WO2006028285A1 - 顔料結晶製造段階における中間化学物質、それを用いた顔料結晶製造方法、顔料結晶体 - Google Patents

顔料結晶製造段階における中間化学物質、それを用いた顔料結晶製造方法、顔料結晶体 Download PDF

Info

Publication number
WO2006028285A1
WO2006028285A1 PCT/JP2005/017004 JP2005017004W WO2006028285A1 WO 2006028285 A1 WO2006028285 A1 WO 2006028285A1 JP 2005017004 W JP2005017004 W JP 2005017004W WO 2006028285 A1 WO2006028285 A1 WO 2006028285A1
Authority
WO
WIPO (PCT)
Prior art keywords
pigment
crystal
precursor
displacement structure
converting
Prior art date
Application number
PCT/JP2005/017004
Other languages
English (en)
French (fr)
Inventor
Takayuki Ishikawa
Akira Nagashima
Minako Kawabe
Sadayuki Sugama
Original Assignee
Canon Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Kabushiki Kaisha filed Critical Canon Kabushiki Kaisha
Priority to EP05783693A priority Critical patent/EP1792950A1/en
Priority to JP2006535187A priority patent/JPWO2006028285A1/ja
Priority to US11/367,456 priority patent/US20060152570A1/en
Publication of WO2006028285A1 publication Critical patent/WO2006028285A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/322Pigment inks

Definitions

  • the present invention relates to a novel pigment crystal production method and a pigment crystal obtained by the method.
  • dyes have been used as color materials for ink jet recording liquids (inks) that require high definition.
  • An ink using a dye can give an image having characteristics such as high transparency, high definition, and excellent color rendering properties, but may have a problem that the fastness of the image such as light resistance and water resistance is inferior.
  • pigment inks using an organic pigment or bonbon black as a coloring material instead of a dye have been manufactured. In this way, from the viewpoint of enhancing the fastness of the image, the color materials used in the ink are shifting from dyes to pigments.
  • Patent Document 2 a phase change ink using a polymerization reaction compound that undergoes a thermally reversible Diels-Alder reaction as a viscosity temperature control material for ink jet ink carrier.
  • the reaction is a reversible reaction, cooling with a reduced solubility induces a cyclization reaction and increases the solubility.
  • Patent Document 3 there are proposals for the control of polarities (solubility, aggregation) using light and thermoreversible compounds such as photochromic compounds, decomposition reactions of allylic methane-based compounds by ultraviolet light and heat.
  • the polar part is a system that decomposes radical ion cleavage, it is possible to form an irreversible state, but because the by-product is extremely unstable, oxidation degradation reaction Will be triggered.
  • the photochromic reaction is a reversible reaction with respect to visible light, ultraviolet light, and heat, it is difficult to maintain a certain state.
  • Patent Document 4 Furthermore, there is a proposal for improving the fastness of the obtained recorded image by causing a Diels-Alder reaction when the ink is applied on the recording material (Patent Document 4). . In addition, the yellowing phenomenon caused by the reverse Diels-Alder reaction caused by the components in the recording medium It has been proposed to prevent the recording medium by containing a strong dienophile as a component that causes a reaction (Patent Document 5).
  • Some pigments have the same chemical formula, composition, and structure but take two or more pigment crystal types, which are called polymorphs. Examples include phthalocyanine blue, ⁇ -type, 8-type, ⁇ -type, etc., which have different absorption coefficients and refractive indices, and therefore have different hue and hiding power.
  • Organic pigments are not only used in the paint field as color materials, but also in the electronics field, for example, charge generators for electrophotographic photoreceptors, dyes for recording media such as CD-R and DVD-R, toners, It is used in various applications such as ink jet pudding ink colorants, color filter dyes for liquid crystal display elements, and luminescent materials for organic EL devices.
  • organic pigments are used as charge generation materials for electrophotographic photoreceptors, but in recent years, they absorb highly sensitively to near-infrared light, which is the oscillation wavelength of semiconductor laser light and LED light.
  • the pigments shown are highly sought after.
  • Phthalocyanines have been widely studied as organic pigments that meet this requirement. Phthalocyanines are not only different in absorption spectrum and photoconductivity depending on the type of central metal, but also have different physical properties depending on the pigment crystal type. Even with the same central metal phthalocyanine, there are specific pigment crystal types.
  • metal-free phthalocyanine As for metal-free phthalocyanine, it has been reported that the X-type pigment crystal type has high photoconductivity and is sensitive to near-infrared light of 800 nm or more. In mouth cyanine, among many pigment crystal types, the ⁇ type is reported to be most sensitive to long wavelengths. However, X-type metal-free phthalocyanine is a metastable pigment crystal type, and its production is difficult, and it is difficult to obtain a stable quality product. On the other hand, ⁇ -type copper phthalocyanine has a longer spectral sensitivity than ⁇ -type and ⁇ -type copper phthalocyanine, but at 800 nm, it has fallen sharply compared to 780 nm. It is difficult to use for semiconductor lasers with varying oscillation wavelengths. For copper phthalocyanine, ⁇ ,
  • Non-Patent Document 1 It is known that there are large differences in chargeability, dark decay, sensitivity, etc. due to differences in pigment crystal types such as ⁇ and ⁇ types (for example, Non-Patent Document 1). It has also been reported that the spectral sensitivity changes due to different absorption spectra (for example, Non-Patent Document 2).
  • Patent Document 6 As a method for controlling (or miniaturizing) the crystal form of the organic pigment, in addition to the method of controlling at the synthesis stage, for example, the so-called sulfuric acid method such as the acid baseting method and the acid slurry method (Patent Document 6). ); Method of once dissolving or amorphizing by a pulverization method such as sorbene milling method, dry milling method, salt milling method, etc., and then converting to a desired crystal form (Non-patent Document 3), under heating conditions, organic In general, a method in which a pigment is heated and dissolved in a solvent and then slowly cooled to crystallize (Patent Document 7). As a method for controlling the crystal type in an organic thin film, a method for controlling a sublimation temperature to obtain a desired crystal type (Patent Document 8) is common. Patent Document 1: Japanese Patent Laid-Open No. 2003-327588
  • Patent Document 2 Japanese Patent Laid-Open No. 11-349877
  • Patent Document 3 JP-A-10-31275
  • Patent Document 4 Japanese Patent Laid-Open No. 7-61 1 17
  • Patent Document 5 Japanese Patent Application Laid-Open No. 64-26444
  • Patent Document 7 Japanese Unexamined Patent Publication No. 2003-160738
  • Patent Document 8 Japanese Patent Laid-Open No. 2003-003084-Patent Document 9: Japanese Patent Laid-Open No. 2004-262807
  • Non-Patent Document 1 Dye and Chemicals, Vol. 24, No. 6, p 1 22 (1984)
  • Non-Patent Document 2 Journal of Electrophotographic Society Vol. 22, No. 2, pill (1 984)
  • Non-Patent Document 3 Coloring Materials Association and others, “The 41st Introductory Course on Pigments (1 99 '
  • the object of the present invention is to obtain a pigment crystal (preferably a crystal that can be suitably used in both a solid phase and a liquid phase), which has an extremely high purity, a crystal type, and a particle size.
  • Another object of the present invention is to provide a production method capable of producing a pigment crystal having a desired stable composition with stable aggregation and dispersibility, and an intermediate chemical substance as an intermediate for achieving the production method.
  • the present inventors directly used a facial precursor having a polycyclic structure (preferably using a reverse Diels-Alder reaction).
  • a facial precursor having a polycyclic structure preferably using a reverse Diels-Alder reaction.
  • a detailed examination is made on the conditions for external energy application, the formation of the pigment and the pigment crystal state at that time. It was to be.
  • the pigment precursor (S Q ) in the initial stage structure is converted into the pigment crystal (s 3 ) in the final stage structure
  • the pigment precursor (S Q) ) And pigment crystals (S 3) are different in structure, and the existence of two different types of intermediate chemical substances, the first displacement structure (S and the second displacement structure (S 2 )), which are different in structure from each other.
  • the pigment precursor (S.) has a polycyclic structure
  • the polycyclic structure is changed and the portion having the first structure is entirely present.
  • the first displacement structure (recognized as S, and the state where the second structure that is developed next to the first structure different from the first structure exists as a whole is recognized as the second displacement structure (S 2 ).
  • the intermediate region between them that is, the region with a part of the pigment precursor (So) and most of the first displacement structure (S) is also recognized.
  • the majority have a first displacement structure (part S is second displacement structure (S 2), the majority having a second displacement structure (S 2) a portion of a polycyclic structure to form a stable ring state
  • the region that is the pigment crystal (S 3 ) is also recognized.
  • the two types of displacement structures S, (S 2 ) [the intermediate region is also considered in the present invention]
  • the pigment crystallization reaction condition (external energy ⁇ application condition) for obtaining It is specified and used as an intermediate in the pigment crystallization reaction when the pigment precursor (So), which is the structure immediately before the formation of the crystal, is converted into the pigment crystal (S 3 ), which is the final stage structure.
  • pigment crystals with a desired uniform composition with extremely high purity and controlled desired crystal type, particle size, cohesiveness, and dispersibility, both in the solid phase and in the liquid phase, which could not be achieved by conventional methods.
  • the present invention has been completed by establishing a pigment crystal production method capable of producing a body, and the above object is achieved by the present invention described below.
  • Pigment crystals (S 3 ) are obtained by converting the molecular structure of the pigment precursor (SQ). An intermediate chemical used in a pigment crystal manufacturing method to obtain
  • the intermediate chemistry characterized by having a first displacement structure (S or second displacement structure (S 2 )) different from the pigment precursor (S.) and the pigment crystal (S 3 ). It is a substance.
  • [2] The intermediate chemical substance according to [1], wherein the molecular structure conversion is caused by a reverse Diels-Alder reaction.
  • Another embodiment of the present invention is [3] that occurs during conversion to obtain pigment crystals (S 3 ) by converting the molecular structure of the pigment precursor (S.), and the pigment precursor (S.) and the pigment
  • An intermediate chemical substance 'manufacturing method characterized in that the manufacturing conditions of:
  • the pigment precursor (S 0 ) is generated during the conversion to obtain a pigment crystal (S 3 ) by converting the molecular structure, and is different from the pigment precursor (S 0 ) and the pigment crystal (S 3 ).
  • a method for producing an intermediate chemical substance having a two-displacement structure (S 2 ), wherein production conditions for obtaining the second displacement structure (S 2 ) as an intermediate chemical substance are imparted to the pigment precursor (S 0 ) A method for producing an intermediate chemical substance.
  • [5] The method for producing an intermediate according to [3] or [4], wherein the molecular structure conversion is caused by a reverse Diels-Alder reaction.
  • Another embodiment of the present invention is a pigment crystal production method described below for obtaining a pigment crystal (S 3 ) by converting the molecular structure of the pigment precursor (S.).
  • a method for producing a pigment crystal characterized in that an intermediate chemical substance having a first displacement structure (S is different from the pigment precursor (S and the pigment crystal (S 3 )).
  • the pigment crystal production method includes 1) a step of converting the pigment precursor (S Q ) into the first displacement structure, and 2) the first displacement structure (S as the second displacement structure (S 2 )). And 3) the step of converting the second displacement structure (S 2 ) into the pigment crystal (S 3 ).
  • a method for producing a pigment crystal is a method for producing a pigment crystal.
  • the method for producing a pigment crystal continuously comprises: 1) a step of maintaining the step of converting the pigment precursor (S Q ) into the first displacement structure (2); and 2) the first displacement structure ( A step of maintaining a step of converting S ⁇ into the second displacement structure (S 2 ) for a predetermined time; and 3) a step of converting the second displacement structure (S 2 ) into the pigment crystal (S 3 ).
  • a method for producing a pigment crystal comprising the step of holding for a time.
  • [10] The method for producing pigment crystals according to any one of [6] to [9], wherein the molecular structure conversion is caused by a reverse Diels-Alder reaction.
  • R 4 are each independently a hydrogen atom or directly or indirectly bonded.
  • R 5 to R 8 each represents a hydrogen atom or a directly or indirectly bonded substituent.
  • Another embodiment of the present invention is [13] a pigment crystal obtained by the pigment crystal manufacturing method according to any one of [6] to [12] above.
  • Another embodiment of the present invention is: [14] The ink jet recording rule according to [13], wherein the pigment crystal is used as a coloring material for ink for ink jet recording.
  • an intermediate chemical substance used in a method for producing a pigment crystal (S 3 ) from a pigment precursor (So), the pigment precursor (s.) And the pigment crystal (S 3 ).
  • An intermediate chemical substance is provided which is characterized by a first displacement structure (S and second displacement structure (S 2 )) different from the first displacement structure.
  • the production process using the intermediate chemical substance in the pigment crystallization process can be suitably used in both the solid phase and the liquid phase, and has a very high purity and the desired crystal form, particle size, and cohesiveness.
  • a method for producing a pigment crystal that is stable in dispersibility and capable of producing a pigment crystal having a desired composition is provided.
  • FIG. 1 is an image diagram illustrating the reverse Diels-Alder reaction of the present invention.
  • FIG. 2 is an image diagram illustrating the reverse Diels-Alder reaction of the present invention.
  • FIG. 3 is a conceptual diagram illustrating the Diels-Alder reaction.
  • FIG. 4 is a scheme showing a method for synthesizing the thioindigo pigment precursor used in the present invention.
  • FIG. 5 shows the CuRD X-ray XRD spectrum and the simulation result (tric Iin ic P-1) of the thioindigo pigment precursor used in the examples.
  • FIG. 6 shows XRD spectra and simulation results (P SiZc) of CuKa characteristic X-rays of pigment crystals obtained by heat-treating the thioindigo pigment precursor used in the examples for 2005 for 5 minutes.
  • Fig. 7 shows the XRD spectrum and the simulation results ( ⁇ , ⁇ ) of CuK characteristic X-rays of commercially available thioindigo pigment crystals.
  • Figure 8 shows the analysis results of the organic pigment pigment crystal formation process using the reverse Diels-Alder reaction by DSC-XRD.
  • FIG. 9 is a scheme showing a method for synthesizing the quinacridone pigment precursor used in the present invention.
  • FIG. 10 is a schematic diagram of an energy profile when continuously manufacturing while maintaining the manufacturing conditions for obtaining each displacement structure in the pigment crystal manufacturing method of the present invention for a predetermined time.
  • the molecular structure conversion of the present invention refers to a compound in which the molecular structure of the compound changes when the compound is given energy (stir mixing, thermal energy, light energy, a combination thereof, etc.) from the outside.
  • An organic compound having a solvent-soluble group dissolves the solvent-soluble group when energy is applied. It may be replaced with an organic compound that does not have a solvent-soluble group, or may be converted into a single stable ring structure by partial atom elimination.
  • Specific examples include reverse Diels-Alder reaction, BOC group protection (butoxycarbonyl group), which is a protection reaction of amino groups, and so-called latent reaction utilizing deprotection.
  • a 1-Lus-Alder reaction is preferably used.
  • the reverse Diels-Alder reaction of the present invention is a reverse reaction of Diels-Alda reaction, but a Diels-Alder reaction system between a general Gen compound and a dienophile compound, that is, Unlike the equilibrium reaction (reversible reaction) between the exothermic reaction (Diels-Alder reaction) and endothermic reaction (reverse Diels-Alder reaction), the polycyclic fused ring structure eliminates a part of the structure, A reaction that forms a fragrant ring. This is preferable as the molecular structure conversion of the present invention. For example, as shown in FIG. 1 and FIG.
  • the condensed ring structure part in a compound (pigment precursor compound) having a condensed ring structure part of a bicyclo [2,2,2] octane skeleton, the condensed ring structure part Is removed as an ethylene compound to construct an aromatic ring (irreversible).
  • the reverse Diels-Alder reaction of the present invention means that the ethylene compound is released in a concerted reaction to construct an aromatic ring.
  • a concerted reaction is a reaction that does not form a reactive intermediate such as an ion species or ⁇ radical species, and the elimination reaction of an ethylenic compound is only the constituent element in the molecule of the pigment precursor compound. Use to complete. Therefore, in the process of elimination of the ethylene compound from the pigment precursor compound, impurities in the reaction system and impurities accompanying side reactions are not generated, and an aromatic ring can be constructed quantitatively in both the solid phase and the liquid phase. This is a feature. Based on the above characteristics, an extremely high-purity organic pigment crystal (single crystal) is obtained by detaching the ethylene compound from the pigment precursor compound and further crystallizing the pigment. Can be synthesized. .
  • the elimination site specifically represents R i to R 4 , which represents a solubility-imparting group that is directly or indirectly bound to the elimination moiety
  • R 5 to R 8 Represents a hydrogen atom or a substituent that is not limited to the solubility-imparting group.
  • R i to R 4 are bonded to the leaving moiety and are substituents that are eliminated together with the leaving moiety
  • R 5 to R 8 are constructed by elimination of the leaving moiety.
  • R i to R 4 include a hydrogen atom or a polar substituent for imparting solubility to a hydrophilic medium composed of water and a water-soluble organic solvent. Examples include alcohol groups, alkylene oxide groups, carboxyl groups, nitrogen-containing amino groups, and sulfur-containing sulfone groups.
  • examples include alkyl groups, aryl groups, alkoxy groups, mercapto groups, ester groups, and halogen atoms. Furthermore, it is possible to form a ring each other as necessary, such as R i and R 3 , R 2 and R 4.
  • the elimination part having a solvent solubility-imparting group is eliminated by a reverse Diels-Alder reaction, and as a result, the compound is converted into a compound (solvent insoluble compound) in which a pi-conjugated system is constructed.
  • the association property and pigment crystallinity of the compound (solvent insoluble compound) obtained as a result of the reverse Diels-Alder reaction can be changed to those having the desired characteristics.
  • the part (elimination part) released from the compound by the reverse Diels-Alder reaction of the present invention extremely stable and highly safe and reversible so as to adversely affect the system. It is also possible to construct a reaction that does not cause an adverse reaction or a secondary reaction.
  • the structural site causing the reverse Diels-Alder reaction of the present invention can be constructed using the Diels-Alder reaction as shown in FIG. This is because, unlike the general reverse Diels-Alder reaction, it is an irreversible reaction as shown in FIGS. 1 and 2, and therefore does not inhibit the effects of the present invention.
  • the pigment precursor (s.) And the pigment crystal (s 3 ) are different and at least different from each other.
  • a second displacement structure (S 2) and the structural displacement process illustrated a chemical to the first displacement structure (S!) or the second displacement structure (S 2) der wherein Rukoto It is a substance.
  • the pigment first displacement structure precursor (S 0) to the external energy E i ⁇ E 2 were obtained more to be applied, polycyclic structures had a pigment precursor (S 0)
  • the structure loses its structure due to external energy, and the first displacement structure (transitions to S (referred to as the first stage).
  • the first displacement structure transitions to S (referred to as the first stage).
  • the molecular structure becomes an amorphous state that does not have structural peaks.
  • this first displacement structure (S!) Is clearly the amorphous structure of the pigment precursor. Yes. This can also be confirmed from the fact that the XRD peak is not observed.
  • This first displacement structure changes to the second displacement structure (S 2 ) by being given external energy E 3 to E 4 that is larger than E 2 .
  • the compound can be held in the second displacement structure (S 2 ).
  • this second displacement structure (S 2 ) has changed to a longer period pigment crystal structure than the thioindigo pigment crystal. .
  • the second displacement structure has an amorphous state and part of it is crystallized, it is easy to crystallize, disperse, separate, etc. at the molecular level both in the solid phase and in the liquid phase. It is thought that there is an effect to make.
  • this pigment crystal (S 3 ) was a single crystal of the crystal type P2 1 Zc.
  • the pigment crystal (S.) is used as an intermediate for the pigment crystallization. until S 3), shows at least different first displacement structure (Si) and the second displacement structure (S 2) with different from the pigment precursor (S.) and the pigment crystals (S 3)
  • the first displacement structure Chemicals exists, characterized in that the (S i) or the second displacement structure (S 2).
  • the number of structural displacements is, for example, 2 for the thioindigo pigment precursor, but it may be other than 2 depending on the type of the pigment precursor.
  • there are two types of displacement structures in the case of thioindigo pigment precursors but it may be other than two types depending on the type of pigment precursor.
  • the generation of a displacement structure from the pigment precursor (S 0 ) to the pigment crystal (S 3 ) is grasped and given for the generation. It is possible to provide a production method capable of producing a pigment crystal having a desired uniform composition by controlling external energy, and a chemical substance as an intermediate for achieving the production method.
  • the pigment precursor (s.) Used in the pigment crystal production method of the present invention is a precursor that is converted into a constituent molecule of the pigment. It is.
  • the pigment crystal (s 3 ) any pigment crystal can be used as long as it can synthesize the desired pigment precursor (S o).
  • pigment crystals to be produced in the present invention include, for example, metal-free phthalocyanine series, various metal phthalocyanine series, azo series, quinacridone series, indigo series, perylene series, polycyclic quinone series, benzimidazole series, pyrrolo Preferred examples include pyrrole-based organic pigments.
  • the pigment crystal production method according to the present invention comprises a pigment precursor (S
  • the phase used in the production process may be pigment crystallization in the solid phase or pigment crystallization in the liquid phase.
  • the pigment precursor (s.), The first displacement structure (Si), and the second displacement structure (S 2 ) dissolved in the solvent are applied to the substrate by the usual coating technology, precision printing technology, inkjet recording method, etc.
  • the pigment crystals (S 3 ) in the final stage and the pigment crystals having a desired uniform composition may be produced from the thin films of the respective structures by applying them to a circuit pattern and drying them.
  • each displacement structure (51 1 2 ) and pigment crystal (S 3 ) It is possible to select the temperature and conversion method to convert to. Accordingly, the production conditions may be determined in consideration of the heat resistance of the desired pigment crystals.
  • the means for proceeding the molecular structure conversion is not limited to heating, but by devising the structure of the portion that is desorbed from the pigment precursor compound by the reaction, it is possible to irradiate with ultraviolet rays, visible rays, electromagnetic waves, etc.
  • the molecular structure can be changed by other means.
  • the target pigment crystal must avoid a thermal history in the production process, it is effective to use the conversion means by irradiation with ultraviolet rays as described above.
  • the crystal form of the final pigment crystal (s 3 ) is determined by the pigment crystal structure of the pigment precursor (Si), the intermolecular interaction, and the like. Therefore, it can be considered that the pigment precursor. (S can be converted into the desired single pigment crystal type pigment crystal (s 3 ) by the molecular design of s.
  • the pigment precursor (S 0 ) of the present invention is produced at the time of conversion to obtain a pigment crystal (S 3 ) by converting the molecular structure, and is different from the pigment precursor (S 0 ) and the pigment crystal (S 3 ).
  • the intermediate chemical manufacturing method depends on the type of intermediate chemical to be manufactured.
  • the pigment precursor (S 0 ) is distinguished from the one having a step of converting into the second displacement structure (S 2 ).
  • These intermediates are external energy to reach the first displacement structure (Si) from the pigment precursor (S 0 ) or external to reach the second displacement structure (S 2 ) from the pigment precursor (So).
  • Each displacement structure can be manufactured quantitatively by applying energy.
  • the adjacent displacement structures here, the pigment precursor (S 0 ) and the first displacement structure (Si), and the first displacement structure (S and the second displacement structure (S 2 ))
  • It can be produced at any ratio in the intermediate chemical production method.
  • the crystal manufacturing method is
  • a first displacement structure (a method for producing the pigment crystal (s 3 ) from s;
  • the second displacement structure (S 2 ) is distinguished from the method for producing the pigment crystal (S 3 ).
  • These pigment crystals (S 3) is external energy or the optimum because the first displacement structure pigment crystals (S 3), the second displacement structure (S 2) from the pigment crystals (S 3) to reach for external of By applying energy, each pigment crystal (S 3 ) can be produced quantitatively.
  • the adjacent structures here, the second displacement structure (S 2 ) and the pigment crystal (S 3 )
  • the method for producing a pigment crystal of the present invention comprises a molecular structure conversion from a pigment precursor (S.).
  • the first displacement structure (S is converted into the pigment crystal (S 3 ), and the second displacement structure (S 2 ) is converted into the pigment crystal (S 3 ). Furthermore, the manufacturing conditions are independently combined, and 1) the pigment precursor (S.) is converted into the first displacement structure (step S), and 2) the first displacement structure is converted into the first displacement structure.
  • the process starts with the pigment precursor (S 0 ) and starts with the first displacement structure (energy E 1 that becomes S for a certain period of time. 1) Completely generate the displacement structure, and then give the energy E 2 that becomes the second displacement structure (S 2 ) for a certain period of time to completely generate the second displacement structure (S 2 ).
  • the pigment crystal (S 3 ) Is given for a certain period of time to completely produce pigment crystals (S 3 ).
  • This energy E 3 is energy that produces pigment crystals (S 3 ) and energy to increase purity. But there is.
  • the molecular structure conversion reaction used for pigment crystal production is performed with very high selectivity compared to the conventional pigment crystal transition method.
  • Reaction analysis using an XRD (X-ray diffractometer), etc., and reaction control associated therewith can be performed very accurately.
  • a thioindigo pigment pigment precursor compound used in carrying out the production method according to the present invention was synthesized.
  • the following abbreviations are used in the following.
  • [1] [2] First, dry— DMF (2 ml) under the condition that sodium hydride (NaH, 0.06 2 g, 2.6 Ommo 1) was placed in a 50 ml eggplant flask and the atmosphere was replaced with nitrogen. After that, a product cooled in a water bath was prepared. Separately, put [1] (0. 20 Q g, 0.62 mmo 1) into a 25 ml pear-shaped flask and add dry-DMF under the condition of nitrogen substitution, and thioglycolic acid ( 0.090 ml, 1.3 Ommo 1) The tube was gently dropped into the 50 ml 1 eggplant-shaped flask prepared earlier and stirred for 1 hour.
  • sodium hydride NaH, 0.06 2 g, 2.6 Ommo 1
  • the powder X-ray diffractometer RI NT-U 1 tima IX-ray diffraction differential scanning calorimetry simultaneous measurement device manufactured by Rigaku Corporation, trade name: XRD—DSC II) CuKa characteristic X-ray (wavelength 1.541 A), pigment precursor (S, first displacement structure (S,), second displacement structure
  • Fig. 8 and Table 2 show the results of analyzing the pigment crystal state of (S 2 ) and pigment crystal (S 3 ). Table 2: Conversion status in each area
  • the first precursor structure of the pigment precursor (S.) (the first stage of structural displacement that migrates to s), the thioindigo pigment precursor has an amorphous structure with no structural peaks.
  • the second displacement structure (S 2 ) five peaks are generated as preparation stages for crystallization. From the XRD measurement results, the number of peaks is less than 7 in the precursor (S.) and 8 in the pigment crystal (S 3 ). It can be understood that.
  • the pigment precursor (S.) which is the first stage before the start of the reverse Diels-Alder reaction, is 142.7 or less.
  • the second displacement structure (S 2), is 165. 6 range of 14 8.5 Furthermore, it can be seen that the pigment crystal (S 3 ) is formed at 165.7 or higher.
  • the intermediate production method of the present invention by obtaining the first displacement structure (S,) from the pigment precursor (S 0 ), the production conditions are controlled in the range of 142.8 to 148.4.
  • the first displacement structure (S,) with a uniform composition was obtained.
  • the second displacement structure (S 2 ) from the pigment precursor (S.) the second displacement structure of uniform composition can be obtained by controlling the production conditions in the range of 148.5 to 165.6. (S 2 ) was obtained.
  • the first displacement structure (S,) and the second displacement structure (S 2 ) obtained in the production of the intermediate have a uniform composition of pigment crystals (S 3 ) by controlling the production conditions at 165.7 or more, respectively. I was able to get.
  • a quinacridone pigment precursor compound used in carrying out the production method according to the present invention was synthesized.
  • the second displacement structure (S 2 ) of Example 1 was dispersed with a styrene monoacrylic acid copolymer-based dispersant obtained by dispersing a thioindigo pigment crystal prepared under the pigment crystallization condition of pigment crystal (S 3 ).
  • An ink having a pigment concentration of 3.5% was prepared using a body and a solvent containing water, glycerin, and ethylene glycol. The resulting ink was tested for color development.
  • the ink prepared above was packed in an ink cartridge for PI XUS 950 i manufactured by Canon Inc., and an image was formed using PI XUS 950 i which is an ink jet type image forming apparatus.
  • the media used is PR-1 100 manufactured by Canon Inc.
  • the formed image was visually observed and the color vividness was judged. As a result, an image was formed in a desired pigment crystal state that was not mixed except for pigment crystals (S 3 ) of uniform composition. An unprecedented high color development image with uniform color development was obtained.
  • a thioindigo pigment crystal produced from the first displacement structure (Si) of Example 1 under the pigment crystallization condition of the pigment crystal (s 3 ) was dispersed with a styrene-acrylic acid copolymer based dispersant. Then, the obtained dispersion was mixed in an equal amount, and an ink having a pigment concentration of 3.5% was prepared using the dispersion and a solvent containing water, glycerin, and ethylene glycol. The resulting ink was tested for color development. (Color development)
  • the ink prepared above was packed in an ink cartridge for PI XUS 950 i manufactured by Canon Inc., and an image was formed using PI XUS 950 i which is an ink jet type image forming apparatus.
  • the media used is PR-10 1 manufactured by Canon Inc.
  • the formed image was visually observed and the color vividness was judged. As a result, an image was formed in a desired pigment crystal state that was not mixed except for pigment crystals (S 3 ) of uniform composition. An unprecedented high color development image with uniform color development was obtained.
  • the quinacridone pigment precursor compound synthesized in Example 2 was analyzed in the same manner as in Example 1.
  • the pigment crystallization process up to the pigment crystal (S 3 ) of the obtained quinacridone pigment precursor (S 0 ) Quinacridone pigment crystals (S 3 ) were produced by sequential processes including production. Disperse the obtained quinacridone pigment crystals with a styrene-acrylic acid copolymer dispersing agent, and use the obtained dispersion and a solvent containing water, glycerin, and ethylene glycol to give an ink having a pigment concentration of 3.5%. The prepared ink was tested for color development.
  • the ink created above was packed in a ink cartridge for PI XUS 950 1 manufactured by Canon Inc., and an image was formed using PI XU S 950 i, an ink jet type image forming apparatus.
  • the media used is PR-1101 manufactured by Canon Inc.
  • the formed image was visually observed and judged for color vividness. As a result, an image is formed in a desired pigment crystal state that is not mixed except for pigment crystals (S 3 ) of uniform composition.
  • An unprecedented high color development image in which both dyeability and color development were compatible was obtained.
  • the quinacridone pigment precursor compound synthesized in Example 2 was analyzed in the same manner as in Example 1, and the pigment crystallization process up to the pigment crystal (S 3 ) of the obtained quinacridone pigment precursor (S 0 ) Quinacridone pigment crystals (S 3 ) were produced while maintaining the production conditions for a certain period of time.
  • the obtained quinacridone pigment crystals were dispersed with a styrene-acrylic acid copolymer dispersant. Then, an equal amount of each of the obtained dispersions was mixed, and an ink having a pigment concentration of 3.5% was prepared using the dispersion and a solvent containing water, glycerin, and ethylene glycol. The ink obtained was tested for color development.
  • the ink prepared as described above was packed in an ink force cartridge for PIXUS 9500i manufactured by Canon Inc., and an image was formed using PIXUS 9500i, an Inge Jet type image forming apparatus.
  • the media used is PR 1 1 0 1 manufactured by Canon Inc.
  • the formed image was visually observed and judged for color clarity. As a result, an image is formed in a state where the pigment crystal and the amorphous material are mixed appropriately. An unprecedented high color-development image that is compatible with each other was obtained.
  • the desired crystal type, particle diameter, cohesiveness, and dispersibility of the controlled crystal can be obtained with extremely high purity, which was not possible with the conventional method. Therefore, it is possible to provide pigment crystals that realize various functional characteristics desired in various applications. As a result, the range of use of pigment crystals can be expanded.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Ink Jet (AREA)

Abstract

固体相中と液体相中の両方において好適に使用できる顔料結晶体を得るのに必要な極めて高純度で且つ、結晶型、粒子径、凝集性、分散性が制御された、顔料結晶を作り出すことのできる製造方法を提供すること。顔料前駆体(S0)から逆ディールス−アルダー反応を利用して顔料結晶(S3)を得るために、前記顔料前駆体(S0)から前記顔料結晶(S3)までの間に、前記顔料前駆体(S0)及び前記顔料結晶(S3)とは異なると共に少なくとも互いに異なる第1変位構造(S1)と第2変位構造(S2)とを経由する顔料結晶製造方法

Description

明細書 顔料結晶製造段階における中間化学物質、 それを用いた顔料結晶製造方法、 顔料結晶体 技術分野
本発明は、新規な顔料結晶製造方法、該方法によって得られた顔料結晶体 に関する。 背景技術
これまで、 高精細度を要求されるインクジエツト用記録液(インク) の色 材には染料が用いられてきた。染料を用いたインクは、高透明度、高精細度、 優れた演色性等の特徴を有する画像を与えることができるが、耐光性や耐水 性等の画像の堅牢性に劣るという問題を有する場合が多い。近年、 この画像 の耐光性や耐水性等の問題を解決するために、染料に代えて、有機顔料や力 一ボンブラックを色材として用いた顔料インクが製造されている。このよう に、 画像の堅牢性を高める観点から、 インクに使用される色材は、 染料から 顔料へとシフ卜してきている。
ところで、所定の溶媒に対する親溶媒性の基を有する構造の染料とするこ とによって、該溶媒に可溶であり、逆ディールス一アルダー反応によって該 親溶媒性の基が脱離し、該溶媒に対する溶解度が不可逆的に低下可能な染料、 及びかかる染料を用いたインクが提案されている (特許文献 1 )。 この色材 は、 逆ディールス—アルダー反応させると、 溶媒に不溶解状態 (即ち、 顔料 状態である) にすることができ、 画像の堅牢性が良好になる。 なおここにお いて、 溶媒に溶解した化合物 (即ち、 染料状態) を被記録材に付与し、 該被. 記録材上で上記の反応を生じせしめるためには、 加熱や、 光、 電磁波及び放 射線の照射等の外的エネルギーが与えられている。
又、金属化合物を含有じた被記録媒体に逆ディ一ルス一アルダー反応する 化合物(染料)を付与して、前記逆ディールス -アルダー反応する化合物(染 料)を逆ディールス一アルダー反応させて、顔料化させる提案が成されてい る。 (特許文献 9参照) しかしながら、 得られた顔料は、 被記録媒体上で、 溶媒に対して不溶化した顔料に変換されているが、色ムラが多い記録画像に なってしまう。 この記録画像を X線回折装置等の各種観察装置を用いて調 ベたところ、 不均一な顔料化状態や、 混晶状態、 及び凝集状態に成っている ことがわかり、 良好な記録画像を得るためには、顔料を単結晶化する必要が ある
又、熱的可逆性のディールス一アルダー反応する重合化反応化合物を、ィ ンクジェットインク ·キヤリァの粘度温度制御材として用いた相変化ィンク についての提案がされている (特許文献 2 )。 この発明では、 反応が可逆反 応であるため、 溶解性が減少した状態で冷却すると、 環化反応が誘発され、 溶解性が増加してしまう。
又、 卜リアリルメタン系の化合物の紫外線、 熱による分解反応や、 フォト クロミック化合物のような光、 熱可逆性化合物を使用した極性(溶解性、 凝 集性) の制御についての提案がされている (特許文献 3 )。 しかしながら、 該極性部は、 ラジカルイオン開裂的に分解する系であるため、非可逆的な状 態を形成することは可能であるが、副生成物が極めて不安定であるため、酸 化劣化反応を誘発してしまう。 又、 フォトクロミック反応は、 可視、 紫外線 及び熱に対し可逆反応であるため、 ある一定状態を維持することが難しい。 更に、 インクが、 被記録材上に付与された時に、 ディールス一アルダー反 応を生じさせることで、得られた記録画像の堅牢性を良好にすることについ ての提案がある (特許文献 4 )。 又、 被記録媒体中の構成成分による逆ディ 一ルス一アルダー反応に起因して生じる黄変現象を、ディ一ルス一アルダー 反応を生じさせる成分として被記録媒体に強力なジエノフィルを含有させ ることで防止することが提案されている (特許文献 5 )。
顔料には、化学式や組成、構造が同じでも 2以上の顔料結晶型をとるもの があり、 多形と呼ばれる。 例として挙げると、 フタロシアニンブルーの、 α 型、 8型、 ε型等があり、 これらは、 吸収係数や屈折率が異なるので、 色相 や隠蔽力が異なっている。有機顔料は、色材として塗料分野で使用されるば かりでな エレクトロニクス分野においても、 例えば、 電子写真感光体の 電荷発生剤、 C D— R、 D V D— R等の被記録媒体用色素、 トナーやインク ジェットプリン夕用インクの着色剤、液晶表示素子用カラ一フィルター色素、 有機 E Lデバイス用発光材等の様々な用途に用いられる。 ここで、有機顔料 を上記用途に使用するためには、 先ず、.高純度であること、 特定の吸収特性 を持つこと、 が必要である。 吸収特性は、 顔料の化学構造、 粒径、 顔料結晶 型、純度等により支配されているが、特に有機顔料は同一化学構造であって も、幾つもの顔料結晶型を持つものが多く存在するため、それらを制御しな がら、且つ、 いかに高純度に製造していくかが新たな有機顔料を開発する上 での重要なポイントとなる。
例えば、電子写真感光体の電荷発生材料としては様々な有機顔料が使用さ れているが、近年、半導体レーザ一光や L E D光の発振波長である近赤外光 に対し、 高感度な吸収を示す顔料が強く求められている。 この要求を満たす 有機顔料として、 フタロシアニン類が広く研究されている。 フタロシアニン 類は、中心金属の種類により吸収スぺクトルや光導電性が異なるだけでなく、 顔料結晶型によってもこれらの物性には差があり、同じ中心金属のフタロシ ァニンでも特定の顔料結晶型が電子写真感光体用に選択されている例が幾 つか報告されている。
無金属フタロシアニンでは X型の顔料結晶型が高い光導電性で、且つ、 8 0 0 n m以上の近赤外光に対しても感度が有るとの報告があり、又、銅フタ 口シァニンでは、 多くの顔料結晶型のうちで、 ε型が最も長波長に感度を有 していると報告されている。 しかし、 X型無金属フタロシアニンは準安定型 顔料結晶型であって、 その製造が困難であり、 又、 安定した品質のものが得 にくいという欠点がある。 一方で、 ε型銅フタロシアニンは、 α型や β型の 銅フタロシアニンに比べれば分光感度は長波長に伸びているが、 8 0 0 n m では 7 8 0 n mに比較し、急激に低下しており、発振波長に変動のある半導 体レーザー用には使いにくい性能となっている。銅フタロシアニンでは、 α
6、 γ、 ε型等の顔料結晶型の違いにより、 帯電性、 暗減衰、 感度等に大きな 差があることが知られており (例えば、 非特許文献 1 )、 又、 顔料結晶型に より吸収スぺクトルが異なることより、分光感度も変化することも報告され ている (例えば、 非特許文献 2 )。
この様に、顔料結晶型による電気特性の違いは、無金属フタロシアニンや 他の多くの金属フタロシアニンに関してよく知られており、電気特性の良好 な顔料結晶型をいかに作るか、という点に多くの努力がなされている。更に、 多くの顔料は、水の中で合成或いは後処理されていて、 ここで大きさや形を 調整した一次粒子がつくられるが、その後の工程、特に乾燥工程で粒子同士 が凝集して二次粒子を形成してしまうため、これらの凝集した粒子を微細化 することが分散工程においては必要である。
これまで、 有機顔料の結晶型を制御 (又は微細化) する方法としては、 合 成段階で制御する方法の他、 例えば、 ァシッドベースティング法、 ァシッド スラリー法等のいわゆる硫酸法 (特許文献 6 ) ; ソルベン卜ミリング法、 ド ライミリング法、ソルトミリング法等の粉砕法により一旦溶解或いは非晶質 化した後、 所望の結晶型に転換させる方法 (非特許文献 3 )、 加熱条件下、 有機顔料を溶媒に加熱溶解した後、徐冷却し結晶化させる方法 (特許文献 7 ) が一般的である。 又、 有機薄膜において、 結晶型を制御する方法では、 昇華 温度を制御して所望の結晶型を得る方法 (特許文献 8 ) が一般的である。 特許文献 1 :特開 2003— 327588号公報
特許文献 2 :特開平 1 1一 349877号公報
特許文献 3 :特開平 1 0— 3 1275号公報
特許文献 4 :特開平 7— 61 1 1 7号公報
特許文献 5 :特開昭 64—26444号公報
許文献 6 :特開平 5— 72773号公報 '
特許文献 7 :特開 2003— 160738号公報
特許文献 8 :特開 2003— 003084号公報 - 特許文献 9 :特開 2004— 262807号公報
非特許文献 1 :染料と薬品、 第 24巻 6号、 p 1 22 (1984) 非特許文献 2:電子写真学会誌第 22巻、第 2号、 p i l l (1 984) 非特許文献 3 :色材協会他、 「第 41回顔料入門講座テキスト (1 99 '
9)J 発明の開示
しかしながら、一般的に知られている上記の方法は顔料前駆体から顔料結 晶体を得るためのエネルギーを与える工程のみで従来は顔料化を行ってい る。 ここで得られる顔料は結晶型、 粒子径、 凝集性、 分散性等のばらつきを 持っており、所望のレベルを満足するものが安定してできないものであった。 従って、 本発明の目的は、 顔料結晶体(好ましくは固体相中と液体相中の 両方において好適に使用できる結晶体)を得るのに必要な、極めて高純度で、 且つ、 結晶型、 粒子径、 凝集性、 分散性が安定しており、 所望の安定した組 成の顔料結晶を作り出すことのできる製造方法、及びそれを達成するための 中間体としての中間化学物質を提供することにある。
本発明者らは、 前記した従来技術の課題に対して、多環構造部を有する顔 料前駆体から (好ましくは逆ディ一ルス一アルダー反応を用いる)、 直接的 に前記多環構造部が安定した環状体を形成している顔料結晶までを製造す る際に、外的エネルギー付与の条件とその時点で顔料の生成と顔料結晶状態 についての詳細な検討をすることにした。その結果、初期段階構造である顔 料前駆体 (SQ) が最終段階構造である顔料結晶 (s3) へと変換していく 際、その過程に顔料結晶構造上において顔料前駆体(SQ)及び顔料結晶(S 3) とは構造が異なり、 また、 お互いにも構造の異なる第 1変位構造 (S と第 2変位構造 (S2) という 2種類の異なる構造の中間化学物質の存在を 見出した。 具体的には、 顔料前駆体 (S。) が多環構造体を有する場合にそ の多環構造体が変化し第 1の構造を持つ部分が全体的に存在している状態 を第 1変位構造 (S と認識し、 ぞの次に展開し第 1の構造とは異なる第 2の構造を全体的に存在している状態を第 2変位構造 (S2) と認識した。 無論、 それぞれの間にある中間領域すなわち、 顔料前駆体 (So) を一部有 し大半が第 1変位構造 (S である領域も認識し,第 1変位構造 (S を 一部有し大半が第 2変位構造 (S2)、 第 2変位構造 (S2) を一部有し大半 が多環構造体が安定した環状態を形成している顔料結晶 (S3) である領域 も認識した。
そして、 この 2種類の変位構造 (S 、 (S2) [上記中間領域も本発明で は考慮される]、 およびを得るための顔料結晶化反応条件 (外的エネルギー Λ付与条件) を厳密に規定し、結晶を形成する前の直前の構造である顔料前駆 体 (So) が最終段階構造である顔料結晶 (S3) へと変換していく際の顔 料結晶化反応に中間体として用いることにより従来の方法ではできなかつ た、固体相中と液体相中の両方において極めて高純度で且つ、所望する結晶 型、 粒子径、 凝集性、 分散性が制御された所望の均一組成の顔料結晶体を作 り出すことが可能な顔料結晶製造方法を確立し、本発明の完成に至った。即 ち、 上記の目的は、 下記の各本発明によって達成される。
本発明は、 [ 1] 顔料前駆体 (SQ) の分子構造変換して顔料結晶 (S3) を得る顔料結晶製造方法に用いられる中間化学物質であって、
該中間化学物質が前記顔料前駆体 (S。) 及び前記顔料結晶 (S3) とは異 なる、 第 1変位構造 (S 又は第 2変位構造 (S2) を有することを特徵と する中間化学物質である。
本発明のより好ましい形態として [2]該分子構造変換が逆ディールス一 アルダー反応によって生じることを特徴とする [ 1 ]に記載の中間化学物質。 本発明の別の実施形態は [3] 顔料前駆体 (S。) を分子構造変換して顔 料結晶 (S3) を得る変換時に生じ、 且つ 記顔料前駆体 (S。) 及び前記顔 料結晶 (S3) とは異なる第 1変位構造 (S^ を有する中間化学物質を製造 する方法であって、 前記顔料前駆体 (S。) に第 1変位構造 (S を中間 化学物質として得るための製造条件を付与することを特徴とする中間化学 物質'製造方法。
[4] 顔料前駆体 (S0) を分子構造変換して顔料結晶 (S3) を得る変換時 に生じ、 且つ前記顔料前駆体 (S0) 及び前記顔料結晶 (S3) とは異なる第 2変位構造 (S2) を有する中間化学物質を製造する方法であって、 前記顔 料前駆体 (S0) に第 2変位構造 (S2) を中間化学物質として得るための 製造条件を付与することを特徴とする中間化学物質製造方法。
本発明のより好ましい形態として [5]該分子構造変換が逆ディ一ルス— アルダー反応によって生じるでことを特徴とする [3] または [4] に記載 の中間体製造方法。
本発明の別の実施形態は、 顔料前駆体 (S。) を分子構造変換して顔料結 晶 (S3) を得るための、 下記に挙げる顔料結晶製造方法である。
[6] 前記顔料前駆体 (S 及び前記顔料結晶 (S3) とは異なる第.1変 位構造 (S を有する中間化学物質を用いることを特徴とする顔料結晶製 造方法。
[7] 前記顔料前駆体 (S0) 及び前記顔料結晶 (S3) とは異なる第 2変 位構造 (S2) を有する中間化学物質を用いることを特徴とする顔料結晶製 造方法。
[8] 該顔料結晶製造方法が 1) 前記顔料前駆体 (SQ) を前記第 1変位 構造 に変換する工程と、 2) 前記第 1変位構造 (S を前記第 2 変位構造 (S2) に変換する工程と、 3) 前記第 2変位構造 (S2) を前記 顔料結晶 (S3) に変換する工程とを単独に行う
ことを特徴とする顔料結晶製造方法。
[9] 該顔料結晶製造方法が連続して、 1) 記顔料前駆体 (SQ) を前記 第 1変位構造 ( に変換する工程を所定時間保持する工程と、 2) 前記 第 1変位構造 (S^ を前記第 2変位構造 (S2) に変換する工程を所定時 間保持する工程と、 3) 前記第 2変位構造 (S2) を前記顔料結晶 (S3) に 変換する工程を所定時間保持する工程とを、有することを特徴とする顔料結 晶製造方法。
本発明のより好ましい形態として [10]該分子構造変換が逆ディールス —アルダー反応によって生じることを特徴とする [6] 乃至 [9] の何れか 1項に記載の顔料結晶製造方法。
[1 1] 顔料前駆体 (S0) が下記一般式 A、 B、 C、 Dで表される構造か ら選択される少なくとも 1つの構造を有することを特徴とする上記 [10] に記載の顔料結晶製造方法。
A B C D
Figure imgf000009_0001
(Ri~R4は、 それぞれ独立に、 水素原子、 又は直接的或いは間接的に結合 された溶媒可溶性を与える可溶性付与基を表し、 R5〜R8は、 水素原子、 又 は直接的或いは間接的に結合された置換基を表す。)
[12] 前記顔料結晶 (S3) が単結晶である上記 [6] 乃至 [1 1] の 何れか 1項に記載の顔料結晶製造方法。
本発明の別の実施形態は、 [13] 上記 [6] 乃至 [12] の何れか 1項 に記載の顔料結晶製造方法で得られたことを特徴とする顔料結晶体である。 本発明の別の実施形態は、 [14] 前記顔料結晶体が、 インクジェット記 録用インク用色材として用いられることを特徴とする [13]に記載のイン クジェット記録方律。
[15] 上記 [13] に記載の顔料結晶体によって形成された記録画像。 本発明により、 顔料前駆体 (So) から顔料結晶 (s3) を得る顔料結晶製 造方法に用いられる中間化学物質であって、 前記顔料前駆体 (s。) 及び前 記顔料結晶 (S3) とは異なる第 1変位構造 (S と第 2変位構造 (S2) であることを特徴とする中間化学物質が提供される。
さらに、顔料結晶化工程において前記中間化学物質を用いた製造プロセ スにより、固体相中と液体相中の両方において好適に使用できる、極めて高 純度で且つ、 所望する結晶型、 粒子径、 凝集性、 分散性が安定しており、 所 望の組成の顔料結晶を作り出すことのできる顔料結晶製造方法が提供され る。 図面の簡単な説明
図 1は、本発明の逆ディ一ルス一アルダー反応を説明するイメージ図であ る。
図 2は、本発明の逆ディールス一アルダー反応を説明するイメージ図であ る。
図 3は、 ディ一ルス一アルダー反応を説明するイメージ図である。 図 4は、本発明で使用するチオインジゴ顔料顔料前駆体の合成方法を示す スキームである。
図 5は、 実施例で使用したチォインジゴ顔料顔料前駆体の、 CuKa特 性 X線による XRDスぺクトル、及びシミュレーション結果( t r i c I i n i c P— 1 ) である。
図 6は、実施例で使用したチオインジゴ顔料顔料前駆体を 200 5分間 熱処理した顔料結晶の、 CuKa特性 X線による XRDスぺクトル及びシ ミュレーシヨン結果 (P SiZc) である。
図 7は、 市販のチォインジゴ顔料結晶の、 CuKひ特性 X線による XR Dスペクトル及びシミュレーション結果 (ΡΖ,Ζη) である。
図 8は、 DSC— XRDによる、逆ディールス—アルダー反応を用いた有 機顔料顔料結晶生成プロセス解析結果である。
図 9は、本発明で使用するキナクリドン顔料顔料前駆体の合成方法を示す スキームである。
図 10は、本発明の顔料結晶製造方法で各変位構造を得るための製造条件 を所定時間保持しながら連続で製造するときのエネルギープロファイルの 模式図である。 発明を実施するための最良の形態
以下に、発明を実施するための最良の形態を挙げて、本発明について更に 詳細に説明する。
[分子構造変換]
ここで、 本発明の分子構造変換とは、 化合物が外部からエネルギー (攪拌 混合、 熱エネルギー、 光エネルギー、 これらの組み合わせ等) を付与させる と、 該化合物の分子構造が変わるものを指し、 例えば、 溶媒可溶性基を有す る有機化合物が、 エネルギーの付与により、 溶媒可溶性基を脱離させて、 溶 媒可溶性基を有さない有機化合物に替わることや、 部分原子脱離によって、 多環構造部が安定した一つの環構造に変換することでも良い。 具体的には、 逆ディールス一アルダー反応、 ァミノ基の保護反応である B O C基保護(ブ トキシォキシカルポニル基)と脱保護を利用したいわゆるラテント反応が挙 げられるが、この中でも後述する逆ディ一ルス一アルダー反応が好適に用い られる。
[逆ディ一ルス一アルダー反応]
ここで、本発明の逆ディールス一アルダー反応とは、 ディ一ルス一アルダ 一反応の逆反応の事であるが、一般的なジェン化合物とジエノフィル化合物 間でのディ一ルス—アルダー反応系、すなわち発熱反応(ディールス—アル ダー反応) と、 吸熱反応 (逆ディールス—アルダー反応) との平衡反応 (可 逆性反応) とは異なり、 多環縮合環構造が、 該構造中の一部分を脱離し、 芳 香環を形成する反応を言う。 これは、本発明の分子構造変換として好ましい ものである。 例えば、 図 1、 及び図 2に示した様に、 ビシクロ [ 2, 2, 2 ] ォク夕ジェン骨格の縮合環構造部を有する化合物(顔料前駆体化合物) にお いて、該縮合環構造部の架橋部分をエチレン化合物として脱離させ、芳香環 (不可逆性) を構築するものである。
また、本発明の逆ディールス一アルダー反応は、上記エチレン化合物が協 奏反応的に脱離し、芳香環を構築することを意味している。協奏反応とはィ オン種 · ^ラジカル種のような反応性中間体を形成することのない反応のこ とであり、ェチレン化合物の脱離反応は顔料前駆体化合物の分子内の構成元 素のみを用いて完結する。故に、顔料前駆体化合物からエチレン化合物脱離 の過程において反応系の溶媒等と副反応に伴った不純物を発生させること がなく、固体相と液体相のどちらにおいても定量的に芳香環を構築できるこ とが特徴である。以上の特性を元に、顔料前駆体化合物からエチレン化合物 を脱離、更に顔料結晶化させる事で、極めて高純度な有機顔料結晶(単結晶) を合成する事が出来る。 .
更に、 該脱離部位 (図 1中及び図 2中の R 1 , R2 , R3, R4 ) に直接的或いは 間接的に溶媒溶解性を良好にする置換基を導入する事で、化合物の溶媒溶解 性を変化させることが出来る。 ここで該脱離部位は具体的に、 R i〜 R 4は、 脱離部分に直接的に結合しているか、 間接的に結合している可溶性 付与基を表しており、 R 5〜R 8は、 可溶性付与基に限定されない水素原子、 又は置換基を表している。 ここで R i〜R 4は、脱離部分に結合しているもの で、 脱離部分と一緒に脱離してしまう置換基であり、 R 5〜R8は、 脱離部分 の脱離によって構築された芳香環上に置換された形になる置換基である。本 発明の目的を損なわない範囲、 即ち R i〜R4、 R5〜R8の各置換基はその一 部が脱離して前駆体の多環構造体から 「安定した環状体」 を形成するもので あれば任意の組合せが用いられる。その脱離に必要とされるエネルギーや付 加物、 触媒もその構造に対して任意に用いれば良い。 具体的には R i〜R 4 に関しては、水素原子又は、水と水溶性有機溶媒からなる親水性媒体に可溶 性を付与するための極性置換基が挙げられ、含酸素原子系の水酸基、 アルコ —ル基類、 アルキレンォキサイド基類、 カルボキシル基類、 含窒素原子系の ァミノ基類、含硫黄原子系のスルホン基類が例示される。又、極性基のほか、 アルキル基、 ァリール基、 アルコキシ基、 メルカプト基、 エステル基、 ハロ ゲン原子等が挙げられる。 更に、 R iと R3、 R2と R 4のように各々互いに環 状となることも必要に応じて可能である。
この場合、逆ディ一ルス―アルダー反応によつて溶媒可溶性付与基を有す る脱離部分を脱離し、 その結果、 パイ共役系が構築される化合物 (溶媒不溶 性化合物) へと変換されるが、 この場合に、 更に、 パイ共役系の構築の結果 として、分子の立体構造が嵩高い構造から、平坦な構造に変化するように分 子構造を構築 (設計) しておくことは、 好ましい態様である。 即ち、 このよ うにすることで、 本発明にかかる顔料前駆体化合物 (溶媒可溶性化合物) を 逆ディールス一アルダー反応させた結果として得られる化合物(溶媒不溶性 化合物)の会合性や顔料結晶性を、所望の特性のものに変化させることがで さる。
また、本発明の逆ディールス-アルダー反応によって該化合物から脱離さ れる部分(脱離部分) を、 極めて安定で安全性の高いものにすることが可能 であり、 系に悪影響を与えるような可逆的な反応や、副次的な反応は起こさ ないような反応を構築することも可能である。
また、本発明の逆ディールス一アルダー反応を生じる構造部位は、 図 3の様 なディールス 'アルダー反応を用いて構築することができる。 この理由は、 一般の逆ディ一ルス一アルダー反応とは異なり、図 1や図 2に記載の様に不 可逆反応であるため、 本発明の効果を何ら阻害するものでないためである。
[顔料結晶製造方法に用いられる中間体としての化学物質]
本発明の顔料前駆体 (S。) から顔料結晶 (S 3) を得る顔料結晶製造方法 に用いられる中間体としての化学物質についてはじめに説明する。
本発明は、 前記顔料前駆体 (S 0 ) から前記顔料結晶 (S 3) までの間に、 前 記顔料前駆体 (s。) 及び前記顔料結晶 (s 3) とは異なると共に少なくとも 互いに異なる第 1変位構造 (S と第 2変位構造 (S 2) とを示す構造変位 工程における、 前記第 1変位構造 (S !) 又は前記第 2変位構造 (S 2) であ ることを特徴とする化学物質である。 '
先ず、 顔料前駆体 (S 0) に外的エネルギー E i〜E 2が印加されることに より得られた第 1変位構造 は、 顔料前駆体 (S 0) が有していた多環 構造体構造が外部エネルギーによりその構造を失い第 1変位構造 (S に 移行する (第 1段階と呼ぶ)。 この第 1段階の構造変位では分子構造が構造 的にピークを持たないアモルファス状態となるか構造再配列への準備段階 を構成している。例えば、 チオインジゴ顔料前駆体の場合にはこの第 1変位 構造 (S !) は顔料前駆体のアモルファス構造であることが明らかとなって いる。このことは X R Dのピークが観察されなくなることからも確認できる。 この第 1変位構造は E 2よりもさらに大きな外部エネルギー E3〜E4が 与えられることによって、 第 2変位構造 (S2) へと変化する。 (第 2段階と 呼ぶ)。 この第 2段階の構造変位では構造の一部が顔料結晶化していること あるいは結晶化への準備段階としてのピークが部分的に生じてくる。このこ とは XRDの測定結果よりピークの数が前駆体 (S0) や顔料結晶 (S3) よ りも少なく、結晶の面間隔が広く結晶性が弱く不安定な結晶であることを示 していることからも明らかである。
この時点で更に E4より高い外部エネルギーが与えられなければ、 化合物 を第 2変位構造 (S2) のままで保持することができる。 例えば、 チォイン ジゴ顔料前駆体の場合にはこの第 2変位構造 (S2) はチォインジゴ顔料前 駆体ゃチォインジゴ顔料結晶よりも長周期の顔料結晶構造に変化している ことが明らかとなっている。この第 2変位構造はアモルファス状態を有しな がら一部が顔料結晶化している場合には、固体相中、液体相中の両方におい て分子レベルでの顔料結晶化、分散、分離等を容易にする効果も存在すると 考えられる。
そして、 更に E4より大きな外部エネルギーが与えられた場合には、 すべ ての顔料前駆体が分子構造変換により構造変化する最終段階の単結晶化が 促進し、 単顔料結晶型の顔料結晶 (S3) を生成する。 チォインジゴ顔料前 駆体の場合にはこの顔料結晶 (S3) は P21Zcという結晶型の単結晶であ つた。
以上のように、 顔料前駆体 (SQ) から顔料結晶 (S3) を得る顔料結晶製 造方法においては、 その顔料結晶化の中間体として前記顔料前駆体 (S。) から前記顔料結晶 (S3) までの間に、 前記顔料前駆体 (S。) 及び前記顔料 結晶 (S3) とは異なると共に少なくとも互いに異なる第 1変位構造 (Si) と第 2変位構造 (S2) とを示す構造変位工程における、 前記第 1変位構造 ( S i) 又は前記第 2変位構造 (S 2) であることを特徴とする化学物質が存 在する。 また、構造変位の回数は例えばチォインジゴ顔料前駆体の場合は 2 回であつたが、 顔料前駆体の種類により 2回以外であることも考えられる。 また、それに伴った変位構造の種類もチオインジゴ顔料前駆体の場合には 2 種類であつたが、顔料前駆体の種類により 2種類以外であることも考えられ る。
以上述べてきたように本発明では顔料結晶化の中間体として前記顔料前 駆体 (S 0) から前記顔料結晶 (S 3) 至るまでの変位構造の生成を把握、 そ の生成のために与える外的エネルギーを制御して、所望の均一組成の顔料結 晶を作り出すことのできる製造方法、及びそれを達成するための中間体とし ての化学物質を提供することができる。
[本発明の顔料結晶製造方法において使用する顔料前駆体 (S o ) ] 本発明の顔料結晶製造方法において使用する顔料前駆体 (s。) とは顔料の 構成分子へと変換する前駆体のことである。 顔料結晶 (s 3) としては、 目 的とする顔料前駆体 (S o) を合成可能なものであれば、 いずれの顔料結晶
( s 3)であってもよい。本発明においては製造する対象の顔料結晶として、 例えば、 無金属フタロシアニン系、 各種金属フタロシアニン系、 ァゾ系、 キ ナクリドン系、 インジゴ系、 ペリレン系、 多環キノン系、 ベンズイミダゾ一 ル系、 ピロロピロール系の各有機顔料が好適に挙げられる。
本発明かかる顔料結晶製造方法は、上記で説明したように顔料前駆体( S
0 ) から分子構造変換を利用して顔料結晶 (s 3) を得るために、 前記顔料前 駆体 (S 0) から前記顔料結晶 (S 3) までの間に、 前記顔料前駆体 (S 0) 及び前記顔料結晶 (S 3) とは異なると共に少なくとも互いに異なる、 第 1 変位構造 (S 又は第 2変位構造 (S 2) である化学物質を中間体として用 いることを必須とする。顔料結晶製造工程において使用する相は、 固体相中 での顔料結晶化であつてもよいし、液体相中での顔料結晶化であつてもよい。 更には、 溶媒に溶解させた顔料前駆体 (s。) や第 1変位構造 (Si) や第 2変位構造 (S2) を通常の塗工技術、 精密印刷技術やインクジェット記録 方式等で基板上に回路パターンとなるように塗布し、乾燥することで各構造 体の薄膜にした状態から最終段階の顔料結晶 (S3) や所望の均一組成の顔 料結晶を製造してもよい。
顔料前駆体(S0) を顔料結晶 (S3)へと変換する簡便な方法としては、 加熱による方法が挙げられる。 この場合に加熱する温度としては、 50〜4 00での温度範囲が適当である。本発明の顔料結晶製造方法で好適に利用す る分子構造変換においては、反応にかかる顔料前駆体化合物の分子構造をェ 夫することによって、 各変位構造 (512) や顔料結晶 (S3) へと変換 する温度、 変換手段の選択が可能である。 従って、 所望する顔料結晶の耐熱 性等を考慮にいれて、 製造条件を決定すればよい。
又、 分子構造変換を進行させる手段は加熱のみに限られるものではなく、 該反応によって顔料前駆体化合物から脱離する部分の構造を工夫すること で、 紫外線、 可視光線、 電磁波等を照射するといつた手段でも分子構造変換 が可能である。 特に、 対象とする顔料結晶が、 製造過程における熱履歴等を 避けなければならないものである場合においては、上記した紫外線等の照射 による変換手段を用いることが有効である。
また、 最終段階の顔料結晶 (s3) においてどの結晶型となるかは、 顔料 前駆体 (Si) の顔料結晶構造、 分子間相互作用等に影響されて決定されて いる。 よって顔料前駆体.(s の分子設計により所望の単顔料結晶型の顔 料結晶 (s3) へと変換することが可能であると考えられる。
[本発明の中間体製造方法について]
本発明の顔料前駆体 (S0) を分子構造変換して顔料結晶 (S3) を得る変 換時に生じ、 かつ前記顔料前駆体 (S0) 及び前記顔料結晶 (S3) とは異な る構造を有する第 1変位構造 (S,) あるいは第 2変位構造 (S2) を有す る中間化学物質の製造方法は、 製造する中間化学物質の種類により
1) 前記顔料前駆体 (S。) を第 1変位構造 (Si) に変換する工程を有 するもの、 と
2) 前記顔料前駆体 (S0) を第 2変位構造 (S2) に変換する工程を有 するもの、 とに区別される。 これら中間体は顔料前駆体 (S0) を第 1変位 構造 (Si) に至るための外的エネルギーあるいは、 顔料前駆体 (So) か ら第 2変位構造 (S2) に至るための外的エネルギーを与えることによって それぞれの変位構造を定量的に製造することが可能である。 また、 この場合 隣り合った変位構造 (ここでは顔料前駆体 (S0) と第 1変位構造 (Si), 及び第 1変位構造 (S と第 2変位構造 (S2)) については本発明の中間 化学物質製造方法の中で任意の比率で製造することが可能である。
[本発明の顔料結晶製造方法について]
本発明の顔料前駆体 (s。) から分子構造変換を利用して顔料結晶 (s3) を得るために、前記顔料前駆体(s0)から前記顔料結晶(s3)までの間に、 前記顔料前駆体 (So) 及び前記顔料結晶 (S3) とは異なると共に少なくと も互いに異なる、 第 1変位構造 (S 又は第 2変位構造 (S2) である化学 物質を中間体として用いる顔料結晶製造方法は、
第 1変位構造 (s から前記顔料結晶 (s3) の製造方法、 と
第 2変位構造 (S2) から前記顔料結晶 (S3) の製造方法、 とに区別され る。 これら顔料結晶 (S3) は第 1変位構造 が顔料結晶 (S3) に至 るための外的エネルギーあるいは、 第 2変位構造 (S2) から顔料結晶 (S 3) に至るための外的エネルギーを与えることによってそれぞれの顔料結晶 (S3) を定量的に製造することが可能である。 また、 この場合隣り合った 構造 (ここでは第 2変位構造 (S2) と顔料結晶 (S3)) については本発明 の顔料結晶製造方法の中で所望の均一組成で製造することが可能である。 また、 本発明の顔料結晶製造方法は顔料前駆体 (S。) から分子構造変換 して顔料結晶 (S3) を得るために、 上記の第 1変位構造 (S を前記顔料 結晶 (S3) に変換する、 第 2変位構造 (S2) を前記顔料結晶 (S3) に変 換する方法がある。 さらに、 それぞれ独立に製造条件を組み合わせて、 1) 前記顔料前駆体 (S。) を前記第 1変位構造 (S に変換する工程、 2) 前記第 1変位構造 を前記第 2変位構造 (S2) に変換する工程、 3) 前記第 2変位構造 (S2) を前記顔料結晶 (S3) に変換する工程、 とそれぞ れの変換工程で生成する顔料結晶を確認しながら次の工程へと逐次進めて いく方法がある。
さらに、それぞれの工程をつなげて連続で製造する場合には、図 10のよ うに顔料前駆体 (S0) からスタートし第 1変位構造 (S となるェネル ギ一 E 1を一定時間与えて第 1変位構造 を完全に生成させる、 次に 第 2変位構造 (S2) となるエネルギー E 2を一定時間与えて第 2変位構造 (S2) を完全に生成させる、 次に顔料結晶 (S3) となるエネルギー E 3 を一定時間与えて顔料結晶 (S3) を完全に生成させる、 このエネルギー E 3は顔料結晶 (S3) を生成させるエネルギーであるとともに、 純度を上げ るために与えるエネルギーでもある。
これらの製造方法を用いることによって、 顔料前駆体 (S。) から確実に 最終段階の顔料結晶(s3)を組成の顔料結晶で製造することが可能となる。 本発明の顔料結晶製造方法においては、顔料結晶製造に利用する分子構造 変換反応は、従来の顔料結晶転移による方法と比較して、非常に高い選択性 をもって行われるため、 DSC (示差走査熱量計) 一 XRD (X線回折装置) 等を用いての反応解析や、これに伴う反応の制御を極めて正確に行うことが できる。 その特徴を利用すれば、 上記で説明したように、 外的エネルギーの 付与を制御することによって顔料結晶の段階を明確に区別でき、従来実現出 来なかった所望の安定した組成の顔料結晶を製造することが可能となる。
(実施例) 以下に、実施例により本発明を更に具体的に説明するが、本発明の要旨は これらの実施例によって限定されるものではない。尚、特に断りのない限り、 部及び%は質量基準である。
[実施例 1 ]
ぐチォインジゴ顔料顔料前駆体化合物の合成 >
図 4に記載したスキームに従って、本発明にかかる製造方法を実施する際 に使用するチォインジゴ顔料顔料前駆体化合物を合成した。尚、下記におい て次の略語を使用する。
• THF :テトラヒドロフラン
• DMF :ジメチルホルムアミド
先ず、合成に使用した化合物 1は、 Te t r ah e drn L e t t e r s , Vo 1. 22, No. 35, 1 981, p p 3347— 3350、 に従 つて合成した。 次に、 下記の式において [1] で示した化合物 1を用いて、 下記に述べるようにして [2] を合成した。
Figure imgf000020_0001
[1] [2] 先ず、 50m lナス型フラスコに、 水素化ナトリウム (NaH、 0. 06 2 g, 2. 6 Ommo 1 ) を入れ、 窒素置換した条件下で、 d r y— DMF (2m l ) を加えた後、 水浴で冷やしたものを用意した。 これとは別に、 2 5m lナシ型フラスコに、 前記した [ 1] (0. 20 Q g, 0. 62mmo 1) を入れ、 窒素置換した条件下で、 d r y— DMFを加え、 チグリコール 酸 (0. 090m l, 1. 3 Ommo 1 ) を入れ、 これをトランスファーチ ユーブによって、先程用意した 50 m 1のナス型フラスコ内にゆつくりと滴 下し、 1時間攪拌した。 反応の終了を TLC (薄層クロマトグラフィー) に よって確認してから、反応容器に 0. 1Mクェン酸水溶液を pH 3になるま で加え、 酢酸ェチルで抽出操作を行った。抽出操作後の有機層を 5 %HC 1 で洗浄し、 無水硫酸ナトリウムで乾燥させ、 その後、 減圧下で濃縮した。 得 られた濃縮物を、 シリカゲルカラムクロマトグラフィー (展開溶媒: E t O Ac ZHe X an e)により精製することで、目的物である [2]を得た(0. 29 g, 収率: 87. 8 %)。
次に、 上記で得た下記 [2] で示した化合物 2を用いて、 下記に述べるよ うにして [3] を合成した。
Figure imgf000021_0001
[2] [3] 先ず、 25m lナス型フラスコに、 窒素置換した条件下で、 d r y-TH F (5. 5m l) とジイソプロピルアミド (0. 68m l , 4. 84 mmo 1) を加えたあとで、 0でまで冷やし、 この中に n—ブチルリチウムをゆつ くり滴下した。 そして、 反応容器を一 78でまで冷やしたものを用意した。 これとは別に、 25m 1ナシ型フラスコに [2] (Q. 325 g, 1. 21 mmo 1 ) を入れ、 窒素置換した条件下で、 d r y-THF (2m 1 ) を加 えたものを用意し、これを先程の容器に卜ランスファーチューブにより滴下 し、 1時間攪拌した。反応終了を TLCにより確認してから、反応容器に 5% HC 1を pH 2になるまで加え、酢酸ェチル Vで抽出し、有機層を無水硫酸 ナトリウムで乾燥させて、 濃縮した。 次に、 濃縮したものをジクロロェタン に溶かし、 濃塩酸を 2, 3滴加え、 5時間攪拌し、 水で洗浄し、 無水硫酸ナ トリウムで乾燥させて濃縮した。更に、 シリカゲルカラムクロマトグラフィ - (E t OAc/He X a n e)により精製することで、 目的物である [3] を得た (0. 16 g, 収率: 74%)。
次に、 上記で得た下記 [3] で示した化合物 3を用いて、 下記に述べるよ うにして [4] を合成した。
Figure imgf000022_0001
先ず、 50m lナス型フラスコに、 上記で得た [3] (0. 120 g, 0. 67mmo 1 ) を入れて、 窒素置換した条件下で、 —丁 ^ を加ぇ、 反応容器を一 78 まで冷やしたものを用意した。 そして、 これとは別に、 25m 1ナス型フラスコに、 窒素置換した条件下で、 d r y— THF (5. 5 m 1 ) とジイソプロピルアミド ( 0. 68m l , 4. 84 mm o 1 ) を加 えたあと、 0でまで冷やし、 n—ブチルリチウムをゆっくり滴下したものを 用意した。 これを先程の 50m 1ナス型フラスコに、 卜ランスファーチュー ブにより加え、 更にヨウ素 (0. 102 g, 0. 80mmo l) を加えて、 3時間攪拌した。 反応を水により停止し、 酢酸ェチルで抽出操作を行った。 抽出操一作後の有機層を、無水硫酸ナ卜リゥムで乾燥させ、減圧下で濃縮した。 最後に、シリカゲルカラムクロマトグラフィー(E t OAc/He X a n e) により精製することで、 目的物であるチォインジゴ顔料前駆体 [4] を得た (0. 027 g, 収率: 23 %)。
次に、 上記で得られたチォインジゴ顔料前駆体の CuK.ひ特性 X線 (波 長 = 1. 541A) による X線回折を解析したところ、 格子定数は、 表 1の ようになった。この際に使用した装置は、リガク社製の粉末 X線回折装置(X RD) R I NT2000 (商品名) である。 更に、 図 5に、 該装置で測定し た XRDスぺクトル、 及び(株) リガク社製の顔料結晶構造解析ソフト C r y s t a l S t r u c t u r e Ve r. 3. 6. 0を用いてシミュレ一シ ヨンした結果を示した。 表 1 :解析結果
Figure imgf000023_0001
格子定数を解析した結果、得られたものは、顔料結晶型 t r i c 1 i n i c P— 1の単一顔料結晶であることが確認された。次に、 このチォインジ ゴ顔料前駆体を下記表 2の顔料結晶 (S3) の温度条件 165. 7で以上で 第 2変位構造 (S2) を加熱処理した顔料結晶について、 上記したと同様の 装置で測定した CuKひ特性 X線 (波長 = 1. 541 A) による XRDス ベクトル、 及び上記したと同様の顔料結晶構造解析ソフトで、 文献 H. vo n E l l e r, Bu l l Ch em. S o c . F r ., 1955, 1 06, 1426に記載の P 2, c (顔料結晶型 I ) の格子定数を用いてシ ユミレーシヨンした結果を図 6に示す。
更に、市販のチォインジゴ顔料結晶について、上記したと同様の装置で測 定した CuKa特性 X線 (波長 = 1. 541 A) による XRDスペクトル、 及び上記したと同様の顔料結晶構造解析ソフ卜で、文献 W. Ha a s e-W e s s e 1 , M, Ohma s a and P. S u s s e, N a t u r w i s s en s ch a f t en, 1977, 64, 435に記載の P l^/n (顔 料結晶型 II) の格子定数を用いてシュミレーシヨンした結果を、 図 7に示 す。
図 5〜図 7を比較すると明らかなように、本発明の顔料結晶の製造方法を 用いることによって、市販品では得ることのできない結晶型のチオインジゴ 顔料結晶を極めて高純度(定量的) に、 且つ結晶型が混在していない単結晶 型 (均一な結晶型) で作り出すことが可能であることがわかる。
上記で得たチォインジゴ顔料顔料前駆体について、リガク社製の粉末 X線 回折装置 R I NT-U 1 t i ma I X線回折一示差走査熱量同時測定装 置、 商品名: XRD— DSC II) での、 CuKa特性 X線 (波長 = 1. 541 A) により、 顔料前駆体 (S , 第 1変位構造 (S,)、 第 2変位構造
(S2)、 顔料結晶 (S3) について、 顔料結晶状態を解析した結果を図 8及 び表 2に示す。 表 2 :各領域における変換状態
Figure imgf000024_0001
この表で明らかなように、 顔料前駆体 (S。) に第 1変位構造 (s に移 行する第 1段階の構造変位では、チオインジゴ顔料前駆体は分子構造が構造 的にピークを持たないアモルファス状態となっている。第 2変位構造 (S2) では結晶化への準備段階としてのピークが部分的に 5箇所生じてくる。 こ れは XRDの測定結果よりピークの数が前駆体 (S。) の 7箇所や顔料結晶 (S3) の 8箇所よりも少ないことから、 結晶の面間隔が広く結晶性が弱く 不安定な結晶であることが理解できる。
図 8と表 2から明らかなように、顔料前駆体化合物を作成し、該化合物を 加熱することで顔料結晶化する本発明の顔料結晶の製造方法を実施した上 記の例においては、温度領域によって顔料結晶状態が下記のように変化する ことが確認できた。 このことは、各反応温度領域で結晶型をはじめする顔料 結晶状態を制御することが可能であることを意味しており、これらの各領域 を使い分けることによって目的とする所望の組成の顔料結晶を得ることが 可能であることが確認できた。
即ち、 上記した例では、 図 8と表 2から、 先ず、 逆ディールス一アルダー 反応が開始する前段階である顔料前駆体 (S。) としては 142. 7 以下 であることがわかる。 第 1変位構造 (S としては、 142. 8で〜 14 8. 4 の範囲であることがわかる。 第 2変位構造 (S2) としては、 14 8. 5で〜165. 6 の範囲であることがわかる。 更に、 顔料結晶 (S3) としては、 165. 7 以上で生成していることがわかる。
よって、 本発明の中間体製造方法として、 顔料前駆体 (S0) から第 1変位 構造 (S,) を得るために 142. 8で〜 148. 4での範囲で製造条件を 制御することによって、 均一組成の第 1変位構造 (S,) を得ることができ た。 また、 顔料前駆体 (S。) から第 2変位構造 (S2) を得るために 14 8. 5 :〜165. 6 の範囲で製造条件を制御することによって、 均一組 成の第 2変位構造 (S2) を得ることが出来た。 さらに、 中間体製造で得ら れた第 1変位構造 (S,) 及び第 2変位構造 (S2) はそれぞれ 165. 7 以上で製造条件を制御することにより均一組成の顔料結晶 (S3) を得るこ とができた。
[実施例 2 ] <キナクリドン顔料前駆体化合物の合成 >
図 9に記載したスキームに従って、本発明にかかる製造方法を実施する際 に使用するキナクリドン顔料前駆体化合物を合成した。
先ず、 合成に使用した化合物 1は、 J. Org. Ch em., Vo 1. 6 1 , No. 11. 1 996, p p 3794- 3798に従って合成した。 次 に、 下記の式において [1] で示した化合物 1を用いて、 下記に述べるよう にして [2] を合成した。
Figure imgf000026_0001
先ず、 50m lナス型フラスコに、 [l] (0. 3 1 8 g, 2. 60mmo l ) を入れ、 窒素置換した条件下で、 d r y— CH2C l 2 (2m l ) を加えた 後、 水浴で冷やしたものを用意した。 これとは別に、 25m lナシ型フラス コに、 クロロギ酸ェチル (0. 284 g, 2. 62mmo l ) を入れ、 窒素 置換した条件下で、 d r y— CH2C 12を加え、 これをトランスファーチ ユーブによって、先程用意した 5 Om 1のナス型フラスコ内にゆつくりと滴 下し、 1時間攪拌した。 反応の終了を TLC (薄層クロマトグラフィー) に よって確認してから、 反応を終了させ、 酢酸ェチルで抽出操作を行った。 抽 出操作後の有機層を 5 %HC 1で洗浄し、 無水硫酸ナトリウムで乾燥させ、 その後、 減圧下で濃縮した。 得られた濃縮物を、 シリカゲルカラムクロマト グラフィー(展開溶媒: E t OAc/He X a n e )により精製することで、 目的物である [2] を得た (0. 408 g, 収率: 80. 8 %)„
次に、 上記で得た下記 [2] で示した化合物 2を用いて、 下記に述べるよ うにして [3] を合成した。
Figure imgf000027_0001
先ず、 50m 1ナス型フラスコに、 窒素置換した条件下で、 d r y— E t 2 0 (20. 5m l) と [2] (0. 777 g, 4. O Ommo l ) とを冷やし たものを用意した。 これとは別に、 25m 1ナシ型フラスコに 1, 4一フエ 二レンジァミン (0. 216 g, 2. O Ommo l) を入れ、 窒素置換した 条件下で、 d r y— E t 20 (15ml) を加えたものを用意し、 これを先 程の容器にトランスファーチューブにより滴下し、 1時間攪拌した。反応終 了を TLCにより確認してから、 反応を終了し、 酢酸ェチルで抽出し、 有機 層を無水硫酸ナトリウムで乾燥させて、 濃縮した。 更に、 シリカゲルカラム クロマトグラフィー (E t OAcZHe x an e) により精製することで、 目的物である [3] を得た (0. 690 g, 収率: 75%)。
次に、 上記で得た下記 [3] で示した化合物 3を用いて、 下記に述べるよ うにして [4] を合成した。
Figure imgf000028_0001
先ず、 100m 1ナス型フラスコに、 上記で得た [3] (0. 921 g, 2. 0 Ommo 1 ) を DM SO (ジメチルスルホキサイド) 30m lを溶媒とし て溶解した。そこに t一ブトキシカリウムを加え、 50 で 1昼夜加熱攪拌 した。 反応終了を TLCにより確認してから、 反応を水により停止し、 酢酸 ェチルで抽出操作を行った。抽出操作後の有機層を、無水硫酸ナトリウムで 乾燥させ、 減圧下で濃縮した。 最後に、 シリカゲルカラムクロマ卜グラフィ ― (E t OH/He x a n e) により精製することで、 目的物である [4] を得た (0. 728 g, 収率: 90%)。
次に、 上記で得た下記 [4] で示した化合物 4を用いて、 下記に述べるよ うにして [5] を合成した。
Figure imgf000028_0002
先ず、 100m lナス型フラスコに、 上記で得た [4] (0. 808 g, 2. 0 Ommo 1 ) を d r y -DMSO (ジメチルスルホキサイド) 30m 1を 溶媒として溶解した。そこにポリリン酸を加え、 50でで 1昼夜加熱攪拌し た。脱水閉環反応終了を TLCにより確認してから、反応を水により停止し、 酢酸ェチルで抽出操作を行った。抽出操作後の有機層を、無水硫酸ナ卜リウ ムで乾燥させ、 減圧下で濃縮した。 最後に、 シリカゲルカラムクロマトダラ フィー (E tOAcZHe x an e) により精製することで、 目的物である キナクリ ドン顔料前駆体 [5] を得た (0. 33 1 g, 収率: 45%)。
[実施例 3 ]
<実施例 1の第 2変位構造 (S2) からの顔料結晶 (S3) の顔料結晶製造方 法で得たチオインジゴ顔料結晶を用いたィンク〉
実施例 1の第 2変位構造 (S2) を顔料結晶 (S3) の顔料結晶化条件で製 造したチォインジゴ顔料結晶をスチレン一アクリル酸共重合体系分散剤に より分散し、 得られた分散体と、 水、 グリセリン、 エチレングリコールを含 む溶剤を用いて、 顔料濃度 3. 5%のインクを作成した、 得られたインクに ついて発色性の試験を行った。
(発色性)
上記で作成したインクをキャノン(株)製 P I XUS 950 i用のイン クカートリッジに詰め、インクジエツト式画像形成装置である P I XUS 9 50 iを用いて画像形成した。 使用メディアはキャノン (株) 製 PR— 1 0 1である。 形成された画像について、 目視により観察し、 色の鮮やかさを判 断したところ、 均一組成の顔料結晶 (S3) 以外は混在していない所望の顔 料結晶状態で画像が形成されるため、発色性にむらのない従来にない高発色 性の画像を得ることができた。
[実施例 4]
<実施例 1の第 1変位構造 (Si) からの顔料結晶 (S3) の顔料結晶製造方 法で得たチオインジゴ顔料結晶を用いたィンク >
先ず、 実施例 1の第 1変位構造 (Si) を顔料結晶 (s3) の顔料結晶化条 件で製造したチォインジゴ顔料結晶をスチレン一アクリル酸共重合体系分 散剤により分散した。 そして、 得られた分散体をそれぞれ等量ずつ混合し、 該分散体と、 水、 グリセリン、 エチレングリコールを含む溶剤を用いて、 顔 料濃度 3. 5%のインクを作成した。得られたインクについて発色性の試験 を行った。 (発色性)
上記で作成したインクをキャノン(株)製 P I XUS 950 i用のイン クカートリッジに詰め、インクジエツト式画像形成装置である P I XUS 9 50 iを用いて画像形成した。使用メディアはキャノン (株) 製 PR— 10 1である。 形成された画像について、 目視により観察し、 色の鮮やかさを判 断したところ、 均一組成の顔料結晶 (S3) 以外は混在していない所望の顔 料結晶状態で画像が形成されるため、発色性にむらのない従来にない高発色 性の画像を得ることができた。
[実施例 5 ]
<実施例 2のキナクリ ドン顔料前駆体 (S0) で得たキナクリドン顔料結 晶 (S3) を用いたインク >
実施例 2で合成したキナクリドン顔料前駆体化合物を実施例 1と同様 の解析をし、 得られたキナクリドン顔料前駆体 (S0) の顔料結晶 (S3) までの顔料結晶化過程を中間体の製造を含めて逐次で行うことでキナク リドン顔料結晶 (S3) を製造した。 得られたキナクリドン顔料結晶をス チレン一アクリル酸共重合体系分散剤により分散し、 得られた分散体と、 水、 グリセリン、 エチレングリコールを含む溶剤を用いて、 顔料濃度 3. 5 %のィンクを作成した、 得られたィンクについて発色性の試験を行った。
(発色性)
上記で作成したインクをキャノン (株) 製 P I XUS 950 1用のィ ンク力一トリッジに詰め、 ィンクジエツ卜式画像形成装置である P I XU S 950 iを用いて画像形成した。 使用メディアはキャノン (株) 製 PR 一 101である。 形成された画像について、 目視により観察し、 色の鮮ゃ かさを判断したところ、 均一組成の顔料結晶 (S3) 以外は混在していな い所望の顔料結晶状態で画像が形成されるため、 染着性と発色性が両立さ れている従来にない高発色性の画像を得ることができた。 [実施例 6 ]
ぐ実施例 2のキナクリドン顔料前駆体 (S 0) で得たキナクリドン顔料結 晶 (S 3) を用いたインク >
実施例 2で合成したキナクリ ドン顔料前駆体化合物を実施例 1と同様 の解析をし、 得られたキナクリドン顔料前駆体 (S 0) の顔料結晶 (S 3) までの顔料結晶化過程をそれぞれの製造条件で一定時間保持しながらキ ナクリドン顔料結晶 (S 3) を製造した。 得られたキナクリドン顔料結晶 をスチレン一アクリル酸共重合体系分散剤により分散した。 そして、 得ら れた分散体をそれぞれ等量ずつ混合し、 該分散体と、 水、 グリセリン、 ェ チレングリコールを含む溶剤を用いて、 顔料濃度 3 . 5 %のインクを作成 した。 得られたインクについて発色性の試験を行った。
(発色性)
上記で作成したインクをキャノン (株) 製 P I X U S 9 5 0 i用のィ ンク力一トリッジに詰め、 イングジエツ卜式画像形成装置である P I X U S 9 5 0 iを用いて画像形成した。 使用メディアはキャノン (株) 製 P R 一 1 0 1である。 形成された画像について、 目視により観察し、 色の鮮ゃ かさを判断したところ、顔料結晶体とアモルファス体が適度に混在してい る状態で画像が形成されるため、 染着性と発色性が両立されている従来に ない高発色性の画像を得ることができた。 産業上の利用可能性
本発明の活用例としては、 本発明の製造方法によれば、 従来の方法では できなかった、 所望する結晶型、 粒子径、 凝集性、 分散性が制御された顔 料結晶を極めて高純度に作り出すことが可能になるため、 各種の用途にお いて所望される種々の機能特性を実現した顔料結晶の提供が可能となり、 この結果、 顔料結晶の利用の幅を拡大できる。 この出願は 2004年 9月 8日に出願された日本国特許出願番号第 2ひ 04— 261386からの優先権を主張するものであり、その内容 を引用してこの出願の一部とするものである。

Claims

請求の範囲
1. 顔料前駆体 (S。) を分子構造変換して顔料結晶 (S3) を得る顔料 結晶製造方法に用いられる中間化学物質であつて、
該中間化学物質が前記顔料前駆体 (S。) 及び前記顔料結晶 (S3) とは異 なる、 第 1変位構造 (Si) 又は第 2変位構造 (S2) を有することを特徴と する中間化学物質。
2. 該分子構造変換が逆ディ一ルス一アルダー反応によって生じること を特徴とする請求項 1記載の中間化学物質。
3. 顔料前駆体 (S0) を分子構造変換して顔料結晶 (S3) を得る変換 時に生じ、 且つ前記顔料前駆体 (S0) 及び前記顔料結晶 (S3) とは異なる 第 1変位構造 (s を有する中間化学物質を製造する方法であって、 前記 顔料前駆体 (S0) に第 1変位構造 ( を中間化学物質として得るため の製造条件を付与することを特徴とする中間化学物質製造方法。
4. 顔料前駆体 (So) を分子構造変換して顔料結晶 (S3) を得る変換 時に生じ、 且つ前記顔料前駆体 (S0) 及び前記顔料結晶 (S3) とは異なる 第 2変位構造 (S2) を有する中間化学物質を製造する方法であって、 前記 顔料前駆体 (So) に第 2変位構造 (S2) を中間化学物質として得るため の製造条件を付与することを特^とする中間化学物質製造方法。
5. 該分子構造変換が逆ディ一ルス一アルダー反応によつて生じること を特徴とする請求項 3または請求項 4記載の中間体製造方法。
6. 顔料前駆体 (S を分子構造変換して顔料結晶 (S3) を得る顔料 結晶製造方法において、 前記分子構造変換時に、 前記顔料前駆体 (SQ) 及 び前記顔料結晶 (S3) とは異なる第 1変位構造 を有する中間化学物 質を用いることを特徴とする顔料結晶製造方法。
7. 顔料前駆体 (So) を分子構造変換して顔料結晶 (S3) を得る顔料 結晶製造方法において、 前記分子構造変換時に、 前記顔料前駆体 (So) 及 び前記顔料結晶 (S3) とは異なる第 2変位構造 (S2) を有する中間化学物 質を用いることを特徴とする顔料結晶製造方法。
8. 顔料前駆体 (So) を分子構造変換して顔料結晶 (S3) を得る顔料 結晶製造方法において、前記分子構造変換時に生じる前記顔料前駆体(S。) 及び前記顔料結晶 (S3) とは異なる、 第 1変位構造 (S 及び第 2変位構 造 (S2) を有する中間化学物質を用いる顔料結晶製造方法であって、 該顔料結晶製造方法が
1) 前記顔料前駆体 (So) を前記第 1変位構造 (S,) に変換する工程 と、
2) 前記第 1変位構造 (Si) を前記第 2変位構造 (S2) に変換するェ 程と、
3) 前記第 2変位構造 (S2) を前記顔料結晶 (S3) に変換する工程とを 単独に行う
ことを特徴とする顔料結晶製造方法。
9. 顔料前駆体 (SQ) を分子構造変換して顔料結晶 (S3) を得る顔料 結晶製造方法において、前記分子構造変換時に生じる前記顔料前駆体(S。) 及び前記顔料結晶 (S3) とは異なる、 第 1変位構造 (S 及び第 2変位構 造 (S2) を有する中間化学物質を用いる顔料結晶製造方法であって、 該顔料結晶製造方法が連続して
1) 前記顔料前駆体 を前記第 1変位構造 ( に変換する工程 を所定時間保持する工程と、 '
2) 前記第 1変位構造 を前記第 2変位構造 (S2) に変換するェ 程を所定時間保持する工程と、
3) 前記第 2変位構造 (S2) を前記顔料結晶 (S3) に変換する工程を 所定時間保持する工程とを、 有することを特徴とする顔料結晶製造方法。
1 0 . 上記分子構造変換が逆ディールス一アルダー反応によって生じる ことを特徵とする請求項 6乃至請求項 9のいずれか 1項に記載の顔料結晶 製造方法。
1 1 . 前記顔料前駆体 (S 0) が下記一般式 A、 B、 C、 Dで表される 構造から選択される少なくとも 1つの構造を有することを特徴とする請求 項 1 0記載の顔料結晶製造方法。
A B C D
Figure imgf000035_0001
( R i〜R4は、 それぞれ独立に、 水素原子、 又は直接的或いは間接的に結合 された溶媒可溶性を与える可溶性付 :与基を表し、 R5〜R8は、 水素原子、 又 は直接的或いは間接的に結合された置換基を表す。)
1 2 . 前記顔料結晶 (S 3) が単結晶である請求項 6乃至請求項 1 1の 何れか 1項に記載の顔料結晶製造方法。
1 3 . 請求項 6乃至請求項 1 2の何れか 1項に記載の顔料結晶製造方法 によつて得られたことを特徵とする顔料結晶体。
1 4 . 前記顔料結晶体が、 インクジエツト記録用インク用色材として用 いられることを特徴とする請求項 1 3に記載のインクジエツ卜記録方法。
1 5 . 請求項 1 3に記載の顔料結晶体によって形成された記録画像。
PCT/JP2005/017004 2004-09-08 2005-09-08 顔料結晶製造段階における中間化学物質、それを用いた顔料結晶製造方法、顔料結晶体 WO2006028285A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05783693A EP1792950A1 (en) 2004-09-08 2005-09-08 Intermediate chemical substance in pigment crystal production stage, process for producing pigment crystal from the same, and crystalline pigment
JP2006535187A JPWO2006028285A1 (ja) 2004-09-08 2005-09-08 顔料結晶製造段階における中間化学物質、それを用いた顔料結晶製造方法、顔料結晶体
US11/367,456 US20060152570A1 (en) 2004-09-08 2006-03-06 Intermediate chemical substance in the production of pigment crystals, method for manufacturing pigment crystals using the same, and pigment crystal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-261386 2004-09-08
JP2004261386 2004-09-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/367,456 Continuation US20060152570A1 (en) 2004-09-08 2006-03-06 Intermediate chemical substance in the production of pigment crystals, method for manufacturing pigment crystals using the same, and pigment crystal

Publications (1)

Publication Number Publication Date
WO2006028285A1 true WO2006028285A1 (ja) 2006-03-16

Family

ID=36036552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017004 WO2006028285A1 (ja) 2004-09-08 2005-09-08 顔料結晶製造段階における中間化学物質、それを用いた顔料結晶製造方法、顔料結晶体

Country Status (5)

Country Link
US (1) US20060152570A1 (ja)
EP (1) EP1792950A1 (ja)
JP (1) JPWO2006028285A1 (ja)
CN (1) CN101014667A (ja)
WO (1) WO2006028285A1 (ja)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1621589B1 (en) * 2003-05-02 2014-04-16 Canon Kabushiki Kaisha Water based fluorescent ink, record imaging method and record image
JP3958325B2 (ja) * 2004-03-16 2007-08-15 キヤノン株式会社 プリント媒体用塗布液、インクジェット用インク、画像形成方法、プリント媒体用塗布液とインクジェット用インクとのセット、及びインクジェット記録装置
CN1926204B (zh) * 2004-04-08 2011-02-02 佳能株式会社 喷墨记录用墨水、喷墨记录方法、墨盒、以及喷墨记录装置
WO2005097922A1 (ja) * 2004-04-08 2005-10-20 Canon Kabushiki Kaisha インク、インクジェット記録方法、インクカートリッジ、及びインクジェット記録装置
WO2006001513A1 (ja) * 2004-06-25 2006-01-05 Canon Kabushiki Kaisha 水性インク、インクタンク、インクジェット記録装置、インクジェット記録方法、及びインクジェット記録画像
CN1977005B (zh) * 2004-06-28 2011-03-30 佳能株式会社 青色墨水、成套墨水、成套的墨水与反应液、以及图像形成方法
DE602005024397D1 (de) 2004-06-28 2010-12-09 Canon Kk Wässrige tinte, wässriger tintensatz, tintenpatrone, tintenstrahlaufzeichner, tintenstrahlaufzeichnungsverfahren und bilderzeugungsverfahren
BRPI0511981B1 (pt) * 2004-06-28 2020-11-03 Canon Kabushiki Kaisha tinta aquosa, método de formação de imagem, cartucho de tinta, unidade de gravação e aparelho de gravação de jato de tinta
CA2565704C (en) * 2004-06-28 2009-08-04 Canon Kabushiki Kaisha Aqueous ink, ink set, and image-forming method
CN1972809B (zh) * 2004-06-28 2011-09-07 佳能株式会社 记录方法、墨盒及图像形成方法
JP4794940B2 (ja) * 2004-08-04 2011-10-19 キヤノン株式会社 インクタンク、インクジェット記録方法及びインクタンクの再生方法
JP2006096995A (ja) 2004-08-31 2006-04-13 Canon Inc インクジェット用インク、インクジェット用インクの作製方法、インクジェット記録方法及び前記インクを用いたインクカートリッジ
JP4574498B2 (ja) * 2004-08-31 2010-11-04 キヤノン株式会社 インクカートリッジ及びインクジェット記録方法
EP1792960A1 (en) * 2004-09-08 2007-06-06 Canon Kabushiki Kaisha Pigment, method for producing pigment, pigment dispersion, method for producing pigment dispersion, recording ink, recording method, and recorded image
EP1801167A4 (en) 2004-09-08 2011-10-12 Canon Kk COATED FINE PARTICLES, DISPERSED FINE PARTICLES, METHOD FOR PRODUCING COATED FINE PARTICLES, INK, RECORDING METHOD AND RECORDED IMAGE
WO2006049305A1 (ja) * 2004-11-02 2006-05-11 Canon Kabushiki Kaisha 蛍光画像形成方法及びその画像とインクジェット記録方法
CN103965689B (zh) * 2005-01-18 2017-04-12 佳能株式会社 墨、成套墨、喷墨记录方法、墨盒和喷墨记录设备
CN101341221B (zh) * 2006-03-09 2011-07-27 佳能株式会社 颜料墨、成套墨、喷墨记录法、墨盒、记录单元、喷墨记录设备和图像形成方法
US7618484B2 (en) * 2007-05-01 2009-11-17 Canon Kabushiki Kaisha Ink jet ink, ink jet recording method, ink cartridge, recording unit and ink jet recording apparatus
KR101830985B1 (ko) * 2009-10-30 2018-02-21 미쯔비시 케미컬 주식회사 저분자 화합물, 중합체, 전자 디바이스 재료, 전자 디바이스용 조성물, 유기 전계 발광 소자, 유기 태양 전지 소자, 표시 장치 및 조명 장치
US10253200B2 (en) 2015-01-23 2019-04-09 Canon Kabushiki Kaisha Aqueous ink, ink cartridge, and ink jet recording method
US9574099B2 (en) 2015-01-26 2017-02-21 Canon Kabushiki Kaisha Ink set and ink jet recording method
JP6702818B2 (ja) 2015-08-07 2020-06-03 キヤノン株式会社 水性インク、インクカートリッジ、及びインクジェット記録方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003327588A (ja) * 2002-03-08 2003-11-19 Canon Inc 新規化合物とその合成方法、インク、インクカートリッジ、記録ユニット、インクジェット記録装置、記録方法、液体組成物、パターン形成方法、物品、環境履歴検知方法及び記録媒体
JP2004262820A (ja) * 2003-02-28 2004-09-24 Canon Inc 新規化合物、物質変換方法及びそれを用いた記録方法

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3005058B2 (ja) * 1990-02-09 2000-01-31 キヤノン株式会社 インク、これを用いたインクジェット記録方法及び機器
JP3005057B2 (ja) * 1990-02-09 2000-01-31 キヤノン株式会社 インク、これを用いたインクジェット記録方法及び機器
US5131949A (en) * 1990-02-09 1992-07-21 Canon Kabushiki Kaisha Ink, ink-jet recording process, and instrument making use of the ink
DE69124296T2 (de) * 1990-07-10 1997-06-26 Canon Kk Aufzeichnungsmethode, Gerät zur Aufzeichnung nach der Methode und Tintenstrahlkassette für das Aufzeichnungsgerät
US5258066A (en) * 1990-11-29 1993-11-02 Canon Kabushiki Kaisha Ink containing halogenated alkanol with 2 to 4 carbon atoms, recording method and apparatus using the same
JP3147948B2 (ja) * 1991-09-26 2001-03-19 キヤノン株式会社 インクジェット記録に用いるインク、インクジェット記録方法、記録ユニット、インクカートリッジ及びインクジェット記録装置
JP3406923B2 (ja) * 1992-09-01 2003-05-19 キヤノン株式会社 インクジェット用インク
US5451251A (en) * 1993-02-26 1995-09-19 Canon Kabushiki Kaisha Ink, and ink-jet recording method and instrument using the same
US5478383A (en) * 1993-10-14 1995-12-26 Canon Kabushiki Kaisha Ink, and ink-jet recording method and instrument using the same
US5482545A (en) * 1993-12-28 1996-01-09 Canon Kabushiki Kaisha Ink, and ink-jet recording method and instrument using the same
DE69528094T2 (de) * 1994-02-28 2003-08-07 Canon Kk Farbstoff, diesen enthaltende Druckfarbe und Tintenstrahlaufzeichnungsverfahren und Gerät die Druckfarbe verwendend
EP0699723A3 (en) * 1994-08-31 1997-07-02 Canon Kk Ink for inkjet printing
US5865883A (en) * 1996-03-14 1999-02-02 Canon Kabushiki Kaisha Ink, ink cartridge and recording unit, ink-jet recording method and ink-jet recording apparatus
US6387168B1 (en) * 1998-12-22 2002-05-14 Canon Kabushiki Kaisha Ink, ink container, ink set, ink-jet printing apparatus and ink-jet printing process
US6676254B2 (en) * 2000-12-21 2004-01-13 Canon Kabushiki Kaisha Recording method, ink cartridge, printing device and information recording apparatus
US7008671B2 (en) * 2000-12-28 2006-03-07 Canon Kabushiki Kaisha Recorded matter, method of producing recorded matter, method for improving image fastness, image fastness-improving agent, image fastness improving kit, dispenser, and applicator
US6833158B2 (en) * 2001-08-09 2004-12-21 Canon Kabushiki Kaisha Coating apparatus and coating method of liquid for protection of recorded product, and protection process of recorded product
US20040141036A1 (en) * 2002-11-07 2004-07-22 Canon Kabushiki Kaisha Process and apparatus for weatherability test of image
EP1589148A4 (en) * 2002-12-26 2006-03-08 Canon Kk REDUCING REDEVELOPMENT MEDIUM, INK INK, INK INJECTION, AND PROCESS TO REDUCE INJECTION
JP4721403B2 (ja) * 2003-02-20 2011-07-13 キヤノン株式会社 水性インク及び該水性インクによる記録画像と画像形成方法
JP4771529B2 (ja) * 2003-05-02 2011-09-14 キヤノン株式会社 水性インクと該インクを用いた画像形成方法及び記録画像
EP1621589B1 (en) * 2003-05-02 2014-04-16 Canon Kabushiki Kaisha Water based fluorescent ink, record imaging method and record image
CA2523885C (en) * 2003-05-02 2009-09-22 Canon Kabushiki Kaisha Water-based fluorescent ink, recorded image using the same, and judging method
AU2003243977A1 (en) * 2003-05-02 2004-11-23 Canon Kabushiki Kaisha Ink and ink-jet recording method using said ink
JP4533150B2 (ja) * 2003-05-02 2010-09-01 キヤノン株式会社 複数の蛍光色材を有するプリント用インク及びインクジェット記録方法
US7374606B2 (en) * 2003-06-27 2008-05-20 Canon Kabushiki Kaisha Water-based ink and ink recording method
CN1890330B (zh) * 2003-12-11 2011-01-12 佳能株式会社 水性油墨和使用它的墨盒、喷墨记录方法和记录品
US7195340B2 (en) * 2003-12-26 2007-03-27 Canon Kabushiki Kaisha Ink-jet recording method and ink-jet ink
JP4981260B2 (ja) * 2004-03-16 2012-07-18 キヤノン株式会社 水性インク、反応液と水性インクのセット及び画像形成方法
WO2005087879A1 (ja) * 2004-03-16 2005-09-22 Canon Kabushiki Kaisha インクジェット用インクおよびインクジェット記録方法
CN1926204B (zh) * 2004-04-08 2011-02-02 佳能株式会社 喷墨记录用墨水、喷墨记录方法、墨盒、以及喷墨记录装置
WO2005097922A1 (ja) * 2004-04-08 2005-10-20 Canon Kabushiki Kaisha インク、インクジェット記録方法、インクカートリッジ、及びインクジェット記録装置
CA2565704C (en) * 2004-06-28 2009-08-04 Canon Kabushiki Kaisha Aqueous ink, ink set, and image-forming method
DE602005021785D1 (de) * 2004-06-28 2010-07-22 Canon Kk Cyantinte und tintenkombination
CN1972809B (zh) * 2004-06-28 2011-09-07 佳能株式会社 记录方法、墨盒及图像形成方法
BRPI0511981B1 (pt) * 2004-06-28 2020-11-03 Canon Kabushiki Kaisha tinta aquosa, método de formação de imagem, cartucho de tinta, unidade de gravação e aparelho de gravação de jato de tinta
DE602005024397D1 (de) * 2004-06-28 2010-12-09 Canon Kk Wässrige tinte, wässriger tintensatz, tintenpatrone, tintenstrahlaufzeichner, tintenstrahlaufzeichnungsverfahren und bilderzeugungsverfahren
CN1977005B (zh) * 2004-06-28 2011-03-30 佳能株式会社 青色墨水、成套墨水、成套的墨水与反应液、以及图像形成方法
JP4794940B2 (ja) * 2004-08-04 2011-10-19 キヤノン株式会社 インクタンク、インクジェット記録方法及びインクタンクの再生方法
JP2006096995A (ja) * 2004-08-31 2006-04-13 Canon Inc インクジェット用インク、インクジェット用インクの作製方法、インクジェット記録方法及び前記インクを用いたインクカートリッジ
JP4574498B2 (ja) * 2004-08-31 2010-11-04 キヤノン株式会社 インクカートリッジ及びインクジェット記録方法
JP3907671B2 (ja) * 2004-08-31 2007-04-18 キヤノン株式会社 インクジェット用インク、インクジェット用インクの作製方法、インクジェット記録方法及びインクカートリッジ
JP3907672B2 (ja) * 2004-08-31 2007-04-18 キヤノン株式会社 インクジェット用インク、インクジェット用インクの作製方法、インクジェット記録方法及びインクカートリッジ
EP1801167A4 (en) * 2004-09-08 2011-10-12 Canon Kk COATED FINE PARTICLES, DISPERSED FINE PARTICLES, METHOD FOR PRODUCING COATED FINE PARTICLES, INK, RECORDING METHOD AND RECORDED IMAGE
EP1792960A1 (en) * 2004-09-08 2007-06-06 Canon Kabushiki Kaisha Pigment, method for producing pigment, pigment dispersion, method for producing pigment dispersion, recording ink, recording method, and recorded image
WO2006049305A1 (ja) * 2004-11-02 2006-05-11 Canon Kabushiki Kaisha 蛍光画像形成方法及びその画像とインクジェット記録方法
US7654662B2 (en) * 2004-11-19 2010-02-02 Canon Kabushiki Kaisha Ink jet printing method and ink jet printing apparatus
CN103965689B (zh) * 2005-01-18 2017-04-12 佳能株式会社 墨、成套墨、喷墨记录方法、墨盒和喷墨记录设备
JP5171252B2 (ja) * 2005-05-31 2013-03-27 キヤノン株式会社 被記録媒体

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003327588A (ja) * 2002-03-08 2003-11-19 Canon Inc 新規化合物とその合成方法、インク、インクカートリッジ、記録ユニット、インクジェット記録装置、記録方法、液体組成物、パターン形成方法、物品、環境履歴検知方法及び記録媒体
JP2004262820A (ja) * 2003-02-28 2004-09-24 Canon Inc 新規化合物、物質変換方法及びそれを用いた記録方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SHADAN HOJIN SHIKIZAI KYOKAI: "Shikizai Kogaku Hand Book", 1989, ASAKURA SHOTEN, pages: 333, XP002998173 *
UNO H. ET AL: "Thioindigo precursor: control of polymorph of thioindigo", TETRAHEDRON LETTERS, vol. 45, no. 49, November 2004 (2004-11-01), pages 9083 - 9086, XP004627462 *

Also Published As

Publication number Publication date
JPWO2006028285A1 (ja) 2008-05-08
US20060152570A1 (en) 2006-07-13
CN101014667A (zh) 2007-08-08
EP1792950A1 (en) 2007-06-06

Similar Documents

Publication Publication Date Title
WO2006028285A1 (ja) 顔料結晶製造段階における中間化学物質、それを用いた顔料結晶製造方法、顔料結晶体
JP5031369B2 (ja) 被覆微粒子、分散微粒子、被覆微粒子の製造方法、インク、記録方法及び記録画像
JPWO2006028268A1 (ja) 顔料、顔料の製造方法、顔料分散体、顔料分散体の製造方法、記録用インク、記録方法及び記録画像
JP3712751B2 (ja) 相乗作用顔料混合物の製造方法
JP4502357B2 (ja) 新規化合物とその合成方法、インク、インクカートリッジ、記録ユニット、インクジェット記録装置及び記録方法
CN108864733B (zh) 一种近红外碳罗丹明荧光染料及其合成方法
JP4351440B2 (ja) 新規なスルホニウム塩化合物、その製造方法およびその用途
WO2006088140A1 (ja) フタロシアニン化合物およびその製造方法、ならびに該フタロシアニン化合物を含有する着色組成物
JP4962812B2 (ja) フタロシアニン化合物およびその製造方法、ならびに該フタロシアニン化合物を含有する着色組成物
JP2009235354A (ja) 顔料組成物
JP7219754B2 (ja) 錯塩化合物、染料組成物、陽極酸化アルミニウム用着色剤および着色方法、ならびに該化合物の製造方法
JP2007016203A (ja) フタロシアニン化合物およびその製造方法、ならびに該フタロシアニン化合物を含有する着色組成物
KR101737001B1 (ko) 디케토피롤로피롤 유도체, 상기 유도체를 포함하는 염료 및 그 제조방법
JP4517543B2 (ja) キノロノキノロン−イソインドリノン固溶体及び顔料
JP2001172519A (ja) 超臨界場を応用した有機顔料の製造方法
Mizuguchi A Pigment Precursor Based on 1, 4-diketo-3, 6-diphenyl-pyrrolo [3, 4-c]-pyrrole and its Regeneration into the Pigment
Imura et al. Crystal structure of a quinacridone pigment-precursor and its regeneration process
JP2006077103A (ja) 色素化合物、インク組成物、記録方法及び記録画像
JP4702949B2 (ja) パターン形成方法
JP2006077102A (ja) 金属保護層形成用液媒体及び金属保護層の形成方法
JP2003160738A (ja) 有機顔料結晶の製造方法
JP3496276B2 (ja) 銅フタロシアニンの製造法
TW202132475A (zh) 二苯并哌喃色素、含有該色素之著色組合物、彩色濾光片用著色劑及彩色濾光片、以及該色素之製造方法
CN115260197A (zh) 一种稠环化合物及其制备方法和应用
WO2020162335A1 (ja) キサンテン化合物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 11367456

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWP Wipo information: published in national office

Ref document number: 11367456

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006535187

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005783693

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580030003.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005783693

Country of ref document: EP