WO2006025488A1 - 機械部品用制振素材及びその製造方法 - Google Patents

機械部品用制振素材及びその製造方法 Download PDF

Info

Publication number
WO2006025488A1
WO2006025488A1 PCT/JP2005/015999 JP2005015999W WO2006025488A1 WO 2006025488 A1 WO2006025488 A1 WO 2006025488A1 JP 2005015999 W JP2005015999 W JP 2005015999W WO 2006025488 A1 WO2006025488 A1 WO 2006025488A1
Authority
WO
WIPO (PCT)
Prior art keywords
interface
bonding interface
machine parts
damping material
groove
Prior art date
Application number
PCT/JP2005/015999
Other languages
English (en)
French (fr)
Inventor
Tomoaki Nishikawa
Tatsuo Tanaka
Yukio Ito
Original Assignee
Aichi Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corporation filed Critical Aichi Steel Corporation
Priority to EP05776660A priority Critical patent/EP1795781B1/en
Priority to DE602005017647T priority patent/DE602005017647D1/de
Priority to US11/661,674 priority patent/US20080060465A1/en
Priority to JP2006531982A priority patent/JP4826474B2/ja
Publication of WO2006025488A1 publication Critical patent/WO2006025488A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/14Construction providing resilience or vibration-damping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/32Friction members
    • F16H55/36Pulleys
    • F16H2055/366Pulleys with means providing resilience or vibration damping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/1987Rotary bodies
    • Y10T74/19893Sectional
    • Y10T74/19907Sound deadening

Definitions

  • the present invention relates to a material for processing parts used in automobiles, construction machines, industrial machines and the like, and in particular, it is possible to greatly improve the damping property regardless of the material of the material used.
  • the present invention relates to a vibration damping material for machine parts and a method of manufacturing the same.
  • each part is driven by power generated by an engine, a motor or the like.
  • the parts used for them have various required properties depending on the parts, such as contact pressure resistance and bending strength, and materials suitable for satisfying them are selected and used.
  • Patent Document 1 forms a brittle layer (portion) in the material, and then applies thermal shock such as heating or quenching to intentionally generate a crack in the material. It is intended to improve the damping property.
  • Patent Document 2 a linear bead portion is formed on a required portion of a metal plate, and a crack generated in the bead portion is intended to enhance the vibration control effect of the metal plate. is there.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 52-147510
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2000-35082
  • the invention described in the above-mentioned Patent Document 1 is low carbon in order to form a brittle layer inside the material.
  • the steel material is characterized in that it is intentionally carburized, or a high carbon steel which is a brittle material is used in advance, to which a thermal shock such as quenching is applied.
  • Patent Document 2 utilizes the hardenability, and uses a metal plate having a large hardenability and high cracking sensitivity. It is characterized in that the bead portion is formed at the site where the crack is generated to give the crack. Therefore, this technique inevitably has high hardenability and does not use metal plates, and the effect is not obtained.
  • the application range is large in terms of the material. There is a problem of being restricted.
  • the present invention has been made to solve the above-mentioned problems, and there are few restrictions on the material surface and it is easy to select the material according to the request, and it is widely applied to many machine parts. It is an object of the present invention to provide a vibration control material for machine parts, which is capable of easily obtaining excellent vibration control characteristics.
  • a method according to the first aspect of the present invention wherein the groove formed by plastic working and Z or machining is subjected to plastic working in a direction to reduce the space in the groove or the first material having a hole.
  • a damping material for machine parts characterized by having a non-bonding interface in contact without metallic bonding, formed by a method of pressing a second material into a hole.
  • the present invention has been intensively studied to minimize the restrictions on the material surface and the shape surface, and as a result of obtaining the following findings, it is possible to suppress vibration in a wide range where the restriction on the material surface is extremely small. It has succeeded in providing parts with enhanced character.
  • the non-bonding interface can be generated by, for example, plastic processing and z or machining, as is known in the manufacturing method described later, if it is a material that can process these, it is common to be large. There is an advantage that the vibration effect can be obtained, and the restriction on the material surface can be made much smaller than the invention described in the patent document.
  • contact also includes the case where a non-contact part is partially present when viewed in a micro, and includes all cases where contact is made at the interface of 4 power.
  • a second aspect of the present invention is a method of manufacturing a vibration damping material for machine parts having a non-bonding interface in contact without being metallically bonded
  • a groove forming step of forming a groove which is a source of a non-bonding interface by plastic working and Z or machining on the surface of the material;
  • a compression step of forming the non-bonded interface by applying plastic working in a direction to reduce the space in the groove and bringing the opposing inner wall surfaces into contact with each other. It is in the manufacturing method.
  • a third aspect of the present invention is a method of manufacturing a vibration damping material for machine parts having a non-bonding interface in contact without being metallically bonded,
  • a first material having a hole and a second material having an outer shape that can be press-fit into the hole are compared.
  • a vibration control material for machine parts including a pressure insertion step of forming the non-bonding interface at the position of the inner peripheral wall of the hole by pressing the second material into the first material; It is in the manufacturing method.
  • a fourth aspect of the present invention is a mechanical component characterized by being produced by processing the above-mentioned vibration damping material for mechanical component.
  • FIG. 1 is an explanatory view showing a shape immediately after grooving which is in the process of forming a non-bonding interface in Example 1.
  • FIG. 2 An explanatory view showing a state after forming a non-bonding interface in Example 1.
  • FIG. 3 Explanatory drawing which shows the change of the logarithmic reduction rate at the time of changing the depth of a non-bonding interface in Example 1.
  • FIG. 4 is an explanatory view showing an excitation position at the time of vibration damping evaluation of the spur gear in Embodiment 2.
  • FIG. 5 An explanatory view showing a first material in Example 4.
  • FIG. 6 is an explanatory view showing a second material in the fourth embodiment.
  • FIG. 7 An explanatory view showing a spur gear of a type in which a pin is press-fitted in Example 4.
  • FIG. 8 An explanatory view showing an example of the shape of the non-bonding interface.
  • FIG. 9 An explanatory view showing an example of the shape of the non-bonding interface.
  • FIG. 10 An explanatory view showing an example of the shape of the non-bonding interface.
  • FIG. 11 An explanatory view showing an example of the shape of the non-bonding interface.
  • FIG. 12 is an explanatory view showing an example of the shape of a non-bonding interface.
  • FIG. 13 An explanatory view showing an example of the shape of the non-bonding interface.
  • FIG. 14 An explanatory view showing an example of the shape of the non-bonding interface.
  • the formation of the non-bonded interface in the vibration damping material for machine parts of the present invention can be performed by performing at least the groove forming step and the compression step as in the invention of the second aspect.
  • the groove forming step is performed by plastic working or machining or a combination of both.
  • the said compression process is performed by plastic working.
  • the selection of these processing methods can be made according to the material, and may be performed cold, or may be heated and performed hot.
  • machine parts are often manufactured by forging because of their excellent productivity. Therefore, when the present invention is applied to a part that has been manufactured by conventional carburized forging, the conventional forging process is redesigned as a process that enables the groove forming process and the compression process. It is possible to produce machine parts provided with a non-bonded interface without significantly reducing productivity.
  • the processing of the groove in the groove forming step can also be carried out by a machine tool.
  • various methods can be selected without any particular limitation on the method of machining.
  • plastic processing such as heat forging and cold forging, it is easy to form a V-shaped groove.
  • the groove forming step can be performed by forging using a die having a protrusion corresponding to the groove.
  • the shape of the groove can be controlled by selecting a desired shape as the shape of the protrusion.
  • the non-bonding interface can be formed from the surface to a predetermined depth inside and not penetrated. In this case, since it is possible to manufacture as one part, it is possible to obtain one with excellent dimensional accuracy and stability.
  • the non-bonding interface to be generated affects the damping property improvement effect in proportion to the size thereof, it is necessary to generate a non-bonding interface that is somewhat large. That is, the larger the area of the interface, the greater the effect of damping the vibration.
  • the length force in the depth direction of the non-bonding interface is preferably 20% or more of the thickness dimension in the same direction. I'm sorry. The lower limit of the length in the depth direction is set to 20% because if it is less than 20%, the vibration damping effect may not be sufficiently obtained.
  • the upper limit is not particularly specified, even if the position of the non-bonding interface is selected and manufactured so as to be a portion to which a large stress is not applied, strength problems may be caused depending on the condition of parts If there is a possibility of occurrence, it is necessary to judge the upper limit of the interface depth appropriately according to the applied parts. As a guideline, it is desirable to set it to about 90% or less. In order to obtain a sufficient damping effect, it is desirable to make the interface depth 50% or more of the thickness dimension in the same direction.
  • the groove portion which is the source of the non-bonding interface is formed by plastic working and Z or mechanical processing, and then the space in the groove portion is reduced.
  • the plastic working can be further applied in the direction, and the groove space can be worked as small as possible, so that almost the entire surface is apparently in contact with the formed non-bonded interface.
  • the non-bonded interface be finally in a state of apparently contacting, the cross-sectional shape of the groove portion to be processed first does not have to be particularly limited. For convenience of processing, it is possible to freely select and carry out the shape (for example, in the case of forging, it is easy to process and it is necessary to be concerned about the problem of mold life which is used).
  • the groove may be hot-worked or heat-treated at a temperature above the transformation point, in which case a scale is generated on the surface, so the space in the groove is formed.
  • a scale is generated on the surface, so the space in the groove is formed.
  • the vibration damping effect at the non-bonded interface can be enhanced, and a better damping effect can be obtained.
  • one of the forms of the non-bonding interface is a non-penetrating force formed from the surface to a predetermined depth in the interior.
  • Partial press-fit can also be realized by the above-described third side surface manufacturing method, which can be formed only by combining the groove forming step by processing and the compression step by plastic caulking. Meanwhile, the non-bonding interface may be formed to penetrate from one surface to another surface. In this case, it can be realized by the press-in method which is the manufacturing method of the third aspect described above.
  • a first material having a hole and a second material having an outer shape that can be press-fit into the hole are prepared, and the hole is formed by pressing the second material into the first material.
  • the hole provided in the first material may or may not penetrate, but if it does not penetrate, the first material and the second material can be made so that the press-in operation can be performed smoothly. It is necessary to provide an air vent in one of the two.
  • At least one of the first material and the second material is subjected to a preliminary heat treatment for forming a scale on the surface before the press-in step.
  • a preliminary heat treatment for forming a scale on the surface before the press-in step.
  • the vibration damping material for machine parts can be effectively used when it is used as a gear, it is used as a gear damping material for forming a gear having vibration damping characteristics. be able to.
  • it has a ring-shaped or disc-shaped main body portion and a tooth mold forming scheduled portion provided on the outer peripheral side surface or the inner peripheral side surface, and the non-bonding interface is at least one of the axial direction of the main body portion. It will be formed from the end face and it will make it go.
  • the gear is, of course, a component that serves to transmit power of an engine or the like by intertwining teeth and teeth, but stress is not applied uniformly to the entire component of the gear.
  • the power is concentrated and applied to the teeth, so in a position apart from the teeth force, that is, for example, in a gear whose teeth are machined on the outer periphery or inner periphery, a region other than the outer periphery or inner periphery teeth is , No big force is loaded. In some cases, through holes may be partially used to reduce weight. Therefore, the present inventors paid attention to the stress loading condition in such a gear, and formed a non-bonded interface at a position separated by an appropriate length from the region where the teeth are to be processed.
  • a fatigue test was conducted with the driving force applied as in use. As a result, it is understood that when the driving force to be loaded is increased, the strength limit of the gear is generated due to the fracture of the untoothed part due to the fracture from the non-bonded interface, and the effectiveness of the present invention is confirmed. It is Therefore, by manufacturing a gear using the vibration damping material of the present invention, it is possible to easily manufacture a gear which is extremely excellent in vibration damping property.
  • the generation of the non-bonding interface greatly improves the vibration damping property at the material stage before processing the teeth, but the teeth are machined to this material to be used as a gear.
  • the vibration damping property is further improved remarkably (the degree of improvement will be concretely shown in the examples described later) o
  • the reason why the vibration damping property is remarkably improved by processing into the gear shape Although this is not clear enough, it is thought that one of the reasons is that the distance to the non-bonded interface is close at the tooth bottom due to the tooth being processed on the outer circumference.
  • the gear is often carburized when it is necessary to obtain high strength, the present invention can obtain excellent vibration damping performance regardless of the presence or absence of the carburized treatment.
  • the non-bonding interface is preferably formed in a ring shape. In this case, the transmission of vibration in and out of the ring can be reliably suppressed.
  • the non-bonding interface can be formed in a circular shape.
  • a circular shape is adopted, the formation of the non-bonding interface can be facilitated.
  • the non-bonding interface can be formed in an asymmetric shape.
  • Asymmetrical shapes include irregular polygons, irregular waveforms, and various other shapes. In this case, it can be expected to further enhance the damping effect.
  • the chemical composition of the steel used as the test material is: 0.21% C-0. 32% Si-0. 77% Mn- 1. 16% Cr-0. 16% Mo- 0.302% A1- 0 ⁇ It is a 011% N steel and uses a round bar of JIS-SCM420H that is readily available commercially.
  • test material 1 of SCM 420 H having an outer diameter of 120 mm, an inner diameter of 25 mm and a thickness of 20 mm, as shown in FIG. 1, and strike a cylindrical jig (not shown) as a substitute for a die by hot forging.
  • the force distance L was divided into three levels for molding.
  • another test material of the same component size and machined with the same groove shape was also manufactured (groove part formation process).
  • the forged material formed by the above hot forging is machined into an outer diameter of 96 mm, an inner diameter of 25 mm, and a thickness of 16 mm, and a vibration damping material for machine parts (vibration damping material for gears)
  • the diameter of the non-bonded interface after machining was divided into three parts at the position of the groove 5 at the time of the groove processing. Therefore, after machining as shown in Table 1, 50 mm (Test No. E 11), 60 mm (Test No. E12), 75 mm (Test No. E13), and the depth of the non-bonded interface 50 was 4 to 13 mm.
  • a non-bonded interface made of the same component which is a comparative material (Test No. C11)
  • a material round bar was machined as it was and processed into the same size. And evaluation of the damping property mentioned later was performed using the test piece after this machining.
  • a test piece in which a non-bonding interface 50 was introduced into the material by using a plastic cover and Z or mechanical force has a significantly higher logarithmic damping factor than the conventional material (C11) that does not have all non-bonded interfaces, and the generation of non-bonded interfaces significantly improves the damping performance. Force.
  • the damping property is improved as the interface area is increased by increasing the depth of the non-bonding interface.
  • the damping effect is small compared to the comparison material, so in this experiment the non-bonded interface with a depth of at least 30% or more was It can be judged that it is preferable (but, as described later, when evaluated after being processed into a gear shape, the damping effect is significantly increased, so the lower limit of the preferable range of interface depth ratio is 20%. In addition, if the shape of the member is different, the range of preferable depth is considered to fluctuate). Moreover, it became clear by this experiment that the performance of the damping property also differs depending on the position where the non-bonded interface is formed.
  • the result is obtained that the damping performance is better as the diameter of the non-bonding interface is larger, but this is because the position of the noise source and the position of the non-bonding interface It is thought that differences in performance will occur depending on the relationship, so even if it is the part shape of this example, it is not necessarily that the larger the diameter of the non-bonding interface is, the better the performance is. It is considered necessary to accurately determine the optimal position for each part above.
  • a spur gear 2 with 3 and 30 teeth was produced. Then, in the state of being suspended by two wires in the same manner as in the first embodiment described above, the positions shown in FIG. 4 (end face excitation position Sl, tooth surface excitation position S2) are excited with a hammer and their addition is performed.
  • the vibration of the end face of the diagonal tooth generated by vibration was measured using a laser displacement meter, the damping property was evaluated by the following method. The test was performed on a material with an interface depth of 3.5 mm in order to determine the lower limit interface depth at which the effect in the geared state is clearly recognized.
  • the calculation method of the logarithmic attenuation factor is the same as that of the first embodiment.
  • Comparison material 1 SCM420 Comparison material 2—FGD500
  • Example 1 As described above, according to the results of Example 1 evaluated before machining the teeth, the effect of the generation of the non-bonding interface was at most 5.4 times (logarithmic damping ratio), but the spur gear When evaluated in the processed state, the effect (logarithmic attenuation ratio) exceeding 200 times at maximum was obtained.
  • the reason why this remarkable effect is obtained is that, as mentioned above, at the bottom of the tooth due to the processing to the gear, the distance to the non-bonded interface is considered to be close. It is conceivable that the tooth shape of the spur gear is a shape more suitable for the improvement of the damping property when the non-bonded interface is generated, as compared with the raw material. In addition, a gear with an interface depth of 3.5 mm was found to have a damping effect of about 4 times.
  • FCD500 C22
  • C22 is one of the spherical graphite pig irons that have conventionally been said to have superior force damping properties compared to steel. It was confirmed that
  • Comparison material 1 ⁇ SCM 420 H, comparison material 2 ⁇ FGD 500
  • the test piece is a spur gear having a thickness of 16 mm, module 3, 30 teeth, and an inner diameter of 25 mm, as in the second embodiment described above.
  • the second raw material 22 on the inner diameter side was press-fit into the through-hole 210 of the raw material 21 of No. 1 and then machined to form teeth and the like.
  • some of the parts shown in FIG. 7 have specifications in which through holes 6 are provided in six circumferential directions of the non-bonding interface 5 in the obtained spur gear 2 and the pins 61 are press-fitted.
  • the second material 22 shown in Fig. 6 has an outer diameter D2 of 45. 09 mm, 60. 11 mm, 75. 15 mm (inner diameter D1 is all 25 mm). Prepared three types of). Also, as the first material 21 shown in FIG. 5, there are three types of internal diameter D 3 force of the hole 210: 5.00 mm, 60.00 mm, 45.00 mm (all D 4 diameter is 95.8 mm). Prepared. In addition, a chamfered portion 225 is provided at an outer peripheral corner portion of the second material 22, and a chamfered portion 215 is provided at an inner peripheral corner portion of the first material 21.
  • test piece As a more specific production method of the above-mentioned test piece, two kinds of cold press-in method and scale press-in method shown below were adopted.
  • first material 21 and second material 22 are press-fit at room temperature.
  • scale press-in method the above two parts to be press-fit are heated to 900 ° C. ⁇ 1 hr to make the surface be in a state of being scaled, and then cold press-fit.
  • the scale thickness was about 100 ⁇ m.
  • test pieces produced The types of test pieces produced and the test results are shown in Table 5.
  • the comparative product (Test No. C51) is the same as Comparative Material 1 (C21) in Example 2.
  • the vibration damping property was improved by 1.3 to 8.5 times in logarithmic damping factor due to the non-bonded interface generated by press-fitting. In particular, insert pins to increase the area of the interface!
  • the products (E 53, E 56) obtained had a higher effect of improving the damping property than the other test products.
  • the damping property was improved as compared with the case where the scale was not attached. From this result, it can be seen that the damping property is improved when the scale is present at the interface.
  • the scale is on the interface because the damping property is improved as compared with the case where the scale is narrowed at the non-bonding interface but the directional scale does not exist. It is desirable to manufacture in a process that is sandwiched between.
  • the vibration damping property improvement effect is small when the non-bonding interface is formed by press-fitting.
  • the diameter of the non-bonded interface increases, the tendency is also seen that the damping property is improved.
  • press-in is inferior in productivity as compared to forging. Therefore, it is desirable to form the non-bonded interface by forging as much as possible.
  • it is possible to select the improvement of the damping performance by press-fitting if the merits of performing the silver construction can not be obtained sufficiently because the parts are large and the number of products produced is small.
  • the shape of the non-bonding interface is all circular in order to facilitate the experiment.
  • the non-bonding interface only needs to be able to enhance the damping property, it is of course possible to set it to another shape which is not limited to a circular shape.
  • the disk-shaped member 6 as a vibration damping material for machine parts or a machine part shown in FIGS. 8 and 9, it is possible to form regular polygonal non-bonding interfaces 51 and 52. Furthermore, it may be non-bonded interfaces 53 and 54 exhibiting an irregular polygonal shape which is asymmetric as shown in FIG. 10 and FIG.
  • the non-circular shape for example, the above-mentioned polygon, etc. It is necessary to ensure that the outer and inner parts do not slip at the bonding interface. Examples of other non-bonded interface shapes are shown in FIGS. FIG.
  • FIG. 12 shows an example in which a non-bonding interface 55 is provided in a square spline shape.
  • FIG. 13 shows an example in which a non-bonding interface 56 is provided in an involute spline shape.
  • FIG. 14 shows an example in which a non-bonding interface 57 is provided in a serrated manner.
  • the kneading of the tooth pair becomes a specific frequency according to the rotation frequency and the number of teeth. Also, torque occurs at a specific frequency as well.
  • the non-bonded interface of the equilateral polygon the non-bonded interface is also subjected to periodic transmission according to the number of angles in response to the periodic transmission of torque and vibration from the meshing tooth surface, so the vibration damping effect force There is a possibility of falling.
  • the vibration damping interface has an indeterminate cycle, so that the damping effect can be expected to be further improved in an actual gear drive environment.
  • the vibration-damping material for machine parts according to the present invention has a non-bonded interface which is not metallurgically bonded formed by plastic working and Z or machining, or press fitting.
  • the vibration damping property can be greatly improved as compared to a material having no non-bonding interface.
  • it has a remarkable effect that vibration damping properties superior to those of the material before Karoe can be obtained, and the effects are representative It can be obtained regardless of the presence or absence of carburizing treatment which is a typical surface hardening treatment.
  • the present invention is characterized by forming the non-bonding interface by plastic working and Z or machining or press-fitting, so it is possible to form the non-bonding interface as long as these processes are possible.
  • material limitations are significantly less than when using conventional thermal shock to generate cracks. Therefore, it is possible to select an optimal material according to the site used and the required characteristics.
  • the non-bonding interface can be formed by freely selecting convenient sites for machine parts. So select a site where no large stress is applied, and By molding, it is possible to significantly improve the vibration damping property with almost no reduction in strength as compared with the conventional machine parts.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Gears, Cams (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

 金属的に結合することなく接触している非結合界面を有する機械部品用制振素材である。非結合界面は、表面から内部の所定深さまで形成されており、貫通していない構造をとることができる。この場合、非結合界面の深さ方向の長さが、同一方向の厚み寸法の20%以上であることが好ましい。非結合界面は、一表面から他の表面に貫通するように形成してもよい。機械部品用制振素材としては、制振特性を有する歯車を形成するための歯車用制振素材であって、リング状又は円盤状の本体部と、その外周側面又は内周側面に設けた歯型形成予定部を有しており、前記非結合界面は、前記本体部の軸方向の少なくとも一端面から形成されたものがある。

Description

明 細 書
機械部品用制振素材及びその製造方法
技術分野
[0001] 本発明は、自動車、建設機械、産業機械等で用いられる部品を加工するための素 材に関するものであり、特に、使用する素材の材質に関係なく制振性を大きく高める ことが可能な機械部品用制振素材及びその製造方法に関する。
背景技術
[0002] 自動車、建設機械、産業機械等では、エンジンやモーター等によって発生した動 力によって各部が駆動する。それらに用いられる部品には、耐面圧性や曲げ強度等 、部品に応じて様々な要求特性があり、それを満足させるのに適した材料が選択され 、使用されている。
[0003] そして、これらの素材は、その多くが Fe、 A1等の合金であるが、素材の材質そのも のでは解決し難い欠点がある。すなわち、これらの合金力もなる部品は、使用環境で 発生した振動を伝播させやすぐかつその部品のみでは振動を減衰させる能力に限 界があり、結果としてノイズが発生し静粛性が低下すること、振動により部品の使用寿 命が低下する場合があることである。
[0004] 例えば、最近の自動車にお!、ては、単にエンジン性能が優れて 、ることだけでは、 ユーザーの厳し 、要求を満足させることができず、運転中における車内での高 、レ ベルでの静粛性が要求されるようになってきた。自動車の場合、騒音発生の 1つの大 きな要因はギヤノイズであるが、ノイズ発生の原因となる歯車は一般的に浸炭処理さ れているものが多ぐ熱処理歪の発生等により、歯車の嚙み合いに悪影響が生じるこ とがノイズ発生の原因であることがわ力つてきている。従って、熱処理歪低減を目的と した様々な技術開発が盛んにおこなわれる一方で、発生した音や振動を遮断、ある いは低減する技術の開発が強く望まれて 、た。
[0005] このギヤノイズを例とすれば、その発生を防止するために、浸炭処理後に再度仕上 げカ卩ェを行って、熱処理歪を解消する方法も考えられないわけではない。し力しなが ら、そのための仕上げ加工に多大なコストが必要となる。また、歯車やそれを内蔵し たユニット自体にダンパー機構を設けることも技術的には可能である力 そのための スペースの確保や、部品点数の増加により、コスト面の制約が生じてしまい、それらの 方策の採用が進まないのが現状である。従って、製造した歯車に浸炭によって生じ た歪が残ったままで使用しても、ユーザーが満足できる静粛性が確保可能な技術開 発が強く要望されていた。
[0006] この課題に対して、最も直接的な改善方法として、部品を制振材料によって製造し 、部品そのもので振動を吸収してしまう方法がある。し力しながら、従来から知られて いる制振材料としては、鉄基の高合金であったり、純 Mg、 Mg合金、あるいは Mn— Cu合金が良く知られている力 いずれも高価であることは言うまでもなぐ加えて機械 構造用部品として使用した場合には、十分な強度を確保できないという問題がある。 また、鋼板分野で知られている制振性の優れた複合鋼板にしても、機械構造用部品 、特に動力伝達部品となると、鋼板という形状面での制約があり、使用できる範囲は 極端に少ない。従って、これらの問題を発生させることなぐ材料の種類に関係なぐ 優れた制振性を付与することが可能な素材の開発が強く望まれていた。
[0007] 前記したような特別な制振性の優れた材料を用いることなく制振性を高められる方 策としては、従来から部品中に意図的に金属結合して 、な 、割れ等の界面を導入す る方法が良く知られており、例えば特許文献 1、 2等に記載の技術が知られている。
[0008] このうち、特許文献 1に記載の技術は、材料内に脆い層(部分)を形成させ、その後 に過熱、急冷等の熱衝撃を加え、材料内部に意図的に割れを発生させて制振性を 高めようとするものである。
[0009] また、特許文献 2は、金属板の所要部位に線状のビード部を形成し、このビード部 内に生じさせた割れによって、該金属板の制振効果を高めようとするものである。
[0010] 特許文献 1 :特開昭 52— 147510号公報
特許文献 2:特開 2000— 35082号公報
発明の開示
発明が解決しょうとする課題
[0011] し力しながら、前記した従来の発明には次の問題がある。
前記した特許文献 1に記載の発明は、材料内部に脆い層を形成するために、低炭 素鋼においては、意図的に浸炭を行ったり、あらかじめ脆い材料である高炭素鋼を 用い、それに急冷等の熱衝撃を与えることを特徴として 、る。
[0012] そのため、特許文献 1の技術を利用して機械部品の制振性を高めようとすると、強 度上浸炭の必要のない部位に使用する場合にまで浸炭が必要となったり、高炭素鋼 を使うのが適しない部位にまで高炭素鋼等の割れやすい材料を用いることとなり、本 来最適と判断される材料や、適した熱処理を選択することができず、材質、熱処理方 法の選択が著しく制限されてしまうという問題がある。
[0013] また、特許文献 2に記載の発明は、その明細書にも記載されている通り、焼入硬化 能を利用しており、焼入硬化能が大きく割れ感受性の高い金属板を用い、割れを発 生させる部位にビード部を形成させて割れを付与させることを特徴として 、る。従って 、必然的にこの技術は焼入硬化能の高 、金属板を用いな 、とその効果が得られな いものであり、鋼板という形状面での制約に加えて、材質面で適用範囲が大きく制限 されてしまうという問題がある。
[0014] 本発明は、前記課題を解決することを目的に成されたものであり、材質面での制限 が少なく要求に応じた材質選択が容易であり、多くの機械部品に広く適用することが でき、さらに優れた制振特性を容易に得ることのできる機械部品用制振素材を提供 することを目的とする。
課題を解決するための手段
[0015] 本発明の第 1の側面は、塑性加工及び Z又は機械加工により形成した溝部を該溝 部内空間を縮小させる方向に塑性加工を加える方法、あるいは穴部を有する第 1の 素材の前記穴部に第 2の素材を圧入する方法によって形成した、金属的に結合する ことなく接触している非結合界面を有することを特徴とする機械部品用制振素材にあ る。
[0016] 本発明は、材質面、形状面での制限ができるだけ少なくなるよう、鋭意検討した結 果、以下の知見を得ることにより、材質面での制限が非常に少なぐ幅広い範囲で制 振性を高めた部品を提供可能とすることに成功したものである。
[0017] (1)前記した先願特許では、熱衝撃により割れを生成させることとしていたため、脆い 材料を選択するか意図的に脆くする処理が必須となり、必然的に材質が極端に制限 されるという欠点を有していた。しかしながら、熱衝撃を与えることなく非結合界面を 生成できれば、同様な制振効果が得られるのではないかと考えた。そこで、例えば、 塑性加工及び Z又は機械加工を利用して意図的に非結合界面を付与し、制振性の 評価を行った結果、前記加工によって意図的に付与した非結合界面であってもその 界面の形状によっては、十分に大きな制振性改善効果が得られることを見出したもの である。また、前記非結合界面は、後述する製造方法力 知られるように、例えば、塑 性加工及び z又は機械加工により生成できるので、これらの加工が可能な材質であ れば、共通して大きな制振効果が得られるという利点があり、前記特許文献記載の発 明に比べ、材質面の制限をはるかに小さくすることができる。
[0018] (2)本発明では、例えば、塑性加工及び Z又は機械加工によって非結合界面を生 成させるため、当然の如く非結合界面の位置を機械部品にとつて都合の良 、位置及 び形状とすることが容易となる。従って、部品の強度上問題とされない位置(=高い 応力が負荷されない位置)に非結合界面を設けることにより、非結合界面を有するに もかかわらず強度面でも問題のない機械部品を製造可能な素材を得ることができる。
[0019] (3)優れた制振性を確保するためには、生成した非結合界面の隙間が狭く閉じて、 金属結合することなく接触していることが必要である。なお、ここでいう接触とは、ミクロ に見れば非接触の部分が部分的に存在する場合も含んでおり、見力 4ナ上界面で接 触して 、る場合をすベて含むものである。
[0020] 本発明の第 2の側面は、金属的に結合することなく接触している非結合界面を有す る機械部品用制振素材を製造する方法であって、
素材の表面に塑性加工及び Z又は機械加工により非結合界面の元となる溝部を 成形する溝部形成工程と、
前記溝部内空間を縮小させる方向に塑性加工を加え、対面する内壁面を接触した 状態とすることによって前記非結合界面を形成する圧縮工程とを有することを特徴と する機械部品用制振素材の製造方法にある。
[0021] 本発明の第 3の側面は、金属的に結合することなく接触している非結合界面を有す る機械部品用制振素材を製造する方法であって、
穴部を有する第 1の素材と、該穴部に圧入可能な外形状を有する第 2の素材とを準 備し、前記第 2の素材を前記第 1の素材に圧入することによって前記穴部の内周壁 位置に前記非結合界面を形成する圧入工程を有することを特徴とする機械部品用 制振素材の製造方法にある。
[0022] これらの製造方法によれば、上述した優れた機械部品用制振素材を確実に製造す ることがでさる。
[0023] 本発明の第 4の側面は、前記機械部品用制振素材に加工を加えることにより作製し てなることを特徴とする機械部品にある。前記の優れた機械部品用制振素材を素材 として、これに加工を加えて作製した機械部品、例えば、前記機械部品用制振素材 に歯部を形成した歯車等は、非常に優れた制振特性を発揮し、有用である。
図面の簡単な説明
[0024] [図 1]実施例 1における、非結合界面を成形する途中状態である溝加工直後の形状 を示す説明図。
[図 2]実施例 1における、非結合界面成形後の状態を示す説明図。
[図 3]実施例 1における、非結合界面の深さを変化させた場合の対数減数率の変化 を示す説明図。
[図 4]実施例 2における、平歯車の制振性評価時の加振位置を示す説明図。
[図 5]実施例 4における、第 1の素材を示す説明図。
[図 6]実施例 4における、第 2の素材を示す説明図。
[図 7]実施例 4における、ピンを圧入したタイプの平歯車を示す説明図。
[図 8]非結合界面の形状の一例を示す説明図。
[図 9]非結合界面の形状の一例を示す説明図。
[図 10]非結合界面の形状の一例を示す説明図。
[図 11]非結合界面の形状の一例を示す説明図。
[図 12]非結合界面の形状の一例を示す説明図。
[図 13]非結合界面の形状の一例を示す説明図。
[図 14]非結合界面の形状の一例を示す説明図。
発明を実施するための最良の形態
[0025] 以下、発明の内容について詳細に説明する。 本発明の機械部品用制振素材における非結合界面の成形は、前記第 2の側面の 発明のように、少なくとも前記溝部形成工程と圧縮工程とを実行することによって行う ことができる。前記溝部形成工程は、塑性加工又は機械加工あるいは両者の加工の 組み合わせによって行う。また、前記圧縮工程は塑性加工により行う。これらの加工 方法の選択は材質に合わせて適当な方法を選択することができ、冷間で行っても良 いし、加熱して熱間で行うこともできる。
[0026] 特に、機械部品は、生産性が優れていることから鍛造によって製造される場合が多 い。そのため、従来カゝら鍛造で製造されていた部品に対し本発明を適用する場合に は、従来の鍛造工程を、前記溝部形成工程と圧縮工程とが可能な工程に設計し直 すことにより、生産性を大幅に低下させることなぐ非結合界面を付与した機械部品を 製造することが可能である。
[0027] また、溝部形成工程における溝部の加工にっ 、ては、機械カ卩ェによっても行うこと ができる。この場合、溝部の加工は、最終的に溝部内空間が狭く閉じられた形状とす ることができれば良いので、機械加工の方法には特に制限はなぐ様々な手段を選 択することができる。但し、熱鍛、冷鍛といった塑性加工によって溝部の加工を行う場 合には、 V型の溝とするのが加工がしゃすく容易である。勿論 V型の溝を機械加工に よって行うことも可能である。
なお、鍛造を利用する場合には、前記溝部形成工程は、前記溝部に対応する突起 部を有する金型を用いて鍛造することにより行うことができる。そして、その突起部の 形状として所望の形状を選択することにより、溝部の形状を制御することができる。
[0028] このように、上記第 2の側面の製造方法を用いれば、前記非結合界面は、表面から 内部の所定深さまで形成されており、貫通していないものとすることができる。この場 合には、一部品のままで作製することができるので、寸法精度や安定性に優れたもの を得ることができる。
[0029] また、生成させる非結合界面は、その大きさに比例して制振性向上効果が左右さ れるので、ある程度大きな非結合界面を生成させることが必要である。すなわち、界 面の面積が広いほど振動を減衰する効果が大きくなるからである。具体的には、前記 非結合界面の深さ方向の長さ力 同一方向の厚み寸法の 20%以上であることが好 ましい。深さ方向の長さの下限を 20%としたのは、 20%未満では振動の減衰効果が 十分に得られないおそれがあるためである。また、上限は特に規定していないが、非 結合界面の位置を大きな応力が負荷されない部位となるように選択して製造したとし ても、部品形状、負荷される応力等の状況によって強度上問題が起きる可能性があ る場合には、適用する部品に応じて界面深さの上限を適切に判断する必要がある。 目安としては 90%程度以下とするのが望ましい。なお、十分な制振効果を得るため には、界面の深さを同一方向の厚み寸法の 50%以上とすることが望ましい。
[0030] また、上述したように、非結合界面の成形は、まず最初に塑性加工及び Z又は機 械加工により非結合界面の元となる溝部を成形し、その後この溝部内空間を縮小さ せる方向にさらに塑性加工を加え、前記溝部内空間を可能な限り小さくなるまで加工 を加え、成形された非結合界面上で見掛け上ほぼ全面が接触した状態とすることに より、行うことができる。ここで、非結合界面は最終的に見掛け上接触した状態とでき れば良いので、最初に加工する溝部の断面形状は特に限定する必要がない。加工 上都合の良 、形状 (例えば鍛造により行う場合には、加工が容易で用いる型寿命の 問題を懸念する必要がな 、形状)を自由に選択して行うことができる。
[0031] 溝加工を行った後は、塑性加工によってその溝部内空間を縮小させる方向に加工 を加え、最終的に成形した界面上で見掛け上全面がほぼ接触した状態となるまでカロ ェすることにより、界面の成形が完成する。ここで言う界面上の接触とはあくまでも見 掛け上であり、厳密に全面が接触しているかどうかは必要としない。従って、仮に顕 微鏡観察した結果部分的に非接触の部分があつたとしても、そのことを理由に本発 明の対象外となることはなぐ肉眼でほぼ接触して ヽる状態まで加工されて ヽれば十 分である。その状態まで加工することにより、制振性を大幅に向上することができる。 また、材質が鋼である場合には、溝部の加工を熱間で行ったり、変態点以上の温度 で熱処理する場合があり、その場合には、表面にスケールが生成されるため、溝部内 空間を縮小する方向に加工し、接触した界面を生成した結果、界面上にスケールが 入り込んだ状態とすることが可能である。この場合にはスケールの存在により、非結 合界面での振動減衰効果を高めることができ、より優れた制振効果を得ることができ る。 [0032] 上述したように、前記非結合界面の形態の一つは、表面から内部の所定深さまで 形成された貫通していないものである力 これは、前記の塑性カ卩工及び Z又は機械 加工による溝部形成工程と塑性カ卩ェによる圧縮工程の組み合わせにより形成するこ とができるだけでなぐ前述した第 3の側面の製造方法によって、部分的な圧入を行 つても実現できる。一方、前記非結合界面は、一表面から他の表面に貫通するように 形成された形態とすることもできる。この場合には、前述した第 3の側面の製造方法 である圧入法により実現することができる。
すなわち、穴部を有する第 1の素材と、該穴部に圧入可能な外形状を有する第 2の 素材とを準備し、前記第 2の素材を前記第 1の素材に圧入することによって前記穴部 の内周壁位置に前記非結合界面を形成する圧入工程を行うことによって上記の貫通 する又は貫通していない非結合界面を有する機械部品用制振素材を製造することが できる。
[0033] 但し、この場合には、界面上においては圧入により非常に大きな残留応力が発生し 、これが制振性の向上に悪影響を及ぼす場合があるので、圧入代を適切に調整する ことが必要である。また、第 1の素材に設けられる穴部は、貫通していてもいなくてもよ いが、貫通していない場合には、圧入作業がスムーズにできるよう、第 1の素材と第 2 の素材のいずれか一方に空気抜き穴を設けておく必要がある。
[0034] また、前記第 1の素材と前記第 2の素材の少なくとも一方は、前記圧入工程を行う前 に、表面にスケールを形成するための予備熱処理を行うことが好ましい。スケールが 予め存在している場合には、得られた非結合界面による制振効果が高くなる。このこ とは、後述する実施例からも明らかである。
[0035] 次に、前記機械部品用制振素材は、歯車として使用するとその効果を有効に活か すことができるので、制振特性を有する歯車を形成するための歯車用制振素材とし て用いることができる。この場合には、リング状又は円盤状の本体部と、その外周側 面又は内周側面に設けた歯型形成予定部を有し、前記非結合界面は、前記本体部 の軸方向の少なくとも一端面から形成されて ヽるようにするとよ 、。
[0036] 歯車は、当然の如く歯と歯が嚙み合うことによりエンジン等の動力を伝達する役目 を果たす部品であるが、歯車の部品全体に均等に応力が負荷されるのではなぐ駆 動力は歯部に集中して負荷されるため、歯部力 離れた位置、すなわち、例えば外 周又は内周に歯が加工された歯車では、この外周又は内周の歯部以外の領域には 、大きな力が負荷されることがない。場合によっては、軽量化のために部分的に貫通 穴をあけて使用されている場合もある。そこで、本発明者等は、このような歯車におけ る応力負荷状態に注目し、歯を加工する領域から適当な長さ離れた位置に非結合 界面を成形し、製造した歯車について、実際の使用時と同様に駆動力を負荷した疲 労試験を実施した。その結果、負荷する駆動力を増力 tlしていった際に非結合界面か らの破壊によるのではなぐ歯部の破壊によって歯車の強度限界が起きることを把握 し、本発明の有効性を確認したものである。従って、本発明の制振素材を用いて歯 車を製造することにより、著しく制振性に優れた歯車を容易に製造することができる。
[0037] 前記した通り、非結合界面の生成によって、歯を加工する前の素材段階において、 力なり大きく制振性が向上するが、歯車として使用するためにこの素材に歯を加工し て歯車の製品形状とした場合には、さらに著しく制振性が向上する(その改善の程度 は後述の実施例で具体的に示す。 ) o歯車形状への加工によって著しく制振性が向 上する理由は十分に明確になっているわけではないが、外周に歯が加工されたこと によって、歯底においては、非結合界面との距離が近くなつたことが理由の一つとし て考えられる。また、歯車は、高強度を得る必要がある場合には浸炭処理が行われる ことが多くあるが、本発明は浸炭処理の有無に関係なぐ優れた制振性を得ることが できる。
[0038] また、前記非結合界面は、環状に形成されて 、ることが好ま 、。この場合には、こ の環状の内外における振動の伝達を確実に抑制することができる。
また、この場合、前記非結合界面は、円状に形成することができる。円形状を採用 した場合には、非結合界面の形成を容易にすることができる。
また、前記非結合界面は、非対称形状に形成することもできる。非対称形状として は、不等辺多角形、不規則な波形、その他様々な形状がある。この場合には、制振 効果をさらに高めることが期待できる。
実施例 1
[0039] 次に、本発明の機械部品用制振素材につき、比較例と対比して、実施例により説 明する。供試材として用いた鋼の化学成分は、 0. 21%C-0. 32%Si-0. 77%M n- 1. 16%Cr-0. 16%Mo— 0. 032%A1— 0. 011%N鋼であり、市販で容易に 入手可能な JIS— SCM420Hの丸棒を使用したものである。
[0040] 図 1に示すごとぐこの SCM420Hの外径 120mm、内径 25mm、厚さ 20mmの供 試材 1を準備し、熱間鍛造で金型の代用として円筒治具 (図示略)を打ちつけること で表面〖こ素材と同心円の幅 w (最大)が 6mm、深さ dが 7〜 15mmの溝部 5 (図 1に示 す通り、溝の奥の方が幅が小さくなる形状)を、中心 O力もの距離 Lを 3水準に分けて 成形した。さらに、同一成分からなる同寸法の別の供試材を使用して同様な溝形状 で機械加工を施したものも作製した (溝部形成工程)。
[0041] 次に、熱間鍛造で溝カ卩ェしたものについては、溝カ卩ェ後に冷却することなく引き続 いてさらに熱間鍛造により、前記溝内の空間が縮小される方向に加工を加え(内径 寸法に合った丸棒を差し込んだ状態で)、溝内の空間が可能な限り小さくなるまでカロ ェを加えた (圧縮工程)。その結果、外観上では、成形された溝の内径側と外径側が 接触した状態となった。そこで、その状態において加工後の試験片を切断し、断面を 観察したが、図 2に示す通り、内部まで見掛け上ではほぼ接触した非結合界面 50が 成形されていた。また、機械加工により溝加工したものについても同様に熱間鍛造で その溝をカ卩ェし、切断して断面を確認した力 同様に見掛け上界面において内部ま で接触した状態となって!/、た。
[0042] 次に、前記熱間鍛造にて成形した鍛造素材を機械加工により外径 96mm、内径 25 mm、厚さ 16mmの形状に加工して機械部品用制振素材 (歯車用制振素材)とした。 なお、機械加工後の非結合界面径は、前記溝加工時に溝部 5の位置を 3通りに分け て加工していたので、表 1に示すごとぐ機械加工後においては、 50mm (試験 No. E 11)、 60mm (試験 No. E12)、 75mm (試験 No. E13)となり、非結合界面 50の深 さは、 4〜 13mmとなった。また、比較材 (試験 No. C 11)である同じ成分カゝらなる非 結合界面を有して 、な 、素材丸棒にっ 、てもそのまま同様に機械加工し、同一寸法 に加工した。そして、この機械加工後の試験片を用いて後述の制振性の評価を行つ た。
[0043] 制振性の評価は、前記のように準備したリング状素材を、 2本のワイヤーで吊り、外 径端をノヽンマーで加振させ、その加振により発生した対角の外径端における振動を レーザー変位計を用いて測定すると!/、う方法で行った。そして得られた振動の波形 から対数減衰率を計算し、その値によって制振性の改善レベルを評価した。結果を 表 1及び図 3に示す。
[0044] [表 1]
1
Figure imgf000012_0001
[0045] 表 1及び図 3から明らかなように、本例のように塑性カ卩工及び Z又は機械力卩ェを利 用して素材中に非結合界面 50を導入した試験片 (E11〜E13)は、非結合界面を全 く有しない従来の素材 (C11)に比べて、格段に対数減衰率が高く、非結合界面の生 成により、大幅に制振性が改善されることがわ力る。特に非結合界面の深さを増して 、界面の面積を増加させていくほど、制振性が向上していくことがわかる。但し、非結 合界面深さの厚さに対する割合が 25%の実施例は、制振効果が比較材に比較して 小さいため、本実験によっては少なくとも 30%以上の深さの非結合界面を設けること が好ましいと判断できる (但し、後述するように、歯車形状に加工した後で評価すると 、制振効果が大幅に増加するため、界面深さ割合の好ましい範囲の下限は 20%とし ている。なお、部材の形状が異なれば、好ましい深さの範囲は変動すると考えられる )。また、本実験により非結合界面を成形する位置によっても、制振性の性能に差異 が生じることが明らかになった。本実施例では、非結合界面径が大きいほど制振性 能が良いという結果が得られたが、これはノイズ発生源の位置と非結合界面の位置 関係によって、性能に差異が生じると考えられるので、本実施例の部品形状であって も必ずしも非結合界面径が大きい方が性能が良いということではなぐ実際には、ノィ ズ発生源を把握した上で部品毎に最適な位置を正確に見極めることが必要と考えら れる。
少なくとも、歯車の場合には、歯車全体が振動するので、最も振幅が大きい外周側 により近いところに非結合界面が存在した方が減衰能が大きくなると考えられる。 実施例 2
[0046] 前記実施例 1では、歯を加工する前の機械部品用制振素材 (歯車用制振素材)の 状態における制振性の評価結果にっ 、て示したが、当然の如く実部品である歯車へ 加工したことによる影響を把握しておく必要がある。そこで、表 2に示すごとぐ前記実 施例 1で制振性の効果が大き力つた非結合界面の深さが 13mmで径が 50mm、 60 mm、 75mmの 3種類の素材(試験 No. E21〜E23)と、非結合界面深さが 3. 5mm と前記実施例 1の評価材の下限よりも若干浅ぐかつ、非結合界面径が 60mmの素 材 (試験 No. E24)を用いてモジュール 3、歯数 30の平歯車 2を作製した。そして、前 記実施例 1と同様に 2本のワイヤに吊り下げた状態で図 4に示す位置 (端面加振位置 Sl、歯面加振位置 S2)をノヽンマーで加振して、その加振により発生した対角の歯の 端面の振動をレーザー変位計を用いて測定すると!/、う方法で制振性の評価を行った 。界面深さが 3. 5mmの素材で試験を行ったのは、歯車とした状態での効果が明確 に認められる下限の界面深さを見極めるためである。対数減衰率の計算方法は前記 実施例 1と同様である。なお、従来品との差異が明確に比較できるようにするため、非 結合界面のない同一仕様の歯車を同じ材料 (SCM420H)で作製したもの(試験 No . C21)と、鋼に比べ制振性が優れることが知られている球状黒鉛铸鉄 FCD500 (試 験 No. C22)を用いて作製したものとを同時に準備して、同様の評価を行った。結果 を表 2に示す。なお、表 2には、前記実施例 1と同様に、 SCM420H (非結合界面な し)の素材段階での対数減衰率 (実施例 1の試験 No. C11)を 1とした場合の比で値 を示した。
[0047] [表 2] 2
Figure imgf000014_0001
※比較材①—SCM420 比較材②— FGD500
※対数減衰率比は、比較材①の素材の対数減衰率を 1とした値
[0048] 前記した通り、歯を加工する前に評価した実施例 1の結果では、非結合界面の生 成による効果は最大で 5. 4倍 (対数減衰率比)であったが、平歯車に加工した状態 で評価した場合には、最大で 200倍を超える効果 (対数減衰率比)が得られた。この 顕著な効果が得られた原因としては、前記した通り歯車への加工によって歯底にお いては、非結合界面との距離が近くなつたということが考えられる力 他に単純な円 盤形状である素材と比較して、平歯車の歯形状の方が、非結合界面を生成した際に おける制振性の改善に適した形状となっていることが考えられる。また、界面深さが 3 . 5mmの歯車も 4倍程度の制振効果が認められた。
[0049] また、従来力 制振性が鋼に比べ優れていると言われていた球状黒鉛铸鉄の中の 1つである FCD500 (C22)との比較でも、本発明の効果は極めて大きいものである ことが確認できた。
実施例 3
[0050] 前記実施例 2では、機械加工したままの状態における平歯車を用いて評価したが、 実際の歯車では、要求される強度を満足させるために、浸炭処理されることが多ぐ その処理による影響を正確に把握しておく必要がある。そこで、前記実施例 2で用い た歯車をそのまま用い、 930°C X 4hrの浸炭処理を施し、同様の制振性評価を行つ た。なお、前記実施例 2では制振性評価のため、被評価材をワイヤーで吊る際に歯 車側面がワイヤーと接触した状態で加振して評価して!/ヽたが、本実施例 3ではワイヤ 一の接触による影響を少なくするため、側面がワイヤーと接触しないような状態で評 価した。また、評価は浸炭前と浸炭後の両方について行った。結果を表 3 (図 4の端 面加振位置 SIでの測定結果)、表 4 (図 4の歯面加振位置 S2での測定結果)に示す 。なお、表 3、 4に示した数値は、比較材である SCM420Hの非結合界面なしの平歯 車 (浸炭前、試験 No. C21)の対数減衰率を 1とした場合の各歯車試験片の対数減 衰率を比で表示したものである。
[0051] [表 3]
( 3)
Figure imgf000015_0001
※対数減衰率比は、比較材①の浸炭前の対数減衰率を 1とした値
[表 4]
Figure imgf000015_0002
※比較材①→SCM420H、比較材②→FGD500
※対数減衰率比は、比較材①の浸 *前の対数減衰率を 1とした値
[0053] 表 3、 4より明らかなように、本発明である非結合界面の形成による効果は、浸炭の 有無に関係なく大きな制振性向上効果が得られることがわかる。また、原因は明確で はないが、得られた結果力 判断すると浸炭後の方が非結合界面による制振性向上 効果がより増加するという傾向がみられた。また、評価時のワイヤーの吊り方を変更し た結果、本発明の歯車と比較材の歯車との制振性の差異がより大きくなり、最大で約 1000倍という顕著に大きな減衰率の向上が確認できた (E43)。さらに、歯を加工す る前の評価では、界面深さが 3. 5mmの場合 (E34、 E44)、ほとんど制振性の向上 が確認できな力つた力 歯車へカ卩ェすることにより大幅に効果が上昇し、表 2の結果 と同様に、非結合界面なしの歯車と比較して、対数減衰率で 4倍程度の効果が得ら れることが確認できた。
実施例 4
[0054] 本例では、試験片として、圧入により非結合界面を形成した平歯車を準備して評価 した。
試験片は、前述した実施例 2と同様に、厚さ 16mm、モジュール 3、歯数 30、内径 2 5mmの平歯車である力 これは、図 5、図 6に示すごとぐ外径側の第 1の素材 21の 貫通した穴部 210に、内径側の第 2の素材 22を圧入し、その後、歯部等を形成する 機械加工を施すことにより作製した。また、図 7に示すごとぐ一部のものは、得られた 平歯車 2における非結合界面 5の周方向 6箇所に、貫通穴 6を設けてピン 61を圧入 する仕様とした。また、図 7に示すごとぐ中心と貫通穴 6の延長線上に歯 29がくるよう に加工した。なお、同図においては、歯の記載を一部省略し、波線でその外周端を 示した。
[0055] 非結合界面 5を変化させるため、図 6に示すごとぐ上記第 2の素材 22としては、そ の外径 D2を 45. 09mm, 60. 11mm, 75. 15mm (内径 D1はすべて 25mm)の 3 種類を準備した。また、図 5に示すごとぐ第 1の素材 21としては、穴部 210の内径 D 3力 5. 00mm, 60. 00mm, 45. 00mm (外径 D4をすベて 95. 8mm)の 3種類を 準備した。また、第 2の素材 22の外周角部には面取部 225を設け、第 1の素材 21の 内周角部には面取部 215を設けた。
[0056] また、上記試験片のより具体的な作製方法としては、以下に示す冷間圧入法及び スケール圧入法の 2種類を採用した。
冷間圧入法では、 2部品(第 1の素材 21及び第 2の素材 22)を、室温で圧入する。 スケール圧入法では、圧入する上記 2部品を 900°C X lhrに加熱して、表面にスケ ールが付いた状態とし、その後、冷間で圧入する。なお、スケール厚みは 100 μ m程 度であった。
[0057] 上記スケール圧入法の場合には、圧入時に一部のスケールが表面力 脱落したが 、一部はそのまま非結合界面上に残存した状態で圧入できた。圧入後制振性の評 価を実施した。なお、制振性の評価方法は実施例 3と同様とした。
また、作製した試験片の種類と試験結果は表 5に示す。比較品(試験 No. C51)は 、実施例 2における比較材 1 (C21)と同じものである。
[0058] [表 5] 5
Figure imgf000017_0001
[0059] 表 5より知られるように、圧入により生成した非結合界面により、制振性は対数減衰 率で 1. 3〜8. 5倍に向上した。特にピンを挿入して界面の面積を増力!]させたもの (E 53、 E56)は、他の試験品に比べ高い制振性向上効果が得られた。また、予めスケ ールを表面に付着させて圧入した場合 (E51、 E54)には、スケールの付着がない場 合に比較して制振性が向上した。この結果より、界面にスケールが存在している場合 の方が、制振性が向上することがわかる。
[0060] すなわち、圧入により非結合界面を形成した場合には、その非結合界面にスケー ルが狭まっているが方力 スケールが存在しない場合に比べ制振性が向上するので 、スケールが界面上に挟まれるような工程で製造することが望まし 、。
[0061] 但し、前述の各実施例に示した鍛造によって非結合界面を成形して準備した平歯 車と比較すると、圧入により非結合界面を形成した場合には制振性向上効果が小さ くなると共に、非結合界面の径が大きくなるほど制振性が改善するという傾向も見ら れな力つた。また、圧入は鍛造に比較して生産性も劣る。そのため、できる限り鍛造 により非結合界面を成形することが望ましい。但し、部品が大型であり、生産個数が 少ない等の理由により型銀造を行うメリットが十分に得られない場合には圧入による 制振性向上を選択することも可能である。 [0062] 以上の各実施例 1〜4では、非結合界面の形状は全て実験を容易にするため円形 状とした。しかし、本発明において非結合界面は制振性を高められればよいので円 形状に限定されるものではなぐ他の形状とすることも勿論可能である。
例えば、図 8、図 9に示すごとぐ機械部品用制振素材又は機械部品としての円盤 状の部材 6を想定した場合、正多角形の非結合界面 51、 52を形成することができる 。さらに、図 10、図 11に示すごとぐ非対称である不等辺の多角形状を呈する非結 合界面 53、 54であってもよい。特に貫通する穴部に圧入することによって非結合界 面を形成する場合には、安定してトルクを伝達可能とするために、円形以外の形状、 例えば上記の多角形等にすることによって、非結合界面で外径側と内径側の部品が 滑ることのな 、ようにする必要がある。その他の非結合界面形状の例を図 12〜図 14 に示す。図 12は、角形スプライン状に非結合界面 55を設けた例である。図 13は、ィ ンボリュートスプライン状に非結合界面 56を設けた例である。図 14は、セレーシヨン 状に非結合界面 57を設けた例である。
[0063] また、図 10、図 11に示すごとぐ不等辺多角形の非結合界面 53、 54等を採用した 場合には、下記理由により等辺多角形とした場合と比較して制振性が改善されると考 えられる。
すなわち、歯車のように内径側あるいは外径側に等間隔で歯を形成してあると、歯 車対の嚙み合いは、回転周波数と歯数に応じて、ある特定の周波数となる。また、ト ルクも同様にある特定の周波数で生じる。等辺多角形の非結合界面の場合は、嚙み 合い歯面からのトルクや振動の周期的な伝達に対し、非結合界面も角数に応じた周 期でそれらを受けるので、振動減衰効果力 、さくなる可能性がある。それに対して、 不等辺界面であると、振動減衰する界面が不定周期になるため、実際の歯車駆動環 境において、より制振効果の向上が期待できる。
実施例 5
[0064] 実施例 1〜4に示すごとぐ非結合界面の形成によって制振性については大きな効 果が得られることが確認されたが、非結合界面を成形することにより強度が大きく低 下し使用上支障が生じるのでは、実際に機械部品としての使用は困難となる。そこで 、前記した試験片のうち、非結合界面径 60mm、非結合界面深さが 13mmの試験片 である平歯車(930°C X 4hr浸炭処理したもの、実施例 3の E42)を使用して、歯元曲 げ試験を行うことにより、歯車の強度を評価した。
その結果、本発明のように非結合界面を有する素材を用いて加工した歯車であつ ても、非結合界面力も折損することがなぐ限界となる応力を超えると、外周部に加工 した歯の折損によって強度限界が生じることが確認できた。これは、大きな応力が負 荷されるのは、あくまでも外周部の歯に対してであり、非結合界面を成形した位置に は、大きな応力負荷力かかっていないためと推察される。また、同時に従来と同様に 非結合界面のな 、素材を用いて製造された同仕様の歯車にっ ヽても試験を行った 力 歯の折損が起こらない最大応力は、本発明のように非結合界面を有する歯車で 評価した値と大きな差異は認められな力つた。
[0065] この結果より、大きな応力が負荷される部位とそうでない部位があり、本発明のよう に非結合界面を導入した場合でも、その界面を機械部品の中の大きな応力が負荷さ れることのな!/、部位に成形した場合には、従来の全く非結合界面を有しな 、機械部 品と比較して、極端な強度変化はないということが明らかとなった、
[0066] 以上説明したように、本発明による機械部品用制振素材は、塑性加工及び Z又は 機械加工、あるいは圧入により、金属的に結合していない非結合界面を成形させて あるので、従来の非結合界面を有していない素材に比較して大幅に制振性を向上さ せることができる。特に歯車等の実部品にカ卩ェした場合には、カロェ前の素材での制 振性に比べてさらに優れた制振性が得られるという顕著な効果を有し、かつその効 果は代表的な表面硬化処理である浸炭処理の有無に関係なぐ得ることができる。
[0067] また、本発明は、塑性加工及び Z又は機械加工あるいは圧入によって非結合界面 を成形することを特徴としているので、これらの加工が可能である限り非結合界面を 成形することが可能であり、材質の制限が従来の熱衝撃を利用して割れを生成させ る場合に比べて著しく少ない。従って、使用する部位、要求される特性に合わせて、 最適な材質を選択することが可能である。
[0068] さらに、機械加工ゃ塑性加工、あるいは圧入によって非結合界面を成形する際に は、当然の如く機械部品にとって都合の良い部位を自由に選択して非結合界面を成 形させることができるので、大きな応力が負荷されない部位を選択して、非結合界面 を成形することにより、従来の機械部品と比較してほとんど強度を低下させることなく 、制振性を大幅に向上させることができる。

Claims

請求の範囲
[1] 塑性加工及び Z又は機械加工により形成した溝部を該溝部内空間を縮小させる方 向に塑性加工を加える方法、あるいは穴部を有する第 1の素材の前記穴部に第 2の 素材を圧入する方法によって形成した、金属的に結合することなく接触している非結 合界面を有することを特徴とする機械部品用制振素材。
[2] 請求項 1において、前記非結合界面は、表面から内部の所定深さまで形成されてお り、貫通して!/、な 、ことを特徴とする機械部品用制振素材。
[3] 請求項 2において、前記非結合界面の深さ方向の長さが、同一方向の厚み寸法の 2
0%以上であることを特徴とする機械部品用制振素材。
[4] 請求項 1において、前記非結合界面は、一表面力 他の表面に貫通するように形成 されていることを特徴とする機械部品用制振素材。
[5] 請求項 1〜4のいずれか 1項において、前記機械部品用制振素材は、制振特性を有 する歯車を形成するための歯車用制振素材であり、リング状又は円盤状の本体部と
、その外周側面又は内周側面に設けた歯型形成予定部を有しており、前記非結合 界面は、前記本体部の軸方向の少なくとも一端面力 形成されていることを特徴とす る機械部品用制振素材。
[6] 請求項 1〜5のいずれか 1項において、前記非結合界面は、環状に形成されているこ とを特徴とする機械部品用制振素材。
[7] 請求項 6において、前記非結合界面は、円状に形成されていることを特徴とする機械 部品用制振素材。
[8] 請求項 6において、前記非結合界面は、非対称形状に形成されていることを特徴と する機械部品用制振素材。
[9] 金属的に結合することなく接触している非結合界面を有する機械部品用制振素材を 製造する方法であって、
素材の表面に塑性加工及び Z又は機械加工により非結合界面の元となる溝部を 成形する溝部形成工程と、
前記溝部内空間を縮小させる方向に塑性加工を加え、対面する内壁面を接触した 状態とすることによって前記非結合界面を形成する圧縮工程とを有することを特徴と する機械部品用制振素材の製造方法。
[10] 請求項 9において、前記溝形成工程は、前記溝部に対応する突起部を有する金型 を用いて鍛造することにより行うことを特徴とする機械部品用制振素材の製造方法。
[11] 金属的に結合することなく接触している非結合界面を有する機械部品用制振素材を 製造する方法であって、
穴部を有する第 1の素材と、該穴部に圧入可能な外形状を有する第 2の素材とを準 備し、前記第 2の素材を前記第 1の素材に圧入することによって前記穴部の内周壁 位置に前記非結合界面を形成する圧入工程を有することを特徴とする機械部品用 制振素材の製造方法。
[12] 請求項 11において、前記第 1の素材と前記第 2の素材の少なくとも一方は、前記圧 入工程を行う前に、表面にスケールを形成するための予備熱処理を行うことを特徴と する機械部品用制振素材の製造方法。
[13] 請求項 1〜8のいずれか 1項に記載の機械部品用制振素材に加工を加えることにより 作製してなることを特徴とする機械部品。
PCT/JP2005/015999 2004-09-03 2005-09-01 機械部品用制振素材及びその製造方法 WO2006025488A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP05776660A EP1795781B1 (en) 2004-09-03 2005-09-01 Vibration damping member for machine part and method of manufacturing the same
DE602005017647T DE602005017647D1 (de) 2004-09-03 2005-09-01 Schwingungsdämpfungsglied für maschinenteil und herstellungsverfahren dafür
US11/661,674 US20080060465A1 (en) 2004-09-03 2005-09-01 Vibration Damping Member For Machine Part And Method Of Manufacturing The Same
JP2006531982A JP4826474B2 (ja) 2004-09-03 2005-09-01 機械部品用制振素材及びその製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-256452 2004-09-03
JP2004256452 2004-09-03
JP2005088162 2005-03-25
JP2005-088162 2005-03-25

Publications (1)

Publication Number Publication Date
WO2006025488A1 true WO2006025488A1 (ja) 2006-03-09

Family

ID=36000137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015999 WO2006025488A1 (ja) 2004-09-03 2005-09-01 機械部品用制振素材及びその製造方法

Country Status (5)

Country Link
US (1) US20080060465A1 (ja)
EP (1) EP1795781B1 (ja)
JP (1) JP4826474B2 (ja)
DE (1) DE602005017647D1 (ja)
WO (1) WO2006025488A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008014396A (ja) * 2006-07-05 2008-01-24 Aichi Steel Works Ltd 機械部品用制振素材、その製造方法、及びそれを用いた機械部品
JP2008275076A (ja) * 2007-04-27 2008-11-13 Aichi Steel Works Ltd 機械部品用制振素材、その製造方法、及びそれを用いた機械部品
AU2007290359B2 (en) * 2006-09-01 2012-09-20 Vertex Pharmaceuticals Incorporated 5- (2-furyl)-1, 3-thiazole derivatives useful as inhibitors of phosphatidylinositol 3-kinase
WO2016136832A1 (ja) * 2015-02-26 2016-09-01 サンスター・シンガポール・プライベート・リミテッド 金属板成形品及びそれを用いたノイズ低減ブレーキディスク並びに金属板成形品の製造方法
WO2019087397A1 (ja) * 2017-11-06 2019-05-09 日立化成株式会社 歯車

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108412933A (zh) * 2018-04-24 2018-08-17 广州中国科学院工业技术研究院 一种具有粘弹性功能的结构单元

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR324239A (fr) 1902-07-18 1903-03-26 Broughton Copper Company Ltd Perfectionnements à la fabrication des barres, tiges métalliques, pièces de forge, boulons-entretoises, etc.
JPS5061555A (ja) * 1973-10-03 1975-05-27
DE2758468B1 (de) 1977-03-28 1978-10-12 Hitachi Ltd Verfahren zur Herstellung von schwingungsdaempfendem Metallmaterial
US4292832A (en) 1978-10-27 1981-10-06 Hitachi, Ltd. Method of producing vibration attenuating metallic material
JPS5874234A (ja) * 1982-10-04 1983-05-04 Mitsubishi Heavy Ind Ltd 防振歯車の製造方法
JPH0926015A (ja) * 1995-07-13 1997-01-28 Mitsubishi Motors Corp 低振動歯車
JP2000120777A (ja) * 1998-10-14 2000-04-25 Kanefusa Corp 制振機能を有する金属板
JP2002235836A (ja) * 2001-02-09 2002-08-23 Aisin Aw Co Ltd 制振歯車

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB215082A (en) * 1923-02-01 1924-05-01 Peter Maurice Staunton Improved means for obtaining flexibility in toothed gearing
US1662506A (en) * 1925-11-25 1928-03-13 Mansfield George Henry Method of rolling staybolt iron
US1941521A (en) * 1930-07-07 1934-01-02 Edgewater Steel Friction spring device
DE707779C (de) * 1939-07-08 1941-07-08 Mackel & Co Ges Zur Isolierung Schalldaempfende und erschuetterungsmindernde Unterlage
FR2339785A1 (fr) * 1975-11-25 1977-08-26 Hitachi Ltd Matiere amortissant les vibrations et son procede de fabrication
JPS54120352A (en) * 1978-02-20 1979-09-18 Hitachi Ltd High damping material
JPS6018635A (ja) * 1983-07-08 1985-01-30 Hitachi Ltd 板状制振材料
US4891077A (en) * 1988-10-27 1990-01-02 Dana Corporation Method of making an electromagnetic coupling disc
JPH10272077A (ja) * 1997-03-31 1998-10-13 Aisin Seiki Co Ltd 便座・便蓋自動開閉装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR324239A (fr) 1902-07-18 1903-03-26 Broughton Copper Company Ltd Perfectionnements à la fabrication des barres, tiges métalliques, pièces de forge, boulons-entretoises, etc.
JPS5061555A (ja) * 1973-10-03 1975-05-27
DE2758468B1 (de) 1977-03-28 1978-10-12 Hitachi Ltd Verfahren zur Herstellung von schwingungsdaempfendem Metallmaterial
US4292832A (en) 1978-10-27 1981-10-06 Hitachi, Ltd. Method of producing vibration attenuating metallic material
JPS5874234A (ja) * 1982-10-04 1983-05-04 Mitsubishi Heavy Ind Ltd 防振歯車の製造方法
JPH0926015A (ja) * 1995-07-13 1997-01-28 Mitsubishi Motors Corp 低振動歯車
JP2000120777A (ja) * 1998-10-14 2000-04-25 Kanefusa Corp 制振機能を有する金属板
JP2002235836A (ja) * 2001-02-09 2002-08-23 Aisin Aw Co Ltd 制振歯車

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1795781A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008014396A (ja) * 2006-07-05 2008-01-24 Aichi Steel Works Ltd 機械部品用制振素材、その製造方法、及びそれを用いた機械部品
AU2007290359B2 (en) * 2006-09-01 2012-09-20 Vertex Pharmaceuticals Incorporated 5- (2-furyl)-1, 3-thiazole derivatives useful as inhibitors of phosphatidylinositol 3-kinase
JP2008275076A (ja) * 2007-04-27 2008-11-13 Aichi Steel Works Ltd 機械部品用制振素材、その製造方法、及びそれを用いた機械部品
WO2016136832A1 (ja) * 2015-02-26 2016-09-01 サンスター・シンガポール・プライベート・リミテッド 金属板成形品及びそれを用いたノイズ低減ブレーキディスク並びに金属板成形品の製造方法
JPWO2016136832A1 (ja) * 2015-02-26 2018-02-15 サンスター・シンガポール・プライベート・リミテッド 金属板成形品及びそれを用いたノイズ低減ブレーキディスク並びに金属板成形品の製造方法
WO2019087397A1 (ja) * 2017-11-06 2019-05-09 日立化成株式会社 歯車
JPWO2019087397A1 (ja) * 2017-11-06 2020-11-19 昭和電工マテリアルズ株式会社 歯車
JP7131566B2 (ja) 2017-11-06 2022-09-06 昭和電工マテリアルズ株式会社 歯車及びその製造方法

Also Published As

Publication number Publication date
JP4826474B2 (ja) 2011-11-30
US20080060465A1 (en) 2008-03-13
DE602005017647D1 (de) 2009-12-24
EP1795781A1 (en) 2007-06-13
EP1795781B1 (en) 2009-11-11
EP1795781A4 (en) 2009-02-25
JPWO2006025488A1 (ja) 2008-07-31

Similar Documents

Publication Publication Date Title
WO2006025488A1 (ja) 機械部品用制振素材及びその製造方法
JPH06323399A (ja) 自動車用ギヤおよびその製造方法
TW200512301A (en) Component for machine and structural purposes, material therefor, and manufacturing method therefor
EP2444200A1 (en) Method for manufacturing coil spring
US7252721B2 (en) Power transmission shaft
JP2002046102A (ja) 鋸刃および鋸刃を形成する方法
JP4261879B2 (ja) 疲労強度に優れた長寿命回転体の製造方法
CN102016348B (zh) 传动带环部件和制造方法及其马氏体时效钢基材
JP4411751B2 (ja) ギヤ部分付き平板状部材
JP4661705B2 (ja) 機械部品用制振素材、その製造方法、及びそれを用いた機械部品
JP6207544B2 (ja) ドライブプレートとその製造方法
EP3374662B1 (en) Metal ring component of a drive belt for a continuously variable transmission
WO2009136515A1 (ja) 塑性流動結合を利用した金属部品の製造方法
JP4853776B2 (ja) Cvt用シャフト及びその製造方法
CN100591955C (zh) 机械零件用减振坯料及其制造方法、使用该机械零件用减振坯料的机械零件
WO2009132689A1 (en) Manufacturing method for a drive belt ring component
JP4957362B2 (ja) Cvt用シャフト及びその製造方法
JP2008275076A (ja) 機械部品用制振素材、その製造方法、及びそれを用いた機械部品
JP2004144132A (ja) 皿ばね及び皿ばねの製造方法
JP2008089007A (ja) 機械部品用制振素材、その製造方法、及びそれを用いた機械部品
JP2005076866A (ja) 無段変速機用プーリの可動フランジの製造方法
JP2006007253A (ja) プレス加工品及びその製造方法
JP4490874B2 (ja) スプラインを有する鋼製部品およびその疲労特性向上方法
JP4128926B2 (ja) 無段変速機用プーリの可動フランジの製造方法
KR20130013053A (ko) 등속조인트용 중공형 드라이브 샤프트의 제조방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006531982

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11661674

Country of ref document: US

Ref document number: 200580029470.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005776660

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005776660

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11661674

Country of ref document: US