TW200539325A - Ion implanting apparatus - Google Patents

Ion implanting apparatus Download PDF

Info

Publication number
TW200539325A
TW200539325A TW094109532A TW94109532A TW200539325A TW 200539325 A TW200539325 A TW 200539325A TW 094109532 A TW094109532 A TW 094109532A TW 94109532 A TW94109532 A TW 94109532A TW 200539325 A TW200539325 A TW 200539325A
Authority
TW
Taiwan
Prior art keywords
ion beam
ion
sheet
current density
substrate
Prior art date
Application number
TW094109532A
Other languages
Chinese (zh)
Other versions
TWI306273B (en
Inventor
Syuichi Maeno
Masao Naito
Yasunori Ando
Hilton F Glavish
Original Assignee
Nissin Ion Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Ion Equipment Co Ltd filed Critical Nissin Ion Equipment Co Ltd
Publication of TW200539325A publication Critical patent/TW200539325A/en
Application granted granted Critical
Publication of TWI306273B publication Critical patent/TWI306273B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3171Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/045Diaphragms
    • H01J2237/0455Diaphragms with variable aperture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/05Arrangements for energy or mass analysis
    • H01J2237/057Energy or mass filtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/15Means for deflecting or directing discharge
    • H01J2237/1502Mechanical adjustments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/202Movement
    • H01J2237/20221Translation
    • H01J2237/20228Mechanical X-Y scanning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24507Intensity, dose or other characteristics of particle beams or electromagnetic radiation
    • H01J2237/24514Beam diagnostics including control of the parameter or property diagnosed
    • H01J2237/24528Direction of beam or parts thereof in view of the optical axis, e.g. beam angle, angular distribution, beam divergence, beam convergence or beam landing angle on sample or workpiece
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24507Intensity, dose or other characteristics of particle beams or electromagnetic radiation
    • H01J2237/24514Beam diagnostics including control of the parameter or property diagnosed
    • H01J2237/24542Beam profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26513Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/2658Bombardment with radiation with high-energy radiation producing ion implantation of a molecular ion, e.g. decaborane

Abstract

The ion implanting apparatus according to this invention includes: an ion source for producing the ion beam 20 including desired ion species and being shaped in a sheet with a width longer than a narrow width of a substrate 82, a mass separating magnet 36 for selectively deriving the desired ion species by bending the ion beam in a direction perpendicular to a sheet face thereof, a separating slit 72 for selectively making the desired ion species pass through by cooperating with the mass separating magnet 36, and a substrate drive device 86 for reciprocatedly driving the substrate 82 in a direction substantially perpendicular to the sheet face 20s of the ion beam 20 within an irradiating area of the ion beam 20 which has passed through a separating slit 72.

Description

200539325 九、發明說明: 【發明所屬之技術領域】 本發明有關於離子植入裝置,對於例如半導體基 平面板顯示器用之基板等之基板(換言之,加工體或 體,以下亦同),照射離子束藉以進行離子植入,本 有關於可以良好因應基板之大型化(換言之,大面劳 下亦同)之離子植入裝置。另外,所謂之離子摻雜裝 包含在此處所稱之離子植入裝置。 【先前技術】 可以對基板照射幅度寬廣而且被平行化之離子束 植入裝置之一實例,被記載在日本專利特表 2 0 0 0 -號公報(第1 4頁第1 4行-第1 5頁第1 5行,圖1 )。 植入裝置構建成從小型之離子源抽出朝向一方向發 形之離子束,使該離子束通過兼作離子束平行化磁 量分離磁鐵(m a g n e t),在平行於扇面之面内彎曲, 選(質量分離)所希望之離子種和進行平行化,藉以 度寛廣而且被平行化之離子束,使該離子束照射在 在上述離子植入裝置中,質量分離磁鐵之質量 力,在離子束之偏轉區域之外周部變高,内周部變 是因為離子束在彎曲之同時進行平行化,所以越外 偏轉角越大,質量分解能力變成越高。但是,因為 解能力越高時,離子種被嚴格地篩選,所以所獲得 種之量變少,從該質量分離磁鐵導出之離子束之離 流密度,通過外周部處較低,通過内周部處較高, 312XP/發明說明書(補件)/94-07/94109532 板,扁 被處理 發明更 化,以 置亦被 之離子 505234 該離子 散之扇 鐵之質 用來篩 形成幅 基板。 分解能 低。這 周部, 質量分 之離子 子束電 成為不 5200539325 IX. Description of the invention: [Technical field to which the invention belongs] The present invention relates to an ion implantation device. For a substrate such as a substrate for a semiconductor-based flat panel display (in other words, a processed body or a body, the same applies hereinafter), irradiate ions Beams are used for ion implantation, and there is an ion implantation device that can respond to the increase in the size of a substrate (in other words, the same applies to a large surface). In addition, the so-called ion doped device includes an ion implantation device referred to herein. [Prior art] An example of an ion beam implanter capable of irradiating a substrate with a wide range and being parallelized is described in Japanese Patent Publication No. 2 0 0 0-(Page 14 Line 14-Line 1 Page 5 line 15 (Figure 1). The implantation device is constructed to extract an ion beam that is shaped in one direction from a small ion source, and the ion beam is bent in a plane parallel to the fan surface through a magnetic separation magnet that doubles as an ion beam parallelization. Separation) desired ion species and parallelization, so that the ion beam is widened and parallelized, so that the ion beam is irradiated in the above-mentioned ion implantation device, the mass force of the mass separation magnet is deflected in the ion beam The outer peripheral part becomes higher, and the inner peripheral part is changed because the ion beam is parallelized while being curved. Therefore, the larger the deflection angle is, the higher the mass decomposition ability becomes. However, because the higher the resolution, the ion species are strictly screened, so the amount of species obtained is reduced. The ion flow density of the ion beam derived from the mass separation magnet is lower at the outer periphery and at the inner periphery. Higher, 312XP / Invention Specification (Supplement) / 94-07 / 94109532 plate, flattened to be processed and invented, so that the ion of the fan iron, which is scattered by the ion 505234, is used to form the web substrate. Decomposition energy is low. This week, the ion beam of mass ion becomes 5

200539325 均一分布。亦即,在離子束之幅度方向之離子束電流密 分布之均一性會劣化。 在上述日本專利特表2 0 0 0 - 5 0 5 2 3 4號公報(第1 4頁第 行-第1 5頁第1 5行,圖1 )所記載之離子植入裝置中, 以考慮使用設在質量分離磁鐵之上游側之多極離子透鏡 對於由於上述理由造成之離子束電流密度分布之不均 性,以離子之局部之偏轉進行修正(例如,在低電流密度 區域側,使離子束彎曲用來提高該區域之電流密度),但 由於上述理由造成之離子束電流密度分布之不均一性 大,所以以多極離子透鏡進行修正具有一定之限度。 另外,當利用多極離子透鏡使離子束大幅偏轉,用來 正上述離子束電流密度分布之不均一性時,由於該偏轉 產生使離子束之幅度方向之平行性劣化之另外之問題。 當為著因應基板之大型化(例如短邊幅度為 6 0 0 mm程 以上之基板),使從質量分離磁鐵導出之離子束之幅度變 更大時,上述之問題會變為更嚴重。 另外,在利用從離子源抽出之離子束之發散,使離子 之幅度變為寛廣之上述先前技術中,因為離子束之幅度 寛廣,其離子束電流密度越降低,所以因應基板之大型 時,每一片基板之處理速度會降低。 【發明内容】 本發明之主要目的是提供離子植入裝置,可以抑制離 束之幅度方向之離子束電流密度分布之均一性之降低, 行度之劣化,和基板處理速度之降低,可以因應基板之 312XP/發明說明» 補件)/94-07/94109532 度 14 可 之 是 很 修 會 度 成 束 越 化 子 平 大 6200539325 Uniform distribution. That is, the uniformity of the ion beam current dense distribution in the amplitude direction of the ion beam is deteriorated. In the ion implantation device described in the aforementioned Japanese Patent Publication Nos. 2 0 0-5 0 5 2 3 4 (page 14 line-page 15 line 15 line, Fig. 1), it is considered that Use a multipolar ion lens located upstream of the mass separation magnet to correct the non-uniformity of the ion beam current density distribution caused by the above reasons, and correct the local deflection of the ions (for example, at the low current density region side, make the ions Beam bending is used to increase the current density in this region). However, due to the above reasons, the ion beam current density distribution is highly non-uniform, so correction with a multipolar ion lens has a certain limit. In addition, when the ion beam is largely deflected using a multipolar ion lens to correct the above-mentioned non-uniformity of the ion beam current density distribution, the deflection causes another problem that the parallelism of the amplitude direction of the ion beam is deteriorated. When the size of the substrate (for example, a substrate with a short side width of 600 mm or more) is required to increase the amplitude of the ion beam derived from the mass separation magnet, the above problems will become more serious. In addition, in the above-mentioned prior art that uses the divergence of the ion beam extracted from the ion source to make the amplitude of the ions wide, because the width of the ion beam is wide, the current density of the ion beam is lowered. , The processing speed of each substrate will be reduced. [Summary of the Invention] The main object of the present invention is to provide an ion implantation device, which can suppress the decrease in the uniformity of the ion beam current density distribution in the direction of the beam away from the beam, the deterioration of the traveling degree, and the decrease in the substrate processing speed, which can respond to the substrate Of 312XP / Invention Notes »Supplement) / 94-07 / 94109532 degrees 14 but it is very easy to understand the degree of the beam into the beam 6

200539325 型化。 本發明之離子植入裝置係使離子源所產生之幅度比基 之短邊幅度寬廣之片狀之離子束,在保持該幅度之關係 狀態,輸送到基板,藉以照射在基板者,其特徵在於具 有: 離子源,其包含有欲植入到基板之所希望之離子種, 來產生具有上述幅度之關係之片狀之離子束者,具有多 燈絲排列在該片狀之離子束之幅度方向,用來產生成為 片狀之離子束之根源之電漿; 1 個以上之燈絲電源,其可以互相獨立地控制在該離 源之各個燈絲流動之燈絲電流; 質量分離磁鐵,其用來接受上述離子源產生之片狀之 子束者,具有間隔大於該離子束之幅度之磁極,使該離 束彎曲到該片面之正交方向,用來篩選和導出上述所希 之離子種; 分離縫隙,其接受從該質量分離磁鐵導出之片狀之離 束,與該質量分離磁鐵合作,用來篩選上述所希望之離 種和使其通過;和 基板驅動裝置,其具有用以保持基板之保持器,在通 上述分離縫隙之片狀之離子束之照射區域内,在與該離 束之片面交叉之方向,往復驅動保持器上之基板。 依照此種離子植入裝置時,對於離子源所產生之幅度 基板之短邊幅度寛廣之片狀之離子束,以保持該幅度之 係之狀態進行輸送,和利用質量分離磁鐵和分離縫隙篩 312XP/發明說明書(補件)/94-07/94109532 板 之 備 用 個 該 子 離 子 望 子 子 過 子 比 關 選 7 200539325 所希望之離子種(亦即進行質量分離),照射在保持器上之 基板藉以進行離子植入。另外,利用具有上述幅度關係之 片狀之離子束,和基板驅動裝置之對基板之上述往復驅動 之合作,可以對基板之全面進行離子植入。 亦可以在上述離子源和上述分離縫隙之間,設置電場透 鏡或磁場透鏡,用來使上述片狀之離子束之幅度方向之電 流密度分布均一化。200539325 Type. The ion implantation device of the present invention is a sheet-shaped ion beam with an amplitude wider than that of the short side of the base generated by the ion source. The ion beam is conveyed to the substrate while maintaining the relationship of the amplitude, and is characterized in that Having: an ion source containing a desired ion species to be implanted into a substrate to generate a sheet-shaped ion beam having the above-mentioned amplitude relationship, having multiple filaments arranged in the amplitude direction of the sheet-shaped ion beam, Plasma used to generate the source of the sheet-shaped ion beam; 1 or more filament power supplies that can independently control the filament current flowing in each filament of the source; a mass separation magnet used to receive the ions The sheet-shaped sub-beam produced by the source has magnetic poles spaced apart from the amplitude of the ion beam, so that the ion beam is bent to the orthogonal direction of the sheet surface, and is used to screen and derive the desired ion species; the separation gap, which accepts The sheet-like beams derived from the mass separation magnet are used in cooperation with the mass separation magnet to screen and pass the desired seed and the substrate; and The moving device has a holder for holding the substrate, and drives the substrate on the holder to reciprocate in a direction intersecting the sheet surface in the irradiation area of the sheet-shaped ion beam passing through the separation gap. According to this ion implantation device, the ion beam with a wide width on the short side of the amplitude substrate generated by the ion source is transported in a state of maintaining the amplitude, and a mass separation magnet and a separation gap screen are used. 312XP / Invention Manual (Supplement) / 94-07 / 94109532 A spare plate of the product ion is expected to pass through the ion beam. 7 200539325 The desired ion species (that is, mass separation), the substrate irradiated on the holder Thereby ion implantation is performed. In addition, by using a sheet-shaped ion beam having the above-mentioned amplitude relationship and the above-mentioned reciprocating driving of the substrate driving device on the substrate, ion implantation can be performed on the entire substrate. An electric field lens or a magnetic field lens may be provided between the ion source and the separation gap to uniformize the current density distribution in the amplitude direction of the sheet-shaped ion beam.

亦可以在上述質量分離磁鐵之主磁極之外周側和内周 側,設置第1副磁極和第2副磁極,用來使主磁極間之磁 場平行化。亦可以使該兩副磁極之至少一方之間隔成為可 變 〇 亦可以在上述質量分離磁鐵之磁極(在有副磁極之情況 時為主磁極)之入口和出口之至少一方,設置可動磁極。 亦可以在上述分離縫隙之下游側設置掃描電極,用來在 片面之正交方向,往復掃描上述片狀之離子束全體。 亦可以在上述保持器上之基板之上游側或下游側,設置 射束型樣監視器,用來接受上述片狀之離子束,藉以測定 其幅度方向之離子束電流密度分布。 亦可以設置控制裝置,根據上述射束型樣監視器之測定 資訊,控制上述燈絲電源,上述電場透鏡用之電場透鏡直 流電源,上述磁場透鏡用之磁場透鏡直流電源,上述副磁 極用之副磁極驅動裝置,或上述可動磁極用之可動磁極驅 動裝置,進行控制使入射到基板之片狀之離子束之幅度方 向之離子束電流密度分布均一化。 8 312χρ/發明說明書(補件)/94-0*7/94109532A first secondary magnetic pole and a second secondary magnetic pole may be provided on the outer peripheral side and the inner peripheral side of the main magnetic pole of the mass separation magnet to parallelize the magnetic field between the main magnetic poles. The interval between at least one of the two secondary magnetic poles can also be made variable. ○ It is also possible to install a movable magnetic pole on at least one of the entrance and the exit of the magnetic pole of the above-mentioned mass separation magnet (if there is a secondary magnetic pole). A scanning electrode may be provided on the downstream side of the separation gap to scan the entire sheet-shaped ion beam in a direction orthogonal to the sheet surface. A beam type monitor may also be provided on the upstream or downstream side of the substrate on the holder to receive the sheet-shaped ion beam, thereby measuring the ion beam current density distribution in the amplitude direction. A control device may also be provided to control the filament power source, the electric field lens DC power source for the electric field lens, the magnetic field lens DC power source for the magnetic field lens, and the auxiliary magnetic pole for the auxiliary magnetic pole based on the measurement information of the beam pattern monitor. The driving device, or the above-mentioned movable magnetic pole driving device for the movable magnetic pole, controls to uniformize the ion beam current density distribution in the amplitude direction of the sheet-shaped ion beam incident on the substrate. 8 312χρ / Invention Specification (Supplement) / 94-0 * 7/94109532

200539325 依照本發明之第1態樣時,因為以保持該幅度之關係 狀態,將離子源產生之具有幅度比基板之短邊幅度寬廣 片狀之離子束,輸送到基板,而且因為在質量分離磁鐵 離子束不是其幅度方向而是在與片面正交之方向彎曲, 以質量分離,所以離子源所產生之片狀之離子束,在其 度方向不會使離子束電流密度之均一性和平行性劣化, 以進行質量分離使其入射到基板。亦即,不會有上述先 技術之由於離子束之彎曲位置之不同造成質量分解能力 差異,和因而產生之離子束電流密度分布之均一性及其 正造成之離子束之平行性之劣化。另外,對於基板之大 化,經由從離子源產生和輸送具有幅度與基板之短邊幅 對應之片狀之離子束,可以很容易因應。因此,可以抑 離子束之幅度方向之離子束電流密度分布之均一性之降 和平行性之劣化,可以因應基板之大型化。 另外,離子源具有上述方式之多個燈絲,而且在各個 絲流動之燈絲電流可以互相獨立地控制,所以可以很容 產生在幅度方向之離子束電流密度分布之均一性良好之 狀之離子束。 另外,因為從離子源產生具有上述之幅度關係之片狀 離子束,以保持該幅度關係之狀態輸送到基板,所以不 產生上述先前技術之利用離子束之發散使幅度變寛所引 之離子束電流密度降低。亦即,對於基板之大型化,經 產生和輸送具有幅度與基板之短邊幅度對應之片狀之離 束,可以很容易因應,利用此種方式可以防止離子束電 312XP/發明說明書(補件)/94-07/94109532 之 之 使 藉 幅 可 前 之 修 型 度 制 低 燈 易 片 之 會 起 由 子 流 9200539325 In accordance with the first aspect of the present invention, the ion beam generated by the ion source having a wider width than the short side of the substrate is transmitted to the substrate in order to maintain the relationship of the amplitude. The ion beam is not bent in a direction orthogonal to the sheet surface, and is separated by mass, so the sheet-shaped ion beam generated by the ion source does not make the ion beam current density uniform and parallel in its degree direction. Degradation for mass separation to make it incident on the substrate. That is, there is no difference in the mass resolution capability of the above-mentioned prior art due to the difference in the bending position of the ion beam, and the uniformity of the ion beam current density distribution and the parallelism of the ion beam that it is causing. In addition, the substrate can be enlarged easily by generating and transmitting an ion beam having a sheet shape having an amplitude corresponding to the short side width of the substrate from the ion source. Therefore, it is possible to suppress the decrease in the uniformity of the current density distribution of the ion beam and the deterioration of the parallelism in the amplitude direction of the ion beam, and it is possible to respond to the increase in the size of the substrate. In addition, the ion source has a plurality of filaments as described above, and the filament currents flowing in the filaments can be controlled independently of each other. Therefore, it is possible to generate an ion beam having a good uniformity of the ion beam current density distribution in the amplitude direction. In addition, since a sheet-shaped ion beam having the above-mentioned amplitude relationship is generated from the ion source, and is conveyed to the substrate while maintaining the amplitude relationship, the above-mentioned prior art ion beam is not generated by using the divergence of the ion beam to change the amplitude. The current density decreases. That is, for the large-scale substrate, it is easy to respond to the generation and transportation of sheet-like beams with a width corresponding to the width of the short side of the substrate. This method can prevent ion beam electricity 312XP / Invention Specification (Supplementary Document) ) / 94-07 / 94109532 will make it easy to make low-light easy-to-use films by a previous modification 9

200539325 密度降低,所以每一月基板之處理速度不會降低,可以 應基板之大型化。 依照本發明之與第1態樣有關之第2態樣時,更具有 效果是利用上述電場透鏡調整片狀之離子束之幅度方向 離子束電流密度分布,可以更進一步地提高其均一性。 依照本發明之與第2態樣有關之第3態樣時,更具有 效果是因為可以在上述電場透鏡依照上述方式控制射束 射,用來使離子束之幅度方向之離子束電流密度分布之 視(微細)之不均一性平坦化,所以可以更進一層地提高 狀之離子束之幅度方向之離子束電流密度分布之均一性 依照本發明之與第1態樣有關之第4態樣時,更具有 效果是利用上述磁場透鏡調整片狀之離子束之幅度方向 離子束電流密度分布,可以更進一步地提高其均一性。 依照本發明之與第4態樣有關之第5態樣時,更具有 效果是在上述磁場透鏡可以依照上述方式控制離子束 射,用來使離子束之幅度方向之離子束電流密度分布之 視(微細)之不均一性平坦化,所以可以更進一步地提高 狀之離子束之幅度方向之離子束電流密度分布之均一性 依照本發明之與第1態樣有關之第6態樣時,更具有 效果是因為利用第1副磁極間之磁場和第2副磁極間之 場,可以使主磁極間之磁場平行化,所以在主磁極間, 使片狀之離子束彎曲時,在沿著離子束之片面可以抑制 仁子(L 〇 r e n t z )力之發生,可以抑制在離子束之幅度方向 收歛或發散之發生。其結果是可以更進一步地提高片狀 312χρ/發明說明書(補件)/9^07/94109532 因 之 之 之 放 微 片 〇 之 之 之 放 微 片 〇 之 磁 當 洛 之 之 10200539325 The density is reduced, so the processing speed of the substrate will not decrease every month, which can respond to the increase in substrate size. According to the second aspect related to the first aspect of the present invention, it is more effective to use the above-mentioned electric field lens to adjust the amplitude direction of the sheet-shaped ion beam. The ion beam current density distribution can further improve its uniformity. According to the third aspect related to the second aspect of the present invention, it is more effective because the beam emission can be controlled in the above-mentioned electric field lens according to the above manner, and used to make the ion beam current density distribution in the amplitude direction of the ion beam. The apparent (fine) unevenness is flattened, so that the uniformity of the ion beam current density distribution in the amplitude direction of the shaped ion beam can be further improved. According to the fourth aspect related to the first aspect of the present invention, It is even more effective to use the magnetic field lens to adjust the ion beam current density distribution in the amplitude direction of the sheet-shaped ion beam, which can further improve its uniformity. According to the fifth aspect related to the fourth aspect of the present invention, it is even more effective that the above-mentioned magnetic field lens can control the ion beam emission in the manner described above, and is used to make the ion beam current density distribution of the ion beam amplitude direction visible. The (fine) unevenness is flattened, so that the uniformity of the ion beam current density distribution in the amplitude direction of the shaped ion beam can be further improved. According to the sixth aspect of the present invention related to the first aspect, the The effect is that the magnetic field between the main magnetic poles can be parallelized by using the magnetic field between the first auxiliary magnetic poles and the field between the second auxiliary magnetic poles. Therefore, when the sheet-shaped ion beam is bent between the main magnetic poles, The one side of the beam can suppress the occurrence of Lorrentz force, and can suppress the occurrence of convergence or divergence in the amplitude direction of the ion beam. As a result, it is possible to further improve the sheet shape 312χρ / Invention Specification (Supplement) / 9 ^ 07/94109532 Because of this, the microchip 〇 of the microchip 〇 The magnetic chip of the magnetic core 10

200539325 離子束之幅度方向之平行性,藉以更進一步地提高該離 束之幅度方向之離子束電流密度分布之均一性。 依照本發明之與第6態樣有關之第7態樣時,更具有 效果是可以調整主磁極間之磁場藉以更進一步地平行化 依照本發明之與第7態樣有關之第8態樣時,更具有 效果是使用副磁極驅動裝置’使主磁極間之磁場之平行 調整變為容易。 依照本發明之與第1態樣有關之第9態樣,和與第6 樣有關之第 1 0態樣時,更具有之效果是經由調整上述 度,利用邊緣聚焦效應,可以使通過可動磁極近傍之離 束收歛或發散,所以可以利用在狀之離子束之幅度方 施加作用之庫侖推斥力等,補償離子束之發散,可以更 一步地提高離子束之平行性,和可以更進一步地提高該 子束之幅度方向之離子束電流密度分布之均一性。 依照本發明之與第9態樣有關之第1 1態樣時,更具有 效果是經由使用可動磁極驅動裝置,可以使可動磁極之 述角度之調整變為容易。 依照本發明之與第1態樣有關之第1 2態樣時,可以使 過分離縫隙之厚度(亦即基板之往復驅動方向之幅度)很 之離子束之厚度變大。在離子束之厚度非常小之情況時 更具有之效果是由於基板之往復驅動速度或離子束之電 值之起伏,有可能產生植入量之不均一性,而且經由使 子束之厚度變大,可以緩和該不均一性。 依照本發明之與第1態樣有關之第1 3態樣時,更具有 312XP/發明說明書(補件)/94-07/94109532 子 之 〇 之 化 態 角 子 向 進 離 之 上 通 小 流 離 之 11200539325 The parallelism of the ion beam's amplitude direction further improves the uniformity of the ion beam current density distribution of the ion beam's amplitude direction. In the seventh aspect related to the sixth aspect according to the present invention, it is more effective to adjust the magnetic field between the main magnetic poles to further parallelize the eighth aspect related to the seventh aspect according to the present invention. It is even more effective to use a secondary magnetic pole driving device to facilitate parallel adjustment of the magnetic field between the main magnetic poles. According to the ninth aspect related to the first aspect and the tenth aspect related to the sixth aspect according to the present invention, it is even more effective to adjust the degree and use the edge focusing effect to pass the movable magnetic pole. The nearby beam converges or diverges, so the Coulomb repulsion force acting on the amplitude side of the ion beam can be used to compensate the divergence of the ion beam, which can further improve the parallelism of the ion beam, and can further improve The uniformity of the ion beam current density distribution in the amplitude direction of the sub-beam. According to the eleventh aspect related to the ninth aspect of the present invention, it is even more effective that the angle adjustment of the movable magnetic pole can be easily performed by using the movable magnetic pole driving device. According to the twelfth aspect related to the first aspect of the present invention, the thickness of the ion beam through which the thickness of the separation gap (that is, the amplitude of the reciprocating driving direction of the substrate) is large can be made large. When the thickness of the ion beam is very small, the effect is more because of the reciprocating driving speed of the substrate or the fluctuation of the electric value of the ion beam, which may cause the unevenness of the implantation amount, and by making the thickness of the sub-beam larger Can alleviate this heterogeneity. According to the 13th aspect related to the 1st aspect according to the present invention, there is a 312XP / Invention Specification (Supplement) / 94-07 / 94109532, which has a transformation angle of 0. 11

200539325 效果是因為可以使用射束型樣監視器之測定資訊,所以 行提高片狀之離子束之幅度方向之離子束電流密度分布 均一性或平行性之調整變為容易。 依照本發明之與第1態樣有關之第1 4態樣時,更具有 效果是利用射束型樣監視器和控制裝置,回饋控制離子 之燈絲電流,可以利用自動控制提高入射到基板之片狀 離子束之幅度方向之離子束電流密度分布之均一性。 依照本發明之與第2態樣有關之第1 5態樣時,更具有 效果是利用射束型樣監視器和控制裝置,回饋控制電場 鏡,可以利用自動控制提高入射到基板之片狀之離子束 幅度方向之離子束電流密度分布之均一性。 依照本發明之與第4態樣有關之第1 6態樣時,更具有 效果是利用射束型樣監視器和控制裝置,回饋控制磁場 鏡,可以利用自動控制提高入射到基板之片狀之離子束 幅度方向之離子束電流密度分布之均一性。 依照本發明之與第8態樣有關之第1 7態樣時,更有之 果是利用射束型樣監視器和控制裝置,回饋控制質量分 磁鐵之副磁極之間隔,可以利用自動控制提高入射到基 之片狀之離子束之幅度方向之離子束電流密度分布之均 性。 依照本發明之與第1 1態樣有關之第1 8態樣時,具有 效果是利用射束型樣監視器和控制裝置,回饋控制質量 離磁鐵之可動磁極之角度,可以利用自動控制提高入射 基板之片狀之離子束之幅度方向之平行性和離子束電流 312XP/發明說明書(補件)/94-07/94109532 進 之 之 源 之 之 透 之 之 透 之 效 離 板 之 分 到 密 12200539325 The effect is that the measurement information of the beam type monitor can be used, so it is easy to adjust the uniformity or parallelism of the ion beam current density distribution in the amplitude direction of the sheet-shaped ion beam. According to the fourteenth aspect related to the first aspect of the present invention, it is even more effective to use a beam type monitor and control device to feedback the filament current of the control ions, and it is possible to increase the sheet incident on the substrate by using automatic control. The uniformity of the ion beam current density distribution in the amplitude direction of the shaped ion beam. According to the 15th aspect related to the 2nd aspect of the present invention, it is even more effective to use a beam type monitor and control device to feedback control the electric field mirror, which can use automatic control to improve the sheet shape incident on the substrate. The uniformity of the ion beam current density distribution in the direction of the ion beam amplitude. According to the 16th aspect related to the 4th aspect of the present invention, it is even more effective to use a beam type monitor and control device to feedback control the magnetic field mirror, which can use automatic control to improve the sheet shape incident on the substrate. The uniformity of the ion beam current density distribution in the direction of the ion beam amplitude. According to the 17th aspect related to the 8th aspect of the present invention, it is even more effective to use a beam type monitor and control device to feedback the interval between the secondary poles of the mass control magnet, which can be improved by automatic control. The uniformity of the ion beam current density distribution in the amplitude direction of the sheet-shaped ion beam incident on the substrate. According to the eighteenth aspect of the present invention related to the first aspect, the beam type monitor and control device are used to feedback the angle of the mass from the movable pole of the magnet, and the incident can be increased by automatic control. The parallelism in the amplitude direction of the ion beam of the substrate and the ion beam current 312XP / Invention Manual (Supplement) / 94-07 / 94109532

200539325 度分布之均一性。 【實施方式】 圖1是表示本發明之離子植入裝置之一部份之 圖,在線.AA!之部份連接到圖2。圖2是表示本 子植入裝置之其餘部份之橫向剖面圖,在線 A 1 -, 連接到圖1。圖3是表示圖1和圖2所示之離子 之一部份之縱向剖面圖,在線A 2 - A 2之部份連接ί, 4是表示圖1和圖2所示之離子植入裝置之其餘 向剖面圖,在線Α 2 - Α 2之部份連接到圖3。 該離子植入裝置原則上例如以圖6所示之方式 基板82作為被處理體。該基板82之短邊82a之 短邊幅度Ws。但是,在基板82為正方形或圓形之 其一邊之長度或直徑亦可以與上述短邊幅度 Ws 理。因此,正方形或圓形之基板8 2亦可以作為被 處理。基板8 2使用例如半導體基板,扁平面板顯 基板(例如玻璃基板)等。 該離子植入裝置構建成使離子源2所產生之幅 參照圖5,圖6 )比基板8 2之短邊幅度W s寛廣之 子束 2 0,在保持該幅度之關係(亦即 WB > Ws之辦 態,通過電場透鏡24,質量分離磁鐵36,分離縫P 輸送到被保持在處理室容器8 0内之保持器8 4之 藉以照射在基板8 2,用來對該基板8 2進行離子才 從離子源2至處理室容器80之離子束20之路 被真空容器34包圍。該真空容器34,至少質量 312ΧΡ/發明說明書(補件)/94-07/94109532 橫向剖面 發明之離 之部份 植入裝置 1圖4。圖 部份之縱 之矩形之 幅度稱為 情況時, 同樣地處 處理體地 不裔用之 度Wb(亦 片狀之離 丨係)之狀 家72等, 基板8 2, έ入。 徑(束線) 分離磁鐵 13 200539325 3 6内和其前後之部份,由非磁性材料構成。離子源2,真 空容器3 4和處理室容器8 0之内部,在該離子植入裝置之 運轉時,被圖中未顯示之真空排氣裝置排氣成為真空。真 空容器34和處理室容器80被電接地。 離子源2用來產生包含有欲植入到基板8 2之所希望之離 子種之具有上述幅度之關係之片狀之離子束 2 0。此處之 「所希望之」換言之是指「指定之」或「特定之」(以下亦 同)。所希望之離子種,可以以離子之質量和價數指定。200539325 Uniformity of the degree distribution. [Embodiment] FIG. 1 is a diagram showing a part of the ion implantation device of the present invention, and the part connected to .AA! Is connected to FIG. 2. Fig. 2 is a transverse sectional view showing the rest of the implanted device, which is connected to Fig. 1 at line A 1-. FIG. 3 is a longitudinal sectional view showing a part of the ions shown in FIG. 1 and FIG. 2, and a part of the line A 2-A 2 is connected. 4 is a view showing the ion implantation device shown in FIG. 1 and FIG. 2. The remaining cross-sectional views are connected to FIG. 3 at a portion of lines A 2-A 2. This ion implantation apparatus basically uses, for example, a substrate 82 as a subject to be treated as shown in FIG. 6. The short side width Ws of the short side 82a of the substrate 82. However, the length or diameter of one side of the substrate 82 that is square or circular may be related to the short side width Ws described above. Therefore, a square or circular substrate 82 can also be treated. As the substrate 82, a semiconductor substrate, a flat panel display substrate (e.g., a glass substrate), or the like is used. The ion implantation device is constructed so that the amplitude generated by the ion source 2 is referred to FIG. 5 and FIG. 6.) The width of the short side width W s of the substrate 8 2 is broader than the sub-beam 20, and the relationship of the amplitude is maintained (ie, WB & gt The state of Ws is transmitted through the electric field lens 24, the mass separation magnet 36, and the separation slit P to the holder 8 4 held in the processing chamber container 80 to irradiate the substrate 8 2 for the substrate 8 2 The ion beam 2 from the ion source 2 to the processing chamber container 80 is surrounded by a vacuum container 34. The vacuum container 34 has a mass of at least 312XP / Invention Specification (Supplement) / 94-07 / 94109532 and the cross section of the invention Part of the implanted device 1 Figure 4. When the width of the vertical rectangle in the figure is called the case, it is also the same as that used to handle the body Wb (also sheet-like). 72 The substrate 8 2 is pushed in. The diameter (beam line) of the separation magnet 13 200539325 3 6 and the front and rear parts are made of non-magnetic materials. The ion source 2, the vacuum container 34, and the processing chamber container 80, During the operation of the ion implantation device, a vacuum exhaust device not shown in the figure The gas becomes a vacuum. The vacuum container 34 and the processing chamber container 80 are electrically grounded. The ion source 2 is used to generate a sheet-shaped ion beam 2 having a relationship of the above-mentioned amplitude containing a desired ion species to be implanted into the substrate 82. 0. "Wanted" here means "designated" or "specific" (the same applies hereinafter). The desired ion species can be specified by the mass and valence of the ions.

片狀之離子束2 0其一實例如圖5之簡化所示,其行進方 向之垂直之剖面形狀在Y方向(例如垂直方向,以下亦同) 成為細長之近似長方形之形狀。大概而言,實際之離子束 2 0之剖面形狀,不是如圖所示之完全之長方形,而是在外 周之境界部有幾分模糊,不是以線明確界定。 在本說明書中,沿著該長方形剖面之長軸2 0 a之方向之 尺寸稱為幅度 W b,沿著短軸 2 0 b之方向之尺寸稱為厚度 Tb,片狀之離子束之主面(包含幅度 WB之面)稱為片面 2 0 s,離子束 2 0之行進方向之中心之軸稱為中心軸2 0 c。 因此,離子束20之幅度Wb方向,與長軸20a方向同義, 厚度T b方向與短軸2 0 b方向同樣。另外,在本實施形態中, 離子束20之幅度Wb方向與Y方向同義。 片狀之離子束 2 0是厚度 T B比其幅度 W b小很多(例如 1 / 1 0〜1 / 1 0 0程度之)之離子束,換言之可以成為帶狀之離 子束。 離子源2在本實例中被稱為封包型離子源,具有離子束 14 312XP/發明說明書(補件)/94-07/94109532 200539325 2 0之幅度W B方向較長,1面開放之長方形箱狀之電漿產生 容器4。在該電漿產生容器4内,被導入有原料氣體包含 有成為上述所希望之離子種之原料之物質。 在電漿產生容器4内,在離子束20之幅度Wb方向,以 等間隔排列有多個熱陰極用之燈絲6。燈絲6之數目不只 限於圖3所示之3個,亦可以依照離子束2 0之幅度W b決 定。例如,在該幅度W b為8 0 0画程度之情況時,燈絲6之 數目可以為6個之程度。An example of the sheet-shaped ion beam 20 is shown in simplified form in FIG. 5, and the vertical cross-sectional shape in the traveling direction becomes a slender, approximately rectangular shape in the Y direction (eg, vertical direction, the same applies hereinafter). In general, the cross-sectional shape of the actual ion beam 20 is not a complete rectangle as shown in the figure, but it is somewhat blurred at the outer boundary, and is not clearly defined by lines. In this description, the dimension along the long axis 20 a of the rectangular section is called the width W b, and the dimension along the short axis 20 b is called the thickness Tb. The main surface of the sheet-shaped ion beam (The surface including the amplitude WB) is called the sheet surface 20 s, and the axis at the center of the travel direction of the ion beam 20 is called the central axis 2 0 c. Therefore, the direction of the amplitude Wb of the ion beam 20 is synonymous with the direction of the long axis 20a, and the direction of the thickness Tb is the same as the direction of the short axis 20b. In addition, in this embodiment, the amplitude Wb direction of the ion beam 20 is synonymous with the Y direction. The sheet-shaped ion beam 20 is an ion beam having a thickness T B that is much smaller than its amplitude W b (for example, about 1/100 to 1/100), in other words, it can be a band-shaped ion beam. Ion source 2 is referred to as a packet-type ion source in this example, and has an ion beam 14 312XP / Invention Specification (Supplement) / 94-07 / 94109532 200539325 2 with a long WB direction and a rectangular box shape open on one side之 电 电 电 罐 4。 The plasma generating container 4. In the plasma generating container 4, a material gas to be introduced includes a substance which becomes a raw material of the above-mentioned desired ion species. In the plasma generating container 4, a plurality of filaments 6 for hot cathodes are arranged at equal intervals in the direction Wb of the ion beam 20. The number of the filaments 6 is not limited to the three shown in FIG. 3, and may be determined according to the amplitude W b of the ion beam 20. For example, in a case where the width W b is about 800 degrees, the number of filaments 6 may be about six.

設置在上述各個燈絲6流動之燈絲電流可以互相獨立地 控制的燈絲電源。作為其一例,此例中,如圖3所示,在 每一燈絲 6上設置獨立的燈絲電源8。亦即,設置數目與 燈絲 6之數目相同之可變電壓之燈絲電源8。但是,亦可 以不使用此種方式,而是將多個電源綜合成為一個,使用 一個之燈絲電源,使在各個燈絲6流動之燈絲電流互相獨 立地控制。 依照上述方式時,因為離子源2具有上述之多個燈絲6, 而且在各個燈絲6流動之燈絲電流互相獨立地控制,所以 離子束2 0之幅度Wb方向之電漿1 0之密度分布之均一性良 好,可以容易產生幅度Wb方向之離子束電流密度分布之均 一性良好之片狀之離子束2 0。 亦即,使在上述之各個燈絲6和電漿產生容器4之間產 生電弧放電之原料氣體,產生電離,在電漿產生容器4内, 均一性良好地產生離子束2 0之幅度W b方向較長之分布之 電漿1 0。 15 312XP/發明說明書(補件)/94-07/94109532A filament power source provided with the filament currents flowing in the respective filaments 6 can be controlled independently of each other. As an example, in this example, as shown in FIG. 3, an independent filament power supply 8 is provided on each filament 6. As shown in FIG. That is, the same number of filament power sources 8 of variable voltage as the number of filaments 6 are provided. However, instead of using this method, a plurality of power sources may be integrated into one, and one filament power source may be used to control the filament currents flowing in the respective filaments 6 independently of each other. In the above manner, since the ion source 2 has the plurality of filaments 6 described above, and the filament current flowing in each filament 6 is controlled independently of each other, the density distribution of the plasma 10 in the direction of the amplitude Wb of the ion beam 20 is uniform. The ion beam 20 with good uniformity of the ion beam current density distribution in the direction of the amplitude Wb can be easily produced. That is, the source gas that generates an arc discharge between each of the filaments 6 and the plasma generating container 4 is ionized, and within the plasma generating container 4, the amplitude W b direction of the ion beam 20 is uniformly generated. Longer distribution of plasma 10. 15 312XP / Invention Manual (Supplement) / 94-07 / 94109532

200539325 在電漿產生容器4之開口部附近設置抽出電極系1 2, 上述電漿1 0利用電場之作用,將上述片狀之離子束2 0 出,而且以所希望之能量進行加速。抽出電極系1 2在本 例中,具有3片之電極1 4〜1 6。但是,不只限於3片。 個電極1 4〜1 6亦可以具有作為離子拉出孔,離子束2 0之 度W B以上之長度之縫隙,亦可以具有多個(多數之)小孔 伸離子束2 0之幅度W b以上地並排設置。圖3表示前者 情況,但是後者較好。因為後者可以使離子束 2 0之幅 WB方向之離子束電流密度分布之均一性更良好。 依照上述方式之構造,從離子源 2,更具體者是從在 電漿產生容器4内產生之電漿1 0,抽出包含有欲植入到 板8 2之所希望之離子種之具有上述幅度關係之在幅度 方向之離子束電流密度分布之均一性良好之片狀之離子 在離子源2之下游側(換言之離子束2 0之行進方向側 以下亦同),設有質量分離磁鐵3 6,用來接受離子源2 產生之片狀之離子束20,具有大於該離子束20之幅度 之間隔L !(亦即L ! > W b )之磁極(實質上為主磁極3 8 ),使 離子束20彎曲向與其片面20s垂直之方向,用來抽出上 所希望之離子種(亦即進行質量分離),藉以導出片狀之 子束20。如上述之方式,因為L!>WB,所以離子束20 以以大致保持其平行性之狀態通過質量分離磁鐵3 6。該 量分離磁鐵3 6之詳細部份將於後面說明。 在質量分離磁鐵3 6,在構成離子束2 0之離子,具有 312XP/發明說明書(補件)/94-07/94109532 從 抽 實 各 幅 延 之 度 該 基 Wb 束 所 Wb 該 述 離 可 質 依 16 200539325 照其質量之固有之軌道半徑,在該質量分離磁鐵3 6之下游 側之所希望之離子種收歛在離子束2 0之厚度T b方向之位 置附近,設有分離縫隙 7 2,用來接受從質量分離磁鐵 36 導出之片狀之離子束2 0,與質量分離磁鐵3 6合作,藉以 使所希望之離子種通過和進行筛選。該分離縫隙7 2之離子 束2 0之幅度W B方向之長度,如圖4所示,比該幅度W b長。200539325 An extraction electrode system 12 is provided near the opening of the plasma generating container 4. The plasma 10 uses the action of an electric field to output the sheet-shaped ion beam 20 and accelerates it with a desired energy. The extracted electrode system 12 has three electrodes 1 to 16 in this example. However, it is not limited to 3 pieces. The electrodes 1 4 to 16 may also have slits as the ion extraction holes, the ion beam 20 has a length of WB or more, and may also have a plurality (most) of small holes extending beyond the width W b of the ion beam 20. Ground side by side. Figure 3 shows the former, but the latter is better. The latter can make the uniformity of the ion beam current density distribution in the WB direction of the beam width 20. According to the structure in the above manner, from the ion source 2, and more specifically, from the plasma 10 generated in the plasma generating container 4, the extracted ion species containing the desired ion species to be implanted into the plate 8 2 has the above-mentioned amplitude. The relationship between the ion beam current density distribution with good uniformity in the amplitude direction is on the downstream side of the ion source 2 (in other words, the same goes below the traveling direction side of the ion beam 20), and a mass separation magnet 36 is provided. It is used to receive the sheet-shaped ion beam 20 generated by the ion source 2 with magnetic poles (essentially the main magnetic pole 3 8) having an interval L! (That is, L! ≫ W b) larger than the amplitude of the ion beam 20 so that The ion beam 20 is bent in a direction perpendicular to its sheet surface 20s, and is used to extract the desired ion species (that is, perform mass separation), thereby deriving a sheet-shaped sub-beam 20. As described above, since L! ≫ WB, the ion beam 20 passes through the mass separation magnet 36 while maintaining its parallelism. The detailed part of the quantity separation magnet 36 will be described later. In the mass separation magnet 36, the ions constituting the ion beam 20 have 312XP / Invention Manual (Supplement) / 94-07 / 94109532 The degree of extension of each frame is obtained from the base Wb beam Wb The separation can be qualitatively According to 16 200539325, according to the inherent orbit radius of its mass, the desired ion species on the downstream side of the mass separation magnet 36 converges near the position of the thickness T b of the ion beam 20, and a separation gap 7 2 is provided. It accepts the sheet-shaped ion beam 20 derived from the mass separation magnet 36 and cooperates with the mass separation magnet 36 to pass and screen the desired ion species. The length in the direction of the amplitude W B of the ion beam 20 of the separation slit 72 is longer than the amplitude W b as shown in FIG. 4.

分離縫隙7 2在本實例中如圖2所示,以中心7 0作為中 心,如箭頭C所示,成為可動,因此可以機械式地變更該 分離縫隙7 2之開口幅度(縫隙幅度)。因此,可以變化質量 分離之分解能力。例如,縫隙幅度越狭,分解能力越提高, 但是所獲得之離子束電流密度降低。在具有依照氫之結合 數之分子量具有擴增之膦離子(Ρ Η X + ),質量分解能力 (Μ/ΔΜ,Μ為質量,ΛΜ為其差)最好為5之程度,但是在 供給到離子源 2之原料氣體使用 B F 3氣體之硼離子(Β + ) 時,最好為8之程度。 在分離縫隙7 2之下游之處理室容器8 0内,設有基板驅 動裝置8 6。該基板驅動裝置8 6具有用以保持基板8 2之保 持器8 4,在通過分離縫隙7 2之片狀之離子束2 0之照射區 域内,使保持器8 4上之基板8 2如箭頭D所示,在該離子 束20之片面20s之交叉方向,以一定之速度進行往復驅動 (亦參照圖6 )。該保持器8 4上之基板8 2之往復運動方向, 在本實例中是實質上與離子束20之片面20s正交之方向 (亦即,以9 0度或大約9 0度交叉之方向,以下亦同)。更 具體者,參照圖2,成為離子束2 0之中心軸2 0 c和基板8 2 17 312XP/發明說明數補件)/94-07/94109532In this example, as shown in FIG. 2, the separation gap 72 is centered on the center 70 and is movable as shown by the arrow C. Therefore, the opening width (gap width) of the separation gap 72 can be changed mechanically. Therefore, the resolution ability of mass separation can be changed. For example, the narrower the gap width, the higher the resolution, but the lower the ion beam current density obtained. In the case of a phosphine ion (P Η X +) having a molecular weight according to the binding number of hydrogen, the mass decomposition ability (M / ΔM, where M is the mass, and ΔM is the difference) is preferably about 5, but when supplied to When the source gas of the ion source 2 uses boron ions (B +) of BF 3 gas, it is preferably about 8 degrees. In the processing chamber container 80 downstream of the separation gap 72, a substrate driving device 86 is provided. The substrate driving device 86 has a holder 8 4 for holding the substrate 82. The substrate 8 2 on the holder 8 4 is made as an arrow in the irradiation area of the sheet-shaped ion beam 20 passing through the separation gap 72. As shown in D, the cross direction of the sheet surface 20s of the ion beam 20 is reciprocally driven at a constant speed (see also FIG. 6). The reciprocating direction of the substrate 8 2 on the holder 84 is, in this example, a direction substantially orthogonal to the one-sided surface 20s of the ion beam 20 (that is, a direction crossing at 90 degrees or about 90 degrees, The same applies below). More specifically, referring to FIG. 2, it becomes the central axis 2 0 c of the ion beam 20 and the substrate 8 2 17 312XP / Invention Number Supplement) / 94-07 / 94109532

200539325 之表面實質上正交之方向。但是,亦可以在以比9 0度小 分之角度(例如8 0度前後)或大幾分之角度(例如1 0 0度 後)交叉之方向,進行往復運動。 在本實例中,基板驅動裝置8 6本身,沿著圖中未顯示 軌道,如箭頭D所示地進行往復運動。利用此種方式, 基板8 2之全面,照射所希望之離子種之離子束2 0用來 行離子植入。該離子植入可以使用在例如,在扁平面板 示器用之基板 8 2之表面形成多個薄膜電晶體(T F Τ )之 驟。 在處理室容器80内,亦可以例如在離子束行進方向之 後,設置2台之上述方式之基板驅動裝置8 6,交替地使 2台之基板驅動裝置 8 6,對該保持器8 4分別保持之基 8 2交替地進行離子植入。依照此種方式時,可以提高通j 依照此種離子植入裝置時,因為將離子源2所產生之 有幅度 WB比基板 8 2之短邊幅度 Ws寛廣之片狀之離子 2 0,在保持該幅度之關係(亦即W B > W s)之狀態,輸送到 板82,而且在質量分離磁鐵36進行質量分離使離子束 不彎曲向其幅度WB方向,而是彎曲向與片面20s正交之 向,所以可以對利用離子源2產生之片狀之離子束2 0, 行質量分離,使其幅度WB方向之離子束電流密度之均一 和平行性不會劣化,使其入射到基板8 2。亦即,不會產 上述先前技術之由於使離子束彎曲之位置之不同而造成 質量分解能力之差,和由於離子束電流密度分布之均一 和其修正所造成之離子束之平行性之劣化。另外,對於 312XP/發明說明窗補件)/94-07/94109532 幾 前 之 在 進 顯 步 前 用 板 〇 具 束 基 20 方 進 性 生 之 性 基 18200539325 The surface is substantially orthogonal. However, it is also possible to perform a reciprocating motion in a direction crossing at an angle smaller than 90 degrees (for example, before and after 80 degrees) or at an angle larger than (for example, after 100 degrees). In this example, the substrate driving device 86 itself performs a reciprocating motion as shown by an arrow D along a track not shown in the figure. In this way, the entire surface of the substrate 82 is irradiated with an ion beam 20 of a desired ion species for ion implantation. This ion implantation can be used, for example, in the step of forming a plurality of thin film transistors (T F T) on the surface of a substrate 82 for a flat panel display. In the processing chamber container 80, for example, after the ion beam travelling direction, two substrate driving devices 86 of the above-mentioned manner may be provided, and two substrate driving devices 86 may be alternately held, and the holders 8 and 4 may be held separately. The base 8 2 is alternately subjected to ion implantation. In this way, it is possible to increase the passivity of the ion implantation device according to this kind of ion implantation device, because the ion ions 2 generated by the ion source 2 have a broader sheet-shaped ion 2 0 than the short-side width Ws of the substrate 8 2. While maintaining the relationship of the amplitude (i.e. WB > W s), it is conveyed to the plate 82, and the mass separation is performed by the mass separation magnet 36 so that the ion beam does not bend toward its amplitude WB, but bends toward the positive 20s. The ion beam 20 generated by the ion source 2 can be separated by mass so that the uniformity and parallelism of the ion beam current density in the WB direction will not be deteriorated, and it will be incident on the substrate 8 2. That is, the above-mentioned prior art does not produce the difference in mass resolving power due to the difference in the position where the ion beam is bent, and the deterioration of the parallelism of the ion beam due to the uniformity of the ion beam current density distribution and its correction. In addition, for the 312XP / Inventory Window Supplement) / 94-07 / 94109532 a few years ago, the board was used before the display was advanced.

200539325 板8 2之大型化,可以容易因應將依照基板8 2之短邊幅 W s之幅度W b之片狀之離子束2 0,從離子源2產生和輸ϋ 因此,可以抑制離子束2 0之幅度W β方向之離子束電流 度分布之均一性之降低和平行性之劣化,可以因應基板 之大型化。例如,可以因應短邊幅度W s為8 0 0 _、1 0 0 C 或其以上之基板82。 另外,離子源2具有上述方式之多個燈絲 6,而且在 各個燈絲6流動之燈絲電流可以互相獨立地控制,所以 以容易產生在離子束20之幅度WB方向之電漿10之密度 布之均一性良好,在幅度WB方向之離子束電流密度分布 均一性良好之片狀之離子束2 0。 另外,從離子源2產生具有上述幅度關係之片狀之離 束2 0,因為在保持該幅度關係之狀態輸送到基板8 2,所 不會產生上述先前技術之由於利用離子束之發散使幅度 寬而引起之離子束電流密度之降低。亦即,對於基板 之大型化,可以容易因應依照基板8 2之短邊幅度W s之 度W b之片狀之離子束2 0之產生和輸送,因為利用此種 式可以防止離子束電流密度降低,所以每1片基板之處 速度不會降底,可以因應基板82之大型化。 下面更進一步地說明本實施形態之離子植入裝置,在 子源2和後面所述之電場透鏡2 4 (或磁場透鏡1 0 0 )之間 如本實施形態之方式,最好設置具有矩形之開口之閘 2 2。依照此種方式時,在使閘閥 2 2之下游側之真空容 3 4或處理室容器8 0等之内部保持真空之狀態,因為可 312XP/發明說明書(補件)/94-07/94109532 度 〇 密 82 mm 該 可 分 之 子 以 變 82 幅 方 理 離 閥 器 以 19 200539325 進行離子源2之維護,所以該維護後之該離子植入裝置之 再啓動時間可以大幅縮短。 在質量分離磁鐵3 6之上游側,亦即在離子源2 (在設有 閘閥2 2之情況為閘閥2 2 )和質量分離磁鐵3 6之間,最好 設置電場透鏡24,用來使離子束20之幅度WB方向之離子 束電流密度分布均一化。200539325 The size of the plate 8 2 can be easily generated and transmitted from the ion source 2 in response to the sheet-shaped ion beam 20 of the short side width W s and the width W b of the substrate 8 2. Therefore, the ion beam 2 0 can be suppressed. The decrease in the uniformity of the ion beam current degree distribution in the direction of the width W β and the deterioration of the parallelism can correspond to the enlargement of the substrate. For example, the substrate 82 having a short-side width W s of 800 °, 100 ° C or more may be used. In addition, the ion source 2 has a plurality of filaments 6 as described above, and the filament current flowing in each filament 6 can be controlled independently from each other. Therefore, the uniformity of the density cloth of the plasma 10 in the WB direction of the ion beam 20 can be easily generated. The sheet-shaped ion beam 20 with good uniformity of ion beam current density distribution in the amplitude WB direction is good. In addition, a sheet-shaped off-beam 20 having the above-mentioned amplitude relationship is generated from the ion source 2 because the amplitude is transmitted to the substrate 8 2 while maintaining the amplitude relationship, so that the amplitude of the above-mentioned prior art due to the divergence of the ion beam is not generated. The decrease of the ion beam current density caused by the wideness. That is, for the enlargement of the substrate, it is easy to respond to the generation and transportation of the sheet-shaped ion beam 20 in accordance with the short-side width W s degree W b of the substrate 82, because the ion beam current density can be prevented by using this formula Since the speed is reduced, the speed does not decrease at every substrate, so that the substrate 82 can be increased in size. In the following, the ion implantation device of this embodiment will be further described. It is preferable to provide a rectangular electrode between the sub-source 2 and the electric field lens 24 (or the magnetic field lens 100) described later as in the embodiment. Opening gate 2 2. In this way, the vacuum capacity 34 of the downstream side of the gate valve 22 or the processing chamber container 80 is maintained in a vacuum state because 312XP / Invention Manual (Supplement) / 94-07 / 94109532 degrees 〇 Density 82 mm This separable son maintains the ion source 2 with a variable 82-segment valve from 19 200539325, so the restart time of the ion implantation device after the maintenance can be greatly shortened. On the upstream side of the mass separation magnet 36, that is, between the ion source 2 (gate valve 2 2 in the case where the gate valve 22 is provided) and the mass separation magnet 36, an electric field lens 24 is preferably provided to make the ions The ion beam current density distribution of the amplitude WB direction of the beam 20 is uniformized.

該電場透鏡 2 4,參照圖 7,成為包夾片狀之離子束 2 0 之片面2 0 s之互相面對之電極2 6之對偶(電極對偶),沿著 片面20s,在對離子束行進方向之直角方向(換言之為幅度 W B方向或 Y方向,以下亦同)並排地設置成為多段之多對 (例如1 0對)之電極對偶。各個電極2 6在前端附近成為半 圓筒狀或半圓柱狀。在互相面對之成為對偶之二個電極2 6 間,如圖7所示,形成電性之並聯連接。另外,在圖7中, 該並聯連接用之線看起來成為橫切離子束2 0,但是此種方 式是為著使圖示簡化,實際上該線不橫切離子束2 0。 在上述各段之電極對偶和基準電位部(例如接地電位部) 之間,設有可變電壓之電場透鏡直流電源3 2,作為分別施 加互相獨立之直流電壓之電場透鏡直流電源之一實例,在 本實例中,如圖7所示,在各段之各個電極對偶設置電壓 可獨立改變的電場透鏡直流電源3 2。亦即,以電極對偶數 設置電場透鏡直流電源 32。但是,假如不採用此種方式 時,亦可以將多個電源綜合成一個等,使用一個之電場透 鏡直流電源,互相獨立地控制對各個電極對偶施加之直流 電源。 20 312XP/發明說明書(補件)/94-07/94109532 200539325 對各段之電極對偶施加之直流電壓用負電壓比正電壓 好。使用負電壓時,可以防止與離子束20 —起存在於其周 邊之電漿中之電子,被引入到電極2 6。可以防止當將上述 電子引入時,由於空間電荷效應所產生之離子束2 0之發散 之變大。The electric field lens 24, referring to FIG. 7, becomes a pair (electrode pair) of the electrode 2 6 which faces the sheet surface 2 0 s of the sheet-shaped ion beam 20 and faces each other, and travels along the sheet surface 20s in the counter ion beam. The right-angle direction of the direction (in other words, the amplitude WB direction or the Y direction, the same applies hereinafter) is arranged side by side to form a plurality of pairs (for example, 10 pairs) of electrode pairs. Each electrode 26 has a semi-cylindrical shape or a semi-cylindrical shape near the tip. As shown in FIG. 7, the two electrodes 2 6 facing each other to form a pair form an electrical parallel connection. In addition, in FIG. 7, the line for parallel connection appears to cross the ion beam 20. However, this method is to simplify the illustration. In fact, the line does not cross the ion beam 20. A variable voltage electric field lens DC power source 32 is provided between the electrode pair and the reference potential part (for example, the ground potential part) in the above sections, as an example of an electric field lens DC power source that applies a separate DC voltage, In this example, as shown in FIG. 7, an electric field lens DC power source 32 is provided at each of the electrode pairs of each segment, the voltage of which can be independently changed. That is, the electric field lens DC power supply 32 is provided with an even number of electrode pairs. However, if this method is not adopted, multiple power sources can also be integrated into one, etc., using one electric field lens DC power source to independently control the DC power source applied to each electrode pair. 20 312XP / Invention Manual (Supplement) / 94-07 / 94109532 200539325 The negative voltage applied to the electrode pair of each segment is better than negative voltage. When a negative voltage is used, electrons existing in the plasma surrounding the ion beam 20 can be prevented from being introduced to the electrode 26. It is possible to prevent the divergence of the ion beam 20 due to the space charge effect from increasing when the above-mentioned electrons are introduced.

經由調整對各段之電極對偶施加之直流電壓,可以在離 子束20之幅度WB方向產生電場E(圖7中之電場E表示其 一實例),依照該電場E之強度,可以使構成離子束2 0之 離子彎曲向幅度Wb方向。 因此,利用上述電場透鏡 2 4,經由使片狀之離子束 2 0 之在任意區域之離子,彎曲向幅度 Wb方向,調整離子束 2 0之幅度 Wb方向之離子束電流密度,可以更進一步地提 高其均一性。 另外,排列在上述多段之電極對偶,不一定要在離子束 2 0之幅度方向以等間隔配置,亦可以將上述電極對偶密集 地配置在離子束2 0之幅度W B方向之兩端附近,其目的是 抑制在片狀之離子束2 0之幅度W b方向之兩端部附近之離 子間,由於強力作用之庫侖推斥力所造成之離子束發散。 在構成電場透鏡2 4之電極2 6之上游側和下游側,如圖 1和圖3所示,亦可以設置屏蔽板2 8、3 0。該兩個屏蔽板 2 8、3 0連接到真空容器34成為電性接地。當設有該屏蔽 板28、30時,可以防止來自電極26之電場漏出到電場透 鏡 2 4之上游側和下游側。其結果是可以防止在電場透鏡 2 4之上游側和下游側附近之離子束2 0,受到不希望之電場 21 312XP/發明說明書(補件)/94-07m 109532 200539325 之作用。 代替上述電場透鏡直流電源3 2者,如圖1 0所示之實例, 亦可以設置電場透鏡振動電源9 6,用來對電場透鏡2 4之 第奇數號和第偶數號之電極對偶間施加振動電壓,使電場 透鏡 24之電場強度週期性.振動,藉以控制片狀之離子束 2 0之W b方向之離子束放射。例如,電場透鏡振動電源9 6 為交流電源,振動電壓為交流電壓,但是不只限於涵蓋一 個週期之平均值為零之交流。By adjusting the DC voltage applied to the electrode pairs in each segment, an electric field E can be generated in the direction of the amplitude WB of the ion beam 20 (the electric field E in FIG. 7 represents an example). According to the intensity of the electric field E, the ion beam can be formed. The ion of 20 bends in the direction of amplitude Wb. Therefore, by using the above-mentioned electric field lens 24, the ion beam current density in the direction of the amplitude Wb of the ion beam 20 can be adjusted by bending the ion of the sheet-shaped ion beam 20 in an arbitrary region to the direction of the amplitude Wb. Improve its uniformity. In addition, the electrode pairs arranged in the above multiple stages do not have to be arranged at equal intervals in the amplitude direction of the ion beam 20, and the electrode pairs may be densely arranged near both ends of the amplitude WB direction of the ion beam 20, which The purpose is to suppress the divergence of the ion beam caused by the strong Coulomb repulsion between the ions near the two ends in the direction of the amplitude W b of the sheet-shaped ion beam 20. As shown in Figs. 1 and 3, upstream and downstream sides of the electrodes 26 constituting the electric field lens 24 may also be provided with shield plates 28, 30. The two shielding plates 28, 30 are connected to the vacuum container 34 to be electrically grounded. When the shield plates 28 and 30 are provided, leakage of the electric field from the electrode 26 to the upstream and downstream sides of the electric field lens 24 can be prevented. As a result, it is possible to prevent the ion beam 20 near the upstream and downstream sides of the electric field lens 24 from being subjected to an undesired electric field 21 312XP / Invention Specification (Supplement) / 94-07m 109532 200539325. Instead of the above-mentioned electric field lens DC power source 32, as shown in the example shown in FIG. 10, an electric field lens vibration power source 96 may also be provided to apply vibration between the odd-numbered and even-numbered electrode pairs of the electric field lens 24. The voltage causes the electric field strength of the electric field lens 24 to periodically and vibrate, thereby controlling the ion beam emission in the W b direction of the sheet-shaped ion beam 20. For example, the electric field lens vibration power source 9 6 is an AC power source, and the vibration voltage is an AC voltage, but it is not limited to covering an AC where the average value of a period is zero.

當設有上述方式之電場透鏡振動電源96時,在電場透鏡 2 4可以以上述方式控制離子束放射,因為可以用來使離子 束2 0之幅度W b方向之離子束電流密度分布之微視之(微細 之)不均一性平坦化,所以可以更進一步提高片狀之離子束 2 0之幅度W B方向之離子束電流密度分布之均一性。 亦可以設置上述電場透鏡直流電源 3 2和上述電場透鏡 振動源9 6。亦即,亦可以併用兩個電源3 2和9 6。在此種 情況,如圖1 0中之虛線所示,在連接第奇數號之電極對偶 之間之電路,串聯地插入電容器9 8,藉以防止第奇數號之 電極對偶間成為直流式之並聯連接。對於第偶數號之電極 對偶間亦同。依照此種方式時,對各個電極對偶重疊地施 加來自電場透鏡直流電源3 2之直流電壓,和來自電場透鏡 振動電源9 6之振動電壓。 依照上述方式,當併用兩電源32和96時,可以利用電 場透鏡振動電源9 6使離子束2 0之幅度W B方向之離子束電 流密度分布之微視之不均一性平坦化,和利用電場透鏡直 22 312XP/發明說明書(補件)/94-07/94109532 200539325 流電源32使比其大之不均一性平坦化,因為可以併用,所 以可以更進一層地提高離子束2 0之幅度W b方向之離子束 電流密度分布之均一性。 另外,利用上述離子源2之燈絲電流之控制,離子束電 流密度分布之均一化,比上述電場透鏡24之均一化更巨視 (亦即,更大變動之均一化),經由併用該等,利用巨視之 均一化和微視之均一化之相乘效果,可以使離子束電流密 度分布之均一性成為極良好者。When the electric field lens vibration power source 96 is provided in the manner described above, the ion beam emission can be controlled in the manner described above in the electric field lens 24 because it can be used to make the micro-view of the ion beam current density distribution in the direction of the amplitude W b of the ion beam 20 The (fine) unevenness is flattened, so the uniformity of the ion beam current density distribution in the WB direction of the amplitude of the sheet-shaped ion beam 20 can be further improved. The electric field lens DC power supply 32 and the electric field lens vibration source 96 may be provided. That is, two power sources 3 2 and 9 6 may be used in combination. In this case, as shown by the dashed line in FIG. 10, a capacitor 98 is inserted in series between the circuits connected to the odd-numbered electrode pairs to prevent the odd-numbered electrode pairs from becoming a DC-type parallel connection. . The same applies to the even-numbered electrodes. In this manner, a DC voltage from the electric field lens DC power source 32 and a vibration voltage from the electric field lens vibration power source 96 are applied to the respective electrode pairs in an overlapping manner. According to the above method, when the two power sources 32 and 96 are used in combination, the electric field lens vibration power source 96 can be used to flatten the microscopic heterogeneity of the ion beam current density distribution in the WB direction of the amplitude 20 of the ion beam 20, and the electric field lens Straight 22 312XP / Invention Specification (Supplement) / 94-07 / 94109532 200539325 The current source 32 flattens the greater heterogeneity. Because it can be used in combination, the amplitude of the ion beam 20 can be further increased W b Uniformity of ion beam current density distribution in the direction. In addition, by controlling the filament current of the ion source 2 described above, the uniformity of the ion beam current density distribution is greater than the uniformity of the electric field lens 24 (that is, the uniformity of the larger variation). The multiplication effect of the uniformity of the macroscopic vision and the uniformity of the microscopic vision can make the uniformity of the ion beam current density distribution extremely excellent.

代替上述電場透鏡2 4者,亦可以設置如圖1 1所示之實 例之磁場透鏡 1 0 0。該磁場透鏡1 0 0是包失片狀之離子束 2 0之片面2 0 s之互相面對之磁極1 0 2之對偶(磁極對偶), 沿著片面2 0 s和在對離子束行進方向之直角方向,並排地 設置多段之多對之(例如1 0對之)磁極對偶,和具有分別激 磁各個磁極對偶之多個激磁線圈1 0 4。 在各個磁極1 0 2之背後,以磁軛1 0 6磁性連接。各個磁 極1 0 2之前端之離子束2 0之路徑,被由非磁性材料構成之 真空容器108包圍。 另外,設有多個磁場透鏡直流電源1 1 0分別用來使直流 電流在各個磁極對偶用之激磁線圈1 0 4流動。亦即,設有 數目與磁極對偶之數目相同之磁場透鏡直流電源 1 1 0。該 各個電源1 1 0至少其輸出電流之大小為可變。另外,各個 電源1 1 0最好為兩極性電源,可以使輸出電流之方向反相。 在圖1 1中,簡化地顯示佈線,而且分別捲繞在成對之二 個磁極1 0 2之激磁線圈1 0 4如圖1 2所示,以在同一方向產 23 312XP/發明說明書(補件)/94-07/94109532Instead of the aforementioned electric field lens 24, a magnetic field lens 100 of the example shown in FIG. 11 may be provided. The magnetic field lens 1 0 is a pair of magnetic poles 10 (two pairs of magnetic poles) facing each other, including a sheet surface 2 0 s of a sheet-shaped ion beam 20 0, along the sheet surface 2 0 s and in a direction in which the ion beam travels. In a right-angle direction, a plurality of pairs (for example, 10 pairs) of magnetic pole pairs are arranged side by side, and a plurality of exciting coils 104 that separately excite each magnetic pole pair are arranged. Behind each magnetic pole 102 is magnetically connected with a yoke 106. The path of the ion beam 20 at the front end of each magnetic pole 102 is surrounded by a vacuum container 108 made of a non-magnetic material. In addition, a plurality of magnetic field lens DC power sources 1 10 are used to cause a DC current to flow through the excitation coil 104 used for each magnetic pole pair. That is, the same number of magnetic field lens DC power sources 1 1 0 as the number of magnetic pole pairs are provided. Each of the power sources 110 has at least a variable output current. In addition, each power supply 110 is preferably a bipolar power supply, which can reverse the direction of the output current. In Fig. 11, the wiring is shown in simplified form, and the exciting coils 1 0 4 wound around two pairs of magnetic poles 102 are shown in Fig. 12 to produce 23 312XP / Invention Specification (Supplementary) in the same direction. Pieces) / 94-07 / 94109532

200539325 生磁場B之方式互相串聯連接,如連接到磁場透鏡直 源1 1 0。後面所述之連接到磁場透鏡振動電源1 1 2之 亦同。 經由調整在各段之磁極對偶之激磁線圈1 0 4流動之 電流’用來調整在各段之磁極對偶產生之磁場 B ’精 整在離子束2 0之幅度W b方向施加作用之洛仁子(L 〇 r e 力F (圖1 1中之磁場B和洛仁子力F為其一實例),可 離子束2 0中之離子彎曲向幅度W b方向。 因此,利用上述磁場透鏡 1 0 0,可以使在片狀之離 2 0之任意區域之離子彎曲向幅度 W b方向,可以調整 束2 0之幅度W b方向之離子束電流密度分布,使其均 更進一步地提高。 上述之並排多段之磁極對偶不一定要在離子束 20 度 W b方向以等間隔配置,電場透鏡2 4之電極對偶之 亦同。 代替上述磁場透鏡直流電源1 1 0者,亦可以如圖1 3 例所示,設置複數個磁場透鏡直流電源 1 1 2,俾使振 流分別在磁場透鏡1 0 0之各個激磁線圈1 0 4流動,使 透鏡1 0 0之磁場之強度週期性振動,用來控制片狀之 束 2 0之W b方向之離子束放射。例如,各個磁場透鏡 電源1 1 2是交流電源,振動電流為交流電流,但是不 於涵蓋一週期之平均值為零之交流。 當設有上述方式之磁場透鏡振動電源1 1 2時,在磁 鏡1 0 0可以依照上述方式控制離子束放射,因為可以 312XP/發明說明書(補件)/94-07/94109532 流電 情況 直流 以調 n t z ) 以使 子束 離子 一性 之幅 情況 之實 動電 磁場 離子 振動 只P艮 場透 用來 24 200539325 使離子束 2 0之幅度W b方向之離子束電流密度分布之微視 之(微細之)不均一性平坦化,所以可以更進一步地提高片 狀之離子束2 0之幅度W b方向之離子束電流密度分布之均 一性 〇 亦可以一起設置上述磁場透鏡直流電源1 1 0和上述磁場 透鏡振動電源 1 1 2。在此種情況,各個磁場透鏡直流電源 1 1 0和各個磁場透鏡振動電源1 1 2互相串聯連接,使來自 後者之振動電壓重疊在來自前者之直流電壓。200539325 The method of generating magnetic field B is connected in series with each other, such as connecting to the magnetic field lens direct source 1 1 0. The same applies to the magnetic field lens vibration power supply 1 1 2 described later. By adjusting the current flowing through the magnetic field coils 104 of the magnetic pole pair in each segment, it is used to adjust the magnetic field B 'generated by the magnetic pole pair in each segment. L ore force F (the magnetic field B and Luorenzi force F in FIG. 11 are examples), the ions in the ion beam 20 can be bent in the direction of the amplitude W b. Therefore, using the above magnetic field lens 10 0, it is possible to By bending the ions in the arbitrary area away from 20 to the direction of the amplitude W b, the ion beam current density distribution in the direction of the amplitude W b of the beam 20 can be adjusted to further increase the above. The magnetic pole pairs do not have to be arranged at equal intervals in the direction of 20 degrees W b of the ion beam, and the same is true for the electrode pairs of the electric field lens 24. Instead of the above-mentioned magnetic field lens DC power supply 1 1 0, it can also be shown as an example in Figure 13 A plurality of magnetic field lens DC power sources 1 12 are set, and the vibration current is respectively caused to flow through each exciting coil 10 of the magnetic field lens 100, so that the intensity of the magnetic field of the lens 100 is periodically vibrated, and is used to control the sheet shape. Beam 2 0 W beam ion beam For example, each magnetic field lens power source 1 12 is an AC power source, and the vibration current is an AC current, but it should not exceed an alternating current whose average value is zero. When the magnetic field lens power source 1 1 2 is provided as described above, In the magnetic mirror 1 0 0, the ion beam emission can be controlled in the above manner, because 312XP / Invention Specification (Supplement) / 94-07 / 94109532 galvanic condition DC to adjust ntz) to make the sub-beam ion uniform amplitude Real-world electromagnetic field ion vibration is only used for field penetration. 24 200539325 Flatten the microscopic (fine) heterogeneity of the ion beam current density distribution in the direction of the ion beam amplitude 20 W b, so it can be further improved. The uniformity of the ion beam current density distribution of the sheet-shaped ion beam 20 in the direction W b can also be set together with the magnetic field lens DC power supply 1 1 0 and the magnetic field lens vibration power supply 1 12. In this case, each magnetic field lens DC power supply 110 and each magnetic field lens vibration power supply 1 12 are connected in series with each other so that the vibration voltage from the latter is superimposed on the DC voltage from the former.

當依照上述方式併用該兩電源1 1 0和1 1 2時,因為可以 利用磁場透鏡振動電源1 1 2使離子束2 0之幅度W B方向之 離子束電流密度分布之微視之不均一性平坦化,和利用磁 場透鏡直流電源1 1 0使比其大之不均一性平坦化,所以可 以更進一層地提高離子束2 0之幅度W b方向之離子束電流 密度分布之均一性。 上述方式之電場透鏡2 4或磁場透鏡1 0 0亦可以設在離子 源 2和分離縫隙7 2之間。亦即,代替設在質量分離磁鐵 3 6之上游側者,亦可以設在質量分離磁鐵3 6之下游側。 更具體而言,亦可設在質量分離磁鐵3 6和分離縫隙7 2之 間。然而,在利用電場透鏡 2 4或磁場透鏡 1 0 0對離子束 2 0施加電場或磁場,藉以對離子束2 0施加偏轉力時,為 著使離子束偏轉指定距離,需要某種程度之距離,為著在 離子束2 0入射在基板8 2之前使該距離變大,所以最好將 電場透鏡2 4或磁場透鏡1 0 0設在質量分離磁鐵3 6之上游 25 312XP/發明說明書(補件)/94-07/94109532When the two power sources 1 1 0 and 1 12 are used in combination according to the above manner, because the magnetic field lens can be used to vibrate the power source 1 12 to make the microscopic heterogeneity of the ion beam current density distribution in the WB direction of the ion beam 20 amplitude flat. And flattening the greater heterogeneity with the magnetic field lens DC power supply 1 1 0, so that the uniformity of the ion beam current density distribution in the direction W b of the amplitude 20 of the ion beam 20 can be further improved. The electric field lens 24 or the magnetic field lens 100 in the above manner may also be provided between the ion source 2 and the separation gap 72. That is, instead of being provided on the upstream side of the mass separation magnet 36, it may be provided on the downstream side of the mass separation magnet 36. More specifically, it may be provided between the mass separation magnet 36 and the separation gap 72. However, when an electric or magnetic field is applied to the ion beam 20 using the electric field lens 24 or the magnetic field lens 100 to apply a deflection force to the ion beam 20, a certain distance is required to deflect the ion beam. In order to increase the distance before the ion beam 20 enters the substrate 8 2, it is better to set the electric field lens 24 or the magnetic field lens 10 0 upstream of the mass separation magnet 3 6 25 312XP / Invention Specification (Supplement Pieces) / 94-07 / 94109532

200539325 質量分離磁鐵 3 6之磁極之間隔 L !,因為依照上述 成為大於離子束 2 0之幅度 W b,所以為著改良該磁極 磁場之平行性(離子束2 0之厚度T b方向之平行性,以 同),而不使磁極之幅度(離子束20之厚度Tb方向之巾ΐ 以下亦同)巨大化,依照本實施形態之方式,最好在質 離磁鐵3 6設置主磁極3 8 ’第1副磁極4 0和第2副磁極 亦即,本實施形態之質量分離磁鐵3 6,參照圖8和Β 具備有:一對之主磁極 38,互相面對具有間隔 L!大 述片狀之離子束2 0之幅度W β,使離子束2 0通過其間 對之第1副磁極4 0,被設在主磁極3 8之外周側成為 面對,具有比主磁極3 8小之間隔L 2 (亦即,L 2 < L 1 ), 使主磁極3 8間之磁場平行化,和一對之第 2副磁極 被設在主磁極 3 8 之内周側成為互相面對,具有比主 3 8小之間隔L 3 (亦即L 3 < L 1 ),用來使主磁極3 8間之 平行化。在圖9中,主磁極3 8位於可動磁極5 6之陰 在成對之上下之各個磁極3 8、4 0、4 2間,利用磁| 磁性連接在一起。另外,主磁極3 8,第1副磁極4 0和 副磁極4 2利用激磁線圈4 6 —起被激磁。 在圖9中利用磁力線4 8、5 0各5 2概略地分別表示 極3 8間之磁場,第1副磁極4 0間之磁場和第2副磁 間之磁場之實例。依照上述之方式,經由成為 L 2 < L! < L1,當與主磁極3 8間之磁場比較時,因為包夾其之 副磁極4 0間之磁場和第2副磁極4 2間之磁場變強, 利用兩側之磁力線 5 0、5 2抑制主磁極 3 8間之磁力滅 312ΧΡ/發明說明書(補件)/94-07/94109532 方式 間之 下亦 I度, 量分 [42〇 0 9, 於上 y " 互相 用來 42, 磁極 磁場 〇 厄44 第2 主磁 亟4 2 ,L3 第1 所以 ί 48 26 200539325 之膨出造成之磁場之平行性之降低,可以使主磁極3 8間之 磁力線4 8平行化。200539325 The distance L between the magnetic poles of the mass separation magnet 36 is greater than the width W b of the ion beam 20 as described above, so the parallelism of the magnetic field of the magnetic pole is improved (the parallelism of the thickness T b of the ion beam 20 , The same), without increasing the amplitude of the magnetic pole (the thickness of the ion beam 20 in the Tb direction is the same below), according to the method of this embodiment, it is best to set the main magnetic pole 3 6 in the mass ion magnet 3 6 ′ The first auxiliary magnetic pole 40 and the second auxiliary magnetic pole, that is, the mass separation magnet 36 of this embodiment, with reference to FIGS. 8 and B, are provided with a pair of main magnetic poles 38 facing each other with a space L! The amplitude W β of the ion beam 20 allows the ion beam 20 to pass through the first secondary magnetic pole 40 opposed to the ion beam 20 and is placed on the outer peripheral side of the main magnetic pole 38 to face, with a smaller interval L than the main magnetic pole 38. 2 (i.e., L 2 < L 1), parallelize the magnetic field between the main magnetic poles 38, and the pair of second sub-magnetic poles are arranged on the inner peripheral side of the main magnetic poles 38 to face each other, which has a ratio The main L 3 small interval L 3 (i.e. L 3 < L 1) is used to parallelize the main magnetic poles 38. In FIG. 9, the main magnetic poles 38 are located in the yin of the movable magnetic poles 56, and the magnetic poles 38, 40, and 42 above and below the pair are connected together by magnetic | magnetic. In addition, the main magnetic pole 38, the first auxiliary magnetic pole 40, and the auxiliary magnetic pole 4 2 are excited together by the exciting coil 4 6. In FIG. 9, examples of magnetic fields between the poles 38, the magnetic field between the first sub-pole 40 and the magnetic field between the second sub-magnets are schematically shown by magnetic field lines 48, 50, and 52 respectively. In the manner described above, when it becomes L 2 < L! ≪ L1, when compared with the magnetic field between the main magnetic poles 38, it is because the magnetic field between the secondary magnetic poles 40 and the second secondary magnetic poles 42 The magnetic field is strengthened, and the magnetic lines between the main magnetic poles 50 and 52 are used to suppress the magnetic force between the main magnetic poles 38 and 312XP / Invention Specification (Supplement) / 94-07 / 94109532. It is also 1 degree below and below the mode. 0 9, Yu y " used each other 42, magnetic pole magnetic field 0 E 44 second main magnetic 4 2, L3 first 1 ί 48 26 200539325 The reduction of the parallelism of the magnetic field caused by the swelling can make the main magnetic pole The magnetic lines of force between 3 and 8 are parallelized.

依照上述之方式,因為可以使主磁極 3 8間之磁場平行 化,所以在主磁極3 8間當使片狀之離子束2 0彎曲時,在 沿著離子束2 0之片面2 0 s之方向,可以抑制洛仁子力之發 生,可以抑制在離子束2 0之幅度W b方向發生收歛或發散。 其結果是可以更進一步地提高片狀之離子束20之幅度Wb 方向之平行性,因而可以更進一步地提高在該離子束 20 之幅度Wb方向之離子束電流密度方布之均一性。對於此點 不需要使主磁極3 8之幅度巨大化就可以實現。其結果是可 以防止質量分離磁鐵36之尺寸和重疊之巨大化。 第1副磁極4 0之間隔L 2和第2副磁極4 2之間隔L 3最 好成為可以預先利用電腦模擬等使其固定在最佳化之大 小,而且第1副磁極4 0和第2副磁極4 2之至少一方,如 圖9中之箭頭Η所示地在上下方向成為可動式,使其間隔 L 2、L 3成為可變。依照此種方式時,可以對主磁極3 8間之 磁場進行平行化調整。更好是使第1副磁極4 0和第2副磁 極42之雙方成為可動式,藉以使其雙方之間隔L2和L3成 為可變,依照此種方式時可以更精密而且容易地進行上述 調整。在此種情況,成對之上下之副磁極4 0或4 2之移動 距離可以相同,亦可以不同。 間隔可變之副磁極4 0、4 2可以以人工作業使其移動,而 且如本實施形態之方式,最好設有副磁極驅動裝置6 2,使 該等如箭頭Η所示上下分別移動,藉以使間隔L2,L3分別 27 31 :2XP/發明說明書(補件)/94-〇7/94109532 200539325 變化。在本實例中,設置4個之副磁極驅動裝置62,分別 用來驅動4個之副磁極4 0、4 2。經由使用該副磁極驅動裝 置6 2,可以更容易地平行化調整主磁極3 8間之磁場。另 外,利用後面所述之控制裝置9 4亦可以進行自動控制。According to the above-mentioned method, since the magnetic field between the main magnetic poles 38 can be parallelized, when the sheet-shaped ion beam 20 is bent between the main magnetic poles 38, it is along the plane of the ion beam 20 0 s. The direction can suppress the occurrence of Luorenzi force, and can suppress the convergence or divergence in the direction of the amplitude W b of the ion beam 20. As a result, the parallelism in the direction of the amplitude Wb of the sheet-shaped ion beam 20 can be further improved, and the uniformity of the ion beam current density in the direction of the amplitude Wb of the ion beam 20 can be further improved. This can be achieved without increasing the amplitude of the main magnetic pole 38. As a result, it is possible to prevent the size and overlap of the mass separation magnets 36 from increasing. The interval L 2 between the first auxiliary magnetic pole 40 and the interval L 3 between the second auxiliary magnetic pole 4 2 should preferably be fixed in an optimized size by computer simulation or the like in advance, and the first auxiliary magnetic pole 40 and the second At least one of the secondary magnetic poles 42 is movable in the up-down direction as shown by arrow Η in FIG. 9, and the intervals L 2 and L 3 are variable. In this way, the magnetic field between the main poles 38 can be adjusted in parallel. More preferably, both the first sub-magnetic pole 40 and the second sub-magnetic pole 42 are movable so that the interval L2 and L3 between the two can be made variable. In this way, the above adjustment can be performed more precisely and easily. In this case, the moving distances of the pair of secondary magnetic poles 40 or 42 may be the same or different. The auxiliary magnetic poles 40 and 4 2 with variable intervals can be moved manually, and as in the embodiment, it is better to provide auxiliary magnetic pole driving devices 6 2 to move these up and down respectively as shown by arrow Η. As a result, the intervals L2 and L3 are respectively 27 31: 2XP / Invention Specification (Supplement) / 94-〇7 / 94109532 200539325. In this example, four auxiliary magnetic pole driving devices 62 are provided for driving the four auxiliary magnetic poles 40 and 42 respectively. By using this secondary magnetic pole driving device 62, it is possible to more easily parallelize and adjust the magnetic field between the primary magnetic poles 38. It is also possible to perform automatic control using a control device 94 described later.

參照圖8和圖9,在質量分離磁鐵3 6亦可以在主磁極3 8 之入口部和出口部之至少一方設置可動電極56,使其成為 半圓柱狀,和使垂直於離子束2 0之行進方向(亦即上述中 心軸2 0 c )之線6 0與可動磁極5 6之平坦磁極端面5 8所構 成之角度α 、万成為可變。在本實施形態中,在入口部和 出口部雙方分別設置可動電極5 6。該兩個可動電極5 6可 以以軸5 9為中心依照箭頭G所示地左右旋轉,用來使上述 角度α 、石成為可變。入口部之上述角度α和出口部之上 述角度/3,如圖8所示,在質量分離磁鐵3 6之内周側進入 内側之情況時,取用負(-),在其相反之情況取用正(+ )。 上下可動磁極5 6之角度α或/3可以相同亦可以不同。 調整上述可動電極5 6之角度a、卢,利用邊緣聚焦效應 可以使通過可動磁極5 6近傍之離子束2 0收斂或發散,所 以在片狀之離子束2 0之幅度W b方向施加作用,利用庫侖 推斥力等補償(抵銷)離子束2 0之發散,可以更進一步地提 高離子束2 0之平行性,因而可以更進一步地提高在該離子 束2 0之幅度W b方向之離子束電流密度分布之均一性。 邊緣聚焦效應本身為習知者,例如,被記載在物理學辭 典編輯委員會編,「物理學辭典」,初版,培風館股份公司, 昭和5 9年9月3 0日,p. 1 8 2。 28 312XP/發明說明書(補件)/94-07/94109532 200539325 之 部 方 只 進 ) 磁 上 實 可 度 之 4 置 之 之 極 實 為 構 29 提高上述離子束 20之平行性和離子束電流密度分布 均一性之效果,其獲得可以在主電極38之入口部和出口 之至少一方,設置可動磁極 5 6,而且如本實施形態之 式,在入口部和出口部之雙方設置可動磁極5 6時,當與 設在一側之情況比較,可以提高調整之自由度,可以更 一步提高上述效果。Referring to FIGS. 8 and 9, a movable electrode 56 may be provided on at least one of the entrance portion and the exit portion of the main magnetic pole 3 8 in the mass separation magnet 36 to make it semi-cylindrical and perpendicular to the ion beam 20 The angle α and the angle formed by the line 60 of the traveling direction (that is, the above-mentioned central axis 20c) and the flat magnetic extreme surface 58 of the movable magnetic pole 56 are variable. In this embodiment, the movable electrode 56 is provided at both the entrance portion and the exit portion. The two movable electrodes 5 6 can be rotated left and right around the axis 59 as shown by the arrow G to change the angle α and the stone. The above-mentioned angle α of the entrance portion and the above-mentioned angle / 3 of the exit portion are shown in FIG. 8. When the inner peripheral side of the mass separation magnet 36 enters the inner side, a negative (-) is taken, and in the opposite case, it is taken. Use positive (+). The angle α or / 3 of the upper and lower movable magnetic poles 56 may be the same or different. Adjust the angle a, Lu of the movable electrode 56, and use the edge focusing effect to make the ion beam 20 passing near the movable magnetic pole 5 6 converge or diverge. Therefore, it acts in the direction of the amplitude W b of the sheet-shaped ion beam 20, Using Coulomb repulsion to compensate (cancel) the divergence of the ion beam 20, the parallelism of the ion beam 20 can be further improved, so the ion beam in the direction of the amplitude W b of the ion beam 20 can be further increased. Uniformity of current density distribution. The edge focus effect itself is a known person. For example, it is documented in the Physics Dictionary Editorial Committee, "Physics Dictionary", the first edition, Peifengkan Co., Ltd., September 30, 1969, p. 1 82. 28 312XP / Invention Specification (Supplement) / 94-07 / 94109532 200539325 only advances) 4 of the magnetic real measurability is set to 29. Improve the parallelism and ion beam current density of the ion beam 20 above The effect of uniformity of distribution is obtained by providing a movable magnetic pole 56 on at least one of the entrance portion and the exit portion of the main electrode 38, and, as in the embodiment, when the movable magnetic pole 56 is provided on both the entrance portion and the exit portion. When compared with the case where it is set on one side, the freedom of adjustment can be increased, and the above effect can be further improved.

即使在未設有第1副磁極4 0和第2副磁極4 2之情況 亦可以設置上述可動磁極5 6。在此種情況,可以在與主 極3 8相當之磁極,設置上述可動磁極5 6。其他部份如 所述。 亦可以利用人工作業使上述可動磁極5 6旋轉,依照本 施形態之方式,最好設有可動磁極驅動裝置6 6,用來使 動磁極 5 6如箭頭 G所示地左右旋轉,藉以變化上述角 α、/3。在本實例中,設有主磁極3 8之入口部之上和下 可動磁極5 6,和用來使出口部之上和下之可動磁極5 6之 個之可動磁極 56 分別旋轉之 4 個之可動磁極驅動裝 6 6。經由使用該可動磁極驅動裝置6 6,使可動磁極5 6 上述角度 α、 /3之調整變為容易。另外,利用後面所述 控制裝置9 4可以進行自動控制。 另外,對於質量分離磁鐵3 6之上述間隔為可變之副磁 4 0、4 2和可動磁極5 6用之軸5 9之真空密封構造,亦即 質上該等與磁軛44之間之真空密封構造,在本實例中因 採用習知之構造(例如,使用有真空密封用之襯墊之 造),所以在圖9中將其圖式省略。 312ΧΡ/發明說明書(補件)/94-07/94109532 200539325 在分離縫隙7 2之下游側,如圖2和圖4所示之實例之方 式,亦可以設置一對之掃描電極7 4,被配置成互相面對地 包夾片狀之離子束20之面20s全體,在其片面20s之正交 方向,使片狀之離子束 2 0全體進行往復掃描。掃描電極 74在本實例中是一對之平行平板電極,但是並不只限於此 種方式,例如亦可以使用隨著朝向下游側而幾分變寬之電 極0The above-mentioned movable magnetic pole 56 can be provided even when the first auxiliary magnetic pole 40 and the second auxiliary magnetic pole 42 are not provided. In this case, the above-mentioned movable magnetic poles 56 can be provided at magnetic poles equivalent to the main poles 38. The other parts are as described. The above-mentioned movable magnetic pole 56 can also be rotated by manual operation. According to the mode of this embodiment, it is preferable to provide a movable magnetic pole driving device 66 for rotating the movable magnetic pole 56 to the left and right as shown by the arrow G, thereby changing the above. Angles α, / 3. In this example, there are four movable magnetic poles 56 above and below the entrance section of the main magnetic pole 38, and four movable magnetic poles 56 for rotating the movable magnetic poles 56 above and below the exit section, respectively. Movable magnetic pole driving device 6 6. By using the movable magnetic pole driving device 6 6, the adjustment of the angles α and / 3 of the movable magnetic pole 5 6 is facilitated. In addition, automatic control can be performed by a control device 94 described later. In addition, the vacuum-sealed structure of the above-mentioned interval between the mass separation magnets 36 with variable auxiliary magnets 40, 4 2 and the shaft 59 for the movable magnetic pole 56, that is, between the mass and the yoke 44 The vacuum-sealed structure adopts a conventional structure (for example, a structure using a gasket for vacuum-sealing) in this example, and therefore its drawing is omitted in FIG. 9. 312XP / Invention Specification (Supplement) / 94-07 / 94109532 200539325 On the downstream side of the separation gap 7 2 as shown in the example shown in FIG. 2 and FIG. 4, a pair of scanning electrodes 7 4 can also be provided and configured. The entire surface 20s of the sheet-shaped ion beam 20 is sandwiched so as to face each other, and the entire sheet-shaped ion beam 20 is scanned back and forth in the orthogonal direction of the sheet surface 20s. The scanning electrode 74 is a pair of parallel flat electrodes in this example, but it is not limited to this method. For example, an electrode that becomes slightly wider as it goes to the downstream side may be used.

在上述一對之掃描電極7 4間,被施加來自掃描電源7 6 之振動電壓。該振動電壓例如使用交流電壓,但是並不只 限涵蓋一週期之平均值為零之交流。 利用上述掃描電極7 4和掃描電源7 6,可以在片面2 0 s 之正交方向,掃描離子束20之全體。其結果是可以使通過 分離縫隙7 2之厚度Tb (基板之往復驅動方向D之幅度)非 常小之離子20之厚度Tb變大。在離子束20之厚度Tb非 常小之情況時,由於基板8 2之往復驅動速度和離子束2 0 之電流值之起伏,可能產生植入能量之不均一性,而且該 不均一性可以利用離子束2 0之厚度T B之變大進行緩和。 在上述保持器8 4上之基板8 2之下游側近傍,如圖2和 圖4所示之實例之方式,亦可以設置射束型樣監視器9 0, 接受上述片狀之離子束2 0,藉以測定其幅度 WB方向全體 之離子束電流密度分布。該射束型樣監視器9 0最好設置成 接近保持器8 4上之基板8 2。依照此種方式時,可以更正 確地測定基板8 2之位置之離子束2 0之離子束電流密度分 布。從該射束型樣監視器9 0輸出用以表示上述離子束電流 30 312XP/發明說明書(補件)/94-07/94109532 200539325 密度分布之測定資訊Dp。 射束型樣監視器9 0當依照本實例之方式設在基板8 2之 下游側時,因為該監視器9 0不會妨礙離子束2 0對基板8 2 之照射,所以不需要使該射束型樣監視器9 0退避。然而, 最好是將射束型樣監視器9 0設在基板8 2之上游側近傍, 在離子束2 0對基板8 2照射時,使其退避。A vibration voltage from a scanning power source 76 is applied between the pair of scanning electrodes 74. The vibration voltage is, for example, an AC voltage, but it is not limited to an AC whose average value is zero for one cycle. With the scanning electrodes 74 and the scanning power source 76 described above, the entire ion beam 20 can be scanned in the orthogonal direction of the sheet surface 20 s. As a result, the thickness Tb of the ion 20 passing through the separation gap 72 (the width of the substrate in the reciprocating driving direction D), which is extremely small, can be increased. When the thickness Tb of the ion beam 20 is very small, due to the reciprocating driving speed of the substrate 8 2 and the fluctuation of the current value of the ion beam 20, the unevenness of the implantation energy may be generated, and the unevenness can use ions The larger the thickness TB of the beam 20 is, the more moderate it becomes. Near the downstream side of the substrate 8 2 on the holder 8 4, as shown in the example shown in FIG. 2 and FIG. 4, a beam type monitor 9 0 can also be set to receive the above-mentioned sheet-shaped ion beam 2 0 , So as to measure the ion beam current density distribution in the whole WB direction. The beam pattern monitor 90 is preferably arranged close to the substrate 82 on the holder 84. In this way, it is possible to accurately measure the ion beam current density distribution of the ion beam 20 at the position of the substrate 82. From the beam pattern monitor 90, the measurement information Dp indicating the density distribution of the above-mentioned ion beam current 30 312XP / Invention Specification (Supplement) / 94-07 / 94109532 200539325 is output. When the beam type monitor 90 is provided on the downstream side of the substrate 82 according to the example, the monitor 90 does not prevent the ion beam 20 from irradiating the substrate 8 2, so it is not necessary to make the beam monitor Beam pattern monitor 90 retreats. However, it is preferable to set the beam sample monitor 90 near the upstream side of the substrate 82, and to withdraw it when the ion beam 20 irradiates the substrate 82.

該射束型樣監視器9 0在本實例中具有多個(例如2 9個) 之法拉第(Faraday)杯 92,在片狀之離子束 20之幅度 Wb 方向,並排地設置成為涵蓋比該幅度 WB寬廣之區域。因 此,在本實例中,上述測定資訊D p由η 6個(η 6與法拉第杯 9 2同數)測定資訊構成。各個法拉第杯9 2之橫向幅度,例 如比入射到射束型樣監視器9 0之離子束2 0之厚度Τ β大幾 分。但是,代替此種射束型樣監視器9 0者,亦可以設置使 1個之法拉第杯在離子束20之幅度Wb方向移動之構造之 射束型樣監視器。在任一情況均可以測定在離子束2 0之幅 度WB方向之離子束電流密度分布。 在設有上述射束型樣監視器9 0時,因為可以使用其測定 資訊Dp,所以可以很容易進行調整用來提高片狀之離子束 2 0之幅度 WB方向之離子束電流密度分布之均一性和平行 性。 在根據上述射束型樣監視器9 0之測定資訊D p,提高離 子束2 0之幅度Wb方向之離子束電流密度分布和平行性之 方法中,分成2種方法,(1 )根據測定資訊Dp,由人進行 對象機器之調整之調整方法,(2 )設置控制裝置9 4 (參照圖 31 312XP/發明說明書(補件)/94-07/94109532The beam sample monitor 90 has a plurality (for example, 29) of Faraday cups 92 in this example, and is arranged side by side in the direction of the amplitude Wb of the sheet-shaped ion beam 20 to cover the ratio. WB wide area. Therefore, in this example, the above-mentioned measurement information D p is composed of η 6 pieces (η 6 is the same number as the Faraday Cup 92) measurement information. The lateral width of each Faraday cup 92 is, for example, larger than the thickness T β of the ion beam 20 incident on the beam pattern monitor 90. However, instead of such a beam pattern monitor 90, a beam pattern monitor having a structure in which one Faraday cup is moved in the direction of the amplitude Wb of the ion beam 20 may be provided. In either case, the ion beam current density distribution in the WB direction of the amplitude 20 of the ion beam can be measured. When the above-mentioned beam sample monitor 90 is provided, its measurement information Dp can be used, so it can be easily adjusted to increase the uniformity of the ion beam current density distribution in the WB direction of the sheet-shaped ion beam 20 Sex and parallelism. The method of increasing the ion beam current density distribution and parallelism in the direction of the amplitude Wb of the ion beam 20 according to the measurement information D p of the beam sample monitor 90 described above is divided into two methods. (1) According to the measurement information Dp, the adjustment method for the adjustment of the target device by a person, (2) Setting the control device 9 4 (refer to FIG. 31 312XP / Invention Specification (Supplement) / 94-07 / 94109532

200539325 2 ),取入該測定資訊 D p,使用該控制裝置 9 4自動 象機器。上述對象機器,例如包括上述之燈絲電源 場透鏡直流電源3 2,磁場透鏡直流電源1 1 0,副磁 4 2,可動磁極5 6。在設有副磁極驅動裝置6 2,可動 動裝置6 6之情況時,亦包含該等作為對象機器。在 制之情況,不是直接控制副磁極4 0、4 2,可動磁極 是控制該等用之驅動裝置6 2、6 6。 由人進行之調整方法簡單而言如下所述。亦即, 各個對象機器施加初期值,從離子源2抽出離子束 射束型樣監視器9 0接受,測定上述離子束電流密度 在其結果偏離目標值之情況時,使上述對象機器内 態在指定方向變化指定值,在該狀態再度測定離子 密度分布,假如其測定結果變為更接近目標值時, 述方式之變化和調整,假如更遠離目標值時,以與 反之方向變化指定值,重複進行此種方式之每一個 調整,直至射束型樣監視器9 0所測定到之離子束電 分布成為目標值,或某種程度之接近目標值。在一 象機器之調整不足之情況時,亦可以變化對象機器 上述同樣之調整。 上述控制裝置 94 在本實施形態中可以進行· (a )〜(e )所示之控制,但是不一定要進行(a )〜(e )之 控制,而是控制裝置 9 4亦可以進行其中之至少一 制。另外,代替使用1個之控制裝置9 4者,亦可以使( 之控制由多個控制裝置分擔。例如,亦可以設置多 3 ] 2XP/發明說明書(補件)/94-07/94109532 控制對 8,電 極40、 磁極驅 自動控 5 6,而 對上述 20,以 分布, 之一狀 束電流 繼續上 上述相 步驟之 流密度 個之對 進行與 下列之 全部之 個之控 a)〜(e) 個控制 32 200539325 裝置分別進行(a )〜(e )之控制。 (a )控制裝置9 4根據射束型樣監視器9 0之測定資訊D p, 控制上述燈絲電源 8,在有離子束電流密度比其他區域低 之低電流密度區域之情況時,在與該低電流密度區域對應 之上述燈絲6流動之燈絲電流被增大,在相反之情況進行 相反之動作(亦即,燈絲電流減少),進行控制使入射到基 板82之片狀之離子束20之幅度Wb方向之離子束電流密度 分布均一化。200539325 2), the measurement information D p is taken in, and the control device 9 4 is used to automatically image the machine. The target device includes, for example, the above-mentioned filament power source, the field lens DC power source 32, the magnetic field lens DC power source 110, the auxiliary magnet 42, and the movable magnetic pole 56. When the auxiliary magnetic pole driving device 62 and the movable device 66 are provided, these target devices are also included. In the case of control, instead of directly controlling the secondary magnetic poles 40, 42, the movable magnetic poles are used to control the driving devices 6 2, 6 6. The adjustment method by a person is as follows briefly. That is, an initial value is applied to each target device, and an ion beam beam type monitor 90 is extracted from the ion source 2 and received. When the ion beam current density is measured and the result deviates from a target value, the internal state of the target device is maintained at Change the specified value in the specified direction, and measure the ion density distribution again in this state. If the measurement result becomes closer to the target value, change and adjust the method described above. If it is further away from the target value, change the specified value in the opposite direction and repeat. Perform each adjustment in this manner until the ion beam electrical distribution measured by the beam pattern monitor 90 becomes the target value, or is close to the target value to some extent. When the adjustment of the target machine is insufficient, the target machine can also be changed in the same way as described above. In the present embodiment, the control device 94 can perform the control shown in (a) to (e), but it is not necessary to perform the control of (a) to (e), but the control device 94 can also perform one of them. At least one system. In addition, instead of using one control device 94, it is also possible to make (the control is shared by multiple control devices. For example, more than 3] 2XP / Invention Manual (Supplement) / 94-07 / 94109532 control pair 8. The electrode 40 and the magnetic pole drive are automatically controlled by 56. For the above 20, one of the current beam density distributions in the above-mentioned phase steps is controlled by the distribution, and all of the following are controlled a) ~ (e ) Controls 32 200539325 The devices perform controls (a) to (e), respectively. (a) The control device 94 controls the filament power supply 8 based on the measurement information D p of the beam pattern monitor 90. When there is a low current density region where the ion beam current density is lower than other regions, The filament current flowing through the filament 6 corresponding to the low current density region is increased, and the opposite action is performed in the opposite case (ie, the filament current is reduced), and the amplitude of the sheet-shaped ion beam 20 incident on the substrate 82 is controlled The ion beam current density distribution in the Wb direction is uniform.

亦即以具體例表示時,因為預先決定射束型樣監視器9 0 之各個法拉第杯9 2和離子源2之各個燈絲6之位置之對應 關係,所以控制裝置9 4可以決定上述低電流密度區域與那 一個燈絲6對應。另外,上述低電流密度區域,例如在與 Y方向從上起第m號(πι為第任意之號,以下亦同)之燈絲6 對應時,控制裝置9 4使在該第m號之燈絲6流動之燈絲電 流,依照上述方式增減,重複進行該動作直至獲得指定之 離子束電流密度分布為止。 為著進行上述方式之控制,控制裝置 9 4輸出 η!個(η! 與燈絲 6之數同數)之控制信號S!,將其分別施加到各個 燈絲電源8,藉以分別控制各個燈絲電源8。 依照上述之方式,利用射束型樣監視器 9 0和控制裝置 94,回饋控制離子源2之燈絲電流,可以利用自動控制提 高入射到基板8 2之片狀之離子束2 0之幅度W β方向之離子 束電流密度分布之均一性。 (b)控制裝置94根據射束型樣監視器90之測定資訊Dp, 33 312XP/發明說明書(補件)/94-07/94109532 200539325 控制上述電場透鏡直流電源3 2,在有離子束電流密度比其 他區域低之低電流密度區域之情況時,使來自鄰接區域之 電場 E (參照圖 7 )朝向與該低電流密度區域對應之上述電 場透鏡2 4中之區域,依照此種方式使施加在與上述低電流 密度區域對應之上述電極對偶之電壓下降,在相反之情況 進行相反之動作(亦即,電壓上升,上述電場E變小,或成 為反向),進行控制使入射到基板 8 2之片狀之離子束 20 之幅度Wb方向之離子束電流密度分布均一化。That is, when the specific example is shown, because the correspondence between the positions of the Faraday cups 92 of the beam pattern monitor 90 and the filaments 6 of the ion source 2 is determined in advance, the control device 94 can determine the above-mentioned low current density. The area corresponds to that filament 6. In addition, when the low current density region corresponds to, for example, the filament 6 at the m-th (π is an arbitrary number, and the same applies hereinafter) from the Y direction, the control device 94 controls the filament 6 at the m-th. The flowing filament current is increased or decreased as described above, and this operation is repeated until a specified ion beam current density distribution is obtained. In order to perform the above-mentioned control, the control device 94 outputs η! (Η! Is the same number as the number of filaments 6) control signals S !, and applies them to each filament power source 8 to control each filament power source 8 separately. . According to the above-mentioned method, the beam current monitor 90 and the control device 94 are used to feed back the filament current of the ion source 2, and the amplitude W of the sheet-shaped ion beam 20 incident on the substrate 82 can be increased by automatic control. Uniformity of ion beam current density distribution in the direction. (b) The control device 94 controls the above-mentioned electric field lens DC power source 32 according to the measurement information Dp of the beam sample monitor 90, 33 312XP / Invention Specification (Supplement) / 94-07 / 94109532 200539325, and the ion beam current density In the case of a low-current-density region that is lower than other regions, the electric field E (see FIG. 7) from the adjacent region is directed toward the region in the electric-field lens 24 corresponding to the low-current-density region, and is applied in this manner. The voltage of the electrode pair corresponding to the low current density region decreases, and the reverse operation is performed in the opposite case (that is, the voltage increases, the electric field E becomes smaller, or reverses), and control is performed so as to be incident on the substrate 8 2 The ion beam current density distribution in the width Wb direction of the sheet-shaped ion beam 20 is uniformized.

亦即以具體例表示時,因為預先決定射束型樣監視器9 0 之各個法拉第杯9 2和電場透鏡2 4之各個電極對偶之位置 之對應關係,所以控制裝置94可以決定上述低電流密度區 域與那一個電極對偶對應。另外,在上述低電流密度區域 對應到例如在 Y 方向之從上起第 m號之電極對偶之情況 時,控制裝置9 4使對該第m號之電極對偶施加之電壓依照 上述之方式增減,重複進行該動作直至獲得指定之離子束 電流密度分布。在低電流區域位於電極對偶間之情況亦同。 施加在上述第m號之電極對偶之兩側(亦即第in - 1號和第 m + 1號)之電極對偶之電壓,亦可以依照與施加在第m號之 電極對偶之電壓之指定關係,進行增減。 為著進行上述方式之控制,控制裝置 9 4輸出 η 2個(η 2 與電極對偶之數同數)之控制信號 S 2,將其分別施加到各 個電場透鏡直流電源3 2,藉以分別控制各個電場透鏡直流 電源32。 依照上述之方式,利用射束型樣監視器 9 0和控制裝置 34 312χρ/發明說明書(補件)/94-07/94109532 200539325 94,回饋控制電場透鏡24,可以利用自動控制提高入射到 基板8 2之片狀之離子束2 0之幅度W B方向之離子束電流密 度分布之均一性。 (c )控制裝置9 4根據射束型樣監視器9 0之測定資訊D p, 控制上述磁場透鏡直流電源 Π 0,在有離子束電流密度比 其他區域低之低電密度區域之情況時,使來自鄰接區域朝 向與該低電流密度區域對應之上述磁場透鏡1 0 0中之區域 之洛仁子力F (參照圖1 1 )增大,以此方式調整在與上述低That is, when the specific example is shown, because the correspondence relationship between the positions of each of the Faraday cups 92 of the beam pattern monitor 90 and the respective electrode pairs of the electric field lens 24 is determined in advance, the control device 94 can determine the above-mentioned low current density. The area corresponds to that electrode pair. In addition, when the low current density region corresponds to, for example, the m-th electrode pair from the top in the Y direction, the control device 94 increases or decreases the voltage applied to the m-th electrode pair in the manner described above. , Repeat this operation until the specified ion beam current density distribution is obtained. The same applies to the case where the electrode pair is located in a low current region. The voltage applied to the electrode pair on both sides of the m-th electrode pair (ie, in-1 and m + 1) can also be in accordance with the specified relationship with the voltage applied to the m-th electrode pair To increase or decrease. In order to perform the above-mentioned control, the control device 94 outputs η 2 control signals S 2 (η 2 is the same as the number of electrode pairs), and applies them to each electric field lens DC power supply 3 2 to control each of them separately. Electric field lens DC power supply 32. In the manner described above, using the beam pattern monitor 90 and the control device 34 312χρ / Invention Specification (Supplement) / 94-07 / 94109532 200539325 94, the feedback control electric field lens 24 can be used to increase the incidence on the substrate 8 by automatic control The uniformity of the ion beam current density distribution in the WB direction of the sheet-shaped ion beam 2 of 2 in the width of 2. (c) The control device 94 controls the above-mentioned magnetic field lens DC power source 0 according to the measurement information D p of the beam pattern monitor 90. When there is a low-density region where the ion beam current density is lower than other regions, Increase the Lorenz force F (refer to FIG. 1) from the adjacent area toward the area in the magnetic field lens 100 corresponding to the low current density area, and adjust it to a value lower than the above.

電流密度區域對應之區域附近之上述磁極對偶之激磁線圈 1 0 4流動之電流,在相反之情況進行相反之動作(亦即,洛 仁子力F減小,或成為反向),可以使入射到基板82之片 狀之離子束 2 0之幅度W b方向之離子束電流密度分布均一 化〇 亦即以具體例表示時,因為預先決定射束型樣監視器9 0 之各個法拉第杯9 2和磁場透鏡1 0 0之各個磁極對偶之位置 之對應關係,所以控制裝置94可以決定上述低電流密度區 域與那一個磁極對偶對應。另外,在上述低電流密度區域 對應到例如在 Y 方向之從上起第 m號之磁極對偶之情況 時,控制裝置9 4使在第m - 1號之磁極對偶之激磁線圈1 0 4 流動之電流增大(在圖1 1所示之磁場B之方向之情況),藉 以使朝向上述低電流密度區域之洛仁子力F增大。在此種 情況,亦可以併用使第m + 1號之磁場透鏡直流電源1 1 0之 極性反轉,用來使第m + 1號之磁極對偶產生之磁場B之方 向反轉,藉以使來自第m + 1號之磁極對偶之朝向上述低電 35 312XP/發明說明書(補件)/94-07/94109532 200539325 流密度區域之洛仁子力F增大。重複進行此種控制直至獲 得指定之離子束電流密度分布。在低電流密度區域位於磁 極對偶間之情況亦同。 在上述第 m - 1號和第 m + 1號之磁極對偶之兩側(亦即第 m - 2號和第m + 2號)之磁極對偶流動之電流,亦可以利用與 在第m - 1號和第m + 1號之磁極對偶流動之電流之指定之關 係,以上述之方式進行控制。The current flowing in the above-mentioned magnetic pole dual exciting coil 104 near the corresponding area of the current density region performs the opposite action in the opposite case (that is, the Luorenzi force F decreases or becomes reverse), which can make the incident to The ion beam current density distribution of the sheet-shaped ion beam 20 in the substrate 82 is uniformized in the direction of the beam current. That is, in the case of a specific example, each Faraday cup 92 of the beam type monitor 9 0 and The corresponding relationship between the positions of the magnetic pole pairs of the magnetic field lens 100, so the control device 94 can determine which magnetic pole pair the above-mentioned low current density region corresponds to. In addition, when the above-mentioned low current density region corresponds to, for example, the m-th magnetic pole pair from the top in the Y direction, the control device 9 4 causes the exciting coil 1 0 4 of the m--1 magnetic pole pair to flow. The current increases (in the case of the direction of the magnetic field B shown in FIG. 11), thereby increasing the Lorenz force F toward the above-mentioned low current density region. In this case, the polarity of the magnetic field lens DC power supply 1 1 0 of the m + 1 magnetic field lens can also be used in combination to reverse the direction of the magnetic field B generated by the magnetic pole pair of the m + 1 magnetic field. The magnetic pole pair No. m + 1 faces the above-mentioned low electricity 35 312XP / Invention Specification (Supplement) / 94-07 / 94109532 200539325 The Luorenzi force F in the flow density region increases. This control is repeated until a specified ion beam current density distribution is obtained. This is also the case when the low current density region is located between the pole pairs. The current flowing on the pole pairs of the above-mentioned magnetic pole pair (m-1 and m + 1) (ie, m-2 and m + 2) can also be used in the same way as in the m-1 The specified relationship between the current flowing through the magnetic pole pair No. m and No. 1 is controlled in the manner described above.

為著進行上述方式之控制,控制裝置 94輸出ru個(n3 與磁極對偶之數同數)之控制信號 S 3,將其分別施加到各 個磁場透鏡直流電源 1 1 0,藉以分別控制各個磁場透鏡直 流電源1 1 0。 依照上述之方式,利用射束型樣監視器9 0和控制裝置 9 4,回饋控制磁場透鏡 1 0 0,可以利用自動控制提高入射 到基板82之片狀之離子束20之幅度Wb方向之離子束電流 密度分布之均一性。 (d )控制裝置 9 4根據射束型樣監視器 9 0之測定資訊 D p,控制上述副磁極驅動裝置6 2,在離子束電流密度分布 之發散大於指定之目標值之情況時,從上述質量分離磁鐵 36導出之離子束20,被收歛在其片面20s之平行面内,在 收歛方向,變化上述間隔 L 2、L 3為可變之副磁值 4 0、4 2 之間隔L 2、L 3,在相反之情況進行相反之動作(亦即,在使 離子束2 0發散之方向,變化間隔L 2、L 3 ),進行控制用來 提高入射到基板82之片狀之離子束20之幅度Wb方向之平 行性。 36 312XP/發明說明書(補件)/94-07/94109532In order to perform the above-mentioned control, the control device 94 outputs ru control signals S 3 (the number of n3 being the same as the number of the magnetic pole pair), and applies them to each of the magnetic field lens DC power sources 1 10 to control each magnetic field lens separately. DC power supply 1 1 0. According to the above-mentioned method, using the beam pattern monitor 90 and the control device 94, and feedback control of the magnetic field lens 100, it is possible to increase the ions in the direction Wb of the sheet-shaped ion beam 20 incident on the substrate 82 by automatic control. Uniformity of beam current density distribution. (d) The control device 94 controls the auxiliary magnetic pole driving device 62 according to the measurement information D p of the beam pattern monitor 90. When the divergence of the ion beam current density distribution is greater than a specified target value, The ion beam 20 derived from the mass separation magnet 36 is converged in the parallel plane of its one-sided surface 20s. In the convergence direction, the above-mentioned interval L 2 and L 3 are changed to a variable interval L 2 of the secondary magnetic value 40 and 4 2. L 3 performs the opposite action in the opposite case (that is, changes the interval L 2 and L 3 in the direction of diverging the ion beam 20), and controls to increase the sheet-shaped ion beam 20 incident on the substrate 82. The parallelism of the magnitude Wb direction. 36 312XP / Invention Manual (Supplement) / 94-07 / 94109532

200539325 亦即以具體例表示時,控制裝置94在離子束電流密 分布之發散超過目標值之情況時,使外周側之第1副磁 4 0之間隔L 2變大,使内周側之第2副磁極4 2之間隔 變小。當收歛超過目標值之情況時,進行與上述相反之 作〇 為著進行上述方式之控制,控制裝置 94輸出 Π4個 與副磁極驅動裝置6 2之數同數)之控制信號S4,將其分 施加到各個副磁極驅動裝置6 2,藉以分別控制各個副磁 驅動裝置62。 依照上述之方式,利用射束型樣監視器 9 0和控制裝 9 4,回饋控制質量分離磁鐵3 6之副磁極4 0、4 2之間隔L L 3,可以利用自動控制提高入射到基板8 2之片狀之離子 2 0之幅度 WB方向之平行性和離子束電流密度分布之均 性〇 (e )控制裝置 9 4根據射束型樣監視器 9 0之測定資 Dp,控制上述可動磁極驅動裝置66,在離子束電流密度 布大於指定目標值之情況時,從上述質量分離磁鐵3 6導 之離子束20被收歛在其片面20s之平行面内,在收歛方 使上述可動磁極 5 6旋轉,在相反之情況進行相反之動 (亦即,在使離子束 20發散之方向,使上述可動磁極 旋轉),進行控制用來提高入射到基板8 2之片狀之離子 2 0之幅度W b方向之平行性。 亦即以具體例表示時,控制裝置9 4在離子束電流密 分布之發散大於目標值之情況時,使上述角度α 、点朝 312ΧΡ/發明說明書(補件)/94-07/94109532 度 極 L 3 動 :Π4 別 極 置 I、 束 訊 分 出 向 作 56 束 度 向 37 200539325 更正方向,在收歛超過目標值之情況時,使上述角度α 、 /?朝向更負方向。 為著進行上述方式之控制,控制裝置 9 4輸出 η 5個(η 5 與可動磁極驅動裝置6 6之數同數)之控制信號S 5,將其分 別施加到各個可動磁極驅動裝置6 6,藉以分別控制各個可 動磁極驅動裝置6 6。 依照上述之方式,利用射束型樣監視器9 0和控制裝置 9 4,回饋控制質量分離磁鐵3 6之可動磁極5 6之角度α 、 冷,可以利用自動控制提高入射到基板8 2之片狀之離子束 2 0之幅度 W b方向之平行性和離子束電流密度分布之均一 性〇 【圖式簡單說明】 圖1是表示本發明之離子植入裝置之一實施形態之一部 份之橫向剖面圖,在線AA!之部份連接到圖2。200539325 In a specific example, when the divergence of the ion beam current density distribution exceeds the target value, the control device 94 increases the interval L 2 of the first secondary magnet 40 on the outer peripheral side, and increases the interval L 2 on the inner peripheral side. The interval between the two secondary magnetic poles 42 becomes smaller. When the convergence exceeds the target value, the opposite operation is performed. In order to perform the above-mentioned control, the control device 94 outputs 4 control signals S4 (the number is the same as the number of the auxiliary magnetic pole driving device 62), and divides them. It is applied to each of the secondary magnetic pole driving devices 62 to thereby individually control each of the secondary magnetic driving devices 62. According to the above-mentioned method, the beam pattern monitor 90 and the control device 94 are used to control the interval LL 3 of the secondary magnetic poles 40 and 42 of the mass separation magnet 36, and the incident incident on the substrate 8 can be increased by automatic control. The parallelism of the amplitude of the sheet-shaped ions 20 in the WB direction and the uniformity of the ion beam current density distribution. (E) The control device 94 controls the movable magnetic pole drive according to the measurement data Dp of the beam pattern monitor 90. The device 66, when the ion beam current density cloth is larger than a specified target value, the ion beam 20 guided by the mass separation magnet 36 is converged in a parallel plane of its one-sided surface 20s, and the movable magnetic pole 56 is rotated on the converging side In the opposite case, the opposite movement is performed (that is, the above-mentioned movable magnetic pole is rotated in the direction of diverging the ion beam 20), and control is performed to increase the amplitude W b of the sheet-shaped ions 20 incident on the substrate 8 2 Directional parallelism. That is, when the specific example is shown, when the divergence of the ion beam current density distribution is larger than the target value, the control device 94 makes the above-mentioned angle α and the point toward 312χΡ / Invention Specification (Supplement) / 94-07 / 94109532 degree pole L 3 movement: Π4 I pole setting, beam separation direction is 56 beam direction, 37 200539325, and when the convergence exceeds the target value, the above-mentioned angles α, /? Are directed to more negative directions. In order to perform the above-mentioned control, the control device 94 outputs η 5 control signals S 5 (η 5 is the same number as the movable magnetic pole driving device 66) and applies them to each of the movable magnetic pole driving devices 6 6. Thereby, each of the movable magnetic pole driving devices 66 is controlled. According to the above-mentioned method, the beam pattern monitor 90 and the control device 94 are used to feed back and control the angle α of the movable magnetic pole 56 of the mass separation magnet 36, and the cold, and the sheet incident on the substrate 82 can be increased by automatic control. The shape of the ion beam 20 has a parallelism in the direction W b and a uniformity of the ion beam current density distribution. [Brief description of the figure] FIG. 1 shows a part of an embodiment of the ion implantation device of the present invention. A cross-sectional view, part of line AA! Is connected to Figure 2.

圖2是表示本發明之離子植入裝置之一實施形態之其餘 部份之橫向剖面圖,在線A 1 - A 1之部份連接到圖1。 圖3是表示圖1和圖2所示之離子植入裝置之一部份之 縱向剖面圖,在線A 2 - A 2之部份連接到圖4。 圖4是表示圖1和圖2所示之離子植入裝置之其餘部份 之縱向剖面圖,在線A 2 - A 2之部份連接到圖3。 圖5是斜視圖,用來簡化地和部份地表示離子束。 圖6是正面圖,用來表示離子束和基板之關係之一實例。 圖7表示電場透鏡和其電源之一實例。 圖8是平面圖,用來使其磁極部份擴大地表示質量分離 38 312XP/發明說明書(補件)/94-07/94109532 200539325 磁鐵之另一實例,相當於圖1和圖2中之磁極部。 圖9是縱向剖面圖,用來擴大地表示質量分離磁鐵之另 一實例,大概相當於圖8之K-K剖面。 圖1 0表示電場透鏡和其電源之另一實例。 圖1 1表示磁場透鏡和其電源之一實例。 圖1 2表示圖1 1中之各個激磁線圈和各個電源之接線之 具體例。 圖1 3表示磁場透鏡和其電源之另一實例。 【主要元件符號說明】 2 離 子 源 4 電 漿 產 生 容器 6 燈 絲 8 燈 絲 電 源 10 電 漿 12 抽 出 電 極 系 1 4〜1 6 電 極 20 離 子 束 20a 長 軸 20b 短 軸 20c 中 心 軸 20s 片 面 22 閘 閥 24 電 場 透 鏡 26 電 極 312XP/發明說明書(補件)/94-07/94109532Fig. 2 is a transverse cross-sectional view showing the remaining part of an embodiment of the ion implantation device of the present invention, and a part of line A 1-A 1 is connected to Fig. 1. Fig. 3 is a longitudinal sectional view showing a part of the ion implantation device shown in Figs. 1 and 2, and a part of line A 2-A 2 is connected to Fig. 4. Fig. 4 is a longitudinal sectional view showing the remaining parts of the ion implantation device shown in Figs. 1 and 2, and a part of line A 2-A 2 is connected to Fig. 3. Fig. 5 is a perspective view for simplifying and partially showing the ion beam. FIG. 6 is a front view showing an example of the relationship between the ion beam and the substrate. Fig. 7 shows an example of an electric field lens and its power source. Fig. 8 is a plan view showing an enlarged magnetic pole portion showing a mass separation 38 312XP / Invention (Supplement) / 94-07 / 94109532 200539325 Another example of a magnet is equivalent to the magnetic pole portion in Figs. 1 and 2 . Fig. 9 is a longitudinal sectional view for enlarging and showing another example of the mass separation magnet, which is roughly equivalent to the K-K section of Fig. 8. Fig. 10 shows another example of the electric field lens and its power source. Figure 11 shows an example of a magnetic field lens and its power source. Fig. 12 shows a specific example of the wiring of each exciting coil and each power source in Fig. 11. Figure 13 shows another example of a magnetic field lens and its power source. [Description of main component symbols] 2 Ion source 4 Plasma generation container 6 Filament 8 Filament power supply 10 Plasma 12 Extraction electrode system 1 4 ~ 1 6 Electrode 20 Ion beam 20a Long axis 20b Short axis 20c Central axis 20s One-sided 22 Gate valve 24 Electric field Lens 26 electrode 312XP / Invention Manual (Supplement) / 94-07 / 94109532

39 20053932539 200539325

28 > 30 屏 蔽 板 32 電 場 透 鏡 直 流 電 源 34 真 空 容 器 36 質 量 分 離 磁 鐵 3 8 主 磁 極 40 第 1 副 磁 極 42 第 2 副 磁 極 44 磁 軛 46 激 磁 線 圈 48 ' 50 ' 5 2磁 力 線 56 可 動 磁 極 58 平 坦 磁 極 端 面 59 軸 60 線 62 副 磁 極 驅 動 裝 置 66 可 動 磁 極 驅 動 裝 置 70 中 心 72 分 離 縫 隙 74 掃 描 電 極 76 掃 描 電 源 80 處 理 室 容 器 82 基 板 84 保 持 器 86 基 板 驅 動 裝 置 312XP/發明說明書(補件)/94-07/94109532 40 200539325 90 射 92 法 94 控 96 電 98 電 1 00 磁 1 02 磁 1 04 激 1 06 磁 1 08 真 110 磁 112 磁 L 1、L 2、L 3 間28 > 30 shield plate 32 electric field lens DC power supply 34 vacuum container 36 mass separation magnet 3 8 main magnetic pole 40 first auxiliary magnetic pole 42 second auxiliary magnetic pole 44 yoke 46 exciting coil 48 '50' 5 2 magnetic field line 56 movable magnetic pole 58 flat Magnetic pole surface 59 axis 60 line 62 auxiliary magnetic pole driving device 66 movable magnetic pole driving device 70 center 72 separation gap 74 scanning electrode 76 scanning power source 80 processing chamber container 82 substrate 84 holder 86 substrate driving device 312XP / Invention Manual (Supplement) / 94 -07/94109532 40 200539325 90 shot 92 method 94 control 96 electricity 98 electricity 1 00 magnetic 1 02 magnetic 1 04 exciting 1 06 magnetic 1 08 true 110 magnetic 112 magnetic L 1, L 2, L 3

束型樣監視器 拉弟杯 制裝置 場透鏡振動電源 容器 場透鏡 極 磁線圈 軛 空容器 場透鏡直流電源 場透鏡振動電源 隔Beam type monitor Radiator cup device Field lens vibration power supply container Field lens pole Magnetic coil yoke Empty container Field lens DC power supply Field lens vibration power supply

312XP/發明說明書(補件)/94-07/94109532 41312XP / Invention Manual (Supplement) / 94-07 / 94109532 41

Claims (1)

200539325 十、申請專利範圍: 1 . 一種離子植入裝置,係使離子源所產生之幅度比基板 之短邊幅度寬廣之片狀之離子束,在保持該幅度之關係之 狀態,輸送到基板,藉以照射在基板者,其特徵在於具備 有:200539325 10. Scope of patent application: 1. An ion implantation device is a sheet-shaped ion beam with an amplitude wider than that of the short side of the substrate generated by the ion source, and conveyed to the substrate while maintaining the relationship of the amplitude. Those who irradiate the substrate are characterized by: 離子源,其包含有欲植入到基板之所希望之離子種,用 來產生具有上述幅度之關係之片狀之離子束者,具有多個 燈絲排列在該片狀之離子束之幅度方向,用來產生成為該 片狀之離子束之根源之電漿; 1個以上之燈絲電源,其可以互相獨立地控制在該離子 源之各個燈絲流動之燈絲電流; 質量分離磁鐵(magnet),其用來接受上述離子源產生之 片狀之離子束者,具有間隔大於該離子束之幅度之磁極, 使該離子束彎曲到該面之正交方向,用來篩選和導出上 述所希望之離子種; 分離縫隙,其接受從該質量分離磁鐵導出之片狀之離子 束,與該質量分離磁鐵合作,用來篩選上述所希望之離子 種和使其通過;和 基板驅動裝置,其具有用以保持基板之保持器,在通過 上述分離縫隙之片狀之離子束之照射區域内,在與該離子 束之片面交叉之方向,往復驅動保持器上之基板。 2.如申請專利範圍第1項之離子植入裝置,其更具備有: 電場透鏡,其具有多個電極對偶,被設在上述離子源和 上述質量分離磁鐵之間,或上述質量分離磁鐵和上述分離 42 312XP/發明說明書(補件)/94-07/94109532An ion source containing a desired ion species to be implanted into a substrate and used to generate a sheet-shaped ion beam having the above-mentioned amplitude relationship, having a plurality of filaments arranged in the amplitude direction of the sheet-shaped ion beam, Used to generate the plasma that is the source of the sheet-shaped ion beam; 1 or more filament power sources, which can independently control the filament current flowing in each filament of the ion source; a mass separation magnet (magnet), which is used for Those who accept the sheet-shaped ion beam generated by the above-mentioned ion source have magnetic poles spaced apart from the amplitude of the ion beam, and bend the ion beam to the orthogonal direction of the surface, for screening and deriving the above-mentioned desired ion species; A separation gap that receives a sheet-shaped ion beam derived from the mass separation magnet and cooperates with the mass separation magnet to screen and pass the desired ion species; and a substrate driving device having a substrate to hold the substrate. In the irradiation area of the sheet-shaped ion beam passing through the separation gap, the holder is reciprocally driven in a direction crossing the sheet surface of the ion beam. The substrate on the holder. 2. The ion implantation device according to item 1 of the patent application scope, further comprising: an electric field lens having a plurality of electrode pairs provided between the ion source and the mass separation magnet, or the mass separation magnet and The above separation 42 312XP / Invention Specification (Supplement) / 94-07 / 94109532 200539325 縫隙之間,互相面對成為包夾上述片狀之離子束之片面 並排地設置在沿著該片面和垂直於離子束行進方向之 向,將在片狀之離子束之任意之區域之離子,彎曲到沿 該離子束之片面且對離子束之行進方向正交之方向,用 使該狀之離子束之幅度方向之離子束電流密度分布均 化;和 1個以上之電場透鏡直流電源,其用來對該電場透鏡 各個電極對偶和基準電位部之間,分別施加互相獨立之 3.如申請專利範圍第2項之離子植入裝置,其更具備 電場透鏡振動電源,以代替上述電場透鏡直流電源,或 上述電場透鏡直流電源一起,在上述電場透鏡之第奇數 和第偶數號之電極對偶間施加振動電壓,使上述電場透 之電場之強度週期性振動,用來控制沿著上述片狀之離 束之片面而且對離子束行進方向垂直之方向之離子束 射。 4.如申請專利範圍第1項之離子植入裝置,其更具備; 磁場透鏡,其被設在上述離子源和上述質量分離磁鐵 間,或上述質量分離磁鐵和上述分離縫隙之間,互相面 成為包夾上述片狀之離子束之片面,具有沿著該片面而 在離子束行進方向之垂直方向並排設置之多個磁極對偶 和分別用來對各個磁極對偶進行激磁之多個激磁線圈, 在片狀之離子束之任意之區域之離子,彎曲到沿著該離 束之片面且對離子束之行進方向正交之方向,用來使該 312XP/發明說明書(補件)/94-07/94109532 方 著 來 之 直 有 與 號 鏡 子 放 之 對 且 將 子 片 43 200539325 狀之離子束之幅度方向之離子束電流密度分布均一化;和 多個磁場透鏡直流電源,其使直流電流分別在該磁場透 鏡之各個激磁線圈流動。200539325 Between the gaps, the planes facing each other to form the sheet-shaped ion beam are arranged side by side in the direction along the plane and perpendicular to the direction of ion beam travel, and the ions in any area of the sheet-shaped ion beam will be arranged side by side. , Curved to a direction along the one-sided surface of the ion beam and orthogonal to the traveling direction of the ion beam, to uniformize the ion beam current density distribution of the amplitude direction of the ion beam; and more than one electric field lens DC power supply, It is used to apply an independent 3. between each electrode pair of the electric field lens and the reference potential part. For example, the ion implantation device of the second item of the patent application scope, it further includes an electric field lens vibration power source instead of the above electric field lens A DC power supply, or the DC power supply of the electric field lens, applies a vibration voltage between the odd-numbered and even-numbered electrode pairs of the electric-field lens to periodically vibrate the intensity of the electric field transmitted by the electric field, and is used for controlling The ion beam is irradiated away from the beam and perpendicular to the direction of travel of the ion beam. 4. The ion implantation device according to item 1 of the patent application scope, further comprising: a magnetic field lens provided between the ion source and the mass separation magnet, or between the mass separation magnet and the separation gap, facing each other The sheet surface that sandwiches the sheet-shaped ion beam has a plurality of magnetic pole pairs arranged side by side in the vertical direction of the ion beam traveling direction along the sheet surface and a plurality of exciting coils for exciting each magnetic pole pair. The ions in an arbitrary area of the sheet-shaped ion beam are bent to a direction orthogonal to the ion beam traveling direction along the one-sided surface of the beam, and are used to make the 312XP / Invention Manual (Supplement) / 94-07 / 94109532 The square beam is aligned with the mirror, and the ion beam current density distribution in the amplitude direction of the ion beam 43 200539325 is uniform; and a plurality of magnetic field lens DC power supplies, which direct the DC currents at the Each field coil of the magnetic field lens flows. 5 .如申請專利範圍第4項之離子植入裝置,其更具備有 多個磁場透鏡振動電源,以代替上述磁場透鏡直流電源, 或與上述磁場透鏡直流電源一起,使振動電流分別在上述 磁場透鏡之各個激磁線圈流動,用來使上述磁場透鏡之磁 場強度週期性振動,藉以控制沿著上述片狀之離子束之片 面而且對離子束行進方向垂直之方向之離子束放射。 6 .如申請專利範圍第1項之離子植入裝置,其中,上述 質量分離磁鐵具備有:一對之主磁極,其互相面對,具有大 於上述片狀之離子束之幅度之間隔,用來使上述片狀之離 子束通過其間;一對之第1副磁極,其被設在該主磁極之 外周側,互相對面,具有比主磁極小之間隔,用來使主磁 極間之磁場平行化;一對之第2副磁極,其被設在上述主 磁極之内周側,互相對面,具有比主磁極小之間隔,用來 使主磁極間之磁場平行化;和激磁線圈,其用來對上述主 磁極,第1副磁極和第2副磁極進行激磁。 7 .如申請專利範圍第6項之離子植入裝置,其中,上述 第1副磁極和第2副磁極之至少一方,其間隔為可變。 8 .如申請專利範圍第7項之離子植入裝置,其更具備有 副磁極驅動裝置,用來使上述間隔可變之副磁極移動,藉 以變化其間隔。 9 .如申請專利範圍第1項之離子植入裝置,其中,上述 44 312XP/發明說明書(補件)/94-07/94109532 200539325 質量分離磁鐵具備有可動磁極,在上述磁極之入口和出口 之至少一方成為半圓柱狀,用來使垂直於上述離子束之行 進方向之線和磁極端面所形成之角度成為可變。 1 0 .如申請專利範圍第6項之離子植入裝置,其中,上述 質量分離磁鐵具備有可動磁極,在上述主磁極之入口和出 口之至少一方成為半圓柱狀,用來使垂直於上述離子束之 行進方向之線和磁極端面所形成之角度成為可變。5. The ion implantation device according to item 4 of the scope of patent application, further comprising a plurality of magnetic field lens vibration power sources, instead of the above-mentioned magnetic field lens DC power source, or together with the magnetic field lens DC power source, the vibration current is respectively in the above magnetic field. Each exciting coil of the lens flows to periodically vibrate the magnetic field strength of the magnetic field lens, thereby controlling the ion beam emission along the sheet surface of the ion beam and perpendicular to the direction in which the ion beam travels. 6. The ion implantation device according to item 1 of the scope of patent application, wherein the mass separation magnet is provided with: a pair of main magnetic poles facing each other with an interval larger than the amplitude of the sheet-shaped ion beam for The above-mentioned sheet-shaped ion beam is passed therethrough; a pair of first secondary magnetic poles are provided on the outer peripheral side of the main magnetic pole, facing each other, with a smaller interval than the main magnetic pole, for parallelizing the magnetic field between the main magnetic poles ; A pair of second secondary magnetic poles, which are provided on the inner peripheral side of the main magnetic poles, opposite each other, with a smaller interval than the main magnetic poles, for parallelizing the magnetic field between the main magnetic poles; and an exciting coil, which is used to The main magnetic pole, the first auxiliary magnetic pole, and the second auxiliary magnetic pole are excited. 7. The ion implantation device according to item 6 of the scope of patent application, wherein the interval between at least one of the first sub-pole and the second sub-pole is variable. 8. The ion implantation device according to item 7 of the scope of patent application, which further includes a secondary magnetic pole driving device for moving the secondary magnetic poles with a variable interval to change the interval. 9. The ion implantation device according to item 1 of the scope of patent application, wherein the above-mentioned 44 312XP / Invention Specification (Supplement) / 94-07 / 94109532 200539325 mass separation magnet is provided with a movable magnetic pole at the entrance and exit of the magnetic pole. At least one side has a semi-cylindrical shape for changing the angle formed by the line perpendicular to the traveling direction of the ion beam and the magnetic extreme surface. 10. The ion implantation device according to item 6 of the scope of patent application, wherein the mass separation magnet is provided with a movable magnetic pole, and at least one of the inlet and the outlet of the main magnetic pole is formed into a semi-cylindrical shape for making perpendicular to the ions. The angle formed by the beam traveling direction line and the magnetic extreme surface becomes variable. 1 1 .如申請專利範圍第9項之離子植入裝置,其更具備有 可動磁極驅動裝置,用來使上述可動磁極旋轉藉以使上述 角度變化。 1 2 .如申請專利範圍第1項之離子植入裝置,其更具備 有: 一對之掃描電極,其被配置在上述分離縫隙之下游側, 互相面對成為包夾上述片狀之離子束之片面全體,在該片 面之正交方向,往復掃描上述片狀之離子束全體;和 掃描電源,其用來對該一對之掃描電極間施加振動電壓。 1 3 .如申請專利範圍第1項之離子植入裝置,其更具備有 射束型樣監視器,被設在上述保持器上之基板之上游側或 下游側,用來接受上述片狀之離子束,藉以測定其幅度方 向之離子束電流密度分布。 1 4.如申請專利範圍第1項之離子植入裝置,其更具備 有: 射束型樣監視器,其被設在上述保持器上之基板之上游 側或下游側,用來接受上述片狀之離子束,藉以測定其幅 45 312XP/發明說明書(補件)/94-07/941095321 1. The ion implantation device according to item 9 of the scope of patent application, further comprising a movable magnetic pole driving device for rotating the movable magnetic pole to change the angle. 1 2. The ion implantation device according to item 1 of the scope of patent application, further comprising: a pair of scanning electrodes arranged on the downstream side of the separation gap and facing each other to form an ion beam sandwiching the sheet shape The entire sheet surface scans the entire sheet-shaped ion beam in a direction orthogonal to the sheet surface; and a scanning power supply for applying a vibration voltage between the pair of scanning electrodes. 1 3. The ion implantation device according to item 1 of the patent application scope further includes a beam type monitor, which is arranged on the upstream side or the downstream side of the substrate on the holder to receive the sheet-shaped The ion beam is used to measure the ion beam current density distribution in its amplitude direction. 1 4. The ion implantation device according to item 1 of the scope of patent application, further comprising: a beam type monitor, which is arranged on the upstream side or downstream side of the substrate on the holder, and is used for receiving the above-mentioned sheet Shape ion beam to measure its width 45 312XP / Invention Specification (Supplement) / 94-07 / 94109532 200539325 度方向之離子束電流密度分布;和 控制裝置,其根據該射束型樣監視器之測定資訊,控 上述燈絲電源,在有離子束電流密度比其他區域低之低 流密度區域之情況時,使在與該低電流密度區域對應之 述燈絲流動之燈絲電流增大,在相反之情況則進行相反 動作,而進行控制使入射到基板之片狀之離子束之幅度 向之離子束電流密度分布均一化。 1 5 .如申請專利範圍第 2項之離子植入裝置,其更具 有: 射束型樣監視器,其被設在上述保持器上之基板之上 側或下游側,用來接受上述片狀之離子束,藉以測定其 度方向之離子束電流密度分布;和 控制裝置,其根據該射束型樣監視器之測定資訊,控 上述電場透鏡直流電源,在有離子束電流密度比其他區 低之低電流密度區域之情況時,使來自鄰接之電場朝向 該低電流密度區域對應之上述電場透鏡中之區域,用來 施加在與上述低電流密度區域對應之上述電極對偶之電 下降,在相反之情況則進行相反之動作,而進行控制使 射到基板之片狀之離子束之幅度方向之離子束電流密度 布均一化。 1 6 .如申請專利範圍第 4項之離子植入裝置,其更具 有: 射束型樣監視器,其被設在上述保持器上之基板之上 側或下游側,用來接受上述片狀之離子束,藉以測定其 312XP/發明說明書(補件)/94-07/94109532 制 電 上 之 方 備 游 幅 制 域 與 使 壓 入 分 備 游 幅 46200539325 degree ion beam current density distribution; and a control device that controls the above-mentioned filament power supply based on the measurement information of the beam type monitor when there is a low current density region where the ion beam current density is lower than other regions In order to increase the filament current flowing in the filament corresponding to the low current density region, the reverse operation is performed in the opposite case, and the ion beam current density is controlled so that the amplitude of the sheet-shaped ion beam incident on the substrate is directed Uniform distribution. 15. The ion implantation device according to item 2 of the scope of patent application, further comprising: a beam-type monitor, which is provided on the upper side or the lower side of the substrate on the holder, and is used for receiving the sheet-shaped device. An ion beam to measure the ion beam current density distribution in its degree direction; and a control device that controls the DC power source of the electric field lens according to the measurement information of the beam type monitor to reduce the ion beam current density when the ion beam current density is lower than in other regions In the case of a low current density region, an electric field from an adjacent electric field is directed toward a region in the electric field lens corresponding to the low current density region, and is used to apply an electric drop to the electrode pair corresponding to the low current density region, and vice versa In the case, the opposite operation is performed, and the ion beam current density cloth in the amplitude direction of the sheet-shaped ion beam incident on the substrate is controlled to be uniform. 16. The ion implantation device according to item 4 of the scope of patent application, further comprising: a beam type monitor, which is arranged on the upper side or downstream side of the substrate on the holder, and is used for receiving the sheet-shaped Ion beam to measure its 312XP / Invention Specification (Supplement) / 94-07 / 94109532 Make the range of the electricity on the electricity and make it into the spare range 46 200539325 度方向之離子束電流密度分布;和 控制裝置,其根據該射束型樣監視器之測定資訊, 上述磁場透鏡直流電源,在有離子束電流密度比其他 低之低電流密度區域之情況時,使從鄰接區域朝向與 電流密度區域對應之上述磁場透鏡中之區域之洛 (L 〇 r e n t z )力增大,以此方式調整在與上述低電流密度 對應之區域附近之上述磁極對偶之激磁線圈流動之電 在相反之情況則進行相反之動作,而進行控制使入射 板之片狀之離子束之幅度方向之離子束電流密度分布 化。 1 7.如申請專利範圍第 8項之離子植入裝置,其更 有: 射束型樣監視器,被設在上述保持器上之基板之上 或下游側,用來接受上述片狀之離子束,藉以測定其 方向之離子束電流密度分布;和 控制裝置,其根據該射束型樣監視器之測定資訊, 上述副磁極驅動裝置,在離子束電流密度分布比指定 標值更發散之情況時,在從上述質量分離磁鐵導出之 束被收歛在其片面之平行面内之方向,變化上述間隔 變之副磁極之間隔,在相反之情況則進行相反之動作 進行控制用來提高入射到基板之片狀之離子束之幅度 之平行性。 1 8 .如申請專利範圍第1 1項之離子植入裝置,其更 有: 312XP/發明說明書(補件)/94-07/94109532 控制 區域 該低 仁子 區域 流, 到基 均一 具備 游側 幅度 控制 之目 離子 為可 , 而 方向 具備 47 200539325 射束型樣監視器,其被設在上述保持器上之基板之上游 側或下游側,用來接受上述片狀之離子束,藉以測定其幅 度方向之離子束電流密度分布;和200539325 degree ion beam current density distribution; and control device based on measurement information of the beam type monitor, the above-mentioned magnetic field lens DC power supply when there is a low current density region where the ion beam current density is lower than others To increase the Lorentz force from the adjacent area toward the area in the magnetic field lens corresponding to the current density area, and in this way adjust the exciting coil of the magnetic pole pair near the area corresponding to the low current density. When the flowing electricity is in the opposite case, the reverse operation is performed, and the ion beam current density in the amplitude direction of the sheet-shaped ion beam of the incident plate is controlled to be distributed. 1 7. The ion implantation device according to item 8 of the patent application scope, further comprising: a beam-type monitor, which is arranged on or above the substrate on the holder to receive the above-mentioned sheet-shaped ions Beam, to measure the ion beam current density distribution in its direction; and a control device that, based on the measurement information of the beam type monitor, the above-mentioned secondary magnetic pole driving device, when the ion beam current density distribution is more divergent than a specified target In the direction where the beam derived from the mass separation magnet is converged in the parallel plane of its one-sided surface, the interval between the secondary magnetic poles of the interval is changed. In the opposite case, the opposite operation is performed to control the incident to increase the incidence on the substrate The parallelism of the amplitude of the sheet-shaped ion beam. 18. If the ion implantation device in the 11th scope of the patent application, it further has: 312XP / Invention Specification (Supplement) / 94-07 / 94109532 Control area The low-kernel sub-area flow is uniform to the side with a swimming range. The control ion is ok, and the direction is equipped with 47 200539325 beam type monitor, which is set on the upstream or downstream side of the substrate on the holder, and is used to receive the sheet-shaped ion beam to measure its amplitude. Ion beam current density distribution in the direction; and 控制裝置,其根據該射束型樣監視器之測定資訊,控制 上述可動磁極驅動裝置,在離子束電流密度分布比指定之 目標值更發散之情況時,在從上述質量分離磁鐵導出之離 子束被收歛在其片面之平行面内之方向,使上述可動磁極 旋轉,在相反之情況則進行相反之動作,而進行控制用來 提高入射到基板之片狀之離子束之幅度方向之平行性。The control device controls the movable magnetic pole driving device based on the measurement information of the beam type monitor, and when the ion beam current density distribution is more divergent than the specified target value, the ion beam is derived from the mass separation magnet. The direction converged in the parallel plane of the sheet surface rotates the movable magnetic pole, and in the opposite case, it performs the opposite action, and controls to improve the parallelism of the amplitude direction of the sheet-shaped ion beam incident on the substrate. 48 312XP/發明說明書(補件)/94-07/9410953248 312XP / Invention Manual (Supplement) / 94-07 / 94109532
TW094109532A 2004-05-14 2005-03-28 Ion implanting apparatus TWI306273B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/845,209 US7078714B2 (en) 2004-05-14 2004-05-14 Ion implanting apparatus

Publications (2)

Publication Number Publication Date
TW200539325A true TW200539325A (en) 2005-12-01
TWI306273B TWI306273B (en) 2009-02-11

Family

ID=35308529

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094109532A TWI306273B (en) 2004-05-14 2005-03-28 Ion implanting apparatus

Country Status (5)

Country Link
US (1) US7078714B2 (en)
JP (1) JP4049163B2 (en)
KR (1) KR100809138B1 (en)
CN (1) CN100552865C (en)
TW (1) TWI306273B (en)

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004362901A (en) * 2003-06-04 2004-12-24 Sharp Corp Ion doping device, ion doping method, and semiconductor device
US7675050B2 (en) * 2006-06-12 2010-03-09 Advanced Ion Beam Technology, Inc. Apparatus and method for ion beam implantation using ribbon and spot beams
US7462843B2 (en) * 2004-05-18 2008-12-09 Advanced Ion Bean Technology Inc. Apparatus and methods for ion beam implantation
US7498572B2 (en) * 2005-09-14 2009-03-03 Nissin Ion Equipment Co., Ltd. Deflecting electromagnet and ion beam irradiating apparatus
KR100706809B1 (en) * 2006-02-07 2007-04-12 삼성전자주식회사 Apparatus for controlling ion beam and method of the same
KR100702479B1 (en) * 2006-02-28 2007-04-03 한국원자력연구소 A single-scan beam-emittance measuring device using a rotational slit structure
JP4882456B2 (en) * 2006-03-31 2012-02-22 株式会社Ihi Ion implanter
JP4218699B2 (en) 2006-06-09 2009-02-04 日新イオン機器株式会社 Analysis electromagnet
US7405410B2 (en) * 2006-07-14 2008-07-29 Mark Morehouse Method and apparatus for confining, neutralizing, compressing and accelerating an ion field
JP4582065B2 (en) * 2006-07-25 2010-11-17 日新イオン機器株式会社 Analysis electromagnet, control method thereof, and ion implantation apparatus
JP4492591B2 (en) * 2006-07-25 2010-06-30 日新イオン機器株式会社 Ion implantation apparatus and adjustment method thereof
US7635850B2 (en) 2006-10-11 2009-12-22 Nissin Ion Equipment Co., Ltd. Ion implanter
CN101563760B (en) 2006-10-30 2011-12-21 日本航空电子工业株式会社 Method for flattening solid surface with gas cluster ion beam, and solid surface flattening device
JP4240109B2 (en) * 2006-10-31 2009-03-18 日新イオン機器株式会社 Ion implanter
JP4305499B2 (en) * 2006-11-27 2009-07-29 日新イオン機器株式会社 Ion implanter
JP4930778B2 (en) * 2007-02-07 2012-05-16 株式会社Ihi Mass separation electromagnet
JP4288288B2 (en) * 2007-03-29 2009-07-01 三井造船株式会社 Ion implanter
JP2009152002A (en) * 2007-12-19 2009-07-09 Nissin Ion Equipment Co Ltd Ion beam irradiation device
JP4365441B2 (en) 2008-03-31 2009-11-18 三井造船株式会社 Ion implantation apparatus, ion implantation method and program
JP5177658B2 (en) * 2008-08-11 2013-04-03 株式会社Ihi Beam profile adjusting apparatus and ion implantation apparatus having the same
JP5226577B2 (en) * 2009-03-27 2013-07-03 三井造船株式会社 Ion implantation apparatus and ion beam adjustment method
US9147554B2 (en) * 2009-07-02 2015-09-29 Axcelis Technologies, Inc. Use of beam scanning to improve uniformity and productivity of a 2D mechanical scan implantation system
CN102024656B (en) * 2009-09-17 2012-07-18 上海凯世通半导体有限公司 System and method for improving beam current intensity distribution after leading ion beam out
US8604443B2 (en) * 2009-11-13 2013-12-10 Varian Semiconductor Equipment Associates, Inc. System and method for manipulating an ion beam
US8089050B2 (en) * 2009-11-19 2012-01-03 Twin Creeks Technologies, Inc. Method and apparatus for modifying a ribbon-shaped ion beam
JP5311140B2 (en) * 2009-12-01 2013-10-09 日新イオン機器株式会社 Ion beam measurement method
JP5311681B2 (en) 2010-05-26 2013-10-09 日新イオン機器株式会社 Ion implanter
US9029808B2 (en) 2011-03-04 2015-05-12 Tel Epion Inc. Low contamination scanner for GCIB system
US8791430B2 (en) 2011-03-04 2014-07-29 Tel Epion Inc. Scanner for GCIB system
JP5568047B2 (en) * 2011-03-30 2014-08-06 株式会社東芝 Ion source and method of operation thereof
US8421039B2 (en) * 2011-03-31 2013-04-16 Axcelis Technologies, Inc. Method and apparatus for improved uniformity control with dynamic beam shaping
US8378313B2 (en) 2011-03-31 2013-02-19 Axcelis Technologies, Inc. Uniformity of a scanned ion beam
CN102789945A (en) * 2011-05-17 2012-11-21 上海凯世通半导体有限公司 Hot-cathode ion source system for generating strip-shaped beam
CN102800550B (en) * 2011-05-27 2015-08-26 日新离子机器株式会社 Ion implantation apparatus
JP2013004272A (en) * 2011-06-15 2013-01-07 Nissin Ion Equipment Co Ltd Ion source and ion implantation device
JP2013020918A (en) * 2011-07-14 2013-01-31 Hitachi High-Technologies Corp Charged particle beam device
JP5648919B2 (en) * 2011-08-17 2015-01-07 日新イオン機器株式会社 Ion implanter
JP5804444B2 (en) * 2011-08-31 2015-11-04 日新イオン機器株式会社 Ion implantation method
CN102983048A (en) * 2011-09-06 2013-03-20 上海凯世通半导体有限公司 Beam current regulating mechanism and ion implantation system
JP5800286B2 (en) * 2012-03-09 2015-10-28 日新イオン機器株式会社 Ion implanter
US8723135B2 (en) * 2012-04-03 2014-05-13 Nissin Ion Equipment Co., Ltd. Ion beam bending magnet for a ribbon-shaped ion beam
JP2014041707A (en) 2012-08-21 2014-03-06 Nissin Ion Equipment Co Ltd Ion implantation apparatus
WO2014043865A1 (en) * 2012-09-19 2014-03-27 北京中科信电子装备有限公司 Apparatus for adjusting divergence angle of divergent beam
CN103052249A (en) * 2013-01-11 2013-04-17 哈尔滨工业大学 Jet plasma density distribution adjuster
US9502213B2 (en) 2013-03-15 2016-11-22 Nissin Ion Equipment Co., Ltd. Ion beam line
US9142386B2 (en) * 2013-03-15 2015-09-22 Nissin Ion Equipment Co., Ltd. Ion beam line
JP6098846B2 (en) * 2015-06-16 2017-03-22 日新イオン機器株式会社 Vacuum chamber and mass spectrometry electromagnet
US9734982B1 (en) 2016-05-24 2017-08-15 Nissin Ion Equipment Co., Ltd. Beam current density distribution adjustment device and ion implanter
JP7029633B2 (en) 2018-02-09 2022-03-04 日新イオン機器株式会社 Ion source, ion implanter
JP2019145773A (en) 2018-02-23 2019-08-29 国立大学法人東京農工大学 Method for manufacturing semiconductor element and ion implantation device
JP7132828B2 (en) * 2018-11-13 2022-09-07 住友重機械イオンテクノロジー株式会社 Ion implanter and beam parker
CN111769039B (en) * 2019-04-02 2023-07-04 北京中科信电子装备有限公司 Method for adjusting uniformity of low-energy large-beam ion implanter
CN113278930B (en) * 2021-04-25 2023-04-18 北京航空航天大学合肥创新研究院(北京航空航天大学合肥研究生院) Nanocluster beam density control device and application method thereof
CN113571401A (en) * 2021-07-19 2021-10-29 广州粤芯半导体技术有限公司 Slit assembly and ion implantation machine

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5389793A (en) * 1983-08-15 1995-02-14 Applied Materials, Inc. Apparatus and methods for ion implantation
JPS6079655A (en) * 1983-10-07 1985-05-07 Hitachi Ltd Ion-beam-neutralizing device
JPS6435841A (en) * 1987-07-31 1989-02-06 Oki Electric Ind Co Ltd High-dose ion implanter
US5350926A (en) 1993-03-11 1994-09-27 Diamond Semiconductor Group, Inc. Compact high current broad beam ion implanter
US5834786A (en) 1996-07-15 1998-11-10 Diamond Semiconductor Group, Inc. High current ribbon beam ion implanter
JP3449198B2 (en) * 1997-10-22 2003-09-22 日新電機株式会社 Ion implanter
KR19990048220A (en) * 1997-12-09 1999-07-05 윤종용 Beam monitor device of semiconductor ion implantation facility
JPH11283552A (en) * 1998-03-31 1999-10-15 Tadamoto Tamai Device and method for ion implantation, ion-beam source and variable slit mechanism
KR100553780B1 (en) * 1999-04-30 2006-02-20 닛신덴키 가부시키 가이샤 Ion implantation apparatus

Also Published As

Publication number Publication date
KR20060045964A (en) 2006-05-17
JP2005327713A (en) 2005-11-24
TWI306273B (en) 2009-02-11
US20050253089A1 (en) 2005-11-17
KR100809138B1 (en) 2008-02-29
CN1700402A (en) 2005-11-23
CN100552865C (en) 2009-10-21
JP4049163B2 (en) 2008-02-20
US7078714B2 (en) 2006-07-18

Similar Documents

Publication Publication Date Title
TW200539325A (en) Ion implanting apparatus
US7964856B2 (en) Ion implanting apparatus
US7902527B2 (en) Apparatus and methods for ion beam implantation using ribbon and spot beams
JP6281257B2 (en) System for changing the energy of a ribbon ion beam
KR101071581B1 (en) Ion implanting apparatus
TWI827743B (en) Ion implantation system and method for providing non-uniform flux of scanned ribbon ion beam
US7675050B2 (en) Apparatus and method for ion beam implantation using ribbon and spot beams
TW445490B (en) Ion beam implantation using conical magnetic scanning
JP2007531219A (en) Method and precise control collimator for precise collimation and precise alignment of scanned ion beam
TW200910406A (en) Beam processing apparatus
JP2003511822A (en) High propagation, low energy beamline architecture for ion implantation
TWI387992B (en) Irradiation system with ion beam/ charged particle beam
JP5655881B2 (en) Ion beam deflection magnet for ribbon-like ion beam and ion beam irradiation apparatus including the same
US7755067B2 (en) Ion implantation apparatus and method of converging/shaping ion beam used therefor
US9728371B2 (en) Ion beam scanner for an ion implanter
JP4582065B2 (en) Analysis electromagnet, control method thereof, and ion implantation apparatus
JP2009295475A (en) Ion injecting device and beam orbit correction method
TW201637061A (en) Combined multipole magnet and dipole scanning magnet
JP3235466B2 (en) Ion implanter
JPWO2020123063A5 (en)
JP2006004676A (en) Electromagnetic control unit for adjusting and controlling uniformity of current of continuous ion beams
JPH09147785A (en) Ion irradiating device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees