WO2006028035A1 - 酸化反応触媒およびそれを用いた化合物の製法 - Google Patents

酸化反応触媒およびそれを用いた化合物の製法 Download PDF

Info

Publication number
WO2006028035A1
WO2006028035A1 PCT/JP2005/016227 JP2005016227W WO2006028035A1 WO 2006028035 A1 WO2006028035 A1 WO 2006028035A1 JP 2005016227 W JP2005016227 W JP 2005016227W WO 2006028035 A1 WO2006028035 A1 WO 2006028035A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxidation reaction
compound
reaction catalyst
activated carbon
oxygen
Prior art date
Application number
PCT/JP2005/016227
Other languages
English (en)
French (fr)
Inventor
Masahiko Hayashi
Yuka Kawashita
Juichi Yanagi
Isao Hamasaki
Original Assignee
Japan Envirochemicals, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Envirochemicals, Ltd. filed Critical Japan Envirochemicals, Ltd.
Priority to US11/661,822 priority Critical patent/US7893004B2/en
Priority to EP05781566A priority patent/EP1806177A4/en
Priority to JP2006535731A priority patent/JP5129961B2/ja
Publication of WO2006028035A1 publication Critical patent/WO2006028035A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/587Unsaturated compounds containing a keto groups being part of a ring
    • C07C49/657Unsaturated compounds containing a keto groups being part of a ring containing six-membered aromatic rings
    • C07C49/665Unsaturated compounds containing a keto groups being part of a ring containing six-membered aromatic rings a keto group being part of a condensed ring system
    • C07C49/675Unsaturated compounds containing a keto groups being part of a ring containing six-membered aromatic rings a keto group being part of a condensed ring system having three rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/342Preparation characterised by non-gaseous activating agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • C07C45/36Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in compounds containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/10Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D231/12Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D235/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
    • C07D235/02Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
    • C07D235/04Benzimidazoles; Hydrogenated benzimidazoles
    • C07D235/18Benzimidazoles; Hydrogenated benzimidazoles with aryl radicals directly attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/02Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings
    • C07D263/08Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D263/10Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • C07D263/12Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms with radicals containing only hydrogen and carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/52Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings condensed with carbocyclic rings or ring systems
    • C07D263/54Benzoxazoles; Hydrogenated benzoxazoles
    • C07D263/56Benzoxazoles; Hydrogenated benzoxazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 2
    • C07D263/57Aryl or substituted aryl radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/60Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings condensed with carbocyclic rings or ring systems
    • C07D277/62Benzothiazoles
    • C07D277/64Benzothiazoles with only hydrocarbon or substituted hydrocarbon radicals attached in position 2
    • C07D277/66Benzothiazoles with only hydrocarbon or substituted hydrocarbon radicals attached in position 2 with aromatic rings or ring systems directly attached in position 2

Definitions

  • the present invention relates to an oxidation reaction catalyst that can efficiently promote various acid-oxidation reactions under mild conditions using oxygen or oxygen in the air, and a method for producing a compound using the same.
  • the present invention relates to an oxidation reaction catalyst comprising activated charcoal containing a large amount of oxygen-containing functional groups that are eliminated as carbon monoxide having a large specific surface area, and a method for producing an oxidation reaction product using the same.
  • An oxidation reaction of an organic compound is one of the most important functional group conversion reactions in organic synthesis as well as a reduction reaction, and is extremely useful in the synthesis reaction of functional compounds such as pharmaceuticals and dyes.
  • the 2-arylbenzoxazole skeleton is a force that is contained in the basic skeleton of pharmaceuticals such as anti-inflammatory agents and anticancer agents.
  • pharmaceuticals such as anti-inflammatory agents and anticancer agents.
  • 2-aminophenol derivatives, benzaldehyde derivatives have a stoichiometric amount or an excess.
  • the amount of barium permanganate, lead tetraacetate, DD Q, etc. needed to be synthesized using an oxidant that would place a burden on the environment.
  • the corresponding carbonyl compounds obtained by acidifying alkylarenes can be easily converted into compounds having various functional groups and are starting materials for important compounds. Stoichiometric amounts of oxidizers such as diacid manganese, diacid selenium, and periodic acid had to be used. In addition, methods using oxygen in the air have been studied, but N-hydroxyphthalimide, ruthenium complexes, cobalt Schiff base complexes, etc. are necessary as catalysts.
  • Patent Document 1 JP-A-11-49717
  • An object of the present invention is to use oxygen or oxygen in the air under safe and mild conditions without using an oxidant that is toxic and has a burden on the environment, such as a heavy metal compound. It is an object of the present invention to provide a catalyst capable of promoting the acid-oxidation reaction of organic compounds. Means for solving the problem
  • Activated carbon has a property of adsorbing various substances. Adsorption is a phenomenon in which the concentration of substances at the interface is higher than the concentration of substances in the nore phase. On the activated carbon surface, the concentration of solutes in the solvent is higher than in other parts. Yes. Therefore, various organic synthesis reactions can be accelerated by adding activated carbon.
  • the present invention provides:
  • An oxidation reaction catalyst comprising activated carbon satisfying the formula (I).
  • S represents the BET specific surface area (m 2 Zg)
  • O represents the weight percentage of the surface oxygen desorbed as carbon monoxide obtained by the following method with respect to the activated carbon.
  • the oxidation reaction catalyst according to (1) or (2) which is used for a reaction of oxidizing a compound having an oxidizable carbon atom directly connected to an aromatic ring (including a heterocycle) into a corresponding aldehyde or keto compound,
  • the oxidation catalyst according to (1) or (2) which is used in an oxidation reaction in which a hydrogen-containing compound is acidally dehydrogenated to form an unsaturated bond or a cyclic compound,
  • a method for producing an oxidation reaction result product wherein an oxidizable organic compound is brought into contact with oxygen in the presence of the oxidation reaction catalyst according to claim 1,
  • the oxidation reaction catalyst comprising activated carbon of the formula (I) satisfying 4000 and SXO according to the present invention comprises a raw coal at a temperature of 300 to 700 ° C, preferably 320 to 700 ° C, phosphoric acid, Activated carbon obtained by activation with chemicals such as zinc chloride and alkali metal hydroxide can be produced by washing with water, hydrochloric acid, nitric acid or the like.
  • the raw material for the oxidation reaction catalyst may be any material used for ordinary activated carbon, such as wood, sawdust, charcoal, raw ash, coconut husk, walnut husk, peach, plum, etc.
  • BET specific surface area of the activated activated carbon is usually 1000 to 2000 2 Zg, preferably 1200 ⁇ 1800m 2 Zg.
  • the activated carbon usually used for the catalyst is often produced by the steam activation method, but it is necessary for the steam activation 800 ⁇ : At high temperatures such as LOOO ° C, the above functional groups are on the activated carbon surface. Can't exist stably.
  • oxidation by an oxidizing agent such as air (oxygen) oxidation, nitric acid, hydrogen peroxide or hydrogen peroxide in a wet state or in a heated state.
  • an oxidizing agent such as air (oxygen) oxidation, nitric acid, hydrogen peroxide or hydrogen peroxide in a wet state or in a heated state.
  • these methods are known to increase only the functional groups (carboxyl group, rataton, etc.) that are eliminated in the diacid-carbon state. This method is not always suitable for obtaining activated carbon with a large amount of oxygen desorbed in the state of acid-carbon.
  • activation is usually performed at 300 to 700 ° C, preferably 320 to 700 ° C using an activation chemical such as phosphoric acid, zinc chloride, or alkali metal hydroxide. .
  • the raw material is mixed with about 30 to 95%, preferably 60 to 80% phosphoric acid, and this is 300 to 700.
  • hot water (30 to 80 ° C.) 5 to 200 times, preferably 10 to LOO times the amount of activated charcoal, and then dried.
  • the zinc chloride activation method When the zinc chloride activation method is used, surface oxygen that is desorbed as carbon monoxide in the activation reaction by setting the maximum temperature to 300 to 550 ° C, preferably 450 to 550 ° C. A large amount of activated carbon can be produced. Heating temperature is high, and with carbon monoxide As a result, the amount of surface oxygen desorbed is reduced, and the activation reaction is not sufficiently advanced.
  • the amount of the salty zinc aqueous solution used is 0.4 to 4.0 times by weight, preferably 1.0 to 3.5 times by weight when the zinc chloride concentration is 40 to 70 wZw% with respect to the activated carbon. More preferably, it is 1.5 to 3.5 times by weight.
  • the activation time is 20 minutes to 10 hours, preferably about 30 minutes to 5 hours. When the activation temperature is low, the activation time is long and the activation temperature is high! In the case of ⁇ , adjust the activation time shorter! / ⁇ .
  • the obtained activated charcoal is washed with 0.5-35% hydrochloric acid at a concentration of 0.5 to L00 times the activated carbon, and usually 2 to L00 times with water, then 80 to 250 ° C.
  • the acid-catalyzed reaction catalyst can be produced by drying preferably at 80 to 200 ° C, more preferably 80 to 150 ° C. Moreover, you may wash
  • the firing is performed at 320 to 700 ° C, but the first stage firing at a low temperature and the second stage firing at a high temperature. It is better to do it separately.
  • an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide
  • the first stage baking is usually performed at 320 to 380 ° C, preferably 330 to 360 ° C, more preferably 335 to 350 ° C.
  • the firing time varies depending on the apparatus used, and is usually 10 minutes to 20 hours, preferably 20 minutes to 10 hours, and more preferably about 40 minutes to 5 hours.
  • the calcination is advantageously performed in an inert gas such as nitrogen gas, carbon dioxide gas, helium gas, or combustion exhaust gas, but the use of nitrogen gas is convenient and economical.
  • the alkali metal hydroxide include sodium hydroxide, potassium hydroxide, lithium hydroxide and the like. Sodium hydroxide is particularly preferable.
  • the use ratio of the alkali metal hydroxide to the activated carbon raw material is usually 0.5 to 10 times by weight, preferably 1 to 5 times by weight, more preferably 2 to 4 times by weight.
  • the activated carbon raw material may be mixed with a solid alkali metal hydroxide and heated, or the alkali metal hydroxide may be melted, or Mix with activated carbon raw material as an aqueous solution and heat it!
  • the material obtained by the first-stage firing treatment is directly subjected to the second-stage firing treatment for activation.
  • the second stage baking temperature is usually 450-700 ° C, preferably 470-680 ° C, More preferably, it is 480-670 ° C.
  • the firing time is usually 10 minutes to 20 hours, preferably 20 minutes to 10 hours, more preferably about 30 minutes to 5 hours. If the firing temperature is lower, the firing time is longer and the firing temperature is higher. It is better to adjust the time soon.
  • the second stage firing is preferably performed using a powerful nitrogen gas that is advantageously performed in an inert gas such as nitrogen gas, carbon dioxide gas, helium gas, or combustion exhaust gas.
  • an inert gas such as nitrogen gas, carbon dioxide gas, helium gas, or combustion exhaust gas.
  • the activated carbon activated by such firing is washed with water, for example, to remove alkali metal hydroxide and dried.
  • the activated carbon used in the present invention is used as a catalyst
  • the activated carbon is usually pulverized.
  • the particle diameter (median diameter) measured by laser scattering Z diffraction method of the pulverized activated carbon is 1 to 100 m, preferably 2 to 50 ⁇ m, more preferably 5 to 20 ⁇ m.
  • a commonly used fine pulverizer such as a container drive medium mill such as a ball mill, a high-speed rotary mill such as a hammer mill, or an airflow pulverizer such as a jet mill can be used.
  • the activated carbon can be used as a catalyst without pulverization, the reaction time may be long.
  • the surface oxygen content of the activated carbon is measured as follows.
  • the amount of surface oxygen desorbed as carbon monoxide in the oxidation reaction catalyst comprising the activated carbon of the present invention is preferably 2.0% by weight or more based on the activated carbon, although it depends on the specific surface area of the activated carbon. % Or more is more preferable. 3.0% by weight or more is most preferable.
  • the value of S X (O) in the formula (I) in the oxidation reaction catalyst of the present invention is 4000 or more, preferably 4200 or more, more preferably 4500 or more.
  • an organic compound to be oxidized that is, a substrate used for the synthesis of the compound using the catalyst of the present invention
  • an appropriate solvent such as benzene, toluene, xylene, mesitylene, acetic acid as necessary.
  • the oxidation reaction catalyst of the present invention is added thereto, oxygen and air are introduced into the reaction vessel, and the substrate and oxygen are brought into contact with each other.
  • One of the typical acid-acid reactions of the present invention is a compound having an oxidizable carbon atom directly connected to an aromatic ring (including a heterocycle), for example, an alkyl arene corresponding to an aldehyde
  • This is a reaction of acidifying a keto compound.
  • Another typical reaction is a reaction in which a hydrogen-containing compound is oxidatively dehydrogenated to form an unsaturated bond or a cyclic compound.
  • Yet another representative reaction is oxidatively dehydrating nitrogen-containing heterocycle from allylaldehyde and a compound having an amino group on one of adjacent carbon atoms and an amino group, hydroxyl group or mercapto group on the other. It is a reaction to form.
  • the addition amount of the oxidation reaction catalyst is usually 0.1 to 200% by weight based on the substrate, although it depends on the reaction, and it is more preferable to use 50 to 200% by weight in order to increase the reaction rate.
  • the concentration of oxygen with which the substrate is contacted is preferably in the range of 0.1 to 100%, more preferably in the range of 5 to 100%, and most preferably in the range of 15 to L00%. If the oxygen concentration is low, the reaction proceeds slowly. Oxygen or air may introduce a tube force into the reaction solution, but it is usually sufficient to bring the reaction solution into contact with air while stirring.
  • the reaction rate can be accelerated by appropriately heating the reaction system, but the reaction temperature is usually 50 to 150. C, preferably 80-130. C.
  • the product, unreacted substrate and oxidation reaction catalyst can be separated by filtration.
  • the separated oxidation reaction catalyst is washed again with a solvent and dried to re-oxidize it. It can be used as a reaction catalyst.
  • the oxidation reaction catalyst of the present invention can obtain a target product oxidized in good yield under mild conditions using oxygen in the air that does not have toxicity such as heavy metal salts. And can be suitably used in the synthesis of beneficial substances such as pigments.
  • Oxidation reaction catalyst No. 2 was obtained in the same manner as in Example 1 except that the amount of the 60wZw% concentration salty zinc aqueous solution added was 95g.
  • An oxidation reaction catalyst No. 3 was obtained in the same manner as in Example 1 except that 75g of the 60wZw% concentration salty zinc aqueous solution used was changed to 75g.
  • coconut shell pulverized product (mesh that passes 90% or more through a sieve with an opening of 0.1 mm) as the raw material
  • An oxidation reaction catalyst No. 4 was obtained in the same manner as in Example 1 except that the amount of the salty zinc aqueous solution having a concentration of 60 wZw% was 95 g.
  • Particle size 1. 1kg of coconut shell charcoal sized to 7 to 0.25mm and 3kg of granular sodium hydroxide sodium hydroxide are mixed well, first stage firing at 340 ° C for 60 minutes in a nitrogen stream Then, second stage baking was performed at 500 ° C. for 40 minutes. The obtained activated carbon was thoroughly washed with warm water to remove sodium hydroxide and dried. The dried activated carbon was pulverized using a ball mill to obtain an acid-reaction catalyst No. 6.
  • An oxidation reaction catalyst No. 7 was obtained in the same manner as in Example 10, except that the second stage baking conditions were 650 ° C and 40 minutes.
  • Oxidation reaction catalyst No. 9 was obtained in the same manner as in Example 12, except that the amount of 80wZw% phosphoric acid used was 1875g.
  • Oxidation reaction catalyst No. 11 was obtained in the same manner as in Example 1 except that the amount of the 60 wZw% concentration salty zinc aqueous solution used was 35 g. [Comparative Example 3]
  • Oxidation reaction catalyst No. 13 was obtained in the same manner as in Example 8, except that the amount of 80wZw% phosphoric acid used was 250g.
  • Oxidation reaction catalyst No. 14 was obtained in the same manner as in Example 6 except that after the two-step firing in Example 6 and further heat-treated at 850 ° C for 30 minutes in a nitrogen stream.
  • 1, 3, 5—Tri-Ferrubirazoline 300 mg, 1. Olmmol
  • 150 mg of acid-catalyzed reaction catalyst and acetic acid 3.5 ml
  • the reaction mixture was filtered using celite, and the filtrate was poured into a saturated aqueous sodium hydrogen carbonate solution and extracted with ethyl acetate.
  • the extract was concentrated, and 1,3,5-triphenylbiazole was obtained as a pale yellow solid by silica gel column chromatography.
  • Fluorene (524 mg, 3.15 mmol), 524 mg of an oxidation reaction catalyst, and 5 ml of xylene as a solvent were placed in a three-necked flask having an internal volume of 100 ml and stirred at 120 ° C. for 24 hours in an oxygen atmosphere.
  • the reaction mixture was filtered through Celite, and Celite and the oxidation reaction catalyst were washed with ethyl acetate.
  • the filtrate was concentrated with a rotary evaporator, the product was separated by silica gel column chromatography, the obtained yellow crystalline solid was quantified, and the yield was defined as the reaction yield.
  • Table 2 shows reaction yields in Test Example 1 to Test Example 6.
  • Example 2 Example 3
  • Example 4 Example 5
  • Example 6 Example 7
  • Example 8 Example 9 Test example 1 () 78 69 63 68 66 75 92 68 82 Test example 2 (%) 91 76 74 72 74 89 98 77 93 Test example 3 (%) 80 75 68 73 65 77 89 71 86 Test example 4 (%) 74 68 65 65 63 71 86 66 81 Test Example 5 (%) 84 81 75 80 76 85 98 81 94 Test Example 6 (%) 74 73 68 71 67 73 91 89
  • the oxidation reaction catalyst of the present invention is a compound having a carbon atom that can be oxidised directly with an aromatic ring (including a heterocycle) using oxygen in the air without toxicity. Can be oxidized to the corresponding aldehyde or keto compound, or the hydrogen-containing compound can be oxidatively dehydrogenated to form an unsaturated bond or a cyclic compound, or an amino group can be attached to one of the adjacent carbon atoms.
  • a compound having an amino group, a hydroxyl group or a mercapto group can also be used for a reaction to form a nitrogen-containing heterocycle by acid dehydrogenation and can be used for synthesizing pharmaceuticals, dyes and the like. .

Abstract

【課題】化合物の酸化反応において、空気中の酸素を酸素源とした酸化反応を効率よく進めることができ、加えて繰り返しの使用が可能な酸化反応触媒を提供することが本発明の課題である。 【解決手段】窒素吸着法によるBET比表面積Sと、一酸化炭素として脱離する表面酸素量Oco(重量%)が式(I)4000<S×Ocoを満たす活性炭が上記課題を解決した。この酸化触媒を用いて、芳香環(ヘテロ環を含む)に直結した酸化されうる炭素原子を有している化合物を対応するアルデヒドやケト化合物に酸化したり、水素含有化合物を酸化的脱水素して、不飽和結合や環状化合物を形成させたり、アリールアルデヒドと、隣接する炭素原子の一方にアミノ基を、他方にアミノ基、水酸基又はメルカプト基を有する化合物から酸化的脱水素的に含窒素ヘテロ環を形成させることができる。

Description

明 細 書
酸化反応触媒およびそれを用いた化合物の製法
技術分野
[0001] 本発明は、酸素または空気中の酸素を用いて温和な条件で種々の酸ィ匕反応を効 率よく進めることのできる酸化反応触媒およびそれを用いた化合物の製法に関する。 特に比表面積が大きぐ一酸化炭素として脱離する酸素含有官能基を多く含む活性 炭からなる酸化反応触媒およびそれを用いた酸化反応結果物の製法に関する。 背景技術
[0002] 有機化合物の酸化反応は、還元反応とともに有機合成において最も重要な官能基 変換反応のひとつであり、医薬品、色素等の機能性化合物の合成反応において有 用'性が極めて高い。
例えば、 2—ァリールべンズォキサゾール骨格は、抗炎症剤、抗がん剤などの医薬 品の基本骨格に含まれている力 従来は 2—ァミノフエノール誘導体、ベンズアルデ ヒド誘導体力 化学量論量あるいは過剰量の過マンガン酸バリウム、四酢酸鉛、 DD Qなどの環境に負荷を与える酸化剤を用いて合成する必要があった。
また、アルキルアレーン類を酸ィ匕して得られた対応するカルボ二ルイ匕合物は、種々 の官能基を有する化合物への変換が容易であり、重要化合物の出発原料であるが、 従来は化学量論量の、二酸ィ匕マンガン、二酸ィ匕セレン、過よう素酸などの酸化剤を 用いる必要があった。また、空気中の酸素を用いる方法も検討されてきたが、 N ヒド ロキシフタルイミド、ルテニウム錯体、コバルトシッフ塩基錯体などが触媒として必要で めつに。
[0003] このような毒性のある触媒を用いる代わりに活性炭と含窒素複素環式塩基の存在 下において、酸素または酸素含有ガスを用いて |8—イソホロンを 4 ォキシイソホロン の製造をする方法が提案されている(特許文献 1)力 活性炭については 30〜2000 m2Zgと 、う広 、範囲の比表面積を持つものが記載され、実施例ではクロマトグラフ ィー用ヤシ殻活性炭と記載されて ヽるだけで何ら特別なものが用いられてはおらず、 反応には特定の含窒素複素環式塩基の存在が必要であり、また他の反応基質に対 する触媒作用につ 、ては全く言及されて 、な 、。
特許文献 1 :特開平 11— 49717号公報
発明の開示
発明が解決しょうとする課題
[0004] 本発明の課題は、重金属化合物等のように、毒性があり、環境に負荷を与えるよう な酸化剤を用いることなぐ安全で、温和な条件で酸素または空気中の酸素を用い て種々の有機化合物の酸ィ匕反応を促進することができる触媒を提供することにある。 課題を解決するための手段
[0005] 活性炭は、種々の物質を吸着する性質を有して 、る。吸着とは界面における物質 の濃度が、ノ レク相における物質の濃度よりも高くなつている現象のことであり、活性 炭表面では、溶媒中の溶質濃度が他の部分と比較して高くなつている。このことから 、活性炭を加えることで種々の有機合成反応を加速することができる。
[0006] 酸素を酸化剤として化合物を合成する反応の場合、空気中の酸素を溶媒中に分散 、溶解するための方策が必要である。本発明者らは比表面積が広ぐ表面酸素量の 多い活性炭を反応系に加えると、反応効率を高めることができることを知見した。また 、その際、加熱により一酸ィヒ炭素の状態で脱離する表面酸素量の多い活性炭を用 いると、反応性を著しく高めることができることを見出し、さらに検討を重ねて本発明を 兀成し 7こ。
[0007] すなわち、本発明は、
(1)
式 (I)を満たす活性炭からなる酸化反応触媒。
4000く S X (0 ) (I)
但し、 Sは BET比表面積 (m2Zg)を、 O は次の方法により求められる一酸ィ匕炭素 として脱離する表面酸素量の活性炭に対する重量%を示す。
O の測定法:
活性炭約 3gを測り取り、内径 25mm、長さ 100cmの石英管に入れ、石英管を温度 調節のできる管状炉に挿入し、窒素ガスを 0. 1LZ分の割合で流しながら、室温から 900°Cまで 30分かけて昇温した後その温度で 30分間保持し、この工程で排出され たガスを全量採取し、メタンコンバーターを設置したガスクロマトグラフィーで一酸ィ匕 炭素を定量し、これに含まれる酸素量の活性炭に対する重量%を計算して求める、
(2)
活性炭が 300〜700°Cで薬品賦活された活性炭である(1)記載の酸化反応触媒、 (3)
芳香環 (ヘテロ環を含む)に直結した酸化されうる炭素原子を有して ヽる化合物を 対応するアルデヒド又はケト化合物に酸化する反応に用いられる(1)または(2)記載 の酸化反応触媒、
(4)
水素含有ィ匕合物を酸ィ匕的脱水素して、不飽和結合又は環状化合物を形成させる 酸化反応に用いられる (1)または(2)記載の酸化反応触媒、
(5)
ァリールアルデヒドと、隣接する炭素原子の一方にアミノ基を、他方にアミノ基、水 酸基又はメルカプト基を有する化合物力 酸ィ匕的脱水素的に含窒素へテロ環を形成 させる酸化反応に用いられる (1)または(2)記載の酸化反応触媒、
(6)
被酸化性有機化合物を請求項 1記載の酸化反応触媒の存在下に酸素と接触させ る酸化反応結果物の製法、
である。
[0008] 本発明の、式 (I)の、 4000く S X O を満たす活性炭からなる酸化反応触媒は、原 料炭を 300〜700°C、好ましくは 320〜700°Cの温度で、りん酸、塩化亜鉛、水酸化 アルカリ金属等の薬品で賦活して得られた活性炭を水、塩酸、硝酸などで洗浄して 製造することができる。
[0009] 酸化反応触媒の原料は、通常の活性炭の原料に用いられるものであればいずれ でもよぐ木材、鋸屑、木炭、素灰、やし殻、くるみ殻などの果実殻、桃、梅等の果実 種子、果実殻炭、果実種子炭、パルプ製造副生物、リグニン廃液、製糖廃物、廃糖 蜜などの植物系原料、泥炭、草炭、亜炭、褐炭、瀝青炭、無煙炭、コータス、コールタ ール、石炭ピッチ、石油蒸留残渣、石油ピッチなどの鉱物系原料、その他海藻、レー ヨン等の天然素材、フエノール榭脂、塩ィ匕ビユリデン榭脂、アクリル榭脂、ポリビュル アルコール等の合成素材などが用いられる。
賦活した活性炭の BET比表面積は、通常 1000〜2000m2Zg、好ましくは 1200 〜1800m2Zgである。
[0010] 酸素の不存在下に加熱により一酸ィ匕炭素として脱離する表面酸素は、活性炭表面 でカルボニル基ゃキノン、アルデヒドの形で存在する酸素と考えられており、この形で 存在する酸素量が多 ヽほど酸ィ匕反応の触媒活性が高 ヽ。
通常触媒用として用いられる活性炭は、水蒸気賦活法で製造されたものが多 ヽが 、水蒸気賦活に必要な 800〜: LOOO°Cと言った高い温度では、上記のような官能基 は活性炭表面で安定的に存在できな 、。
また、活性炭の表面酸素量を増大させる通常の方法の一つとして、ウエット状態、あ るいは加熱状態での空気 (酸素)酸化、硝酸、過酸ィ匕水素などの酸化剤による酸ィ匕 が挙げられるが、これらの方法では、二酸ィ匕炭素の状態で脱離する官能基 (カルボキ シル基、ラタトンなど)のみが増大することが知られている力 本触媒反応の目的であ る一酸ィ匕炭素の状態で脱離する酸素量の多い活性炭を得るにはこの方法は必ずし も適切ではない。
本発明の酸化触媒を製造するには、りん酸、塩化亜鉛、アルカリ金属水酸化物など の賦活薬品を用いて通常 300〜 700°C、好ましくは 320〜 700°Cで賦活するのが良 い。
りん酸賦活法で本発明の酸化反応触媒を製造する場合、原料を約 30〜95%、好 ましくは、 60〜80%のりん酸と混合し、これを 300〜700。Cで 20分〜 10時間、好ま しくは 30分〜 5時間程度加熱して賦活するが、賦活温度が低い場合は賦活時間を 長めに、賦活温度が高い場合は賦活時間を近かめに調整するのがよい。次いで活 性炭に対して 5〜200倍量、好ましくは 10〜: LOO倍量の温水(30〜80°C)を用いて 洗浄後、乾燥する。
[0011] 塩化亜鉛賦活法で製造する場合、賦活反応において、最高到達温度を 300〜55 0°C、好ましくは 450〜550°Cの範囲にすることによって、一酸化炭素として脱離する 表面酸素量の多 、活性炭を製造することができる。加熱温度が高 、と一酸化炭素と して脱離する表面酸素量が減少し、低 、と賦活反応が充分進行しな 、のであまり好 ましくはない。使用する塩ィ匕亜鉛水溶液の量は、活性炭に対し、塩化亜鉛濃度が 40 〜70wZw%の場合 0. 4〜4. 0重量倍であり、好ましくは 1. 0〜3. 5重量倍であり、 より好ましくは 1. 5〜3. 5重量倍である。使用する塩ィ匕亜鉛の量が多すぎると原料と の反応が進みすぎ、ろ過性が低下し精製に支障をきたす。一方塩化亜鉛が少なすぎ ると充分な比表面積が得られないので好ましくない。賦活時間は、 20分〜 10時間、 好ましくは 30分〜 5時間程度である力 賦活温度が低い場合は賦活時間を長めに、 賦活温度が高!ヽ場合は賦活時間を短めに調整するのがよ!/ヽ。
得られた活性炭は、濃度 0. 5〜35%の塩酸を活性炭に対し 2〜: L00倍使用して洗 浄したのち通常は 2〜: L00倍の水で洗浄後、 80〜250°C、好ましくは 80〜200°C、 より好ましくは 80〜150°Cで乾燥することにより、酸ィ匕反応触媒を製造することができ る。また、塩酸の代わりに硝酸で洗浄してもよい。
原料を水酸化ナトリウム、水酸化カリウムのようなアルカリ金属水酸化物の存在下に 焼成する場合、焼成を 320〜700°Cで行うが、低温の第 1段焼成と高温の第 2段焼 成とに分けて行う方がよい。
第 1段焼成は通常 320〜380°C、好ましくは 330〜360°C、さらに好ましくは 335〜 350°Cで行う。焼成時間は用いる装置によっても異なる力 通常 10分〜 20時間、好 ましくは 20分〜 10時間、さらに好ましくは 40分〜 5時間程度である。焼成は窒素ガス 、炭酸ガス、ヘリウムガス、燃焼排ガスなどの不活性ガス中で有利に行なわれるが、 窒素ガスの使用が便宜且つ経済的である。アルカリ金属水酸ィ匕物としては水酸ィ匕ナ トリウム、水酸ィ匕カリウム、水酸化リチウムなどが挙げられる力 特に水酸化ナトリウム が好ましい。アルカリ金属水酸化物の活性炭原料に対する使用割合は通常 0. 5〜1 0重量倍、好ましくは 1〜5重量倍、更に好ましくは 2〜4重量倍である。活性炭原料を アルカリ金属水酸化物の存在下に焼成するには、活性炭原料を固体のアルカリ金属 水酸化物に混合し、これを加熱してもよいし、アルカリ金属水酸化物を熔融し、または 水溶液として活性炭原料と混合しこれを加熱してもよ!/ヽ。
第 2段焼成は、第 1段焼成処理によって得られたものをそのまま第 2段焼成処理に 付して賦活を行う。第 2段焼成温度は通常 450〜700°C、好ましくは 470〜680°C、 更〖こ好ましくは 480〜670°Cである。焼成時間は、通常 10分〜 20時間、好ましくは 2 0分〜 10時間、更に好ましくは 30分〜 5時間程度であるが焼成温度が低めの場合は 時間を長めに、焼成温度が高めの場合は時間を近かめに調整するのがよい。
第 2段焼成は第 1段焼成と同じく窒素ガス、炭酸ガス、ヘリウムガス、燃焼排ガス等 の不活性ガス中で有利に行なわれる力 窒素ガスが好適に用いられる。このような焼 成により賦活された活性炭をたとえば水で洗浄してアルカリ金属水酸ィ匕物を除去し、 乾燥する。
[0013] 本発明で用いる活性炭を触媒として用いる場合、通常は活性炭を粉砕する。粉砕 した活性炭のレーザー散乱 Z回折法で測定した粒径 (メジアン径)は、 1〜100 m 、好ましくは 2〜50 μ m、より好ましくは 5〜20 μ mである。粉砕には、ボールミルのよ うな容器駆動媒体ミル、ハンマーミルのような高速回転ミル、ジェットミルのような気流 式粉砕機等通常用いられる微粉砕機を使用することができる。活性炭を粉砕しなくて も触媒として使用することができるが、反応時間が長くなることがある。
[0014] 活性炭の表面酸素量は次のようにして測定する。
活性炭約 3gを測り取り、内径 25mm程度、長さ 100cm程度の石英管に入れ、石英 管を温度調節のできる管状炉に挿入し、窒素ガスを 0. 1LZ分の割合で流しながら、 室温から 900°Cまで 30分かけて昇温し、そのままの温度で 30分間保持する。このェ 程で排出されたガスを全量採取し、メタンコンバーターを設置したガスクロマトグラフィ 一で一酸化炭素を定量し、これに含まれる酸素量の活性炭に対する重量%を計算し て求める。
本発明の活性炭からなる酸化反応触媒における一酸化炭素として脱離する表面酸 素量は、活性炭の比表面積にもよるが、活性炭に対して 2. 0重量%以上が好ましぐ 2. 5重量%以上がより好ましぐ 3. 0重量%以上が最も好ましい。この一酸化炭素と して脱離する表面酸素量は理論的には多い程酸化反応触媒として好ましいが、実際 には 5重量%あれば十二分である。
また、本発明の酸化反応触媒における式 (I)の S X (O )の値は、 4000以上、好ま しくは 4200以上、更に好ましくは 4500以上である。
この sx (o )の値も理論的には多い程酸ィ匕反応触媒として好ましいが、実際には 10000あれば十二分である。
本発明の酸化反応触媒を用いる酸化反応は、被酸化有機化合物、即ち本発明の 触媒を用いる化合物の合成に用いる基質を、必要により適当な溶媒、例えばべンゼ ン、トルエン、キシレン、メシチレン、酢酸、プロピオン酸、酪酸、ジメチルホルムアミド 等に溶かし、その中に本発明の酸化反応触媒を加え、反応容器中に酸素や空気を 導入して基質と酸素を接触させる。
本発明の酸ィ匕反応の代表的なものの一つは、芳香環 (ヘテロ環を含む)に直結した 酸化されうる炭素原子を有している化合物、たとえば、アルキルアレーン類を対応す るアルデヒドゃケト化合物に酸ィ匕する反応である。もう一つの代表的な反応は、水素 含有化合物を酸化的脱水素して、不飽和結合や環状化合物を形成させる反応であ る。更に他の代表的な反応は、ァリールアルデヒドと、隣接する炭素原子の一方にァ ミノ基を、他方にアミノ基、水酸基又はメルカプト基を有する化合物から酸化的脱水 素的に含窒素へテロ環を形成させる反応である。
より具体的には、アルキルアレーン類の対応アルデヒド、ケトンへの酸化反応、 9, 1 0—ジヒドロアントラセン類、 1, 4ージヒドロピリジン誘導体、三置換ピラゾリン類等のジ ヒドロ、テトラヒドロ芳香族化合物から芳香族化合物への酸化的芳香族化 (脱水素)、 ァミノフエノールとベンズアルデヒドからの 2—フエ-ルペンズォキサゾール類の合成( 脱水素)などが含まれる。
酸化反応触媒の添加量は、反応にもよるが、基質に対して通常 0. 1〜200重量% であり、反応速度を高めるためには 50〜200重量%使用することがさらに好ましい。 基質を接触させる酸素の濃度は、 0. 1〜100%の範囲が好ましぐ 5〜100%の範 囲がさらに好ましぐ 15〜: L00%の範囲が最も好ましい。酸素濃度が低いと反応の進 行が遅くなる。酸素又は空気は、反応液中に管力も導入しても良いが、通常反応液 を攪拌しながら空気と接触させることで充分である。本発明の酸化反応は、反応系を 適度に加温することにより反応速度を促進させることができるが、反応温度は通常 50 〜150。C、好ましくは、 80〜130。Cである。
反応終了後、生成物、未反応の基質と酸化反応触媒をろ過によって分離すること ができる。分離した酸化反応触媒は、溶媒で洗浄した後乾燥することで、再度酸化反 応触媒として使用することができる。
発明の効果
[0016] 本発明の酸化反応触媒は、重金属塩などのような毒性を有することなぐ空気中の 酸素を用いた緩和な条件で収率良く酸化された目的物を得ることができるので、医 薬品、色素などの有益な物質の合成の際に好適に使用することができる。
発明を実施するための最良の形態
[0017] 以下に実施例、比較例および試験例をあげて、本発明を具体的に説明する。
実施例 1
[0018] 乾燥した木粉 50gに 60wZw%濃度の塩ィ匕亜鉛水溶液 140gを加えよく混合し、る つぼに入れて蓋をした。これを電気炉に入れ、 100〜250°Cまで 2時間、 250〜530 °Cまで 1時間かけて昇温し、そのままの温度で 30分保持した後冷却した。これをろ布 の付いた洗浄槽にいれ、塩酸 50mlを水 0. 2Lで希釈した水溶液をカ卩え、 2時間撹拌 洗浄し、水切りした後、 50°Cの水を 0. 25LZ時間の割合で 4時間通水して洗浄した 。この洗浄活性炭を 115±5°Cに保った電気乾燥機で乾燥した。乾燥した活性炭を、 ボールミルを用 、て粉砕して酸化反応触媒 No . 1を得た。
実施例 2
[0019] 使用する 60wZw%濃度の塩ィ匕亜鉛水溶液添加量を 95gとした以外は実施例 1と 同様にして酸化反応触媒 No. 2を得た。
実施例 3
[0020] 使用する 60wZw%濃度の塩ィ匕亜鉛水溶液を 75gとした以外は実施例 1と同様に して酸化反応触媒 No. 3を得た。
実施例 4
[0021] 原料にやし殻粉砕品(目開き 0. 150mmの篩を 90%以上通過するもの)を使用し、
60wZw%濃度の塩ィ匕亜鉛水溶液使用量を 95gとした以外は実施例 1と同様にして 酸化反応触媒 No. 4を得た。
実施例 5
[0022] 60wZw%濃度の塩ィ匕亜鉛水溶液使用量を 50gとした以外は実施例 4と同様にし て酸化反応触媒 No. 5を得た。
実施例 6
[0023] 粒度 1. 7〜0. 25mmに整粒したやし殻炭化品 lkgと、粒状の水酸ィ匕ナトリウム 3kg をよく混合し、窒素気流中 340°Cで 60分間の第 1段焼成を行ない、ついで 500°C、 4 0分間の第 2段焼成を行った。得られた活性炭を温水でよく洗浄して水酸ィ匕ナトリウム を除去し、乾燥した。乾燥した活性炭をボールミルを用いて粉砕して酸ィ匕反応触媒 N o. 6を得た。
実施例 7
[0024] 第 2段焼成条件を 650°C、 40分とした以外は実施例 10と同様にして酸化反応触媒 No. 7を得た。
実施例 8
[0025] 木粉 500gに 80wZw%濃度のりん酸 1560gをカ卩えよく混合し、るつぼに入れ蓋を した。これを電気炉に入れ、 100〜250°Cまで 2時間、 250〜500°Cまで 1時間かけ て昇温し、そのままの温度で 30分保持した後冷却した。これをろ布の付いた洗浄槽 にいれ、 50°Cの水を 2. 5LZ時間の割合で 4時間通水して洗浄した。この洗浄活性 炭を 115 ± 5°Cに保った電気乾燥機で乾燥した。乾燥した活性炭を、ボールミルを用 いて粉砕して酸化反応触媒 No. 8を得た。
実施例 9
[0026] 使用する 80wZw%濃度のりん酸の量を 1875gとした以外は実施例 12と同様にし て酸化反応触媒 No. 9を得た。
[比較例 1]
[0027] 焼成条件を 100〜250°Cまで 2時間、 250〜600°Cまで 1時間力けて昇温し、その ままの温度で 30分保持した以外は実施例 1と同様にして酸化反応触媒 No. 10を得 た。
[比較例 2]
[0028] 使用する 60wZw%濃度の塩ィ匕亜鉛水溶液使用量を 35gとした以外は実施例 1と 同様にして酸化反応触媒 No. 11を得た。 [比較例 3]
[0029] 原料として中国山西省大西炭を使用し、これを粒径 2. 36-1. 18mmの範囲に破 砕、整粒し、 350〜550°Cまで 1時間かけて昇温した後、 850°Cで 5時間水蒸気賦活 をした。賦活した活性炭を塩酸、次いで温水で洗浄した後、ボールミルを用いて粉砕 し、酸化反応触媒 No. 12を得た。
[比較例 4]
[0030] 使用する 80wZw%濃度のりん酸の量を 250gとした以外は実施例 8と同様にして 酸化反応触媒 No. 13を得た。
[比較例 5]
[0031] 実施例 6の二段階焼成の後でさらに窒素気流下、 850°Cで 30分間熱処理をした以 外は実施例 6と同様にして酸化反応触媒 No. 14を得た。
[0032] 実施例、比較例で得られた酸化反応触媒の比表面積 S、一酸化炭素として脱離す る酸素量 Ocoを測定し、表 1に示した。
[表 1]
酸化反応触媒
Figure imgf000011_0001
Figure imgf000011_0002
〔試験例 1〕
[0033] 2- (p—メトキシフエノール)ベンズォキサゾールの合成
2—ァミノフエノール 873mg (8mmol)、 p—ァニスアルデヒド 1089mg (8mmol)、 酸ィ匕反応触媒 lgおよび溶媒としてキシレン 15mlを内容積 100mlの三口フラスコに 入れ、酸素雰囲気で 120°C、 4時間攪拌した。酸化反応の終了を確認した後、反応 混合物を、セライトを用いてろ過し、セライトを少量の酢酸ェチルで洗った。ろ液と洗 液を混合し、ロータリーエバポレーターで約 2mlに濃縮したのち、シリカゲルカラムク 口マトグラフィ一で生成物を分離し、得られた淡黄色結晶性固体を定量し、その収率 を反応収率とした。
〔試験例 2〕
[0034] 1, 3, 5—トリフエ-ルビラゾールの合成
1, 3, 5—トリフエ-ルビラゾリン(300mg、 1. Olmmol)、酸ィ匕反応触媒 150mgお よび酢酸(3. 5ml)を 100mlの三口フラスコに入れ、酸素雰囲気下、 120°Cで 2. 5時 間攪拌した。反応混合物を、セライトを用いてろ過し、ろ液を飽和炭酸水素ナトリウム 水溶液に注ぎ、酢酸ェチルで抽出した。抽出液を濃縮し、シリカゲルカラムクロマトグ ラフィ一によつて淡黄色固体として 1, 3, 5—トリフエ-ルビラゾールを得た。
〔試験例 3〕
[0035] 2—フエ-ルペンズイミダゾールの合成
2—フエ-レンジァミン(951mg、 8. 8mmol)、酸化反応触媒 lgおよび溶媒として キシレン 10mlを内容積 100mlの三口フラスコに入れた。 120°Cで 30分撹拌し、基質 を溶かした後、酸素雰囲気下でベンズアルデヒド(0. 813ml、 8mmol)とキシレン(5 ml)の混合溶液を 1時間かけてゆっくり加え、 1時間撹拌した。反応混合物をセライト でろ過し、セライトと酸ィ匕反応触媒を酢酸ェチルで洗った。ろ液をロータリーエバポレ 一ターで濃縮し、固体を得た。酢酸ェチルで再結晶し、得られた淡黄褐色の結晶を 定量し、その収率を反応収率とした。
〔試験例 4〕
[0036] 2—フエ-ルペンゾチアゾールの合成
2—アミノチォフエノール(0. 856ml, 8mmol)、ベンズアルデヒド(0. 813ml, 8m mol)、酸ィ匕反応触媒 lgおよび溶媒としてキシレン 15mlを内容積 100mlの三ロフラ スコに入れ、酸素雰囲気下、 120°Cで 13時間撹拌した。反応混合物をセライトろ過し 、セライトと酸ィ匕反応触媒を酢酸ェチルで洗った。ろ液をロータリーエバポレーターで 濃縮し、固体を得た。ジェチルエーテルで再結晶した後、得られた無色の結晶を定 量し、その収率を反応収率とした。
〔試験例 5〕 [0037] 2—フエ-ルー 4 (1ーメチルェチル)ォキサゾリンの合成
L—ノ リノール(206mg、 2mmol)とべンズアルデヒド(0. 205ml, 2mmol)、酸ィ匕 反応触媒 250mgおよび溶媒としてキシレン 4mlを内容積 100mlの三口フラスコに入 れ、酸素雰囲気下、 150°Cで 67時間撹拌した。反応混合物を綿栓ろ過し、酸化反応 触媒を酢酸ェチルで洗った。ろ液をロータリーエバポレーターで濃縮し、シリカゲル カラムクロマトグラフィーで生成物を分離し、得られた無色の液体を定量し、その収率 を反応収率とした。
〔試験例 6〕
[0038] フルォレノンの合成
フルオレン(524mg、 3. 15mmol)、酸化反応触媒 524mgおよび溶媒としてキシ レン 5mlを内容積 100mlの三口フラスコに入れ、酸素雰囲気下、 120°Cで 24時間撹 拌した。反応混合物をセライトろ過し、セライトと酸化反応触媒を酢酸ェチルで洗った 。ろ液をロータリーエバポレーターで濃縮し、シリカゲルカラムクロマトグラフィーで生 成物を分離し、得られた黄色結晶性固体を定量し、その収率を反応収率とした。
[0039] 上記試験例 1から試験例 6における反応収率を表 2に示した。
[0040] [表 2] 酸化反応触媒を用いた反応結果
Νο.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.9 実施例】 実施例 2 実施例 3 実施例 4 実施例 5 実施例 6 実施例 7 実施例 8 実施例 9 試験例 1 ( ) 78 69 63 68 66 75 92 68 82 試験例 2 (%) 91 76 74 72 74 89 98 77 93 試験例 3 (%) 80 75 68 73 65 77 89 71 86 試験例 4 (%) 74 68 65 65 63 71 86 66 81 試験例 5 (%) 84 81 75 80 76 85 98 81 94 試験例 6 (%) 74 73 68 71 67 73 91 74 89
Figure imgf000013_0001
本発明の酸化反応触媒 No. 1〜9を用いた実施例 1〜9の場合は、試験例 1〜6の いずれにおいても、 65%以上の高い反応収率であつたのに対し、酸化反応触媒 No . 10〜14を用いた比較例 1〜4の場合は、対応する実施例の反応収率の 80%かそ れ以下と低力つた。すなわち、比較例 1、 3、 5は、比表面積は大であるのに、 O 量 が少ないため、比較例 2、 4は O 量が多くても比表面積が小であるために、 S X (O
CO C
)値が4000ょり小さくなり酸ィ匕反応の収率は低くなった。
o
〔試験例 7〕
[0042] 酸化反応触媒の再利用
試験例 1の反応において、実施例 1の触媒を用い、反応させた後、内容液をろ過す る代わりに、内容液を遠心分離し、上澄みを回収した。残留した酸化反応触媒をさら に 5mlのアセトンで 4回洗浄後、得られた酸ィ匕反応触媒を 60°Cの乾燥機で乾燥した この後、 2—ァミノフエノール(873mg、 8mmol)、ベンズアルデヒド(849mg、 8mm ol)および溶媒としてキシレン 15mlをカ卩え、同様に反応したところ、反応収率は、 79 %であり、ほぼ一回目と同様の結果が得られた。同様の操作を 3回繰り返したが、反 応収率の低下は認められな力つた。
このことから、本酸化反応触媒は、繰り返し使用が可能であることがわ力つた。 産業上の利用可能性
[0043] 本発明の酸化反応触媒は、毒性を有することなぐ空気中の酸素を用いて、例えば 、芳香環 (ヘテロ環を含む)に直結した酸ィ匕されうる炭素原子を有している化合物を 対応するアルデヒドゃケト化合物に酸化したり、水素含有化合物を酸化的脱水素し て、不飽和結合や環状化合物を形成させたり、ァリールアルデヒドと、隣接する炭素 原子の一方にアミノ基を、他方にアミノ基、水酸基又はメルカプト基を有する化合物 力も酸ィ匕的脱水素的に含窒素へテロ環を形成させる反応に使用することができ、医 薬品、色素などの合成に利用することができる。

Claims

請求の範囲
[1] 式 (I)を満たす活性炭からなる酸化反応触媒。
4000く S X (0 ) (I)
但し、 Sは BET比表面積 (m2Zg)を、 O は次の方法により求められる一酸ィ匕炭素 として脱離する表面酸素量の活性炭に対する重量%を示す。
O の測定法:
活性炭約 3gを測り取り、内径 25mm、長さ 100cmの石英管に入れ、石英管を温度 調節のできる管状炉に挿入し、窒素ガスを 0. 1LZ分の割合で流しながら、室温から 900°Cまで 30分かけて昇温した後その温度で 30分間保持し、この工程で排出され たガスを全量採取し、メタンコンバーターを設置したガスクロマトグラフィーで一酸ィ匕 炭素を定量し、これに含まれる酸素量の活性炭に対する重量%を計算して求める。
[2] 活性炭が 300〜700°Cで薬品賦活された活性炭である請求項 1記載の酸ィ匕反応 触媒。
[3] 芳香環 (ヘテロ環を含む)に直結した酸化されうる炭素原子を有して!/ヽる化合物を対 応するアルデヒド又はケト化合物に酸化する反応に用いられる請求項 1または 2記載 の酸化反応触媒。
[4] 水素含有ィ匕合物を酸ィ匕的脱水素して、不飽和結合又は環状化合物を形成させる酸 化反応に用いられる請求項 1または 2記載の酸化反応触媒。
[5] ァリールアルデヒドと、隣接する炭素原子の一方にアミノ基を、他方にアミノ基、水酸 基又はメルカプト基を有する化合物力 酸ィ匕的脱水素的に含窒素へテロ環を形成さ せる酸化反応に用いられる請求項 1または 2記載の酸化反応触媒。
[6] 被酸化性有機化合物を請求項 1記載の酸化反応触媒の存在下に酸素と接触させ る酸化反応結果物の製法。
PCT/JP2005/016227 2004-09-06 2005-09-05 酸化反応触媒およびそれを用いた化合物の製法 WO2006028035A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/661,822 US7893004B2 (en) 2004-09-06 2005-09-05 Oxidation reaction catalyst and process for producing a compound using the same
EP05781566A EP1806177A4 (en) 2004-09-06 2005-09-05 OXIDATION REACTION CATALYST AND PROCESS FOR PRODUCING COMPOUND USING THE SAME
JP2006535731A JP5129961B2 (ja) 2004-09-06 2005-09-05 酸化反応触媒およびそれを用いた化合物の製法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004258005 2004-09-06
JP2004-258005 2004-09-06

Publications (1)

Publication Number Publication Date
WO2006028035A1 true WO2006028035A1 (ja) 2006-03-16

Family

ID=36036317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016227 WO2006028035A1 (ja) 2004-09-06 2005-09-05 酸化反応触媒およびそれを用いた化合物の製法

Country Status (4)

Country Link
US (1) US7893004B2 (ja)
EP (1) EP1806177A4 (ja)
JP (1) JP5129961B2 (ja)
WO (1) WO2006028035A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008063306A (ja) * 2006-09-11 2008-03-21 Japan Enviro Chemicals Ltd イミダゾール化合物の製造方法
WO2008111474A1 (ja) * 2007-03-09 2008-09-18 Japan Envirochemicals, Ltd. インドール化合物の製造方法
JP2012507470A (ja) * 2008-11-04 2012-03-29 コーニング インコーポレイテッド 多孔質の活性炭の製造方法
JP2013163629A (ja) * 2012-02-13 2013-08-22 Kuraray Chemical Co Ltd 活性炭及びその用途
WO2017022515A1 (ja) * 2015-08-05 2017-02-09 東亞合成株式会社 炭素分析方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080226534A1 (en) * 2007-03-13 2008-09-18 Gidumal Rajan H Adsorbent Articles for Disk Drives
WO2011064462A1 (fr) * 2009-11-26 2011-06-03 Centre National De La Recherche Scientifique Utilisation de plantes accumulatrices de metaux pour la preparation de catalyseurs utilisables dans des reactions chimiques
FR2987759A1 (fr) * 2012-03-06 2013-09-13 Centre Nat Rech Scient Utilisation de certaine plantes accumulatrices de metaux pour la mise en oeuvre de reactions de chimie organique
FR2993480B1 (fr) 2012-07-23 2024-03-22 Centre Nat Rech Scient Utilisation de certaines plantes accumulatrices de manganese pour la mise en oeuvre de reactions de chimie organique
EP2769765A1 (en) * 2013-02-22 2014-08-27 Centre National De La Recherche Scientifique Use of compositions obtained by calcing particular metal-accumulating plants for implementing catalytical reactions
EP2958670A1 (en) * 2013-02-22 2015-12-30 Centre National De La Recherche Scientifique - Cnrs Use of compositions obtained by calcining particular metal-accumulating plants for implementing catalytical reactions
FR3008323A1 (fr) * 2013-07-15 2015-01-16 Centre Nat Rech Scient Utilisation de certaines plantes accumulatrices de platinoides pour la mise en œuvre de reactions de chimie organique
FR3010329A1 (fr) * 2013-09-12 2015-03-13 Centre Nat Rech Scient Utilisation de certaines plantes contenant des metaux alcalins ou alcalino-terreux pour la mise en oeuvre de reaction de chimie organique
WO2015036714A1 (fr) * 2013-09-12 2015-03-19 Centre National De La Recherche Scientifique Utilisation de certains materiaux d'origine organique contenant des metaux alcalins ou alcalino-terreux pour la mise en oeuvre de reactions de chimie organique
FR3064496A1 (fr) 2017-03-31 2018-10-05 Centre National De La Recherche Scientifique Utilisation de materiaux naturels d'origine vegetale riches en acides phenoliques pour la mise en oeuvre de reaction de chimie organique et le recyclage de catalyseurs

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3969398A (en) * 1974-05-01 1976-07-13 Monsanto Company Process for producing N-phosphonomethyl glycine
JPH1149717A (ja) 1997-08-01 1999-02-23 Nippon Petrochem Co Ltd 4−オキソイソホロンの製造法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NAKAMICHI N ET AL: "Oxidative Aromatization of 9,10-Dihydroanthracenes Using Molecular Oxygen Promoted by Activated Carbon.", J ORG CHEM., vol. 68, no. 21, October 2003 (2003-10-01), pages 8272 - 8273, XP002993337 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008063306A (ja) * 2006-09-11 2008-03-21 Japan Enviro Chemicals Ltd イミダゾール化合物の製造方法
WO2008111474A1 (ja) * 2007-03-09 2008-09-18 Japan Envirochemicals, Ltd. インドール化合物の製造方法
JP2008222576A (ja) * 2007-03-09 2008-09-25 Japan Enviro Chemicals Ltd インドール化合物の製造方法
JP2012507470A (ja) * 2008-11-04 2012-03-29 コーニング インコーポレイテッド 多孔質の活性炭の製造方法
JP2013163629A (ja) * 2012-02-13 2013-08-22 Kuraray Chemical Co Ltd 活性炭及びその用途
WO2017022515A1 (ja) * 2015-08-05 2017-02-09 東亞合成株式会社 炭素分析方法
KR20180037000A (ko) 2015-08-05 2018-04-10 도아고세이가부시키가이샤 탄소 분석 방법

Also Published As

Publication number Publication date
US20070265475A1 (en) 2007-11-15
JPWO2006028035A1 (ja) 2008-05-08
EP1806177A1 (en) 2007-07-11
US7893004B2 (en) 2011-02-22
JP5129961B2 (ja) 2013-01-30
EP1806177A4 (en) 2009-09-16

Similar Documents

Publication Publication Date Title
WO2006028035A1 (ja) 酸化反応触媒およびそれを用いた化合物の製法
CN113004108B (zh) 一种氧气氧化醇或醛制备酸的方法
Ji et al. Highly efficient oxidation of alcohols to carbonyl compounds in the presence of molecular oxygen using a novel heterogeneous ruthenium catalyst
Sutradhar et al. Cd (ii) coordination compounds as heterogeneous catalysts for microwave-assisted peroxidative oxidation of toluene and 1-phenylethanol
Pothula et al. Bismuth nanoparticles: an efficient catalyst for reductive coupling of nitroarenes to azo-compounds
JP4727806B2 (ja) 容易に除去し得るニトロキシルラジカルを用いるアルコールの選択的酸化方法
JP2008222576A (ja) インドール化合物の製造方法
CN110317131B (zh) 一种乙苯类化合物制备酮类化合物的方法
MELTZER et al. Thyroxine Analogs
Chang et al. Highly selective oxidation of diphenylmethane to benzophenone over Co/MCM-41
Peng et al. Graphene oxide: a green oxidant-acid bifunctional carbon material for the synthesis of functionalized isoindolin-1-ones via formal amide insertion and substitution
CN107602393B (zh) 一种苄位c-h键直接氧化成酮或酸的方法
US5332838A (en) Cyclization process utilizing copper aluminum borate as a catalyst
JP2008063306A (ja) イミダゾール化合物の製造方法
CN104525265B (zh) 2,4-二羟基-5-氯代苯甲醛缩氨基酸铜配合物催化剂、制备方法及应用
CN114029082A (zh) 一种新型高活性磁性纳米粒子的合成方法及其应用
Hashemi et al. Room temperature catalytic aromatization of hantzsch 1, 4-dihydropyridines by sodium nitrite in the presence of acidic silica gel
WO2022155936A1 (zh) 一种合成芳基苄基醚类化合物的方法
JPS627180B2 (ja)
CN116554017A (zh) 一种酮基布洛芬通式化合物的三步制备方法
Liu et al. Selective activation of C–H bonds on the ring of ethylbenzene catalyzed by several diperoxovanadate complexes
CN115819384B (zh) 一种v-n-c材料催化氧化芳香酮制备邻苯二甲酸酐及其衍生物的方法
Feizi et al. Heterogeneous method for the oxidation of alcohols under mild conditions with zinc dichromate adsorbed on alumina
CN113024431B (zh) 一种(e)-1,2-二硒氰基烯烃化合物的光催化合成方法
Heravi et al. Ammonium chlorochromate adsorbed on alumina for cleavage of semicarbazones and phenylhydrazones under classical heating and microwave irradiation in solvent-free system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006535731

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11661822

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2005781566

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005781566

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005781566

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11661822

Country of ref document: US