WO2006014027A1 - 温間制御圧延により大ひずみが導入された金属線材、およびその製造方法と製造装置 - Google Patents

温間制御圧延により大ひずみが導入された金属線材、およびその製造方法と製造装置 Download PDF

Info

Publication number
WO2006014027A1
WO2006014027A1 PCT/JP2005/014797 JP2005014797W WO2006014027A1 WO 2006014027 A1 WO2006014027 A1 WO 2006014027A1 JP 2005014797 W JP2005014797 W JP 2005014797W WO 2006014027 A1 WO2006014027 A1 WO 2006014027A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
rolled
steel wire
rolling mill
metal wire
Prior art date
Application number
PCT/JP2005/014797
Other languages
English (en)
French (fr)
Inventor
Shiro Torizuka
Eijiro Muramatsu
Tadanobu Inoue
Kotobu Nagai
Original Assignee
National Institute For Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute For Materials Science filed Critical National Institute For Materials Science
Priority to KR1020077002903A priority Critical patent/KR101241837B1/ko
Publication of WO2006014027A1 publication Critical patent/WO2006014027A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/16Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations

Definitions

  • the present invention relates to a technique for efficiently producing a metal wire or a metal wire by continuously warm-control rolling a traveling metal material.
  • metal wires or metal wires supplied to secondary processing manufacturers and third processing manufacturers have been manufactured as follows, but have the following problems.
  • steel wire or steel wire is taken as a typical metal wire or metal wire, and its manufacturing process and problems are described.
  • steel wire or steel wire is as follows: once a steel bar or steel wire is manufactured by hot rolling, etc., and the cross-sectional diameter is further reduced by drawing or rolling, the secondary or Steel wire or steel wire is manufactured as a material for tertiary processing.
  • steel wire includes the cases of 1) steel wire, 2) steel wire, 3) steel wire, and steel wire as materials for secondary and tertiary processing.
  • the manufacturing method from the steel making process of the above-mentioned steel fine wire is usually as follows.
  • a molten steel of a predetermined component melted in steel making and a steelmaking furnace is prepared into pieces such as bloom in a continuous forging process, and this is divided into hot pieces.
  • Rolling is performed on billet with smaller cross section by rolling process.
  • the billet is heated to a predetermined temperature in a heating furnace, for example, at about 120.degree. C., and the heated billets are extracted one by one from the heating furnace.
  • hot rolling is performed with a rough rolling mill row, an intermediate rolling mill row, and a finishing rolling mill row, and the wire diameter is about 5 to 38 mm.
  • Manufactures steel wire rods The steel wire thus manufactured is further used as a starting material (raw material) in another forming processing line, and the coiled steel wire that is the starting material is rewound and processed as follows to reduce the diameter.
  • Manufactures fine wires That is, the diameter reduction processing is performed by drawing with a hole die or a roll die, or cold rolling with a rolling device.
  • conventional steel thin wires with a wire diameter of about 1 to 25 mm and up to 1 mm or less, a strain exceeding a predetermined value is introduced into the material to be rolled by a controlled rolling process in the warm region.
  • a conventional material in which a coarse rolling mill row, an intermediate rolling mill row, and a finishing rolling mill row are arranged in a hot state of the above-described rolled material such as billet, which is made of a material having fine grains and high strength and high ductility. It is not manufactured in the wire rolling process.
  • the rolling line speed of the stretched material near the end of rolling is extremely high (for example, 50 0
  • the conventional wire rolling process is premised on hot rolling, and the heating device for the material to be rolled is installed on the entry side of the above rough rolling mill row.
  • This is only a billet furnace or a bloom furnace, and is heated to a predetermined temperature suitable for hot rolling, a temperature above the transformation point, in fact, for example, 1 200.
  • a process is adopted in which rolled materials such as billet mills are extracted one by one from the heating furnace and rolled in each rolling mill row from the top end to the bottom end of the billet. Yes.
  • the temperature distribution in the longitudinal direction decreases from the top end to the bottom end.
  • the material to be rolled when paying attention to an arbitrary position in the longitudinal direction has a large temperature drop especially in the part on the side of the ball because the rolling speed is slow at the beginning of rolling, and then the rolling speed gradually increases.
  • a factor for increasing the temperature is added by the heat generated by the process, and at the end of rolling, the cross-sectional area of the material to be rolled becomes small, so the heat release rate increases and the temperature decreases.
  • the longitudinal temperature distribution of the material to be rolled is complex and has a large fluctuation
  • the rolling line speed is extremely high near the end of the production line.
  • an auxiliary heating device, cooling device, etc. were installed at an intermediate position on-line in the wire rolling process to control the temperature of the material to be rolled.
  • the temperature of the material to be rolled is controlled in the warm rolling region, and the wire diameter is rolled to about 1 to 25 mm, to 1 mm or less.
  • a steel wire having a wire diameter of about 5 to 38 mm is once manufactured by hot rolling in the wire rolling process, and as described above, this is performed by drawing or cold rolling. Manufactured into fine steel wire.
  • drawing method it is necessary to wire the tip of the workpiece to the die, and to lock the tip to the drawing drum via a chuck, which depends on manual work. Since the area reduction per pass is small, many times of drawing and a lot of man-hours are required to produce a thin steel wire with the desired diameter. These increase as the wire diameter decreases.
  • H igh SFE high stacking fault energy
  • the present inventors previously described a method for rolling steel wire rods in the range of the warm working temperature at a rolling temperature of 3500 to 800, more preferably in the low temperature range of 400 to 6
  • the microscopic local orientation difference of the crystal grain due to this strain becomes the origin of the fine crystal grain, and during or after processing
  • the crystal grain boundaries can be formed at the same time as the dislocation density in the grains decreases, and a fine grain structure can be formed, that is, 80 0 which was regarded as the lower limit of the recrystallization temperature. Even if it is processed at a temperature lower than this, dynamic recovery or recrystallization occurs simultaneously with the processing.
  • Patent Document 1 Refined crystal grains By utilizing the fact that it is Rukoto, average particle size by obtaining the following fine crystal grains 2 im, it has proposed a technique of manufacturing a and cold heading properties to steel excellent in high strength (Patent Document 1).
  • the predetermined critical strain is a total area reduction ratio R T with respect to a material. t is 50% or more.
  • the total area reduction rate R T. t must be 40% or more, or the plastic strain introduced into the material by rolling is 0.7 or more in terms of the average plastic strain into the material calculated by the three-dimensional finite element method.
  • the inventors of the present invention have applied the warm rolling technology proposed in Patent Document 1 and Patent Document 2 above, or other similar documents similar thereto, to a steel wire that is a material in the secondary or tertiary processing steps described above. Or, it is applied to the manufacturing technology field of steel wire (steel fine wire) and further developed, thereby improving the quality of steel fine wire (specifically, no heat treatment is required to improve strength and ductility) and stabilization. In addition, we focused on the need to improve production efficiency. To establish such technology, the following matters are necessary.
  • the conventional wire diameter is about 5 to 38 mm (preferably, the upper limit is about 60 mm in consideration of future demand trends and technological development). It is necessary to establish a manufacturing technology for obtaining an ultrafine grain structure by predetermined warm-controlled rolling without dividing a hot-rolled coil having a weight of about 0.5 to 2 t or more,
  • the unrolled coil (rolled material) that travels after being rewound is rapidly heated to the temperature in a predetermined warm region, and 2) the heated controlled material is immediately warm-controlled rolled.
  • the rolling temperature is limited to the range of 35 to 85, and the temperature of the material to be rolled.
  • the material to be rolled is processed from multiple directions during one rolling process cycle, from the heating of the unwound coil to the cooling through the rolling process and the winding again into the coil. It is desirable to introduce the required strain into the material to be rolled. If the required strain cannot be introduced in one rolling process cycle, the process may be performed multiple times. 5) In addition, the above conditions 1) to 4)
  • Patent Document 1 Japanese Patent Application 2003—435980
  • Patent Document 2 Japanese Patent Application 2003—180291
  • Non-patent document 1 Iron and steel, vo l 89 (2003) No. 7, p 47 ⁇
  • Non-Patent Document 2 Steel Handbook (3rd edition), III (2), Steel bar, Steel pipe and rolling common equipment, S 61. 1. 20, p. 816-838, p 8
  • the invention of the present application manufactures a metal wire or metal wire having a desired diameter as a material for a secondary processing step or a material for a tertiary processing step (both referred to as “metal thin wire” in the present application) by rolling with a hole roll. Even if the manufactured fine metal wire is not subjected to special heat treatment, it has an excellent level of strength and ductility, and has not been obtained by rolling while continuously heating. The objective is to produce a large single-thin metal thin wire with high production efficiency.
  • the present inventors diligently conducted testing and research in order to solve the above problems, and obtained the following conclusion.
  • Strengthening machine by phase transformation by rolling It is only necessary to refine crystal grains without substantially using the structure, and in order to produce a large single-thin metal wire that has not been obtained in the past with high production efficiency, rolling the material to be rolled Supplying on the line is carried out continuously, and the material to be rolled is rapidly heated to a predetermined temperature range and charged into the rolling mill. Subsequently, the temperature of the material to be rolled in the rolling process is continuously increased. It was found that continuous rolling could be performed by controlling the temperature to a predetermined temperature condition by auxiliary rapid heating.
  • warm controlled rolling is performed on the metal material to be rolled by the same method as described above.
  • Rolling equipment will be installed to enable continuous production of controlled rolling in such a warm condition and manufacture large single-coil coiled metal wires.
  • the important equipment for that purpose is to arrange well-known heating technology, especially rapid heating equipment, perform the method of use and operation suitable for the above-mentioned warm controlled rolling, as well as appropriate strain, preferably large strain It has been found that this can be achieved by implementing an appropriate rolling pass schedule to introduce
  • the present invention introduces the knowledge obtained by the inventors of the present invention and the technology based on this to the conventional metal wire manufacturing technology, and continuously introduces a large strain in the material to be rolled during warm rolling.
  • strain The technology for manufacturing large single heavy metal wires (metal wire or metal wire) has been completed by controlled rolling technology.
  • the gist of the present invention is as follows. However, in this specification, “true strain” and “plastic strain” are collectively referred to as “strain”. Each is defined as follows.
  • R ⁇ (S. One S aft ) / S 0 ⁇ X 100 ⁇ ⁇ ⁇ ⁇ (6)
  • c cross-sectional area refers to a cross-sectional area of a plane perpendicular to the rolling direction. The same applies hereinafter.
  • the plastic strain (expressed as ⁇ ) is defined by the value calculated by the following equation (7) based on the following calculation procedure using the well-known three-dimensional finite element method. That is,
  • a metal wire or a method of manufacturing a metal wire wherein a metal material traveling on a rolling line is heated, and the heated metal material is arranged in series.
  • a metal wire or a metal wire is produced by continuous rolling with a plurality of rolling mills.
  • the temperature of the material to be rolled from the start of rolling to the end of rolling is controlled within the range of the warm rolling temperature determined according to the type of the metal material, and from the start of rolling to the end of rolling.
  • the true strain to be introduced into the material to be rolled is specified as follows. That is, as described above, the true strain is expressed by the following equation (1):
  • the metal material traveling on the travel line refers to a metal material as a material to be rolled that can be moved from upstream to downstream by a support port or a pinch roll or the like.
  • the metal material is steel.
  • it refers to a rolled material made of metal Mg, metal A 1, metal Cu and metal Ti, and any of Mg alloy, A 1 alloy, Cu alloy and Ti alloy. .
  • the warm rolling temperature determined according to the type of each metal material is within the range of the normal warm rolling temperature allowed for each type of metal material.
  • rolling this metal material continuously means that the material to be rolled made of the metal material has a certain length and weight as one unit, and is uniformly distributed by a plurality of rolling mills from the front end to the rear end. It means continuous rolling. The same applies hereinafter.
  • the method of manufacturing a metal wire or metal wire according to the second invention of the present application is characterized in that, in the first invention, the true strain e is rolled so that e ⁇ 0.70. It is.
  • the method of manufacturing a metal wire or metal wire according to the third invention of the present application is characterized in that, in the first invention, the true strain e is rolled so that e ⁇ l.38. It is.
  • a metal wire or a method of manufacturing a metal wire according to the first to third aspects wherein the metal material traveling on the rolling line is wound in a coil shape before being heated.
  • the metal wire or metal wire that has been continuously rolled by the plurality of rolling mills is characterized in that it is wound again in a coil shape.
  • a metal wire or a method for producing a metal wire according to any one of the first to fourth aspects, wherein the material to be rolled is heated immediately before the first rolling mill. It is characterized by rapid heating to a predetermined temperature within the range of the hot rolling temperature.
  • rapid heating means that the temperature of the material to be rolled is heated to the predetermined temperature by the time the continuously rolled metal material is swallowed by the first rolling mill. That means. Therefore, the energy supply rate for the material to be rolled is adjusted depending on the wire diameter and wire speed of the material to be rolled, physical constants such as specific heat and thermal conductivity, and the heating efficiency of the heating device.
  • immediate before the first rolling mill means that the rolling mill is rapidly heated to the predetermined temperature. This is a measure to minimize the temperature drop.
  • auxiliary rapid heating means that when the material to be rolled is rapidly heated to reach a predetermined temperature and rolled as described in the fifth invention, and the temperature drops after this rolling, In the meantime, it is heated so that it is raised again within a predetermined temperature range until it is swallowed by the rolling mill.
  • a metal wire or a metal wire manufacturing method according to a seventh invention of the present application is any one of the first to sixth inventions, wherein a rolling pass schedule by a rolling mill having a hole shape of the material to be rolled includes a C section.
  • the rolled material having a square shape or a round shape is rolled with a rolling machine having an oval hole shape, formed into a rolled material having an O-shaped C cross section, and the rolled material thus obtained is It includes a pass schedule for rolling on a rolling mill having a die or a rolling mill having a diamond hole die.
  • this pass schedule the length between the opposite sides or the diameter of the oval hole-type maximum short axis length (denoted as A) of the material to be rolled whose C section has a square shape or a round shape (whichever AZ B is characterized by rolling with a rolling mill having a hole shape satisfying AZ B ⁇ 0.75. It is desirable that A / B ⁇ 0.60.
  • the metal wire or metal wire manufacturing method according to the eighth invention of the present application is any one of the first to seventh inventions, wherein the rolling pass schedule further includes a square hole type or diamond hole type top and bottom.
  • the ratio C ZD to the length of the long axis (denoted as D) of the length between diagonals (denoted as C) to the rolled material with the C cross section formed into an opal shape is C ZD ⁇ 0. It is characterized by rolling with a rolling mill having a hole shape satisfying 75.
  • a metal wire or a method of manufacturing a metal wire according to a ninth invention of the present application is the seventh or eighth invention, wherein the material to be rolled whose C cross section is formed into an opal shape is a rolling mill having a square hole shape or Instead of rolling with a rolling mill having a diamond hole mold, it is characterized by rolling with a rolling mill having a box hole mold.
  • a metal wire or a method of manufacturing a metal wire according to the ninth aspect wherein the box hole is formed with respect to a long axis length D of a material to be rolled whose C cross section is formed into an opal shape.
  • the ratio of the top-to-side length (denoted as C ') of the mold, C'ZD, is characterized by satisfying C'ZD ⁇ 0.75.
  • the manufacturing method of the metal wire or metal wire according to the 11th invention of the present application is as follows.
  • rolling by a rolling mill having the above-mentioned oval hole type is performed by using the maximum short axis length A of the oval hole type and its long axis length (denoted by E) and
  • the ratio AZ E is characterized by using a rolling mill having a uniform hole shape satisfying AZ EO .40.
  • the manufacturing method of the metal wire or the metal wire according to the 12th invention of the present application is the method according to any one of the 7th to 11th inventions, wherein the rolling by the rolling mill having the opal hole shape is the above-mentioned opal hole type.
  • the method of manufacturing a metal wire or metal wire according to the invention of the third aspect of the present application is the invention according to any one of the seventh, eighth, first 1 or 1 or 2, wherein the pass schedule includes the opal hole type. It is characterized in that rolling is performed twice or more times in combination with a rolling mill having the above-described square hole mold or a rolling mill having a diamond hole mold.
  • the method of manufacturing a metal wire or a metal wire according to the 14th invention of the present application is the rolling pass schedule according to any one of the 1st to 13th inventions, by a rolling machine having each of the above hole types of the material to be rolled. Is characterized in that the perforated shape includes a combined pass schedule of square, diamond or box followed by square, diamond, box or round.
  • the method of manufacturing a metal wire or a metal wire according to the 15th invention of the present application is the method according to any one of the first to 14th inventions, wherein the temperature of the material to be rolled is determined according to the type of the metal material. Further, the present invention is characterized in that a series of steps of rolling the material to be rolled by the rolling mill having each of the above-described hole shapes is repeated at least two times while being controlled within the range of the warm rolling temperature.
  • the method of manufacturing a metal wire or metal wire according to the 16th invention of the present application is the first rolling by repeating the above series of steps in two or more steps in any of the first to 15th inventions. From the start of rolling in the process to the final rolling process The true strain to be introduced into the material to be rolled before the end of rolling is specified as follows. That is, the true strain is expressed by the following equation (2):
  • S 0 Area of C section of rolled material before rolling start in first rolling process
  • S Tol True strain e T expressed by area of C section of rolled material after rolling in final rolling process.
  • t is e T. It is characterized by rolling that satisfies t ⁇ 0.25.
  • the manufacturing method of a metal wire or a metal wire according to a seventeenth invention of the present application is the true strain e T according to the sixteenth invention.
  • t is e T. It is characterized by satisfying t ⁇ 0.70.
  • the method for producing a metal wire or a metal wire according to an eighteenth invention of the present application is the true strain e T according to the sixteenth invention.
  • t is e T. It is characterized by satisfying t ⁇ l.38.
  • the following nineteenth to thirty-second inventions of the present application relate to a warm-controlled continuous rolling facility suitable for producing a metal wire or a metal wire from a metal material.
  • the warm controlled continuous rolling processing equipment is provided with a coil unwinding device and a coil scraping device, and a plurality of rolling mills are arranged in series between these devices, and the coil winding
  • the large-capacity rapid heating apparatus refers to a heating apparatus having the ability to perform rapid heating as described in the fifth invention described above. That is, if the length of the heating device is v, the moving speed of the material to be rolled is v, and the moving time of the material to be heated in the heating device is t, the time of the material to be heated is between t: LZv. It means a heating device having the ability to raise the temperature to a predetermined heating temperature: T.
  • the position where the large-capacity rapid heating device is provided is the entrance side of the first rolling mill and is provided at a position that is substantially closest to the rolling mill.
  • the equipment is installed as close as possible to this rolling mill with the equipment and equipment attached to it so that it can perform its normal rolling function.
  • the reason why the large-capacity rapid heating apparatus is provided at a position that is in the immediate vicinity is that the material to be rolled that is rapidly heated and soaked to the required temperature by the large-capacity rapid heating apparatus is This is to make it possible to easily carry out temperature-controlled rolling in the warm state by preventing the temperature drop as much as possible before it is swallowed into the machine.
  • the warm-controlled continuous rolling processing facility according to the 20th invention of the present application is the entry side of at least one of the second and subsequent rolling mills of the above-mentioned plurality of rolling mills in the 19th invention.
  • an auxiliary rapid heating device is further installed at a position that is substantially closest.
  • the auxiliary rapid heating device refers to a heating device having the ability to perform the auxiliary rapid heating as described in the sixth invention.
  • the warm-controlled continuous rolling processing facility is the same as the nineteenth or twenty-first invention, wherein the large-capacity rapid heating device is a metal fiber gas burner, a ceramic porous plate gas burner, or the like. It is characterized in that it comprises a heating device that is a combination of one or two or more of the following surface combustion type gas burner device, energizing resistance heating device, electromagnetic induction heating device, and electric resistance heating element radiation heating device. Is.
  • any of the various heating devices may be any known technology.
  • the warm controlled continuous rolling processing facility according to the second invention of the present application is the invention according to the second or second invention, wherein the auxiliary rapid heating device is a metal fiber gas burner, a ceramic perforated plate gas burner or the like.
  • the auxiliary rapid heating device is a metal fiber gas burner, a ceramic perforated plate gas burner or the like.
  • Surface combustion type gas burner device, conduction resistance heating device, electromagnetic induction heating device, and electric resistance heating element radiation heating device Among these, it is characterized by comprising a heating device of any one kind of heating device.
  • the warm controlled continuous rolling processing facility is the invention as set forth in any one of the first to ninth inventions, wherein the plurality of rolling mills are provided with an opal hole type in the rolling mill group. And a rolling mill having a square hole mold, a rolling mill having a diamond hole mold, and a rolling mill having a round hole mold are disposed next to the rolling mill. It is characterized by including a combination of arrangements of rolling mills.
  • the warm controlled continuous rolling processing facility is the invention according to any one of the 19th to 22nd inventions, wherein the plurality of rolling mills are at least as the plurality of rolling mills, Including any one of a rolling mill having a global hole mold, a rolling mill having a square hole mold, a rolling mill having a diamond hole mold, a rolling mill having a box hole mold, and a rolling mill having a round hole mold.
  • One of the features is that it includes a rolling mill arrangement combination.
  • the warm controlled continuous rolling processing facility according to the 25th invention of the present application is the invention according to any one of the 19th to 24th inventions, on the downstream side of the last rolling mill of the plurality of rolling mills, It is characterized by the provision of a sizing device.
  • the sizing device is a rolling device whose main purpose is simply to finally adjust the cross-sectional shape of the fine metal wire in principle, and the main purpose is to perform rolling while introducing appropriate strain. It is not a rolling mill. Therefore, when this sizing device is provided, all of the multiple rolling mills described so far are designed with the primary purpose of rolling while introducing appropriate strain. It may also include a device whose main purpose is sizing.
  • the warm controlled continuous rolling processing equipment according to the 26th invention of the present application is the In any one of the inventions according to 25, a slack adjusting device for the material to be rolled that is unwound from the coil rewinding device and travels is provided at least at one position between the plurality of rolling mills. It has a special feature.
  • the slack adjusting device prevents or eliminates the slack of the material to be rolled between the rolling mills, and transmits the slack information from the slack adjusting device to the rolling mill so as to eliminate the occurrence of slack. It is used so that the roll rotation speed of the machine is automatically controlled.
  • the slack adjusting device is not for applying a predetermined tension to the material to be rolled in order to perform so-called tension rolling.
  • the warm controlled continuous rolling processing facility according to the 27th invention of the present application is the invention as set forth in any one of the 19th to 26th inventions, wherein the roll to be run is located on the entry side of each of the plurality of rolling mills. It is characterized in that an entry side guide device for guiding the material to each rolling mill is provided.
  • the entry side guide device means that the material to be rolled (metal wire) is twisted and prevents the metal wire from falling down when it is swallowed into the rolling slot. This is a device for preventing the occurrence of surface flaws.
  • the warm controlled continuous rolling processing facility according to the 28th invention of the present application is the invention as set forth in any one of the 19th to 27th inventions, wherein on the exit side of each of the plural rolling mills,
  • the present invention is characterized in that a delivery side guide device is provided for deriving a material to be rolled that is discharged from each rolling mill.
  • the warm controlled continuous rolling processing facility according to the 29th invention of the present application is the invention according to any one of the 19th to 28th inventions, wherein the coil unwinding device and the large-capacity rapid heating device are It is characterized by straighteners and Z or pinch rolls.
  • the warm controlled continuous rolling processing facility according to the 30th invention of the present application is the invention as set forth in any one of the 19th to 29th inventions, for cooling the traveling steel wire upstream of the coil winding device. This is characterized in that a cooling device is provided.
  • the warm controlled continuous rolling processing equipment comprises: In any one of the inventions according to 30, the inlet side temperature of an arbitrary rolling mill of the material to be run is controlled on the inlet side of an arbitrary rolling mill except the first rolling mill among the plurality of rolling mills. It is characterized by the provision of a rapid adjustment cooling device for this purpose.
  • the warm-controlled continuous rolling processing facility is the invention according to any one of the nineteenth to third-first inventions, wherein the material to be rolled on the entry side and the exit side of each of the plurality of rolling mills. It is characterized by a temperature control mechanism for controlling the temperature.
  • the following 33rd to 44th inventions of the present application are the above-mentioned warm controlled continuous rolling processing equipment according to the 19th to 32nd inventions, particularly when steel wire or steel wire manufacturing equipment is used appropriately.
  • the present invention relates to a coiled steel wire or a method of manufacturing a steel wire that can be advantageously manufactured.
  • the manufacturing method of the coiled steel wire or the steel wire according to the thirty-third invention of the present application is such that the running steel wire is heated, and the heated steel wire is continuously formed by a plurality of rolling mills arranged in series.
  • a steel wire or a steel wire is manufactured, and temperature-controlled rolling is performed under the following conditions. That is, the temperature of the material to be rolled from the start of rolling to the end of rolling is controlled within the range of 350 to 850, and the temperature of the material to be rolled is expressed by the following equations (3) and (4):
  • n the base of the rolling mill
  • r the rolling mill order, and represents any number from No. 1 to n-1 and in is It is characterized in that control is performed so that (right) just before entering the rolling mill and “out” is immediately after exiting from the rolling mill).
  • the method of manufacturing a coiled steel wire or steel wire according to the thirty-fourth invention of the present application is the thirty-third invention, wherein the temperature of the material to be rolled from the start of rolling to the end of rolling is within the range of 400 to 650. It is characterized by control.
  • a coiled steel wire material or a method of manufacturing a steel wire according to the thirty-fifth aspect of the present invention is provided by: A method of producing a steel wire or a steel wire by heating a steel wire to be rolled and continuously rolling the heated steel wire with a plurality of rolling mills arranged in series.
  • the temperature of the material to be rolled up to the end is controlled within the range of 40 O to 650, and the material to be rolled is rolled by a rolling mill having an oval hole mold, and then a rolling mill having a square hole mold, diamond It is characterized in that it includes a pass schedule for rolling in any of a rolling mill having a hole mold, a rolling mill having a round hole mold, and a rolling mill having a box hole mold.
  • the method for producing a coiled steel wire material or a steel wire according to the thirty-sixth aspect of the present invention includes rolling by a rolling mill having a normal hole shape in any of the thirty-third to thirty-fifth aspects of the invention, Furthermore, the true strain to be introduced into the material to be rolled between the start of rolling and the end of rolling is defined as follows.
  • the true strain e ′ expressed by is characterized by rolling so that e′ ⁇ 0.25.
  • the manufacturing method of the coiled steel wire material or the steel wire according to the thirty-seventh invention of the present application is the thirty-sixth invention, wherein the true strain e ′ is rolled so that e′ ⁇ 0.70. It has the characteristics.
  • the manufacturing method of the coiled steel wire material or the steel wire according to the thirty-eighth aspect of the present application is the thirty-sixth aspect, wherein the true strain e ′ is subjected to rolling so that e′ ⁇ l.38. It has a special feature.
  • a manufacturing method of a coiled steel wire material or a steel wire according to any one of the thirty-third to thirty-fifth aspects, wherein a rolling mill having a single hole type is included in the rolling mill.
  • rolling by a rolling mill having the oval hole shape is included.
  • the plastic strain calculated by using the three-dimensional finite element method (expressed as ⁇ ) is 50% by volume or more of the material to be rolled, ⁇ 0. It is characterized in that it is rolled so as to be 7.
  • area% may be used instead of volume%.
  • the manufacturing method of the coiled steel wire or steel wire according to the 40th invention of the present application is the rolling process according to the 39th invention, wherein the plastic strain ⁇ is further increased and ⁇ 1.5. It has the feature in giving.
  • the manufacturing method of the coiled steel wire or the steel wire according to the 41st invention of the present application includes rolling by a rolling mill having an opal hole shape in any of the 33rd to 40th inventions.
  • the C section of the material to be rolled by the rolling mill having the opal hole shape has a quadrangular shape or a round shape, and the length or diameter between opposite sides of the material to be rolled (both are expressed as ⁇ ).
  • the ratio of the maximum short axis length (denoted as ⁇ ) of the above opal hole type to ⁇ / ⁇ satisfies the condition A / B ⁇ 0.75.
  • the manufacturing method of the coiled steel wire material or the steel wire according to the 42nd invention of the present application is based on the 41st invention, wherein the ratio ⁇ / ⁇ is limited to a narrower range, and ⁇ ⁇ 0.6 It is characterized by satisfying the following conditions.
  • the manufacturing method of the coiled steel wire material or the steel wire according to the fourth invention of the present application includes a rolling mill having an oval hole type in any one of the third to fourth inventions.
  • a rolling mill having a square hole type or a diamond hole type is provided next to the rolling mill, and the length of the rolled material having a C-shaped cross section formed by the rolling machine having the above-mentioned normal hole type is shown.
  • Ratio of the square-to-diagonal length of the square hole type or diamond hole type (both expressed as C) to the axial length (denoted as D) C / D must satisfy CZD ⁇ 0.75 It has the characteristics.
  • the manufacturing method of the coiled steel wire or the steel wire according to the 44th invention of the present application is as follows.
  • the process from the start of rolling of the material to be rolled to the end of rolling is characterized by repeating two or more steps.
  • a method for producing a coiled steel wire material or a steel wire according to the 45th aspect of the present invention provides:
  • a plastic strain calculated using a three-dimensional finite element method introduced into the material to be rolled between the start of rolling in the first rolling process and the end of rolling in the final rolling process.
  • it is characterized in that it is subjected to a rolling process such that ⁇ 1.5 in an area of 50% by volume or more of the material to be rolled.
  • the method of manufacturing a coiled steel wire or a steel wire according to the 46th invention of the present application is the method according to any one of the 33rd to 43rd inventions, wherein the process from the start of rolling of the material to be rolled to the end of rolling is performed in 3 steps Or, by repeating the four steps, the true strain to be introduced into the material to be rolled is defined as follows between the start of rolling in the first rolling step and the end of rolling in the final rolling step.
  • S 0 ' Area of C cross section of rolled material before starting rolling in first rolling process
  • S Iol ' True strain e T expressed by area of C cross section of rolled material after rolling in final rolling process. But e T. ⁇ 1. It is characterized by performing the rolling process to be 38.
  • the method of manufacturing a coiled steel wire or steel wire according to the 47th aspect of the present invention is the rolling process according to the 46th aspect, wherein one step of the material to be rolled includes two rolling mills arranged in series. It is characterized by being performed using equipment.
  • a coiled steel wire or a steel wire is manufactured using a rolling processing facility in which a rolling line for performing one process is constituted by two rolling mills.
  • the operation of the schedule, etc. is rich in elasticity and sufficient fine crystal grains can be obtained. It is a method that can produce steel wire or steel wire with excellent material properties (strength and ductility) and is one of the most desirable production methods.
  • the method for manufacturing a coiled steel wire or steel wire according to the 48th invention of the present application is as follows.
  • any one of the inventions from 3 3 to 4 3 the process from the start of rolling to the end of rolling of the material to be rolled is repeated three or more steps, so that the rolling in the first rolling process is started in the final rolling process.
  • ⁇ 2.0 It is characterized by performing a rolling process to become
  • the method of manufacturing a coiled steel wire or steel wire according to the 49th invention of the present application is as follows.
  • the plastic strain ⁇ is further increased and rolling is performed so that ⁇ 3.0.
  • the method of manufacturing a coiled steel wire or steel wire according to the 50th invention of the present application is the temperature described in any of the 19th to 32nd inventions in any of the 33rd to 49th inventions. It is characterized by rolling the traveling steel wire using a continuous controlled rolling mill.
  • the method of manufacturing a coiled steel wire or steel wire according to the 51st invention of the present application is as follows.
  • At least one of the plurality of rolling mills, at least one rolling mill and a sizing mill, or a sizing mill, or these or these are emptied.
  • This is characterized in that the material to be rolled is rolled to the target cross-sectional shape dimensions without temporarily removing the material from the rolling online.
  • the 52nd invention of the present application relates to a coiled steel wire or a steel wire. That is, by using the coiled steel wire material or the method for producing a steel wire according to any one of the above 3rd to 3rd items, the average crystal grain size is the C cross-sectional area. It is characterized in that 90% or more of the area is finely divided to 1.0 jm or less.
  • the coiled steel wire or steel wire according to the 53rd invention of the present application is the average crystal grain size formed in the region of 90% or more of the area of the C cross section of the rolled material in the 52nd invention. However, it is characterized by being finely divided to 0.6 m or less.
  • FIG. 1 is an example of a schematic configuration diagram illustrating a warm-controlled continuous rolling processing facility for producing a fine wire according to the present invention.
  • FIG. 2 is an explanatory diagram of various types of perforated rolls and part names of the perforated types, and various materials to be rolled and their part names.
  • FIG. 3 is an explanatory view of a part of the oval hole type.
  • FIG. 4 is a schematic configuration diagram of the warm-controlled continuous rolling processing equipment used in Example 1.
  • symbol in a figure shows the following.
  • the present invention has the configuration and characteristics as described above. Therefore, the formation of the present invention and its characteristics will be further clarified, and the embodiment of the present invention and the reasons for limiting the aspects in the embodiment will be described.
  • FIG. 1 is an example of a warm-controlled continuous rolling processing facility according to the present invention suitable for carrying out the metal wire or the metal wire manufacturing method according to the present invention, in which steel is taken up as the type of metal material.
  • a schematic configuration diagram of a large strain warm controlled continuous rolling processing equipment suitable for carrying out a method of manufacturing a large single-coil coiled steel wire having a fine grain structure is illustrated.
  • coil unwinding device 1 straightener 2, pinch roll 3, large-capacity rapid heating device 4, support roll 5, inlet side guide device 6, first rolling mill 7, outlet side guide A device 8 and a slack adjusting device 9 are provided.
  • auxiliary rapid heating devices 1 0, 1 4 and 1 8, inlet side guide devices 1 1, 1 5 and 1 9, and outlet side guide devices 1 3, 1 7 and 2 1 are provided.
  • a sizing device 2 2, a cooling device 2 3, and finally a coil winding device 2 4 are provided.
  • a temperature control mechanism (not shown) is provided, and a temperature measuring device for the material to be rolled on the entrance side and the exit side of each rolling mill, and measurement information from these are processed, and a large-capacity rapid heating device, The temperature of the material to be rolled is controlled through an auxiliary rapid heating device and a cooling device.
  • a rapid adjustment cooling device (not shown) may be provided on the exit side of the exit side guide device of each rolling mill.
  • the coil rewinding device 1 As the coil rewinding device 1, a well-known horizontal uncoiler is used, and a coiled steel wire having a wire diameter of about 5 to 25 mm is loaded as a material to be rolled. While rewinding the wire rod 2 5, straighten it with a straightener 2 to make the travel speed of the steel wire rod (rolled material) 2 5 a predetermined value. As shown, the pinch roll 3 is adjusted and the next large-capacity rapid heating device 4 is continuously charged. As a result, the steel wire rod 25 heated to the predetermined warm rolling temperature passes through the support roll 5 and is guided to the rolling mill 7 by the entry side guide device 6 so that the steel wire rod 25 does not fall down. It is swallowed into a predetermined single hole type of a rolling mill.
  • the cross-sectional shape of the material to be rolled is a wire rod 25 other than a circle
  • a four-way roller type support roller guide or the like is desirable.
  • the steel wire rod 25 within a predetermined temperature range is processed by warm controlled rolling in which a predetermined strain is introduced by the first rolling mill (first rolling mill) 7, and then the delivery guide device Then, the slack adjustment device 9 is adjusted so that the material to be rolled does not slack by adjusting the speed of the rolling roll in conjunction with the rolling mill 7 and is run.
  • the material to be rolled enters the auxiliary rapid heating apparatus 10.
  • the material to be rolled is rapidly repaired and heated by the auxiliary rapid heating device 10 until the temperature lowered during the rolling reaches a predetermined warm rolling temperature in the second rolling mill 12.
  • the entry side guide device 11 of the second rolling mill is also preferably a four-way roller type support roller guide from the viewpoint of preventing the material to be rolled from falling. The same applies to the exit side guide device 13.
  • the material to be rolled is warm-rolled by the third rolling mill 16 and the fourth rolling mill (last rolling mill) 20.
  • the cross-sectional shape is adjusted by the sizing device 2 2 and cooled by the cooling device 2 3, the fine steel wire 2 6 is scraped off by the coil scraping device 2 4.
  • An appropriate rolling pass schedule can be determined as appropriate depending on the relationship between the cross-sectional dimension of the steel wire rod 25, which is the starting material, and the cross-sectional dimension of the steel wire rod 26, which is the finished material.
  • a steel fine wire 26 having a target wire diameter may be obtained by repeating the above-described rolling process by the warm controlled continuous rolling processing equipment 27 a plurality of steps.
  • sizing equipment 2 2 is used in the final rolling process.
  • the rolling roll may be evacuated or the mouthpiece may be removed by sliding.
  • each metal species is not used at all without using a mechanism for strengthening due to phase transformation at all. This is done by using the principle of reducing the grain size by introducing an appropriate strain in the appropriate temperature range for warm rolling. Also, there is no need to add an alloying element to increase the strength.
  • steel it can be applied to steels with a wide range of chemical composition such as ferritic single-phase steels and austenitic single-phase steels that do not have phase transformation.
  • the wire material or the wire is the object.
  • the invention of the warm controlled continuous rolling processing equipment Is a facility applicable to the manufacture of hoops and thin-plate coils without being limited to wire or wire.
  • the rolling temperature of the material to be rolled is set as the warm rolling temperature range of the steel, and the temperature from immediately before the start of rolling to immediately after the end of rolling is limited to a range of 3 5 0 to 8 50 *.
  • the reason for limiting to this temperature range is as follows.
  • the local orientation difference of microscopic crystal grains caused by introducing large strains due to processing in a so-called warm rolling region is a fine crystal grain.
  • the transition density in the crystal grains decreases and at the same time the grain boundaries are formed and a fine grain structure is formed.
  • the rolling temperature condition is set to be strict within the range of 400 to 65, instead of within the range of 350 to 85. This allows the grains The steel fine wire having higher strength and higher ductility can be obtained.
  • the temperature T r + 1 of the material to be rolled 25 on the exit side of each of the second and subsequent rolling mills 12, 16, and 20 is within the range of 1 to 50-50, and the temperature T 4 of the material to be rolled 25 on the exit side of the last rolling mill (fourth rolling mill 20).
  • r is 1, 2 or 3 and represents the order from the most upstream side of the rolling mill.
  • the temperature of the material to be rolled on the entry side of a certain rolling mill and the entry side of the preceding rolling mill The difference between the temperature and the temperature of the material to be rolled is defined for the following reason, that is, to promote the reliable and stable refinement of the grain size of the finished material (fine steel wire) and the sizing. This will be explained below.
  • the grain size of the material after rolling is governed by the rolling parameter T expressed as a function of the rolling temperature T and the average plastic strain rate ⁇ ⁇ ⁇ in the following formula (B), and the crystal structure of the material to be rolled is, for example, bec
  • the target value of the average crystal grain size is determined, the target value of the average crystal grain size is achieved by controlling the rolling so that the Z value corresponding to this target value is obtained.
  • Average plastic strain introduced into the material to be rolled (determined by a three-dimensional finite element method), or simply true strain.
  • the rolling temperature range for each pass (T r + 1 in Equation (3) above, the value corresponding to ul — T r in ) is smaller, and the rolling temperature is higher.
  • the fluctuation amount of the rolling temperature T in equation (B) also tends to be small, so the fluctuation amount of Z is also small.
  • T r + 1 in the above equation (3) Decreasing the fluctuation range of the value of ul — T i n reduces the fluctuation amount of the rolling temperature T in the equation (B). Therefore, T r + 1 .
  • the fluctuation amount of Z can be controlled to be small.
  • the fluctuation amount (variation range) of the average crystal grain size which is the target value, should also be reduced. Can do. In other words, it becomes possible to achieve the target average crystal grain size of the material to be rolled with high accuracy, and as a result, the refinement of crystal grains can be ensured and the average crystal grain formed in the material to be rolled Since the diameter distribution range is narrowed, the mixed particle size is improved to the sized particle size distribution.
  • Thinning is promoted and crystal grains are sized.
  • this grain sizing interactively further promotes the refinement of crystal grains and contributes to improvement of material properties, particularly strength and ductility.
  • the difference between the temperature of the material to be rolled on the outlet side to the fourth rolling mill and the temperature of the material to be rolled on the inlet side to the first rolling mill Is specified within the specified temperature range by performing the warm control rolling in this way, in accordance with the above-mentioned reason for the formula (3) and by the formula (4). This is because it is possible to achieve the target average crystal grain size with high accuracy and to achieve the grain-sizing effect.
  • the temperature condition of the material to be rolled 25 is changed to the following formulas (3 ′) and (4 ′) instead of the above formulas (3) and (4):
  • the large-capacity rapid heating device 4 is an important device for that purpose.
  • the maximum value of the starting wire diameter of the steel wire 25 is, for example, 60 mm.
  • the temperature lowered during and after the rolling by the first rolling mill is compensated and similarly rolled in a predetermined warm temperature region.
  • auxiliary rapid heating is performed up to a predetermined temperature.
  • an auxiliary rapid heating device 10 provided immediately adjacent to the entry side of the second rolling mill 12 is used according to the temperature, wire diameter, wire speed, and heat generation amount of the material being rolled. Use to heat to required temperature.
  • the temperature of the material to be rolled is similarly controlled.
  • the temperature of the material to be rolled immediately before rolling by each rolling mill and the material after rolling immediately after rolling It is important to be able to follow the control with high accuracy.
  • information on the temperature change of the material to be rolled, which has decreased due to heat transfer and heat dissipation to the rolling roll while being rolled by the former rolling mill, is captured.
  • the temperature of the material to be rolled is controlled from the start to the end of rolling.
  • the large-capacity rapid heating device 4 and auxiliary rapid heating devices 10, 14, and 18 are all suitable for their heating method and heat source, such as metal fiber gas burners or ceramic perforated plate gas burners. Any of a gas burner device, an energizing resistance heating method for energizing the material to be rolled, an electromagnetic induction heating method, an electric resistance heating element radiation heating device, or the like may be used. All of these need to be considered so as to be able to follow the rapid heating described above, and those proposed so far or known techniques can also be used.
  • the combustion surface is covered with a cloth-like material (for example, a knit-felt-like material) formed of heat-resistant metal fibers in the opening of a metal casing having an open front.
  • a cloth-like material for example, a knit-felt-like material
  • a heat-resistant metal such as heat-resistant steel or Inconel is used as the heat-resistant metal, which is processed into a fiber shape, and is made into a cloth-like material by a knitting method or a woven processing method.
  • the front surface is covered with a felt flat plate metal fiber having an appropriate outer surface, and both sides and the bottom surface are covered with a heat insulating material.
  • Felt flat plate type In order to sandwich the material to be rolled with an appropriate gap, the fiber is placed in two or three directions so as to be symmetrical with the material to be rolled. Then, a premixed gas of fuel gas and air is introduced from the outside into the combustion / heating chamber and burned to red heat the felt plate-like metal fiber, and the metal fiber and gas burner in such a state are rolled. Rapid heating of the material.
  • the surface gas burner may be formed in a halved cylindrical shape.
  • the temperature of the material to be rolled is controlled by the gap between each rolling mill and each inlet side guide device of the warm controlled continuous rolling processing facility 27 in FIG. 1 and the gap between each rolling mill and each outlet side guide device.
  • Each temperature of the rolled material is measured continuously at an appropriate position, for example, immediately before stagnation of the rolling mill and immediately after squeezing of the rolling mill with a contact thermometer, etc.
  • the temperature control mechanism controls the temperature of the material to be rolled within a desired warm rolling temperature range.
  • the control within the temperature range of the warm rolling does not necessarily need to use an automated temperature control mechanism, but may be performed by temperature adjustment with manual intervention by an operator.
  • the above-described warm region control of the rolling temperature of the material to be rolled is greatly affected by the heating state of the steel wire 2 5 by the large-capacity rapid heating device 4 arranged on the upstream side. Therefore, the temperature control of the auxiliary rapid heating devices 10, 14, and 18 on the entry side of each rolling mill is linked with the temperature control of the large-capacity rapid heating device 4.
  • the automatic control method adopts feed-ford control by differential type control with a fast control action in any heating device.
  • Fine crystal grains are generated from the processed grains flattened by rolling in the warm region described in (2-1) of [2-1] above, and the fine crystal grains increase with increasing strain. .
  • the strain at the time of rolling is easily introduced by a large strain by processing from multiple directions.
  • Steel wire or steel wire When rolling with an oval hole type and a subsequent square hole type is performed in the rolling pass schedule of the present invention, the evaluation of the introduced strain is more than the plastic strain evaluated rather than the simple so-called true strain e. It is better to evaluate by ⁇ . Therefore, in the present specification, as described above, the strain is divided into “true strain” and “plastic strain”.
  • the true strain to be introduced into the material to be rolled in the warm controlled rolling is 0.25 or more. Is necessary. When the true strain is less than 0.25, the crystal structure of the steel fine wire is not sufficiently processed even in the warm rolling region, and the strength is not sufficiently improved.
  • the true strain in the present invention when the metal type is steel, it is expressed by adding “'” to the constituent characters of the formula), the following formula (1 ′):
  • the true strain is 0.7 or more, more preferably 1.38 or more, so that the strength can be further improved. it can.
  • the strain distribution inside the rolled material attention should be paid to the strain distribution inside the rolled material.
  • the area where the plastic strain ⁇ is secured needs to be 50% by volume or more. Since the three-dimensional finite element method is used, the evaluation of 50% by volume may be replaced with 50% by area.
  • the number of rolling passes must be at least 2 passes.
  • the relationship between the shape of the rolled material 28, 28 'and the shape / size of the opal hole molds 29a, 29b, and the rolled material 30 and the square hole mold formed into the opal shape For the introduction of large strains, it is effective to use a perforated roll that satisfies the following relationship as the relationship between the dimensions and shape of rolls 3 1 a, 3 1 b or diamond perforated rolls 32 a, 32 b. It is.
  • the oval hole type rolls 29 a and 29 b have the maximum short axis length A of the oval hole type and the opposite side of the rolled material 28 or 28 ′ having a square or round C cross section. It is desirable to limit the length or diameter between them to 0.775 or less (A ⁇ BX 0.75), that is, AZB ⁇ 0.75, and A / B ⁇ 0. It is more desirable to limit to 60.
  • the square hole type roll 31 a, 3 lb or the diamond hole type roll 32 a, 32 b is the length between the square hole and the vertical hole of the square hole type ( However, CZD ⁇ 0. It is less than 0.75 times the long axis length D of the rolled material 30 formed into an oval shape ((: ⁇ 0 0. 75)). It is more desirable if it is limited to 75.
  • the length or the diameter C between the square hole type and the diamond hole type in the above two passes is increased,
  • the desirable shape and dimensions of the global hole type effective when rolling according to the above-described pass schedule are as follows.
  • both “introducing large strains” and “securing the cross-sectional shape formability” depend not only on the nominal reduction rate of the preceding pass, the oval hole roll, but also on the shape of the long axis direction of the opal hole type. It also depends greatly on the restraining force that is caused.
  • the ratio of the maximum short axis length to the long axis length (AZ E) of the hole mold is preferably 0.40 or less.
  • the desired radius of curvature R a of the opal hole mold depends on the C cross-sectional dimension of the material to be rolled, but the hole mold has a level of curvature satisfying R a ⁇ BX 1.5. It is desirable to equip with.
  • each rolling mill is a well-known double horizontal rolling mill.
  • the type (type) and number of rolling mills are based on the assumption that two or more rolling mills are installed, depending on, for example, the production volume, the relationship between the starting material of the main product and the wire diameter of the finishing material, and the operation mode. Select as appropriate ⁇ Increase or decrease.
  • As the roll hole type of each rolling mill a known oval, square, round, diamond and box can be selected as appropriate.
  • the roll hole type of the first rolling mill 7 is the same, the next rolling mill 1 2 is a square, the next rolling mill 16 is a square, and the fourth rolling mill 20 is a round hole type.
  • the area reduction rate for each rolling pass depends on the wire diameter of the rolled material at the start.
  • the reduction direction determine the dimensions of each hole type. And it is not always necessary to process the steel fine wire with the finished target dimension in one process on the rolling line, and the pass schedule can be set to finish in two or more processes.
  • an opening in which a hole shape having the required specifications and dimensions of the required hole shape is formed by roll recombination is formed by roll recombination.
  • Roll using For example, if the rolling schedule of the material to be rolled is a rolling line where four rolling mills are installed in one step, the starting steel wire rod will be rolled into a fine steel wire of the final target dimension in all two processes. In addition, even if the first process is an opal-square-square-square and the second process is an oval-square-over-round, each of the four double horizontal rolling mills is based on the required pass schedule. The dimensions of the roll hole mold are designed, and in the second step, all the rolling mill rolls are changed and rolled.
  • the last rolling mill 20 may be equipped with a caliber roll designed with a hole shape having a sizing function. Also, in order to optimize the above pass schedule. In addition, in a certain number of processes, for example, one of the four rolling mills can be eliminated from rolling. As the method, the rolling mill may empty the material to be rolled, or may be a method of temporarily removing the rolling mill stand from the rolling line.
  • the warm controlled continuous rolling processing equipment 27 may be branched into a plurality of strands at the end of the rolling line, and a predetermined rolling mill may be arranged in each of the branched strands. At that time, if a coil winding device 24 is provided on the downstream side of each trailing rolling mill, the operation rate of the rolling line can be further improved.
  • the cooling device 23 is provided in front of the coil winding device 24, but the material to be rolled after the end of the rolling process of any number of times. 26 does not necessarily have to be wound after being cooled.
  • the air cooling rate also becomes faster.
  • the cooling rate after rolling is a relatively fast cooling rate of 10: Z sec or more, This is also because the temperature of the steel fine wire becomes relatively low due to the fact that it is after rolling in the warm region, so that the coarsening of the Ferai grain is prevented.
  • the wire diameter of the material to be rolled becomes small, and the rolling speed is high, the heat of processing exceeds the amount of heat released, so the temperature of the material to be rolled at the exit of the rolling mill
  • Coiled wire rods with a wire diameter of 12 mm ⁇ with a chemical composition shown in Table 1 and a unit weight of 1.0 ton, manufactured by hot rolling, are used in the warm controlled continuous rolling for the production of steel fine wires according to the present invention.
  • FIG. 4 shows the schematic configuration of the warm-controlled continuous rolling equipment used.
  • This temperature-controlled continuous rolling processing facility 3 3 is provided with two perforated roll mills 7 and 12, and a steel wire rod (rolled material) 2 5 that is unwound from the coil unwinding device 1 and travels is provided. Then, it is continuously charged into a large-capacity rapid heating device 4 through a slatener 2 and a pinch roll 3.
  • the large-capacity rapid heating device 4 employs a method in which a roll-shaped terminal for energization is brought into contact with the material to be rolled and rapidly heated and soaked by energization resistance heating.
  • the material to be rolled heated to a predetermined temperature by the large-capacity rapid heating device 4 is supported by the support tool 5 and enters the inlet side guide device 6 and immediately enters the first rolling mill 7.
  • the material to be rolled 25 after being subjected to a predetermined rolling process is guided and discharged by the delivery side guide device 8, and then passes through the slack adjustment device 9, and then is entered by the entrance side guide device 11.
  • the second rolling mill 12 enters the second rolling mill 1 2 and is subjected to a predetermined rolling process. Then, after being guided and discharged by the delivery-side guide device 1 3, the coil winding device 2 Rolled up at 4.
  • both the entrance side guide device and the exit side guide device are two pairs of grooved roller guides.
  • the first opal hole type roll rolling mill 7 uses AZB (maximum short of oval hole type).
  • rolling with a reduction in area R of 30% in the first step was performed.
  • the second to fourth steps were sequentially rolled under a pass schedule similar to or similar to the first step to obtain a steel fine wire 26 having a wire diameter of 5. ⁇ as a finished material.
  • Table 2 shows the test conditions in each step in this example, and also shows the average diameter of the ferri iron grains of the starting material and finished material (steel fine wire), and the tension in each step from the starting material to the steel thin wire.
  • the test results of strength TS and aperture R R are also shown in the table.
  • the maximum temperature of the material to be rolled in the above rolling process is 565 and the minimum temperature is 404.
  • Table 2 shows the temperature measurement results of the material to be rolled in each rolling process of the first to fourth processes. And within the range of the warm rolling conditions of the present invention.
  • the area reduction ratio R in each of the first to fourth processes is 30%, 28%, 28%, 26%, and the A / B values are 0.46, 0.49, 0.53, 0.5. 63, the true strain e ′ of each process was as follows: 36, 0.33, 0.33, 0.30.
  • the following results were obtained by the above test.
  • the rolled material (steel wire) with a wire diameter of 12 mm (i) is used as the first rolling mill inlet side temperature in any rolling process by using a large-capacity rapid heating device with current-carrying resistance heating. It is heated to the range of 54 1 to 565 by manual operation, and after being rolled by the first rolling mill, it is kept in the range of 420 to 460 as the second rolling mill entry side temperature. The result was that the exit temperature of the rolling mill was maintained within the range of 404 to 44 Ot.
  • the area reduction rate for each process on the rolling line was 26-30%, and the total area reduction ratio R T was achieved by 8 passes from the 1st to the 4th process.
  • the t was 79%, and the cumulative true strain ⁇ e 'was 1.56.
  • the rolling wire speed (winding wire speed in each process) is 5.0 to 10 OmZ, the rolling speed is 38 to 29 k in terms of weight, and the unit weight is 5. ⁇ .
  • An unparalleled large single-coil coiled steel wire of 1.0 ton was obtained.
  • the resulting steel fine wire has an average ferrite grain size of 0.6 m, a tensile strength TS of 687 MPa, a drawing RA of 76.5%, and a cold workability with high strength and high ductility. Excellent steel fine wire was obtained.
  • the temperature of the material being rolled by the second rolling mill was at a relatively low temperature level of 404 to 440, so the heat release rate decreased, and the temperature due to processing heat generation It is presumed that the compensation effect was exhibited and the temperature drop during the rolling hardly occurred or was extremely small.
  • the temperature at the entrance of the second rolling mill is changed to the temperature at the entrance of the first rolling mill if an appropriate auxiliary rapid heating device is used. It is considered possible to heat to the same level.
  • the inlet temperature of the first rolling mill is set to a low temperature level of about 4500, and an auxiliary rapid heating device is provided on the inlet side of the second rolling mill to Compensating for the temperature drop of the material to be rolled in the mill, the rolling temperature in one process consisting of the first rolling mill and the second rolling mill can be controlled within an extremely narrow temperature range, This makes it possible to produce steel wires with even better material properties.
  • Example 1 A coiled wire rod having the same chemical composition and hot rolling and the same wire diameter 1 2 ⁇ ⁇ and a unit weight of 1.0 ton as the starting material used in Example 1 was used in Example 1.
  • the finished wire diameter of 6. 1 ⁇ can be reduced by the pass schedule consisting of the first to third steps different from the first embodiment. Processed by warm controlled continuous rolling.
  • the operation method of the rolling equipment, and the test items for the starting material, the finished material, and the first to third steps were also performed according to Example 1.
  • Table 3 shows the test conditions and test results of Example 2.
  • the temperature of the material to be rolled in the rolling process described above is the maximum temperature of 514 and the minimum temperature of 402, and the temperature measurement result of the material to be rolled in each rolling process of the first to third processes is shown in Table 3. And within the range of the warm rolling conditions of the present invention.
  • the 1st to 3rd area reduction rates are 40%, 40%, 30%, and AZB values are 0.45, 0.50, 0.61, respectively.
  • the true strain e ′ was 0.51, 0.51, 0.36.
  • Rolling material (steel wire) with a wire diameter of 12 mmci) is manually operated as the first rolling mill inlet side temperature in any rolling process using a large-capacity rapid heating device with current-carrying resistance heating. After heating by the first rolling mill, the second rolling mill entry side temperature is maintained within the range of 402 to 435. The result that the rolling mill outlet temperature was maintained within the range of 380 to 4603 ⁇ 4 was obtained.
  • the area reduction rate for each process of the rolling line is 30-40%, and the total area reduction ratio R T by 6 passes from the 1st process to the 3rd process.
  • the t was 75%, and the accumulated true strain ⁇ e 'was 1.39.
  • Multi-directional and multi-pass force rolling was performed to prevent the occurrence of collapse.
  • the rolling line speed (winding line speed in each process) is 8.5 to 10 OmZ, and the rolling speed is 55 to 36 kg in terms of weight and the wire diameter is 6. Ommif) An unparalleled large single-coiled steel wire with a unit weight of 1.0 ton was obtained.
  • the obtained steel fine wire has an average ferrite grain size of 0.5 im, a tensile strength of Ding 3 7021 ⁇ ? 3 and a drawing RA of 76.9%, which is a cold work with high strength and high ductility.
  • a fine steel wire with excellent properties was obtained.
  • Example 1 and Example 2 it is assumed that a metal fiber gas burner is provided as an auxiliary rapid heating device on the inlet side of the second rolling mill. Based on the idea that the temperature during rolling in any one process can be controlled within a narrower temperature range in the equipment of Example 1 and Example 2 assumed in this way, the following assistance is provided. A temperature rise test was performed on the steel wire using a rapid heating device.
  • a wire with a diameter of 6 mm was heated from room temperature with a metal fiber gas burner, and the time required to raise the temperature from 400 to 45 was measured based on the temperature rise curve of the wire.
  • the test method is as follows.
  • the steel wire to be heated is fixed at the same distance from each other (25 mm from each) parallel to the center line in the width direction of both flat-plate-like metal fibers between the above-mentioned flat-plate-like metal fibers facing vertically. Place the combustible gas from the outer surface (upper and lower surfaces) of each upper and lower metal fiber, burn it, heat the metal fiber, heat it red, heat the heated steel wire, raise the temperature, and the temperature rise curve at that time Was measured.
  • the temperature of the steel wire to be heated increased from 4 00 to 4 5 0.
  • the length of the metal fiber / gas burner part is 1.3 m. It can be seen that it may be provided on the inlet side of the latter rolling mill. Even when an auxiliary rapid heating device using another heating method is employed, the wire diameter and finish of the starting steel wire to be manufactured are the same as in the case of the auxiliary rapid heating device using the metal fiber / gas burner method.
  • the total length of the auxiliary rapid heating device can be designed by setting the wire diameter of the ascending steel wire, the pass schedule, and the rolling speed.
  • Example 1 rolling was started by installing an appropriate auxiliary rapid heating device on the inlet side of the second rolling mill. It can be seen that the temperature of the material to be rolled during the period from the end to the end can be controlled within a narrower range.
  • control temperature range is expressed by the above equations (3) and (4), that is,
  • T is the temperature (in)
  • n is the base of the rolling mill
  • r is the order of the rolling mill
  • any number from No. 1 to No. 1 is in
  • in is (Outside represents immediately after exiting from the rolling mill)
  • 3 ′) and (4 ′) equations which are more desirable control temperature ranges
  • the heating temperature of the starting material is set at 9500, but the length of the heating furnace required to continuously raise and heat the traveling 12 mm ⁇ i> steel bar to this heating temperature Since it is too long to be realistic, the entire length of the starting steel bar with the above dimensions was heated in a radiant heating furnace, extracted, and subjected to two-pass rolling.
  • Table 4 shows the test conditions and test results of Comparative Example 1.
  • the temperature of the material to be rolled in the rolling process has a maximum temperature of 950 and a minimum temperature of 800, and the temperature measurement result of the material to be rolled in the rolling process is as shown in Table 4. It is outside the range of hot rolling conditions and within the hot rolling temperature range.
  • the rolling line speed was 1 OmZ, and a weight conversion value of 66 kggZ gave a bar of 9.2 mm square with a length of 5.1 m and a unit weight of 2.7 kg.
  • the heating method is not a form in which the traveling material is continuously heated as described above, so the rolling efficiency is not determined only by the rolling speed in terms of weight, and is also governed by the heating efficiency. It is necessary to note that.
  • the obtained steel bar has an average grain size of 10 / m, and the tensile strength TS is 420 MPa, which is a small increase from 40 OMPa of the starting material, while the narrowing 13 ⁇ 4 is 82.0%. And there was almost no decline from the starting material. Therefore, the object of the present invention cannot be achieved by the production of the fine steel wire under the conventional hot rolling conditions.
  • the effectiveness of the present invention was confirmed by the above examples and comparative examples.
  • the chemical composition of the test materials in the above examples and comparative examples belongs to low carbon steel to very low carbon steel, but is not limited to these, and the crystal grain refining mechanism according to the present invention described above is used. When considered, it is clear that similar results are obtained with a wide range of carbon and low alloy steels. Industrial applicability
  • the present invention allows the metal material to travel on the rolling line. Continuously and continuously heated to an appropriate temperature range, and controlled by a plurality of perforated roll mills within an appropriate warm temperature range while introducing appropriate strain and rolling continuously It is configured to be able to.
  • steel, metal Mg and Mg alloy, metal A1 and A1 alloy, metal copper and copper alloy, and Ti and Ti alloy rods and wires are used as materials. Further, a method for producing a thin metal wire that can be produced and mass-produced with high production efficiency and a large single-duty wire or wire, each of which has excellent ductility and each metal and alloy wire or wire. 1 to 1 8) and a manufacturing apparatus thereof (claims 19 to 3 2) can be provided.
  • the present invention provides a coil shape at room temperature when a steel thin wire having a wire diameter of about 1 to 25 mm is manufactured from a coiled steel wire or a steel wire having a wire diameter of about 5 to 60 mm. While rewinding the wire, the material to be rolled is rapidly heated on-line regularly and continuously, and this is continuously rolled while being controlled within a predetermined warm temperature range. It is possible to produce a fine steel wire excellent in tensile strength and drawing.
  • a coiled steel fine wire that has conventionally been produced only by hot rolling or drawing up to a weight of about 30 to 80 kg can be obtained from Coiled steel wire having a fine grain structure or an ultrafine grain structure having a large single weight of about 500 kg to 2 t or more (claims 52 and 53), and the fine grain A manufacturing method capable of mass-producing a coiled steel fine wire having a structure or an ultrafine grain structure from a coiled steel wire or a steel wire with high production efficiency (Claims 33 to 51 can be provided).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)

Abstract

温間温度範囲内に制御された金属線材を複数基の孔型ロール圧延機により、真ひずみが少なくとも0.25以上になるように連続的に圧延することにより金属線材に大ひずみを形成し、二次加工用または三次加工用の金属線材に特別な熱処理を施さなくても、優れた強度と延性を付与するとともに、従来得られていない程度の大単重の金属細線を生産効率よく製造する方法および装置を提供する。

Description

温間制御圧延により大ひずみが導入された金属線材、
およびその製造方法と製造装置 技術分野
本発明は、 走行する金属材料を連続的に温間制御圧延することにより、 金属線材又は金属線を効率よく製造する技術に関するものである。 背景技術
従来、 2次加工メーカーや 3次加工メーカ一に供給される金属線材又は 金属線は、次のようにして製造されているが、下記のような問題点がある。 以下、 典型的な金属線材又は金属線として鋼線材又は鋼線を取り上げ、 その製造工程及び問題点について述べる。
鋼線材又は鋼線の製造工程は、 一旦、 鋼棒や鋼線材を熱間圧延等により 製造し、 これを素材として、 更に引抜き加工や圧延加工により断面径をー 層細く加工し、 2次や 3次の加工工程用素材としての鋼線材又は鋼線を製 造している。 なお、 本明細書においては、 2次、 3次の加工工程用素材と しての 1)鋼線材、 2)鋼線、 3)鋼細線及び鋼線のいずれの場合をも含めて「鋼 細線」 という。
上記鋼細線の製鋼工程からの製造方法は、 通常、 製鋼,精鍊炉で溶製さ れた所定成分の溶鋼を、 連続铸造工程でブルーム等の铸片に調製し、 これ を熱間における分塊圧延工程により、 断面のより小さいビレツ卜に圧延加 ェする。
次いで、 これを熱間における線材圧延工程において、 ビレットを加熱炉 で所定温度、 例えば 1 2 0 0で程度に加熱し、 加熱されたビレットを加熱 炉から 1本ずつ抽出し、 丸鋼の鋼線材の場合は、 粗圧延機列、 中間圧延機 列及び仕上圧延機列により熱間圧延して、 線径が 5〜3 8 mm程度のコィ ル状鋼線材を製造する。 こうして製造された鋼線材を、 更に、 別の成形加 エラインにおける出発材 (素材) とし、 この出発材であるコイル状の鋼線 材を巻き戻しつつ、次のように加工し小径化して、鋼細線を製造している。 即ち、 この小径化加工は、孔ダイス若しくはロールダイスによる引抜き、 又は、 圧延装置による冷間圧延により行なわれている。
そもそも従来、 線径が 1〜2 5 mm程度、 乃至 1 mm以下の鋼細線であ つて、 被圧延材に対して温間領域に制御された圧延加工により所定値以上 のひずみを導入し、 結晶粒を微細化し、 高強度で且つ高延性を有する材質 を有するものを、 前述したビレツト等被圧延材の熱間における粗圧延機列、 中間圧延機列及び仕上圧延機列が配置された従来の線材圧延工程において 製造することは行なわれていない。 その理由は、 上記工程により線径がせ ぃぜぃ 5〜 3 8 mm程度まで圧延する場合でさえも、 圧延終期近くにおけ る被庄延材の圧延線速度が極めて大きくなること (例えば、 5 0〜 1 0 0 m/ s e c程度)、 並びに、 従来の線材圧延工程では熱間圧延加工を前提と しており、 被圧延材の加熱装置としては、 上記粗圧延機列の入側に配設さ れているビレツ卜加熱炉又はブルーム加熱炉のみであり、 ここで熱間圧延 加工に適した所定の温度、 Α„変態点以上の温度、 実際には例えば、 1 2 0 0で前後まで加熱されたビレツ卜等の被圧延材を、 1本ずつ加熱炉から抽 出し、 当該ビレットのトツプ端からボトム端に向って、 上記各圧延機列に おいて圧延加工していくという工程が採用されている。
そのため、 先ず被圧延材全長を一体ものとしてみた場合に、 その長手方 向の温度分布は、 トップ端からボトム端に向って温度が低下する。 更に、 その長手方向の任意位置に注目した場合の被圧延材は、 圧延初期には圧延 速度が遅いために特にボ卜ム側の部分において温度低下量が大きく、 次い で順次圧延速度が上昇すると共に加工発熱により温度上昇要因が加わり、 そして圧延終期には被圧延材の横断面積が小さくなるので、 放熱速度が大 となり、 温度が下降する。
このように、 被圧延材の長手方向温度分布が複雑で且つ変動が大きく、 しかも圧延線速度が製造ラインの終期付近では極めて大きいということも あって、 従来は上記線材圧延工程のオンラインの途中位置に補助加熱装置 及び冷却装置等を設けて被圧延材の温度を制御しょうとする提案は見当た らず、 まして、 圧延工程の後半において、 被圧延材の温度を温間圧延領域 に制御しつつ、 しかも線径 1〜2 5 mm程度、 乃至 l mm以下まで圧延し て、 圧延ままの状態で微細粒組織を有する鋼細線を製造しょうとする提案 や発想は全く見当たらない。 また、 従来の設備上及び操業上の観点からも 不可能であった。
そこで、 従来、 鋼細線の製造に際しては、 一旦線材圧延工程で線径が 5 〜3 8 mm程度の鋼線材を熱間圧延により製造し、 これを前述したように、 引抜き又は冷間圧延等により鋼細線に製造している。 ところが、 前述の引 抜法においては、 被加工材の先端をダイスへ通線すること、 及びこの先端 をチヤックを介して引抜きドラムに係止する作業が必要であり、 人手作業 に依存し、 また 1パス当たりの減面率が小さいので、 所望する径の鋼細線 を製造するためには、 多数回の引抜きと多くの工数を要する。 これらは線 径が小さくなるほど増大する。
これに対して、 前記の冷間圧延は、 被圧延材の先端を前段のロールス夕 ンド出口から次段のロールスタンド入口にうまく誘導して嚙み込ませるな らば、 多数段のロールスタンドをタンデムに連結することにより、 引抜法 よりも 1パス当たり大きな減面率を得ることができるので、 大幅な工数の 低減が可能である。
しかしながら引抜法及び冷間圧延法のいずれの方法においても、 冷間加 ェ硬化に対処するための中間焼鈍の実施、 及びそれに伴い発生し易い炭化 物の割れによるミクロボイドの抑制対応等の不利益を解消することはでき ない。
一方、 最近、 機械構造用鋼線材若しくは鋼線、 又は棒鋼の材質特性に対 する改善 ·向上対策技術の一環として、 当該鋼線材若しくは鋼線、 又は棒 鋼を製造する工程において、 高積層欠陥エネルギー (H i g h S F E ) を有するフェライト (α ) 鋼材に、 所定値以上の大ひずみ加工を施すこと により微細粒組織を生じさせて、 高強度と共に延性に優れた鋼線材若しく は鋼線又は棒鋼を製造する技術が報告されている。 その中でも本発明者等 は先に、 鋼線材の圧延方法において、 圧延温度を 3 5 0〜8 0 0での温間 加工温度範囲内、 一層望ましくはその内でも低温域の 4 0 0〜 6 0 0での 範囲内において、 所定の臨界ひずみ以上のひずみを被圧延材料に導入する ことにより、 このひずみによる結晶粒のミクロ的な局所方位差が微細結晶 粒の起源となり、 加工中あるいは加工後に起きる回復過程において、 粒内 の転位密度が低下すると同時に結晶粒界が形成されて、 微細粒組織を形成 することができること、即ち、再結晶温度の下限とみなされていた 8 0 0で、 乃至これ以下の温度で加工しても、 加工と同時に動的な回復ないしは再結 晶が起こり、 従って、 相変態による強化機構を実質的に利用せずに鋼の高 強度化を実現する方法として、 結晶粒を微細化させることができることを 利用して、 平均粒径が 2 i m以下の微細結晶粒を得ることにより、 高強度 で且つ冷間圧造性に優れた鋼を製造する技術を提案した (特許文献 1 )。 本願発明者等は、 上記特許文献 1においては、 上記所定の臨界ひずみと しては、 素材に対する総減面率 R Ttが 5 0 %以上であること、 線材の圧延 工程においてオーバル形状力リパーロールを使用した場合には、 総減面率 RTtが 4 0 %以上であればよいこと、 あるいは、 圧延により材料中へ導入 される塑性ひずみが、 3次元有限要素法で計算される材料中への平均塑性 ひずみで 0 . 7以上であることが望ましいこと等を提案した。 その確認試 験として、 例えば、 8 0 mm角の棒鋼を圧延用素材とし、 圧延温度 4 5 0 〜 5 3 0での範囲内において、 総減面率 R Ttが 9 5 %の多方向 ·多パスの カリバー圧延を施して、 1 8 mm角の棒材を調製し、 超微細粒を形成させ ることにより高強度で且つ延性に優れた鋼材を得た。
また、 本願発明者等は先に、 鋼線材あるいは鋼線のカリバー圧延による 製造において、 オーバル孔型に次いでスクェア孔型による圧延により、 被 圧延材に大ひずみを導入するための加工条件について提案した (特許文献 2 )。
本願発明者等は、 上記特許文献 1及び特許文献 2、 又はこれらに類似の 他の先行文献で提案されている温間圧延技術を、 前述した 2次あるいは 3 次加工工程における素材である鋼線材又は鋼線 (鋼細線) の製造技術分野 に応用して、 一層発展させ、 これによつて鋼細線の品質向上 (具体的には 強度及び延性向上のための熱処理不要化) と安定化を図り、 しかも生産効 率の向上が必要であることに着眼した。 かかる技術の確立のためには、 次 の事項が必要である。
先ず、 第 1に、 1)従来生産されている線径が 5〜 3 8 mm程度 (望まし くは、 今後の需要動向及び技術開発を考慮して上限が 6 0 mm程度まで) で、 単重が 0 . 5〜2 t程度、 乃至それ以上の熱間圧延コイルを、 分割す ることなくそのまま、 所定の温間制御圧延により超微細粒組織を得るため の製造技術の確立を必要とし、 そのためには、 巻き戻されて走行する被圧 延コイル(被圧延材)を急速に所定の温間領域の温度まで加熱すると共に、 2)加熱された被圧延材に対して直ちに温間制御圧延加工を施す連続圧延技 術を必要とし、 3)望ましくは、 この温間制御連続圧延においては、 圧延温 度を 3 5 0〜8 5 0での範囲内に限定し、 しかも被圧延材の温度を、 ある 圧延機への入口温度と次の圧延機からの出口温度との差を所定範囲内に制 御し、 且つ、 圧延開始から圧延終了までの間の被圧延材の温度差を所定範 囲内に制御するという温度制御を行ないつつ、 連続して圧延し、 しかも、 4)この温間制御連続圧延の 1工程の間において、 即ち、 巻き戻されたコィ ルの加熱から圧延工程を経て冷却され、 再びコイルに巻き取られるまでの 1圧延工程サイクルの間において、 被圧延材に対して多方向から加工を行 なうことが望ましく、 当該被圧延材に所要のひずみを導入することが必要 となる。 1圧延工程のサイクルで当該所要のひずみを導入できない場合は、 工程を複数回行なってもよい。 5)しかも、 上記 1)から 4)の条件は、 出発材
(被圧延材) に対する仕上げ材の総減面率が大となる鋼細線の場合には、 終期における圧延線速度が速くなるが、 かかる条件下においても満たされ る必要がある。 従って、 上記 1)~5)の条件を全て満たすことは、 従来の圧 延設備を使用した従来の熱間圧延技術や、 従来の圧延設備を使用した温間 圧延技術では極めて困難である。 そのため、 これまでも圧延やひずみに関 する技術は数多く紹介されているが (非特許文献 1および 2)、 走行する鋼 線材を加熱しつつ所定の温間温度における制御圧延を行なうことにより、 微細化した結晶粒を有し、 しかも大単重コイル状鋼細線 (鋼線材又は鋼線) を製造する技術は提案されていない。
特許文献 1 :特願 2003— 435980
特許文献 2 :特願 2003— 180291
非特許文献 1 :鉄と鋼、 vo l 89 (2003) No. 7、 p 47〜
54
非特許文献 2 :鉄鋼便覧 (第 3版)、 III (2)、 条鋼,鋼管 ·圧延共通 設備、 S 61. 1. 20、 p. 816〜 838、 p 8
62〜865 発明の開示
本願発明は、 2次加工工程用素材あるいは 3次加工工程用素材として所 望する径を有する金属線材又は金属線 (両者あわせて本願において 「金属 細線」という)を孔型ロールによる圧延加工により製造する技術であって、 製造された金属細線に特別な熱処理を施さなくても、 その強度及び延性が 優れた水準を有し、 しかも連続的に加熱しながら圧延することにより、 従 来得られていない程度の大単重の金属細線を生産効率よく製造することを 課題とする。
本発明者等は、 上記課題を解決するために鋭意、 試験 ·研究を行ない、 次の結論を得た。
先ず上記金属細線に特別な熱処理なしに優れた強度及び延性を付与するた めに、 被圧延材の圧延温度を温間圧延領域に制御しつつ、 しかも被圧延材 に適切なひずみを導入しつつ圧延をすることにより、 相変態による強化機 構を実質的に利用せずに結晶粒を微細化させればよいこと、 しかも、 従来 得られていない程度の大単重の金属細線を生産効率よく製造するためには、 被圧延材の圧延ラインでの供給を、 連続的に走行させて行ない、 且つこの 走行する被圧延材を所定温度範囲内まで急速加熱して圧延機に装入し、 引 き続き被圧延材の圧延工程における温度を補助的に急速加熱することによ り所定の温度条件に制御して、 連続的に圧延するようにすればよいことが わかった。
そして、 上記の通り金属材料に対する温間領域の温度範囲に制御された 連続圧延を実現して、 微細な結晶粒組織を有する金属細線の高効率生産を 実現するためには、 直列に配設された複数基の圧延機入側の可及的直近の 位置において、 コイル状線材が巻き戻されて連続的に走行する被圧延材が、 所要の温間領域の圧延温度まで急速に加熱 ·均熱される手段を設け、 その 温度を測定し、 当該圧延機により圧延された被圧延材の出側温度を測定し、 これらの測定値に基づき、 上記急速加熱条件及び温度制御条件を演算し決 定する。 かくして、 最初の圧延機における温間制御圧延を行なう。
そして、 以後の圧延機における圧延においても、 上記方法と同じ方法に より、 金属材料の被圧延材に対して温間制御圧延を行なう。 かかる温間に おける制御圧延を連続的に実施して、 大単重のコイル状金属細線の製造が 可能となるための圧延設備を配設する。 そのための重要な設備は、 周知の 加熱技術、 特に急速加熱に係る装置を適切に配設し、 上記温間制御圧延に 適した使用方法及び操業方法を行なうと共に、 適切なひずみ、 望ましくは 大きなひずみを導入するための適切な圧延パススケジュールを実施するこ とにより達成され得ることがわかった。 本発明は、 従来の金属細線製造技 術に、 更に上記本願発明者等が得た知見及びこれに基づく技術を導入して、 走行する被圧延材に温間圧延において大ひずみを導入しつつ連続制御圧延 する技術により、 大単重の金属細線 (金属線材又は金属線) の製造技術を 完成させたものである。 本願発明の要旨は次の通りである。 但し、 本明細 書においては、 「真ひずみ」 と 「塑性ひずみ」 とを総称して 「ひずみ」 とい い、 それぞれ次の通り定義する。
真ひずみ (eで表記する) は、 下記 (1) 又は (1 a) 式:
e = 1 n (S0/S) (1)
=- 1 n ( 1 -R/l 00) (l a)
但し、 R= {(S。一 Saft) /S0} X 100 · - · (6)
S0 :圧延前の被圧延材の C断面の面積
Satt:所定圧延後の被圧延材の C断面の面積
で定義する。 なお、 本願明細書において、 「c断面の面積」 とは、 圧延方向 に直角な面の断面積をいうものとする。 以下、 同じである。
また、塑性ひずみ(ε で表記する)は、周知の 3次元有限要素法を用い、 下記の計算手順に基づき、 下記 (7) 式により算出される値で定義する。 即ち、
計算手順:
1. 材料の加工温度に対応した応力一ひずみ曲線を取得する。
2. 有限要素法による計算のため、 下記 (1) 〜 (3):
(1) 被圧延材に適宜メッシュを作成する、 (2) 接触条件を決める。 但 し、 摩擦係数 =0. 3 クーロン条件とする、 (3) 応力一ひずみ曲線、 材 料物性値を決める、
の準備をする。
3. (1)〜 (3) の条件のもとに、 汎用有限要素法コード、 例えば、 ABAQUS で計算を行う。
ε = (2/3) [1/2 {(d εχ-ά ε y) 2+ (d £y-d εζ) 2 +
(d ε,-d εχ) 2 } + (3/4) (d rxy 2+dァ yz 2+d rzx 2)] 12
(7) 但し、 d εχ、 d εν、 d εζ ·· x、 y、 z方向の真ひずみ増分
xy、 dryz、 d 7 x:各せん断ひずみ増分
本願の第 1の発明に係る金属線材又は金属線の製造方法は、 圧延ライン を走行する金属材料を加熱し、 加熱された当該金属材料を直列に配置され た複数基の圧延機により連続的に圧延して、 金属線材又は金属線を製造す る方法である。 そして、 圧延開始から圧延終了までの被圧延材の温度を、 その金属材料の種類に応じて定められた温間圧延温度の範囲内に制御しつ つ、 且つ、 上記圧延開始から圧延終了までの間に当該被圧延材に導入され るべき真ひずみを、 次の通り規定する。 即ち、 前述した通り、 真ひずみを 下記 ( 1 ) 式:
e = l n ( S 0/ S ) ( 1 )
但し、 e :真ひずみ
S 0:圧延開始前の被圧延材の C断面の面積
S :圧延終了後の被圧延材の C断面の面積
の eで定義し、 この真ひずみ eが e≥0 . 2 5となるように圧延加工を孔 型ロール、 平ロール、 又は、 孔型ロールと平ロールとの組み合わせにより 施すことに特徴を有するものである。
ここで、 走行ラインを走行する金属材料とは、 圧延ラインをサポート口 ールゃピンチロール等により上流から下流方向に向って移動させられる被 圧延材としての金属材料を指し、 金属材料とは鉄鋼の他に、 金属 M g、 金 属 A 1、 金属 C u及び金属 T i、 並びに M g合金、 A 1合金、 C u合金及 び T i合金の内のいずれかよりなる被圧延材料を指す。
次に、 この各金属材料の種類に応じて定められた温間圧延温度とは、 そ れぞれの金属材料の種類ごとに認められている通常の温間圧延温度の範囲 内を指す。
そして、 この金属材料を連続的に圧延するとは、 当該金属材料からなる 被圧延材が 1単位としてある長さ及び重量を有し、 その先端から後端まで 複数基の圧延機により、 一様に連続して圧延することを意味する。 以下、 この明細書において同じである。
本願の第 2の発明に係る金属線材又は金属線の製造方法は、 第 1の発明 において、 上記真ひずみ eが、 e≥0 . 7 0となるように圧延加工を施す ことに特徴を有するものである。 本願の第 3の発明に係る金属線材又は金属線の製造方法は、 第 1の発明 において、 上記真ひずみ eが、 e≥ l . 3 8となるように圧延加工を施す ことに特徴を有するものである。
本願の第 4の発明に係る金属線材又は金属線の製造方法は、 第 1から第 3の発明において、 上記圧延ラインを走行する金属材料は、 加熱される前 においてはコイル状に巻かれており、 しかも、 上記複数基の圧延機により 連続的に圧延加工を施された金属線材又は金属線は、 再びコイル状に巻か れることに特徴を有するものである。
本願の第 5の発明に係る金属線材又は金属線の製造方法は、 第 1から第 4のいずれかの発明において、 上記被圧延材の加熱が、 第 1番目圧延機の 実質的直前において上記温間圧延温度の範囲内の所定温度まで急速加熱す るものであることに特徴を有するものである。
ここで、 急速加熱するとは、 連続的に走行する金属材料の被圧延材が第 1番目の圧延機に嚙み込まれる時点までに、 当該被圧延材の温度を上記所 定の温度まで加熱することをいう。 従って、 被圧延材の線径及び線速度、 比熱及び熱伝導度等の物理定数等、 並びに加熱装置の加熱効率に依存して 被圧延材に対するエネルギー供給速度を調整する。 また、 第 1番目圧延機 の実質的直前においてとは、 当該圧延機の入側の可及的に接近した場所に おいてということを指し、 上記所定の温度まで急速加熱された被圧延材の 温度低下をできるだけ小さくするための方策である。
本願の第 6の発明に係る金属線材又は金属線の製造方法は、 第 1から第 5のいずれかの発明において、 上記被圧延材の加熱が、 更に、 第 2番目以 後の少なくとも 1基の圧延機の実質的直前においても補助的に急速加熱す ることとなっていることに特徴を有するものである。
ここで、 補助的に急速加熱するとは、 第 5の発明において述べた、 被圧 延材が急速加熱されて所定温度まで達した後に圧延され、 この圧延後にそ の温度が低下した場合に、 次の圧延機に嚙み込まれるまでの間において、 再び所定の温度範囲内まで高めるように加熱することをいう。 本願の第 7の発明に係る金属線材又は金属線の製造方法は、 第 1から第 6のいずれかの発明において、 上記被圧延材の孔型を有する圧延機による 圧延パススケジュールには、 C断面が四角形状又は丸形状を有する被圧延 材をオーバル孔型を有する圧延機で圧延して、 C断面がオーパル形状の被 圧延材に成形し、 次にこうして得られた被圧延材を、 スクェア孔型を有す る圧延機又はダイヤ孔型を有する圧延機で圧延するパススケジュールを含 んでいる。 しかも、 このパススケジュールにおいて、 上記オーバル孔型の 最大短軸長さ (Aと表記する) の、 上記 C断面が四角形状又は丸形状を有 する被圧延材のそれぞれ対辺間長さ又は直径 (いずれも Bと表記する) に 対する比率 AZ Bが、 AZ B≤0 . 7 5を満たす孔型を有する圧延機で圧 延することに特徴を有するものである。 なお、 A/ B≤0 . 6 0とするの がー層望ましい。
本願の第 8の発明に係る金属線材又は金属線の製造方法は、 第 1から第 7のいずれかの発明において、 上記圧延パススケジュールには、 更に、 上 記スクェア孔型又はダイヤ孔型の天地対角間長さ (いずれも Cと表記する) の、 上記 C断面がオーパル形状に成形された被圧延材の長軸長さ (Dで表 記する) に対する比率 C ZDが、 C ZD≤0 . 7 5を満たす孔型を有する 圧延機で圧延することに特徴を有するものである。
本願の第 9の発明に係る金属線材又は金属線の製造方法は、 第 7又は第 8の発明において、 上記 C断面がオーパル形状に成形された被圧延材を、 スクェア孔型を有する圧延機又はダイヤ孔型を有する圧延機で圧延する代 わりに、 ボックス孔型を有する圧延機で圧延することに特徴を有するもの である。
本願の第 1 0の発明に係る金属線材又は金属線の製造方法は、 第 9の発 明において、 上記 C断面がオーパル形状に成形された被圧延材の長軸長さ Dに対する、 上記ボックス孔型の天地対辺間長さ (C 'と表記する) の比率 C ' ZDが、 C ' ZD≤0 . 7 5を満たすことに特徴を有するものである。 本願の第 1 1の発明に係る金属線材又は金属線の製造方法は、 第 7から 第 1 0のいずれかの発明において、 上記ォ一バル孔型を有する圧延機によ る圧延は、 上記オーバル孔型の最大短軸長さ Aとその長軸長さ (Eで表記 する) との比 AZ Eが、 AZ E O . 4 0を満たすォ一バル孔型を有する 圧延機を使用することに特徴を有するものである。
本願の第 1 2の発明に係る金属線材又は金属線の製造方法は、 第 7から 第 1 1のいずれかの発明において、 上記オーパル孔型を有する圧延機によ る圧延は、 上記オーパル孔型の曲率半径 (R aで表記する) が、 上記 C断 面が四角形状又は丸形状を有する被圧延材のそれぞれ対辺間長さ又は直径 Bの 1 . 5倍以上であるオーバル孔型を有する圧延機を使用することに特 徴を有するものである。
本願の第 1 3の発明に係る金属線材又は金属線の製造方法は、 第 7、 第 8、 第 1 1又は第 1 2のいずれかの発明において、 上記パススケジュール には、 上記オーパル孔型を有する圧延機と、 これに引き続く上記スクェア 孔型を有する圧延機又はダイヤ孔型を有する圧延機との組合せによる圧延 を、 2回以上行なうことを含んでいることに特徴を有するものである。 本願の第 1 4の発明に係る金属線材又は金属線の製造方法は、 第 1から 第 1 3のいずれかの発明において、 上記被圧延材の上記各孔型を有する圧 延機による圧延パススケジュールには、 孔型形状がスクェア、 ダイヤ又は ボックスと、 これに次ぐスクェア、 ダイヤ、 ボックス又はラウンドとの組 合わせパススケジュールを含んでいることに特徴を有するものである。 本願の第 1 5の発明に係る金属線材又は金属線の製造方法は、 第 1から 第 1 4のいずれかの発明において、 上記被圧延材の温度を、 上記金属材料 の種類に応じて定められた温間圧延温度の範囲内に制御しつつ、 上記被圧 延材を上記各孔型を有する圧延機により圧延加工する一連の工程を、 2ェ 程以上繰り返すことに特徴を有するものである。
本願の第 1 6の発明に係る金属線材又は金属線の製造方法は、 第 1から 第 1 5のいずれかの発明において、 上記一連の工程を、 2工程以上繰り返 すことにより、 最初の圧延工程における圧延開始から最終の圧延工程にお ける圧延終了までの間に、 上記被圧延材に導入されるべき真ひずみを、 次 の通り規定する。 即ち、 真ひずみを下記 (2) 式:
eTot= 1 n (S0/STot) (2)
但し、 eTt :真ひずみ
S0 :最初の圧延工程の圧延開始前の被圧延材の C断面の面積 STol :最終圧延工程の圧延終了後の被圧延材の C断面の面積 で表わされる真ひずみ eTtが、 eTt≥0. 25を満たす圧延加工を施すこ とに特徴を有するものである。
本願の第 17の発明に係る金属線材又は金属線の製造方法は、 第 1 6の 発明において、 上記真ひずみ eTtが、 eTt≥0. 70を満たすことに特徴 を有するものである。
本願の第 18の発明に係る金属線材又は金属線の製造方法は、 第 1 6の 発明において、 上記真ひずみ eTtが、 eTt≥ l . 38を満たすことに特徴 を有するものである。
次の本願の第 1 9から第 32までの発明は、 金属材料から金属線材又は 金属線を製造するのに適した温間制御連続圧延加工設備に関するものであ る。
本願の第 1 9の発明に係る温間制御連続圧延加工設備は、 コイル巻戻し 装置及びコイル卷取り装置が設けられ、 これら両装置間に複数基の圧延機 が直列に配置され、 上記コイル巻戻し装置から巻き戻されて走行する被圧 延材を上記複数基の圧延機で連続的に圧延して金属線材又は金属線を製造 する圧延加工設備であって、 上記複数基の圧延機の内の第 1番目圧延機の 入側であって、 当該圧延機に対して実質的直近である位置に大容量急速加 熱装置が設けられていることに特徴を有するものである。
ここで、 大容量急速加熱装置とは、 前述した第 5の発明において述べた 通りの急速加熱をすることができる能力を有する加熱装置をいう。 即ち、 当該加熱装置の長さをし、 走行する被圧延材の移動速度を v、 被加熱材の 加熱装置内移動時間を tとすると、 時間: t =LZvの間に、 被加熱材の 温度が所定の加熱温度: Tまで上昇させる能力を有する加熱装置を意味す る。
また、 大容量急速加熱装置が設けられている位置が、 第 1番目圧延機の 入側であって、 この圧延機に対して実質的直近の位置に設けられていると は、 当該圧延機が通常の圧延機能を発揮することができるように、 これに 付属されている機器類や装置類が取付けられた状態において、 可及的にこ の圧延機に接近して設けられていることを意味し、 大容量急速加熱装置が この実質的直近である位置に設けられている理由は、 上記大容量急速加熱 装置で前記所要の温度まで急速に加熱 ·均熱された被圧延材が、 この圧延 機に嚙み込まれるまでに温度低下を極力防止することにより、 温間におけ る温度制御圧延を容易に実施することができるようにするためである。
本願の第 2 0の発明に係る温間制御連続圧延加工設備は、 第 1 9の発明 において、 上記複数基の圧延機の内の第 2番目以後の圧延機の少なくとも 1基の入側であって実質的直近である位置に、 更に補助急速加熱装置が設 けられていることに特徴を有するものである。
ここで、 補助急速加熱装置とは、 前述した第 6の発明において述べた通 りの補助急速加熱をすることができる能力を有する加熱装置をいう。
本願の第 2 1の発明に係る温間制御連続圧延加工設備は、 第 1 9又は第 2 0の発明において、 上記大容量急速加熱装置が、 メタルファイバガスバ ーナ一又はセラミック多孔板ガスバーナー等の表面燃焼式ガスバーナー装 置、 通電抵抗加熱装置、 電磁誘導加熱装置、 及び電気抵抗発熱体輻射加熱 装置の内、 いずれか 1種又は 2種以上を組み合せた加熱装置からなること に特徴を有するものである。 ここで、 上記各種加熱装置は、 いずれも周知 技術によるものであればよい。
本願の第 2 2の発明に係る温間制御連続圧延加工設備は、 第 2 0又は第 2 1の発明において、 上記補助急速加熱装置が、 メタルファイバガスバー ナ一又はセラミック多孔板ガスバーナー等の表面燃焼式ガスバーナー装置、 通電抵抗加熱装置、 電磁誘導加熱装置、 及び電気抵抗発熱体輻射加熱装置 の内、 いずれか 1種の加熱装置の加熱装置からなることに特徴を有するも のである。
本願の第 2 3の発明に係る温間制御連続圧延加工設備は、 第 1 9から第 2 2のいずれかの発明において、 上記複数基の圧延機が、 当該圧延機群の 中にオーパル孔型を有する圧延機が配設されており、 これに次いでスクェ ァ孔型を有する圧延機、 ダイヤ孔型を有する圧延機及びラウンド孔型を有 する圧延機の内のいずれかが配設されている、 圧延機の配設組合わせを含 んでいることに特徴を有するものである。
本願の第 2 4の発明に係る温間制御連続圧延加工設備は、 第 1 9から第 2 2のいずれかの発明において、 上記複数基の圧延機として、 上記複数基 の圧延機が、 少なくとも、 ォ一バル孔型を有する圧延機、 スクェア孔型を 有する圧延機、 ダイヤ孔型を有する圧延機、 ボックス孔型を有する圧延機 及びラウンド孔型を有する圧延機の内のいずれかを含み、 このいずれかの 圧延機に次いでオーパル孔型を有する圧延機、 スクェア孔型を有する圧延 機、 ダイヤ孔型を有する圧延機、 ボックス孔型を有する圧延機及びラウン ド孔型を有する圧延機の内のいずれかが配設されている、 圧延機の配設組 合わせを含んでいることに特徴を有するものである。
本願の第 2 5の発明に係る温間制御連続圧延加工設備は、 第 1 9から第 2 4のいずれかの発明において、 上記複数基の圧延機の内の最後の圧延機 の下流側に、 サイジング装置が設けられていることに特徴を有するもので ある。
ここで、 サイジング装置とは、 単に金属細線の断面形状を原則として最 終的に調整することを主目的とする圧延装置であって、 適切なひずみを導 入しつつ圧延することを主目的とする圧延機ではない。 従って、 このサイ ジング装置が設けられている場合には、 これまでに述べた複数基の圧延機 は全て、 適切なひずみを導入しつつ圧延することを主目的とした設計のも のであってもよいし、 サイジングを主目的とする装置を含んでいてもよい。 本願の第 2 6の発明に係る温間制御連続圧延加工設備は、 第 1 9から第 2 5のいずれかの発明において、 上記複数基の圧延機間の少なくとも 1箇 所には、 前記コイル巻戻し装置から巻き戻されて走行する前記被圧延材に 対する弛み調整装置が設けられていることに特徴を有するものである。
ここで、 弛み調整装置とは、 圧延機の間で被圧延材が弛むのを防止又は 解消すると共に、 当該弛み調整装置から弛み情報を圧延機に送信し、 弛み 発生を解消するように圧延機のロール回転速度が自動制御されるように利 用されるものである。 そして、 この弛み調整装置は、 所謂張力圧延をする ために所定の張力を被圧延材に負荷するためのものではない。
本願の第 2 7の発明に係る温間制御連続圧延加工設備は、 第 1 9から第 2 6のいずれかの発明において、 上記複数基の各圧延機の入側には、 前記 走行する被圧延材を当該各圧延機に誘導する入側案内装置が設けられてい ることに特徴を有するものである。
ここで、 入側案内装置とは、 被圧延材 (金属線材) が捻転して、 圧延口 一ルに嚙み込まれる際に金属線材に倒れが発生するのを防止すると共に、 被圧延材に表面疵が発生するのを防止するための装置である。
本願の第 2 8の発明に係る温間制御連続圧延加工設備は、 第 1 9から第 2 7のいずれかの発明において、 上記複数基の各圧延機の出側には、 前記 走行する被圧延材を当該各圧延機から走行排出される被圧延材を導出する 出側案内装置が設けられていることに特徴を有するものである。
本願の第 2 9の発明に係る温間制御連続圧延加工設備は、 第 1 9から第 2 8のいずれかの発明において、 前記コイル巻戻し装置と前記大容量急速 加熱装置との間には、 ストレートナ一及び Z又はピンチロールが設けられ ていることに特徴を有するものである。
本願の第 3 0の発明に係る温間制御連続圧延加工設備は、 第 1 9から第 2 9のいずれかの発明において、 上記コイル巻取り装置の上流側には走行 する鋼線を冷却するための冷却装置が設けられていることに特徴を有する ものである。
本願の第 3 1の発明に係る温間制御連続圧延加工設備は、 第 1 9から第 30のいずれかの発明において、 前記複数基の圧延機の内の第 1番目圧延 機を除く任意の圧延機の入側に、 走行する被圧延材の当該任意の圧延機入 側温度を制御するための急速調整冷却装置が設けられていることに特徴を 有するものである。
本願の第 32の発明に係る温間制御連続圧延加工設備は、 第 1 9から第 3 1のいずれかの発明において、 上記複数基の各圧延機の入側及び出側に おける被圧延材の温度を制御するための温度制御機構が設けられているこ とに特徴を有するものである。
次の本願の第 33から第 44までの発明は、 上述した第 1 9から窠 32 までの発明である温間制御連続圧延加工設備において、 特に鋼線材又は鋼 線の製造設備を適切に使用すれば、 有利に製造することができるコイル状 の鋼線材又は鋼線を製造する方法に関するものである。
本願の第 33の発明に係るコイル状の鋼線材又は鋼線の製造方法は、 走 行する鋼線材を加熱し、 加熱された当該鋼線材を直列に配置された複数基 の圧延機により連続的に圧延して、 鋼線材又は鋼線を製造する方法であつ て、 次の条件の温度制御圧延を行なう。 即ち、 圧延開始から圧延終了まで の被圧延材の温度を 350でから 850での範囲内に制御し、 且つ その 被圧延材の温度を、 下記 (3) 及び (4) 式:
Tr+1,oul-Tr,in=- 150で〜 50で (3)
T„,out -TUn=- 200 〜 10 O …… (4)
(但し、 Tは温度 (で) であり、 nは圧延機の基数を表わし、 rは圧延機 の順番であって、 第 1番から第 n— 1番までの任意の数を表わし、 i nは 圧延機への入側直前、 o u tは圧延機からの出側直後を表わす) が満たさ れるように制御することに特徴を有するものである。
本願の第 34の発明に係るコイル状の鋼線材又は鋼線の製造方法は、 第 33の発明において、 その圧延開始から圧延終了までの被圧延材の温度を 400でから 650での範囲内に制御することに特徴を有するものである。 本願の第 35の発明に係るコイル状の鋼線材又は鋼線の製造方法は、 走 行する鋼線材を加熱し、 加熱された当該鋼線材を直列に配置された複数基 の圧延機により連続的に圧延して、 鋼線材又は鋼線を製造する方法であつ て、 圧延開始から圧延終了までの被圧延材の温度を 40 O から 650で の範囲内に制御し、 且つ、 その被圧延材を、 オーバル孔型を有する圧延機 で圧延し、 次いでスクェア孔型を有する圧延機、 ダイヤ孔型を有する圧延 機、 ラウンド孔型を有する圧延機及びボックス孔型を有する圧延機の内の いずれかで圧延するパススケジュールを含んでいることに特徴を有するも のである。
本願の第 36の発明に係るコイル状の鋼線材又は鋼線の製造方法は、 第 33から第 35のいずれかの発明において、 ォ一バル孔型を有する圧延機 による圧延が含まれており、 更に、 上記圧延開始から圧延終了までの間に 上記被圧延材に導入されるべき真ひずみを、 次の通り規定する。
即ち、 真ひずみを下記 ( ) 式:
e'= 1 n (S0'/S') (1')
(但し、 e' :真ひずみ、 Sfl' :圧延開始前の被圧延材の C断面の面積、 S' : 圧延終了後の被圧延材の C断面の面積)
で表わされる真ひずみ e'が、 e'≥0. 25となるように圧延加工を施す ことに特徴を有するものである。
本願の第 37の発明に係るコイル状の鋼線材又は鋼線の製造方法は、 第 36の発明において、 前記真ひずみ e'が、 e'≥0. 70となるように圧 延加工を施すことに特徴を有するものである。
本願の第 38の発明に係るコイル状の鋼線材又は鋼線の製造方法は、 第 36の発明において、 前記真ひずみ e'が、 e'≥ l . 38となるように圧 延加工を施すことことに特徴を有するものである。
本願の第 39の発明に係るコイル状の鋼線材又は鋼線の製造方法は、 第 33から第 35のいずれかの発明において、 上記圧延機の中にはォ一バル 孔型を有する圧延機が含まれていて当該オーバル孔型を有する圧延機によ る圧延が含まれており、 更に、 その圧延開始から圧延終了までの間に上記 の被圧延材に導入される、 3次元有限要素法を用いて算出される塑性ひず み ( ε で表記する) が、 その被圧延材の 5 0体積%以上の領域において、 ε≥0 . 7となるように圧延加工を施すことに特徴を有するものである。 なお、 被圧延材の形状が鋼線材又は鋼線であるから、 体積%の代わりに 面積%であっても差し支えない。
以下、 本件に関して、 この明細書において同じである。
本願の第 4 0の発明に係るコイル状の鋼線材又は鋼線の製造方法は、 第 3 9の発明において、 上記塑性ひずみ ε を更に大きくして、 ε≥ 1 . 5と なるように圧延加工を施すことに特徴を有するものである。
本願の第 4 1の発明に係るコイル状の鋼線材又は鋼線の製造方法は、 第 3 3から第 4 0のいずれかの発明において、 オーパル孔型を有する圧延機 による圧延が含まれており、 当該オーパル孔型を有する圧延機で圧延され る被圧延材の C断面は四角形状又は丸形状を有し、 当該被圧延材のそれぞ れ対辺間長さ又は直径 (いずれも Βと表記する) に対する、 上記オーパル 孔型の最大短軸長さ (Αと表記する) の比率 Α / Βが、 A/ B≤0 . 7 5 なる条件を満たしていることに特徴を有するものである。
本願の第 4 2の発明に係るコイル状の鋼線材又は鋼線の製造方法は、 第 4 1の発明において、 上記比率 Α/ Βを更に狭い範囲内に制限して、 ΑΖ Β≤ 0 . 6なる条件を満たしていることに特徴を有するものである。
本願の第 4 3の発明に係るコイル状の鋼線材又は鋼線の製造方法は、 第 3 3から第 4 2のいずれかの発明において、 オーバル孔型を有する圧延機 が含まれており、 この圧延機に次いでスクェア孔型又はダイヤ孔型を有す る圧延機が設けられており、 当該ォ一バル孔型を有する圧延機で成形され た C断面がォ一バル形状の被圧延材の長軸長さ(Dと表記する)に対する、 当該スクェア孔型又はダイヤ孔型の天地対角間長さ (いずれも Cと表記す る) の比率 C /Dは、 C Z D≤0 . 7 5を満たすことに特徴を有するもの である。
本願の第 4 4の発明に係るコイル状の鋼線材又は鋼線の製造方法は、 第 33から第 43のいずれかの発明において、 上記被圧延材の圧延開始から 圧延終了までの工程を、 2工程以上繰り返すことに特徴を有するものであ る。
本願の第 45の発明に係るコイル状の鋼線材又は鋼線の製造方法は、 第
44の発明において、 最初の圧延工程における圧延開始から最終の圧延ェ 程における圧延終了までの間にその被圧延材に導入される、 3次元有限要 素法を用いて算出される塑性ひずみ (ε で表記する) が、 その被圧延材の 50体積%以上の領域において、 ε≥ 1. 5となるような圧延加工を施す ことに特徴を有するものである。
本願の第 46の発明に係るコイル状の鋼線材又は鋼線の製造方法は、 第 33から第 43のいずれかの発明において、 上記被圧延材の圧延開始から 圧延終了までの工程を、 3工程又は 4工程繰り返すことにより、 最初の圧 延工程における圧延開始から最終の圧延工程における圧延終了までの間に、 上記被圧延材に導入されるべき真ひずみを、 次の通り規定する。
即ち、 真ひずみを下記 (2') 式:
eTot'= 1 n (S0'/ST。 ) (2')
但し、 eTt' :真ひずみ
S0 ' :最初の圧延工程の圧延開始前の被圧延材の C断面の面積 SIol' :最終の圧延工程の圧延終了後の被圧延材の C断面の面積 で表わされる真ひずみ eT。 が、 eT。 ≥ 1. 38となる圧延加工を施すこと に特徴を有するものである。
本願の第 47の発明に係るコイル状の鋼線材又は鋼線の製造方法は、 第 46の発明において、 上記被圧延材の 1工程が、 2基の圧延機が直列に配 置された圧延加工設備を用いて行なわれることに特徴を有するものである。 なお、 この第 47の発明は、 1工程を行なう圧延ラインが 2基の圧延機 により構成されている圧延加工設備を用いてコイル状の鋼線材又は鋼線を 製造するので、 特に生産工程 (生産スケジュール等) の運用が弾力性に富 み、 しかも十分な微細結晶粒が得られるので、 本願発明が目的とする良好 な材質特性 (強度及び延性) を備えた鋼線材又は鋼線を製造することがで きる方法であり、 極めて望ましい製造方法の一つである。
本願の第 4 8の発明に係るコイル状の鋼線材又は鋼線の製造方法は、 第
3 3から第 4 3のいずれか発明において、 上記被圧延材の上記圧延開始か ら圧延終了までの工程を、 3工程以上繰り返すことにより、 最初の圧延ェ 程における圧延開始から最終の圧延工程における圧延終了までの間にその 被圧延材に導入される、 3次元有限要素法を用いて算出される塑性ひずみ ε が、 その被圧延材の 5 0体積%以上の領域において、 ε≥2 . 0となる ような圧延加工を施すことに特徴を有するものである。
本願の第 4 9の発明に係るコイル状の鋼線材又は鋼線の製造方法は、 第
4 8の発明において、 最初の圧延工程における圧延開始から最終の圧延ェ 程における圧延終了までの間に上記被圧延材に導入される、 3次元有限要 素法を用いて算出される塑性ひずみ ε が、 その被圧延材の 5 0体積%以上 の領域において、 上記塑性ひずみ ε を更に大きくして、 ε≥3 . 0となる ように圧延加工を施すことに特徴を有するものである。
本願の第 5 0の発明に係るコイル状の鋼線材又は鋼線の製造方法は、 第 3 3から第 4 9のいずれかの発明において、 第 1 9から第 3 2のいずれか に記載の温間制御連続圧延加工設備を用いて、 走行する鋼線材に圧延加工 を施すことに特徴を有するものである。
本願の第 5 1の発明に係るコイル状の鋼線材又は鋼線の製造方法は、 第
5 0の発明において、その複数基の圧延機の内、少なくとも 1基の圧延機、 少なくとも 1基の圧延機とサイジングミル、 又はサイジングミルが、 これ 若しくはこれらを空通しするか、 又はこれ若しくはこれらを圧延のオンラ ィンから一時的に除去するかして用いずに、 上記被圧延材を目標とする断 面形状寸法に圧延することに特徴を有するものである。
本願の第 5 2の発明は、 コイル状鋼線材又は鋼線に関するものである。 即ち、 これは上記第 3 3から第 5 1のいずれかに記載のコイル状の鋼線材 又は鋼線の製造方法を用いることにより、 平均結晶粒径が C断面の面積の 9 0 %以上の領域について、 1 . 0 j m以下に微細粒化していることに特 徴を有するものである。
本願の第 5 3の発明に係るコイル状の鋼線材又は鋼線は、 第 5 2の発明 において、 上記被圧延材の C断面の面積の 9 0 %以上の領域に形成された 平均結晶粒径が、 0 . 6 m以下に微細粒化していることに特徴を有する ものである。 図面の簡単な説明
図 1は、 本発明による細線を製造するための温間制御連続圧延加工設備 を説明する概要構成図の例である。
図 2は、 各種孔型ロールとその孔型の部位名称、 及び各種被圧延材とそ の部位名称の説明図である。
図 3は、 オーバル孔型の部位説明図である。
図 4は、 実施例 1で使用した温間制御連続圧延加工設備の概要構成図で ある。 なお、 図中の符号は次のものを示す。
1 コイル巻戻し装置
2 ス卜レー卜ナ一
3 ピンチロール
4 大容量急速加熱装置
5 サポートロール
6 入側案内装置
7 第 1番目圧延機
8 出側案内装置
9 弛み調整装置
1 0 補助急速加熱装置
1 1 入側案内装置
1 2 第 2番目圧延機
1 3 出側案内装置 14 補助急速加熱装置
1 5 入側案内装置
1 6 第 3番目圧延機
1 7 出側案内装置
1 8 補助急速加熱装置
1 9 入側案第 3番目内装置
20 第 4番目圧延機
2 1 出側案内装置
22 サイジング装置
23 冷却装置
24 コイル巻取り装置
25 鋼線材 (被圧延材)
26 鋼細線 (鋼線材又は鋼線)
27 温間制御連続圧延加工設備
28 C断面が四角形状の被圧延材
28' C断面が丸形状の被圧延材
28 a, 28 b C断面が四角形状の被圧延材の天地の対辺
29 a, 29 b ォ一バル孔型ロール
30 C断面がオーパル形状の被圧延材
3 1 a、 3 1 b スクェア孔型ロール
32 a, 32 b ダイヤ孔型ロール
33 実施例 1の温間制御連続圧延加工設備 (鋼細線製造用) A オーバル孔型の最大短軸間長さ
B C断面が四角形状又は丸形状の被圧延材の対辺間長さ又は直径
C スクェア孔型の対頂角間の長さ
D C断面がオーパル形状被圧延材の長径
E オーバル孔型の長径
R a オーバル孔型の曲率半径 発明を実施するための最良の形態
本発明は前述した通りの構成とその特徴を有するものである。 そこで、 次に、 本発明の搆成とその特徴を一層明らかにすると共に、 本発明の実施 形態及び当該実施形態における態様の限定理由について述べる。
[ 1 ] 実施形態の概要
図 1は、 本願発明に係る金属線材又は金属線の製造方法を実施するのに 適した本願発明に係る温間制御連続圧延加工設備の例であって、 金属材料 の種類として、 鉄鋼を取り上げた場合に、 微細粒組織を有する大単重のコ ィル状鋼細線の製造方法を実施するのに適した、 大ひずみの温間制御連続 圧延加工設備の概要構成図を例示するものである。
圧延機は 4基設けられている場合である。 製造ラインの上流側から順に、 コイル巻戻し装置 1、 ストレートナー 2、 ピンチロール 3、 大容量急速加 熱装置 4、 サポートロール 5、 入側案内装置 6、 第 1番目圧延機 7、 出側 案内装置 8、 弛み調整装置 9が設けられている。 以下、 第 2番目から第 4 番目圧延機のそれぞれに対して、 補助急速加熱装置 1 0、 1 4、 1 8と、 入側案内装置 1 1、 1 5、 1 9と、 出側案内装置 1 3、 1 7、 2 1とが設 けられている。 次いで、 サイジング装置 2 2、 冷却装置 2 3、 最後にコィ ル巻取り装置 2 4が設けられている。 また、 温度制御機構 (図示省略) が 設けられており、 各圧延機入側及び出側における被圧延材の温度測定装置、 及びこれらからの計測情報を演算処理し、 大容量急速加熱装置、 各補助急 速加熱装置及び冷却装置を介して、 被圧延材の温度を制御する。 なお、 被 圧延材の温度制御のために、 更に、 各圧延機の出側案内装置の出側に、 急 速調整冷却装置 (図示省略) を設けてもよい。
コイル巻戻し装置 1としては、 周知の例えば水平型アンコイラ一を用い、 これに線径が 5〜 2 5 mm程度のコイル状鋼線材を被圧延材として装入し、 コイル巻戻し装置 1から鋼線材 2 5を巻き戻しつつ、 これをストレートナ —2で直線状に矯正し、 鋼線材 (被圧延材) 2 5の走行速度が所定値とな るように、 ピンチロール 3を調整運転し、 次の大容量急速加熱装置 4にこ れを連続的に走行装入する。 これにより所定の温間圧延温度まで加熱され た鋼線材 2 5はサポートロール 5を通過し、 入側案内装置 6によって鋼線 材 2 5に倒れが発生しないように圧延機 7に誘導され、 当該圧延機の所定 口一ル孔型に嚙み込まれる。
なお、 入側案内装置 6の方式としては、 被圧延材の断面形状が円形以外 の線材 2 5である場合を考慮して、 例えば 4方向ローラ一型サポートロー ラーガイド等が望ましい。 所定温度の範囲内の鋼線材 2 5は、 最前段の圧 延機 (第 1番目圧延機) 7で所定のひずみを導入される温間制御圧延によ り加工された後、 出側案内装置 8で導出され、 次いで弛み調整装置 9は、 圧延機 7と連動して圧延ロールの速度を調整することにより被圧延材に弛 みが発生しないように調整し、 走行させる。 次いで、 被圧延材は補助急速 加熱装置 1 0に入る。 この補助急速加熱装置 1 0によって被圧延材は、 上 記圧延中に低下した温度が、 第 2番目圧延機 1 2での所定の温間圧延温度 になるまで急速に修復加熱された後、 次の入側案内装置 1 1で誘導されて 当該圧延機 1 2で温間制御圧延され、 出側案内装置 1 3により導出される。 なお、 第 2番目圧延機の入側案内装置 1 1も、 被圧延材の倒れ防止等の観 点から、 4方向ローラー型サポートローラーガイド等が望ましい。 また、 出側案内装置 1 3についても同様である。
以降、 上記第 2番目圧延機 1 2によると同様にして、 被圧延材は第 3番 目の圧延機 1 6及び第 4番目の圧延機 (最後段圧延機) 2 0で温間制御圧 延を施され、 サイジング装置 2 2で断面形状を調整され、 冷却装置 2 3で 冷却された後、 鋼細線 2 6はコイル卷取り装置 2 4で卷き取られる。
なお、 出発材である鋼線材 2 5の断面寸法と仕上り材である鋼細線 2 6 の断面寸法との関係により、 適宜適切な圧延パススケジュールを決めるこ とができる。 そのためには、 この温間制御連続圧延加工設備 2 7による上 述した圧延工程を複数工程繰り返すことにより、 目標線径の鋼細線 2 6を 得てもよい。 このような圧延スケジュールの場合には、 サイジング装置 2 2は、 最終回の圧延工程で使用する。 また、 上記圧延工程が 1工程の場合 でも複数工程の場合であっても、 圧延パススケジュールに 4基の圧延機の 内、 使用しない圧延機があっても差し支えない。 その場合は、 圧延ロール を空通ししてもよいし、 あるいは口一ルをスライド除去させてもよい。 以上、 金属材料の種類として、 鉄鋼の場合を例として述べたが、 金属 M g、 金属 A 1、 金属 C u及び金属 T i、 並びにこれら各金属の合金につい ても、 上述した鉄鋼の場合に準じてその実施形態を構成することができる。 その理由は、 本願発明に係る金属線材又は金属線の製造方法による結晶粒 の微細化による材料特性の向上機構においては、 特に相変態による高強度 化機構を全く利用することなく、 各金属種に応じた適切な温間圧延加工の 温度領域において、 適切なひずみを導入することにより、 結晶粒の微細化 を図るという原理を利用して行なっている。 また強度を高めるための合金 元素の添加も特に要しない。
従って、 例えば鉄鋼についていえば、 フェライト単相鋼及びオーステナ ィト単相鋼等のような相変態の存在しない成分系鋼種等、 広範囲にわたる 化学成分組成の鋼に適用し得る。
また、 本願発明は、 上記金属材料をその仕上り材の形態面からみると、 金属材料の製造方法の発明においては、 線材又は線を対象としているが、 一方、 温間制御連続圧延加工設備の発明においては、 製造対象の仕上り材 の形態が線材又は線に限定されることなく、 フープ及び薄板コイルの製造 にも適用可能な設備である。
[ 2 ] 実施形態の詳細
次に、 本発明に係る金属線材又は金属線 (金属細線) の製造方法の実施 形態について、 鋼細線を製造する方法を例として述べる。
上記の通り構成された温間制御連続圧延加工設備 2 7により、 本願発明に 係る微細粒組織を有する大単重のコイル状鋼細線を製造する方法の実施形 態並びに製造条件の限定理由及び効果等について、 さらに図 1を参照しな がら説明する。 線径が 5〜 2 5 mm、 更に特例として最大 6 0 mm程度の鋼線材を出発 材とし、 これを圧延により線径が 1〜2 5 mm程度の鋼細線に圧延し、 こ れに球状化焼なまし等の熱処理を施すことなく、 高強度且つ高延性を有す る鋼細線を製造するために、 (1 ) 圧延温度の制御範囲を限定し、 しかもそ の圧延温度条件下で走行する鋼線材を連続的に圧延制御することが必要で ある。 そして、 望ましくは (2 ) 孔型ロールによるパススケジュールを限 定することにより、 所定値以上のひずみを被圧延材に導入することが必要 である。
[ 2— 1 ] 圧延温度条件について
( i ) 先ず、 被圧延材の圧延温度を鉄鋼の温間圧延温度範囲として、 圧延 開始直前から圧延終了直後までの温度を、 3 5 0〜8 5 0 * の範囲内に限 定する。 この温度範囲内に限定する理由は、 次の通りである。 本願発明に 係るコイル状鋼線材又は鋼線の製造方法においては、 所謂温間圧延領域に おける加工により、 大きなひずみ導入することにより生じたミクロ的な結 晶粒の局所方位差が、 微細結晶粒の起源となり、 加工中乃至加工後におき る回復過程において、 結晶粒内の転移密度が低下すると同時に結晶粒界が 形作られて、 微細粒組織が形成される。 但し、 温度が低いと回復が十分で ないために、 転位密度の高い加工組織が残存する。 一方、 その温度が高過 ぎると、 不連続再結晶あるいは通常の粒成長により、 結晶粒が粗大化する ので所望の微細粒組織は得られない。 また、 圧延温度が 3 5 0でよりも低 温で、 所定のひずみを導入する圧延を行なうと、 被圧延材の出発材が熱間 圧延で製造された線材の場合には、 冷間加工硬化により圧延性が低下して、 実操業上も圧延を継続することができなくなる。 これに対して、 圧延温度 を 8 5 0で超えにすると、上述の通り、圧延加工後の再結晶化が進行して、 微細粒組織が得られず、 従って高強度且つ高延性を有する鋼細線を製造す ることができないからである。
また、 更に望ましくは、 上記圧延温度条件を、 3 5 0〜8 5 0での範囲 内の代わりに 4 0 0〜6 5 0 範囲内に厳しくする。 これにより、 結晶粒 の微細化と整粒化が更に促進され、 一層高強度且つ高延性を有する鋼細線 が得られる。
( i i ) そして、 望ましくは、 更に付加すべき条件として、 第 2番目以後 の各圧延機 12、 16、 20の出側における被圧延材 25の温度 Tr+1utと、 その前の各圧延機 7、 1 2、 16への入側における被圧延材 25の温度 Tr in との温度差 Tr+1ut— Tr inが、 — 1 50〜50での範囲内に入り、 且つ、 最 後の圧延機 (第 4番目の圧延機 20) の出側における被圧延材 25の温度 T4ulと、 第 1番目の圧延機 7の入側における被圧延材 25の温度 Tl inと の温度差 T4ut— Tl inが、 — 200〜1 00での範囲内に入るように温度 制御すること、 即ち、
Figure imgf000030_0001
- 1 50 :〜 50で (3)
(但し、 rは 1、 2又は 3で、 圧延機の最上流側からの順番を表わす)
T4,out-T,in =- 200" 〜100"C (4)
を満たすのがよい。
先ず、 上記 (3) 式のように、 本願発明に係る鋼細線の製造における温 間制御圧延においては、 ある圧延機の入側における被圧延材の温度と、 そ の前の圧延機の入側における被圧延材の温度との差を規定するのは、 次の 理由、 即ち、 仕上り材 (鋼細線) の結晶粒微細化の確実 ·安定化及び整粒 化を促進するためである。 以下、 それを説明する。
本発明者等は既に、 下記事項を知見している。 即ち、 圧延後材料の結晶 粒径は、 下記 (B) 式中の圧延温度 Tと平均塑性ひずみ速度 εΖ ΐの関数 として表わされる圧延パラメーター Ζにより支配され、 被圧延材の結晶構 造が例えば b e cの場合、 例えば Z≥ l 1となる温間圧延加工を施すこと により、 平均結晶粒径は 1 /xm以下のフェライト粒が得られることを知見 している。 従って、 平均結晶粒径の目標値を決めれば、 これに応じた Zの 値になるよう圧延を制御することにより、 この平均結晶粒径の目標値が達 成される。
Z = 1 o g [(ε/ t) e x p {Q/8. 3 1 (T+ 273)}] ■··· (Β) 但し、
ε :被圧延材に導入される平均塑性ひずみ (3次元有限要素法により 求めることができる。)、 又は簡単に真ひずみでもよい。
t :圧延開始から圧延終了までの時間 (s e c )
Q:定数 (α— F eの自己拡散の活性化エネルギー、 2 5 4 K J
m o 1 )
T:圧延温度 (各パスの圧延温度を平均した温度、 (で))
ここで、 (B ) 式から明らかなように、 各パス毎の圧延温度範囲 (上記 (3 ) 式において T r+1ul— T r inに相当する値) が小さいほど、 圧延温度をある温 度に設定した場合の (B ) 式中の圧延温度 Tの変動量も小さくなる傾向に あるので、 Zの変動量も小さくなる。 一方、 上記 (3 ) 式中の T r+1ul— T inの値の変動範囲を小さくすることは、 (B )式中の圧延温度 Tの変動量を 小さくすることになる。 従って、 T r+1ut— T r inの値の変動範囲を小さくす ることにより、 Zの変動量を小さく制御することができるので、 上記目標 値とした平均結晶粒径の変動量 (変動範囲) も小さくすることができる。 即ち、 被圧延材の目標平均結晶粒径を精度よく達成することが可能となり、 これに伴って、 結晶粒の微細化を確実なものにすると共に、 被圧延材に形 成される平均結晶粒径の分布範囲が狭くなるので、 混粒から整粒分布に改 善される。
以上により、 T\+1ut— T nの値を所定範囲内に規定することにより、 結 晶粒の微
細化の促進と、 結晶粒の整粒化がなされる。 また、 相互作用的にこの整粒 化により、 結晶粒の微細化が一層促進され、 材質特性、 特に強度及び延性 の向上に寄与する。以上の考察及び試験結果に基づき、上記(3 )及び(4 ) 式の通り規定する。
本願発明においては、 ある圧延機の入側における被圧延材の温度と、 そ の前の圧延機からの出側における被圧延材の温度との差を (3 ) 式の通り 規定することにより、 整粒化された所望の平均粒径を有する鋼細線を製造 することができる。
次に、 上記 (4) 式のように、 第 4番目の圧延機への出側における被圧 延材の温度と、 第 1番目の圧延機への入側における被圧延材の温度との差 を、 所定の温度範囲内になるように規定するのは、 このように温間制御圧 延をすることにより、 上述した (3) 式の規定理由に準じて、 (4) 式の規 定によっても、 目標平均結晶粒径を精度よく達成すること、 及びその整粒 化効果を達成することができるからである。
また、更に望ましくは、 被圧延材 25の温度条件を、 上記(3)及び(4) 式による代わりに、 下記 (3') 及び (4') 式:
Tr+1,。ut_Tr.in=— 50^〜30 (3')
T4,0Ut-T n =ー50で〜 30で (4')
のように、 その温度条件を一層厳しくすると良い。 これにより、 結晶粒の 微細化及び整粒化が一層促進される。
[2-2] 走行する被圧延材の連続的加熱制御について
本願の発明においては、 圧延ラインを連続的に走行する被圧延材である 鋼線材を、 連続圧延することが必要である。 即ち、 コイル巻戻し装置 1か ら第 1番目圧延機 7までの間で、 走行する鋼線材を常温から温間温度域ま で加熱する必要がある。 大容量急速加熱装置 4は、 そのための重要な装置 である。 鋼線材 25のスタート線径の最大値は、 例えば 60mmであり、 これを所望の巻戻し線速度で走行させた場合に、 大容量急速加熱装置 4の 有効加熱帯の設計長さ範囲内において、 予熱 ·昇温 ·均熱過程が完了して 安定した所望の温間圧延温度の条件、 具体的には、 [2— 1] 項の圧延温度 条件を満たすために、 圧延開始から終了までの 1工程の間、 第 1番目圧延 機 7に嚙み込まれる線材 25 (被圧延材) の温度を、 350〜850での 範囲内の任意温度まで急速に加熱することができる能力を有するものが必 要である。
次いで、 第 2番目圧延機 12においても、 第 1番目圧延機で圧延中及び 圧延後に低下した温度を補償して、 同様に所定の温間温度領域で圧延する ために、 所定温度まで補助的に急速加熱する。 そのためには、 圧延されつ つある被圧延材の温度、 線径、 線速度及び加工発熱量に応じて、 第 2番目 圧延機 1 2の入側直近に設けられた補助急速加熱装置 1 0を使用して所要 温度まで加熱する。 第 3番目以後の圧延機 1 6、 2 0と各入側の補助急速 加熱装置 1 4、 1 8においても同様に被圧延材の温度を制御する。
大容量急速加熱装置 4及び補助急速加熱装置 1 0、 1 4、 1 8のいずれに あっても、 各圧延機で圧延される直前の被圧延材及び圧延された直後の圧 延後材の温度を、 精度よく制御することに追従し得るものであることが重 要である。 これらの加熱装置と、 圧延機間を走行する短時間内に、 前段圧 延機で圧延されている間の圧延ロールへの伝熱や放熱により低下した被圧 延材の温度変化の情報を取り込み、 圧延開始から終了までの被圧延材の温 度を制御する。
大容量急速加熱装置 4及び補助急速加熱装置 1 0、 1 4、 1 8はいずれ も、 その加熱方式及び熱源に適したものとしては、 メタルファイバガスバ —ナー若しくはセラミック多孔板ガスバーナー等の表面燃焼ガスバーナー 装置、 被圧延材に通電する通電抵抗加熱方式、 電磁誘導加熱方式、 又は電 気抵抗発熱体輻射加熱装置等、いずれであってもよい。これらはいずれも、 上述した急速加熱に追従し得るように配慮されたものであることが必要で あり、 これまでに提案されたもの又は周知技術を使用することもできる。 具体例として、 メタルファイバーガスバーナーの場合には、 前面が開口 した金属ケーシングの開口部に、耐熱金属繊維により形成した布状素材(例 えばニットゃフェルト状等の素材) を覆って燃焼面を構成したバーナー、 いわゆる平面型メタルファイババーナーが挙げられる。 耐熱金属として耐 熱鋼又はインコネル等の耐熱合金を素材とし、 これを繊維状に加工し、 編 物加工法又は織布加工法等により布状素材とする。 この表面ガスバーナー の形態としては、 前面が適切な外表面を有するフェルト平板状メタルファ ィバーで覆われ、両側面および底面が断熱材にて覆われた燃焼'加熱室が、 フェルト平板状メタルファイバーの背面側に設けられ、 フェルト平板状メ タルファイバーで、 被圧延材を適切な間隔を空けて挟むように、 被圧延材 に対して対称となるように 2方向あるいは 3方向から対設する。 そして、 燃焼 ·加熱室内に燃料ガスと空気との予混合ガスを外部から導入し、 燃焼 させて当該フェルト平板状メタルファイバ一を赤熱させ、 このような状態 のメタルファイバ一ガスバーナーにより、 被圧延材を急速加熱する。
表面ガスバーナーの形態としては、 その他に、 例えば半割型の円筒状に 形成してもよい。 そして、 被圧延材の温度制御は、 図 1の温間制御連続圧 延加工設備 2 7の各圧延機と各入側案内装置との間隙、 及び各圧延機と各 出側案内装置との間隙の両位置で、 適切な、 例えば接触型温度計等により 圧延機嚙み込み直前及び圧延機嚙み出し直後の被圧延材の各温度を連続的 に測定し、 この測定値に基づき、 周知の温度制御機構により、 被圧延材の 温度を所望の温間圧延温度範囲内に制御する。
なお、 温間圧延温度範囲内の制御は、 必ずしも自動化された温度制御機 構を使用する必要はなく、 オペレータによる手動が介入した温度調節によ つてもよい。 いずれの場合でも、 上述した被圧延材の圧延温度の温間領域 制御は、 上流側に配設されている大容量急速加熱装置 4による鋼線材 2 5 の加熱状態の影響を大きく受ける。 従って、 各圧延機の入側の補助急速加 熱装置 1 0、 1 4、 1 8の温度制御に当たっては、 大容量急速加熱装置 4 の温度制御と連動させる。 その際、 自動制御方式は、 いずれの加熱装置に おいても、 制御動作の速い微分型制御によりフィードフォヮ一ド制御を採 用することが望ましい。
[ 2— 3 ] 大ひずみ加工の条件について
前述した [ 2 — 1 ] の ( i ) 項で述べた温間領域における圧延加工によ り扁平化した加工粒から微細結晶粒が生成し、 ひずみの増加に伴ってこの 微細結晶粒が増加する。 このようにして微細粒組織を有する鋼細線を製造 するための所定の温間制御圧延においては、 被圧延材に所定値以上の 「ひ ずみ」 を導入することが必要である。 ここで、圧延加工時のひずみ導入は、 多方向からの加工により大ひずみの導入がされ易くなる。 鋼線材又は鋼線 の圧延パススケジュールに、 オーバル孔型とこれに続くスクェア孔型によ る圧延がなされる場合には、 導入されるひずみの評価を、 単純な所謂真ひ ずみ eで評価するよりも、 塑性ひずみ ε で評価する方が適している。 そこ で、 本願明細書においては、 既述の通り、 ひずみを 「真ひずみ」 と 「塑性 ひずみ」 とに分けている。
上記に鑑み、 平均結晶粒径が 3 m程度以下の微細粒組織を有する鋼細 線を製造するためには、 温間制御圧延において被圧延材へ導入すべき真ひ ずみを、 0. 25以上とすることが必要である。 真ひずみが 0. 2 5未満 であると、 温間圧延領域においても鋼細線の結晶組織が十分に加工されず、 強度が十分に改善されないからである。 ここで、 本発明における真ひずみ (金属種が鉄鋼の場合、 式の構成文字に 「'」 を付して表記する) として、 下記 ( 1 ' ) 式:
e' = 1 n (S0'/S') -…… (1')
但し、 So' :圧延開始前の被圧延材の C断面の面積
S ' :圧延終了後の被圧延材の C断面の面積
で表わされる e 'で定義する。
なお、 真ひずみ e '≥0. 25は、 圧延開始から圧延終了までの間の被 圧延材の下記 (A) 式:
RTot= i(S0-S) ZS0} X 100 (6')
但し、 RTt:総減面率 (%)
S0:圧延開始前の被圧延材の CC断面の面積
S :圧延終了後の被圧延材の C C断面の面積
で表わされる総減面率 RTt (%) に換算すると、 RTt≥22 %となる。 従つ て、 真ひずみ e '≥ 0. 25の代わりに、 総減面率 RTt≥ 22 %としても よい。
また、 結晶粒の微細化のためには、 真ひずみを 0. 7以上に、 更に望ま しくは 1. 38以上となるように圧延加工を施すことが望ましく、 強度の 一層の向上を図ることができる。 一方、 仕上り材の高品質且つ均質性確保という品質上の観点を重視する 場合には、 被圧延材内部のひずみ分布に留意すべきである。 特に、 多方向 圧延による場合には、 留意すべきである。 この観点からは、 ひずみとして は塑性ひずみを用いるのがより適している。 塑性ひずみの評価は、 既述の 通り、 周知の 3次元有限要素法を用い、 前記 (7 ) 式により算出すること ができる。 そして、 温間圧延加工により扁平化した加工結晶粒から微細結 晶粒を生成させ、 この塑性ひずみ ε の増加に伴って微細結晶粒の生成領域 の増大及び微細化が促進される。 本発明者等の実験結果によれば、 塑性ひ ずみ ε の値の上昇過程において、 「0 . 7」、 「1 . 5 J 及び 「2 . 0」 の 3段階において、 仕上り材強度の変極点を認め得ること、 そして 「3 . 0」 において、 一応の飽和値に近づくことを知見した。 従って、 これら 4段階 における塑性ひずみ ε 毎に、 所望される仕上り材 (製品) の品質、 特に強 度水準に応じた製造方法を採用することが望ましい。
上記観点により、 製品品質を保証するためには、 当該塑性ひずみ ε が確 保された領域が、 5 0体積%以上必要である。 なお、 3次元有限要素法を 使用しているので、 5 0体積%の評価は、 5 0面積%で代用してもよい。
[ 2 - 4 ] 孔型の形状 ·寸法と被圧延材の形状寸法との関係、 及びパス スケジュールについて
本願発明において、 微細粒組織を有し、 高強度且つ高延性を有する鋼細 線を製造するためには、 上記 [ 2— 1 ] 及び [ 2— 2 ] 項で述べたように、 圧延開始から終了までの被圧延材の温度を制御することが必要であり、 更 に、 被圧延材に 「大ひずみを導入」することが重要である。 そのためには、 適切なパススケジュール条件により圧延することが必要である。
そして、 その際、 被圧延材の断面の形状を所望する正規の形状に成形す ること (「断面形状成形性の確保」) も必要である。 先ず、 孔型ロールによ り圧延することを前提条件とし、 圧延パス数を 2以上とする。 この 2パス 以上とする理由は、 本願発明で製造しょうとする目的の結晶粒組織及び材 質特性を有する鋼細線を効率良く得るためには、 多方向からの大圧下圧延 が必要であり、 そのための必要条件として、 圧延工程ラインの少なくとも いずれか 1パスにおいては、 図 2 (a)、 (b) に示すように、 C断面が四 角又は丸形状である被圧延材 28、 28'を、 オーバル孔型ロール 29 a、 29 bで圧延することにより、 C断面がオーパル形状となるように成形し (図 2 (c)、 (d) の符号 30)、 次いでこのオーパル形状に成形された被 圧延材 30をスクェア孔型ロール 3 l a、 3 1 b (図 2 (c)) 又はダイヤ 孔型ロール 32 a、 32 bで圧延する (図 2 (d)) というパススケジュ一 ルを含んでいることが効果的である。
従って、 圧延パス数は少なくとも 2パスが必要となる。 そして、 上記被 圧延材 28、 28'の形状 '寸法と、 オーパル孔型 29 a、 29 bの形状 · 寸法との関係、 及び、 上記オーパル形状に成形された被圧延材 30とスク エア孔型ロール 3 1 a、 3 1 b又はダイヤ孔型ロール 32 a、 32 bの各 寸法 ·形状との関係として、 次の関係が満たされる孔型ロールを使用する ことが、 大ひずみの導入上効果的である。
即ち、 [条件 1] オーバル孔型ロール 29 a、 29 bは、 そのォ一バル孔 型の最大短軸長さ Aが、 C断面が四角形状又は丸形状の被圧延材 28又は 28'の対辺間の長さ又は直径 (いずれも Bで表記する) の 0. 75倍以下 (A≤BX 0. 7 5)、 即ち AZB≤0. 75に限定することが望ましく、 更には A/B≤0. 60に限定すれば一層望ましい。
このように、 AZB≤0. 75とするのは、 ォ一バル孔型を用いたとき の公称圧下率 (= (B-A) /B) が小さいと、 被圧延材料の中心部まで ひずみがほとんど導入されないので、 これを解消するために、 AZB≤0. 75とする。 また、 良好な断面形状成形性の確保の観点からも、 A>BX 0. 7 5となると、 次のパスにおけるスクェア孔型又はダイヤ孔型ロール による圧延において、 ロールギャップに被圧延材料の一部が流動してしま レ 材料の断面形状の成形性が確保できない上に、 導入されるひずみも小 さい。 従って、 A≤BX 0. 75と限定する。 更に、 AZB≤0. 60に 制限すれば上記効果が一層発揮される。 なお、 AZBの値が小さくなり過 ぎると、 被圧延材の倒れが発生しやすくなるので望ましくない。
上記条件 1の上に更に、 [条件 2] スクェア孔型ロール 31 a、 3 l b又 はダイヤ孔型ロール 32 a、 32 bは、 そのスクェア孔型又はダイヤ孔型 の天地対角間の長さ (いずれも Cで表記する) が、 ォ一バル形状に成形さ れた被圧延材 30の長軸長さ Dの 0. 75倍以下 ((:≤0 0. 75)、 即 ち CZD≤0. 75と限定すれば、 一層望ましい。 即ち、 断面形状の成形 性を一層有利にするために、 上記 2パスにおけるスクェア孔型又はダイヤ 孔型の天地対角間の長さ又は直径 Cを大きくして、 直前のパス (1パス目) で得られた上記オーパル形状被圧延材 30の長軸長さ Dに対する Cの比率 CZDを大きくすると、 今度は公称圧下率 (= (D-C) ZD) が小さく なってしまい、 断面形状の成形性は向上しても、 材料中心部にまでひずみ を導入することができなくなる。 断面形状の成形性を良好に確保し、 且つ 材料中心部にまでひずみを導入するために、 上記比率 CZDは、 C/D≤ 0. 75と限定する。
なお、 圧延においては、 仕上り鋼細線の断面形状 ·寸法に応じた適切な パススケジュールが必要であるが、 上述したスクェア孔型又はダイヤ孔型 の代わりに、 ボックス孔型を使用しても、 ある程度の類似効果が発揮され る。 従って、 ボックス孔型による代替使用も実操業上は有用である。
[2-5] オーバル孔型の望ましい形状寸法について
更に、 上述したパススケジュールで圧延を行なうに際して効果的なォー バル孔型の望ましい形状寸法については次の通りである。 即ち、 「大ひずみ の導入」 と 「断面形状の成形性確保」 との両立は、 先行パスであるオーバ ル孔型ロールによる公称圧下率だけでなく、 オーパル孔型の長軸方向の形 状によって引き起こされる拘束力にも大きく依存する。
( i ) 図 3に示しているオーバル孔型の最大短軸長さ Aの長軸長さ Eに対 する比 (AZE) が小さいほど、 次パスにおける公称圧下率を大きくする ことができるので、 ひずみ導入に効果を発揮する。
このひずみ導入効果が十分に発揮されるようにするためには、 ォ一バル 孔型の最大短軸長さと長軸長さの比 (AZ E ) は 0 . 4 0以下であること が望ましい。
( i i ) 一方、 上記オーパル孔型の形状において、 オーパル孔型の曲率半 径 R aが小さいと、 1パス当たりの減面率は大きくすることができるが、 幅方向が尖形となってしまい、 たとえ、 次パスでの公称圧下率が大きくて も、 被圧延材料中心部にひずみが導入され難い。 従って、 断面形状の成形 性を確保しつつ材料中心部への大ひずみ導入を図るためには、 オーバル孔 型の曲率半径 R aは大きい方が効果的であり、 その大きさは、 オーバル孔 型ロール 2 9 a、 2 9 bで圧延される四角形状被圧延材 2 8の対辺間の長 さ B (図 2 ( a ) 参照)、 又は丸形状被圧延材 2 8 'の直径 B (図 2 ( b ) 参照) の 1 . 5倍以上であることが望ましい。 但し、 これが 5倍、 6倍と なるとその効果は飽和するが、 周知のオーパル孔型ロールの範疇であれば、 特に上限を設ける必要はない。
このように、 オーパル孔型の望ましい曲率半径 R aは、 これにより圧延 される被圧延材の C断面寸法に依存するが、 R a≥B X l . 5を満たす曲 率半径を有する水準の孔型を装備しておくことが望ましい。
そして、 本発明においては、 所望する線径の仕上がり材 (鋼細線) を製 造するために、下記 [ 2— 5 ] の圧延工程を適宜選定することが望ましい。
[ 2 - 6 ] 圧延方式と仕上り材の線径について
この大ひずみ加工の重要な構成要素として、 鋼線材の圧延パススケジュ ールがある。 図 1に例示した温間制御連続圧延加工設備 2 7においては、 圧延機を 7、 1 2、 1 6、 2 0のように 4基を直列に配置している。 各圧 延機は、 周知の二重式水平圧延機である。 なお、 圧延機の種類 (形式) や 基数は、 例えば生産量、 主要生産品の出発材と仕上げ材の線径との関係、 操業形態等により、 圧延機 2基以上の配設を前提として、 適宜選定 ·増減 することができる。 また、 各圧延機のロール孔型としては、 周知のオーバ ル、 スクェア、 ラウンド、 ダイヤ及びボックスを適宜選択することができ る。 例えば、 第 1番目の圧延機 7のロール孔型はォ一バル、 次の圧延機 1 2はスクェア、 次の圧延機 1 6はスクェア、 そして第 4番目の圧延機 2 0 はラウンド孔型とする。 そして、 所定の鋼線材 (被圧延材) を仕上げ目標 寸法の鋼細線まで温間制御圧延を施そうとする場合、 出発時の被圧延材の 線径に応じ、 各圧延パス毎の減面率及び圧下方向を考慮して、 それぞれの 孔型の諸元寸法を決定する。 そして、 必ずしも圧延ラインの 1工程で仕上 げ目標寸法の鋼細線まで加工する必要はなく、 2工程以上で仕上げるよう にパススケジュールを設定することができる。 その場合、 各圧延機におい て所要の孔型を用いて圧延するために、 例えばある圧延機についてはロー ル組替えにより、 必要な孔型形状で所要の諸元寸法の孔型が形成された口 —ルを使用して圧延する。 例えば、 被圧延材のパススケジュールを、 1ェ 程に 4基の圧延機が配設された圧延ラインにおいて、 全 2工程で出発材の 鋼線材を仕上げ目標寸法の鋼細線に圧延しょうとする場合に、 第 1工程で はオーパル一スクェア—スクェア—スクェアとし、 第 2工程ではオーバル 一スクェア—オーバルーラウンドとする場合でも、 所要のパススケジユー ルに基づき、 4基それぞれの二重式水平圧延機のロール孔型の諸元寸法を 設計しておき、 第 2工程では全ての圧延機のロールを変更して圧延を行な Ό。
また、 2工程以上で仕上げるパススケジュールの場合は、 サイジング装 置 2 2を使用する場合は、通常、最終回工程の最終パスで使用すればよい。 なお、 サイジング装置 2 2を設けることなく、 最後段圧延機 2 0に、 サ イジング機能を有する孔型が設計されたカリバーロールを装備してもよレ また、 上記パススケジュールの適切化を図るために、 ある回数目の工程 においては 4基の圧延機の内の例えば 1基は、 これによる圧延を行なわな くすることもできる。 その方法としては、 当該圧延機は被圧延材を空通し してもよいし、 あるいは圧延機スタンドを圧延ラインから一時的にスライ ド除去する、 等の方法によってもよい。 また、 温間制御連続圧延加工設備 2 7は、 この圧延ラインの後尾において複数のストランドに分岐させ、 こ の分岐した各ストランドのそれぞれに、 所定の圧延機を配置してもよい。 その際、 各末尾圧延機のそれぞれの下流側にコイル巻取り装置 2 4を併設 すれば、 圧延ラインの操業度を一層向上させ得る。
なお、 このように、 C断面形状がオーパル形状の被圧延材の長辺をスク エア孔型ロール、 ダイヤ孔型ロール又はボックス孔型ロールで圧延する際 に、 被圧延材に倒れが発生するのを防止するためには、 即ち、 正規の圧下 方向と異なる方向から圧下されるのを防止するためには、 特にォ一バル孔 型ロールへの四角形状の被圧延材の嚙み込み時の捻転、 及びボックス孔型 ロールへのオーバル形状被圧延材の長辺の嚙み込み時の捻転を防止できる ように、 圧延機への適切な入側案内装置の配設が効果的である。 また、 圧 延機の出側案内装置も配設すれば一層効果的である。 かくして、 被圧延材 への大ひずみの導入が一層促進されて、 細線の微細粒組織の形成に寄与す る。
更に、 図 1の温間制御連続圧延加工設備 2 7の配置例では、 コイル巻取 り装置 2 4の前に冷却装置 2 3を設けたが、 任意回数目の圧延工程終了後 の被圧延材 2 6は、 必ずしも冷却された後に巻き取られる必要はない。 特 に、 当該被圧延材の線径が細くなつた場合には、 空冷速度も速くなり、 例 えば、 圧延加工後の冷却速度が 1 0 : Z s e c以上の比較的速い冷却速度 であれば、 また温間領域における圧延後であることも影響して、 鋼細線の 温度は比較的低くなるので、 フェライ卜粒の粗大化は防止されるからであ る。
一方、 圧延工程が進んで、 被圧延材の線径が小さくなり、 圧延速度が大 きい場合等は、 放熱量に対して加工発熱が上回ることにより、 圧延機の出 口における被圧延材の温度が入口における温度を上回り、 温度制御の観点 から若千の急速調整冷却をすることが望ましい場合がある。 かかる場合に は、 前述した急速調整冷却装置を設けることにより、 一層望ましい温間制 御圧延が可能となり、 結晶粒の微細化と整粒化が促進される。
この発明を実施例により更に詳しく説明する。 実施例
[実施例 1 ]
熱間圧延により製造された表 1に示す化学成分組成を有する線径 1 2 mm Φ で、 単重が 1 . 0 トンのコイル状線材を、 本願発明による鋼細線製造用 の温間制御連続圧延加工設備により、 線径 5 . δ πιπι の鋼細線まで温間 制御連続圧延により加工した。
表 1
(質量%)
Figure imgf000042_0001
使用した温間制御連続圧延加工設備の概要構成を、 図 4に示す。 この温 間制御連続圧延加工設備 3 3は 2基の孔型ロール圧延機 7、 1 2を設けて おり、 コイル巻戻し装置 1から巻き戻されて走行する鋼線材 (被圧延材) 2 5が、 ス卜レートナー 2及びピンチロール 3を通って大容量急速加熱装 置 4に連続的に装入される。 大容量急速加熱装置 4は被圧延材に通電用ロ —ル形状の端子を接触させる、 通電抵抗加熱により急速に加熱 ·均熱する 方式を採用した。
大容量急速加熱装置 4で所定温度に加熱された被圧延材は、 サポート口 ール 5で支持されて入側案内装置 6に入り、 直ちに第 1番目の圧延機 7に 入る。 ここで所定の圧延加工を施された後の被圧延材 2 5は、 出側案内装 置 8で誘導されて排出され、 次いで弛み調整装置 9を経た後、 入側案内装 置 1 1で所定の方向に捻転させられて、 第 2番目の圧延機 1 2に入り、 所 定の圧延加工を施された後、 出側案内装置 1 3で誘導されて排出された後、 コイル巻取り装置 2 4で巻き取られる。 なお、 入側案内装置及び出側案内 装置はいずれも、 有溝状の 2対のローラーガイドとした。
上記温間制御連続圧延加工設備を使用して第 1工程から第 4工程の圧延 において、 各圧延機 7、 1 2の入側直前及び出側直後において、 被圧延材 の温度を接触型温度計で連続的に測定し、 この測定値を監視しつつ、 オペ レー夕が大容量急速加熱装置 4への投入電流を手動で制御することにより、 温間制御連続圧延を行なった。 また、 弛み調整装置 9により被圧延材に特 別な張力がかからないように圧延機のロール回転数を調節した。
図 4の圧延ライン 1工程における圧延の間に、 線径 1 2 πΐΓη φ の鋼線材 2 5を出発材として、 第 1番目のオーパル孔型ロール圧延機 7により、 A Z B (オーバル孔型の最大短軸間長さ/線径 1 2 mm) = 0 . 4 6の条件 で断面をォ一バル形状に圧延し、 次いでこれを第 2番目の圧延機 1 2のス クエア孔型ロール圧延機 1 2により圧延した。 かくして、 第 1工程におけ る減面率 Rが 3 0 %の圧延を行なった。
以下、 第 2〜第 4工程を、 上記第 1工程に準じるか類似したパススケジ ユールのもとに順次圧延して、 仕上り材として線径 5 . δ πιπι の鋼細線 2 6を得た。 表 2に、 この実施例における各工程における各試験条件を示 し、 また、 出発材及び仕上り材 (鋼細線) のフェライ卜平均粒径、 並びに 出発材から鋼細線に至る各工程毎での引張強さ T Sおよび絞り R Αの試験 結果を同表に併記した。
パススケジュール関連 被圧延材の温度 (で) フェライ卜 機械的性質 材料寸法 A/B 減面率 R ひずみ e' 前段圧延機 後段圧延機 平均粒径引張強さ TS 絞り RA
(min) (-) (一) 入側 出側 入側 出側 (μπι) (MP a) (%) 出発材 12 ― ― ― ― ― ― 一 30 320 82.2 第 1工程 ― 0.46 30 0.36 560 467 453 430 ― 548* 75.7* 第 2工程 一 0.49 28 0.33 565 470 430 440 ― 559* 76.8*
Figure imgf000044_0001
第 3工程 ― 0.53 28 0.33 565 460 420 435 ― 605* 75.5* 第 4工程 ― 0.63 26 0.30 541 483 460 404 ― 687* 76.5* 仕上り材 5.5 ―
Figure imgf000044_0002
∑e ' =1.56 ― ― ― ― 0.6 687 76.5
注: *印は、 第 1〜第 4各工程の出側における試験値である。
上記圧延工程における被圧延材の温度は、 最高温度が 56 5で、 最低温 度が 404でであり、 第 1〜第 4工程の各圧延工程における被圧延材の温 度測定結果は、 表 2に示す通りであり、 本発明の温間圧延条件の範囲内に ある。
また、第 1〜第 4の各工程における減面率 Rは、 30%、 28%、 28%、 26 %、 A/Bの値は、 0. 46、 0. 49、 0. 53、 0. 63で、 各 工程の真ひずみ e'はひ. 36、 0. 33、 0. 33、 0. 30であった。 以上の試験により、 下記結果が得られた。 線径 1 2mm(i) の走行する被 圧延材 (鋼線材) を、 通電抵抗加熱方式の大容量急速加熱装置により、 い ずれの圧延工程においても、 第 1番目の圧延機入側温度として、 手動操作 により 54 1〜565での範囲内まで加熱し、 第 1番目の圧延機による圧 延後、 第 2番目の圧延機入側温度として、 420〜460 の範囲内に保 持されて、 その圧延機出側温度が 404〜44 Otの範囲内に保持される という結果が得られた。
この間、 圧延ラインの各 1工程当たりの減面率は 26〜30 %であり、 第 1〜第 4工程までの 8パスにより、 総減面率 RTtは 79 %、 累積真ひず み∑ e'は 1. 56となり、 倒れ発生が防止された孔型圧延を行なった。 圧 延線速度 (各工程での巻取り線速度) は、 5. 0〜10. OmZ分であり、 重量換算値で 38〜29 k 分の圧延速度で、 線径 5. δπιιηφ で単重 が 1. 0 トンの従来比類なき大単重のコイル状鋼細線が得られた。
得られた鋼細線のフェライト平均粒径は、 0. 6 mであり、 引張強さ TSが 68 7 MP aで、 絞り R Aが 76. 5%という、 高強度且つ高延性 を有する冷間加工性に優れた鋼細線が得られた。
一方、 上記試験結果によれば、 第 2番目圧延機による圧延中の被圧延材 の温度は凡そ、 404〜440でという比較的低温度水準にあつたため、 放熱速度が低下し、 加工発熱による温度補償効果が発現して、 当該圧延中 における温度低下が殆ど起こらなかったか、 又は極めて小さかったものと 推定される。 なお、 後述する 「メタルファイバーガスバーナーによる補助急速加熱試 験」 の結果より、 適切な補助急速加熱装置を用いれば、 第 2番目圧延機入 口における温度を、 第 1番目圧延機入口における温度と同じ水準まで加熱 することが可能であると考えられる。
従って、 また第 1番目圧延機の入側温度を 4 5 0で程度の低温度水準に 設定し、 且つ、 仮に第 2番目圧延機の入側に補助急速加熱装置を設けて、 第 1番目圧延機での被圧延材の温度低下分を補償すれば、 第 1番目圧延機 と第 2番目圧延機とからなる 1工程中における圧延温度を極めて狭い温度 範囲内に制御することができることがわかり、 一層材質特性に優れた鋼細 線の製造が可能となる。
[実施例 2 ]
実施例 1に供された出発材と同一化学成分組成及び熱間圧延により製造 された、 同一線径 1 2 πιιη φ で、 単重が 1 . 0 トンのコイル状線材を、 実 施例 1で使用した本願発明による鋼細線製造用の温間制御連続圧延加工設 備により、 実施例 1とは異なる第 1から第 3工程からなるパススケジユー ルにより、 仕上り線径 6 . Ο πιιιι φ の鋼細線まで温間制御連続圧延により 加工した。 また、 圧延設備の運転方法、 並びに、 出発材、 仕上り材及び第 1〜第 3の各工程毎の試験項目も、 実施例 1に準じて行なった。
表 3に、 実施例 2の試験条件及び試験結果を示す。
パススケジユール 被圧延材の温度 ( ) フェライ卜 機械的性質 材料寸法 A/B 減面率 R ひずみ e ' 前段圧延機 後段圧延機 平均粒径引張強さ TS 絞り RA
(mm) (-) (¾) (一) 入側 出側 入側 出側 (βΐ ) (MP a) (%) 出発材 12 ― ― ― ― ― 30 320 84.5 第 1工程 ― 0.45 40 0.51 510 453 435 460 ―
Figure imgf000047_0001
第 2工程 ― 0.50 40 0.51 514 415 403 423 ― 第 3工程 ― 0.61 30 0.36 500 433 402 380 ― 702* 76.9*
仕上り材 6.0Φ ― RTot=i5 ∑e' =1.39 ― ― ― 0.5 702 76.9 注: *印は、 第 3工程の出側における試験値である。
上記圧延工程における被圧延材の温度は、 最高温度が 5 14で、 最低温 度が 402でであり、 第 1〜第 3工程の各圧延工程における被圧延材の温 度測定結果は、 表 3に示す通りであり、 本発明の温間圧延条件の範囲内に ある。 また、 第 1〜第 3の減面率は各工程における減面率 Rは、 40%、 40 %, 30%、 AZBの値は、 0. 45、 0. 50、 0. 6 1で、 各ェ 程の真ひずみ e'は、 0. 5 1、 0. 5 1、 0. 36であった。
以上の試験により、 下記結果が得られた。 線径 1 2mmci) の走行する被 圧延材 (鋼線材) を、 通電抵抗加熱方式の大容量急速加熱装置により、 い ずれの圧延工程においても、 第 1番目の圧延機入側温度として、 手動操作 により 500〜 5 1 0での範囲内まで加熱し、 第 1番目の圧延機による圧 延後、 第 2番目の圧延機入側温度として、 402〜435での範囲内に保 持されて、 その圧延機出側温度が 380〜460¾:の範囲内に保持される という結果が得られた。
この間、 圧延ラインの各 1工程当たりの減面率は 30〜40 %であり、 第 1〜第 3工程までの 6パスにより、 総減面率 RTtは 75 %、 累積真ひず み∑ e'は 1. 39となり、 倒れ発生が防止された多方向 ·多パスの力リバ 一圧延を行なった。 圧延線速度 (各工程での巻取り線速度) は、 8. 5〜 1 0. OmZ分であり、 重量換算値で 5 5〜36 k gノ分の圧延速度で、 線径 6. Ommif) で単重が 1. 0トンの従来比類なき大単重のコイル状鋼 細線が得られた。
得られた鋼細線のフェライト平均粒径は、 0. 5 imであり、 引張強さ 丁3が7021^ ? 3で、 絞り R Aが 76. 9 %という、 高強度且つ高延性 を有する冷間加工性に優れた鋼細線が得られた。
一方、 上記試験結果によれば、 第 2番目圧延機による圧延中の被圧延材 の温度は凡そ、 35 1〜460で という比較的低温度水準にあつたため、 放熱速度が低下し、 加工発熱による温度補償効果が発現して、 当該圧延中 における温度低下が殆ど起こらなかったか、 又は極めて小さかったものと 推定される。 [メタルファイバーガスバーナーによる補助急速加熱試験] そこで、 上記実施例 1及び実施例 2において、 更に第 2番目圧延機の入 側に補助急速加熱装置として、 メタルファイバーガスバーナーを設けるこ とを想定し、 このように想定された実施例 1及び実施例 2の設備において、 任意の 1工程における圧延中の温度を一層狭い温度範囲内に制御し得ると の発想のもとに、 下記の通りの補助急速加熱装置による鋼線材の昇温試験 を行なった。
線径 6 mm φ の線材をメタルファイバーガスパーナ一により常温から加 熱し、 その線材の昇温曲線に基づき、 4 0 0でから 4 5 0でまで昇温する のに要する時間を測定した。 試験方法は次の通りである。
6 mm </> の被加熱鋼線材を、 これから互いに反対方向に 2 5 mmの間隔 を空けて互いに対向配置した幅 1 5 0 mm、 長さ 4 0 0 mmの 2枚の平板 フェルト状メタルファイバーのセッ卜を、 その長さ方向に直列に 2セット 連結したメタルファイバ一ガスバーナー内で加熱した (従って、 メタルフ アイパーガスバーナーの全長は、 約 4 0 O mm X 2 =約 8 0 O mmであり、 バーナー同士の間隔は 5 O mmである)。 被加熱鋼線材は、 上下に対向する 上記平板フェルト状メタルファイバ一間で、 両平板フェル卜状メタルファ ィパーの幅方向中心線に平行で両者から等距離 (それぞれから 2 5 mm) の位置に固定配置し、 各上下メタルファイバ一の外面(上下面側)から燃焼 性ガスを供給して燃焼させ、 メタルファイバーを加熱 ·赤熱させて被加熱 鋼線材を加熱 ·昇温し、 その時の昇温曲線を測定した。
その結果、 0 . 1 3分 (= 8秒) で被加熱鋼線材は 4 0 0でから 4 5 0で まで昇温することがわかった。 これによれば、 例えば、 実施例 1の如き第 1から第 4工程で鋼細線を圧延する場合であれば、 メタルファイバ一ガス バーナー部分の長さが、 1 . 3 mの補助急速加熱装置を、 後段圧延機の入 側に設ければよいことがわかる。 その他の加熱方式による補助急速加熱装 置を採用する場合でも、 上記メタルファイバ一ガスバーナー方式による補 助急速加熱装置の場合に準じて、 製造しょうとする出発鋼線材の線径と仕 上り鋼細線の線径、 パススケジュール、 及び圧延速度を設定することによ り、 補助急速加熱装置の全長を設計することができる。
従って、 上記のメタルファイバーガスバーナーによる補助急速加熱試験 の結果より、 実施例 1及び実施例 2において、 更に第 2番目圧延機の入側 に適切な補助急速加熱装置を設置することにより、 圧延開始から終了まで の間における被圧延材の温度を、 更に狭い範囲内に制御し得ることがわか る。
具体的には、 上記実施例 1及び実施例 2においては、 当該制御温度範囲 が、 前記 (3) 及び (4) 式、 即ち、
Figure imgf000050_0001
l 50で〜50で (3)
Tn,out -T n=- 200で〜 10 Ot: …… (4)
(但し、 Tは温度 (で) であり、 nは圧延機の基数を表わし、 rは圧延 機の順番であって、 第 1番から第 n— 1番までの任意の数を表わし、 i n は圧延機への入側直前、 o u tは圧延機からの出側直後を表わす)、 を満た していたが、 更に望ましい制御温度範囲である前記 (3 ' ) 及び (4 ' ) 式、 即ち、
Tr+l out— Tr in=— 50t:〜 30で (3')
Tn,„ut一 T1Jn=— 50で〜 30で (4')
を満たすことができることが容易に推定される。
以上のように、 第 2番目以後の圧延機の入側に、 補助急速加熱装置を設 けることにより、 一層望ましい温間制御連続圧延を実施できる大ひずみ温 間制御連続圧延加工設備を構成することができる。
[比較例 1 ]
出発材として、 鋼種符号 SWRCH6 A (C含有量: 0. 0 5質量%) の 化学成分組成を有する冷間圧造用炭素鋼線材向けの素材であって、 熱間圧 延で製造された市販の 1 2mm X長さ 3mの棒鋼を用い、 2基の直列に 配設された圧延機により、 本発明の範囲外である熱間圧延条件で、 表 4に 示すようにいずれもスクェア孔型ロール圧延機により、 2パスからなる 1 工程の圧延を行なって、 9 . 5 mm角の棒鋼を得た。 上記において、 出発 材の加熱温度は 9 5 0で設定であるが、 走行する 1 2 mm <i> の棒鋼を連続 的にこの加熱温度まで昇温 ·加熱するために必要な加熱炉の長さは、 長く なり過ぎて現実的でないので、 上記寸法の出発材棒鋼の全長を輻射加熱炉 で加熱後、 抽出して 2パス圧延を行なった。
表 4に、 比較例 1の試験条件及び試験結果を示す。
パススケジュール 被圧延材の温度 (で) フェライ卜 機械的性質
材料寸法 減面率 R ひずみ e ' 前段圧延機 後段圧延機 平均粒径 引張強さ TS 絞り RA
(nun) (¾) (一) 入側 出側 入側 出側 lim) (MP a) (%) 出発材 12Φ ― ― 一 ― ― 20 400 82.5
Figure imgf000052_0001
第 1工程 ― 20 0.22 950 900 850 800 ― 420* 82.0* 仕上り材 9.5X9.5
Figure imgf000052_0002
∑e' =0.22 一 ― 一 ― 10 420 82.0
注: *印は、 第 1工程の出側における試験値である。
上記圧延工程における被圧延材の温度は、 最高温度が 950で、 最低温 度が 800でであり、 圧延工程における被圧延材の温度測定結果は、 表 4 に示す通りであり、 本発明の温間圧延条件の範囲外であって、 熱間圧延温 度域内にある。
以上の試験により、 下記結果が得られた。 線径 12mm<i) の走行する被 圧延材 (棒鋼) を、 通電抵抗加熱方式の大容量急速加熱装置により、 95 0でまで加熱し、 第 1番目の圧延機による圧延後、 第 2番目の圧延機入側 温度として、 850での温度が得られ、 その圧延機出側温度が 800でと いう結果が得られた。 この間、 1パス当たりの減面率は 9. 2%であり、 総減面率 RTtは 20%、 累積真ひずみ∑e'は、 0. 22であった。 圧延線 速度は、 1 OmZ分であり、重量換算値で 66 k gZ分の圧延速度で、 9. 2mm角の棒鋼で長さ 5. 1 m、 単重 2. 7 kgの棒鋼を得た。 但し、 こ の比較例においては、 加熱方式が上述したように走行材を連続的に加熱す る形態ではないので、 重量換算値の圧延速度のみにより圧延能率は決定さ れず、 加熱能率にも支配されることに留意することが必要である。
得られた棒鋼のフェライト平均粒径は、 10 / mであり、 引張強さ TS は 420 MP aと出発材の 40 OMP aからの上昇量は小さく、 一方、 絞 り1¾八は82. 0%で、 出発材からの低下は殆どなかった。 従って、 従来 の熱間圧延条件による鋼細線の製造によっては、 この発明の目的は達成さ れない。
上記実施例及び比較例により、 本願発明の有効性が確認された。 なお、 以上の実施例及び比較例における試験材の化学成分組成は、 低炭素鋼乃至 極低炭素鋼に属するが、 これらに限定されることなく、 前述した本願発明 による結晶粒の微細化機構を考慮すれば、 広範囲の炭素鋼及び低合金鋼に おいても同様な結果が得られることが明らかである。 産業上の利用可能性
以上述べたように、 本発明は、 圧延ラインに金属材料を走行させながら 定常的 ·連続的に適切な温度領域に加熱しつつ、 複数基の孔型ロール圧延 機によりこれを適切な温間温度範囲内に制御しつつ適切なひずみを導入し て連続的に圧延することができるように構成したものである。
本発明は、 従来、 鉄鋼、 金属 M g及び M g合金、 金属 A 1及び A 1合金、 金属銅及び銅合金、 並びに T i及び T i合金の各棒 ·線材を素材として従 来よりも強度及び延性に優れた各金属及び合金線材又は線であって、 しか も従来得られていなかった大単重線材又は線を生産効率よく製造し、 量産 することができる金属細線の製造方法 (請求項 1〜 1 8 ) とその製造装置 (請求項 1 9〜3 2 ) を提供することができる。
また、 本発明は、 線径が中間サイズである 5 ~ 6 0 mm程度のコイル状 鋼線材又は鋼線から、 線径が 1〜2 5 mm程度の鋼細線を製造するに際し、 常温のコイル状線材を巻き戻しつつ、 この走行する被圧延材をオンライン で定常的 ·連続的に急速加熱し、 これを所定の温間温度範囲内に制御しつ つ連続的に圧延することにより、 微細粒組織を有し、 引張強さ及び絞りに 優れた鋼細線を製造することができる。 しかも、 本発明は従来は熱間圧延 又は引抜きにより、 単重がせいぜい 3 0〜8 0 k g程度までしか製造する ことができなかったコイル状鋼細線を、 温間制御連続圧延により、 単重が 5 0 0 k g乃至 2 t程度、 または、 それ以上の大単重である、 微細粒組織 乃至超微細粒組織を有するコイル状鋼細線 (請求項 5 2および 5 3 )、 およ び該微細粒組織乃至超微細粒組織を有するコイル状鋼細線をコイル状鋼線 材又は鋼線から生産効率よく量産することができる製造方法 (請求項 3 3 〜5 1を提供することができる。
従って、 本発明によれば、 従来の熱間圧延ではなく温間制御圧延で製造 するので、 従来の金属細線製造工程で必須とされている材質改善のための 各種の熱処理工程を完全に省略することもできる。
例えば、鋼細線についていえば、従来の鋼細線製造工程で行われている、 極めて長時間を要するセメンタイ卜の球状化焼なまし等の熱処理工程を完 全になくすことができるという、 極めて大きなメリッ卜がある。 勿論、 素材の仕様と製造しょうとする製品の仕様、 並びに生産設備を考 慮した操業条件により、 本願発明の範囲内において合理的な温間制御圧延 を採用することができ、 製品の用途に合わせて、 最低限の熱処理を施して も良い。
かくして、 本発明によれば、 従来製造不可能であった大単重の金属細線 を効率よく製造することが可能となり、 高強度で且つ高延性を備えた金属 細線を素材として使用する産業の発展にも大きく寄与し得る。

Claims

請求の範囲
1 . 走行する金属材料を加熱し、 加熱された当該金属材料を直列に配置 された複数基の圧延機により連続的に圧延して、 金属線材又は金属線を製 造する方法であって、 圧延開始から圧延終了までの被圧延材の温度を当該 被圧延材の金属材料の種類に応じて定められた温間圧延温度の範囲内に制 御しつつ、 且つ、 前記圧延開始から圧延終了までの間に前記被圧延材に導 入される、 下記 (1 ) 式:
e = 1 n ( S 0Z S ) ( 1 )
但し、 e :真ひずみ
S 0 :圧延開始前の被圧延材の C断面の面積
S :圧延終了後の被圧延材の C断面の面積
で表わされる真ひずみ eが、 e≥0 . 2 5となる圧延加工を、孔型ロール、 平ロール、 又は、 孔型ロールと平ロールとの組み合わせにより施すことを 特徴とする金属線材又は金属線の製造方法。
2 . 前記真ひずみ eが、 e≥0 . 7 0となる圧延加工を前記孔型ロール、 平ロール、 又は、 孔型ロールと平ロールとの組み合わせにより施すことを 特徴とする請求項 1に記載の金属線材又は金属線の製造方法。
3 . 前記真ひずみ eが、 e≥l . 3 8となる圧延加工を前記孔型ロール、 平ロール、 又は、 孔型ロールと平ロールとの組み合わせにより施すことを 特徴とする請求項 1に記載の金属線材又は金属線の製造方法。
4 . 前記走行する金属材料は、 加熱される前においてはコイル状に巻か れており、 そして、 前記複数基の圧延機により連続的に圧延加工を施され た前記金属線材又は金属線はコイル状に巻かれることを特徴とする請求項 1から請求項 3のいずれかに記載の金属線材又は金属線の製造方法。
5 . 前記被圧延材の加熱は、 第 1番目圧延機の実質的直前において前記 温間圧延温度の範囲内の所定温度まで急速加熱することを特徴とする請求 項 1から請求項 4のいずれかに記載の金属線材又は金属線の製造方法。
6 . 前記被圧延材の加熱は、 更に、 第 2番目以後の少なくとも 1基の圧 延機の実質的直前においても補助的に急速加熱することを特徴とする請求 項 1から請求項 5のいずれかに記載の金属線材又は金属線の製造方法。 7 . 前記被圧延材の前記孔型ロールによる圧延パススケジュールには、 C断面が四角形状又は丸形状を有する被圧延材をオーバル孔型を有する圧 延機で圧延して、 C断面がオーパル形状の被圧延材に成形し、 次にこうし て得られた被圧延材を、 スクェア孔型を有する圧延機又はダイヤ孔型を有 する圧延機で圧延するパススケジュールを含み、 しかもこのパススケジュ ールにおいて、 前記オーパル孔型の最大短軸長さ (Aと表記する) の、 前 記 C断面が四角形状又は丸形状を有する被圧延材のそれぞれ対辺間長さ又 は直径 (いずれも Bと表記する) に対する比率 A/ Bが、 A/ B≤0 .
7 5を満たす孔型を有する圧延機で圧延することを特徴とする請求項 1から 請求項 6のいずれかに記載の金属線材又は金属線の製造方法。
8 . 前記圧延パススケジュールには、 更に、 前記スクェア孔型又はダイ ャ孔型の天地対角間長さ (いずれも Cと表記する) の、 前記 C断面がォー パル形状に成形された前記被圧延材の長軸長さ (Dで表記する) に対する 比率 C Z Dが、 C Z D≤0 . 7 5を満たす孔型を有する圧延機で圧延する ことを特徴とする請求項 1から請求項 7のいずれかに記載の金属線材又は 金属線の製造方法。
9 . 前記 C断面がォ一バル形状に成形された前記被圧延材を、 スクェア 孔型を有する圧延機又はダイヤ孔型を有する圧延機で圧延する代わりに、 ボックス孔型を有する圧延機で圧延することを特徴とする請求項 7又は請 求項 8に記載の金属線材又は金属線の製造方法。
1 0 . 前記 C断面がオーパル形状に成形された前記被圧延材の長軸長さ Dに対する、 前記ボックス孔型の天地対辺間長さ (C 'と表記する) の比率 C ' ZDが、 C ' // D≤0 . 7 5を満たすことを特徴とする請求項 9に記載 の金属線材又は金属線の製造方法。
1 1 . 前記オーバル孔型を有する圧延機による前記圧延は、 前記オーバ ル孔型の最大短軸長さ Aとその長軸長さ(Eで表記する)との比 AZEが、 A/E≤0. 40を満たすオーパル孔型を有する圧延機を使用することを 特徴とする請求項 7から請求項 10のいずれかに記載の金属線材又は金属 線の製造方法。
12. 前記オーパル孔型を有する圧延機による前記圧延は、 前記オーバ ル孔型の曲率半径 (R aで表記する) が、 前記 C断面が四角形状又は丸形 状を有する被圧延材のそれぞれ対辺間長さ又は直径 Bの 1. 5倍以上であ るオーバル孔型を有する圧延機を使用することを特徴とする請求項 7から 請求項 11のいずれかに記載の金属線材又は金属線の製造方法。
13. 前記パススケジュールには、前記オーバル孔型を有する圧延機と、 これに引き続く前記スクェア孔型を有する圧延機又はダイヤ孔型を有する 圧延機との組合せによる圧延を、 2回以上行なうことを含んでいることを 特徴とする請求項 7、 請求項 8、 請求項 1 1又は請求項 12のいずれかに 記載の金属線材又は金属線の製造方法。
14. 前記被圧延材の前記各孔型を有する圧延機による圧延パススケジ ユールには、 孔型形状、 ダイヤ又はボックスと、 これに次ぐスクェア、 ダ ィャ、 ボックス又はラウンドとの組合わせを含んでいることを特徴とする 請求項 1から請求項 13のいずれかに記載の金属線材又は金属線の製造方 法。
15. 前記被圧延材の温度を、 前記金属材料の種類に応じて定められた 温間圧延温度の範囲内に制御しつつ、 前記被圧延材を前記各孔型を有する 圧延機により圧延加工する一連の工程を、 2工程以上繰り返すことを特徴 とする請求項 1から請求項 14のいずれかに記載の金属線材又は金属線の 製造方法。
16. 前記一連の工程を、 2工程以上繰り返すことにより、 最初の圧延 工程における圧延開始から最終の圧延工程における圧延終了までの間に、 前記被圧延材に導入される、 下記 (2) 式:
eTot= 1 n (S0 -STol) (2) 但し、 eTt :真ひずみ
S0 :最初の圧延工程の圧延開始前の被圧延材の C断面の面積 STot :最終の圧延工程の圧延終了後の被圧延材の C断面の面積 で表わされる真ひずみ eTfllが、 eTt≥0. 25を満たす圧延加工を施すこ とを特徴とする請求項 1から請求項 1 5のいずれかに記載の金属線材又は 金属線の製造方法。
1 7. 前記真ひずみ eTfllは、 eTt≥0. 70を満たすことを特徴とする 請求項 16に記載の金属線材又は金属線の製造方法。
1 8. 前記真ひずみ eTtは、 eTt≥ l . 38を満たすことを特徴とする 請求項 16に記載の金属線材又は金属線の製造方法。
1 9. コイル巻戻し装置及びコイル卷取り装置が設けられ、 これら両装 置間に複数基の圧延機が直列に配置され、 前記コイル巻戻し装置から巻き 戻されて走行する被圧延材を前記複数基の圧延機で連続的に圧延して金属 線材又は金属線を製造する圧延加工設備であって、 前記複数基の圧延機の 内の第 1番目圧延機の入側であって、 当該圧延機に対して実質的直近であ る位置に大容量急速加熱装置が設けられていることを特徴とする温間制御 連続圧延加工設備。
20. 前記複数基の圧延機の内の第 2番目以後の圧延機の少なくとも 1 基の入側であって実質的直近である位置に、 更に補助急速加熱装置が設け られていることを特徴とする請求項 1 9に記載の温間制御連続圧延加工設 備。
2 1. 前記大容量急速加熱装置は、 メタルファイバガスバーナー又はセ ラミック多孔板ガスパーナ一等の表面燃焼式ガスパーナ一装置、 通電抵抗 加熱装置、 電磁誘導加熱装置、 及び電気抵抗発熱体輻射加熱装置の内、 い ずれか 1種又は 2種以上を組み合せた加熱装置からなることを特徴とする 請求項 19又は請求項 20に記載の温間制御連続圧延加工設備。
22. 前記補助急速加熱装置は、 メタルファイバガスバ一ナ一又はセラ ミック多孔板ガスバーナー等の表面燃焼式ガスバーナー装置、 通電抵抗加 熱装置、 電磁誘導加熱装置、 及び電気抵抗発熱体輻射加熱装置の内、 いず れか 1種の加熱装置であることを特徴とする請求項 2 0又は請求項 2 1に 記載の温間制御連続圧延加工設備。
2 3 . 前記複数基の圧延機は、 当該圧延機群の中にオーバル孔型を有す る圧延機が配設されており、 これに次いでスクェア孔型を有する圧延機、 ダイヤ孔型を有する圧延機及びラウンド孔型を有する圧延機の内のいずれ かが配設されている、 圧延機の配設組合わせを含んでいることを特徴とす る請求項 1 9から請求項 2 2のいずれかに記載の温間制御連続圧延加工設 備。
2 4 . 前記複数基の圧延機は、 少なくとも、 オーパル孔型を有する圧延 機、 スクェア孔型を有する圧延機、 ダイヤ孔型を有する圧延機、 ボックス 孔型を有する圧延機及びラウンド孔型を有する圧延機の内のいずれかを含 み、 このいずれかの圧延機に次いでオーバル孔型を有する圧延機、 スクェ ァ孔型を有する圧延機、 ダイヤ孔型を有する圧延機、 ボックス孔型を有す る圧延機及びラウンド孔型を有する圧延機の内のいずれかが配設されてい る、 圧延機の配設組合わせを含んでいることを特徴とする請求項 1 9から 請求項 2 2のいずれかに記載の温間制御連続圧延加工設備。
2 5 . 前記複数基の圧延機の内の最後の圧延機の下流側に、 サイジング 装置が設けられていることを特徴とする請求項 1 9から請求項 2 4のいず れかに記載の温間制御連続圧延加工設備。
2 6 . 前記複数基の圧延機間の少なくとも 1箇所には、 前記コイル巻戻 し装置から巻き戻されて走行する前記被圧延材に対する弛み調整装置が設 けられていることを特徵とする請求項 1 9から請求項 2 5のいずれかに記 載の温間制御連続圧延加工設備。
2 7 . 前記複数基の各圧延機の入側には、 前記走行する被圧延材を当該 各圧延機に誘導する入側案内装置が設けられていることを特徴とする請求 項 1 9から請求項 2 6のいずれかに記載の温間制御連続圧延加工設備。
2 8 . 前記複数基の各圧延機の出側には、 前記走行する被圧延材を当該 各圧延機から走行排出される被圧延材を導出する出側案内装置が設けられ ていることを特徴とする請求項 19から請求項 27のいずれかに記載の温 間制御連続圧延加工設備。
29. 前記コイル巻戻し装置と前記大容量急速加熱装置との間には、 ス トレ一トナー及びノ又はピンチロールが設けられていることを特徴とする 請求項 1 9から請求項 28のいずれかに記載の温間制御連続圧延加工設備。
30. 前記コイル巻取り装置の上流側には走行する鋼線を冷却するため の冷却装置が設けられていることを特徴とする請求項 1 9から請求項 29 のいずれかに記載の温間制御連続圧延加工設備。
3 1. 前記複数基の圧延機の内の第 1番目圧延機を除く任意の圧延機の 入側に、 走行する被圧延材の当該任意の圧延機入側温度を制御するための、 急速調整冷却装置が設けられていることを特徴とする請求項 1 9から請求 項 30のいずれかに記載の温間制御連続圧延加工設備。
32. 前記複数基の各圧延機の入側及び出側における被圧延材の温度を 制御するための温度制御機構が設けられていることを特徴とする請求項 1 9から請求項 31のいずれかに記載の温間制御連続圧延加工設備。
33. 走行する鋼線材を加熱し、 加熱された当該鋼線材を直列に配置さ れた複数基の圧延機により連続的に圧延して、 鋼線材又は鋼線を製造する 方法であって、 圧延開始から圧延終了までの被圧延材の温度を 350でか ら 850での範囲内に制御し、 且つ 前記被圧延材の温度を、 下記 (3) 及び (4) 式:
Tr+l,oul-Tr.in=- 1 50 :〜 5 O (3)
Tn,out -T,,jn=- 20 O :〜 100"C …… (4)
(但し、 Tは温度 (で) であり、 ηは圧延機の基数を表わし、 rは圧延機 の順番であって、 第 1番から第 η— 1番までの任意の数を表わし、 i nは 圧延機への入側直前、 o u tは圧延機からの出側直後を表わす) が満たさ れるように制御することを特徴とするコイル状鋼線材又は鋼線の製造方法。
34. 前記圧延開始から圧延終了までの被圧延材の温度は、 これを 40 0でから 6 50での範囲内に制御することを特徴とする請求項 33に記載 のコイル状鋼線材又は鋼線の製造方法。
35. 走行する鋼線材を加熱し、 加熱された当該鋼線材を直列に配置さ れた複数基の圧延機により連続的に圧延して、 鋼線材又は鋼線を製造する 方法であって、 圧延開始から圧延終了までの被圧延材の温度を 400でか ら 650での範囲内に制御し、 且つ、 当該被圧延材をオーパル孔型を有す る圧延機で圧延し、 次いでスクェア孔型を有する圧延機、 ダイヤ孔型を有 する圧延機、 ラウンド孔型を有する圧延機及びボックス孔型を有する圧延 機の内のいずれかの圧延機で圧延するパススケジュールを含んでいること を特徴とするコイル状鋼線材又は鋼線の製造方法。
36. 前記圧延機の中にはオーパル孔型を有する圧延機が含まれていて 当該オーパル孔型を有する圧延機による圧延が含まれており、 更に、 前記 圧延開始から圧延終了までの間に上記被圧延材に導入される、 下記 (1') 式:
e'= 1 n (S0VS') (1')
但し、 e' :真ひずみ
S0' :圧延開始前の被圧延材の C断面の面積
S ' :圧延終了後の被圧延材の C断面の面積
で表わされる真ひずみ e'は、 e'≥0. 25となる圧延加工を施すことを 特徴とする請求項 33から請求項 35のいずれかに記載のコイル状鋼線材 又は鋼線の製造方法。
37. 前記真ひずみ e'は、 e'≥0. 70を満たすことを特徴とする請 求項 36に記載のコイル状鋼線材又は鋼線の製造方法。
38. 前記真ひずみ e'は、 e'≥ l. 38を満たすことを特徴とする請 求項 36に記載のコイル状鋼線材又は鋼線の製造方法。
39. 前記圧延機の中にはオーパル孔型を有する圧延機が含まれていて 当該ォ一バル孔型を有する圧延機による圧延が含まれており、 更に、 前記 圧延開始から圧延終了までの間に上記被圧延材に導入される、 3次元有限 要素法を用いて算出される塑性ひずみ (ε で表記する) が、 当該被圧延材 の 5 0体積%以上の領域において、 ε≥0 . 7となる圧延加工を施すことを 特徴とする請求項 3 3から請求項 3 5のいずれかに記載のコイル状鋼線材 又は鋼線の製造方法。
4 0 . 前記塑性ひずみ ε は、 ε≥ 1 . 5であることを特徴とする請求項
3 9に記載のコイル状鋼線材又は鋼線の製造方法。
4 1 . 前記圧延機の中にはオーバル孔型を有する圧延機が含まれていて 当該オーバル孔型を有する圧延機による圧延が含まれており、 当該オーバ ル孔型を有する圧延機で圧延される被圧延材の C断面は四角形状又は丸形 状を有し、 当該被圧延材のそれぞれ対辺間長さ又は直径 (いずれも Βと表 記する) に対する、 前記オーパル孔型の最大短軸長さ (Αと表記する) の 比率 Α Ζ Βは、 A/ B≤0 . 7 5を満たすことを特徴とする請求項 3 3か ら請求項 4 0のいずれかに記載のコイル状鋼線材又は鋼線の製造方法。
4 2 . 前記被圧延材のそれぞれ対辺間長さ又は直径 (いずれも Βと表記 する) に対する、 前記オーバル孔型の最大短軸長さ (Αと表記する) の比 率 Α/ Βは、 AZ B≤0 . 6 0を満たすことを特徵とする請求項 4 1に記 載のコイル状鋼線材又は鋼線の製造方法。
4 3 . 前記圧延機の中にはォ一バル孔型を有する圧延機が含まれ、 この 圧延機に次いでスクェア孔型又はダイヤ孔型を有する圧延機が設けられて おり、 当該オーバル孔型を有する圧延機で成形された C断面がオーパル形 状の被圧延材の長軸長さ (Dと表記する) に対する、 当該スクェア孔型又 はダイヤ孔型の天地対角間長さ(いずれも Cと表記する)の比率 C ZDは、 C / D≤0 . 7 5を満たすことを特徴とする請求項 3 3から請求項 4 2の いずれかに記載のコイル状鋼線材又は鋼線の製造方法。
4 4 . 前記被圧延材の前記圧延開始から圧延終了までの工程を、 2工程 以上繰り返すことを特徴とする請求項 3 3から請求項 4 3のいずれかに記 載のコイル状鋼線材又は鋼線の製造方法。
4 5 . 請求項 4 4に記載の発明において、 最初の圧延工程における圧延 開始から最終の圧延工程における圧延終了までの間に前記被圧延材に導入 される、 3次元有限要素法を用いて算出される塑性ひずみ(ε で表記する) が、 当該被圧延材の 50体積%以上の領域において、 ε≥ 1. 5となる圧 延加工を施すことを特徴とするコイル状鋼線材又は鋼線の製造方法。
46. 前記被圧延材の前記圧延開始から圧延終了までの工程を、 3工程 又は 4工程繰り返すことにより、 最初の圧延工程における圧延開始から最 終の圧延工程における圧延終了までの間に、 前記被圧延材に導入される、 下記 ( 2 ' ) 式:
eTot' = 1 n (S0'/ST。 ) (2')
但し、 eT :真ひずみ
S0 ' :最初の圧延工程の圧延開始前の被圧延材の C断面の面積 STot' :最終の圧延工程の圧延終了後の被圧延材の C断面の面積 で表わされる真ひずみ eT。 が、 eTt'≥ l . 38となる圧延加工を施すこと を特徴とする請求項 33から請求項 43のいずれかに記載のコイル状鋼線 材又は鋼線の製造方法。
47. 請求項 46に記載の発明において、 前記被圧延材の 1工程は、 2 基の圧延機が直列に配置された圧延加工設備を用いて行なわれることを特 徴とするコイル状鋼線材又は鋼線の製造方法。
48. 前記被圧延材の前記圧延開始から圧延終了までの工程を、 3工程 以上繰り返すことにより、 最初の圧延工程における圧延開始から最終の圧 延工程における圧延終了までの間に前記被圧延材に導入される、 3次元有 限要素法を用いて算出される塑性ひずみ (ε で表記する) が、 当該被圧延 材の 50体積%以上の領域において、 ε≥2. 0となる圧延加工を施すこ とを特徴とする請求項 33から請求項 43のいずれかに記載のコイル状鋼 線材又は鋼線の製造方法。
49. 請求項 48に記載の発明において、 最初の圧延工程における圧延 開始から最終の圧延工程における圧延終了までの間に前記被圧延材に導入 される、 3次元有限要素法を用いて算出される塑性ひずみ( ε で表記する) が、 当該被圧延材の 5 0体積%以上の領域において、 ε≥ 3 . 0となる圧 延加工を施すことを特徴とするコイル状鋼線材又は鋼線の製造方法。
5 0 . 請求項 1 9から請求項 3 2のいずれかに記載の温間制御連続圧延 加工設備を用いて、 走行する鋼線材に圧延加工を施すことにより製造する ことを特徴とする請求項 3 3から請求項 4 9のいずれかに記載のコイル状 鋼線材又は鋼線の製造方法。
5 1 . 前記複数基の圧延機の内、 少なくとも 1基の圧延機、 少なくとも 1基の圧延機とサイジングミル、 又はサイジングミルは、 これ若しくはこ れらを空通しするか、 又はこれ若しくはこれらを圧延のオンラインから一 時的に除去するかして用いずに、 前記被圧延材を目標とする断面形状寸法 に圧延することを特徴とする請求項 5 0に記載のコイル状鋼線材又は鋼線 の製造方法。
5 2 . 請求項 3 3から請求項 5 1のいずれかに記載の方法で製造される ことにより、 前記最終圧延工程の圧延終了後の被圧延材の C断面の面積の 9 0 %以上の領域について、 平均結晶粒径が 1 . 0 / m以下に微細粒化し ていることを特徴とするコィル状鋼線材又は鋼線。
5 3 . 前記被圧延材の C断面の面積の 9 0 %以上の領域に形成された平 均結晶粒径は、 0 . 6 m以下であることを特徴とする請求項 5 2に記載 のコイル状鋼線材又は鋼線。
PCT/JP2005/014797 2004-08-06 2005-08-05 温間制御圧延により大ひずみが導入された金属線材、およびその製造方法と製造装置 WO2006014027A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020077002903A KR101241837B1 (ko) 2004-08-06 2005-08-05 온간제어압연에 의해 큰 변형이 도입된 금속선재, 및 그제조방법과 제조장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004231505A JP4714828B2 (ja) 2004-08-06 2004-08-06 温間制御圧延により大ひずみが導入された金属線材、およびその製造方法と製造装置
JP2004-231505 2004-08-06

Publications (1)

Publication Number Publication Date
WO2006014027A1 true WO2006014027A1 (ja) 2006-02-09

Family

ID=35787297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014797 WO2006014027A1 (ja) 2004-08-06 2005-08-05 温間制御圧延により大ひずみが導入された金属線材、およびその製造方法と製造装置

Country Status (4)

Country Link
JP (1) JP4714828B2 (ja)
KR (1) KR101241837B1 (ja)
CN (1) CN100553810C (ja)
WO (1) WO2006014027A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101129175B1 (ko) * 2004-12-24 2012-03-26 주식회사 포스코 304에이치 스테인레스강 선재의 혼립조직 억제를 위한선재 마무리 압연방법
JP5120802B2 (ja) * 2006-11-17 2013-01-16 独立行政法人物質・材料研究機構 温間圧延装置及び温間圧延方法並びに温間・冷間連続加工装置
JP4992064B2 (ja) * 2008-01-09 2012-08-08 タマティーエルオー株式会社 強加工装置及び強加工方法
JP5020863B2 (ja) * 2008-03-04 2012-09-05 新日鐵住金ステンレス株式会社 棒鋼の製造設備
JP2009220137A (ja) * 2008-03-14 2009-10-01 National Institute For Materials Science 帯鋼又は鋼板の製造方法
CN101543835B (zh) * 2008-03-24 2011-05-11 宝山钢铁股份有限公司 一种高速线材粗轧机单机架空过的轧制方法
JP5559515B2 (ja) * 2009-11-10 2014-07-23 大阪精工株式会社 金属線の製造方法
CN102799723B (zh) * 2012-07-06 2015-08-12 中冶南方(武汉)威仕工业炉有限公司 一种马弗炉加热能力计算及预测仿真方法
JP5614691B2 (ja) * 2012-11-30 2014-10-29 独立行政法人物質・材料研究機構 帯鋼又は鋼板の製造方法
CN105414173A (zh) * 2014-09-15 2016-03-23 中国人民解放军军械工程学院 一种异形钢丝热轧设备
WO2016143048A1 (ja) 2015-03-09 2016-09-15 東芝三菱電機産業システム株式会社 圧延設備
EP3387410B1 (en) * 2015-12-08 2023-07-26 The American University in Cairo Shear enhanced rolling (ser). a method to improve grain size uniformity in rolled alloy billets.
CN106981740A (zh) * 2017-02-08 2017-07-25 深圳市天创原精密电子有限公司 一种连接器插针及其生产工艺
CN107866443B (zh) * 2017-08-07 2023-11-28 上海利正卫星应用技术有限公司 一种镁合金轧制时板带在线加热装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1099902A (ja) * 1996-09-30 1998-04-21 Hitachi Metals Ltd 細線材の圧延方法および細線材の圧延装置
JP2004091912A (ja) * 2002-09-04 2004-03-25 Sumitomo Metal Ind Ltd 鋼線材とその製造法及び当該鋼線材を用いる鋼線の製造法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0940476B1 (en) * 1997-04-30 2005-06-29 JFE Steel Corporation Process for producing steel pipe having high ductility and strength
JP3538613B2 (ja) * 1999-02-25 2004-06-14 独立行政法人物質・材料研究機構 溶接性に優れた鋼製厚肉材料とその製造方法
JP2001009504A (ja) * 1999-06-30 2001-01-16 Hitachi Metals Ltd 細線材の圧延方法及び装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1099902A (ja) * 1996-09-30 1998-04-21 Hitachi Metals Ltd 細線材の圧延方法および細線材の圧延装置
JP2004091912A (ja) * 2002-09-04 2004-03-25 Sumitomo Metal Ind Ltd 鋼線材とその製造法及び当該鋼線材を用いる鋼線の製造法

Also Published As

Publication number Publication date
JP4714828B2 (ja) 2011-06-29
KR101241837B1 (ko) 2013-03-11
KR20070042544A (ko) 2007-04-23
CN101001705A (zh) 2007-07-18
JP2006043754A (ja) 2006-02-16
CN100553810C (zh) 2009-10-28

Similar Documents

Publication Publication Date Title
WO2006014027A1 (ja) 温間制御圧延により大ひずみが導入された金属線材、およびその製造方法と製造装置
JP5655852B2 (ja) 熱延鋼板の製造方法及び製造装置
JP2006043754A5 (ja)
JP2012524661A (ja) 低炭素溶接鋼管、システムおよびその製造方法
KR101759915B1 (ko) 금속 스트립 제조 방법
JP6068146B2 (ja) 設定値計算装置、設定値計算方法、及び設定値計算プログラム
CN104841701B (zh) 热轧带钢大降速轧制时的薄板卷取温度控制方法
JP6620522B2 (ja) 無方向性電磁鋼板用の熱延鋼帯及び無方向性電磁鋼板の製造方法
JP2020186434A (ja) 熱延鋼板の製造方法
RU2463127C2 (ru) Способ непрерывного аустенитного проката изготовленной в процессе непрерывной отливки черновой полосы и комбинированная литейная и прокатная установка для выполнения способа
CN113245376A (zh) 一种摩根五代轧机配套83m斯太尔摩辊道生产高品质焊丝钢的控轧控冷方法
JP2006055884A (ja) 熱延鋼板の製造方法及び圧延制御装置
CN113652601B (zh) 一种同圈强度波动差较小且表面氧化铁皮厚度10μm以上的高速线材螺纹钢及其生产方法
KR20230175293A (ko) 봉형 강재를 제조하기 위한 시스템 및 방법
JP2005169454A (ja) 鋼帯の製造設備および製造方法
CN112680582A (zh) 一种超低碳钢ch1t边缘细晶的控制方法
JP4964061B2 (ja) 条鋼線材の冷却制御方法
JP2006341274A (ja) 鋼板の製造方法
KR20240004700A (ko) 와이어 및/또는 봉 형태의 강철 제품을 제조하기 위한 시스템 및 방법
RU2768064C1 (ru) Способ производства холоднодеформированной стальной арматуры периодического профиля с повышенными пластическими свойствами
JP3698088B2 (ja) 熱延鋼帯の製造方法
RU2736468C1 (ru) Способ производства рулонного проката из низколегированной стали
JP4314800B2 (ja) 熱延鋼帯の製造方法
WO2004104236A1 (ja) 温間制御圧延方法
JP2004167523A (ja) 熱間圧延方法および熱間圧延ライン

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077002903

Country of ref document: KR

Ref document number: 200580026698.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05770603

Country of ref document: EP

Kind code of ref document: A1