KR100809138B1 - 이온주입장치 - Google Patents

이온주입장치 Download PDF

Info

Publication number
KR100809138B1
KR100809138B1 KR1020050038272A KR20050038272A KR100809138B1 KR 100809138 B1 KR100809138 B1 KR 100809138B1 KR 1020050038272 A KR1020050038272 A KR 1020050038272A KR 20050038272 A KR20050038272 A KR 20050038272A KR 100809138 B1 KR100809138 B1 KR 100809138B1
Authority
KR
South Korea
Prior art keywords
sheet
ion beam
ion
current density
substrate
Prior art date
Application number
KR1020050038272A
Other languages
English (en)
Other versions
KR20060045964A (ko
Inventor
슈이치 마에노
마사오 나이토
야스노리 안도
힐튼 에프. 글라비쉬
Original Assignee
닛신 이온기기 가부시기가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 닛신 이온기기 가부시기가이샤 filed Critical 닛신 이온기기 가부시기가이샤
Publication of KR20060045964A publication Critical patent/KR20060045964A/ko
Application granted granted Critical
Publication of KR100809138B1 publication Critical patent/KR100809138B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3171Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/045Diaphragms
    • H01J2237/0455Diaphragms with variable aperture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/05Arrangements for energy or mass analysis
    • H01J2237/057Energy or mass filtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/15Means for deflecting or directing discharge
    • H01J2237/1502Mechanical adjustments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/202Movement
    • H01J2237/20221Translation
    • H01J2237/20228Mechanical X-Y scanning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24507Intensity, dose or other characteristics of particle beams or electromagnetic radiation
    • H01J2237/24514Beam diagnostics including control of the parameter or property diagnosed
    • H01J2237/24528Direction of beam or parts thereof in view of the optical axis, e.g. beam angle, angular distribution, beam divergence, beam convergence or beam landing angle on sample or workpiece
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24507Intensity, dose or other characteristics of particle beams or electromagnetic radiation
    • H01J2237/24514Beam diagnostics including control of the parameter or property diagnosed
    • H01J2237/24542Beam profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26513Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/2658Bombardment with radiation with high-energy radiation producing ion implantation of a molecular ion, e.g. decaborane

Abstract

본 이온주입장치는, 소망하는 이온종류를 포함하고 기판(82)의 단 변 폭(narrow width)보다도 폭이 넓은 시트 상(狀)의 이온빔(20)을 발생하는 이온 원과 이온빔(20)을 그 시트 면(20S)에 직교하는 방향으로 구부려서 소망하는 이온종류를 선별하여 도출하는 질량분리 마그넷(36)과, 질량분리 마그넷(36)이 협동하여 소망하는 이온종류를 선별하여 통과시키는 분리슬릿(72)과, 분리슬릿(72)을 통과한 이온빔(20)의 조사영역 내에서, 기판(82)을 이온빔(20)의 시트 면(20S)에 실질적으로 직교하는 방향으로 왕복 구동하는 기판구동장치(86)와, 상기 시트 상의 이온 빔의 폭 방향에서의 빔 전류 밀도분포를 균일화하는 렌즈를 구비하고 있다.
이온빔, 질량분리 마그넷, 분리슬릿, 기판, 기판구동장치

Description

이온주입장치{ION IMPLANTING APPARATUS}
도 1은, 본 발명에 관한 이온주입장치의 일실시 형태의 일부분을 표시하는 횡단면도이고, 선 A1 - A1의 부분에서 도 2에 계속된다.
도 2는, 본 발명에 관한 이온주입장치의 일실시 형태의 나머지 부분을 표시하는 횡단면도이고, 선 A1 - A1의 부분에서 도 1에 계속된다.
도 3은, 도 1 및 도 2에 표시한 이온주입장치의 일부분을 표시하는 종단면도이고, 선 A2 - A2의 부분에서 도 4에 계속된다.
도 4는 도 1 및 도 2에 표시한 이온 주입장치의 나머지 부분을 표시하는 종단면도이고, 선 A2 - A2의 부분에서 도 3에 계속된다.
도 5는, 이온빔을 간략화해서 부분적으로 표시하는 사시도이다.
도 6은, 이온빔과 기판과의 관계의 일례를 표시하는 정면도이다.
도 7은, 전계렌즈 및 그 전원의 일례를 표시하는 도이다.
도 8은, 질량분리 마그넷의 다른 예를 그 자극부분을 확대해서 표시하는 평면도이고, 도 1 및 도 2중의 자극부분에 상당한다.
도 9는 질량분리 마그넷의 다른 예를 확대하여 표시하는 종단면도이고, 도 8의 K-K 단면에 대체로 상당한다.
도 10은, 전계렌즈 및 그 전원의 다른 예를 표시하는 도이다.
도 11은, 자계렌즈 및 그 전원의 일례를 표시하는 도이다.
도 12는, 도 11중의 각 여자코일과 각 전원과의 결선의 보다 구체적인 예를 표시하는 도이다.
도 13은, 자계렌즈 및 그 전원의 다른 예를 표시하는 도이다.
본 발명은, 이온 빔의 폭 방향에서의 빔 전류 밀도분포의 균일성의 저하, 평행도의 악화 및 기판 처리속도의 저하를 억제하면서 기판의 대형화에 대응할 수 있는 이온주입 장치를 제공하는 것을 주목적으로 하고 있다.
본 발명은, 예컨대 반도체기판, 플랫패널 디스플레이용 기판 등의 기판(환언하면, 가공체 또는 피처리체. 이하 같음)에 이온빔을 조사하여 이온주입을 하는 이온주입장치에 관한 것이며, 보다 구체적으로는 기판의 대형화 (환언하면, 대면적화. 이하 같음)에 잘 대응할 수 있는 이온주입장치에 관한 것이다. 또한, 이온도핑장치라 불리는 것도 여기서 말하는 이온주입장치에 포함된다.
기판에 폭이 넓고 또한 평행화된 이온 빔을 조사할 수 있는 이온주입장치의 한 예가 일본특허 2000-505234호 공보(제 14페이지 제 14행 - 제 15페이지 제 15행, 도 1)에 기재되어 있다. 당해 이온주입장치는, 소형의 이온 원으로부터 1방향으로 발산하는 팬 형의 이온빔을 인출하고, 당해 이온빔을 빔 평행화 마그넷을 겸 하는 질량분리 마그넷을 통하여 팬 면에 평행인 면내에서 구부림으로써 소망하는 이온종류를 선별(질량분리)하는 동시에 평행화하여, 폭이 넓고 또한 평행화된 이온빔을 형성하여 당해 이온빔을 기판에 조사하는 구성을 하고 있다.
상기 이온주입장치에서는 질량분리 마그넷의 질량분해능은, 이온빔의 편향영역의 외주부는 높고, 내주부는 낮게 된다. 이것을 이온빔을 구부리면서 평행화하기 위하여, 외주부일수록 편향 각이 크게 되어 질량분해능이 높게 되기 때문이다. 그런데 질량분해능이 높게 될수록 이온종류가 엄하게 선별되므로 얻어지는 이온종류의 양이 적게 되고, 그 질량분리 마그넷에서 도출되는 이온빔의 빔 전류밀도는 외주부를 통과한 곳은 낮고, 내주부를 통과한 곳은 높다는 불균일한 분포로 된다. 즉, 이온빔의 폭 방향에서의 빔 전류 밀도분포의 균일성이 악화된다.
상기 일본특허 2000-505234호 공보 (제 14페이지 제 14행 - 제 15페이지 제 15행, 도 1)에 기재된 이온주입장치에 있어서, 상기 이유에 의한 빔 전류 밀도분포의 불균일성을 질량분리 마그넷의 상류 측에 설치되어 있는 다극이온렌즈를 사용하여 이온의 국소적인 편향으로 수정하는 것이 고려되나(예컨대, 전류밀도가 낮은 영역 측으로 이온빔을 구부려서 당해 영역의 전류밀도를 올린다.) 상기 이유에 의한 빔 전류밀도 분포의 불균일성은 크고, 이것을 다극 이온렌즈로 수정하는 데는 한계가 있다.
또, 다극 이온렌즈로 이온빔을 크게 편향하여 상기 빔 전류 밀도분포의 불균일성을 수정하려고 하면, 이 편향에 기인하여 이온 빔의 폭 방향에서의 평행성이 악화된다는 다른 문제가 생긴다.
상기와 같은 문제는 기판의 대형화(예컨대 단변폭이 600mm 정도 이상의 기판)에 대응하기 위하여, 질량분리 마그넷에서 도출하는 이온 빔의 폭을 보다 크게 하면, 보다 심각하게 된다.
또, 이온 원에서 인출한 이온 빔의 발산을 이용하여 이온빔의 폭을 넓히는 상기 종래기술에서는 이온빔의 폭을 넓힐수록 그 빔 전류밀도가 저하되므로, 기판의 대형화에 대응하려고 하면 1매의 기판 당의 처리속도가 저하된다.
그래서, 본 발명은 이온빔의 폭 방향에서의 빔 전류밀도 분포의 균일성의 저하, 평행도의 악화 및 기판처리속도의 저하를 억제하면서 기판의 대형화에 대응할 수 있는 이온주입장치를 얻는 것을 기술적 과제로 한다.
본 발명에 관한 이온주입장치는, 이온 원에서 발생시킨 기판의 단변폭보다도 폭이 넓은 시트 상(狀)의 이온빔을 당해 폭의 관계를 유지한 상태로 기판으로 수송하여 기판에 조사하는 이온주입장치로서,
기판에 주입하여야 할 소망하는 이온종류를 포함하고 상기 폭의 관계를 갖는 시트 상의 이온빔을 발생하는 이온 원으로서, 당해 시트 상의 이온빔의 근원으로 되는 플라즈마를 생성하는데 사용되고, 당해 시트 상의 이온빔의 폭 방향으로 배열된 복수의 필라멘트를 갖는 이온 원과,
이 이온 원의 각 필라멘트에 흘리는 필라멘트 전류를 서로 독립하여 제어할 수 있는 하나 이상의 필라멘트 전원과,
상기 이온 원에서 발생시킨 시트 상의 이온빔을 받는 것으로서, 당해 이온빔의 폭보다도 큰 간격의 자극을 가지고 있어, 당해 이온빔을 그 시트 면에 직교하는 방향으로 구부려서 상기 소망하는 이온종류를 선별하여 도출하는 질량분리 마그넷과,
이 질량분리 마그넷으로부터 도출된 시트 상의 이온 빔을 받아서, 당해 질량분리 마그넷과 협동하여 상기 소망하는 이온종류를 선별하여 통과시키는 분리슬릿과,
기판을 보존하는 홀더를 가지고 있으며, 상기 분리 슬릿을 통과한 시트 상의 이온 빔의 조사 영역 내에서 홀더 상(上)의 기판을, 당해 이온빔의 시트 면에 교차하는 방향으로 왕복 구동하는 기판 구동장치와,
상기 시트 상의 이온 빔의 폭 방향에서의 빔 전류 밀도분포를 균일화하는 렌즈를, 구비하는 것을 특징으로 하고 있다.
도 1은, 본 발명에 관한 이온 주입장치의 일부분을 표시하는 횡단면도이고, 선 A1-A1의 부분에서 도 2에 계속된다. 도 2는, 본 발명에 관한 이온주입장치의 나머지 부분을 표시하는 횡단면도이며, 선 A1-A1의 부분에서 도 1에 계속된다. 도 3은, 도 1 및 도 2에 표시한 이온 주입장치의 일부분을 표시하는 종단면도이고, 선 A2-A2의 부분에서 도 4에 계속된다. 도 4는 도 1 및 도 2에 표시한 이온주입장치의 나머지의 부분의 종단면도이며 선 A2-A2의 부분에서 도 3에 계속된다.
이 이온 주입장치는, 원칙적으로 예컨대, 도 6에 표시하는 바와 같이 구형(직사각형)의 기판(82)을 피처리체로 하고 있다. 이 기판(82)의 단변(82a)의 폭을 단변폭 WS라고 부른다. 단, 기판(82)이 정사각형이나 원형의 경우는 그 일변의 길이나 직경을 상기 단변폭 WS와 같이 취급하면 된다. 그것에 따라, 정사각형이나 원형의 기판(82)도 피처리체로 하여 취급할 수 있다. 기판(82)은, 예컨대 반도체 기판, 플랫패널 디스플레이용의 기판(예컨대 유리기판) 등이다.
이 이온주입장치는, 이온원(2)에서 발생시킨, 기판(82)의 단변폭 WS 보다도 폭 WB(도 5, 도 6 참조)의 넓은 시트 상(狀)의 이온 빔(20)을 당해 폭의 관계 (즉, WB > WS의 관계)를 유지한 상태에서, 전계렌즈(24), 질량분리 마그넷(36), 분리슬릿(72) 등을 통과시켜서, 처리실 용기(80)내의 홀더(84)에 보존된 기판(82)으로 수송하여 기판(82)에 조사하여, 당해 기판(82)에 이온주입을 하는 구성을 하고 있다.
이온 원(2)으로부터 처리실용기(80)까지의 이온 빔(20)의 경로(빔 라인)는, 진공용기(34)에 의해 둘러싸여 있다. 이 진공용기(34)는 적어도 질량분리 마그넷(36)내 및 그 전후의 부분은 비자성재로 된다. 이온원(2), 진공용기(34) 및 처리실 용기(80)의 내부는 당해 이온 주입장치의 운전시에는 도시하지 않는 진공 배기장치에 의해 진공으로 배기된다. 진공용기(34) 및 처리실 용기(80)는 전기적으로 접지되어 있다.
이온 원(2)은 기판(82)에 주입하여야 할 소망의 이온종류를 포함하고, 상기 폭의 관계를 갖는 시트 상(狀)의 이온 빔(20)을 발생한다. 「소망의」라는 것은 「소정의」 또는 「특정의」라고 바꿔 말할 수 있다(이하 같음). 소망의 이온 종류는 이온의 질량과 원자가에 의해 특정할 수 있다.
시트 상(狀)의 이온 빔(20)은, 그 일례를 도 5에 간략화하여 표시하는 바와 같이, 그 진행방향에 수직인 단면형상은, Y방향(예컨대, 수직방향, 이하 같음)에 길고 가는 대략 직사각형의 형상을 하고 있다. 대략이라고 한 것은, 실제의 이온 빔(20)의 단면 형상은 도시와 같은 완전한 직사각형을 이루고 있는 것은 아니고, 외주의 경계부는 어느 정도 희미해져서 선으로 그은 것과 같이 명확하게는 정해지지 않기 때문이다.
이 명세서에서는 그 직사각형 단면의 장축(20a)에 따르는 방향의 치수를 폭 WB라 부르고, 단축(20b)에 따르는 방향의 치수를 두께 TB로 부르며, 시트 상의 이온 빔의 주면(폭 WB를 포함하는 면)을 시트면(20s)로 부르고, 이온 빔(20)의 진행방향의 중심의 축을 중심축(20c)이라고 부른다. 따라서, 이온 빔(20)의 폭 WB 방향은 장축(20a)방향과 같은 뜻이고, 두께 TB 방향은 단축(20b)방향과 같은 뜻이다. 또, 이 실시형태에서는 이온 빔(20)의 폭 WB 방향은 Y방향과 같은 뜻이다.
시트 상의 이온 빔(20)은, 그 폭 WB에 비하여 두께 TB가 충분히 작은(예컨대 1/10 ~ 1/100 정도의) 이온 빔인 것이고 이것은 띠상의 이온 빔으로 환언할 수도 있다.
이온 원(2)은 이 예에서는 버킷형 이온원이라고 불리우는 것이며, 이온 빔(20)의 폭 WB방향으로 길고, 일면이 열려 있는 직사각형 상자상(箱子狀)의 플라즈마 생성 용기(4)를 가지고 있다. 이 플라즈마 생성용기(4)내에 상기 소망의 이온 종류의 원료로 되는 물질을 함유하는 원료가스가 도입된다.
플라즈마 생성용기(4)내에는 이온 빔(20)의 폭 WB방향으로 복수의 열음극용의 필라멘트(6)가 등간격으로 배열되어 있다. 필라멘트(6)의 수는 도 3에 표시하는 3개에 한정되는 것이 아니고, 이온 빔(20)의 폭 WB에 따라서 결정하면 된다. 예컨대, 당해 폭 WB가 800mm 정도의 경우, 필라멘트(6)의 수는 6개 정도로 하면 된다.
상기 각 필라멘트(6)에 흘리는 필라멘트 전류를 서로 독립하여 제어할 수 있는 필라멘트 전원을 설치하고 있다. 그 한 예로서, 이 예에서는 도 3에 표시하는 바와 같이, 각 필라멘트(6)마다에 독립된 필라멘트 전원(8)을 설치하고 있다. 즉, 필라멘트(6)의 수만큼 전압가변의 필라멘트 전원(8)을 설치하고 있다. 단, 이와 같이 하지 않고, 복수의 전원을 하나로 통합하는 등 하여 하나의 필라멘트 전원을 사용하여 각 필라멘트(6)에 흘리는 필라멘트 전류를 서로 독립하여 제어할 수 있도록 하여도 된다.
상기와 같이 하면, 이온 원(2)은 상기와 같은 복수의 필라멘트(6)를 가지고 있으며, 더구나 당해 각 필라멘트(6)에 흘리는 필라멘트 전류를 서로 독립하여 제어할 수 있으므로 이온 빔(20)의 폭 WB방향에서의 플라즈마(10)의 밀도분포의 균일 성을 좋게 하여, 폭 WB 방향에서의 빔 전류 밀도분포의 균일성이 좋은 시트 상의 이온 빔(20)을 발생시키는 것이 용이하게 된다.
즉, 상기의 각 필라멘트(6)와 플라즈마 생성용기(4)와의 사이에서 아크방전을 발생시켜서 원료가스를 전리시키고 이온 빔(20)의 폭 WB방향으로 길게 분포한 플라즈마(10)를 플라즈마 생성용기(4)내에 균일성 좋게 생성할 수 있다.
플라즈마 생성용기(4)의 개구부 부근에는, 상기 플라즈마(10)로 부터 전계의 작용으로 상기 시트 상의 이온 빔(20)을 인출하고, 또한 소망의 에너지까지 가속하는 인출 전극계(12)가 설치되어 있다. 인출 전극계(12)는 이 예에서는 3개의 전극(14)~(16)을 가지고 있다. 단, 3개에 한정되는 것은 아니다. 각 전극 (14)~(16)은 이온 인출공으로서 이온 빔(20)의 폭 WB 이상의 길이의 슬릿을 가지고 있어도 좋고, 이온 빔(20)의 폭 WB 이상에 걸쳐서 병설된 복수의(다수의)작은 구멍을 가지고 있어도 좋다. 도 3은 전자의 경우를 표시하나 후자 쪽이 바람직하다. 그 쪽이 이온 빔(20)의 폭 WB 방향의 빔 전류 밀도분포의 균일성을 보다 좋게 할 수 있기 때문이다.
상기와 같은 구성에 의해 이온 원(2)으로부터 보다 구체적으로는 그 플라즈마 생성용기(4)내에 생성된 플라즈마(10)로 부터, 기판(82)에 주입하여야 할 소망의 이온 종류를 포함하고 상기 폭의 관계를 가지고 있어 폭 WB방향에서의 빔 전류 밀도분포의 균일성이 좋은 시트 상의 이온 빔(20)이 인출된다.
이온 원(2)의 하류 측(환언하면, 이온 빔(20)의 진행 방향측, 이하 같음)에는 이온 원(2)에서 발생시킨 시트 상의 이온 빔(20)을 받는 것으로서 당해 이온 빔(20)의 폭 WB보다도 큰 간격 L1 (즉, L1 > WB)의 자극 (구체적으로는 주자극(38))을 가지고 있어 당해 이온 빔(20)을 그 시트면(20s)에 직교하는 방향으로 구부려서, 상기 소망의 이온 종류를 인출하여(즉, 질량분리를 하여) 시트 상의 이온 빔(20)을 도출하는 질량분리 마그넷(36)이 설치되어 있다. 상기와 같이 L1 > WB 이므로, 이온 빔(20)은 그 평행성을 거의 유지한 채 질량분리 마그넷(36)을 통과할 수 있다. 이 질량분리 마그넷(36)의 상세는 후술한다.
질량분리 마그넷(36)에서는 이온 빔(20)을 구성하는 이온에는 그 질량에 따라 고유의 궤도반경이 주어지나, 이 질량분리 마그넷(36)의 하류 측에 있고, 소망의 이온종류가 이온 빔(20)의 두께 TB방향에서 집속하는 위치 부근에는 질량분리 마그넷(36)으로부터 도출된 시트 상의 이온 빔(20)을 받아서 질량분리 마그넷(36)과 협동하여, 소망의 이온 종류를 선별하여 통과시키는 분리슬릿(72)이 설치되어 있다. 이 분리슬릿(72)의 이온 빔(20)의 폭 WB 방향의 길이는 도 4에 표시하는 바와 같이 당해 폭 WB 보다도 길다.
분리슬릿(72)은, 이 예에서는 도 2에 표시하는 바와 같이, 중심(70)을 중심으로 하여 화살표 C로 표시하는 바와 같이 가동이고, 그것에 의해 이 분리슬릿(72)의 개구 폭(슬릿 폭)을 기계적으로 변경할 수 있다. 이것에 의해 질량분리의 분해 능을 변화시킬 수 있다. 예컨대, 슬릿 폭을 좁힐수록 분해능은 향상되나 얻어지는 빔 전류밀도는 저하된다. 수소의 결합 수에 따라서 분자량이 커지는 포스핀 이온(PHx +)에서는 질량분해능(M/△M, M은 질량, △M은 그 차)은 5정도가 적당하나, 이온 원(2)에 공급하는 원료가스에 BF3 가스를 사용한 붕소 이온(B+)에서는 8정도가 바람직하다.
분리슬릿(72)의 하류의 처리실용기(80)내에는 기판 구동장치(86)가 설치되어 있다. 이 기판 구동장치(86)는 기판(82)을 보존하는 홀더(84)를 가지고 있어, 분리슬릿(72)을 통과한 시트 상의 이온 빔(20)의 조사영역내에서 홀더(84)상의 기판(82)을 화살표 D로 표시하는 바와 같이 당해 이온 빔(20)의 시트 면(20s)에 교차하는 방향으로 일정속도로 왕복 구동한다(도 6 참조). 이 홀더(84) 상의 기판(82)의 왕복운동방향은 이 예에서는, 이온 빔(20)의 시트 면(20s)에 실질적으로 직교하는 방향(즉, 90도 또는 약 90도로 교차하는 방향, 이하 같음)이다. 보다 구체적으로는 도 2를 참조하여, 이온 빔(20)의 중심 축(20c)과 기판(82)의 표면이 실질적으로 직교하는 방향이다. 단, 90도보다 약간 작은 각도(예컨대 80도 전후) 또는 약간 큰 각도(예컨대 100도 전후)로 교차하는 방향으로 왕복 운동시켜도 된다.
이 예에서는 기판 구동장치(86) 자신이, 도시하지 않는 레일에 따라서 화살표 D로 표시하는 바와 같이 왕복운동을 한다. 이것에 의해 기판(82)의 전면에 소망하는 이온 종류의 이온 빔(20)을 조사하여 이온 주입을 할 수 있다. 이 이온 주 입을 예컨대 플랫패널 디스플레이용의 기판(82)의 표면에 다수의 박막 트랜지스터(TFT)를 형성하는 공정에 사용할 수 있다.
처리실 용기(80)내에 예컨대, 상기와 같은 기판 구동장치(86)를 빔 진행방향의 전후에 2대 설치하여 두고, 2대의 기판 구동장치(86)를 교대로 사용하여, 그 홀더(84)에 각각 보존한 기판(82)에 교대로 이온주입을 하도록 하여도 된다. 이와 같이 하면 스루풋(throughput)이 향상된다.
이 이온 주입장치에 의하면, 이온 원(2)에서 발생시킨 기판(82)의 단변 폭 WS보다도 폭 WB이 넓은 시트상의 이온 빔(20)을 당해 폭의 관계(즉, WB > WS)를 유지한 상태에서 기판(82)으로 수송하므로, 더구나 질량분리 마그넷(36)에서는 이온 빔(20)을 그 폭 WB 방향이 아니고, 시트 면(20s)에 직교하는 방향으로 구부려서 질량분리를 하므로, 이온 원(2)에서 발생시킨 시트 상의 이온 빔(20)을 그 폭 WB 방향에서의 빔 전류밀도의 균일성 및 평행성을 악화시키지 않고 질량분리를 하여 기판(82)에 입사시킬 수 있다. 즉, 상기 종래기술과 같이 이온 빔을 구부리는 위치의 차이에 의한 질량분해능의 차나 그것에 따르는 빔 전류 밀도분포의 균일성 및 그것을 수정하는데 따른 이온 빔의 평행성 악화가 발생하는 일은 없다. 더구나 기판(82)의 대형화에 대하여는, 기판(82)의 단변 폭 WS에 따른 폭 WB의 시트상의 이온 빔(20)을 이온 원(2)으로부터 발생시켜서 수송함으로써 용이하게 대응할 수 있다. 따라서, 이온 빔(20)의 폭 WB 방향에서의 빔 전류 밀도분포의 균일성의 저하 및 평 행성의 악화를 억제하면서, 기판(82)의 대형화에 대응할 수 있다. 여컨대, 단변 폭 WS가 800mm, 1000mm 또는 그 이상의 기판(82)에도 대응할 수 있다.
또, 이온 원(2)은 상기와 같은 복수의 필라멘트를 가지고 있으며, 더구나 당해 각 필라멘트(6)에 흘리는 필라멘트 전류를 서로 독립하여 제어할 수 있으므로, 이온 빔(20)의 폭 WB 방향에서의 플라즈마(10)의 밀도분포의 균일성을 좋게하여 폭 WB 방향에서의 빔 전류밀도 분포의 균일성이 좋은 시트 상의 이온 빔(20)을 발생시키는 것이 용이하게 된다.
더구나 이온 원(2)으로부터 상기 폭의 관계를 갖는 시트 상의 이온 빔(20)을 발생시키고 당해 폭의 관계를 유지한 상태에서 기판(82)으로 수송하므로, 상기 종래 기술과 같이 이온 빔의 발산을 이용하여 폭을 넓히는 것에 기인하는 빔 전류밀도 저하는 생기지 않는다. 즉, 기판(82)의 대형화에 대하여는 기판(82)의 단변 폭 WS에 따른 폭 WB의 시트 상의 이온 빔(20)을 발생시켜서 수송함으로써 용이하게 대응할 수 있고, 그것에 의해 빔 전류 밀도저하를 방지할 수 있으므로, 1매의 기판 당의 처리속도를 저하시키지 않고 기판(82)의 대형화에 대응할 수 있다.
이 실시형태의 이온 주입장치를 더 설명하면, 이온 원(2)과 후술하는 전계렌즈(24)(또는 자계렌즈(100))와의 사이에는, 이 실시형태와 같이 구형(직사각형)의 개구를 갖는 게이트 밸브(22)를 설치하여 두는 것이 바람직하다. 그와 같이 하면, 게이트 밸브(22)보다도 하류 측의 진공용기(34)나 처리실 용기(80) 등의 내부를 진공을 유지한 채로, 이온 원(2)의 메인테넌스(maintenance)를 할 수 있으므로, 당해 메인테넌스후의 이 이온 주입장치의 재작동 개시시간을 대폭 단축할 수 있다.
질량분리 마그넷(36)의 상류 측에는, 즉, 이온 원(2)(게이트 밸브(22)를 설치할 경우는 그것)과 질량분리 마그넷(36)과의 사이에는 이온 빔(20)의 폭 WB 방향에서의 빔 전류 밀도분포를 균일화하는 전계렌즈(24)를 설치하여 두는 것이 바람직하다.
이 전계렌즈(24)는 도 7도 참조하여 시트 상의 이온 빔(20)의 시트 면(20s)을 사이에 두고 서로 대향하는 전극(26) 쌍(전극 쌍)으로서, 시트 면(20s)에 따르고 또한 빔 진행방향에 대하여 직각방향(환언하면 폭 WB 방향 또는 Y방향, 이하 같음)에 다단으로 병설된 복수의 (예컨대 10쌍의) 전극 쌍을 가지고 있다. 각 전극(26)은 선단 부근이 반원통상 또는 반원주상을 하고 있다. 서로 대향하여 쌍을 이루는 2개의 전극(26) 사이는 도 7에 표시하는 바와 같이, 전기적으로 병렬 접속되어 있다. 또한, 도 7에서는 이 병렬접속을 위한 선이 이온 빔(20)을 가로 지르고 있는 것과 같이 보일지도 모르나, 이것은 도시를 간략화한 때문이며 실제는 상기 선이 이온 빔(20)을 가로지르는 일은 없다.
상기 각 단의 전극 쌍과 기준 전위부(예컨대 접지전위부)와의 사이에. 서로 독립한 직류전압을 각각 인가하는 전계렌즈 직류전원의 한 예로서 이 예에서는 도 7에 표시하는 바와 같이 각 단의 전극 쌍 마다에 독립한 전압가변의 전계렌즈 직류전원(32)을 설치하고 있다. 즉, 전극 쌍의 수만큼 전계렌즈 직류전원(32)를 설치하고 있다. 단, 그와 같이 하지 않고, 복수의 전원을 하나로 합치는 등 하여 하나 의 전계렌즈 직류전원을 사용하여, 각 전극 쌍에 인가하는 직류전압을 서로 독립하여 제어할 수 있도록 하여도 된다.
각단의 전극 쌍에 인가하는 직류전압은 정전압보다도 부전압이 바람직하다. 부전압으로 하면 이온 빔(20)과 함께 그 주변에 존재하는 플라즈마 중의 전자가 전극(26)으로 인입되는 것을 방지할 수 있다. 상기 전자를 인입하면, 공간전하 효과에 의한 이온 빔(20)의 발산이 크게 되지만 이것을 방지할 수 있다.
각단의 전극 쌍에 인가하는 직류전압을 조정함으로써, 이온 빔(20)의 폭 WB방향으로 전계를 발생시켜서 (도 7중의 전계 E는 그 한 예를 표시한다). 이 전계 E의 세기에 따라서 이온 빔(20)을 구성하는 이온을 폭 WB 방향으로 구부릴 수 있다.
따라서, 상기 전계렌즈(24)에 의해 시트 상의 이온 빔(20)의 임의의 영역에 있는 이온을 폭 WB 방향으로 구부려서, 이온 빔(20)의 폭 WB 방향에서의 빔 전류밀도를 조정하여 그 균일성을 보다 높일 수 있다.
또한, 상기 다단으로 늘어 놓은 전극 쌍은, 반드시 이온 빔(20)의 폭 방향에 등간격으로 배치할 필요는 없고, 시트 상의 이온 빔(20)의 폭 WB 방향의 양단부 부근에서의 이온끼리 사이에 강하게 작용하는 쿨롱(coulomb)반발력에 의한 빔 발산을 억제하는 등의 목적으로 상기 전극 쌍을 이온 빔(20)의 폭 WB 방향의 양단부 부근이 조밀하게 되도록 배치하여도 된다.
전계렌즈(24)를 구성하는 전극(26)의 상류 측과 하류 측에는, 도 1 및 도 3 에 표시하는 바와 같이, 실드 판(28),(30)을 설치하여 두어도 된다. 양 실드 판(28),(30)은 진공용기(34)에 접속되어 전기적으로 접지되어 있다. 이 실드판 (28),(30)을 설치하면 전극(26)으로부터 전계가 전계렌즈(24)의 상류 측 및 하류 측으로 누출되는 것을 방지할 수 있다. 그 결과, 전계렌즈(24)의 상류 측 부근 및 하류 측 부근에서 이온 빔(20)에 소망하지 않는 전계가 작용하는 것을 방지할 수 있다.
상기 전계렌즈 직류전원(32)에 대신하여 도 10에 표시하는 예와 같이, 전계렌즈(24)의 홀수번째와 짝수번째와의 전극 쌍간에 진동전압을 인가하여, 전계렌즈(24)에서의 전계의 세기를 주기 진동시켜서, 시트 상의 이온 빔(20)의 WB 방향의 빔 이미턴스(beam emittance)를 제어하는 전계렌즈 진동전원(96)을 설치하여도 된다. 예컨대, 전계렌즈 진동전원(96)은 교류전원이고, 진동전압을 교류전압이나 1주기에 걸쳐서의 평균치가 0이라는 교류에 한정되는 것은 아니다.
상기와 같은 전계렌즈 진동전원(96)을 설치하면 전계렌즈(24)에서 상기와 같이 빔 이미턴스를 제어할 수 있고, 그것에 의해 이온 빔(20)의 폭 WB 방향에서의 빔 전류 밀도분포의 미시적인(미세한) 불균일성을 평탄화할 수 있으므로 시트 상의 이온 빔(20)의 폭 WB 방향에서의 빔 전류밀도 분포의 균일성을 보다 높일 수 있다.
상기 전계렌즈 직류전원(32)와 함께, 상기 전계렌즈 진동전원(96)을 설치하여도 된다. 즉, 양 전원(32) 및 (96)을 병용하여도 된다. 그 경우는 도 10 중에 파선으로 표시하는 바와 같이, 홀수번째의 전극 쌍끼리 사이를 접속하는 회로에 직 렬로 콘덴서(98)를 삽입하여, 홀수번째의 전극 쌍끼리 사이가 직류적으로 병렬 접속되는 것을 방지하면 된다. 짝수번째의 전극 쌍끼리 사이에 대하여도 마찬가지로 하면 된다. 이와 같이하면, 각 전극 쌍에 전계렌즈 직류전원(32)으로부터의 직류전압과 전계렌즈 진동전원(96)으로부터의 진동전압을 중첩시켜서 인가할 수 있다.
상기와 같이 양 전원(32) 및 (96)을 병용하면, 이온 빔(20)의 폭 WB 방향에서의 빔 전류 밀도분포의 미시적인 불균일성을 전계렌즈 전동전원(96)에 의해 평탄화하는 것과, 그것보다도 큰 불균일성을 전계렌즈 직류전원(32)에 의해 평탄화 하는 것을 병용할 수 있으므로, 이온 빔(20)의 폭 WB 방향에서의 빔 전류 밀도분포의 균일성을 보다 한층 높일 수 있다.
또, 상술한 이온 원(2)에서의 필라멘트 전류의 제어에 의한 빔 전류 밀도분보의 균일화는, 상기 전계렌즈(24)에 의한 균일화보다도 거시적인 것이고(즉, 보다 큰 변동의 균일화이며), 이들을 병용함으로써 거시적인 균일화 및 미시적인 균일화의 상승효과에 의해, 빔 전류 밀도분포의 균일성을 매우 양호한 것으로 할 수 있다.
상기 전계렌즈(24) 대신에 예컨대 도 11에 표시하는 예와 같은 자계렌즈(100)을 설치하여도 된다. 이 자계렌즈(100)는 시트 상의 이온 빔(20)의 시트 면(20s)를 사이에 두고 서로 대향하는 자극(102)의 쌍(자극 쌍)으로서 시트 면(20s)에 따르고, 또한 빔 진행방향에 대하여 직각방향에 다단으로 병설된 복수의(예컨대 10쌍의) 자극 쌍 및 각 자극 쌍을 각각 여자하는 복수의 여자코일(104)을 가지고 있다.
각 자극(102)의 배후는 요크(106)에서 자기적으로 접속되어 있다. 각 자극(102)의 선단의 이온 빔(20)의 경로는 비자성재로 되는 진공용기(108)로 둘러싸여 있다.
각 자극쌍용의 여자코일(104)에 직류전류를 각각 흘리는 복수의 자계렌즈 직류전원(110)을 설치하고 있다. 즉, 자극 쌍의 수 만큼 자계렌즈 직류전원(110)을 설치하고 있다. 이 각 전원(11)은 적어도 그 출력전류의 크기가 가변이다. 또, 각 전원(110)은 양극성 전원으로 하여 출력전류의 방향을 반전 가능하게 하여 두는 것이 바람직하다.
도 11에서는 배선을 간략화하여 표시하고 있으나 쌍을 이루는 2개의 자극(102)에 각각 감겨진 여자코일(104)은 도 12에 표시하는 바와같이, 서로 동일방향에 자계 B를 발생시키도록 서로 직렬 접속되어 자계렌즈 직류전원(110)에 접속되어 있다. 후술하는 자계렌즈 진동전원(112)에 접속하는 경우도 같다.
각단의 자극 쌍의 여자코일(104)에 흘리는 직류전류를 조정하여, 각 단의 자극 쌍에서 발생시키는 자계 B를 조정하여, 이온 빔(20)의 폭 WB 방향으로 작용하는 로렌쯔 힘 F(도 11중의 자계 B 및 로렌쯔 힘 F는 그 한예를 표시한다)를 조정하여, 이온 빔(20)중의 이온을 폭 WB 방향으로 구부릴 수 있다.
따라서, 상기 자계렌즈(100)에 의해, 시트 상의 이온 빔(20)의 임의의 영역에 있는 이온을 폭 WB 방향으로 구부려서, 이온 빔(20)의 폭 WB 방향에서의 빔 전류 밀도분포를 조정하여 그 균일성을 보다 높일 수 있다.
상기 다단으로 늘어 놓은 자극 쌍은, 반드시 이온 빔(20)의 폭 WB 방향에 등 간격으로 배치할 필요가 없는 것은 전계렌즈(24)의 전극 쌍의 경우와 같다.
상기 자계렌즈 직류전원(110)에 대신하여 도 13에 표시하는 예와 같이, 자계렌즈(100)의 각 여자코일(104)에 진동전류를 각각 흘려서 자계렌즈(100)에서의 자계의 세기를 주기 진동시켜서 시트 상의 이온 빔(20)의 WB 방향의 빔 이미턴스를 제어하는 복수의 자계렌즈 진동전원(112)을 설치하여도 된다. 여컨대, 각 자계렌즈 진동전원(112)은 교류전원이고, 진동전류는 교류전류이나, 1주기에 걸쳐서의 평균치가 0라는 교류에 한정되는 것은 아니다.
상기와 같은 자계렌즈 진동전원(112)을 설치하면, 자계렌즈(100)에 있어서 상기와 같이 빔 이미턴스를 제어할 수 있고, 그것에 의해 이온 빔(20)의 폭 WB 방향에서의 빔 전류 밀도분포의 미시적인(미세한) 불균일성을 평탄화할 수 있으므로, 시트 상의 이온 빔(20)의 폭 WB 방향에서의 빔 전류 밀도분포의 균일성을 보다 높일 수 있다.
상기 자계렌즈 직류전원(110)과 함께 상기 자계렌즈 진동전원(112)를 설치하여도 된다. 그 경우는, 각 자계렌즈 직류전원(110)과 각 자계렌즈 진동전원(112)을 서로 직렬접속하여, 전자로부터의 직류전압에 후자로부터의 진동전압을 중첩시키면 된다.
상기와 같이 양 전원(110) 및 (112)을 병용하면, 이온 빔(20)의 폭 WB 방향에서의 빔 전류 밀도분포의 미시적인 불균일성을 자계렌즈 진동전원(112)에 의해 평탄화하는 것과, 그것보다도 큰 불균일성을 자계렌즈 직류전원(110)에 의해 평탄화 하는 것을 병용할 수 있으므로, 이온 빔(20)의 폭 WB 방향에서의 빔 전류 밀도분포의 균일성을 보다 한층 높일 수 있다.
상기와 같은 전계렌즈(24) 또는 자계렌즈(100)는 이온 원(2)과 분리슬릿(72)과의 사이에 설치하면 된다. 즉, 질량분리 마그넷(36)의 상류 측에 설치하는 대신에, 질량분리 마그넷(36)의 하류 측에 설치하여도 된다. 보다 구체적으로는 질량분리 마그넷(36)과 분리슬릿(72)과의 사이에 설치하여도 된다. 다만, 전계렌즈(24) 또는 자계렌즈(100)에 의해 이온 빔(20)에 전계나 자계를 인가하여 이온 빔(20)에 편향력을 주어도 이온 빔이 소정거리만큼 편향하는 데는 어느 정도의 거리가 필요하고, 이 거리를 이온 빔(20)이 기판(82)에 입사하기전에 있어서 크게 취하기 위하여는 전계렌즈(24) 또는 자계렌즈(100)는 질량분리 마그넷(36)의 상류 측에 설치하는 쪽이 바람직하다.
질량분리 마그넷(36)의 자극의 간격 L1은, 상기와 같이 이온 빔(20)의 폭 WB 보다도 크고 넓으므로, 이 자극간의 자계의 평행성(이온 빔(20)의 두께 TB 방향에서의 폭, 이하 같음)을 거대화하지 않고 좋게 하기 위하여는 이 실시의 형태와 같이, 질량분리 마그넷(36)에 주자극(38), 제 1 부자극(40) 및 제 2 부자극(42)을 설치하는 것이 바람직하다.
즉, 이 실시형태에서의 질량분리 마그넷(36)은 도 8 및 도 9를 참조하여, 상기 시트 상의 이온 빔(20)의 폭 WB 보다도 큰 간격 L1을 비워서, 서로 대향하고 있으며 그 사이를 이온 빔(20)이 통과하는 한 쌍의 주자극(38)과 주자극(38)의 외주측에 설치되어 있고, 주자극(38)보다도 작은 간격 L2(즉, L2 <L1)을 비워서 서로 대향하고 있으며, 주자극(38) 사이의 자계를 평행화하는 한쌍의 제 1 부자극(40)과 주자극(38)의 내주측에 설치되어 있고 주자극(38) 보다도 작은 간격 L3 (즉, L3 < L1)을 비워서 서로 대향하고 있으며, 주자극(38) 사이의 자계를 평행화 하는 한 쌍의 제 2 부자극(42)을 구비하고 있다. 도 9에서는 주자극(38)은 가동자극(56)의 뒤로 되어 있다.
쌍을 이루는 상하의 각 자극(38),(40),(42) 사이는 요크(44)에 의해 일괄하여 자기적으로 접속되어 있다. 또, 주자극(38), 제 1 부자극(40) 및 제 2 부자극(42)은 여자코일(46)에 의해 일괄하여 여자된다.
주자극(38) 사이의 자계, 제 1 부자극(40) 사이의 자계 및 제 2 부자극(42) 사이의 자계의 예를 각각 자력선(48),(50) 및 (52)로 도 9중에 모식적으로 표시한다. 상기와 같이 L2 < L1, L3 < L1으로 함으로써 주자극(38)간의 자계보다도 그것을 사이에 두는 제 1 부자극(40)간의 자계 및 제 2 부자극(42)간의 자계가 강하게 되므로, 주자극(38) 간의 자력선(48)이 불룩해져서 자계의 평행성이 저하하려고 하는 것을 양측의 자력선(50),(52)에 의해 눌러서 주자극(38)간의 자력선(48)을 평행화 할 수 있다.
상기와 같이 하여 주자극(38)간의 자계를 평행화할 수 있으므로, 주자극(38) 간에서 시트 상의 이온 빔(20)을 구부릴 때에, 이온 빔(20)의 시트 면(20s)에 따르는 방향에 로렌쯔 힘이 발생하는 것을 억제하여 이온 빔(20)의 폭 WB 방향에서 집속 또는 발산이 일어나는 것을 억제할 수 있다. 그 결과, 시트 상의 이온 빔(20)의 폭 WB 방향에서의 평행성을 보다 높일 수 있고, 나아가서는 당해 이온 빔(20)의 폭 WB 방향에서의 빔 전류 밀도분포의 균일성을 보다 높일 수 있다. 이것을 주자극(38)의 폭을 거대화 하는 일없이 실현할 수 있다. 그 결과, 질량분리 마그넷(36)의 치수 및 중량이 거대화 되는 것을 방지할 수 있다.
제 1 부자극(40)의 간격 L2 및 제 2 부자극(42)의 간격 L3은 미리 컴퓨터 시뮬레이션 등에 의해 최적화한 크기에 고정하여 두어도 좋으나, 제 1 부자극(40) 및 제 2 부자극(42)의 적어도 한쪽은 도 9중의 화살표 H로 표시하는 바와 같이 상하방향에 가동식으로 하여, 그 간격 L2 , L3을 가변으로 하여 두는 것이 바람직하다. 그와 같이 하면, 주자극(38) 간의 자계를 보다 평행화하는 조정이 가능하게 된다. 제 1 부자극(40) 및 제 2 부자극(42)의 양쪽을 가동식으로 하여, 그 양쪽의 간격 L2 및 L3 을 가변으로 하여 두는 것이 바람직하고, 그와 같이 하면 상기 조정을 보다 정밀하게 또한 용이하게 할 수 있다. 이 경우, 쌍을 이루는 상하의 부자극(40) 또는 (42)은 서로 이동거리를 갖게 하여도 되고, 다르게 하여도 된다.
간격이 가변인 부자극(40),(42)을 수작업으로 움직여도 되나, 이 실시형태와 같이 그들을 화살표 H로 표시하는 바와 같이 상하로 각각 이동시켜서 그 간격 L2, L3를 각각 변화시키는 부자극 구동장치(62)를 설치하여 두는 것이 바람직하다. 이 예에서는, 4개의 부자극(40),(42)을 각각 구동하는 4개의 부자극 구동장치(62)를 설치하고 있다. 이 부자극 구동장치(62)를 사용함으로써 주자극(38)간의 자계를 보다 평행화하는 조정이 용이하게 된다. 또 후술하는 제어장치(94)에 의한 자동제어도 가능하게 된다.
질량분리 마그넷(36)에는 도 8 및 도 9를 참조하여 주자극(38)의 입구부 및 출구부의 적어도 한쪽에 반원주상을 하고 있으며, 이온 빔(20)의 진행방향(즉, 상기 중심 축(20c))에 수직인 선(60)과 가동자극(56)의 평탄한 자극 단면(58)과의 이루는 각도 α,β가 가변인 가동자극(56)을 설치하여 두어도 된다. 이 실시형태에서는 입구부 및 출구부의 양쪽에 가동자극(56)을 각각 설치하고 있다. 양 가동자극(56)은 축(59)을 중심으로 하여 화살표 G로 표시하는 바와 같이 좌우로 회전가능하고, 그것에 의해 상기 각도 α,β가 가변이다. 입구부의 상기 각도 α 및 출구부의 상기 각도 β는 도 8에 표시하는 바와 같이, 질량분리 마그넷(36)의 내주 측이 안쪽으로 들어오는 경우를 마이너스(-)로 취하고, 그 역을 플러스(+)로 취한다. 상하의 가동자극(56)의 각도 α 또는 β는 서로 같게 하여도 되고 다르게 하여도 된다.
상기 가동자극(56)의 각도 α,β를 조정함으로써, 가동자극(56) 근방을 통과 하는 이온 빔(20)을 에지포커스효과로 집속 또는 발산시킬 수 있으므로, 시트 상의 이온 빔(20)의 폭 WB 방향으로 작용하는 쿨롱반발력 등에 의한 이온 빔(20)의 발산을 보상(상쇄)하여, 이온 빔(20)의 평행성을 보다 높일 수 있고 나아가서는 당해 이온 빔(20)의 폭 WB 방향에서의 빔 전류 밀도분포의 균일성을 보다 높일 수 있다.
에지포커스효과 자체는 공지이고, 예컨대 물리학 사전편집 위원회편 「물리학 사전」초판 가부시키 가이샤 바이후칸 소화 59년 9월 30일 p182에 기재되어 있다.
상기 이온빔(20)의 평행성 및 빔 전류 밀도분포의 균일성을 높이는 효과는, 주자극(38)이 입구부 및 출구부의 적어도 한쪽에 가동자극(56)을 설치함으로써 이룰 수 있으나, 이 실시형태와 같이 입구부 및 출구부의 양쪽에 가동자극(56)을 설치하여 두면 한쪽의 경우에 비하여 조정의 자유도가 높고 상기 효과를 보다 높일 수 있다.
제 1 부자극(40) 및 제 2 부자극(42)을 설치하지 않는 경우에도 상기 가동자극(56)을 설치하여도 된다. 그 경우는 주자극(38)에 상당하는 자극에 상기 가동자극(56)을 설치하면 된다. 그 외는 상술과 같다.
상기 가동자극(56)을 수작업으로 회전시켜도 되나, 이 실시형태와 같이 가동자극(56)을 화살표 G로 표시하는 바와 같이 좌우로 회전시켜서 상기 각도 α,β를 변화시키는 가동자극 구동장치(66)을 설치하여 두는 것이 바람직하다. 이 예에서는 주자극(38)의 입구부 위 및 아래의 가동자극(56)과, 출구부의 위 및 아래의 가 동자극(56)의 4개의 가동자극(56)을 각각 회전시키는 4개의 가동자극 구동장치(66)를 설치하고 있다. 이 가동자극 구동장치(66)를 사용함으로써 가동자극(56)의 상기 각도 α,β의 조정이 용이하게 된다. 또, 후술하는 제어장치(94)에 의한 자동제어도 가능하게 된다.
또한 질량분리 마그넷(36)의 상기 간격이 가변인 부자극(40),(42) 및 가동자극(56)용의 축(59)에 대한 진공실 구조는 구체적으로는 그들과 요크(44)와의 사이의 실 구조는, 이 예에서는 공지의 구조(예컨대, 진공실용의 패킹을 사용한 구조)를 채용하고 있으므로 도 9에서는 그 도시를 생략하고 있다.
분리슬릿(72)의 하류 측에 도 2 및 도 4에 표시하는 예와 같이 시트 상의 이온 빔(20)의 시트 면(20s) 전체를 사이에 두고 서로 대향하도록 배치되어 있고, 시트 상의 이온 빔(20) 전체를 그 시트 면(20s)에 직교하는 방향으로 왕복주사하는 한 쌍의 주사전극(74)을 설치하여 두어도 된다. 주사전극(74)은 이 예에서는 한 쌍의 평행 평판전극이나 이에 한정되지 않는다. 예컨대, 하류 측으로 항하여 어느 정도 넓혀진 전극이라도 된다.
상기 한 쌍의 주사전극(74) 사이에는 주사전원(6)으로부터 진동전압이 인가된다. 이 진동전압은, 예컨대 교류전압이나 1주기에 걸쳐서의 평균치가 0이라는 교류에 한정되는 것은 아니다.
상기 주사전극(74) 및 주사전원(76)에 의해, 이온 빔(20) 전체를 그 시트면(20s)에 직교하는 방향으로 주사할 수 있다. 그 결과, 분리슬릿(72)을 통과하여 두께 TB(이것은 기판의 왕복구동 방향 D의 폭이기도 하다)가 대단히 작게된 이온 빔(20)의 두께 TB를 크게 할 수 있다. 이온 빔(20)의 두께 TB가 대단히 작은 경우는, 기판(82)의 왕복구동속도나 이온 빔(20)의 전류치의 요동에 의해 주입량의 불균일성이 생길 가능성이 있으나, 이 불균일성을 이온 빔(2)의 두께 TB를 크게 함으로써 완화할 수 있다.
상기 홀더(84)상의 기판(82)의 하류 측 근방에 도 2 및 도 4에 표시하는 예와 같이 상기 시트 상의 이온 빔(20)을 받아서, 그 폭 WB 방향 전체의 빔 전류 밀도분포를 측정하는 빔 프로파일 모니터(90)를 설치하여 두어도 된다. 이 빔 프로파일 모니터(90)는 홀더(84)상의 기판(82)에 가깝게 하여 설치하는 것이 바람직하다. 그와 같이 하면 기판(82)의 위치에서의 이온 빔(20)의 빔 전류 밀도분포를 보다 정확하게 측정할 수 있다. 이 빔 프로파일 모니터(90)로부터 상기 빔 전류 밀도분포를 나타내는 측정정보 DP가 출력된다.
빔 프로파일 모니터(90)는 이 예와 같이 기판(82)의 하류 측에 설치하여 두면, 당해 모니터(90)가 기판(82)으로의 이온 빔(20)의 조사에 방해가 되지 않으므로 당해 빔 프로파일 모니터(90)를 회피시킬 필요가 없다. 다만, 빔 프로파일 모니터(90)를 기판(82)의 상류 측 근방에 설치하여, 그것을 기판(82)으로의 이온 빔(20)의 조사시에 회피시키도록 하여도 된다.
이 빔 프로파일 모니터(90)는 이 예에서는, 시트 상의 이온 빔(20)의 폭 WB 방향으로 당해 폭 WB 보다도 넓은 영역에 걸쳐서 병설된 복수의(예컨대, 29개의) 패러디 컵(Faraday cup)(92)을 가지고 있다. 따라서, 이 예에서는 상기 측정정보 DP는 n6개(n6개는 패러디 컵(92)과 동수)의 측정정보로 된다. 각 패러디 컵(92)의 횡 폭은, 예컨대 빔 프로파일 모니터(90)에 입사하는 이온 빔(20)의 두께 TB 보다도 약간 크게 하고 있다. 단, 이와 같은 빔 프로파일 모니터(90) 대신에 1개의 패러디 컵을 이온 빔(20)의 폭 WB 방향으로 이동시키는 구조의 빔 프로파일 모니터를 설치하여도 된다. 어느 경우도, 이온 빔(20)의 폭 WB 방향에서의 빔 전류 밀도분포를 측정할 수 있다.
상기 빔 프로파일 모니터(90)를 설치하여 두면, 그것에 의한 측정정보 DP를 이용할 수 있으므로, 시트 상의 이온 빔(20)의 폭 WB 방향에서의 빔 전류 밀도분포의 균일성이나 평행성을 높이는 조정을 하는 것이 용이하게 된다.
상기 빔 프로파일 모니터(90)에 의한 측정정보 DP에 따라, 이온 빔(20)의 폭 WB 방향에서 빔 전류 밀도분포와 평행성을 높이는 방법에는, (1) 측정정보 DP에 따라 사람이 대상기기의 조정을 하는 조정방법과, (2) 제어장치(94)(도 2 참조)를 설치하여 두고 그것에 측정정보 DP를 입력하여 이 제어장치(94)를 사용하여 대상 기기를 자동제어하는 방법의 2개가 있다. 상기 대상기기는 예컨대 상술한 필라멘트 전원(8), 전계렌즈 직류전원(32), 자계렌즈 직류전원(110), 부자극(40),(42) 가동자 극(56)이다. 부자극 구동장치(62), 가동자극 구동장치(66)를 설치하고 있는 경우는 그들도 대상기기에 포함된다. 자동제어의 경우는 부자극(40),(42), 가동자극(56)을 직접 제어하는 것이 아니고, 그들용의 구동장치(62),(66)를 제어한다.
사람이 하는 조정방법은 간단하게 말하면 다음과 같은 것이다. 즉, 상기 각 대상기기에 초기치를 부여하여 두고, 이온 원(2)으로부터 이온 빔(20)을 인출하여 그것을 빔 프로파일 모니터(90)에서 받아서 상기 빔 전류 밀도분포를 측정하고, 그 결과가 목표치로부터 떨어져 있을 경우는 상기 대상기기 중의 하나의 상태를 소정방향으로 소정치만큼 변화시키며, 그 상태에서 빔 전류 밀도분포를 재측정하고, 그 측정결과가 목표치에 근접되어 있으면 상기와 같이 변화시키는 조정을 계속하고, 목표치로부터 떨어져 있으면 상기와는 역방향으로 조정치 만큼 변화시키며, 이와 같은 스텝마다의 조정을 빔 프로파일 모니터(90)에서 측정하는 빔 전류 밀도분포가 목표치로 될 때까지, 또는 목표치에 어느 정도 근접할 때까지 반복하면 된다. 하나의 대상 기기의 조정으로 불충분한 경우는 대상 기기를 바꿔서 상기와 같은 조정을 하면 된다.
상기 제어장치(94)는 이 실시형태에서는 다음의 (a)~(e)에 표시하는 제어를 할 수 있으나, 반드시 (a)~(e)의 모든 제어를 하는 것일 필요는 없고 제어장치(94)는 그들 중의 적어도 하나의 제어를 하는 것이라도 된다. 또 하나의 제어장치(94)를 사용하는 대신에 (a)~(e)의 제어를 복수의 제어장치에 분담시켜도 좋다. 예컨대 (a)~(e)의 제어를 각각 하는 복수의 제어장치를 설치하여도 된다.
(a) 제어장치(94)는 빔 프로파일 모니터(90)에 의한 측정정보 DP 에 따라, 상기 필라멘트 전원(8)을 제어하여 빔 전류 밀도가 다른 것보다도 낮은 저 전류밀도 영역이 있는 경우는, 당해 저 전류밀도 영역에 대응하는 상기 필라멘트(6)에 흘리는 필라멘트 전류를 증대시키고, 역의 경우는 역으로 하여 (즉, 필라멘트 전류를 감소시켜서) 기판(82)에 입사하는 시트 상의 이온 빔(20)의 폭 WB 방향에서의 빔 전류 밀도분포를 균일화하는 제어를 한다.
보다 구체 예를 표시하면 빔 프로파일 모니터(90)의 각 패러디 컵(92)과 이온 원(2)의 각 필라멘트(6)와의 위치의 대응관계는 미리 결정되어 있으므로, 제어장치(94)는 상기 저 전류밀도 영역이 어느 필라멘트(6)에 대응하는가를 결정할 수 있다. 그리고, 상기 저 전류밀도 영역이 예컨대 Y 방향의 위로부터 m번째(m은 임의의 번째, 이하 같음)의 필라멘트(6)에 대응하는 경우는 제어장치(94)는 당해 m번째의 필라멘트(6)에 흘리는 필라멘트 전류를 상기와 같이 증감하여 그것을 소정의 빔 전류 밀도분포가 얻어질 때까지 반복한다.
상기와 같은 제어를 하기 위하여, 제어장치(94)는 n1개(n1은 필라멘트(6)의 수와 동수)의 제어신호 S1 을 출력하여 그것을 각 필라멘트 전원(8)에 각각 주어서 각 필라멘트 전원(8)을 각각 제어한다.
상기와 같이 하여, 빔 프로파일 모니터(90) 및 제어장치(94)에 의해 이온 원(2)의 필라멘트 전류를 피드백 제어하여, 기판(82)에 입사하는 시트 상의 이온 빔(20)의 폭 WB 방향에서의 빔 전류 밀도분포의 균일성을 자동제어에 의해 높일 수 있 다.
(b) 제어장치(94)는 빔 프로파일 모니터(90)에 의한 측정정보 DP에 따라 상기 전계렌즈 직류전원(32)을 제어하여, 빔 전류밀도가 다른 것보다도 낮은 저 전류밀도 영역이 있는 경우는, 당해 저 전류밀도 영역에 대응하는 상기 전계렌즈(24)중의 영역으로, 그 이웃으로부터 전계 E(도 7 참조)가 향하도록, 상기 저 전류밀도 영역에 대응하는 상기 전극 쌍에 인가하는 전압을 내리고 역의 경우는 역으로 하여(즉, 전압을 올려서 상기 전계 E가 작게 된다. 또는 역방향으로 되도록 하여), 기판(82)에 입사하는 시트 상의 이온 빔(20)의 폭 WB 방향에서의 빔 전류 밀도분포를 균일화하는 제어를 한다.
보다 구체적인 예를 표시하면, 빔 프로파일 모니터(90)의 각 패러디 컵(92)과, 전계렌즈(24)의 각 전극 쌍과의 위치의 대응관계는 미리 결정되어 있으므로, 제어장치(94)는 상기 저 전류밀도 영역이 어느 전극 쌍에 대응하는가를 결정할 수 있다. 그리고 상기 저 전류밀도 영역이 예컨대 Y방향의 위로부터 m번째의 전극 쌍에 대응하는 경우는 제어장치(94)는 당해 m번째의 전극 쌍에 인가하는 전압을 상기와 같이 상하시켜서 그것을 소정의 빔 전류 밀도분포가 얻어질 때까지 반복한다. 저 전류영역이 전극 쌍 사이에 있는 경우도 상기와 같다.
상기 m번째의 전극 쌍의 양측(즉, m-1번째 및 m+1번째)의 전극 쌍에 인가하는 전압도, m번째의 전극 쌍에 인가하는 전압과 소정의 관계로 상하 시켜도 된다.
상기와 같은 제어를 하기 위하여 제어장치(94)는 n2개(n2는 전극 쌍의 수와 동수)의 제어신호 S2를 출력하여 그것을 각 전계렌즈 직류전원(32)에 각각 주어서 각 전계렌즈 직류전원(32)을 각각 제어한다.
상기와 같이하여 빔 프로파일 모니터(90) 및 제어장치(94)에 의해, 전계렌즈(24)를 피드백 제어하여 기판(82)에 입사하는 시트 상의 이온 빔(20)의 폭 WB 방향에서의 빔 전류 밀도분포의 균일성을 자동제어에 의해 높일 수 있다.
(c) 제어장치(94)는 빔 프로파일 모니터(90)에 의한 측정정보 DP에 따라, 상기 자계렌즈 직류전원(110)을 제어하여, 빔 전류밀도가 다른 것보다 낮은 저 전류밀도 영역이 있는 경우는, 당해 저 전류밀도 영역에 대응하는 상기 자계렌즈(100)중의 영역에 그 이웃으로부터 향하는 로렌쯔 힘 F(도 11 참조)가 증대하도록, 상기 저 전류밀도 영역에 대응하는 영역 부근의 상기 자극 쌍의 여자코일(104)에 흘리는 전류를 조정하고, 역의 경우는 역으로 하여(즉, 로렌쯔 힘 F가 감소된다. 또는 역방향으로 되도록 하여), 기판(82)에 입사하는 시트 상의 이온 빔(20)의 폭 WB 방향에서의 빔 전류 밀도분포를 균일화한다.
보다 구체 예를 표시하면, 빔 프로파일 모니터(90)의 각 패러디 컵(92)과 자계렌즈(100)의 자극 쌍과의 위치의 대응관계는 미리 결정되어 있으므로, 제어장치(94)는 상기 저 전류밀도 영역이 어느 자극 쌍에 대응하는지를 결정할 수 있다. 그리고 상기 저 전류 밀도영역이 예컨대 Y 방향의 위로부터 m번째의 자극 쌍에 대응하는 경우는, 제어장치(94)는 m-1번째의 자극 쌍의 여자코일(104)에 흘리는 전류를 증대시켜서 (도 11에 표시하는 자계 B 방향의 경우), 상기 저 전류 밀도영역으 로 향하는 로렌쯔 힘 F가 증대되도록 한다. 이 경우, m+1번째의 자계렌즈 직류전원 110의 극성을 반전시켜서, m+1번째의 자극 쌍이 발생하는 자계 B의 방향을 반전시켜서, m+1번째의 자극 쌍으로부터 상기 저 전류밀도 영역으로 향하는 로렌쯔 힘 F가 증대되도록 하는 것을 병용하여도 된다. 이와 같은 제어를 소정의 빔 전류 밀도분포가 얻어질 때까지 반복한다. 저 전류 밀도영역이 자극 쌍 간에 있는 경우도 상기와 같다.
상기 m-1번째 및 m+1번째의 자극 쌍의 양측(즉, m-2 번째 및 m+2 번째)의 자극 쌍에 흘리는 전류도 m-1 번째 및 m+1 번째의 자극 쌍에 흘리는 전류와 소정의 관계로 상기와 같이 제어하여도 된다.
상기와 같은 제어를 하기 위하여, 제어장치(94)는 n3개(n3은 자극 쌍의 수와 동수)의 제어신호 S3을 출력하여 그것을 각 자계렌즈 직류전원(110)에 각각 주어서 각 자계렌즈 직류전원(110)을 각각 제어한다.
상기와 같이 하여, 빔 프로파일 모니터(90) 및 제어장치(94)에 의해, 자계렌즈(100)를 피드백 제어하여 기판(82)에 입사하는 시트 상의 이온 빔(20)의 폭 WB 방향에서의 빔 전류 밀도분포의 균일성을 자동제어에 의해 높일 수 있다.
(d) 제어장치(94)는 빔 프로파일 모니터(90)에 의한 측정정보 DP에 따라 상기 부자극 구동장치(62)를 제어하여, 빔 전류 밀도분포가 소정의 목표치보다도 발산되어 있는 경우는, 상기 질량분리 마그넷(36)으로부터 도출되는 이온 빔(20)을 그 시트 면(20s)에 평행인 면내에서 집속시키는 방향으로 상기 간격 L2, L3이 가변 의 부자극(40),(42)의 간격 L2, L3을 바꾸고, 역의 경우는 역으로 하여 (즉, 이온 빔(20)을 발산시키는 방향으로 간격 L2, L3을 바꿔서), 기판(82)에 입사하는 시트 상의 이온 빔(20)의 폭 WB 방향에서의 평행성을 높이는 제어를 한다.
보다 구체 예를 표시하면, 제어장치(94)는 빔 전류 밀도분포가 목표치보다도 지나치게 발산하고 있는 경우는, 외주 측의 제 1 부자극(40)의 간격 L2를 넓히고, 내주 측의 제 2 부자극(42)의 간격 L3 을 좁힌다. 목표치보다도 지나치게 집속하고 있는 경우는 상기와는 역으로 한다.
상기와 같은 제어를 하기 위하여, 제어장치(94)는 n4개(n4는 부자극 구동장치(62)의 수와 동수)의 제어신호 S4를 출력하여 그것을 각 부자극 구동장치(62)에 각각 주어서 각 부자극 구동장치(62)를 각각 제어한다.
상기와 같이 하여, 빔 프로파일 모니터(90) 및 제어장치(94)에 의해, 질량분리 마그넷(36)의 부자극(40),(42)의 간격 L2, L3를 피드백 제어하여 기판(82)에 입사하는 시트 상의 이온 빔(20)의 폭 WB 방향에서의 평행성, 나아가서는 빔 전류 밀도분포의 균일성을 자동제어에 의해 높일 수 있다.
(e) 제어장치(94)는 빔 프로파일 모니터(90)에 의한 측정정보 DP에 따라 상기 가동자극 구동장치(66)를 제어하여, 빔 전류 밀도분포가 소정의 목표치보다도 발산되어 있는 경우는, 상기 질량분리 마그넷(36)으로부터 도출되는 이온 빔(20)을 그 시트 면(20s)에 평행인 면내에서 집속시키는 방향으로 상기 가동자극(56)을 회전시키고, 역의 경우는 역으로 하여(즉, 이온 빔(20)을 발산시키는 방향으로 회전시켜서) 기판(82)에 입사하는 시트 상의 이온 빔(20)의 폭 WB 방향에서의 평행성을 높이는 제어를 한다.
보다 구체 예를 표시하면, 제어장치(94)는 빔 전류 밀도분포가 목표치보다도 지나치게 발산되어 있는 경우는, 상기 각도 α,β를 보다 플러스 방향으로 향하게 하고, 목표치 보다도 자나 치게 집속되어 있는 경우는 상기 α,β를 보다 마이너스 방향으로 향하게 한다.
상기와 같은 제어를 하기 위하여, 제어장치(94)는 n5개(n5는 가동자극 구동장치(66)의 수와 동수)의 제어신호 S5를 출력하여 그것을 각 가동자극 구동장치(66)에 각각 주어서 각 가동자극 구동장치(66)를 각각 제어한다.
상기와 같이 하여, 빔 프로파일 모니터(90) 및 제어장치(94)에 의해, 질량분리 마그넷(36)의 가동자극(56)의 각도 α,β를 피드백 제어하여, 기판(82)에 입사하는 시트 상의 이온 빔(20)의 폭 WB 방향에서의 평행성 나아가서는 빔 전류 밀도분포의 균일성을 자동제어에 의해 높일 수 있다.
본 이온주입장치에 의하면, 이온 원에서 발생시킨 기판의 단변폭보다도 폭이 넓은 시트 상(狀)의 이온 빔을 당해 폭의 관계를 유지한 상태에서 수송하여, 또한 질량분리 마그넷 및 분리 슬릿에 의해 소망하는 이온 종류를 선별하고 (즉, 질량분리를 하여) 홀더 상의 기판에 조사하여 이온 주입을 할 수 있다. 그리고 상기 폭의 관계를 갖는 시트 상의 이온 빔과, 기판 구동장치에 의한 기판의 상기 왕복구동과의 협동에 의해 기판의 전면에 이온주입을 할 수 있다.
상기 이온 원과 상기 분리슬릿과의 사이에 상기 시트 상의 이온빔의 폭 방향에서의 전류밀도 분포를 균일화하는 전계렌즈 또는 자계렌즈를 설치하여도 된다.
상기 질량분리 마그넷의 주자극의 외주 측 및 내주 측에 주자극 간의 자계를 평행화하는 제 1 부자극 및 제 2 부자극을 설치하여도 된다. 양 부자극의 적어도 한쪽의 간격을 가변으로 하여 두어도 된다.
상기 질량 분리 마그넷의 자극(부자극이 있는 경우는 주자극)의 입구 및 출구의 적어도 한쪽에 가동자극을 설치하여도 된다.
상기 분리슬릿의 하류 측에 상기 시트 상의 이온빔 전체를 그 시트 면에 직교하는 방향으로 왕복 주사하는 주사 전극을 설치하여도 된다.
상기 홀더 상의 기판의 상류 측 또는 하류 측에, 상기 시트 상의 이온빔을 받아서 그 폭 방향의 빔 전류밀도 분포를 측정하는 빔 프로파일 모니터를 설치하여도 된다.
상기 빔 프로파일 모니터에 의한 측정 정보에 따라, 상기 필라멘트 전원, 상기 전계렌즈용의 전계 렌즈 직류전원, 상기 자계 렌즈용의 자계렌즈 직류전원, 상기 부자극용의 부자극 구동장치 또는 상기 가동자극용의 가동자극 구동장치를 제어하여, 기판에 입사하는 시트 상의 이온 빔의 폭 방향에서의 빔 전류 밀도분포를 균 일화하는 제어를 하는 제어장치를 설치하여 두어도 된다.
본 발명의 제 1의 측면에 의하면, 이온 원에서 발생시킨 기판의 단변폭보다도 폭이 넓은 시트 상(狀)의 이온 빔을 당해 폭의 관계를 유지한 상태에서 기판으로 수송하므로, 더구나 질량분리 마그넷에서는 이온 빔을 그 폭 방향이 아니고, 시트 면에 직교하는 방향으로 구부려서 질량분리를 하므로, 이온 원에서 발생시킨 시트 상의 이온 빔을 그 폭 방향에서의 빔 전류밀도의 균일성 및 평행성을 악화시키지 않고 질량분리를 하여 기판에 입사시킬 수 있다. 즉, 상기 종래기술과 같이 이온빔을 구부리는 위치의 차이에 의한 질량 분해능의 차나, 그것에 따른 빔 전류밀도의 균일성 및 그것을 수정하는데 따른 이온빔의 평행성 악화가 생기는 일은 없다. 더구나, 기판의 대형화에 대하여는 기판의 단변폭에 따른 폭의 시트 상의 이온빔을 이온 원으로부터 발생시켜서 수송함으로써 용이하게 대응할 수 있다. 따라서, 이온빔의 폭 방향에서의 빔 전류밀도 분포의 균일성의 저하 및 평행성의 악화를 억제하면서 기판의 대형화에 대응할 수 있다.
또, 이온 원은 상기와 같은 복수의 필라멘트를 가지고 있으며, 또한, 당해 각 필라멘트에 흘리는 필라멘트 전류를 서로 독립하여 제어할 수 있으므로, 폭 방향에서의 빔 전류 밀도분포의 균일성이 좋은 시트 상의 이온 빔을 발생시키는 것이 용이하게 된다.
더구나, 이온 원으로부터 상기 폭의 관계를 갖는 시트 상의 이온빔을 발생시키고, 당해 폭의 관계를 유지한 상태에서 기판으로 수송하므로, 상기 종래기술과 같이 이온 빔의 발산을 이용하여 폭을 넓히는 것에 기인하는 빔 전류밀도 저하는 발생하지 않는다. 즉, 기판의 대형화에 대하여는, 기판의 단변폭에 따른 폭의 시트 상의 이온 빔을 발생시켜 수송함으로써 용이하게 대응할 수 있고, 그것에 의해 빔 전류밀도 저하를 방지할 수 있으므로, 1매의 기판 당의 처리속도를 저하시키지 않고, 기판의 대형화에 대응할 수 있다.
본 발명의 제 1의 측면에 관한 제 2 측면에 의하면 상기 전계렌즈에 의해 시트 상의 이온 빔의 폭 방향에서의 빔 전류밀도 분포를 조정하여 그 균일성을 보다 높일 수 있다는 효과를 이룬다.
본 발명의 제 2의 측면에 관한 제 3의 측면에 의하면 상기 전계렌즈에 있어서 상기와 같이 빔 이미턴스를 제어할 수 있고, 그것에 의해 이온 빔의 폭 방향에서의 빔 전류밀도의 미시적인(미세한) 불균일성을 평탄화할 수 있으므로, 시트 상의 이온 빔의 폭 방향에서의 빔 전류 밀도분포의 균일성을 보다 높일 수 있다는 또 다른 효과를 이룬다.
본 발명의 제 1의 측면에 관한 제 4의 측면에 의하면, 상기 자계렌즈에 의해, 시트 상의 이온 빔의 폭 방향에서의 빔 전류밀도 분포를 조정하여, 그 균일성을 보다 높일 수 있다는 또 다른 효과를 이룬다.
본 발명의 제 4의 측면에 관한 제 5의 측면에 의하면, 상기 자계렌즈에서 상기와 같이 빔 이미턴스를 제어할 수 있고, 그것에 의해 이온 빔의 폭 방향에서의 빔 전류밀도 분포의 미시적인(미세한) 불균일성을 평탄화할 수 있으므로, 시트 상의 이온 빔의 폭 방향에서의 빔 전류밀도 분포의 균일성을 보다 높일 수 있다는 또 다른 효과를 이룬다.
본 발명의 제 1의 측면에 관한 제 6의 측면에 의하면, 제 1 부자극 간의 자계 및 제 2 부자극간의 자계에 의해 주자극간의 자극을 평행화 할 수 있으므로, 주자극간에서 시트 상의 이온 빔을 구부릴 때에, 이온 빔의 시트 면에 따르는 방향으로 로렌쯔(Lorentz)힘이 발생하는 것을 억제하여, 이온 빔의 폭 방향에서 집속(convergence) 또는 발산(divergence)이 일어나는 것을 억제할 수 있다. 그 결과, 시트 상의 이온 빔의 폭 방향에서의 평행성을 보다 높일 수 있고, 나아가서는 당해 이온빔의 폭 방향에서의 빔 전류 밀도분포의 균일성을 보다 높일 수 있다는 또 다른 효과를 이룬다.
본 발명의 제 6의 측면에 관한 제 7의 측면에 의하면, 주 자극 간의 자계를 보다 평행화하는 조정이 가능하게 된다는 또 다른 효과를 이룬다.
본 발명의 제 7의 측면에 관한 제 8의 측면에 의하면 부자극 구동장치를 사용함으로써, 주자극간의 자계를 보다 평행화하는 조정이 용이하게 된다는 또 다른 효과를 이룬다.
본 발명의 제 1의 측면에 관한 제 9 및 제 6의 측면에 관한 제 10의 측면에 의하면 상기 각도를 조정함으로써, 가동자극 근방을 통과하는 이온 빔을 에지포커스 효과로 집속 또는 발산시킬 수 있으므로, 시트 상의 이온 빔의 폭 방향으로 움직이는 쿨롱(coulomb) 반발력 등에 의한 이온 빔의 발산을 보상하여 이온 빔의 평행성을 보다 높일 수 있고, 나아가서는 당해 이온 빔의 폭 방향에서의 빔 전류 밀도분포의 균일성을 보다 높일 수 있다는 또 다른 효과를 이룬다.
본 발명의 제 9의 측면에 관한 제 11의 측면에 의하면 가동자극 구동장치를 사용함으로써, 가동자극의 상기 각도의 조정이 용이하게 된다는 또 다른 효과를 이룬다.
본 발명의 제 1의 측면에 관한 제 12의 측면에 의하면 분리 슬릿을 통과하여 두께(이는 기판의 왕복 구동방향의 폭이기도 하다)가 대단히 작게 된 이온 빔의 두께를 크게 할 수 있다. 이온 빔의 두께가 대단히 작은 경우는, 기판의 왕복 구동속도나 이온 빔의 전류치의 흔들림에 의해 주입량의 불균일성이 생길 가능성이 있으나, 이 불균일성을 이온 빔의 두께를 크게 함으로써 완화할 수 있다는 또 다른 효과를 이룬다.
본 발명의 제 1의 측면에 관한 제 13의 측면에 의하면, 빔 프로파일 모니터에 의한 측정정보를 사용할 수 있으므로, 시트 상의 이온 빔의 폭 방향에서의 빔 전류 밀도분포의 균일성이나 평행성을 높이는 조정을 하는 것이 용이하게 된다는 또 다른 효과를 이룬다.
본 발명의 제 1의 측면에 관한 제 14의 측면에 의하면, 프로파일 모니터 및 제어장치에 의해, 이온 원의 필라멘트 전류를 피드백 제어하여, 기판에 입사하는 시트 상의 이온 빔의 폭 방향에서의 빔 전류 밀도분포의 균일성을 자동제어에 의해 높일 수 있다는 또 다른 효과를 이룬다.
본 발명의 제 2의 측면에 관한 제 15의 측면에 의하면, 빔 프로파일 모니터 및 제어장치에 의해, 전계렌즈를 피드백 제어하여 기판에 입사하는 시트 상의 이온 빔의 폭 방향에서의 빔 전류밀도 분포의 균일성을 자동제어에 의해 높일 수 있다는 또 다른 효과를 이룬다.
본 발명의 제 4의 측면에 관한 제 16의 측면에 의하면, 빔 프로파일 모니터 및 제어장치에 의해, 자계렌즈를 피드백 제어하여 기판에 입사하는 시트 상의 이온 빔의 폭 방향에서의 빔 전류밀도 분포의 균일성을 자동제어에 의해 높일 수 있다는 또 다른 효과를 이룬다.
본 발명의 제 8의 측면에 관한 제 17의 측면에 의하면, 빔 프로파일 모니터 및 제어장치에 의해, 질량분리 마그넷의 부자극의 간격을 피드백 제어하여 기판에 입사하는 시트 상의 이온 빔의 폭 방향에서의 평행성 나아가서는 빔 전류밀도 분포의 균일성을 자동제어에 의해 높일 수 있다는 또 다른 효과를 이룬다.
본 발명의 제 11의 측면에 관한 제 18의 측면에 의하면, 빔 프로파일 모니터 및 제어장치에 의해 질량분리 마그넷의 가동자극의 각도를 피드백 제어하여 기판에 입사하는 시트 상의 이온 빔의 폭 방향에서의 평행성 나아가서는 빔 전류밀도 분포의 균일성을 자동제어에 의해 높일 수 있다는 또 다른 효과를 이룬다.

Claims (18)

  1. 이온 원에서 발생시킨 기판의 단변폭보다도 폭이 넓은 시트 상(狀)의 이온 빔을 당해 폭의 관계를 유지한 상태로 기판으로 수송하여 기판에 조사하는 이온주입장치에 있어서,
    기판에 주입하여야 할 소망하는 이온 종류를 포함하고, 상기 폭의 관계를 갖는 시트 상의 이온 빔을 발생하는 이온 원으로서, 당해 시트 상의 이온 빔의 근원으로 되는 플라즈마를 생성하는데 사용되고, 당해 시트 상의 이온 빔의 폭 방향으로 배열된 복수의 필라멘트를 갖는 이온 원과,
    상기 이온 원의 각 필라멘트에 흐르는 필라멘트 전류를 서로 독립하여 제어할 수 있는 하나 이상의 필라멘트 전원과,
    상기 이온 원에서 발생시킨 시트 상의 이온 빔을 받는 것으로서, 당해 이온 빔의 폭보다도 큰 간격의 자극을 가지고 있으며 당해 이온 빔을 그 시트 면에 직교하는 방향으로 구부려서 상기 소망하는 이온 종류를 선별하여 도출하는 질량분리 마그넷과,
    이 질량분리 마그넷으로부터 도출된 시트 상의 이온 빔을 받아서 당해 질량분리 마그넷과 협동하여, 상기 소망하는 이온 종류를 선별하여 통과시키는 분리 슬릿과,
    기판을 보존하는 홀더를 가지고 있으며, 상기 분리 슬릿을 통과한 시트 상의 이온 빔의 조사 영역 내에서 홀더 상(上)의 기판을 당해 이온 빔의 시트 면에 교차하는 방향으로 왕복 구동하는 기판 구동 장치와,
    상기 시트 상의 이온 빔의 폭 방향에서의 빔 전류 밀도분포를 균일화하는 렌즈를,
    구비하는 것을 특징으로 하는 이온 주입장치.
  2. 제 1항에 있어서,
    상기 렌즈는 전계렌즈로서, 상기 이온 원과 상기 질량분리 마그넷과의 사이 또는 질량분리 마그넷과 상기 분리슬릿과의 사이에 설치되어 있고, 상기 시트 상의 이온 빔의 시트 면을 사이에 두어 서로 대향 하는 전극 쌍으로서 당해 시트 면에 따르며 또한 빔 진행방향에 대하여 직각 방향으로 병설된 복수의 전극 쌍을 가지고 있어, 상기 시트 상의 이온 빔의 임의의 영역에 있는 이온을 당해 이온 빔의 시트 면에 따르고 또한 빔 진행방향에 대하여 직교하는 방향으로 구부려서, 당해 시트 상의 이온 빔의 폭 방향에서의 빔 전류 밀도분포를 균일화하며,
    상기 전계렌즈의 각 전극 쌍과 기준 전위부와의 사이에 서로 독립한 직류전압을 각각 인가하는 하나 이상의 전계렌즈 직류전원을 더 구비하고 있는 이온 주입장치.
  3. 제 2항에 있어서,
    상기 전계렌즈 직류전원에 대신하여, 또는 상기 전계렌즈 직류전원과 함께 상기 전계렌즈의 홀수 번째와 짝수 번째와의 전극 쌍 사이에 진동전압을 인가하여, 상기 전계렌즈에서의 전계의 세기를 주기 진동시켜서, 상기 시트 상의 이온 빔의 시트 면에 따르고 또한 빔 진행방향에 대하여 직각방향의 빔 이미턴스를 제어하는 전계렌즈 진동 전원을 구비하고 있는 이온주입장치.
  4. 제 1항에 있어서,
    상기 렌즈는 자계렌즈로서, 상기 이온 원과 상기 질량 분리 마그넷과의 사이, 또는 상기 질량분리 마그넷과 상기 분리슬릿과의 사이에 설치되어 있고, 상기 시트 상의 이온 빔의 시트 면을 사이에 두고 서로 대향 하는 자극 쌍으로서 당해 시트 면에 따르며 또한 빔 진행방향에 대하여 직각방향으로 병설된 복수의 자극 쌍 및 각 자극 쌍을 각각 여자하는 복수의 여자코일이 있어, 시트 상의 이온 빔의 임의의 영역에 있는 이온을 당해 이온 빔의 시트 면에 따르며, 또한 빔 진행방향에 대하여 직교하는 방향으로 구부려서 당해 시트 상의 이온 빔의 폭 방향에서의 빔 전류 밀도분포를 균일화하며,
    상기 자계렌즈의 각 여자코일에 직류전류를 각각 흘리는 복수의 자계렌즈 직류전원을 더 구비하고 있는 이온 주입장치.
  5. 제 4항에 있어서,
    상기 자계렌즈 직류전원에 대신하여, 또는 상기 자계렌즈 직류전원과 함께 상기 자계렌즈의 각 여자코일에 진동 전류를 각각 흘려서, 상기 자계렌즈에서의 자계의 세기를 주기 진동시켜서 상기 시트 상의 이온 빔의 시트 면에 따르고, 또한 빔 진행방향에 대하여 직각방향의 빔 이미턴스를 제어하는 복수의 자계렌즈 진동 전원을 구비하고 있는 이온주입장치.
  6. 제 1항에 있어서,
    상기 질량분리 마그넷과 상기 시트 상의 이온 빔의 폭보다도 큰 간격을 두어서 서로 대향하고 있으며, 그 사이를 상기 시트 상의 이온 빔이 통과하는 한 쌍의 주자극과, 이 주자극의 외주 측에 설치되어 있고 주자극보다도 작은 간격을 두어서 서로 대향하고 있으며, 주자극 사이의 자계를 평행화 하는 한 쌍의 제 1 부자극과, 상기 주자극의 내주 측에 설치되어 있고, 주자극보다도 작은 간격을 두어서 서로 대향하고 있으며, 주자극 사이의 자계를 평행화하는 한 쌍의 제 2 부자극과, 상기 주자극, 제 1 부자극 및 제 2 부자극을 여자하는 여자코일을 구비하고 있는 이온주입장치.
  7. 제 6항에 있어서,
    상기 제 1 부자극 및 제 2 부자극의 적어도 한쪽은, 그 간격이 가변인 이온주입장치.
  8. 제 7항에 있어서,
    상기 간격이 가변인 부자극을 이동시켜서 그 간격을 변화시키는 부자극 구동장치를 구비하고 있는 이온주입장치.
  9. 제 1항에 있어서,
    상기 질량분리 마그넷은 상기 자극의 입구 및 출구의 적어도 한쪽에 반원주 상을 하고 있으며, 상기 이온 빔의 진행방향에 수직인 선과 자극 단면과의 이루는 각도가 가변인 가동자극을 구비하고 있는 이온주입장치.
  10. 제 6항에 있어서,
    상기 질량분리 마그넷은, 상기 주자극의 입구 및 출구의 적어도 한쪽에 반원주 상을 하고 있으며, 상기 이온 빔의 진행방향에 수직인 선과 자극 단면과의 이루는 각도가 가변인 가동자극을 구비하고 있는 이온주입장치.
  11. 제 9항에 있어서,
    상기 가동자극을 회전시켜서 상기 각도를 변화시키는 가동 자극 구동장치를 구비하고 있는 이온주입장치.
  12. 제 1항에 있어서,
    상기 분리 슬릿의 하류 측에 있고, 상기 시트 상의 이온 빔의 시트면 전체를 사이에 두어서 서로 대향 하도록 배치되어 있으며, 상기 시트 상의 이온 빔 전체를 그 시트 면에 직교하는 방향으로 왕복 주사하는 한 쌍의 주사 전극과,
    이 한 쌍의 주사전극간에 진동전압을 인가하는 주사 전원을 더 구비하고 있는 이온주입장치.
  13. 제 1항에 있어서,
    상기 홀더 상의 기판의 상류 측 또는 하류 측에 설치되어 있고, 상기 시트 상의 이온 빔을 받아서 그 폭 방향의 빔 전류 밀도분포를 측정하는 빔 프로파일 모니터를 더 구비하고 있는 이온주입장치.
  14. 제 1항에 있어서,
    상기 홀더 상의 기판의 상류 측 또는 하류 측에 설치되어 있고, 상기 시트 상의 이온 빔을 받아서 그 폭 방향의 빔 전류 밀도분포를 측정하는 빔 프로파일 모니터와,
    이 빔 프로파일 모니터에 의한 측정정보에 따라, 상기 필라멘트 전원을 제어하여 빔 전류밀도가 다른 것보다도 낮은 저 전류밀도 영역이 있는 경우는, 당해 저 전류밀도 영역에 대응하는 상기 필라멘트에 흘리는 필라멘트 전류를 증대시키고, 역의 경우는 역으로 하여, 기판에 입사하는 시트 상의 이온 빔의 폭 방향에서의 빔 전류밀도 분포를 균일화하는 제어를 하는 제어장치를 구비하고 있는 이온주입장치.
  15. 제 2항에 있어서,
    상기 홀더 상의 기판의 상류 측 또는 하류 측에 설치되어 있고, 상기 시트 상의 이온 빔을 받아서 그 폭 방향의 빔 전류 밀도분포를 측정하는 빔 프로파일 모니터와,
    이 빔 프로파일 모니터에 의한 측정정보에 따라, 상기 전계렌즈 직류전원을 제어하여, 빔 전류밀도가 다른 것보다도 낮은 저 전류밀도 영역이 있는 경우는, 당해 저 전류밀도 영역에 대응하는 상기 전계렌즈중의 영역에 그 이웃으로부터 전계가 향하도록, 상기 저 전류밀도 영역에 대응하는 상기 전극 쌍에 인가하는 전압을 내리며, 역의 경우는 역으로 하여, 기판에 입사하는 시트 상의 이온 빔의 폭 방향에서의 빔 전류 밀도분포를 균일화하는 제어를 하는 제어장치를 구비하고 있는 이온주입장치.
  16. 제 4항에 있어서,
    상기 홀더 상의 기판의 상류 측 또는 하류 측에 설치되어 있고, 상기 시트 상의 이온 빔을 받아서 그 폭 방향의 빔 전류 밀도분포를 측정하는 빔 프로파일 모니터와,
    이 빔 프로파일 모니터에 의한 측정정보에 따라 상기 자계렌즈 직류전원을 제어하여, 빔 전류밀도가 다른 것보다 낮은 저 전류 밀도영역에 있는 경우에 당해 저 전류밀도 영역에 대응하는 상기 자계렌즈중의 영역에 그 이웃으로부터 향하는 로렌쯔 힘이 증대하도록, 상기 저전류 밀도영역에 대응하는 영역부근의 상기 자극 쌍의 여자코일에 흘리는 전류를 조정하고, 역의 경우는 역으로 하여 기판에 입사하는 시트 상의 이온 빔의 폭 방향에서의 빔 전류밀도 분포를 균일화하는 제어를 하는 제어장치를 구비하고 있는 이온주입장치.
  17. 제 8항에 있어서,
    상기 홀더 상의 기판의 상류 측 또는 하류 측에 설치되어 있고, 상기 시트 상의 이온 빔을 받아서 그 폭 방향의 빔 전류밀도 분포를 측정하는 빔 프로파일 모니터와,
    이 빔 프로파일 모니터에 의한 측정정보에 따라, 상기 부자극 구동장치를 제 어하여, 빔 전류 밀도분포가 소정의 목표치보다도 발산되어 있는 경우는, 상기 질량분리 마그넷으로부터 도출되는 이온 빔을 그 시트 면에 평행인 면내에서 집속시키는 방향으로 상기 간격이 가변인 부자극의 간격을 바꾸며, 역의 경우는 역으로 하며, 기판에 입사하는 시트 상의 이온 빔의 폭 방향에서의 평행성을 높이는 제어를 하는 제어장치를 구비하고 있는 이온주입장치.
  18. 제 11항에 있어서,
    상기 홀더 상의 기판의 상류 측 또는 하류 측에 설치되어 있고, 상기 시트 상의 이온 빔을 받아서 그 폭 방향의 빔 전류 밀도분포를 측정하는 빔 프로파일 모니터와,
    이 빔 프로파일 모니터에 의한 측정정보에 따라, 상기 가동 자극구동 장치를 제어하여, 빔 전류 밀도분포가 소정의 목표치 보다도 발산되어 있는 경우는, 상기 질량분리 마그넷으로부터 도출되는 이온 빔을 그 시트 면에 평행인 면내에서 집속시키는 방향으로 상기 가동자극을 회전시키며, 역의 경우는 역으로 하여, 기판에 입사하는 시트 상의 이온 빔의 폭 방향에서의 평행성을 높이는 제어를 하는 제어장치를 구비하고 있는 이온주입장치.
KR1020050038272A 2004-05-14 2005-05-09 이온주입장치 KR100809138B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/845,209 2004-05-14
US10/845,209 US7078714B2 (en) 2004-05-14 2004-05-14 Ion implanting apparatus

Publications (2)

Publication Number Publication Date
KR20060045964A KR20060045964A (ko) 2006-05-17
KR100809138B1 true KR100809138B1 (ko) 2008-02-29

Family

ID=35308529

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050038272A KR100809138B1 (ko) 2004-05-14 2005-05-09 이온주입장치

Country Status (5)

Country Link
US (1) US7078714B2 (ko)
JP (1) JP4049163B2 (ko)
KR (1) KR100809138B1 (ko)
CN (1) CN100552865C (ko)
TW (1) TWI306273B (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101398729B1 (ko) 2012-08-21 2014-05-27 닛신 이온기기 가부시기가이샤 이온 주입 장치

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004362901A (ja) * 2003-06-04 2004-12-24 Sharp Corp イオンドーピング装置、イオンドーピング方法および半導体装置
US7675050B2 (en) * 2006-06-12 2010-03-09 Advanced Ion Beam Technology, Inc. Apparatus and method for ion beam implantation using ribbon and spot beams
US7462843B2 (en) * 2004-05-18 2008-12-09 Advanced Ion Bean Technology Inc. Apparatus and methods for ion beam implantation
US7498572B2 (en) * 2005-09-14 2009-03-03 Nissin Ion Equipment Co., Ltd. Deflecting electromagnet and ion beam irradiating apparatus
KR100706809B1 (ko) * 2006-02-07 2007-04-12 삼성전자주식회사 이온 빔 조절 장치 및 그 방법
KR100702479B1 (ko) * 2006-02-28 2007-04-03 한국원자력연구소 회전형 슬릿을 이용한 단일 스캔 빔 에미턴스 측정기
JP4882456B2 (ja) * 2006-03-31 2012-02-22 株式会社Ihi イオン注入装置
JP4218699B2 (ja) 2006-06-09 2009-02-04 日新イオン機器株式会社 分析電磁石
US7405410B2 (en) * 2006-07-14 2008-07-29 Mark Morehouse Method and apparatus for confining, neutralizing, compressing and accelerating an ion field
JP4582065B2 (ja) * 2006-07-25 2010-11-17 日新イオン機器株式会社 分析電磁石、その制御方法およびイオン注入装置
JP4492591B2 (ja) * 2006-07-25 2010-06-30 日新イオン機器株式会社 イオン注入装置およびその調整方法
US7635850B2 (en) 2006-10-11 2009-12-22 Nissin Ion Equipment Co., Ltd. Ion implanter
CN101563760B (zh) 2006-10-30 2011-12-21 日本航空电子工业株式会社 利用气体团簇离子束的固体表面平坦化方法及固体表面平坦化设备
JP4240109B2 (ja) * 2006-10-31 2009-03-18 日新イオン機器株式会社 イオン注入装置
JP4305499B2 (ja) * 2006-11-27 2009-07-29 日新イオン機器株式会社 イオン注入装置
JP4930778B2 (ja) * 2007-02-07 2012-05-16 株式会社Ihi 質量分離電磁石
JP4288288B2 (ja) * 2007-03-29 2009-07-01 三井造船株式会社 イオン注入装置
JP2009152002A (ja) * 2007-12-19 2009-07-09 Nissin Ion Equipment Co Ltd イオンビーム照射装置
JP4365441B2 (ja) 2008-03-31 2009-11-18 三井造船株式会社 イオン注入装置、イオン注入方法及びプログラム
JP5177658B2 (ja) * 2008-08-11 2013-04-03 株式会社Ihi ビームプロファイル調整装置とこれを備えるイオン注入装置
JP5226577B2 (ja) * 2009-03-27 2013-07-03 三井造船株式会社 イオン注入装置及びイオンビームの調整方法
US9147554B2 (en) * 2009-07-02 2015-09-29 Axcelis Technologies, Inc. Use of beam scanning to improve uniformity and productivity of a 2D mechanical scan implantation system
CN102024656B (zh) * 2009-09-17 2012-07-18 上海凯世通半导体有限公司 在离子束引出后改善束流流强分布的系统和方法
US8604443B2 (en) * 2009-11-13 2013-12-10 Varian Semiconductor Equipment Associates, Inc. System and method for manipulating an ion beam
US8089050B2 (en) * 2009-11-19 2012-01-03 Twin Creeks Technologies, Inc. Method and apparatus for modifying a ribbon-shaped ion beam
JP5311140B2 (ja) * 2009-12-01 2013-10-09 日新イオン機器株式会社 イオンビーム測定方法
JP5311681B2 (ja) 2010-05-26 2013-10-09 日新イオン機器株式会社 イオン注入装置
US9029808B2 (en) 2011-03-04 2015-05-12 Tel Epion Inc. Low contamination scanner for GCIB system
US8791430B2 (en) 2011-03-04 2014-07-29 Tel Epion Inc. Scanner for GCIB system
JP5568047B2 (ja) * 2011-03-30 2014-08-06 株式会社東芝 イオン源およびその動作方法
US8421039B2 (en) * 2011-03-31 2013-04-16 Axcelis Technologies, Inc. Method and apparatus for improved uniformity control with dynamic beam shaping
US8378313B2 (en) 2011-03-31 2013-02-19 Axcelis Technologies, Inc. Uniformity of a scanned ion beam
CN102789945A (zh) * 2011-05-17 2012-11-21 上海凯世通半导体有限公司 用于产生带状束流的热阴极离子源系统
CN102800550B (zh) * 2011-05-27 2015-08-26 日新离子机器株式会社 离子注入装置
JP2013004272A (ja) * 2011-06-15 2013-01-07 Nissin Ion Equipment Co Ltd イオン源およびイオン注入装置
JP2013020918A (ja) * 2011-07-14 2013-01-31 Hitachi High-Technologies Corp 荷電粒子線装置
JP5648919B2 (ja) * 2011-08-17 2015-01-07 日新イオン機器株式会社 イオン注入装置
JP5804444B2 (ja) * 2011-08-31 2015-11-04 日新イオン機器株式会社 イオン注入方法
CN102983048A (zh) * 2011-09-06 2013-03-20 上海凯世通半导体有限公司 束流调节装置及离子注入系统
JP5800286B2 (ja) * 2012-03-09 2015-10-28 日新イオン機器株式会社 イオン注入装置
US8723135B2 (en) * 2012-04-03 2014-05-13 Nissin Ion Equipment Co., Ltd. Ion beam bending magnet for a ribbon-shaped ion beam
WO2014043865A1 (zh) * 2012-09-19 2014-03-27 北京中科信电子装备有限公司 一种调节扩张束扩张角度的装置
CN103052249A (zh) * 2013-01-11 2013-04-17 哈尔滨工业大学 一种射流等离子体密度分布调节器
US9502213B2 (en) 2013-03-15 2016-11-22 Nissin Ion Equipment Co., Ltd. Ion beam line
US9142386B2 (en) * 2013-03-15 2015-09-22 Nissin Ion Equipment Co., Ltd. Ion beam line
JP6098846B2 (ja) * 2015-06-16 2017-03-22 日新イオン機器株式会社 真空チャンバ及び質量分析電磁石
US9734982B1 (en) 2016-05-24 2017-08-15 Nissin Ion Equipment Co., Ltd. Beam current density distribution adjustment device and ion implanter
JP7029633B2 (ja) 2018-02-09 2022-03-04 日新イオン機器株式会社 イオン源、イオン注入装置
JP2019145773A (ja) 2018-02-23 2019-08-29 国立大学法人東京農工大学 半導体素子を製造する方法及びイオン注入装置
JP7132828B2 (ja) * 2018-11-13 2022-09-07 住友重機械イオンテクノロジー株式会社 イオン注入装置およびビームパーク装置
CN111769039B (zh) * 2019-04-02 2023-07-04 北京中科信电子装备有限公司 一种低能大束流离子注入机均匀性调节的方法
CN113278930B (zh) * 2021-04-25 2023-04-18 北京航空航天大学合肥创新研究院(北京航空航天大学合肥研究生院) 一种纳米团簇的束流密度控制装置及其使用方法
CN113571401A (zh) * 2021-07-19 2021-10-29 广州粤芯半导体技术有限公司 狭缝组件及离子注入机台

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6079655A (ja) * 1983-10-07 1985-05-07 Hitachi Ltd イオンビ−ム中性化装置
JPS6435841A (en) * 1987-07-31 1989-02-06 Oki Electric Ind Co Ltd High-dose ion implanter
US5350926A (en) * 1993-03-11 1994-09-27 Diamond Semiconductor Group, Inc. Compact high current broad beam ion implanter
KR19990048220A (ko) * 1997-12-09 1999-07-05 윤종용 반도체 이온주입설비의 빔모니터 장치
KR19990078443A (ko) * 1998-03-31 1999-10-25 다다모토 다마이 이온주입장치 및 방법, 이온 빔 소오스와 가변 슬릿 기구

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5389793A (en) * 1983-08-15 1995-02-14 Applied Materials, Inc. Apparatus and methods for ion implantation
US5834786A (en) 1996-07-15 1998-11-10 Diamond Semiconductor Group, Inc. High current ribbon beam ion implanter
JP3449198B2 (ja) * 1997-10-22 2003-09-22 日新電機株式会社 イオン注入装置
KR100553780B1 (ko) * 1999-04-30 2006-02-20 닛신덴키 가부시키 가이샤 이온주입장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6079655A (ja) * 1983-10-07 1985-05-07 Hitachi Ltd イオンビ−ム中性化装置
JPS6435841A (en) * 1987-07-31 1989-02-06 Oki Electric Ind Co Ltd High-dose ion implanter
US5350926A (en) * 1993-03-11 1994-09-27 Diamond Semiconductor Group, Inc. Compact high current broad beam ion implanter
KR19990048220A (ko) * 1997-12-09 1999-07-05 윤종용 반도체 이온주입설비의 빔모니터 장치
KR19990078443A (ko) * 1998-03-31 1999-10-25 다다모토 다마이 이온주입장치 및 방법, 이온 빔 소오스와 가변 슬릿 기구

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101398729B1 (ko) 2012-08-21 2014-05-27 닛신 이온기기 가부시기가이샤 이온 주입 장치

Also Published As

Publication number Publication date
KR20060045964A (ko) 2006-05-17
JP2005327713A (ja) 2005-11-24
TWI306273B (en) 2009-02-11
US20050253089A1 (en) 2005-11-17
CN1700402A (zh) 2005-11-23
CN100552865C (zh) 2009-10-21
JP4049163B2 (ja) 2008-02-20
US7078714B2 (en) 2006-07-18
TW200539325A (en) 2005-12-01

Similar Documents

Publication Publication Date Title
KR100809138B1 (ko) 이온주입장치
US7964856B2 (en) Ion implanting apparatus
US7326941B2 (en) Apparatus and methods for ion beam implantation using ribbon and spot beams
KR101781644B1 (ko) 이온빔 스캔처리장치 및 이온빔 스캔처리방법
JP6281257B2 (ja) リボンイオンビームのエネルギーを変更するためのシステム
JP2008503067A (ja) 改良したイオン注入均一化のためのイオンビーム走査システム及び方法
US7675050B2 (en) Apparatus and method for ion beam implantation using ribbon and spot beams
JP4288288B2 (ja) イオン注入装置
JP7474255B2 (ja) イオン注入システムおよび方法
JP5648919B2 (ja) イオン注入装置
US20150357160A1 (en) Ion implantation apparatus and ion implantation method
JP2008027845A (ja) 分析電磁石、その制御方法およびイオン注入装置
US7019314B1 (en) Systems and methods for ion beam focusing
US9502213B2 (en) Ion beam line
KR102440710B1 (ko) 이온주입장치 및 이온주입방법
US20230038392A1 (en) Blended energy ion implantation
US20220238302A1 (en) Ion implanter and ion implantation method
JPWO2020123063A5 (ko)
US20220285126A1 (en) Ion implanter and ion implantation method
KR20110120186A (ko) 빔 전류 밀도 분포의 조정 목표 설정 방법 및 이온 주입 장치

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Re-publication after modification of scope of protection [patent]
FPAY Annual fee payment

Payment date: 20130201

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140204

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140829

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160127

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170201

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180201

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190129

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20200129

Year of fee payment: 13