critical トヨタ自動車株式会社
Publication of WO2015111482A1 publication Critical patent/WO2015111482A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/18Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber
    • F04C14/22Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members
    • F04C14/223Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members using a movable cam
    • F04C14/226Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members using a movable cam by pivoting the cam around an eccentric axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/102Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member the two members rotating simultaneously around their respective axes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/811Actuator for control, e.g. pneumatic, hydraulic, electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/18Pressure
    • F04C2270/185Controlled or regulated

Definitions

  • the present invention relates to a variable displacement type oil pump, and particularly belongs to the technical field of a structure for enhancing the response of the pump displacement control.
  • Patent Document 1 As an engine oil pump, oil sucked from a suction port is discharged from a discharge port by rotation of an inner rotor (drive rotor) and an outer rotor (driven rotor) that are engaged with each other.
  • a contact gear pump is known as an engine oil pump.
  • an adjustment ring is provided so as to hold the outer rotor rotatably from the outer periphery in the housing, and the adjustment ring is displaced by the hydraulic pressure introduced into the pressurizing space in the housing.
  • an electromagnetic valve is connected to the pressurized oil passage communicating with the pressurized space, and the pressurized space is provided by the electromagnetic valve.
  • the pump capacity is changed by controlling the oil pressure. That is, when the pump capacity is reduced, the electromagnetic valve is switched to the pressurizing position to feed oil into the pressurizing space, and the adjusting ring is displaced in the direction in which the volume of the pressurizing space is increased.
  • an object of the present invention is to improve the response of the pump displacement control by the operation of the displacement variable mechanism in a variable displacement oil pump installed in, for example, an engine.
  • variable capacity mechanism when the variable capacity mechanism operates so that the volume of the control hydraulic chamber in the pump housing (corresponding to the pressurizing space in the conventional example described above) is reduced, the control hydraulic pressure is controlled. The oil was discharged from the chamber by negative pressure.
  • the present invention is directed to a variable displacement oil pump including a variable displacement mechanism that can change the discharge amount per rotation of the input shaft by changing the volume of the control hydraulic chamber. Then, the variable capacity mechanism biases the capacity adjusting member in a direction in which the capacity of the control hydraulic chamber becomes smaller and a capacity adjusting member that is displaced by receiving the hydraulic pressure of the control hydraulic chamber provided in the pump housing. And a communication oil passage that communicates the control hydraulic chamber with a negative pressure source when the control hydraulic chamber is configured to operate in response to the control hydraulic pressure supplied to the control hydraulic chamber. It is.
  • the position of the capacity adjusting member housed in the pump housing is determined by the balance between the force by the hydraulic pressure in the control hydraulic chamber and the biasing force by the biasing means. Is adjusted. Since the control hydraulic chamber is communicated with the negative pressure source through the communication oil passage, when the displacement adjusting member is displaced in a direction in which the volume of the control hydraulic chamber is decreased in order to change the pump capacity, Oil is sucked out from the control hydraulic chamber by negative pressure. As a result, the displacement of the displacement variable mechanism becomes faster and the response of the pump displacement control becomes higher.
  • the communication oil passage is provided separately from a control oil passage for supplying control oil pressure to the control oil pressure chamber.
  • an electromagnetic valve may be connected to the control oil passage as in the conventional example described above.
  • a certain length is required for the control oil passage due to the layout of the electromagnetic valve. Is done. Considering this, by providing a communication oil path separately from the control oil path, the length of the communication oil path can be shortened without being restricted by the length requirement for the control oil path, and the flow resistance Can be reduced.
  • the negative pressure on the suction side generated by the operation of the oil pump as the source of the negative pressure for sucking oil from the control hydraulic chamber to the communication oil passage. That is, the communication oil passage only needs to be communicated with a suction port (negative pressure source) formed in the pump housing, and this makes the structure simple and the communication oil passage easy to form. This is advantageous in reducing the distribution resistance of the.
  • the capacity adjusting member when the low pressure space communicating with the suction port is formed inside the pump housing and the low pressure space and the control hydraulic chamber are partitioned by the capacity adjusting member, the capacity adjusting member
  • the communication oil passage is formed to connect the low-pressure space and the control hydraulic chamber. In this way, the length of the communication oil passage can be shortened as much as possible, and the oil distribution resistance can be minimized.
  • the communication oil passage may be provided in the pump housing, but in this case as well, in order to shorten the length of the communication oil passage as much as possible, the capacity adjustment that partitions the low-pressure space and the control hydraulic chamber as described above. It is preferable to provide in the vicinity of the member.
  • a groove that opens from the low-pressure space to the control hydraulic chamber is formed on the wall surface of the pump housing in which the portion that partitions the low-pressure space and the control hydraulic chamber in the capacity adjustment member is formed.
  • a road can be used.
  • an internal gear pump including a drive rotor of an external gear rotated by the input shaft, An internal gear driven rotor that is engaged and rotated may be provided.
  • the capacity variable mechanism includes, as the capacity adjusting member, an annular holding member that rotatably holds the driven rotor from the outer periphery, and the holding member receives the control hydraulic pressure supplied to the control hydraulic chamber. What is necessary is just to comprise so that a discharge amount may be changed, when it changes and the relative position with respect to the suction port and discharge port which were formed in the said pump housing changes.
  • the negative pressure source for example, it is conceivable to use a negative pressure pump that operates in accordance with the rotation of the input shaft. By connecting the communication oil passage to such a negative pressure pump, the oil is sucked out. It may be configured.
  • the biasing means for biasing the capacity adjusting member in a direction in which the volume of the control hydraulic chamber is reduced in the variable capacity mechanism is configured by using an elastic member such as a coil spring or a leaf spring.
  • the biasing means may be configured to bias the capacity adjusting member by hydraulic pressure, gas pressure, or the like.
  • an electromagnetic valve may be connected to the control oil passage as in the above-described conventional example, and the controlled hydraulic pressure may be controlled by this electromagnetic valve.
  • the capacity adjusting member is adjusted to the volume of the control hydraulic chamber. Can be displaced in the direction of decreasing.
  • the electromagnetic valve may be positioned to supply oil. There is no need to switch to a position for discharging oil as in the conventional example. In other words, since there is no need to switch the electromagnetic valve between the oil supply position and the oil discharge position, the linearity of the relationship between the current value input to the electromagnetic valve and the control hydraulic pressure output from the electromagnetic valve increases, and the pump Capacity controllability is also increased.
  • variable displacement oil pump at least when the displacement adjusting member is displaced in a direction in which the volume of the control hydraulic chamber becomes smaller, the oil is sucked from the control hydraulic chamber into the communication oil passage so that the capacity can be changed. Since the operation of the mechanism becomes faster, the response of the pump displacement control can be improved. Further, when the control hydraulic pressure to the control hydraulic chamber is adjusted by an electromagnetic valve, it is not necessary to switch the electromagnetic valve between the oil supply position and the oil discharge position, so that the controllability can be improved.
  • FIG. 3 is a view corresponding to FIG. 2 showing a state where the capacity of the oil pump is minimum. It is explanatory drawing which shows the (a) supply position and (b) discharge position of OCV. It is a graph which shows an example of the relationship between OCV electric current value and control hydraulic pressure. It is a graph which shows an example of the relationship between an OCV electric current value, an engine speed, and a pump discharge pressure.
  • FIG. 3 is a view corresponding to FIG.
  • FIG. 4 is also a view corresponding to FIG. 3 according to another embodiment.
  • FIG. 3 is a view corresponding to FIG. 2 according to another embodiment using a negative pressure pump as a negative pressure source.
  • the engine 1 is an in-line four-cylinder engine in which four cylinders (not shown) are provided in the longitudinal direction of the crankshaft 13 (hereinafter referred to as the front-rear direction).
  • Each cylinder accommodates a piston 12 (only one is shown in the figure) and is connected to a crankshaft 13 via a connecting rod 12a.
  • the crankshaft 13 is rotatably supported at the lower part (crankcase) of the engine 1 by a plurality of crank journals 13a.
  • valve shaft camshafts 14 and 15 for driving the intake valve 12b and the exhaust valve 12c for each cylinder are disposed.
  • the valve train is of the DOHC type, and two camshafts 14 and 15 on the intake side and exhaust side are rotatably supported by a plurality of cam journals 14a and 15a, respectively.
  • Cam sprockets 14b and 15b are attached to the front end portions (left end portions in FIG. 1) of the two camshafts 14 and 15, respectively, while a crank sprocket (not shown) is attached to the front end portion of the crankshaft 13. ) Is attached.
  • the timing chain 3 is wound from the crank sprocket to the cam sprockets 14b and 15b.
  • a sprocket (not shown) for driving the oil pump 5 is also attached to the crankshaft 13 adjacent to the rear side of the crank sprocket.
  • the oil pump 5 is disposed below the front end of the crankshaft 13, and a pump sprocket 5b is attached to the input shaft 5a.
  • the chain 4 is wound around the pump sprocket 5b and the sprocket of the crankshaft 13.
  • the oil discharged from the oil pump 5 flows through the discharge oil passage 6 a to the oil filter 6, where foreign matter and impurities are filtered, and then flows into the main gallery 20 of the oil supply system 2.
  • the main gallery 20 extends in the front-rear direction of the engine 1 and distributes oil to the plurality of branch oil passages 21 to 23.
  • oil is supplied to the crank journal 13 a by a plurality of branch oil passages 21 extending downward from the main gallery 20.
  • Oil is supplied to the cam journals 14a, 15a and the like by branch oil passages 22, 23 extending upward from both ends of the main gallery 20, respectively.
  • the oil pump 5 is an internal gear pump including an external gear drive rotor 51 rotated by an input shaft 5a and an internal gear driven rotor 52 rotated in mesh with the drive rotor 51. is there.
  • the outer periphery of the driven rotor 52 is held by an adjustment ring 53 (holding member).
  • the adjustment ring 53 displaces the drive rotor 51 and the driven rotor 52 as will be described later to change the pump capacity. Function as.
  • the housing 50 of the oil pump 5 when viewed from the rear of the engine, has a rectangular shape that is longer to the left and right than the upper and lower sides. And the protrusion part 50b which goes below from the lower left site
  • the recess 50c is closed by a cover (not shown) superimposed on the housing 50 from the rear to form an accommodation recess 50c that accommodates the drive rotor 51, the driven rotor 52, the adjustment ring 53, and the like (hereinafter referred to as accommodation). (Referred to as a recess 50c).
  • a through hole (not shown) having a circular cross section is formed near the center of the bottom of the housing recess 50c (slightly to the right in FIG. 2), and the input shaft 5a is inserted therethrough.
  • the pump sprocket 5b is attached to the front end portion of the input shaft 5a, while the drive rotor 51 is attached to the rear end portion of the input shaft 5a by, for example, a spline (not shown).
  • the drive rotor 51 has a plurality of outer teeth 51a (11 in the example shown in the figure) having a trochoid curve or a curve approximated to a trochoid curve (for example, involute, cycloid, etc.) on the outer periphery.
  • the driven rotor 52 is formed in a ring shape, and a plurality of internal teeth 52a that mesh with the external teeth 51a of the drive rotor 51 are formed on the inner periphery thereof.
  • the number of teeth of the inner teeth 52a is one more than the number of teeth of the outer teeth 51a of the drive rotor 51 (12 in the example in the figure).
  • the center of the driven rotor 52 is eccentric by a predetermined amount with respect to the center of the drive rotor 51, and the outer teeth 51 a of the drive rotor 51 and the inner teeth of the driven rotor 52 on the eccentric side (the upper left side in FIG. 2). 52a is engaged.
  • a 12-section trochoid pump is constructed. That is, as shown in FIG. 2, in the annular space between the two rotors 51 and 52, a plurality of working chambers R are formed side by side in the circumferential direction, and these working chambers R are formed by two rotors. The volume increases or decreases while moving in the circumferential direction along with the rotation of 51 and 52.
  • the volume of the working chamber R gradually increases as the two rotors 51 and 52 rotate.
  • the remaining range of about 180 degrees the upper right range in FIG. 2
  • the volume of the working chamber R gradually decreases as the rotors 51 and 52 rotate.
  • the range in which the volume of the working chamber R gradually increases between the two rotors 51 and 52 is the suction range for sucking oil from the suction port 50d, and conversely, the volume of the working chamber R gradually decreases.
  • the range to be discharged is a discharge range for sending oil to the discharge port 50e while pressurizing the oil. That is, as indicated by a broken line in FIGS. 2 and 3, the suction port 50d is opened at the bottom surface of the housing recess 50c of the housing 50 corresponding to the suction range, and the discharge port 50e is opened corresponding to the discharge range. is doing.
  • the suction port 50d that opens corresponding to the suction range communicates with the oil passage of the oil strainer via an oil passage (not shown) formed inside the housing 50 and the cover. As shown in FIGS. 2 and 3, a part of the suction port 50d is also opened outside the adjustment ring 53 and communicates with a low-pressure space TL described later.
  • the discharge port 50e is formed along the protruding portion 50a of the housing 50 as shown by a broken line in FIGS. 2 and 3, and communicates with the discharge oil passage 6a.
  • the oil pump 5 configured in this manner is formed between the drive rotor 51 and the driven rotor 52 that are engaged with each other by the rotation of the input shaft 5a in response to the rotational force of the crankshaft 13, and between them. Oil is sucked into the working chamber R from the suction port 50d and discharged from the discharge port 50e.
  • 2 and 3 show the suction port 50d and the discharge port 50e formed in the housing 50, but a suction port and a discharge port having the same configuration may be formed on the cover overlapped with the housing 50. Alternatively, both the cover and the housing 50 may be formed.
  • the oil pump 5 of the present embodiment includes a variable capacity mechanism that can change the amount of oil discharged every rotation of the drive rotor 51, that is, the pump capacity, as described above.
  • This capacity variable mechanism displaces the adjustment ring 53 by the hydraulic pressure of the control space TC (control hydraulic chamber) formed in the housing recess 50 c of the housing 50. Due to the displacement of the adjustment ring 53, the relative positions of the drive rotor 51 and the driven rotor 52 with respect to the suction port 50d and the discharge port 50e change, and the pump capacity is changed.
  • the adjustment ring 53 includes a ring-shaped main body 53a that holds the driven rotor 52 as described above, an overhang 53b that protrudes outward from the outer periphery of the main body 53a, and an outer side that is larger than this.
  • the arm portion 53c extending in the direction is integrally formed.
  • the adjustment ring 53 is urged to rotate (displace) clockwise around the input shaft 5a by the pressing force of the coil spring 54 (elastic member) acting on the arm portion 53c.
  • the displacement trajectory of the adjustment ring 53 is defined by guide pins 55 and 56 projecting from the bottom surface of the housing recess 50c of the housing 50.
  • arc-shaped elongated holes 53d and 53e centering on the axis of the input shaft 5a are formed in the projecting portion 53b of the adjustment ring 53, and the guide pins 55 and 56 are loosely fitted therein. Is housed in. Thereby, the adjustment ring 53 is displaced in the extending direction of the long holes 53d and 53e, and revolves around the input shaft 5a.
  • the arm 53c of the adjustment ring 53 partitions the control space TC and the low-pressure space TL formed in the housing recess 50c of the housing 50 in a circumferential direction.
  • a first seal member 57 is disposed on the outer periphery of the arm portion 53c, and moves in accordance with the displacement of the adjustment ring 53 while slidingly contacting the opposing peripheral wall of the housing 50.
  • the first seal material 57 restricts the oil flow between the control space TC and the low pressure space TL.
  • the low-pressure space TL is formed in a region surrounded by the outer periphery of the main body 53a of the adjustment ring 53 and the peripheral wall of the housing 50 from the left side to the lower side in the housing recess 50c in FIG. As described above, a part of the suction port 50d is opened at the bottom surface of the housing recess 50c facing the low pressure space TL, and the low pressure space TL communicates with the suction port 50d so as to have a pressure lower than atmospheric pressure ( Negative pressure).
  • control space TC is surrounded by the outer periphery of the projecting portion 53b of the adjustment ring 53 and the peripheral wall of the housing 50, and the second sealing material 58 disposed in the projecting portion 53b and the first space.
  • the seal material 57 is formed in a region where the oil flow is restricted.
  • the second seal member 58 is disposed on the outer periphery of the overhanging portion 53 b so as to be in sliding contact with the peripheral wall of the opposing housing 50, and moves along the peripheral wall of the housing 50 as the adjustment ring 53 is displaced. It is like that.
  • a third sealing material 59 is disposed between the peripheral wall of the housing 50 and the adjustment ring 53.
  • Each of these sealing materials 57 to 59 has a dimension comparable to the thickness of the adjustment ring 53 (dimension in the direction perpendicular to the paper surface of FIGS. 2 and 3), and is formed of a resin material having excellent wear resistance. Has been.
  • the control oil passage 61 is opened as a round hole 61a, for example, on the bottom surface of the accommodating recess 50c facing the control space TC, and the control oil pressure is supplied from the OCV 60 described below.
  • a pressing force is applied to the arm portion 53c to rotate the adjustment ring 53 counterclockwise in FIGS. 2 and 3, and the pressing force and the pressing force (biasing force) of the coil spring 54 are balanced.
  • the position of the adjustment ring 53 is determined.
  • the capacity of the oil pump 5 can be controlled by displacing the adjustment ring 53 as described above. That is, when the control hydraulic pressure is small, the adjustment ring 53 is positioned at the maximum pump displacement position shown in FIG. 2 by the pressing force of the coil spring 54. When the control hydraulic pressure increases, the adjustment ring 53 that receives this rotates (displaces) counterclockwise in FIGS. 2 and 3 against the pressing force of the coil spring 54. As a result, the pump capacity is reduced, and finally the minimum pump capacity position shown in FIG. 3 is reached.
  • the electromagnetic valve 60 (Oil Control Valve: hereinafter referred to as OCV 60) is used to adjust the control oil pressure as described above.
  • OCV 60 drives the spool 63 by an electromagnetic solenoid 62 and includes a control port 60 a to which the control oil passage 61 is connected.
  • the OCV 60 includes a supply port 60b to which a supply oil passage 6b branched from the discharge oil passage 6a of the oil pump 5 is connected, and a discharge port 60c for discharging oil.
  • OCV60 As a result, the OCV 60 supplies the oil supplied to the supply port 60b from the control port 60a (shown in FIG. 4 (a)), and discharges the oil returned to the control port 60a from the discharge port 60c ( (Shown in FIG. 4B).
  • the electromagnetic solenoid 62 does not generate an electromagnetic force. Therefore, as shown in FIG. 4B, the spool 63 is discharged by the pressing force of the coil spring 64 (the position at the right end in the figure).
  • the control port 60a and the discharge port 60c of the OCV 60 communicate with each other. For this reason, as will be described later, the oil that has recirculated through the control oil passage 61 to the control port 60a flows through the oil passage in the OCV 60 as indicated by an arrow in FIG. 4B, and is discharged from the discharge port 60c (drain).
  • the spool 63 When the OCV current value increases and the electromagnetic force generated by the electromagnetic solenoid 62 increases, the spool 63 is switched to the supply position as shown in FIG. 4A, and the control port 60a and the supply port 60b of the OCV 60 are switched. And communicated with each other. In this case, the oil supplied to the supply port 60b through the supply oil passage 6b flows through the oil passage in the OCV 60 as indicated by an arrow in FIG. 4A, and the control oil passage 61 from the control port 60a. It will be sent to.
  • the electromagnetic force generated by the electromagnetic solenoid 62 is also gradually increased, whereby the position of the spool 63 can be continuously changed.
  • the cross-sectional area of the oil passage that communicates between the control port 60a and the supply port 60b continuously changes, so that the pressure of the oil delivered from the control port 60a, that is, the control oil pressure is changed to the OCV current as described above. It changes in proportion to the value.
  • FIG. 5 shows an example of a graph in which the correlation between the OCV current value and the control hydraulic pressure is examined by experiment or the like.
  • the OCV current value I is I 2 to I 3 A.
  • the OCV 60 is set to the supply position, and the control hydraulic pressure increases approximately linearly as the OCV current value I increases.
  • the OCV 60 is in the discharge position when the OCV current value I is in the range of 0 to I 1 A. Between this discharge position and the supply position (the range in which the OCV current value I is in the range of I 1 to I 2 A). ), The OCV 60 is in a state where neither oil is supplied nor discharged, so the control hydraulic pressure is substantially constant.
  • the adjustment ring 53 By adjusting the control oil pressure with such an OCV 60, the adjustment ring 53 can be positioned as described above, and the capacity of the oil pump 5 can be controlled. For example, if the control hydraulic pressure is increased with the OCV 60 as the supply position, the adjustment ring 53 is rotated (displaced) counterclockwise in FIGS. 2 and 3 by the hydraulic pressure in the control space TC of the oil pump 5 to reduce the pump capacity. can do. On the other hand, if the OCV 60 is switched from the supply position to the discharge position and the oil is discharged from the control space TC, the adjustment ring 53 can be rotated clockwise in FIGS. 2 and 3 to increase the pump capacity. it can.
  • the communication oil passage 53 f that communicates the low pressure space TL and the control space TC is provided in the housing 50 of the oil pump 5. Oil in the control space TC is sucked out by negative pressure.
  • the communication oil passage 53f is provided to connect the control space TC to the suction port 50d (negative pressure source) via the low pressure space TL so as to suck out the oil by the negative pressure.
  • the communication oil passage 53f of the present embodiment is formed by drilling the arm portion 53c of the adjustment ring 53 that partitions the low pressure space TL and the control space TC with a drill or the like.
  • One end of the communication oil passage 53f opens toward the low pressure space TL, and the other end of the communication oil passage 53f extending from the opening toward the upper right in FIGS. 2 and 3 opens toward the control space TC. Yes. Therefore, the negative pressure of the low pressure space TL acts on the control space TC via the communication oil passage 53f, and oil is sucked out from the control space TC.
  • the communication oil passage 53f is separated from the control space TC. Oil is sucked out by negative pressure.
  • the communication oil passage 53f is formed in the arm portion 53c of the adjustment ring 53, and the low pressure space TL and the control space TC are communicated with each other. Therefore, the length of the communication oil passage 53f is made as much as possible. The oil flow resistance can be reduced.
  • control ring 53 is rotated (displaced) in the direction in which the volume of the control space TC is reduced in order to increase the pump capacity as described above. Oil can be quickly discharged from the space TC. Thereby, the rotation of the adjustment ring 53 is accelerated, and the pump capacity can be increased with good responsiveness.
  • the diameter of the communication oil passage 53f is adapted by experiments, simulations, and the like.
  • the diameter of the communication oil passage 53f is about 1 to 2 mm.
  • variable displacement oil pump 5 changes the pump capacity by displacing the adjustment ring 53 by the oil pressure of the control space TC formed in the housing recess 50c of the housing 50. Can do.
  • the discharge pressure (pump discharge pressure) of the oil pump 5 and the oil supply system 2
  • the hydraulic pressure of the main gallery 20 can be maintained in a suitable state.
  • FIG. 6 shows an example of the relationship among the magnitude of the OCV current value controlled by the ECU, the engine speed, and the pump discharge pressure. From this figure, it can be seen that by increasing the OCV current value and decreasing the pump capacity, the pump discharge pressure can be reduced even if the engine speed increases. On the other hand, by reducing the OCV current value and increasing the pump capacity, the pump discharge pressure can be increased. If the engine speed is higher than a certain level, the discharge pressure of the oil pump 5 is controlled to an arbitrary value. I understand that I can do it.
  • the pump capacity is changed in this way, for example, when the pump capacity is reduced, the amount of oil supplied from the OCV 60 to the control space TC is increased by increasing the OCV current value, and the volume of the control space TC is increased.
  • the adjustment ring 53 is rotated in the direction in which the angle increases (counterclockwise in FIGS. 2 and 3). Conversely, when the pump capacity is increased, the amount of oil supplied to the control space TC is decreased by decreasing the OCV current value.
  • the adjustment ring 53 is arranged in a direction in which the volume of the control space TC decreases (clockwise in FIGS. 2 and 3).
  • the pump capacity is increased with the rotation.
  • the oil in the control space TC is sucked out into the communication oil passage 53f by the negative pressure in the low pressure space TL, so that the adjustment ring 53 rotates faster, so that the response of the pump displacement control is enhanced.
  • the OCV 60 may be set to the supply position as in the case of decreasing the pump capacity, and it is not necessary to switch to the discharge position. That is, since the pump displacement can be controlled simply by changing the OCV current value in the range of I 2 to I 3 A in the graph of FIG. 5, the linearity between the OCV current value and the control hydraulic pressure increases. Thereby, the controllability of the pump capacity is also improved.
  • only one communication oil passage 53f that connects the control space TC and the low-pressure space TL in the housing 50 is formed in the arm portion 53c of the adjustment ring 53.
  • the present invention is also limited to this. Instead, two or more communication oil passages may be formed in the arm portion 53c.
  • the communication oil passage 53f is not drilled by a drill, but can be integrally formed when the adjustment ring 53 is formed. In this case, an orifice is fitted in the communication oil passage 53f so that the oil passage The cross-sectional area may be adjusted.
  • a communication oil passage may be formed in the housing 50 (the bottom portion or the peripheral wall of the housing recess 50c).
  • a groove 50 f is formed on the bottom surface of the housing recess 50 c that is in sliding contact with the arm 53 c, and this is connected to the communication oil passage. It is to be.
  • the groove 50f is formed from the low-pressure space TL to the control space TC, and one end in the longitudinal direction (the upper end in FIGS. 7 and 8) is an adjustment ring as shown in FIG. Even when 53 is at the maximum pump displacement position, it opens toward the control space TC. Further, the other end in the longitudinal direction of the groove 50f (the lower end in FIGS. 7 and 8) faces the low pressure space TL even when the adjustment ring 53 is at the minimum pump displacement position as shown in FIG. It is open.
  • the groove portion 50f constituting the communication oil passage can be integrally formed when the housing 50 is formed. Further, the width of the groove 50f may be changed in the longitudinal direction.
  • the groove 50f may have a shape wider on the one end (the upper end in FIGS. 7 and 8) than the other end or on the opposite side. It is good also as a shape narrower than the other end side.
  • the negative pressure generated on the suction side of the oil pump 5 is used as a negative pressure source that is led to the control space TC by the communication oil passage 53f.
  • the communication oil passage 53f is easily formed short.
  • the present invention is not limited to this.
  • a negative pressure pump that operates in accordance with the operation of the engine 1 may be used.
  • a round hole 65a that opens next to the round hole 61a facing the control space TC is formed on the bottom surface of the housing recess 50c of the housing 50, and one end of the communication oil passage 65 is connected to this. To do.
  • the other end of the communication oil passage 65 is connected to, for example, a negative pressure pump 66 driven by the crankshaft 13, and the operation of the negative pressure pump 66 sucks out oil from the control space TC. What is necessary is just to make it recirculate
  • the coil spring 54 is used as the biasing means for biasing the adjustment ring 53 in the direction in which the volume of the control space TC is reduced.
  • These elastic members can be used.
  • the adjustment ring 53 can be biased by hydraulic pressure or gas pressure.
  • an internal gear pump is used as the oil pump 5, and when changing the pump capacity, the adjustment ring 53 is rotated, and the driven rotor 52 that pumps oil while rotating is also displaced. It will be. In such a configuration, a large force is required to move the adjustment ring 53 and the driven rotor 52, so that the effect of the invention that the rotation of the adjustment ring 53 can be accelerated is particularly effective.
  • the present invention is not limited to this, and the present invention can be applied to various variable displacement oil pumps such as a vane pump and a piston pump in addition to the internal gear pump.
  • the present invention can improve the response and controllability of pump displacement control in a variable displacement oil pump installed in an engine or the like. high.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Abstract

【課題】例えばエンジン1などに装備される可変容量形オイルポンプ5において、ポンプ容量を変更する制御の応答性高める。 【解決手段】オイルポンプ5の容量可変機構は、ハウジング50内に設けられた制御油圧室(例えば制御空間TC)の油圧を受けて変位する容量調整部材(例えば調整リング53)と、当該制御油圧室の容積が小さくなる向きに容量調整部材を付勢する付勢手段(例えばコイルバネ54)と、を備え、例えばOCV60などから制御油圧室に供給される制御油圧によって動作される。少なくとも制御油圧室の容積が小さくなる向きに容量調整部材が動作する際に、負圧によってオイルを吸い出すように当該制御油圧室を負圧源(例えば吸入ポート50d)に連通させる連通油路53fが設けられている。

Description

可変容量形オイルポンプ
 本発明は可変容量形のオイルポンプに関し、特にポンプ容量の制御の応答性を高めるための構造の技術分野に属する。
 従来よりエンジンのオイルポンプとして、例えば特許文献1に開示されているように、互いに噛み合うインナロータ(ドライブロータ)およびアウタロータ(ドリブンロータ)の回転により、吸入ポートから吸い込んだオイルを吐出ポートから吐出する内接ギヤポンプが知られている。
 このものでは、ハウジング内においてアウタロータを外周から回転自在に保持するように調節リングが設けられており、ハウジング内の加圧空間に導入される油圧を受けて調節リングが変位するようになっている。これにより、インナロータおよびアウタロータの吸入ポートおよび吐出ポートに対する相対的な位置が変化し、この位置の変化によって入力軸の1回転あたりの吐出量(いわゆる押しのけ容積)、即ちポンプ容量が変化する。
 また、同文献の段落0072~0078や図面の図8などに開示されているように、加圧空間に連通する加圧油路には電磁バルブが接続されており、この電磁バルブによって加圧空間の油圧を制御することで、ポンプ容量を変更する。すなわち、ポンプ容量を小さくするときには、電磁バルブを加圧位置に切り換えてオイルを加圧空間に送り込み、調節リングを加圧空間の容積が大きくなる向きに変位させる。
 反対にポンプ容量を大きくするときには、電磁バルブをドレン位置に切り換えることによって加圧空間からオイルを排出し、この加圧空間の容積が小さくなる向きに調節リングを変位させる。このときに加圧空間から排出されるオイルは、加圧油路を電磁バルブまで還流した後に、その内部の油路を通ってドレンされる。また、還流したオイルの一部はオイルポンプの吸入側にも送られる。
特開2013-100737号公報
 しかしながら前記従来例の構造では、ポンプ容量を大きくするときに加圧空間から排出されるオイルが、加圧油路を還流した後に電磁バルブを経てドレンされるようになっているので、その流通抵抗が大きくなり易い。特に低温時のようにオイルの粘性が高いときには、流通抵抗がかなり大きくなってしまい、加圧空間から速やかにオイルを排出することが困難になる。この結果、調節リングの動作が遅くなって、ポンプ容量の制御の応答性が低下することになる。
 このような問題点に鑑みて本発明は、例えばエンジンなどに装備される可変容量形のオイルポンプにおいて、容量可変機構の動作によるポンプ容量の制御の応答性を高めることを目的とする。
 前記の目的を達成するために本発明では、ポンプハウジング内の制御油圧室(上述した従来例の加圧空間に相当)の容積が小さくなるように容量可変機構が動作する際に、その制御油圧室から負圧によってオイルの排出を促すように構成した。
 具体的に本発明は、制御油圧室の容積を変更することで、入力軸の1回転あたりの吐出量を変更可能な容量可変機構を備えた可変容量形のオイルポンプを対象とする。そして、前記容量可変機構が、ポンプハウジング内に設けられた前記制御油圧室の油圧を受けて変位する容量調整部材と、当該制御油圧室の容積が小さくなる向きに前記容量調整部材を付勢する付勢手段と、を備え、前記制御油圧室へ供給される制御油圧を受けて動作するように構成されている場合に、前記制御油圧室を負圧源に連通させる連通油路を設けたものである。
 前記のような可変容量形のオイルポンプでは、ポンプハウジング内に収容された容量調整部材の位置が、制御油圧室の油圧による力と付勢手段による付勢力とのバランスで決まり、これによりポンプ容量が調整される。そして、前記制御油圧室が連通油路によって負圧源に連通されていることから、ポンプ容量の変更のために容量調整部材を、制御油圧室の容積が小さくなる向きに変位させるときに、当該制御油圧室から負圧によってオイルが吸い出されることになる。これにより、容量可変機構の変位が速くなり、ポンプ容量の制御の応答性が高くなる。
 その場合に前記連通油路は、前記制御油圧室へ制御油圧を供給するための制御油路とは別に設けることが好ましい。すなわち、前述した従来例のように制御油路には電磁バルブが接続されることがあり、この場合には電磁バルブのレイアウトなどのために、制御油路には或る程度の長さが要求される。このことを考慮して制御油路とは別に連通油路を設けることで、その制御油路への長さの要求に束縛されずに連通油路の長さを短くすることができ、流通抵抗を小さくすることができる。
 また、前記のように制御油圧室から連通油路にオイルを吸い出す負圧の源としては、オイルポンプの動作によって生じる吸い込み側の負圧を利用するのが好ましい。すなわち、前記連通油路を、前記ポンプハウジングに形成された吸入ポート(負圧源)に連通させればよく、こうすれば、構造が簡単になるとともに連通油路を短く形成し易いので、オイルの流通抵抗を小さくする上で有利になる。
 特に好ましいのは、ポンプハウジングの内部に前記吸入ポートに連通する低圧空間が形成され、この低圧空間と前記制御油圧室との間が前記容量調整部材によって仕切られている場合に、この容量調整部材に前記連通油路を形成して、前記低圧空間と制御油圧室とを連通させることである。こうすれば、連通油路の長さを可及的に短縮して、オイルの流通抵抗を極小化することが可能になる。
 なお、連通油路はポンプハウジングに設けてもよいが、この場合にも連通油路の長さを極力、短くするために、前記のように低圧空間と制御油圧室とを仕切っている容量調整部材の近傍に設けることが好ましい。例えば、容量調整部材において前記低圧空間と制御油圧室とを仕切っている部分が摺接するポンプハウジングの壁面に、前記低圧空間から制御油圧室に亘って開口する溝部を形成して、これを連通油路とすればよい。
 ところで、前記オイルポンプとして具体的には、ギヤポンプ、ベーンポンプ、ピストンポンプなど種々の構造が考えられるが、例えば内接ギヤポンプであって、前記入力軸により回転される外歯車のドライブロータと、これに噛み合って回転される内歯車のドリブンロータとを備えていてもよい。
 この場合、前記容量可変機構は、前記容量調整部材として、前記ドリブンロータを外周から回転自在に保持する環状の保持部材を備え、前記制御油圧室に供給される制御油圧を受けて前記保持部材が変位し、前記ポンプハウジングに形成された吸入ポートおよび吐出ポートに対する相対的な位置が変化することによって、吐出量を変更するように構成すればよい。
 このような構造の内接ギヤポンプにおいては、可変容量機構の動作の際に、回転しながらオイルを圧送するドリブンロータおよびその保持部材を動かさなくてはならず、大きな力が必要になる。そこで、前述のように制御油圧室からオイルを吸い出して、保持部材やドリブンロータなどの変位を早めることができる、という作用が特に有効なものとなる。
 ところで、前記負圧源としては、例えば前記入力軸の回転に伴い動作する負圧ポンプを用いることも考えられ、このような負圧ポンプに前記連通油路を接続して、オイルを吸い出すように構成してもよい。
 一方で、前記可変容量機構において制御油圧室の容積が小さくなる向きに容量調整部材を付勢する付勢手段としては、例えばコイルバネ、板バネなどの弾性部材を用いて構成することが好ましい。但し、付勢手段は、油圧やガス圧などによって前記容量調整部材を付勢する構成とすることもできる。
 さらに、前記油圧の制御のための構成としては、前述した従来例と同様に制御油路に電磁バルブを接続し、この電磁バルブによって制御油圧を制御するようにしてもよい。この場合は、制御油路によって制御油圧室に供給するオイルの流量を電磁バルブによって調整し、前記連通油路から吸い出されるオイルの流量よりも少なくすれば、容量調整部材を制御油圧室の容積が小さくなる向きに変位させることができる。
 すなわち、容量調整部材を制御油圧室の容積が大きくなる向きに変位させるときだけでなく、容積が小さくなる向きに変位させるときにも電磁バルブは、オイルを供給する位置とすればよく、前述した従来例のようにオイルを排出する位置に切り換える必要がない。つまり、電磁バルブをオイルの供給位置と排出位置との間で切り換える必要がなくなるので、電磁バルブへ入力する電流値と当該電磁バルブから出力される制御油圧との関係のリニアリティが高くなって、ポンプ容量の制御性も高くなるのである。
 本発明に係る可変容量形オイルポンプでは、少なくとも制御油圧室の容積が小さくなる向きに容量調整部材が変位する際に、当該制御油圧室から連通油路にオイルが吸い出されることで、容量可変機構の動作が速くなるので、ポンプ容量の制御の応答性を高めることができる。また、前記制御油圧室への制御油圧を電磁バルブによって調整する場合に、この電磁バルブをオイルの供給位置と排出位置とに切り換える必要がないので、制御性も高めることができる。
本発明の実施の形態に係るエンジンのオイル供給系の一例を示す全体構成図である。 本発明の実施形態に係るオイルポンプの構造を示す断面図であって、ポンプ容量が最大の状態を示す。 同オイルポンプの容量が最小の状態を示す図2相当図である。 OCVの(a)供給位置と(b)排出位置とを示す説明図である。 OCV電流値と制御油圧との関係の一例を示すグラフ図である。 OCV電流値とエンジン回転数とポンプ吐出圧との関係の一例を示すグラフ図である。 連通油路をハウジングに形成した他の実施形態に係る図2相当図である。 同じく他の実施形態に係る図3相当図である。 負圧源として負圧ポンプを用いた他の実施形態に係る図2相当図である。
 以下、本発明の実施の形態を図面に基づいて説明する。本実施形態では、自動車に搭載されるガソリンエンジン1のオイル供給系2に本発明を適用した場合について説明するが、これに限ることはない。本実施形態の記載はあくまで例示に過ぎず、本発明の構成や用途などについても限定するものではない。
 -エンジンおよびオイル供給系の概略構成-
 まず、図1に仮想線で外形を示すようにエンジン1は、クランクシャフト13の長手方向(以下、前後方向という)に4つのシリンダ(図示せず)が設けられた直列4気筒エンジンである。それぞれのシリンダにはピストン12(図には1つのみ示す)が収容され、コネクティングロッド12aを介してクランクシャフト13に連結されている。クランクシャフト13は、複数のクランクジャーナル13aによってエンジン1の下部(クランクケース)に回転自在に支持されている。
 また、エンジン1の上部には、各シリンダ毎の吸気バルブ12bおよび排気バルブ12cを駆動する動弁系のカムシャフト14,15が配設されている。一例として動弁系は、DOHCタイプのものであり、吸気側および排気側の2本のカムシャフト14,15が、それぞれ複数のカムジャーナル14a,15aによって回転自在に支持されている。
 それら2本のカムシャフト14,15の前端部(図1の左側端部)には、それぞれカムスプロケット14b,15bが取り付けられている一方、クランクシャフト13の前端部にはクランクスプロケット(図示せず)が取り付けられている。そして、クランクスプロケットからカムスプロケット14b,15bに亘ってタイミングチェーン3が巻き掛けられている。
 前記クランクスプロケットの後側に隣接してクランクシャフト13には、オイルポンプ5を駆動するためのスプロケット(図示せず)も取り付けられている。オイルポンプ5はクランクシャフト13の前端部の下方に配設され、その入力軸5aにはポンプスプロケット5bが取り付けられている。そして、そのポンプスプロケット5bとクランクシャフト13のスプロケットとの間にチェーン4が巻き掛けられている。
 かかる構成により、クランクシャフト13の回転がチェーン4などを介して入力軸5aに伝達され、オイルポンプ5が動作するようになっている。このオイルポンプの動作によって、エンジン1の下部のオイルパン16内に貯留されているエンジンオイル(以下、単にオイルともいう)が、図示省略のオイルストレーナを介して吸い上げられ、そして、オイルポンプ5から吐出油路6aに吐出される。
 こうしてオイルポンプ5から吐出されたオイルは、吐出油路6aを流通してオイルフィルタ6に至り、ここで異物や不純物などが濾過された後にオイル供給系2のメインギャラリ20に流入する。メインギャラリ20は、図1の例ではエンジン1の前後方向に延びていて、複数の分岐オイル通路21~23にオイルを分配する。例えば、メインギャラリ20から下方に延びる複数の分岐オイル通路21によって、クランクジャーナル13aにオイルが供給される。また、メインギャラリ20の両端からそれぞれ上方に延びる分岐オイル通路22,23によって、カムジャーナル14a,15aなどにオイルが供給される。
 -オイルポンプの構造-
 以下にオイルポンプ5の構造について、図2および図3を参照して詳細に説明する。これらの各図に示すようにオイルポンプ5は、入力軸5aにより回転される外歯車のドライブロータ51と、これに噛み合って回転される内歯車のドリブンロータ52と、を備えた内接ギヤポンプである。ドリブンロータ52の外周は調整リング53(保持部材)によって保持されており、この調整リング53は、後述するようにドライブロータ51およびドリブンロータ52を変位させることにより、ポンプ容量を変更する容量調整部材として機能する。
 また、オイルポンプ5のハウジング50は、図2,3に示すようにエンジン後方から見ると、上下よりも左右に長い矩形状とされていて、各図における右上の部位から右側に向かう突出部50aと、左下の部位から下方に向かう突出部50bと、がそれぞれ形成されている。また、ハウジング50の概ね全体に亘って、後方(エンジン1の内方であって図の手前側)に向かって開放するように異形の凹部50cが形成されている。
 この凹部50cが、ハウジング50に後方から重ね合わされるカバー(図示せず)によって閉ざされて、前記のドライブロータ51、ドリブンロータ52、調整リング53などを収容する収容凹部50cとなる(以下、収容凹部50cと呼ぶ)。この収容凹部50cの底部の中央付近(図2ではやや右側寄り)には円形断面の貫通孔(図には示さず)が形成され、ここに入力軸5aが挿通されている。
 前述したように入力軸5aの前端部にはポンプスプロケット5bが取り付けられている一方、入力軸5aの後端部には例えばスプライン(図示せず)によってドライブロータ51が取り付けられている。このドライブロータ51には、外周にトロコイド曲線またはトロコイド曲線に近似した曲線(例えばインボリュート、サイクロイドなど)を有する外歯51aが複数(図の例では11個)、形成されている。
 一方、ドリブンロータ52はリング状に形成され、その内周には前記ドライブロータ51の外歯51aと噛み合うような複数の内歯52aが形成されている。この内歯52aの歯数は、ドライブロータ51の外歯51aの歯数よりも1つ多く(図の例では12)なっている。また、ドリブンロータ52の中心はドライブロータ51の中心に対して所定量、偏心しており、その偏心している側(図2の左上側)においてドライブロータ51の外歯51aとドリブンロータ52の内歯52aとが噛み合っている。
 ドリブンロータ52の外周は、調整リング53のリング状の本体部53aによって摺動可能に保持されており、こうして調整リング53に保持されたドライブロータ51およびドリブンロータ52によって、本実施形態では11葉12節のトロコイドポンプが構成されている。すなわち、図2に表れているように2つのロータ51,52の間の環状の空間には、円周方向に並んで複数の作動室Rが形成され、これらの作動室Rが、2つのロータ51,52の回転に連れて円周方向に移動しながら、その容積が増減するようになっている。
 より詳しくは、2つのロータ51,52の歯が互いに噛み合う位置(図2では左上の位置)から、図2に矢印で示すロータ回転方向に約180度に亘る範囲(図2では左下側の範囲)において、2つのロータ51,52の回転に連れて徐々に作動室Rの容積が増大してゆく。一方、残りの約180度に亘る範囲(図2では右上側の範囲)では、ロータ51,52の回転に連れて徐々に作動室Rの容積が減少してゆく。
 そのように2つのロータ51,52の間で徐々に作動室Rの容積が増大してゆく範囲が、吸入ポート50dからオイルを吸入する吸入範囲となり、反対に徐々に作動室Rの容積が減少してゆく範囲が、オイルを加圧しながら吐出ポート50eへ送り出す吐出範囲となる。すなわち、図2,3に破線で示すように、ハウジング50の収容凹部50cの底面には、前記の吸入範囲に対応して吸入ポート50dが開口し、吐出範囲に対応して吐出ポート50eが開口している。
 そうして吸入範囲に対応して開口する吸入ポート50dは、ハウジング50やカバーの内部に形成された油路(図示せず)を介してオイルストレーナの油路に連通されている。なお、図2,3に表れているように吸入ポート50dの一部は、調整リング53の外側においても開口しており、後述する低圧空間TLに連通している。一方、吐出ポート50eは、図2,3に破線で示すようにハウジング50の突出部50aに沿って形成され、吐出油路6aに連通している。
 このように構成されたオイルポンプ5は、クランクシャフト13の回転力を受けて入力軸5aが回転することにより、ドライブロータ51およびドリブンロータ52が互いに噛み合いながら回転し、それらの間に形成される作動室Rに吸入ポート50dからオイルを吸い込んで、吐出ポート50eから吐出する。なお、図2,3にはハウジング50に形成された吸入ポート50dおよび吐出ポート50eを示しているが、同様の構成の吸入ポートや吐出ポートを、ハウジング50に重ね合わされるカバーに形成してもよいし、このカバーおよびハウジング50の両方に形成してもよい。
 -容量可変機構-
 本実施形態のオイルポンプ5は、前記のようにドライブロータ51の1回転毎に吐出されるオイルの量、即ちポンプ容量が変更可能な容量可変機構を備えている。この容量可変機構は、ハウジング50の収容凹部50c内に形成した制御空間TC(制御油圧室)の油圧によって調整リング53を変位させるものである。この調整リング53の変位によって、ドライブロータ51およびドリブンロータ52の吸入ポート50dおよび吐出ポート50eに対する相対的な位置が変化し、ポンプ容量が変更される。
 詳しくは前記調整リング53は、前記のようにドリブンロータ52を保持するリング状の本体部53aと、この本体部53aの外周から外方に張り出す張出部53bと、これよりも大きく外方に延びるアーム部53cとが一体に形成されたものである。そして、アーム部53cに作用するコイルバネ54(弾性部材)の押圧力によって、調整リング53は、入力軸5aの周りを図2の時計回りに回動(変位)するように付勢されている。
 そのような調整リング53の変位の軌跡は、ハウジング50の収容凹部50cの底面に突設されたガイドピン55,56によって規定されている。すなわち、調整リング53の張出部53bには、入力軸5aの軸芯を中心とする円弧状の長穴53d,53eが形成されており、その内部に前記ガイドピン55,56が遊嵌状態で収容されている。これにより、調整リング53は長穴53d,53eの延びる方向に変位して、入力軸5aの周りを公転する。
 また、前記調整リング53のアーム部53cは、ハウジング50の収容凹部50c内に周方向に並んで形成される制御空間TCと低圧空間TLとの間を仕切っている。このアーム部53cの外周には第1のシール材57が配設されて、対向するハウジング50の周壁と摺接しながら、前記調整リング53の変位に伴い移動する。この第1のシール材57によって、制御空間TCと低圧空間TLとの間のオイルの流通が制限されている。
 前記低圧空間TLは、図2においては収容凹部50c内の左側から下側にかけて、調整リング53の本体部53aの外周とハウジング50の周壁とによって囲まれる領域に形成されている。そして、上述したように低圧空間TLに臨んで収容凹部50cの底面に、吸入ポート50dの一部が開口しており、低圧空間TLは吸入ポート50dと連通して、大気圧よりも低い圧力(負圧)になる。
 一方、制御空間TCは、前記調整リング53の張出部53bの外周とハウジング50の周壁とによって囲まれ、かつ、その張出部53bに配設された第2のシール材58と前記第1のシール材57とによってオイルの流れが制限される領域に形成されている。すなわち、前記張出部53bの外周には、対向するハウジング50の周壁と摺接するように第2のシール材58が配設され、調整リング53の変位に伴いハウジング50の周壁に沿って移動するようになっている。
 なお、前記第1および第2のシール材57,58の他に、ハウジング50の周壁と調整リング53との間には第3のシール材59が配設されている。これらのシール材57~59は、いずれも調整リング53の厚み(図2,3の紙面に直交する方向の寸法)と同程度の寸法を有し、耐摩耗性に優れた樹脂材などによって形成されている。
 そして、前記の制御空間TCに臨んで収容凹部50cの底面には、例えば丸穴61aとして制御油路61が開口しており、以下に説明するOCV60から制御油圧を供給するようになっている。この制御油圧によってアーム部53cには、調整リング53を図2,3の反時計回りに回動させるような押圧力が作用し、この押圧力とコイルバネ54の押圧力(付勢力)とがバランスするように、調整リング53の位置が決まることになる。
 そのような制御油圧の調整により、前記のように調整リング53を変位させて、オイルポンプ5の容量を制御することができる。すなわち、制御油圧が小さいときに調整リング53は、コイルバネ54の押圧力によって、図2に示す最大ポンプ容量位置に位置付けられる。制御油圧が大きくなると、これを受けた調整リング53は、コイルバネ54の押圧力に抗して図2,3の反時計回りに回動(変位)する。これによりポンプ容量は小さくなってゆき、最終的には図3に示す最小ポンプ容量位置になる。
 -OCV-
 本実施形態では、前記のように制御油圧を調整するために電磁バルブ60(Oil Control Valve:以下、OCV60という)を用いている。図2,3の他、図4にも示すようにOCV60は、電磁ソレノイド62によってスプール63を駆動するものであり、前記の制御油路61が接続される制御ポート60aを備えている。また、OCV60は、オイルポンプ5の吐出油路6aから分岐する供給油路6bが接続された供給ポート60bと、オイルを排出するための排出ポート60cとを備えている。
 そして、OCV60は、図示しないが、エンジン1のECU(Electronic Control Unit)から電磁ソレノイド62に印加される電流値(OCV電流値)に応じて、スプール63の位置が変化する。これによりOCV60は、供給ポート60bに供給されるオイルを制御ポート60aから送り出す供給位置(図4(a)に示す)と、制御ポート60aに還流してきたオイルを排出ポート60cから排出する排出位置(図4(b)に示す)と、に切り換えられる。
 すなわち、まず、OCV電流値が零であれば、電磁ソレノイド62は電磁力を発生しないので、図4(b)に示すようにコイルバネ64の押圧力によってスプール63が排出位置(図の右端の位置)に付勢され、OCV60の制御ポート60aと排出ポート60cとが連通される。このため、後述するように制御油路61を制御ポート60aまで還流してきたオイルが、図4(b)に矢印で示すようにOCV60内の油路を流通して、排出ポート60cから排出(ドレン)されるようになる。
 また、OCV電流値が大きくなって、電磁ソレノイド62の発生する電磁力が大きくなると、図4(a)に示すようにスプール63が供給位置に切り換えられて、OCV60の制御ポート60aと供給ポート60bとが連通される。こうなると、供給油路6bを介して供給ポート60bに供給されてきたオイルが、図4(a)に矢印で示すようにOCV60内の油路を流通して、制御ポート60aから制御油路61へ送り出されるようになる。
 そして、前記供給位置においてOCV電流値を徐々に大きくしてゆくと、電磁ソレノイド62の発生する電磁力も徐々に大きくなってゆき、これによりスプール63の位置を連続的に変化させることができる。こうすれば、制御ポート60aと供給ポート60bとを連通する油路の断面積が連続的に変化することで、前記のように制御ポート60aから送り出されるオイルの圧力、即ち制御油圧が、OCV電流値に対して比例的に変化するようになる。
 図5には、OCV電流値と制御油圧との相関を実験などによって調べたグラフの一例を示し、このグラフの中央付近に表れているように、OCV電流値IがI2~I3Aの範囲にあるときには、OCV60が供給位置とされ、OCV電流値Iの増大に応じて概ねリニアに制御油圧が増大する。なお、OCV電流値Iが0~I1Aの範囲にあるときにOCV60は排出位置となるが、この排出位置と前記供給位置との間(OCV電流値IがI1~I2Aの範囲)でOCV60は、オイルを供給も排出もしない状態になるので、制御油圧はほぼ一定になっている。
 このようなOCV60によって制御油圧を調整することで、前記のように調整リング53を位置決めして、オイルポンプ5の容量を制御することができる。例えば、OCV60を供給位置として制御油圧を増大させれば、オイルポンプ5の制御空間TCの油圧力により調整リング53を図2,3の反時計回りに回動(変位)させ、ポンプ容量を小さくすることができる。一方、OCV60を供給位置から排出位置に切り換えて、前記の制御空間TCからオイルを排出させれば、調整リング53を図2,3の時計回りに回動させて、ポンプ容量を大きくすることができる。
 -連通油路-
 ところが、前記のようにポンプ容量を増大させるために、OCV60を排出位置に切り換えると、制御空間TCから排出されるオイルが制御油路61を還流した後に、OCV60内の油路を介して排出ポート60cから排出されることになるので、オイルの流通抵抗が大きくなり易い。特にエンジン1の冷間始動後のような低温時には、オイルの粘性が高くなるので流通抵抗はかなり大きくなってしまう。
 このため、オイルポンプ5の制御空間TCから速やかにオイルを排出することが困難になり、制御空間TCの容積が小さくなる向きへの調整リング53の回動が遅くなってしまうことから、ポンプ容量を応答性よく増大させることができない。しかも、そうして供給位置から排出位置に切り換える途中で、図5を参照して上述したようにOCV60は、オイルを供給も排出もしない状態になり、OCV電流値と制御油圧との相関が大きく変化してしまう。
 すなわち、図5のグラフに表れているように、OCV電流値IがI2~I3Aの範囲にあるときには、OCV電流値Iの変化に応じて概ねリニアに制御油圧が変化するが、I1~I2Aの範囲ではOCV電流値Iが変化しても制御油圧は概ね一定になる。このようにOCV電流値と制御油圧との相関においてリニアリティが損なわれることから、OCV60による制御油圧の制御性、ひいてはポンプ容量の制御性が悪化すると考えられる。
 これに対し本実施形態では、前記の図2,3に示すように、オイルポンプ5のハウジング50内において低圧空間TLと制御空間TCとを連通する連通油路53fを設けて、低圧空間TLの負圧によって制御空間TCのオイルを吸い出すようにしている。言い換えると、負圧によってオイルを吸い出すように制御空間TCを、低圧空間TLを介して吸入ポート50d(負圧源)に連通させる連通油路53fを設けている。
 具体的に本実施形態の連通油路53fは、低圧空間TLと制御空間TCとを仕切る調整リング53のアーム部53cに、ドリルなどによって穿孔したものである。連通油路53fの一端は低圧空間TLに臨んで開口し、この開口から図2,3の右斜め上方に向かって延びた連通油路53fの他端は、制御空間TCに臨んで開口している。よって、低圧空間TLの負圧が連通油路53fを介して制御空間TCにまで作用し、この制御空間TCからオイルが吸い出されるようになる。
 すなわち、連通油路53fは、ポンプ容量を大きくするために、調整リング53を図2,3の時計回りに(制御空間TCの容積が小さくなる向きに)変位させるときに、当該制御空間TCから負圧によってオイルを吸い出すものである。本実施形態では、連通油路53fを調整リング53のアーム部53cに形成して、低圧空間TLと制御空間TCとを連通させているので、この連通油路53fの長さを可及的に短くすることができ、オイルの流通抵抗を小さくすることができる。
 このような連通油路53fを設けたことで、前記のようにポンプ容量を大きくするために、調整リング53を、制御空間TCの容積が小さくなる向きに回動(変位)させるとき、この制御空間TCから速やかにオイルを排出することができる。これにより調整リング53の回動が速くなり、ポンプ容量を応答性よく増大させることができる。
 一方で、ポンプ容量を小さくするために調整リング53を図2,3の反時計回りに回動させるときにも、制御油路61を介してOCV60から供給されるオイルの一部は、連通油路53fに吸い出されて低圧空間TLへリークすることになる。断面積が大きいほど、連通油路53fにおけるオイルの流量は多くなり易いので、ポンプ容量を大きくするときの応答性が高くなる一方で、ポンプ容量を小さくするときの応答性は低下する。
 また、調整リング53の位置を保持する場合にも、前記のように連通油路53fを流通して低圧空間TLへリークする分、OCV60から余分にオイルを供給しなくてはならない。このようなメリット、デメリットを勘案して本実施形態では、連通油路53fの直径を実験・シミュレーション等によって適合しており、一例として連通油路53fの直径は1~2mmくらいとされている。
 -実施形態のオイルポンプの動作-
 以上、説明したように本実施形態に係る可変容量形のオイルポンプ5は、ハウジング50の収容凹部50c内に形成した制御空間TCの油圧力によって調整リング53を変位させ、ポンプ容量を変更することができる。これにより、エンジン1の運転状態が変化し、その回転数、即ちオイルポンプ5の入力軸5aの回転数が変化しても、オイルポンプ5の吐出圧(ポンプ吐出圧)、ひいてはオイル供給系2のメインギャラリ20の油圧を好適な状態に維持することができる。
 具体的に図6には、ECUの制御によるOCV電流値の大小と、エンジン回転数と、ポンプ吐出圧との関係の一例を示す。この図からは、OCV電流値を大きくし、ポンプ容量を小さくすることによって、エンジン回転数が高くなってもポンプ吐出圧を小さくできることが分かる。一方、OCV電流値を小さくし、ポンプ容量を大きくすることによって、ポンプ吐出圧は大きくすることができ、エンジン回転数が或る程度以上、高ければオイルポンプ5の吐出圧を任意の値に制御できることが分かる。
 そして、そのようにポンプ容量を変更するとき、例えばポンプ容量を小さくするときには、OCV電流値を大きくすることにより、OCV60から制御空間TCへのオイルの供給量を増やして、この制御空間TCの容積が大きくなる向き(図2,3の反時計回り)に調節リング53を回動させる。反対にポンプ容量を大きくするときには、OCV電流値を小さくすることにより、制御空間TCへのオイルの供給量を減少させる。
 そのオイルの供給量が、連通油路53fから低圧空間TLへのオイルのリーク量よりも少なくなれば、制御空間TCの容積が小さくなる向き(図2,3の時計回り)に調節リング53が回動し、これに連れてポンプ容量が増大してゆく。このとき、低圧空間TLの負圧によって制御空間TCのオイルが連通油路53fに吸い出されることによって、調節リング53の回動が速くなるので、ポンプ容量の制御の応答性が高くなる。
 また、そうしてポンプ容量を大きくするときにも、ポンプ容量を小さくするときと同じくOCV60は供給位置とすればよく、排出位置に切り換える必要がない。すなわち、OCV電流値を図5のグラフにおけるI2~I3Aの範囲で変更するだけで、ポンプ容量の制御を行えるので、OCV電流値と制御油圧とのリニアリティが高くなる。これにより、ポンプ容量の制御性も高くなる。
 (他の実施形態)
 以上、説明した実施形態は、自動車用の直列4気筒ガソリンエンジン1のオイルポンプ5として、本発明を適用した場合について説明したが、これに限らず本発明は、自動車以外に搭載されるエンジンのオイルポンプとしても適用可能である。勿論、気筒数やエンジンの形式(V型や水平対向型等)にも何ら限定されず、また、ディーゼルエンジンやガスエンジンのオイルポンプとしても適用可能であるし、トランスミッションのオイルポンプとしても適用可能である。
 また、前記の実施形態では、ハウジング50内の制御空間TCと低圧空間TLとを連通させる連通油路53fを、調整リング53のアーム部53cに1つだけ形成しているが、これにも限定されず、連通油路をアーム部53cに2つ以上、形成してもよい。連通油路53fはドリルによって穿孔するのではなく、調整リング53の成形時に一体成形することも可能であり、この場合には連通油路53fの途中にオリフィスを嵌め込んで、オイルの流路の断面積を調整するようにしてもよい。
 また、調整リング53のアーム部53c以外、例えばハウジング50(収容凹部50cの底部や周壁など)に連通油路を形成してもよい。この場合に好ましいのは、図7および図8に一例を示すように、調整リング53の変位に伴いアーム部53cの摺接する収容凹部50cの底面に溝部50fを形成し、これを連通油路とすることである。
 詳しくは前記の溝部50fは、低圧空間TLから制御空間TCに亘って形成され、その長手方向の一方の端部(図7,8の上方の端部)は、図7に示すように調整リング53が最大ポンプ容量位置にあるときにも、制御空間TCに臨んで開口している。また、溝部50fの長手方向の他方の端部(図7,8の下方の端部)は、図8のように調整リング53が最小ポンプ容量位置にあるときにも、低圧空間TLに臨んで開口している。
 このように連通油路を構成する溝部50fは、ハウジング50の成形時に一体成形することができる。また、溝部50fの幅は、長手方向で変化させるようにしてもよく、例えば前記一方の端(図7,8の上方の端)側において、他端側よりも幅の広い形状としたり、反対に他端側よりも幅の狭い形状としてもよい。
 また、前記の実施形態では、連通油路53fによって制御空間TCに導く負圧の源として、オイルポンプ5の吸い込み側に生じる負圧を利用しており、これにより、構造が簡単になるとともに、連通油路53fを短く形成し易いというメリットがある。但し、これにも限定されず、例えば、エンジン1の運転に伴い動作する負圧ポンプを用いることも考えられる。
 例えば図9に示すように、ハウジング50の収容凹部50cの底面には、制御空間TCに臨んで丸穴61aの隣に開口する丸穴65aを形成し、ここに連通油路65の一端を接続する。そして、この連通油路65の他端は、例えばクランクシャフト13によって駆動される負圧ポンプ66に接続し、この負圧ポンプ66の動作によって制御空間TCからオイルを吸い出して、オイルパン16内のオイル溜まりに還流させるようにすればよい。
 さらに、前記の実施形態のオイルポンプ5では、調整リング53を制御空間TCの容積が小さくなる向きに付勢する付勢手段として、コイルバネ54を用いているが、これに代えて板バネなど種々の弾性部材を用いることができる。また、油圧やガス圧などによって、調整リング53を付勢するような構成とすることもできる。
 さらにまた、前記の実施形態ではオイルポンプ5として内接式ギヤポンプを用いており、ポンプ容量を変更するときには、調整リング53を回動させるとともに、回転しながらオイルを圧送するドリブンロータ52も変位させることになる。このような構成では、調整リング53やドリブンロータ52を動かすために大きな力が必要になるので、調整リング53の回動を早めることができるという発明の作用が特に有効なものとなる。但し、これにも限定されず本発明は、内接式ギヤポンプ以外にもベーンポンプやピストンポンプ等、種々の可変容量形オイルポンプに適用可能である。
 本発明は、エンジンなどに装備される可変容量形オイルポンプにおいて、ポンプ容量の制御の応答性や制御性を高めることができるので、運転状態の変化が大きな自動車のエンジンなどに適用して効果が高い。
 1    エンジン
 5    オイルポンプ
 5a   入力軸
 50   ハウジング(ポンプハウジング)
 50c  収容凹部
 50d  吸入ポート(負圧源)
 50e  吐出ポート
 50f  溝部(連通油路)
 51   ドライブロータ
 52   ドリブンロータ
 53   調整リング(保持部材、容量調整部材:容量可変機構)
 53c  アーム部
 53f,65  連通油路
 54   コイルバネ(弾性部材、付勢手段:容量可変機構)
 60   OCV(電磁バルブ)
 61   制御油路
 66   負圧ポンプ
 TC   制御空間(制御油圧室:容量可変機構)
 TL   低圧空間

Claims (7)

  1.  制御油圧室の容積を変更することで、入力軸の1回転あたりの吐出量を変更可能な容量可変機構を備えた可変容量形のオイルポンプであって、
     前記容量可変機構は、ポンプハウジング内に設けられた前記制御油圧室の油圧を受けて変位する容量調整部材と、当該制御油圧室の容積が小さくなる向きに前記容量調整部材を付勢する付勢手段と、を備え、前記制御油圧室へ供給される制御油圧を受けて動作するように構成されており、
     前記制御油圧室を負圧源に連通させる連通油路が設けられていることを特徴とする可変容量形オイルポンプ。
  2.  請求項1に記載の可変容量形オイルポンプにおいて、
     前記連通油路が、前記制御油圧室へオイルを供給するための制御油路とは別に設けられている、可変容量形オイルポンプ。
  3.  請求項1または2のいずれかに記載の可変容量形オイルポンプにおいて、
     前記負圧源は、前記ポンプハウジングに形成された吸入ポートであり、
     前記連通油路は、前記制御油圧室を前記吸入ポートに連通させるように設けられている、可変容量形オイルポンプ。
  4.  請求項3に記載の可変容量形オイルポンプにおいて、
     前記ポンプハウジングの内部には前記吸入ポートに連通する低圧空間が形成され、この低圧空間と前記制御油圧室との間が前記容量調整部材によって仕切られていて、
     前記連通油路は、前記低圧空間と制御油圧室とを連通させるように、前記容量調整部材および前記ポンプハウジングの少なくとも一方に形成されている、可変容量形オイルポンプ。
  5.  請求項1~4のいずれか1つに記載の可変容量形オイルポンプにおいて、
     前記入力軸により回転される外歯車のドライブロータと、これに噛み合って回転される内歯車のドリブンロータとを備え、
     前記容量可変機構は、
     前記容量調整部材として、前記ドリブンロータを外周から回転自在に保持する環状の保持部材を備え、
     前記制御油圧室に供給される制御油圧を受けて前記保持部材が変位し、前記ポンプハウジングに形成された吸入ポートおよび吐出ポートに対する相対的な位置が変化することによって、吐出量を変更するように構成されている、可変容量形オイルポンプ。
  6.  請求項1または2のいずれかに記載の可変容量形オイルポンプにおいて、
     前記負圧源は、前記入力軸の回転に伴い動作する負圧ポンプであり、
     前記連通油路は、前記制御油圧室を前記負圧ポンプに接続するように設けられている、可変容量形オイルポンプ。
  7.  請求項1~6のいずれか1つに記載の可変容量形オイルポンプにおいて、
     前記付勢手段が弾性部材によって構成され、
     前記制御油圧室に供給する制御油圧の大きさを調整可能な電磁バルブが設けられている、可変容量形オイルポンプ。
PCT/JP2015/050794 2014-01-27 2015-01-14 可変容量形オイルポンプ WO2015111482A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-012351 2014-01-27
JP2014012351A JP2015140670A (ja) 2014-01-27 2014-01-27 可変容量形オイルポンプ

Publications (1)

Publication Number Publication Date
WO2015111482A1 true WO2015111482A1 (ja) 2015-07-30

Family

ID=53681289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050794 WO2015111482A1 (ja) 2014-01-27 2015-01-14 可変容量形オイルポンプ

Country Status (2)

Country Link
JP (1) JP2015140670A (ja)
WO (1) WO2015111482A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6485305B2 (ja) * 2015-09-24 2019-03-20 アイシン精機株式会社 可変オイルポンプ
JP6437941B2 (ja) 2016-02-19 2018-12-12 トヨタ自動車株式会社 可変容量オイルポンプ
JP7169437B2 (ja) 2019-04-15 2022-11-10 日立Astemo株式会社 エンジンのケース部材

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000170666A (ja) * 1998-12-08 2000-06-20 Showa Corp 可変容量型ポンプ
JP2003097454A (ja) * 2001-09-26 2003-04-03 Hitachi Unisia Automotive Ltd ベーンポンプ
US20080187446A1 (en) * 2007-02-06 2008-08-07 Staley David R Pressure regulating variable displacement vane pump
JP2010502894A (ja) * 2006-09-08 2010-01-28 ボーグワーナー・インコーポレーテッド 可変容量形油圧ポンプ用の2段階圧力調整システム
JP2010209811A (ja) * 2009-03-11 2010-09-24 Hitachi Automotive Systems Ltd 可変容量オイルポンプ
JP2012529589A (ja) * 2009-06-12 2012-11-22 マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング 潤滑油ポンプシステム
WO2013038221A1 (en) * 2011-09-16 2013-03-21 Melling Do Brasil Componentes Automotivos Ltda. Single chamber variable displacement vane pump

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101978167B (zh) * 2008-08-01 2014-02-26 爱信精机株式会社 油泵

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000170666A (ja) * 1998-12-08 2000-06-20 Showa Corp 可変容量型ポンプ
JP2003097454A (ja) * 2001-09-26 2003-04-03 Hitachi Unisia Automotive Ltd ベーンポンプ
JP2010502894A (ja) * 2006-09-08 2010-01-28 ボーグワーナー・インコーポレーテッド 可変容量形油圧ポンプ用の2段階圧力調整システム
US20080187446A1 (en) * 2007-02-06 2008-08-07 Staley David R Pressure regulating variable displacement vane pump
JP2010209811A (ja) * 2009-03-11 2010-09-24 Hitachi Automotive Systems Ltd 可変容量オイルポンプ
JP2012529589A (ja) * 2009-06-12 2012-11-22 マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング 潤滑油ポンプシステム
WO2013038221A1 (en) * 2011-09-16 2013-03-21 Melling Do Brasil Componentes Automotivos Ltda. Single chamber variable displacement vane pump

Also Published As

Publication number Publication date
JP2015140670A (ja) 2015-08-03

Similar Documents

Publication Publication Date Title
JP5960616B2 (ja) 可変容量形オイルポンプ
JP5876061B2 (ja) 中間位置ロックを備えたカムトルク駆動型位相器
US5797361A (en) Variable valve timing mechanism for internal combustion engine
JP5182326B2 (ja) 流量制御弁
US8695548B2 (en) Valve timing control apparatus
WO2015111482A1 (ja) 可変容量形オイルポンプ
JP6217240B2 (ja) 制御弁及び制御弁の取付構造
JP2006105154A (ja) 内燃機関ガス交換弁の開閉時期を変更するための装置
JP2016011594A (ja) 油圧調整装置
JP2017025919A (ja) 内燃機関におけるシリンダ弁タイミングを変更するためのシステム
JP2016130467A (ja) バルブタイミング調整装置
JP2015135058A (ja) 油圧制御弁
CN1500973A (zh) 减少中心设置有滑阀的叶片式活塞同步器旋转振动的方法
JP5842531B2 (ja) 油圧制御装置
GB2323636A (en) Compound gear pump and engine hydraulic circuits therewith
EP2050934B1 (en) Oil flow control valve for a cam phaser
JP5034869B2 (ja) 可変バルブタイミング装置
JP6369253B2 (ja) 弁開閉時期制御装置
EP2067945A1 (en) Valve timing control apparatus
JP2016156286A (ja) 可変容量型オイルポンプ
JP5282850B2 (ja) 内燃機関の可変動弁装置
JP2012122455A (ja) バルブタイミング調整装置
JP2015203385A (ja) 車両用油圧制御装置
JP6270684B2 (ja) 油圧制御装置
JP7184467B2 (ja) フィルタの配置構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15740532

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15740532

Country of ref document: EP

Kind code of ref document: A1