WO2006025452A1 - イオンビーム照射装置およびイオンビーム照射方法 - Google Patents

イオンビーム照射装置およびイオンビーム照射方法 Download PDF

Info

Publication number
WO2006025452A1
WO2006025452A1 PCT/JP2005/015919 JP2005015919W WO2006025452A1 WO 2006025452 A1 WO2006025452 A1 WO 2006025452A1 JP 2005015919 W JP2005015919 W JP 2005015919W WO 2006025452 A1 WO2006025452 A1 WO 2006025452A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
ion source
ion beam
ion
beam irradiation
Prior art date
Application number
PCT/JP2005/015919
Other languages
English (en)
French (fr)
Inventor
Yasunori Ando
Original Assignee
Nissin Ion Equipment Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Ion Equipment Co., Ltd. filed Critical Nissin Ion Equipment Co., Ltd.
Priority to US10/590,911 priority Critical patent/US7436075B2/en
Publication of WO2006025452A1 publication Critical patent/WO2006025452A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68764Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a movable susceptor, stage or support, others than those only rotating on their own vertical axis, e.g. susceptors on a rotating caroussel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/202Movement
    • H01J2237/20214Rotation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/31732Depositing thin layers on selected microareas

Definitions

  • the present invention relates to an ion beam irradiation apparatus and an ion beam irradiation method for irradiating a substrate to be processed with an ion beam and processing the substrate.
  • this apparatus and method for example, in the production of a liquid crystal display, the alignment film formed on the surface of the substrate for liquid crystal display is subjected to an alignment treatment, or the alignment film is formed on the surface of the substrate for liquid crystal display. At the same time, it is used for performing an alignment treatment on the alignment film.
  • JP-A-9 218408 (paragraphs 0011, 0012, FIG. 1) (hereinafter referred to as Patent Document 1) specifies an ion beam on an alignment film formed on the surface of a substrate for a liquid crystal display. Describes a technique for performing an alignment process (that is, a process for aligning liquid crystal molecules in a predetermined direction) on the alignment film by making it incident at an incident angle of.
  • JP 2002-62532 A (paragraphs 0018, 0019, FIG. 2,
  • FIG. 4 (hereinafter referred to as Patent Document 2) refers to an ion beam on a substrate surface by reciprocating the substrate in parallel with the substrate surface with respect to an ion source arranged at a predetermined angle with respect to the substrate. , Thereby forming an alignment film for a liquid crystal display on the substrate surface and performing an alignment treatment on the alignment film.
  • Patent Document 1 Japanese Patent Laid-Open No. 9-218408
  • Patent Document 2 JP 2002-62532 A
  • the ion beam irradiation conditions are often changed in order to cope with various types.
  • the incident angle of the ion beam to the substrate surface is one of the irradiation conditions.
  • Patent Document 2 does not describe a specific structure for changing the incident angle of an ion beam.
  • the ion source is fixed to a support provided inside the vacuum vessel.
  • the structure of the support must be changed when changing the incident angle, and the vacuum capacity is changed. It is not easy to change the incident angle because the instrument must be opened.
  • the ion source 2 having a rotating shaft 8 that reciprocally rotates the ion source 2 as indicated by an arrow A at the side portion of the ion source 2 is a vacuum vessel.
  • the vacuum vessel must be opened. Therefore, it is not easy to change the incident angle ⁇ of the ion beam 4 on the substrate 6.
  • the rectangular substrate 6 has a width W in the Y direction.
  • the substrate 6 is reciprocated in the X direction substantially orthogonal to the Y direction.
  • the rotational center force of the ion source 2 that is, the central axis 8 a of the rotational shaft 8 is located in the ion source 2. Therefore, when the ion source 2 is rotated to change the incident angle ⁇ , the irradiation position of the ion beam 4 onto the substrate 6 greatly varies depending on the incident angle ⁇ , as shown in FIG. As a result, the irradiation position of the ion beam 4 onto the substrate 6 becomes farther as the incident angle ⁇ decreases, so the apparatus must be enlarged. In addition, as in the example shown in FIG. 8, the irradiation region S, S.
  • the size of also changes greatly.
  • the irradiation area becomes larger as the incident angle ⁇ is reduced.
  • the driving distance (scanning width) in the X direction of the substrate 6 must be increased. Therefore, the apparatus is also increased in size, and the throughput of the apparatus decreases as the substrate processing time increases.
  • the main object of the present invention is to provide an ion beam irradiation apparatus and an ion beam irradiation method using the ion beam irradiation apparatus that can suppress the displacement of the irradiation position and the spread of the irradiation region even when the ion beam is reduced.
  • An ion beam irradiation apparatus includes a vacuum container that is evacuated to vacuum, and an ion that is provided in the vacuum container and irradiates a substrate to be processed with a wider ion beam.
  • a source a substrate driving mechanism for driving the substrate in the vacuum vessel in a direction substantially perpendicular to the width direction of the ion beam drawn from the ion source, and penetrating the vacuum vessel.
  • a reciprocating motor, and the ion source is rotatably supported around the central axis of the rotating shaft.
  • the center axis of the rotation axis is located away from the ion source force substrate, and the ion source rotates around the center axis. Therefore, even when the incident angle is small, the center axis is Compared to the case of being located in the on-source, the shift of the irradiation position of the ion beam to the substrate and the spread of the irradiation region of the ion beam to the substrate can be suppressed.
  • the distance between the central axis of the rotating shaft and the surface of the substrate is equal to or less than half the width of the outlet side of the ion source and the width of the ion source in the rotating direction. (Lower limit is 0).
  • the rotating shaft and the arm are formed of a hollow magnetic material, have a magnetic shielding function and are grounded, and a conductor for supplying power to the ion source from the outside of the vacuum vessel, You may pass through the inside of the said rotating shaft and an arm.
  • the beam measuring device may be provided at a position facing the ion source positioned at an angle substantially perpendicular to the substrate.
  • the ion source is opposed to the beam measurement device in the ion beam irradiation method using the ion beam irradiation device provided with the beam measurement device.
  • the substrate driving mechanism is characterized in that the substrate is irradiated with an ion beam from the ion source to process the substrate while the substrate is driven by the substrate driving mechanism.
  • the angle of the ion source can be easily adjusted to a desired value from the outside of the vacuum vessel. If necessary, move the ion source to the measurement position, measure the current density distribution of the ion beam, evaluate it, and make the necessary adjustments.
  • the substrate can be processed by moving to. As a result, it becomes easy to perform stable processing.
  • the ion source that opens the vacuum vessel is rotated around the central axis of the rotating shaft from outside the vacuum vessel.
  • the incident angle of the ion beam to the substrate can be easily changed.
  • the center axis of the rotation axis is also located away from the ion source force substrate, and the ion source rotates around the center axis. Therefore, even when the incident angle is reduced, the displacement of the ion beam irradiation position on the substrate and the spread of the ion beam irradiation region on the substrate are reduced. Can be kept small. As a result, it is possible to reduce the size of the device and to suppress a reduction in the throughput of the device.
  • the substrate can be processed easily and efficiently at a desired incident angle.
  • the central axis of the rotation axis is positioned close to the substrate surface as described above, so even when the incident angle is reduced, the displacement of the irradiation position of the ion beam on the substrate and the ion beam on the substrate are reduced.
  • the spread of the irradiation area of the system can be further reduced.
  • the apparatus can be further downsized, and the decrease in the current density of the ion beam on the substrate surface when the incident angle is reduced can be further suppressed.
  • the conductor Passes through the inside of the rotating shaft and arm with the magnetic shield function, so that leakage of the magnetic field generated by the current flowing through the conductor is suppressed, and the magnetic field does not adversely affect the ion beam from which the ion source force is also extracted.
  • the current density distribution of the ion beam extracted from the ion source can be prevented from being disturbed.
  • the current density distribution in the width direction of the ion beam from which the ion source force positioned at a predetermined angle with respect to the substrate is also drawn can be measured by the beam measuring instrument. As a result, the measurement result can be used for evaluating the characteristics of the ion beam and adjusting the ion source.
  • the beam measuring instrument since the beam measuring instrument is provided at a position facing the ion source positioned at an angle substantially perpendicular to the substrate, it is close to the ion source.
  • the beam measuring instrument can be positioned and the force can be easily made to make the ion beam incident on the beam measuring instrument almost perpendicularly, so that the accuracy of measurement by the beam measuring instrument can be improved. Play.
  • the angle of the external force ion source of the vacuum vessel can be easily adjusted to a desired value, for example, for each substrate or each lot of substrates, as necessary. Then, the ion source is moved to the measurement position, and the current density distribution of the ion beam is measured and evaluated, and after making the necessary adjustments, the substrate can be processed by moving the ion source to the processing position. . As a result, it becomes easy to perform stable processing.
  • FIG. 1 is a longitudinal sectional view showing an embodiment of an ion beam irradiation apparatus according to the present invention.
  • FIG. 2 is a longitudinal sectional view showing the apparatus of FIG.
  • FIG. 3 is a longitudinal sectional view showing a more specific example of the beam measuring device in FIGS. 1 and 2.
  • FIG. 4 (a) is a side view showing a simplified example of an incident state of an ion beam on the substrate surface when the central axis of the rotation axis for rotating the ion source is far from the substrate surface force.
  • FIG. 4 (b) is a side view showing a simplified example of an incident state of an ion beam on the substrate surface when the central axis of the rotation axis for rotating the ion source is close to the substrate surface force.
  • FIG. 5 is a side view showing the relationship between the width on the outlet side of the ion source and the position of the central axis of the rotation axis for rotating the ion source.
  • FIG. 6 is a side view showing an example in which the center axis of the ion source is also shifted from the center axis of the arm.
  • FIG. 7 is a side view showing an example when the rotational center force of the ion source is located in the S ion source.
  • FIG. 8 is a plan view showing an example of a relationship between a substrate and an ion beam applied to the surface of the substrate. Explanation of symbols
  • FIG. 1 is a longitudinal sectional view showing an embodiment of an ion beam irradiation apparatus according to the present invention.
  • FIG. 2 is a longitudinal sectional view showing the apparatus of FIG. 1 as viewed from the right. Portions that are the same as or equivalent to those in the examples shown in FIGS. 7 and 8 are given the same reference numerals, and differences from the examples will be mainly described below.
  • This ion beam irradiation apparatus includes a vacuum vessel 10 that is evacuated to a vacuum, and an ion source 2 provided inside the vacuum vessel 10.
  • the ion source 2 irradiates a substrate 6 to be processed with a wider ion beam 4.
  • the shape of the substrate 6 is not limited to a specific one. For example, when the planar shape of the substrate 6 is a rectangle that is long in the X direction and short in the Y direction as shown in FIG. 8, the ion source 2 is wider than the width W of the short side (ie, in the Y direction). Ion beam 4 is irradiated. That
  • the ion source 2 has a shape close to a rectangular parallelepiped long in the Y direction.
  • the ion source 2 emits an ion beam 4 having a rectangular cross-sectional shape that is short in the X direction and long in the Y direction, as shown in FIG.
  • the width of the ion beam 4 refers to the width in the Y direction.
  • the substrate 6 is a flat substrate for a liquid crystal display, for example. In that case, it may be formed in advance on the surface of the substrate 6 before the alignment treatment with the alignment film force S ion beam 4. An alignment film may be formed on the surface of the substrate 6 by irradiation with the on-beam 4 and the alignment film may be subjected to an alignment treatment.
  • the substrate 6 is further straightened in the X direction substantially orthogonal to the width direction (ie, the Y direction) of the ion beam 4 drawn from the ion source 2 in the vacuum vessel 10.
  • a substrate driving mechanism 30 for driving the target is provided.
  • the driving of the substrate 6 by the substrate driving mechanism 30 may be driven in one direction, but the reciprocating driving is preferable because the irradiation amount of the ion beam 4 to the substrate 6 is increased.
  • reciprocal driving is performed. Further, the driving speed of the substrate 6 when the ion beam 4 is incident on the substrate 6 is kept constant.
  • the substrate drive mechanism 30 includes a plate-like substrate support 32 that supports the substrate 6, a plurality of rollers 34 arranged in two rows, and a motor 36.
  • the rollers 34 arranged in a plurality of two rows support both ends of the substrate support 32 in the Y direction.
  • the motor 36 is provided outside the vacuum vessel 10 and rotates a predetermined roller 34 back and forth as shown by an arrow D (see FIG. 2) via a rotating shaft 38.
  • the roller 34 to which the rotary shaft 38 is coupled and the other roller 34 are connected by, for example, a chain, a belt, and the like so as to rotate together.
  • a bearing 40 having a vacuum sealing function is provided in a portion where the rotary shaft 38 penetrates the vacuum vessel 10.
  • the substrate drive mechanism 30 is not limited to the configuration of this example.
  • the substrate 6 may be directly supported by the roller 34 without using the substrate support 32 and slid on the roller 34 to be reciprocated.
  • a tray-like substrate support 32 may be used.
  • a linear drive device for example, an air cylinder
  • reciprocating linear movement of the plate-like or tray-like substrate support 32 may be provided.
  • the ion beam irradiation apparatus further includes a rotating shaft 14, an arm 12, and a motor 22.
  • the rotating shaft 14 penetrates the vacuum vessel 10, and its central axis 14 a is located away from the ion source 2 toward the substrate 6 and is substantially parallel to the surface 6 a of the substrate 6 and the Y direction.
  • the arm 12 is provided in the vacuum vessel 10 and supports the ion source 2 as well as the rotating shaft 14 force. (In other words, the rotating shaft 14 and the ion source 2 are connected in the vacuum vessel 10).
  • the motor 22 is provided outside the vacuum vessel 10 and reciprocally rotates the rotary shaft 14 as indicated by an arrow B. With such a configuration, the ion source 2 is supported in the vacuum vessel 10 so as to be rotatable around the central axis 14a of the rotary shaft 14 as indicated by an arrow B.
  • the rotating shaft 14 and the arm 12 are provided on both sides of the ion source 2 in the Y direction in this example. In this way, the ion source 2 can be stably supported by both side forces. However, it is not limited to this.
  • the rotating shaft 14 and the arm 12 may be provided only on one side of the ion source 2.
  • a bearing 16 having a vacuum sealing function is provided at a portion where each rotary shaft 14 penetrates the vacuum vessel 10.
  • Each arm 12 is L-shaped in this example. Each arm 12 supports the ion source 2 substantially parallel to the central axis 14a of the rotating shaft 14 with its exit (extraction port for the ion beam 4) facing the substrate 6 side.
  • the motor 22 is reciprocally rotatable as shown by an arrow C (see FIG. 2).
  • the rotational force is applied to the pulley 26 attached to the rotary shaft 24 of the motor 22, the pulley 18 attached to one rotary shaft 14, and the belt 20 suspended between the pulleys 18 and 26. Via the rotation shaft 14.
  • the transmission mechanism of the rotational force of the motor 22 may be other than this example.
  • a timing belt or a gear may be used.
  • a motor 22 having a low rotational speed may be used and directly coupled to the rotary shaft 14.
  • the rotating shaft 14 and the arm 12 may be solid or may be hollow as in this embodiment. This will be described later.
  • the ion source 2 that opens the vacuum container 10 from the outside of the vacuum container 10 is moved around the central axis 14 a of the rotating shaft 14. Rotate around the center. Therefore, the incident angle ⁇ of the ion beam 4 on the substrate 6 (see FIGS. 4, 5, and 7) can be easily changed.
  • the center axis 14a of the rotating shaft 14 is located away from the ion source 2 toward the substrate 6, and the ion source 2 rotates around the center axis 14a. Therefore, even when the incident angle ⁇ is reduced, the irradiation position of the ion beam 4 on the substrate 6 is smaller than when the central axis 8a is located in the ion source 2 as in the example shown in FIG. Deviation and ion beam to substrate 6 The spread of the irradiation area of 4 can be kept small. As a result, it is possible to reduce the size of the apparatus and suppress a decrease in throughput of the apparatus.
  • FIG. 4A shows an example in which the central axis 14a is positioned near the exit of the ion source 2
  • FIG. 4B shows an example in which the central axis 14a is positioned near the substrate surface 6a.
  • the distance L in the example of Fig. 4B is much smaller than in the example of Fig. 4A.
  • the ion beam irradiation apparatus can be reduced in size accordingly.
  • the ion beam 4 that also emits the ion source force tends to diverge due to the space charge effect or the like, the ion beam 4 toward the substrate surface 6a increases as the distance L increases.
  • the irradiation area is expanded. Therefore, in the example of FIG. 4B, the spread of the irradiation region of the ion beam 4 can be suppressed. As a result, the driving distance (scanning width) in the X direction of the substrate 6 necessary for irradiating the entire surface of the substrate 6 with the ion beam 4 does not have to be increased so much. Therefore, from this viewpoint, it is possible to reduce the size of the apparatus, and it is possible to suppress a decrease in throughput of the apparatus by suppressing an increase in substrate processing time.
  • the central axis 14a of the rotating shaft 14 be positioned near the substrate surface 6a.
  • the central axis 14a if the central axis 14a is positioned near the substrate surface 6a, the lower part of the ion source 2 may hit the substrate surface 6a when the incident angle ⁇ is very small. . Therefore, in order to avoid this, it is necessary to lengthen the arm 12 and increase the distance between the ion source 2 and the center shaft 14a.
  • the size of the ion source 2 (specifically, the outlet of the ion source 2)
  • the distance L between the faces 6a is preferably in the range of 0 or more and W Z2 or less.
  • the central axis 12a of the arm 12 and the central axis 2a of the ion source 2 are coincident, but the present invention is not limited to this.
  • the center axis 2 a of the ion source 2 may be coupled while being shifted from the center axis 12 a of the arm 12 to the side opposite to the substrate 6. By doing so, the lower part of the ion source 2 hits the substrate surface 6a when a small incident angle is taken, so even if an ion source with the same width W is used, the upper
  • the rotary shaft 14 and the arm 12 may be made hollow in this embodiment.
  • the rotating shaft 14 is formed in a cylindrical shape
  • the arm 12 is formed in a duct shape, and the insides of these 14 and 12 are communicated with each other.
  • the ion source 2 side of the arm 12 is connected to the ion source 2.
  • Inside the rotating shaft 14 (for example, the inside of the vicinity of the vacuum vessel 10), a vacuum sealing material 44 for vacuum sealing is provided inside the rotating shaft 14 (for example, the inside of the vicinity of the vacuum vessel 10), a vacuum sealing material 44 for vacuum sealing is provided.
  • the rotating shaft 14 and the arm 12 are made of a magnetic material such as iron or carbon steel.
  • the rotary shaft 14 and the arm 12 are electrically grounded.
  • the vacuum vessel 10 is also electrically grounded.
  • a conductor 42 that supplies electric power to the ion source 2 from the outside of the vacuum vessel 10 is led to the ion source 2 through the inside of the rotating shaft 14 and the arm 12.
  • a conductor 42 that supplies electric power to the ion source 2 from the outside of the vacuum vessel 10 is led to the ion source 2 through the inside of the rotating shaft 14 and the arm 12.
  • the conductor 42 may be passed only through the arm 12 on one side or the conductor 42 may be passed through the arm 12 etc. on both sides.
  • This conductor 42 is, for example, a conductor for supplying filament power for heating the filament of the ion source 2 and an arc to the ion source 2.
  • a current introduction terminal (not shown) having a vacuum sealing function is provided at a portion where these conductors 42 penetrate the vacuum sealing material 44.
  • These conductors 42 are insulated and supported by spacers (not shown) provided at appropriate positions in the rotary shaft 14 and the arm 12.
  • the conductor for supplying the power to the ion source 2 is routed in the vacuum vessel 10 as compared with the case where the ion source 2 is provided outside the vacuum vessel 10. Due to space limitations, it is necessary to perform the operation near the ion source 2. In such a case, the magnetic field generated by the current flowing through the conductor may adversely affect the ion beam 4. For example, the current density distribution of the ion beam 4 may be disturbed by changing the traveling direction of the ions constituting the ion beam 4. In particular, if the ion source 2 is a direct current discharge type that uses a hot filament for plasma generation, the filament current is large (for example, about 60 A), which may generate a strong magnetic field in the vicinity.
  • the conductor 42 is passed through the rotating shaft 14 and the arm 12 having a magnetic shield function. Therefore, the leakage of the magnetic field generated by the current flowing through the conductor 42 can be suppressed, and the magnetic field force S ion beam 4 can be prevented from being adversely affected as described above, for example.
  • a bare conductor is usually used in order to avoid generation of impurities and gas from the coating material.
  • the conductor is routed in a state where it is exposed in the vacuum vessel 10, the surroundings of the ion source 2 are in a vacuum atmosphere and there are many ions and electrons that trigger discharge! Therefore, when a high voltage (for example, about several hundred V to several kV) is applied to the conductor, a discharge occurs between the surrounding different potential part (for example, ground potential part; the same shall apply hereinafter) and ions are generated.
  • a high voltage for example, about several hundred V to several kV
  • the surrounding different potential part for example, ground potential part; the same shall apply hereinafter
  • the conductor 42 is passed through the rotating shaft 14 and the arm 12 at the ground potential, and the conductor 42 is electrically shielded from the atmosphere in the vacuum vessel 10. . Therefore, when a high voltage is applied to the conductor 42, a discharge is generated between the different potential portions in the vacuum vessel 10 and the extraction of the ion beam 4 from the ion source 2 becomes unstable. It is possible to suppress the occurrence of the phenomenon.
  • the ion source 2 is extracted from the ion source 2 at a position facing the ion source 2 in the vacuum vessel 10 at a predetermined angle with respect to the substrate 6 with the passage of the substrate 6 in between.
  • a beam measuring device 46 for measuring the current density distribution in the width direction of the ion beam 4 is provided.
  • the beam measuring instrument 46 is provided at a position facing the ion source 2 positioned at an angle substantially perpendicular to the substrate 6, but this is not limitative. It is not something to be done.
  • the beam measuring device 46 for measuring the current density distribution in the width direction of the ion beam 4 includes a plurality (a large number) of the ion beams 4 arranged in parallel in the width direction as in this embodiment. Beam measuring instrument 46 may be used. Alternatively, one beam measuring device 46 that is mechanically driven (driven) in the width direction of the ion beam 4 may be used. However, the former is preferable because the current density distribution of the ion beam 4 can be measured at once by a plurality of beam measuring units 46, and the measurement time can be shortened. In particular, when the substrate 6 is enlarged and the ion source 2 is also enlarged, the former is preferable.
  • each beam measuring instrument 46 includes a Faraday cup 48, a negative suppression electrode 50 provided upstream thereof, a positive suppression electrode 52 provided upstream thereof, and a ground electrode provided upstream thereof. 54 and a conductor container 56.
  • the Faraday cup 48 receives the ion beam 4 and measures the beam current density.
  • the negative suppression electrode 50 suppresses leakage of secondary electrons emitted from the Faraday cup 48 when the ion beam 4 enters the Faraday cup 48, and a negative voltage is applied thereto.
  • the positive suppression electrode 52 suppresses the ions generated in the upstream atmosphere from flowing into the Faraday cup 48, and is applied with a positive voltage.
  • the ground electrode 54 acts as a mask for determining the size of the ion beam 4 incident on the Faraday cup 48 and electrically shields the downstream electrode and the like from the upstream side force and is electrically grounded.
  • the conductor container 56 is connected to the ground electrode 54 and cooperates with the ground electrode 54 to electrically shield the internal Faraday cup 48 and the electrodes 50 and 52, and is electrically grounded.
  • the current density distribution of the ion beam 4 at that position can be measured by using the beam measuring device 46 at the required position. Further, the uniformity of the current density distribution can also be obtained from the measurement result of the current density distribution of the ion beam 4.
  • the beam measuring instrument 46 can also be used for such measurement.
  • the beam measuring instrument 46 is provided at a position facing the ion source 2 positioned at a substantially perpendicular angle with respect to the substrate 6 as in this embodiment, it is close to the ion source 2.
  • the beam measuring instrument 46 can be positioned in the center.
  • the ion beam 4 can be easily incident on the beam measuring device 46 almost perpendicularly. Therefore, the accuracy of measurement by the beam measuring instrument 46 can be improved.
  • the rotating shaft 14 is rotated as necessary to position the ion source 2 at an angle facing the beam measuring instrument 46. While generating the ion beam 4 from the ion source 2 manually or under preset conditions, the current density distribution of the ion beam 4 drawn out from the ion source 2 is measured using the beam measuring device 46. At this time, if necessary, the current density at the required position of the ion beam 4 and the uniformity of the current density distribution of the ion beam 4 may also be measured.
  • the process proceeds to the next step. If the current density distribution is not within the allowable range, the current density distribution is adjusted manually or automatically to be within the allowable range. At this time, if necessary, the current density at the required position of the ion beam 4 and the uniformity of the current density distribution of the ion beam 4 are adjusted. And if necessary, these adjustments may be made manually or automatically. Confirm that the necessary ion beam conditions are met.
  • the rotating shaft 14 is rotated to position the ion source 2 at a predetermined angle necessary for processing the substrate 6.
  • the substrate 6 is irradiated with an ion beam from the ion source 2 while the substrate 6 is driven by the substrate driving mechanism 30 as described above, and the substrate 6 is processed.
  • the alignment process as described above is performed on the surface of the substrate 6 for liquid crystal display.
  • the external force of the vacuum vessel 10 can easily adjust the angle of the ion source 2 to a desired one. If necessary, move the ion source to the measurement position, measure the current density distribution of the ion beam, evaluate it, and make the necessary adjustments before processing the ion source.
  • the substrate can be processed by moving it to a position. As a result, it becomes easy to perform stable processing.
  • the ion beam irradiation apparatus is an ion beam alignment apparatus or an ion beam alignment processing apparatus
  • the ion beam irradiation method is an ion beam alignment method or an ion beam alignment process. They can also be called methods.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Nonlinear Science (AREA)
  • Analytical Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Physical Vapour Deposition (AREA)
  • Electron Sources, Ion Sources (AREA)

Description

明 細 書
イオンビーム照射装置およびイオンビーム照射方法
技術分野
[0001] この発明は、処理すべき基板にイオンビームを照射して当該基板に処理を施すィ オンビーム照射装置およびイオンビーム照射方法に関する。この装置および方法は 、例えば、液晶ディスプレイの製造において、液晶ディスプレイ用の基板の表面に形 成されている配向膜に配向処理を施すことや、液晶ディスプレイ用の基板の表面に 配向膜を形成すると共に当該配向膜に配向処理を施すことに用いられる。
背景技術
[0002] 特開平 9 218408号公報 (段落 0011、 0012、図 1) (以下、特許文献 1と称する) には、液晶ディスプレイ用の基板の表面に形成されている配向膜にイオンビームを所 定の入射角度で入射させることによって、当該配向膜に配向処理 (即ち、液晶分子を 所定方向に配向させるための処理)を施す技術が記載されて 、る。
[0003] また、特開 2002— 62532号公報(段落 0018、 0019、図 2、
図 4) (以下、特許文献 2と称する)には、基板に対して所定の角度に配置したイオン 源に対して、基板を基板表面に平行に往復駆動することによって、基板表面にィォ ンビームを照射し、それによつて基板表面に液晶ディスプレイ用の配向膜を形成する と共に当該配向膜に配向処理を施す技術が記載されている。
特許文献 1:特開平 9 - 218408号公報
特許文献 2 :特開 2002— 62532号公報
発明の開示
発明が解決しょうとする課題
[0004] イオンビームによる配向処理等のイオンビーム照射においては、多品種に対応する 等のために、イオンビームの照射条件を変える場合が多い。イオンビームの基板表 面への入射角度もその照射条件の一つである。
[0005] 前記特許文献 1に記載の技術のように、真空容器の外部にフランジを介してイオン 源を取り付けている場合、イオン源の角度を変更してイオンビームの入射角度を変更 することは、不可能ではないとしても困難である。これは、入射角度変更の際には、フ ランジ部分の構造を変えなければならず、角度変更できる範囲は非常に狭ぐかつ 真空容器を開放しなければならないからである。
[0006] 前記特許文献 2には、イオンビームの入射角度を変更する具体的な構造について は記載されていない。
[0007] 真空容器の内部に設けた支持体にイオン源を固定するという考えもあるが、この場 合も入射角度変更の際には支持体部分の構造を変えなければならず、しかも真空容 器を開放しなければならな 、ので、入射角度の変更は容易ではな 、。
[0008] また、図 7に示す例のように、イオン源 2の側部に、当該イオン源 2を矢印 Aのように 往復回転させる回転軸 8を有して ヽるイオン源 2を真空容器内に設けると ヽぅ考えも ある。しかしあんがら、当該イオン源 2から引き出したイオンビーム 4の基板 6への入射 角度 Θを変更する際には、真空容器を開放しなければならない。したがって、イオン ビーム 4の基板 6への入射角度 Θの変更は容易ではない。
[0009] なお、図 7の装置では、図 8も参照して、長方形の基板 6にその Y方向の幅 Wよりも
2 幅の広いイオンビーム 4をイオン源 2から照射する。また、基板 6を前記 Y方向と実質 的に直交する X方向に往復駆動する。
[0010] 更に図 7の例の場合は、イオン源 2の回転中心力 即ち回転軸 8の中心軸 8aが当 該イオン源 2内に位置している。したがって、イオン源 2を回転させて入射角度 Θを変 更する場合に、図 7に示すように、基板 6へのイオンビーム 4の照射位置が入射角度 Θによって大きく異なる。その結果、入射角度 Θを小さくするほど基板 6へのイオンビ ーム 4の照射位置が遠くなるので、装置を大型化しなければならない。しかも、図 8に 示す例のように、入射角度 Θによって基板 6へのイオンビーム 4の照射領域 S 、 S · ·
1 2
,の大きさも大きく変化する。即ち、入射角度 Θを小さくするほど照射領域は大きくな る。その結果、イオンビーム 4の照射領域が大きくなるほど、当該イオンビーム 4を基 板 6の全面に照射するためには、基板 6の X方向の駆動距離 (走査幅)を大きくしなけ ればならない。したがって、やはり装置が大型化すると共に、基板処理時間が長くな つて装置のスループットが低下する。
[0011] そこでこの発明は、イオンビームの入射角度の変更が容易であり、しかも入射角度 を小さくする場合でも照射位置のずれおよび照射領域の広がりを小さく抑えることが できるイオンビーム照射装置およびそれを用いたイオンビーム照射方法を提供するこ とを主たる目的としている。
課題を解決するための手段
[0012] この発明に係るイオンビーム照射装置は、真空に排気される真空容器と、前記真空 容器内に設けられて 、て、処理すべき基板にそれよりも幅の広 ヽィオンビームを照射 するイオン源と、前記真空容器内で前記基板を、前記イオン源カゝら引き出されたィォ ンビームの幅方向と実質的に直交する方向に駆動する基板駆動機構と、前記真空 容器を貫通している回転軸であって、その中心軸が前記イオン源力 前記基板寄り に離れた所にありかつ前記基板の表面に実質的に平行である回転軸と、前記真空 容器内に設けられていて、前記イオン源を前記回転軸から支持するアームと、前記 真空容器外に設けられていて、前記回転軸を
往復回転させるモータとを備えていて、前記回転軸の中心軸を中心にして前記ィォ ン源を回転可能に支持して 、ることを特徴として 、る。
[0013] このイオンビーム照射装置によれば、モータによって回転軸を回転させることによつ て、真空容器外から、真空容器を開放することなぐイオン源を回転軸の中心軸を中 心にして回転させて、基板へのイオンビームの入射角度を変更することができる。従 つてこの変更は容易である。
[0014] し力も、回転軸の中心軸はイオン源力 基板寄りに離れた所にあり、イオン源はこの 中心軸を中心にして回転する、したがって、小さい入射角度の場合でも、中心軸がィ オン源内に位置している場合に比べて、基板へのイオンビームの照射位置のずれお よび基板へのイオンビームの照射領域の広がりを小さく抑えることができる。
[0015] なお、前記回転軸の中心軸と前記基板の表面との間の距離を、前記イオン源の出 口側の幅であって当該イオン源の回転方向側の幅の半分と同程度以下(下限は 0) にしておいても良い。
[0016] 前記回転軸およびアームが中空の磁性材力 成っていて磁気シールド機能を有す ると共に接地電位にされており、前記真空容器の外部から前記イオン源へ電力を供 給する導体を、当該回転軸およびアームの内部に通しておいても良い。 [0017] 前記真空容器内であって前記基板に対して所定の角度に位置させたイオン源に前 記基板の通路を挟んで対向する位置に、前記イオン源から引き出されたイオンビー ムの前記幅方向の電流密度分布を計測するビーム計測器を設けてぉ ヽても良 、。
[0018] 前記ビーム計測器は、前記基板に対してほぼ垂直な角度に位置させた前記イオン 源に対向する位置に設けてぉ 、ても良 、。
[0019] この発明に係るイオンビーム照射方法は、前記ビーム計測器を設けて 、るイオンビ ーム照射装置を用いたイオンビーム照射方法にぉ 、て、前記イオン源を前記ビーム 計測器に対向する角度に位置させて、前記ビーム計測器を用いて、前記イオン源か ら引き出されたイオンビームの前記電流密度分布を計測するステップと、次いで、前 記計測した電流密度分布が所定の許容範囲内にあるカゝ否かを判断し、許容範囲内 にあれば次のステップに進み、許容範囲内になければ前記電流密度分布を許容範 囲内に入れる調整を行うステップと、次いで、前記イオン源を前記基板の処理に必要 な所定の角度に位置させるステップと、次い
で、前記基板駆動機構によって前記基板を駆動しながら、当該基板に前記イオン源 からイオンビームを照射して当該基板に処理を施すステップとを備えていることを特 徴としている。
[0020] このイオンビーム照射方法によれば、真空容器の外部からイオン源の角度を所望 のものに容易に調整することができる。例えば基板毎または基板のロット毎など必要 に応じて、イオン源を計測位置に移動させてイオンビームの電流密度分布を計測し て評価し、そして必要な調整を行った後に、イオン源を処理位置に移動させて基板 に処理を施すことができる。その結果、安定した処理を行うことが容易になる。
発明の効果
[0021] 請求項 1に記載の発明によれば、モータによって回転軸を回転させることによって、 真空容器外から、真空容器を開放することなぐイオン源を回転軸の中心軸を中心に して回転させて、基板へのイオンビームの入射角度を容易に変更することができる。
[0022] し力も、回転軸の中心軸はイオン源力 基板寄りに離れた所にあり、イオン源はこの 中心軸を中心にして回転する。したがって、入射角度を小さくする場合でも、基板へ のイオンビームの照射位置のずれおよび基板へのイオンビームの照射領域の広がり を小さく抑えることができる。その結果、装置の小型化が可能になると共に、装置のス ループット低下を抑えることが可能になる。
[0023] 更に、前記モータを制御することによって入射角度調整を電気的に制御することが 可能になるので、所望の入射角度で簡単に効率良く基板を処理することが可能にな る。
[0024] 請求項 2に記載の発明によれば、次のような更なる効果を奏する。即ち、回転軸の 中心軸を上記のように基板表面に近!、所に位置させて 、るので、入射角度を小さく する場合でも、基板へのイオンビームの照射位置のずれおよび基板へのイオンビー ムの照射領域の広がりをより小さく抑えることができる。その結果、装置のより小型化 が可能になると共に、入射角度を小さくした時の基板表面におけるイオンビームの電 流密度低下をより小さく抑えることができる。
[0025] 請求項 3に記載の発明によれば、次のような更なる効果を奏する。即ち、イオン源を 真空容器内に収納して 、て真空容器内におけるスペースの制約等から、イオン源へ 電力を供給する導体の引き回しをイオン源の近くで行う必要が生じた場合でも、当該 導体は、磁気シールド機能を有する回転軸およびアームの内部を通しているので、 当該導体を流れる電流によって発生する磁場の漏れを抑えて、当該磁場がイオン源 力も引き出されたイオンビームに悪影響を与えることを抑えることができる。例えば、ィ オン源から引き出されたイオンビームの電流密度分布が乱されることを防止すること ができる。
[0026] 更に、前記導体を回転軸およびアーム内を通さずに真空容器内に露出させて通す と、イオン源の周りは真空雰囲気でありかつ放電のトリガになるイオンや電子も多く存 在しているので、前記導体に高電圧を印加したときに周囲の異電位部との間で放電 が発生してイオン源からのイオンビームの弓 Iき出しが不安定になる現象が発生しや すい。し力しながら、この発明では接地電位の回転軸およびアームの内部に前記導 体を通していて、当該導体が真空容器内の雰囲気から電気的に遮蔽されているので 、前記導体に高電圧を印カロしたときに真空容器内の異電位部との間で放電が発生し てイオン源力 のイオンビームの弓 Iき出しが不安定になる現象が発生することを抑制 することができる。 [0027] 請求項 4に記載の発明によれば、基板に対して所定の角度に位置させたイオン源 力も引き出されるイオンビームの幅方向の電流密度分布をビーム計測器によって計 測することができるので、当該計測結果を、イオンビームの特性評価やイオン源の調 整等に利用することができる、という更なる効果を奏する。
[0028] 請求項 5に記載の発明によれば、基板に対してほぼ垂直な角度に位置させたィォ ン源に対向する位置にビーム計測器を設けて ヽるので、イオン源の近くにビーム計 測器を位置させることができ、し力もビーム計測器にほぼ垂直にイオンビームを入射 させることが容易であるので、ビーム計測器による計測の精度を高めることができる、 という更なる効果を奏する。
[0029] 請求項 6に記載の発明によれば、真空容器の外部力 イオン源の角度を所望のも のに容易に調整することができるので、例えば基板毎または基板のロット毎など必要 に応じて、イオン源を計測位置に移動させてイオンビームの電流密度分布を計測し て評価し、そして必要な調整を行った後に、イオン源を処理位置に移動させて基板 に処理を施すことができる。その結果、安定した処理を行うことが容易になる。
図面の簡単な説明
[0030] [図 1]この発明に係るイオンビーム照射装置の一実施形態を示す縦断面図である。
[図 2]図 1の装置を右方向力 見て示す縦断面図である。
[図 3]図 1および図 2中のビーム計測器のより具体例を示す縦断面図である。
[図 4(a)]イオン源を回転させる回転軸の中心軸が基板表面力 遠い場合における基 板表面へのイオンビームの入射状況の例を簡略化して示す側面図である。
[図 4(b)]イオン源を回転させる回転軸の中心軸が基板表面力 近 、場合における基 板表面へのイオンビームの入射状況の例を簡略化して示す側面図である。
[図 5]イオン源の出口側の幅と、イオン源を回転させる回転軸の中心軸の位置との関 係を示す側面図である。
[図 6]イオン源の中心軸をアームの中心軸力もずらした例を示す側面図である。
[図 7]イオン源の回転中心力 Sイオン源内に位置している場合の例を示す側面図であ る。
[図 8]基板とその表面に照射されるイオンビームとの関係の例を示す平面図である。 符号の説明
[0031] 2 イオン源
4 イオンビーム
6 基板
10 真空容器
12 アーム
14 回転軸
14a 中心軸
22 モータ
30 基板駆動機構
46 ビーム計測器
発明を実施するための最良の形態
[0032] 図 1は、この発明に係るイオンビーム照射装置の一実施形態を示す縦断面図であ る。図 2は、図 1の装置を右方向から見て示す縦断面図である。図 7および図 8に示し た例と同一または相当する部分には同一符号を付し、以下においては当該例との相 違点を主に説明する。
[0033] このイオンビーム照射装置は、真空に排気される真空容器 10と、その内部に設けら れたイオン源 2とを備えて 、る。
[0034] イオン源 2は、処理すべき基板 6にそれよりも幅の広いイオンビーム 4を照射するも のである。基板 6の形状は特定のものに限定されない。例えば、基板 6の平面形状が 図 8に示したように X方向に長く Y方向に短い長方形の場合は、イオン源 2は、その短 辺の(即ち Y方向の)幅 Wよりも幅の広いイオンビーム 4を照射するものである。その
2
ために、イオン源 2は、この例では、 Y方向に長い直方体に近い形状をしている。この イオン源 2は、例えば、図 8に示したような、 X方向に短く Y方向に長い長方形の断面 形状をしたイオンビーム 4を射出する。イオンビーム 4の幅とは、この明細書では、この Y方向の幅を言う。
[0035] 基板 6は、例えば、液晶ディスプレイ用の平板状の基板である。その場合、基板 6の 表面に配向膜力 Sイオンビーム 4による配向処理前に予め形成されていても良いし、ィ オンビーム 4の照射によって基板 6の表面に配向膜を形成すると共に当該配向膜に 配向処理を施しても良い。
[0036] このイオンビーム照射装置は、更に、真空容器 10内で基板 6を、イオン源 2から引き 出されたイオンビーム 4の幅方向(即ち Y方向)と実質的に直交する X方向に直線的 に駆動する基板駆動機構 30を備えて 、る。この基板駆動機構 30による基板 6の駆 動は、一方向の駆動でも良いけれども、基板 6へのイオンビーム 4の照射量を増大さ せる等の理由から、往復駆動の方が好ましい。この実施例では往復駆動するようにし ている。また、イオンビーム 4が基板 6に入射しているときの基板 6の駆動速度は一定 に保つようにしている。
[0037] 基板駆動機構 30は、この例では、基板 6を支持する板状の基板支持体 32と、複数 の 2列に配置されたコロ 34と、モータ 36とを備えている。複数の 2列に配置されたコロ 34は、基板支持体 32の Y方向の両端部を支持する。モータ 36は、真空容器 10外に 設けられて 、て所定のコロ 34を回転軸 38を介して矢印 D (図 2参照)に示すように往 復回転させる。回転軸 38が結合されたコロ 34と他のコロ 34とは、例えばチェーン、ベ ルト等によって連結されて 、て連動回転するようにして 、る。回転軸 38が真空容器 1 0を貫通する部分には、真空シール機能を有する軸受 40を設けている。上記モータ 36を往復回転させることによって、コロ 34の上で基板支持体 32およびその上の基板 6を、イオン源 2からのイオンビーム 4の照射領域内で X方向に往復直線運動させるこ とがでさる。
[0038] 但し、基板駆動機構 30は、この例の構成に限られるものではな 、。例えば、基板支 持体 32を用いずに基板 6を直接コロ 34で支持してコロ 34の上を滑らせて往復運動さ せても良い。あるいは、基板支持体 32としてトレー状のものを用いても良い。そして、 上記コロ 34およびモータ 36等の代わりに、上記板状やトレー状の基板支持体 32を 往復直線運動させる直線駆動装置 (例えばエアシリンダー等)を設けても良い。
[0039] このイオンビーム照射装置は、更に、回転軸 14と、アーム 12と、モータ 22とを備え ている。回転軸 14は、真空容器 10を貫通し、その中心軸 14aがイオン源 2から基板 6 寄りに離れた所にありかつ基板 6の表面 6aおよび前記 Y方向に実質的に平行である 。アーム 12は、真空容器 10内に設けられていてイオン源 2を回転軸 14力も支持する (換言すれば真空容器 10内で回転軸 14とイオン源 2とを接続する)。モータ 22は、真 空容器 10外に設けられて 、て回転軸 14を矢印 Bに示すように往復回転させる。この ような構成によって、真空容器 10内でイオン源 2を、回転軸 14の中心軸 14aを中心 にして矢印 Bに示すように回転可能に支持して 、る。
[0040] 回転軸 14およびアーム 12は、この例では、イオン源 2の Y方向の両側に設けてい る。このようにすると、イオン源 2を両側力も安定して支持することができる。但し、それ に限定されるものではない。例えば回転軸 14およびアーム 12をイオン源 2の片側だ けに設けても良い。各回転軸 14が真空容器 10を貫通する部分には、真空シール機 能を有する軸受 16をそれぞれ設けている。
[0041] 各アーム 12は、この例では L字状をしている。各アーム 12は、イオン源 2を、その出 口(イオンビーム 4の引出し口)を基板 6側に向けて、回転軸 14の中心軸 14aにほぼ 平行に支持している。
[0042] モータ 22は、矢印 C (図 2参照)に示すように往復回転可能なものである。その回転 力を、この例では、モータ 22の回転軸 24に取り付けられたプーリ 26、一方の回転軸 14に取り付けられたプーリ 18、および、両プーリ 18、 26間に懸け渡されたベルト 20 を介して、回転軸 14に伝達するように構成している。但し、モータ 22の回転力の伝達 機構は、この例のもの以外でも良い。例えば、タイミングベルト、ギア等を用いても良 い。また、回転数の低いモータ 22を用いてそれを回転軸 14に直接結合しても良い。
[0043] 上記回転軸 14およびアーム 12は、中実のものでも良いし、この実施形態のように 中空のものでも良い。これについては後述する。
[0044] このイオンビーム照射装置によれば、モータ 22によって回転軸 14を回転させること によって、真空容器 10外から、真空容器 10を開放することなぐイオン源 2を回転軸 14の中心軸 14aを中心にして回転させる。したがって、基板 6へのイオンビーム 4の 入射角度 Θ (図 4、図 5、図 7参照)を容易に変更することができる。
[0045] し力も、回転軸 14の中心軸 14aはイオン源 2から基板 6寄りに離れた所にあり、ィォ ン源 2はこの中心軸 14aを中心にして回転する。したがって、入射角度 Θを小さくす る場合でも、図 7に示した例のように中心軸 8aがイオン源 2内に位置している場合に 比べて、基板 6へのイオンビーム 4の照射位置のずれおよび基板 6へのイオンビーム 4の照射領域の広がりを小さく抑えることができる。その結果、装置の小型化が可能 になると共に、装置のスループット低下を抑えることが可能になる。
[0046] このことを更に説明すると、イオン源 2の回転中心、即ち回転軸 14の中心軸 14aを どこに位置させるかによつて、入射角度 Θを 90度より小さくしたときの基板 6に対する イオンビーム 4の照射領域の位置および大きさは大きく異なる。図 4Aは、中心軸 14a をイオン源 2の出口付近に位置させた例を示し、図 4Bは、中心軸 14aを基板表面 6a の近くに位置させた例を示す。
[0047] いずれの例でも、イオンビーム 4の入射角度 0を、 Θ ( = 90度)から 0 、 Θ へと
1 2 3 小さくするほど、基板表面 6aへのイオンビーム 4の照射位置は、入射角度 Θ の所か
1 らずれる(その距離を Lとする)。し力しながら、同じ大きさの入射角度 0 、 Θ を実
3 2 3 現する場合、図 4Bの例の方がずれる距離 Lを図 4Aの例に比べて遙かに小さくする
3
ことができる。従ってその分、当該イオンビーム照射装置を小型化することができる。
[0048] また、イオン源力も射出するイオンビーム 4は、空間電荷効果等によって発散する 傾向を持っているので、上記距離 Lが長くなるほど、基板表面 6aへのイオンビーム 4
3
の照射領域は広がる。従って、図 4Bの例の方がイオンビーム 4の照射領域の広がり を小さく抑えることができる。その結果、イオンビーム 4を基板 6の全面に照射するた めに必要な基板 6の X方向の駆動距離 (走査幅)をあまり大きくせずに済む。したがつ て、この観点からも装置を小型化することが可能になると共に、基板処理時間が長く なることを抑えて装置のスループット低下を抑えることが可能になる。
[0049] 上記のように、回転軸 14の中心軸 14aは、基板表面 6aの近くに位置させることが好 ましい。但し、図 5を参照して、中心軸 14aを基板表面 6aの近くに位置させると、入射 角度 Θを非常に小さくする時にイオン源 2の下部が基板表面 6aに当たることになる可 能性が生じる。したがって、これを避けるためにはアーム 12を長くしてイオン源 2と中 心軸 14a間の距離を大きくする必要が生じる。
[0050] そこで、イオン源 2と中心軸 14a間の実用的な距離で、小さい入射角度 Θを実現可 能にするには、イオン源 2の大きさ(具体的には、イオン源 2の出口側の幅であってィ オン源 2の前記回転方向側の幅 W )を考慮すると、回転軸 14の中心軸 14aと基板表
1
面 6a間の距離 Lは、 0以上で W Z2程度以下の範囲内にするのが好ましい。 [0051] 回転軸 14の中心軸 14aを、即ちイオン源 2の回転中心を、上記範囲内に位置させ て基板表面 6aに近い所に位置させると、入射角度 Θを小さくする場合でも、基板 6へ のイオンビームの照射位置のずれおよび基板 6へのイオンビームの照射領域の広が りをより小さく抑えることができる。その結果、装置のより小型化が可能になると共に、 装置のスループット低下をより小さく抑えることが可能になる。
[0052] なお、図 1の例では、アーム 12の中心軸 12aとイオン源 2の中心軸 2a (いずれも図 6 参照)とを一致させているけれども、それに限られるものではない。図 6に示す例のよ うに、イオン源 2の中心軸 2aを、アーム 12の中心軸 12aから基板 6とは反対側にずら して結合しても良い。そのようにすると、小さい入射角度を採るときにイオン源 2の下 部が基板表面 6aに当たりに《なるので、同じ幅 W のイオン源を用いる場合でも、上
1
記距離 Lをより小さくしたり、あるいは、イオン源 2と中心軸 14a間の距離をより小さく
1
したりすることができる。その結果、いずれにしても、上述した理由から、装置のより小 型化を図ることが可能になる。
[0053] 回転軸 14およびアーム 12は、前述したように、中空にしても良ぐこの実施形態で はそのようにしている。具体的には、回転軸 14を円筒状にし、アーム 12をダクト状に し、それら 14、 12の内部を互いに連通させている。アーム 12のイオン源 2側はイオン 源 2に接続している。回転軸 14の内部(例えば真空容器 10付近の内部)には、真空 シールを行う真空シール材 44を設けている。更に、この回転軸 14およびアーム 12を 、例えば鉄、炭素鋼等の磁性材で構成している。更に、この回転軸 14およびアーム 1 2を電気的に接地している。真空容器 10も電気的に接地している。
[0054] そして、真空容器 10の外部からイオン源 2へ電力を供給する導体 42を、回転軸 14 およびアーム 12の内部に通してイオン源 2へと導いている。導体 42は、図 2では図示 を簡略化するために、左右に 1本ずつしか図示していないけれども、 1本ずつに限ら れるものではなぐ必要な本数だけ通せば良い。また、回転軸 14およびアーム 12を イオン源 2の両側に設けている場合、片側のアーム 12等内にのみ導体 42を通しても 良いし、両側のアーム 12等内に導体 42を通しても良い。この導体 42は、例えば、ィ オン源 2のフィラメントを加熱するフィラメント電力を供給するための導体、イオン源 2 にアーク 放電用のアーク電力を供給するための導体、イオン源 2のイオンビーム引出し電極系 に高電圧を供給するための導体等である。これらの導体 42が真空シール材 44を貫 通する部分には、真空シール機能を有する電流導入端子(図示省略)が設けられて いる。また、これらの導体 42は、回転軸 14およびアーム 12内の適所に設けられた絶 ぺーサ (図示省略)によって絶縁支持されて 、る。
[0055] イオン源 2を真空容器 10内に設ける場合は、真空容器 10外に設ける場合に比べ て、イオン源 2へ上記のような電力を供給する導体の引き回しは真空容器 10内にお けるスペースの制約等から、イオン源 2の近くで行う必要が生じる。そのような場合は 特に、当該導体を流れる電流によって発生する磁場がイオンビーム 4に悪影響を与 えることがある。例えば、イオンビーム 4を構成するイオンの進行方向を変化させ、ィ オンビーム 4の電流密度分布が乱されることがある。特に、イオン源 2が、プラズマ生 成に熱フィラメントを用いる直流放電タイプの場合は、フィラメント電流が大き ヽ(例え ば 60A程度)のでそれによる強い磁場を周辺に発生させることがある。
[0056] これに対して、この実施形態では、上記導体 42を、磁気シールド機能を有する回 転軸 14およびアーム 12内を通している。したがって、導体 42に流れる電流によって 発生する磁場の漏れを抑えて、当該磁場力 Sイオンビーム 4に例えば上記のような悪 影響を与えることを抑えることができる。
[0057] また、真空容器 10内を通す導体には、被覆材からの不純物やガスの発生を避ける 等のために、通常は裸の導体を用いる。その場合に、当該導体を真空容器 10内に 露出させた状態で引き回すと、イオン源 2の周りは真空雰囲気でありかつ放電のトリ ガになるイオンや電子も多く存在して!/ヽるので、当該導体に高電圧 (例えば数百 V〜 数 kV程度)を印カロしたときに周囲の異電位部 (例えば接地電位部。以下同様)との 間で放電が発生してイオン源 2からのイオンビーム 4の弓 Iき出しが不安定になる現象 が発生しやすくなる。
[0058] これに対して、この実施形態では、接地電位の回転軸 14およびアーム 12の内部に 前記導体 42を通していて、当該導体 42が真空容器 10内の雰囲気から電気的に遮 蔽されている。したがって、導体 42に高電圧を印加したときに真空容器 10内の異電 位部との間で放電が発生してイオン源 2からのイオンビーム 4の引き出しが不安定に なる現象が発生することを抑制することができる。
[0059] この実施形態では、真空容器 10内であって基板 6に対して所定の角度に位置させ たイオン源 2に基板 6の通路を挟んで対向する位置に、イオン源 2から引き出されたィ オンビーム 4の前記幅方向の電流密度分布を計測するビーム計測器 46を設けてい る。
[0060] より具体的には、この実施形態では、ビーム計測器 46を、基板 6に対してほぼ垂直 な角度に位置させたイオン源 2に対向する位置に設けて 、るけれども、これに限定さ れるものではない。
[0061] イオンビーム 4の前記幅方向の電流密度分布を計測するためのビーム計測器 46は 、この実施形態のようにイオンビーム 4の前記幅方向に並設された複数個(多数個) のビーム計測器 46でも良い。あるいは、イオンビーム 4の前記幅方向に機械的に走 查 (駆動)される 1個のビーム計測器 46でも良い。但し、前者の方が、複数個のビー ム計測器個 46によって一度にイオンビーム 4の電流密度分布を計測することができ、 計測時間が短くて済むので好ましい。特に、基板 6が大型化しイオン源 2も大型化し ている場合は、前者の方が好ましい。
[0062] 各ビーム計測器 46のより具体例を図 3に示す。このビーム計測器 46は、ファラデー カップ 48と、その上流側に設けられている負抑制電極 50と、その上流側に設けられ ている正抑制電極 52と、その上流側に設けられている接地電極 54と、導体容器 56と を備えている。ファラデーカップ 48は、イオンビーム 4を受けてそのビーム電流密度を 計測する。負抑制電極 50は、イオンビーム 4がファラデーカップ 48に入射した際にフ ァラデーカップ 48から放出される 2次電子の外部への漏れを抑制するものであって 負電圧が印加される。正抑制電極 52は、上流の雰囲気中で作られたイオンがファラ デーカップ 48に流入するのを抑制するものであって正電圧が印加される。接地電極 54は、ファラデーカップ 48に入射するイオンビーム 4の寸法を決めるマスクの作用を すると共にそれより下流側の電極等を上流側力 電気的に遮蔽するものであって電 気的に接地される。導体容器 56は、接地電極 54に接続されていて当該接地電極 54 と協働して、内部のファラデーカップ 48および電極 50、 52を電気的に遮蔽するもの であって電気的に接地される。 [0063] 上記のようなビーム計測器 46を設けることによって、基板 6に対して所定の角度に 位置させたイオン源 2から引き出されるイオンビーム 4の幅方向の電流密度分布を当 該ビーム計測器 46によって計測することができる。したがって、当該計測結果を、ィ オンビーム 4の特性評価やイオン源 2の調整等に利用することができる。
[0064] イオンビーム 4の電流密度分布の計測に限らず、所要位置のビーム計測器 46を用 V、ることによって当該位置でのイオンビーム 4の電流密度を計測することもできる。ま た、イオンビーム 4の電流密度分布の計測結果から、当該電流密度分布の均一性を 求めることもできる。上記ビーム計測器 46は、このような計測にも利用することができ る。
[0065] その場合、この実施形態のように、基板 6に対してほぼ垂直な角度に位置させたィ オン源 2に対向する位置にビーム計測器 46を設けておくと、イオン源 2の近くにビー ム計測器 46を位置させることができる。し力もビーム計測器 46にほぼ垂直にイオンビ ーム 4を入射させることが容易である。したがって、ビーム計測器 46による計測の精 度を高めることができる。
[0066] 次に、上記イオンビーム照射装置を用いて基板 6を処理する方法 (イオンビーム照 射方法)の例を説明する。
[0067] (a)第 1ステップ
回転軸 14を必要に応じて回転させてイオン源 2をビーム計測器 46に対向する角度 に位置させる。手動でまたは予め設定された条件でイオン源 2からイオンビーム 4を 発生させながら、ビーム計測器 46を用いて、イオン源 2から引き出されたイオンビー ム 4の前記電流密度分布を計測する。このときに、必要に応じて、イオンビーム 4の所 要位置の電流密度や、イオンビーム 4の電流密度分布の均一性をも計測しても良 ヽ
[0068] (b)第 2ステップ
次いで、前記計測した電流密度分布が所定の許容範囲内にあるカゝ否かを判断し、 許容範囲内にあれば次のステップに進む。許容範囲内になければ前記電流密度分 布を許容範囲内に入れる調整を手動または自動で行う。このとき、必要に応じて、ィ オンビーム 4の所要位置の電流密度や、イオンビーム 4の電流密度分布の均一性を も評価して、必要があればそれらの調整を手動または自動で行っても良い。そして、 必要なイオンビームの条件が満たされていることを確認する。
[0069] (c)第 3ステップ
次いで、回転軸 14を回転させてイオン源 2を基板 6の処理に必要な所定の角度に 位置させる。
[0070] (d)第 4ステップ
次いで、基板駆動機構 30によって基板 6を前述したように駆動しながら、当該基板 6にイオン源 2からイオンビームを照射して基板 6に処理を施す。例えば、液晶ディス プレイ用の基板 6の表面に前述したような配向処理を施す。
[0071] 上記イオンビーム照射方法によれば、真空容器 10の外部力もイオン源 2の角度を 所望のものに容易に調整することができる。例えば基板毎または基板のロット毎など 必要に応じて、イオン源を計測位置に移動させてイオンビームの電流密度分布を計 測して評価し、そして必要な調整を行った後に、イオン源を処理位置に移動させて基 板に処理を施すことができる。その結果、安定した処理を行うことが容易になる。
[0072] なお、基板 6に前記配向処理を施す場合は、上記イオンビーム照射装置はイオン ビーム配向装置またはイオンビーム配向処理装置等と、上記イオンビーム照射方法 はイオンビーム配向方法またはイオンビーム配向処理方法等と、それぞれ呼ぶことも できる。 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精 神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にと つて明らかである。
本出願は、 2004年 9月 2日出願の日本特許出願 (特願 2004-255648)に基づくもの であり、その内容はここに参照として取り込まれる。

Claims

請求の範囲
[1] 真空に排気される真空容器と、
前記真空容器内に設けられて ヽて、処理すべき基板にそれよりも幅の広 ヽイオンビ ームを照射するイオン源と、
前記真空容器内で前記基板を、前記イオン源から引き出されたイオンビームの幅 方向と実質的に直交する方向に駆動する基板駆動機構と、
前記真空容器を貫通している回転軸であって、その中心軸が前記イオン源力 前 記基板寄りに離れた所にありかつ前記基板の表面に実質的に平行である回転軸と、 前記真空容器内に設けられて ヽて、前記イオン源を前記回転軸から支持するァー ムと、
前記真空容器外に設けられて ヽて、前記回転軸を往復回転させるモータとを備え ていて、
前記回転軸の中心軸を中心にして前記イオン源を回転可能に支持していることを 特徴とするイオンビーム照射装置。
[2] 前記回転軸の中心軸と前記基板の表面との間の距離を、前記イオン源の出口側の 幅であって当該イオン源の回転方向側の幅の半分と同程度以下にしている請求項 1 記載のイオンビーム照射装置。
[3] 前記回転軸およびアームが中空の磁性材力 成っていて磁気シールド機能を有す ると共に接地電位にされており、前記真空容器の外部から前記イオン源へ電力を供 給する導体を、当該回転軸およびアームの内部に通している請求項 1または 2記載 のイオンビーム照射装置。
[4] 前記真空容器内であって前記基板に対して所定の角度に位置させたイオン源に前 記基板の通路を挟んで対向する位置に、前記イオン源から引き出されたイオンビー ムの前記幅方向の電流密度分布を計測するビーム計測器を設けて 、る請求項 1、 2 または 3記載のイオンビーム照射装置。
[5] 前記ビーム計測器は、前記基板に対してほぼ垂直な角度に位置させた前記イオン 源に対向する位置に設けられている請求項 4記載のイオンビーム照射装置。
[6] 請求項 4または 5記載のイオンビーム照射装置を用いたイオンビーム照射方法にお いて、
前記イオン源を前記ビーム計測器に対向する角度に位置させて、前記ビーム計測 器を用いて、前記イオン源から引き出されたイオンビームの前記電流密度分布を計 測するステップと、
次いで、前記計測した電流密度分布が所定の許容範囲内にあるカゝ否かを判断し、 許容範囲内にあれば次のステップに進み、許容範囲内になければ前記電流密度分 布を許容範囲内に入れる調整を行うステップと、
次 、で、前記イオン源を前記基板の処理に必要な所定の角度に位置させるステツ プと、
次いで、前記基板駆動機構によって前記基板を駆動しながら、当該基板に前記ィ オン源からイオンビームを照射して当該基板に処理を施すステップとを備えているこ とを特徴とするイオンビーム照射方法。
PCT/JP2005/015919 2004-09-02 2005-08-31 イオンビーム照射装置およびイオンビーム照射方法 WO2006025452A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/590,911 US7436075B2 (en) 2004-09-02 2005-08-31 Ion beam irradiation apparatus and ion beam irradiation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-255648 2004-09-02
JP2004255648A JP4371011B2 (ja) 2004-09-02 2004-09-02 イオンビーム照射装置およびイオンビーム照射方法

Publications (1)

Publication Number Publication Date
WO2006025452A1 true WO2006025452A1 (ja) 2006-03-09

Family

ID=36000101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015919 WO2006025452A1 (ja) 2004-09-02 2005-08-31 イオンビーム照射装置およびイオンビーム照射方法

Country Status (6)

Country Link
US (1) US7436075B2 (ja)
JP (1) JP4371011B2 (ja)
KR (1) KR100869522B1 (ja)
CN (1) CN100552866C (ja)
TW (1) TW200614312A (ja)
WO (1) WO2006025452A1 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7338683B2 (en) * 2004-05-10 2008-03-04 Superpower, Inc. Superconductor fabrication processes
JP4605146B2 (ja) * 2006-11-16 2011-01-05 日新イオン機器株式会社 イオンビーム計測装置
JP4530032B2 (ja) * 2007-11-29 2010-08-25 日新イオン機器株式会社 イオンビーム照射方法およびイオンビーム照射装置
US8108986B2 (en) * 2007-12-28 2012-02-07 Hitachi Global Storage Technologies Netherlands B.V. Method for manufacturing a perpendicular magnetic write pole having a large bevel angle
JP5298593B2 (ja) * 2008-03-26 2013-09-25 大日本印刷株式会社 パターン形成装置
JP4766156B2 (ja) * 2009-06-11 2011-09-07 日新イオン機器株式会社 イオン注入装置
KR101288574B1 (ko) 2009-12-02 2013-07-22 제일모직주식회사 갭필용 충전제 및 상기 충전제를 사용한 반도체 캐패시터의 제조 방법
KR20110101904A (ko) * 2010-03-10 2011-09-16 삼성모바일디스플레이주식회사 이온 도핑 장치 및 도핑 방법
KR101769493B1 (ko) * 2011-12-23 2017-08-30 주식회사 원익아이피에스 기판처리장치 및 그를 가지는 기판처리시스템
KR101941547B1 (ko) 2012-01-06 2019-04-15 삼성디스플레이 주식회사 광 배향 방법, 이를 수행하기 위한 노광 장치 및 액정 표시 패널
KR101380589B1 (ko) * 2012-05-17 2014-04-07 로체 시스템즈(주) 맵핑 유니트
US10354836B2 (en) * 2014-03-09 2019-07-16 Ib Labs, Inc. Methods, apparatuses, systems and software for treatment of a specimen by ion-milling
US9911573B2 (en) * 2014-03-09 2018-03-06 Ib Labs, Inc. Methods, apparatuses, systems and software for treatment of a specimen by ion-milling
TWI643531B (zh) * 2017-01-12 2018-12-01 日商住友重機械工業股份有限公司 Particle acceleration system and method for adjusting particle acceleration system
WO2018138801A1 (ja) 2017-01-25 2018-08-02 住友重機械工業株式会社 粒子加速システム及び粒子加速システムの調整方法
CN107170659B (zh) * 2017-05-26 2019-03-29 北京创世威纳科技有限公司 一种用于实现角度刻蚀的离子源刻蚀设备
CN107610994B (zh) 2017-08-10 2019-06-07 江苏鲁汶仪器有限公司 一种离子束刻蚀系统
US11508552B2 (en) 2018-08-31 2022-11-22 Hitachi High-Tech Corporation Ion milling device
WO2020214759A1 (en) 2019-04-16 2020-10-22 Axcelis Technologies, Inc. Multiple arc chamber source
CN117510089B (zh) * 2024-01-05 2024-04-23 成都国泰真空设备有限公司 一种用于玻璃表面处理的离子束刻蚀设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02278643A (ja) * 1989-02-28 1990-11-14 Eaton Corp イオン注入機
JPH10162770A (ja) * 1996-05-15 1998-06-19 Semiconductor Energy Lab Co Ltd ドーピング装置およびドーピング処理方法
JP2000012282A (ja) * 1998-06-22 2000-01-14 Nissin Electric Co Ltd 三相交流を用いたプラズマ発生装置
JP2000122064A (ja) * 1998-10-12 2000-04-28 Nec Corp 液晶配向膜の配向処理方法およびその装置
JP2001101990A (ja) * 1999-09-30 2001-04-13 Nissin Electric Co Ltd イオン注入装置
JP2005174871A (ja) * 2003-12-15 2005-06-30 Mitsui Eng & Shipbuild Co Ltd イオン注入装置
JP2005189788A (ja) * 2003-12-25 2005-07-14 Mikuni Denshi Kk 配向処理装置と配向膜

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4278493A (en) * 1980-04-28 1981-07-14 International Business Machines Corporation Method for cleaning surfaces by ion milling
WO1993007924A1 (en) * 1991-10-18 1993-04-29 Spire Corporation Bactericidal coatings for implants
JPH09218408A (ja) 1996-02-13 1997-08-19 Nissin Electric Co Ltd 配向膜の配向処理方法
EP1004135A1 (en) * 1997-08-13 2000-05-31 Semiconductor Equipment Associates Inc. Varian Scanning system with linear gas bearings and active counter-balance options
US6632483B1 (en) 2000-06-30 2003-10-14 International Business Machines Corporation Ion gun deposition and alignment for liquid-crystal applications
US7064340B1 (en) * 2004-12-15 2006-06-20 Axcelis Technologies, Inc. Method and apparatus for ion beam profiling

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02278643A (ja) * 1989-02-28 1990-11-14 Eaton Corp イオン注入機
JPH10162770A (ja) * 1996-05-15 1998-06-19 Semiconductor Energy Lab Co Ltd ドーピング装置およびドーピング処理方法
JP2000012282A (ja) * 1998-06-22 2000-01-14 Nissin Electric Co Ltd 三相交流を用いたプラズマ発生装置
JP2000122064A (ja) * 1998-10-12 2000-04-28 Nec Corp 液晶配向膜の配向処理方法およびその装置
JP2001101990A (ja) * 1999-09-30 2001-04-13 Nissin Electric Co Ltd イオン注入装置
JP2005174871A (ja) * 2003-12-15 2005-06-30 Mitsui Eng & Shipbuild Co Ltd イオン注入装置
JP2005189788A (ja) * 2003-12-25 2005-07-14 Mikuni Denshi Kk 配向処理装置と配向膜

Also Published As

Publication number Publication date
JP2006073359A (ja) 2006-03-16
TWI336092B (ja) 2011-01-11
KR100869522B1 (ko) 2008-11-19
CN1934674A (zh) 2007-03-21
US7436075B2 (en) 2008-10-14
TW200614312A (en) 2006-05-01
KR20070010129A (ko) 2007-01-22
US20070184596A1 (en) 2007-08-09
JP4371011B2 (ja) 2009-11-25
CN100552866C (zh) 2009-10-21

Similar Documents

Publication Publication Date Title
WO2006025452A1 (ja) イオンビーム照射装置およびイオンビーム照射方法
US10145014B2 (en) Film forming apparatus
US9844126B2 (en) Plasma treatment apparatus
KR900005347B1 (ko) 플라즈마 처리장치
KR100809138B1 (ko) 이온주입장치
JP5047463B2 (ja) 基板をイオン注入する方法及びこの方法を実施する為のイオン注入装置
KR101071581B1 (ko) 이온 주입 장치
US20150197853A1 (en) Substrate processing apparatus
KR20070003977A (ko) 이온 빔 전류 변조
US11495446B2 (en) Film formation device and film formation method
JP2002182000A (ja) 電子ビーム処理装置
JP2012532423A (ja) 機械的二次元走査注入システムの均一性および生産性を改善するための、ビーム走査法の使用方法
JP6567119B1 (ja) 基板処理装置及びその制御方法、成膜装置、電子部品の製造方法
KR101398729B1 (ko) 이온 주입 장치
JP6957270B2 (ja) 成膜装置および成膜方法
WO2020080016A1 (ja) プラズマ成膜装置およびプラズマ成膜方法
JP5338022B2 (ja) 照射方向可変イオン照射装置および二次イオン質量分析装置
WO2017188132A1 (ja) イオンビーム照射装置及びイオンビーム照射方法
WO2023149323A1 (ja) プラズマ処理装置
KR102196274B1 (ko) 성막 장치 및 성막 방법
WO2023166966A1 (ja) 基板処理装置、基板処理方法および半導体デバイスの製造方法
KR20220106044A (ko) 플라스마 처리 장치
JP3686563B2 (ja) 半導体装置の製造方法およびプラズマ処理装置
JP2016096099A (ja) イオンミリング装置
JP2010056336A (ja) イオン照射装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 10590911

Country of ref document: US

Ref document number: 2007184596

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580009119.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020067019538

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1020067019538

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 10590911

Country of ref document: US

122 Ep: pct application non-entry in european phase