WO2006013730A1 - 中空状動力伝達シャフト及びその製造方法 - Google Patents

中空状動力伝達シャフト及びその製造方法 Download PDF

Info

Publication number
WO2006013730A1
WO2006013730A1 PCT/JP2005/013390 JP2005013390W WO2006013730A1 WO 2006013730 A1 WO2006013730 A1 WO 2006013730A1 JP 2005013390 W JP2005013390 W JP 2005013390W WO 2006013730 A1 WO2006013730 A1 WO 2006013730A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow
power transmission
transmission shaft
spline
diameter portion
Prior art date
Application number
PCT/JP2005/013390
Other languages
English (en)
French (fr)
Inventor
Katsuhiro Sakurai
Toru Nakagawa
Masamichi Shinbo
Masami Yamaguchi
Tsuneaki Hiraoka
Original Assignee
Ntn Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004225730A external-priority patent/JP2006046408A/ja
Priority claimed from JP2004227013A external-priority patent/JP2006045605A/ja
Priority claimed from JP2004245784A external-priority patent/JP4554299B2/ja
Application filed by Ntn Corporation filed Critical Ntn Corporation
Priority to AT05766324T priority Critical patent/ATE489560T1/de
Priority to US11/659,135 priority patent/US8101031B2/en
Priority to EP05766324A priority patent/EP1798427B1/en
Priority to DE602005024997T priority patent/DE602005024997D1/de
Publication of WO2006013730A1 publication Critical patent/WO2006013730A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/06Methods for forging, hammering, or pressing; Special equipment or accessories therefor for performing particular operations
    • B21J5/12Forming profiles on internal or external surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/06Making machine elements axles or shafts
    • B21K1/12Making machine elements axles or shafts of specially-shaped cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/06Drive shafts

Definitions

  • the present invention relates to a hollow power transmission shaft connected to a joint such as a constant velocity universal joint and a method for manufacturing the same.
  • the hollow power transmission shaft according to the present invention can be applied to, for example, a drive shaft (drive shaft) and a propeller shaft (propulsion shaft) that constitute a power transmission system of an automobile.
  • a power transmission shaft that transmits power to a reduction gear (differential) force drive wheel is sometimes called a drive shaft (drive shaft).
  • drive shafts used in front-wheel drive vehicles are required to have a large operating angle and constant velocity during front wheel steering, and are also required to absorb axial displacement in relation to the suspension system.
  • a sliding type constant velocity universal joint such as a double offset type constant velocity universal joint or a tri-board type constant velocity universal joint, and the other end is a bar field type constant velocity universal joint (Zetsuba joint).
  • a mechanism that is connected to the drive wheel side through a fixed-side constant-velocity free-standing joint such as) is used.
  • Patent Document 1 the inner peripheral surface of the hollow shaft is heat-cured over almost the entire region in the axial direction.
  • This thermosetting treatment is performed on the entire depth region from the outer peripheral surface to the inner peripheral surface by, for example, induction hardening * tempering from the outer peripheral surface side of the hollow shaft (paragraph number in the same document). 0012).
  • Patent Document 2 for example, the axial direction of the hollow shaft is substantially increased by induction hardening and tempering. The entire depth region from the outer peripheral surface to the inner peripheral surface is subjected to thermosetting treatment over the entire area (see paragraph number 0012 of the same document).
  • Patent Document 3 in order to make the static strength and torsional fatigue strength of the hollow shaft higher than that of the solid shaft, the hollow shaft is induction hardened at a quenching rate of 0.7 to 0.9.
  • a spline for connection to a constant velocity universal joint or the like may be formed at the end thereof.
  • press working is known in which a shaft end is press-fitted in an axial direction into a die provided with a spline forming portion on the inner periphery (for example, Patent Document 4). Press work has the advantage of being able to handle even thin-walled products, compared to rolling cages.
  • a hollow power transmission shaft applied to a drive shaft or the like has a large diameter portion at an axial intermediate portion and a small diameter portion on both axial sides, for example, by drawing a pipe material. It is manufactured by forming a hollow shaft material, subjecting the hollow shaft material to a necessary mechanical treatment as necessary, and then performing a heat treatment (for example, Patent Documents 5 and 6).
  • this type of hollow power transmission shaft is provided on the inner periphery of the end of the hollow portion in order to prevent the lubricant (grease) enclosed in the constant velocity universal joint from entering the hollow portion.
  • a sealing plug is installed.
  • This sealing plug may be made of metal, but in order to manage the press-fitting allowance and press-fitting position with respect to the hollow part, it is necessary to finish the inner periphery of the end part by IJ machining, which increases the processing cost. There is a problem. Therefore, sealing plugs (Patent Document 7) made of rubber such as black-prene rubber (CR) and nitrile rubber (NBR) and sealing plugs made of elastomer (Patent Document 8) have been proposed.
  • CR black-prene rubber
  • NBR nitrile rubber
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-349538
  • Patent Document 2 JP 2002-356742 A
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-90325
  • Patent Document 4 Japanese Patent Laid-Open No. 2003-094141
  • Patent Document 5 Japanese Patent Application Laid-Open No. 1011-1259
  • Patent Document 6 Japanese Patent Application Laid-Open No. 2001-208037
  • Patent Document 7 JP-A-6-281010
  • Patent Document 8 JP-A-9-68233 Disclosure of the Invention Problems to be Solved by the Invention
  • this type of hollow power transmission shaft has an axially intermediate portion formed with a large diameter and a relatively thin wall in order to achieve high rigidity and light weight, and a small diameter on both axial sides.
  • the part is relatively thick to ensure strength.
  • this type of hollow power transmission shaft has a thickness difference in the axial direction, stable quality may not be ensured by heat treatment in which it is difficult to set quenching conditions.
  • quenching conditions are set for a relatively thin large-diameter part, the hardened layer depth may be insufficient for the relatively thick small-diameter part to obtain the required strength.
  • the quenching conditions are set in accordance with the relatively thick and small-diameter part, the relatively thin-walled and large-diameter part is overheated, and the hardened structure becomes coarse and causes a decrease in strength. There is.
  • the spline When a spline with such a large increase in PD at the end is fitted into the spline hole of the mating member, such as the inner ring of a constant velocity universal joint, the spline is A force that partially opens the spline of the hole works and the strength of the mating member may be reduced.
  • the elastomeric sealing plug of Patent Document 8 is simplified in assembling work by using it together with a shape memory alloy-made stagger insert, but it leads to an increase in the number of parts.
  • An object of the present invention is to provide a method for manufacturing a hollow power transmission shaft that can ensure stable quality even when there is a difference in thickness or quenching rate in the axial direction.
  • Another object of the present invention is to provide a manufacturing method capable of accurately forming a spline of this kind of hollow power transmission shaft by press working.
  • a further object of the present invention is to provide a light-weight and low-cost hollow power transmission shaft that is easy to seal a hollow portion and has a small number of parts.
  • the present invention provides a hollow power transmission shaft in which an axially intermediate portion is formed as a large-diameter portion, and both axially opposite side portions are formed as small-diameter portions from the large-diameter portion.
  • the pipe material is subjected to plastic casing to form a hollow shaft material having a large diameter portion and a small diameter portion, and a predetermined region and other regions are formed on the hollow shaft material.
  • a configuration is provided in which induction hardening is performed by changing the frequency of the high-frequency current in each region.
  • induction hardening is a heat treatment method in which the vicinity of the surface of a steel material is heated by using electromagnetic induction by high frequency current, and the induction current (eddy current) generated by electromagnetic induction is induced by an induction heating coil.
  • the induction current eddy current
  • this type of hollow power transmission shaft generally has a relatively large-thickness portion at the axially intermediate portion and a relatively thick-walled small-diameter portion at both axial sides. Is forming.
  • the frequency of the high-frequency current when the large-diameter portion of the hollow shaft material is induction-hardened is relatively increased, and the frequency of the high-frequency current when the small-diameter portion of the hollow shaft material is induction-hardened is relatively small.
  • the induction hardening method there are a stationary method and a moving method, and any of these methods can be employed in the present invention.
  • the stationary method it is preferable to arrange a plurality of induction heating coils according to the frequency type of the high-frequency current.
  • the moving method the frequency of the high-frequency current leading to the induction heating coil is changed.
  • the former swaging karoe includes rotary swaging and link type swaging, both of which can be adopted.
  • rotary swaging one or more pairs of dies and a packer incorporated in the main shaft of the machine perform a rotational motion, and the outer roller and a protrusion on the packer perform a vertical movement of a fixed stroke to be inserted.
  • This is a processing method that draws a pipe material with a blow.
  • Press processing is a processing method in which pipe material is drawn into a die in the axial direction and drawn.
  • the material of the pipe material may be, for example, carbon steel for mechanical structures such as STKM or STMA, or alloy steel added with an alloy element based on them to improve workability and hardenability.
  • carbon steel for mechanical structures such as STKM or STMA
  • alloy steel added with an alloy element based on them to improve workability and hardenability Alternatively, hardened steel such as SCr, SCM, SNCM, etc. can be used.
  • the present invention is configured such that the axially intermediate portion is formed in the large-diameter portion, and both end portions in the axial direction are formed in the small-diameter portion with respect to the large-diameter portion.
  • the pipe material is drawn to form a hollow shaft material having a large diameter portion and a small diameter portion, and a spline forming portion on the inner periphery
  • the maximum diameter of the spline molding part is larger than the outer diameter of the end of the small diameter part of the hollow shaft material
  • the minimum diameter of the spline molding part is the outer diameter of the end of the small diameter part of the hollow shaft material.
  • the maximum diameter of the spline molded portion provided on the inner periphery of the die is larger than the outer diameter of the end of the small diameter portion of the hollow shaft material, and the minimum diameter of the spline molded portion is set to the hollow shaft material.
  • part of the material swells toward the maximum diameter of the spline forming part in the process of pressing the shaft end into the die in the axial direction. Therefore, the amount of the material that plastically flows and flows in the counter press-fit direction is reduced as compared with the conventional method. As a result, an increase in the tooth thickness at the end of the spline can be suppressed, and the force S can be accurately formed.
  • the maximum diameter of the spline should not contact the maximum diameter of the spline forming portion of the die.
  • the material force S that plastically flows so as to rise toward the maximum diameter of the spline forming part of the die, and the contact with the maximum diameter of the spline forming part is eliminated, so that the material stays at the entrance of the die and flows in the counter press-fit direction.
  • the amount of material to be reduced is further reduced. This makes it possible to form a spline with greater accuracy.
  • the material of the pipe material forming the shaft for example, carbon steel for mechanical structures such as STKM and STMA, or alloy elements were added to improve workability and hardenability based on them. Alloy steel or metal materials such as SCr, SCM, SNCM and other hardened steels can be used. Also, seamless pipes (seamless pipes), electric-welded pipes, forged pipes, and cold check pipes can be used as pipe materials.
  • the former swaging process includes rotary swaging and link type swaging, and any of them can be adopted.
  • rotary swaging one or more pairs of dies and a packer built into the main shaft of the machine rotate and move up and down by a fixed stroke by the outer roller and the protrusion on the packer.
  • Pressing is a drawing method in which a pipe material is pressed into a die in the axial direction to perform drawing.
  • the present invention is configured such that the axially intermediate portion is formed in the large-diameter portion, and both axial side portions are formed in the small-diameter portion with respect to the inner periphery.
  • a hollow power transmission shaft having a hollow portion is provided with a configuration in which the hollow portion is sealed with a foamed resin filled in the hollow portion.
  • the foamed resin may be filled at least in the end region of the hollow part.
  • foamed resin it is possible to employ foamed urethane, foamed polystyrene, foamed polypropylene or the like. From the viewpoints of durability, heat insulation, lightness, self-adhesiveness, economy, etc., urethane foam, particularly hard urethane foam is preferred.
  • this kind of hollow power transmission shaft spline can be accurately formed by press working.
  • the hollow portion is sealed with the foamed resin filled in the hollow portion, compared to a conventional configuration using a sealing plug made of metal, rubber, or elastomer, It is possible to provide a lightweight and low-cost hollow power transmission shaft that is easy to seal the hollow portion and has a small number of parts.
  • FIG. 1 shows a hollow power transmission shaft 1, a sliding type constant velocity universal joint 2 connected to one end of the power transmission shaft 1, and a fixed connected to the other end of the power transmission shaft 1.
  • 1 shows a power transmission mechanism of an automobile equipped with a constant velocity constant joint 3.
  • the sliding type constant velocity universal joint 2 is connected to a reduction gear (differential), and the fixed type constant velocity universal joint 3 is connected to the drive wheel side.
  • One end of the power transmission shaft 1 is splined to the tripod member 2a of the sliding type constant velocity universal joint 2, and a boot 2c on the outer periphery of the outer ring 2b of the sliding type constant velocity universal joint 2 and the outer periphery of the power transmission shaft 1.
  • the other end of the power transmission shaft 1 is splined to the inner ring 3a of the fixed type constant velocity universal joint 3, and the boots are connected to the outer periphery of the outer ring 3b of the fixed type constant velocity universal joint 3 and the outer periphery of the power transmission shaft 1.
  • Each 3c is fixed.
  • a tri-board type constant velocity universal joint is illustrated as the sliding type constant velocity universal joint 2
  • a single field type constant velocity universal joint is illustrated as the fixed type constant velocity universal joint 3.
  • Other types of constant velocity universal joints may be used.
  • FIG. 2 shows a power transmission shaft (drive shaft) 1.
  • This power transmission shaft 1 has a hollow shape over the entire region in the axial direction, and has a large-diameter portion la at the axially intermediate portion and small-diameter portions lb at both axial sides of the large-diameter portion la.
  • the large-diameter portion la and the small-diameter portion lb are continuous via a tapered portion lc that is gradually reduced in diameter toward the shaft end side.
  • the small-diameter part lb consists of the end-side connecting part Id used for connection to the constant velocity universal joints (2, 3) and the axially intermediate part boot fixing part le to which the boots (2c, 3c) are fixed. And have.
  • the connecting part Id has a spline ldl that is splined to the constant velocity universal joints (2, 3), and a retaining ring groove for attaching a retaining ring for axial removal prevention to the constant velocity universal joints (2, 3).
  • l d2 is formed.
  • the boot fixing portion le is formed with a fitting groove lei for fitting the inner circumference of the small diameter end portion of the boot (2c, 3c).
  • the large diameter portion la is formed to be relatively thin, and the small diameter portion lb is formed to be relatively thick.
  • the ratio of the wall thickness of the large diameter portion la to the wall thickness of the small diameter portion lb (large diameter portion laZ small diameter portion lb) is, for example, 0.7 or less.
  • the power transmission shaft 1 has a hardened layer S formed by quenching over almost the entire region in the axial direction.
  • the hardened layer S is formed in a region having a predetermined depth h from the outer peripheral surface lg, and the region from the hardened layer S to the inner peripheral surface li is an uncured layer SO that has not been hardened by the quenching process. It has become.
  • Hardening rate defined by the ratio (h / t) of the depth h to the wall thickness t of the hardened layer S with a hardness of HRC40 (Hv391) or higher is, for example, 0 for the large diameter part la. 6 or less, and small diameter part lb is 0.6 or more.
  • the power transmission shaft 1 having the above-described configuration is obtained by, for example, drawing a pipe material to form a hollow shaft material having a large-diameter portion in the middle portion in the axial direction and small-diameter portions in both side portions in the axial direction. Manufactured by subjecting this hollow shaft material to the required machining (spline rolling, etc.) and then quenching.
  • FIG. 3 shows the hollow pipe material 1 'before quenching.
  • a pipe material such as a machine structural carbon steel pipe (STKM) is subjected to a swedging process and formed into a form having a large-diameter portion la in the middle portion in the axial direction and a small-diameter portion lb in both side portions in the axial direction.
  • the spline ldl is formed at the end of the small-diameter portion lb by a rolling cage to form the connecting portion Id
  • the retaining ring groove ld2 is formed at the connecting portion Id by the rolling force or cutting.
  • the boot fixing groove lei is formed by rolling or cutting at the portion to be the boot fixing portion le.
  • a movable induction heating coil 5 is externally mounted on the outer peripheral surface lg side of the hollow shaft material 1 ′, and a high frequency current having a predetermined frequency is applied to the induction heating coil 5. While being connected, this is moved in the axial direction, and induction hardening is performed from the outer peripheral surface lg side. At this time, the frequency of the high-frequency current that leads to the induction heating coil 5 is relatively low for the relatively thick small-diameter portion lb, and the induction heating coil 5 is relatively low for the relatively thin-walled large-diameter portion la. The frequency of the high-frequency current leading to is relatively increased.
  • FIG. 4 shows a hollow power transmission shaft 11 according to another embodiment.
  • the power transmission shaft 11 according to this embodiment is different from the above-described power transmission shaft 1 in that the quenching rate of the large-diameter portion la is 1.0, that is, over the entire thickness t of the large-diameter portion la.
  • the hardened layer S is formed. Since other matters are the same as those in the above-described embodiment, a duplicate description is omitted.
  • FIG. 5 shows a hollow power transmission shaft 21 according to another embodiment.
  • the power transmission shaft 21 according to this embodiment is different from the power transmission shaft 1 described above in that the quenching rate is 1.0 over the entire axial direction, that is, over the entire thickness t in the entire axial direction. Therefore, the hardened layer S is formed. Since other matters are the same as those in the above-described embodiment, a duplicate description is omitted.
  • FIG. 6 shows a hollow power transmission shaft 31 according to another embodiment.
  • This implementation The difference between the power transmission shaft 31 according to the configuration and the power transmission shaft 1 described above is that the hardening ratio is set to 1.0 for the small diameter portion lb, that is, it is cured over the entire thickness t of the small diameter portion lb. The point is that the layer S is formed. Since other matters are the same as those in the above-described embodiment, a duplicate description is omitted.
  • FIG. 7 shows a power transmission shaft (drive shaft) 1 according to another embodiment.
  • This power transmission shaft 1 is hollow throughout the entire axial direction, and has a large-diameter portion la at the axially intermediate portion and small-diameter portions lb on both axial sides of the large-diameter portion la.
  • the large-diameter portion la and the small-diameter portion lb are continuous via a tapered portion lc that is gradually reduced in diameter toward the shaft end side.
  • the small-diameter part lb is the end-side connecting part Id used for connection with the constant velocity universal joints (2, 3) and the axially intermediate part boot fixing part to which the boots (2c, 3c) are fixed have le.
  • Retaining ring for attaching spline ldl splined to constant velocity universal joint (2, 3) and retaining ring for retaining axially against constant velocity universal joint (2, 3) Groove ld2 is formed.
  • the boot fixing portion le is formed with a fitting groove lei for fitting the inner periphery of the small diameter end portion of the boot (2c, 3c).
  • the power transmission shaft 1 has a hardened layer formed by a quenching process over almost the entire region in the axial direction excluding a partial region from the vicinity of the retaining ring groove ld2 to the shaft end.
  • This hard layer is formed in a region of a predetermined depth or a region of the full depth from the outer peripheral surface.
  • the power transmission shaft 1 having the above-described configuration is formed, for example, by subjecting a pipe material to a swaging process to form a hollow shaft material having a large-diameter portion la at an intermediate portion in the axial direction and small-diameter portions lb at both axial portions.
  • the hollow shaft material is manufactured by subjecting it to necessary machining (for example, spline ldl forming), followed by quenching.
  • FIG. 8 shows the die 4 used in the process of forming the spline ldl at the connecting part Id of the small diameter part lb of the hollow shaft material.
  • the die 4 has a die hole 4c, and has a spline forming portion 4a in the back region of the die hole 4c.
  • the spline forming part 4a has a tooth shape corresponding to the shape of the spline ldl (see Fig. 9) to be formed in the connecting part Id of the hollow shaft material, and its maximum diameter (diameter of the bottom part 4al of the tooth mold) is ⁇ B, the minimum diameter (diameter of the top 4a2 of the tooth mold) is set to the same.
  • the maximum diameter of the spline forming part 4a of the die 4 (Diameter) ( ⁇ > ⁇ is the outer diameter of the connecting part Id of the hollow shaft material ( ⁇ > ⁇ is set larger than the minimum diameter (diameter of the top 4a2 of the tooth mold) ⁇ . Is from the outer diameter ( ⁇ > A) Then, the connecting portion Id of the hollow shaft material is pressed into the spline forming portion 4a of the die 4 in the axial direction, so that a part of the material of the connecting portion Id causes plastic flow.
  • the flow of the material flowing so as to rise toward the maximum diameter of the spline forming portion 4a (the bottom portion 4al of the tooth mold) occurs, and thereby the spline ldl is formed on the outer periphery of the connecting portion Id.
  • ⁇ ⁇ so that the material that plastically flows so as to rise toward the maximum diameter of the spline forming part 4a (bottom 4al of the tooth mold) does not contact the maximum diameter of the spline forming part 4a (bottom 4al of the tooth mold) , ⁇ ⁇ , ⁇ ⁇ are set.
  • the hollow shaft material is subjected to quenching treatment to form a hardened layer.
  • quenching treatment various methods such as induction quenching, carburizing quenching, and carbonitriding quenching can be adopted depending on the material of the pipe material and the characteristics required for the power transmission shaft. It is preferable to employ induction hardening from the viewpoints of freely selecting the depth and depth, and improving fatigue fatigue resistance due to the generation of residual compressive stress on the surface.
  • a high frequency induction heating coil is disposed on the outer peripheral surface side of the hollow shaft material, and induction hardening is performed from the outer peripheral surface side.
  • This induction quenching may be performed by either a stationary quenching method or a mobile quenching method.
  • the maximum diameter of the spline forming part 14a of the die 14 (diameter of the bottom part 14al of the tooth mold) ⁇ 'is the outer diameter of the connecting part l id of the hollow shaft material. ( ⁇ > was set to be smaller than ⁇ ⁇ ⁇ . Then, the connecting portion 1 Id of the hollow shaft material was pressed into the spline forming portion 14a of the die 14 in the axial direction to form the spline 1 ldl.
  • FIG. 13 shows a power transmission shaft (drive shaft) 1 according to another embodiment.
  • the power transmission shaft 1 is hollow throughout the entire axial direction, and has a large-diameter portion la at an intermediate portion in the axial direction and small-diameter portions lb at both axial sides of the large-diameter portion la.
  • the large-diameter portion la and the small-diameter portion lb are continuous via a tapered portion lc that is gradually reduced in diameter toward the shaft end side.
  • the small-diameter part lb is the end-side connecting part Id used for connection with the constant velocity universal joints (2, 3) and the axially intermediate part boot fixing part to which the boots (2c, 3c) are fixed have le.
  • Retaining ring for attaching spline ldl splined to constant velocity universal joint (2, 3) and retaining ring for retaining axially against constant velocity universal joint (2, 3) Groove ld2 is formed.
  • the boot fixing portion le is formed with a fitting groove lei for fitting the inner periphery of the small diameter end portion of the boot (2c, 3c).
  • the power transmission shaft 1 has a hardened layer formed by quenching over almost the entire region in the axial direction excluding a partial region from the vicinity of the retaining ring groove ld2 to the shaft end.
  • This hard layer is formed in a region of a predetermined depth or a region of the full depth from the outer peripheral surface.
  • the foamed resin 4 is filled in the hollow portion If on the inner periphery, and the hollow portion If is sealed with the foamed resin 4.
  • the foamed resin 4 is a hard foamed urethane, and the foamed resin 4 is filled over the entire axial direction of the hollow portion If.
  • the foamed resin 4 filled in the hollow part ⁇ prevents the grease enclosed in the constant velocity universal joints (2, 3) from entering the hollow part ⁇ .
  • the power transmission shaft 1 having the above-described configuration is obtained by, for example, drawing a pipe material into an axial direction.
  • a hollow shaft material having a large-diameter portion la at the center in the opposite direction and a small-diameter portion lb at both sides in the axial direction is molded, and the required machining (such as spline ldl rolling) is performed on this hollow shaft material. After that, a quenching process is performed, and further, the foamed resin 4 is filled in the hollow portion If.
  • Examples of the material of the pipe material described above include carbon steel for mechanical structures such as STKM and STMA, or alloys based on these to which alloy elements are added to improve workability and hardenability. Steel, or case-hardened steel such as SCr, SCM, SNCM can be used. In addition, seamless pipes (seamless pipes), ERW pipes, forged pipes, and cold check pipes can be used as pipe materials.
  • Examples of the above drawing include swaging and pressing.
  • the former swaging process includes rotary swaging and link type swaging, either of which can be used.
  • rotary swaging one or more pairs of dies and packers built into the main shaft of the machine rotate and move with a fixed stroke up and down by the protrusions on the outer periphery and the backer.
  • This is a processing method that applies a blow to the pipe material to be drawn.
  • Press processing is a processing method in which pipe material is pressed into a die in the axial direction for drawing. Such narrowing may be performed on the entire area in the axial direction of the pipe material, or may be performed only on both sides in the axial direction of the pipe material. In this embodiment, drawing is applied to the entire axial direction of the pipe material.
  • the spline 1 dl is formed at the end of the small-diameter portion lb of the hollow shaft material subjected to drawing processing as described above by rolling Karoe etc. to form the connecting portion 1d, and the connecting portion 1d
  • the retaining ring groove ld2 is formed by rolling or cutting.
  • a boot fixing groove lei is formed by rolling or cutting at a portion to be the boot fixing portion le.
  • the hollow shaft material is subjected to quenching to form a hardened layer.
  • quenching treatment various means such as induction hardening, carburizing quenching, and carbonitriding quenching can be adopted depending on the material of the noise material and the characteristics required for the power transmission shaft.
  • the range and depth can be freely selected, and induction hardening is used from the viewpoint of improving fatigue resistance due to residual compressive stress being generated on the surface.
  • a high frequency induction heating coil is disposed on the outer peripheral surface side of the hollow shaft material, and induction hardening is performed from the outer peripheral surface side.
  • This induction quenching may be performed by either a stationary quenching method or a mobile quenching method.
  • a foamed urethane raw material is injected into the hollow portion If of the power transmission shaft 1 manufactured through the above-described process from one end side, and foamed inside the hollow portion If.
  • the foamed resin 4 is filled in the hollow portion If by foaming and the hollow portion If is sealed by the foamed resin 4.
  • FIG. 1 is a diagram showing a power transmission mechanism of an automobile.
  • FIG. 2 is a cross-sectional view showing a power transmission shaft according to an embodiment.
  • FIG. 3 is a cross-sectional view showing a hollow shaft material.
  • FIG. 4 is a cross-sectional view showing a power transmission shaft according to another embodiment.
  • FIG. 5 is a cross-sectional view showing a power transmission shaft according to another embodiment.
  • FIG. 6 is a cross-sectional view showing a power transmission shaft according to another embodiment.
  • FIG. 7 is a partial cross-sectional view showing another hollow power transmission shaft.
  • FIG. 8 (a) is a longitudinal sectional view showing a spline forming portion of a die
  • FIG. 8 (b) is a transverse sectional view showing a spline forming portion of the die.
  • FIG. 9 is a cross-sectional view of a connecting portion in a power transmission shaft.
  • FIG. 10 (a) is an enlarged cross-sectional view showing the press working process
  • FIG. 10 (b) is an enlarged cross-sectional view of a spline end portion of the power transmission shaft.
  • FIG. 11 is a diagram showing the results of measuring the amount of increase in spline O. P. D ..
  • FIG. 12 (a) is an enlarged sectional view showing press working according to a comparative example
  • FIG. 12 (b) is an enlarged sectional view of a spline end portion of a power transmission shaft according to the comparative example.
  • FIG. 13 is a partial cross-sectional view showing a power transmission shaft according to another embodiment.

Abstract

【課題】軸方向に肉厚差や焼入れ率の差がある場合でも、安定した品質を確保することが できる中空状動力伝達シャフトの製造方法を提供することができる。 【解決手段】中空状シャフト素材1’の外周表面1gの側に、移動式の誘導加熱コイル5を外装し、誘導加熱コイル5に所定周波数の高周波電流を通じつつ、これを軸方向に移動させて、外周表面1gの側から高周波焼入れを行う。その際、比較的厚肉の小径部1bに対しては、誘導加熱コイル5に通じる高周波電流の周波数を相対的に低くし、比較的薄肉の大径部1aに対しては、誘導加熱コイル5に通じる高周波電流の周波数を相対的に高くする。

Description

明 細 書
中空状動力伝達シャフト及びその製造方法
技術分野
[0001] 本発明は、等速自在継手等の継手に連結される中空状動力伝達シャフト及びその 製造方法に関する。本発明に係る中空状動力伝達シャフトは、例えば、 自動車の動 力伝達系を構成するドライブシャフト(駆動軸)やプロペラシャフト (推進軸)に適用す ること力 Sできる。
背景技術
[0002] 例えば、 自動車の動力伝達系において、減速装置(ディファレンシャル)力 駆動 輪に動力を伝達する動力伝達シャフトは、ドライブシャフト(駆動軸)と呼ばれることが ある。特に、 FF車に使用されるドライブシャフトでは、前輪操舵時に大きな作動角と 等速性が要求され、また、懸架装置との関係で軸方向の変位を吸収する機能が要求 されるので、その一端部をダブルオフセット型等速自在継手やトリボード型等速自在 継手等の摺動型等速自在継手を介して減速装置側に連結し、その他端部をバーフ ィールド型等速自在継手(ゼツバジョイントと呼ばれることもある。 )等の固定側等速自 在継手を介して駆動輪側に連結する機構が多く採用されている。
[0003] 上記のようなドライブシャフトとしては、従来、また現在においても、中実シャフトが多 く使用されているが、 自動車の軽量化、ドライブシャフトの剛性増大による機能向上、 曲げ一次固有振動数のチューニング最適化による車室内の静粛性向上等の観点か ら、近時では、ドライブシャフトを中空シャフトィ匕する要求が増えてきている。
[0004] ドライブシャフト等に適用される中空状動力伝達シャフトとしては、例えば、下記の 特許文献 1〜3に記載されたものが知られている。
[0005] 特許文献 1では、中空シャフトの内周表面を軸方向のほぼ全域に亘つて熱硬化処 理している。この熱硬化処理は、例えば、中空シャフトの外周表面側から高周波焼入 れ*焼戻しを行うことにより、外周表面から内周表面に至る全深さ領域に対して施して いる(同文献の段落番号 0012参照)。
[0006] 特許文献 2では、例えば、高周波焼入れ'焼戻しにより、中空シャフトの軸方向のほ ぼ全域に亘つて、外周表面から内周表面に至る全深さ領域に熱硬化処理を施して レ、る(同文献の段落番号 0012参照)。
[0007] 特許文献 3では、中空シャフトの静的強度とねじり疲労強度を中実シャフト以上に するために、中空シャフトを 0. 7〜0. 9の焼入れ率で高周波焼入れしている。
[0008] また、この種の中空シャフトでは、等速自在継手等に連結するためのスプラインをそ の端部に形成する場合がある。このスプラインの成形方法として、スプライン成形部を 内周に設けたダイスにシャフト端部を軸方向に圧入する、いわゆるプレス加工が知ら れている(例えば、特許文献 4)。プレス加工は、転造カ卩ェに比べて、薄肉品でも対応 できるという利点がある。
[0009] また、ドライブシャフト等に適用される中空状動力伝達シャフトは、例えば、パイプ素 材に絞り加工を施して、軸方向中間部に大径部、軸方向両側部に小径部を有する 中空状シャフト素材を成形し、この中空状シャフト素材に必要に応じて所要の機械加 ェを施した後、熱処理を施すことによって製造される(例えば、特許文献 5、 6)。
[0010] また、この種の中空状動力伝達シャフトは、等速自在継手の内部に封入された潤 滑剤(グリース)が中空部に侵入するのを防止するために、中空部の端部内周に封 止プラグを装着している。この封止プラグは金属製のものを使用する場合もあるが、 中空部に対する圧入代や圧入位置を管理するために、端部内周を肖 IJり加工によって 仕上げる必要があり、加工コストが高くなるという問題がある。そのため、クロ口プレン ゴム(CR)や二トリルゴム(NBR)等のゴムで形成した封止プラグ(特許文献 7)や、ェ ラストマーで形成した封止プラグ(特許文献 8)が提案されてレ、る。
特許文献 1:特開 2002— 349538号公報
特許文献 2:特開 2002— 356742号公報
特許文献 3:特開 2003— 90325号公報
特許文献 4 :特開 2003— 094141号公報
特許文献 5:特開平 1 1一 101259号公報
特許文献 6:特開 2001— 208037号公報
特許文献 7 :特開平 6— 281010号公報
特許文献 8:特開平 9— 68233号公報 発明の開示 発明が解決しょうとする課題
[0011] 一般に、この種の中空状動力伝達シャフトは、高剛性化と軽量ィ匕を図るために軸方 向中間部は大径部かつ比較的薄肉に形成すると共に、軸方向両側部の小径部は強 度確保のために比較的厚肉に形成している。このように、この種の中空状動力伝達 シャフトは、軸方向に肉厚差があるために、焼入れ条件の設定が難しぐ熱処理によ り安定した品質を確保できない場合がある。すなわち、比較的薄肉の大径部に合わ せて焼入れ条件を設定した場合、比較的厚肉の小径部では硬化層深さが不足して 所要の強度が得られない場合がある。一方、比較的厚肉の小径部に合わせて焼入 れ条件を設定した場合、比較的薄肉の大径部では過加熱の状態となり、焼入れ後の 組織が粗大化して強度低下の原因となる場合がある。
[0012] また、この種の中空状動力伝達シャフトでは、強度バランス等を高めるために、例え ば大径部と小径部とで焼入れ率 (硬化層の深さと肉厚との比率)を変える場合がある 力 従来の製造方法では上記と同様の不都合が生じる場合がある。
[0013] また、従来のプレス加工によるスプライン成形においては、シャフト端部をダイスに 軸方向に圧入していく過程で反圧入方向への素材の塑性流動があり、しかもその素 材流動量が比較的大きいために、成形後のスプラインの形状は、その終端部の歯厚 が軸端側部分に比べて相対的に大きくなり、終端部の〇. P. D.が他の部分に比べ て大きく増加する。ここで、〇. P. D. (オーバーピン径)とは、スプラインの 180度対 向した歯部にそれぞれ所定径のピンをあて力 Sい、シャフトの直径方向における両ピン 間の最大離間寸法を測定して得られる値である。ピンに代えて、所定径のボールを 用いる場合もある(オーバーボール径)。このような終端部の 0. P. D.が大きく増加 した形状のスプラインを、例えば等速自在継手の内輪などの、相手側部材のスプライ ン穴に嵌合させると、〇. P. D.が増加した部分によってスプライン穴のスプラインを 部分的に開かせるような力が働き、相手側部材の強度が低下する可能性がある。
[0014] さらに、シャフトと相手側部材とをスプライン嵌合する際、嵌合部分のガタ(クリアラン ス)を抑制するために、シャフトに捩れ角を与える場合があるが、終端部の〇. P. D. が大きく増加した形状のスプラインでは、捩れ角の最適設定が難しくなる。 [0015] また、特許文献 7のゴム製封止プラグは、比較的大きな力で中空部に圧入する必要 力 Sあるので、組付け作業に手間が掛カるという問題がある。
[0016] 特許文献 8のエラストマ一製封止プラグは、形状記憶合金製のストツバインサートと の併用によって、組付け作業の簡単化が図られているが、部品点数の増大につなが る。
[0017] また、レ、ずれの封止プラグも、所要の形状および寸法に成形された部品形態のもの であるため、製作費が高くなるという問題もある。
[0018] 本発明の課題は、軸方向に肉厚差や焼入れ率の差がある場合でも、安定した品質 を確保することができる中空状動力伝達シャフトの製造方法を提供することである。
[0019] 本発明の他の課題は、この種の中空状動力伝達シャフトのスプラインをプレス加工 で精度良く成形することができる製造方法を提供することである。
[0020] 本発明の更なる課題は、中空部の封止作業が容易で、部品点数が少なぐ軽量で 低コストな中空状動力伝達シャフトを提供することである。
課題を解決するための手段
[0021] 上記課題を解決するため、本発明は、軸方向中間部が大径部に形成されると共に 、大径部よりも軸方向両側部がそれぞれ小径部に形成された中空状動力伝達シャフ トの製造方法であって、パイプ素材に塑性カ卩ェを施して、大径部と小径部を有する 中空状シャフト素材を成形し、この中空状シャフト素材に対して、所定の領域とその 他の領域とで高周波電流の周波数を変えて高周波焼入れを行う構成を提供する。
[0022] 一般に、高周波焼入れは、高周波電流による電磁誘導を利用して鋼材の表面付近 を加熱して焼入れを行う熱処理方法であるが、電磁誘導によって発生する誘導電流 (渦電流)は誘導加熱コイルに通じる高周波電流の周波数が高いほど鋼材表面付近 に集中して流れ、中心部に向かって急激に減少する傾向があることが知られている。 すなわち、誘導電流が鋼材表面付近に集中する表皮効果は、高周波電流の周波数 が高いほど大きくなり、逆に、高周波電流の周波数が低いほど小さくなる。したがって 、中空状シャフト素材の軸方向の肉厚差や焼入れ率の差に応じて、所定の領域とそ の他の領域とで高周波電流の周波数を変えて高周波焼入れを行うことにより、各部 位における熱処理品質を高め、全体として安定した品質を確保することができる。 [0023] 上述のように、この種の中空状動力伝達シャフトは、通常、軸方向中間部の大径部 を比較的薄肉に形成すると共に、軸方向両側部の小径部を比較的厚肉に形成して いる。したがって、中空状シャフト素材の大径部を高周波焼入れする際の高周波電 流の周波数を相対的に大きくし、中空状シャフト素材の小径部を高周波焼入れする 際の高周波電流の周波数を相対的に小さくすることにより、大径部と小径部における 熱処理品質を高め、全体として安定した品質を確保することができる。
[0024] また、高周波焼入れの方式としては、定置方式と移動方式とがあるが、本発明では そのいずれの方式も採用することができる。定置方式を採用する場合は、高周波電 流の周波数の種類に応じて複数の誘導加熱コイルを配置すると良い。移動方式を採 用する場合は、誘導加熱コイルに通じる高周波電流の周波数を変化させる。
[0025] 上記の塑性加工としては、スウェージンダカ卩ェゃプレス加工等が採用される。前者 のスウェージングカロェには、ロータリースウェージングとリンクタイプスウェージングが あり、その何れも採用することができる。例えば、ロータリースウェージングは、機内の 主軸に組込まれた一対又は複数対のダイスとパッカーとが回転運動を行うと共に、外 周ローラとパッカー上の突起により一定ストロークの上下運動を行って、挿入されるパ ィプ素材に打撃をカ卩えて絞り加工を行う加工法である。また、プレス加工は、パイプ 素材をダイスに軸方向に押し込んで絞り加工を行う加工法である。
[0026] また、パイプ素材の材質としては、例えば、 STKMや STMA等の機械構造用炭素 鋼、または、それらをベースに加工性や焼入れ性等の改善のために合金元素を添カロ した合金鋼、あるいは、 SCr、 SCM、 SNCM等のはだ焼鋼を用いることができる。
[0027] また、上記課題を解決するため、本発明は、軸方向中間部が大径部に形成される と共に、大径部よりも軸方向両端部がそれぞれ小径部に形成され、小径部の端部に スプラインが形成された中空状動力伝達シャフトの製造方法において、パイプ素材に 絞り加工を施して、大径部と小径部とを有する中空状シャフト素材を形成し、内周に スプライン成形部を有し、スプライン成形部の最大径が、中空状シャフト素材の小径 部の端部外径よりも大きぐかつ、スプライン成形部の最小径が、中空状シャフト素材 の小径部の端部外径よりも小さなダイスを用意し、ダイスのスプライン成形部にシャフ ト素材の小径部の端部を軸方向に圧入して、該端部にスプラインを成形する構成を 提供する。
[0028] ダイスの内周に設けられるスプライン成形部の最大径を、中空状シャフト素材の小 径部の端部外径よりも大きぐかつ、スプライン成形部の最小径を、中空状シャフト素 材の小径部の端部外径よりも小さく設定することにより、シャフト端部をダイスに軸方 向に圧入していく過程で、素材の一部がスプライン成形部の最大径に向かって盛り 上がるように塑性流動し、反圧入方向に流動する素材量が従来よりも低減する。これ により、スプラインの終端部における歯厚の増大を抑制して、スプラインを精度良く成 形すること力 Sできる。
[0029] 好ましくは、スプラインの成形時に、スプラインの最大径がダイスのスプライン成形 部の最大径に接触しないようにするのが良い。ダイスのスプライン成形部の最大径に 向かって盛り上がるように塑性流動した素材力 S、スプライン成形部の最大径と接触し なくなることにより、ダイスの入り口部分における素材の滞留がなくなり、反圧入方向 へ流動する素材量がより一層低減される。これにより、スプラインをより一層精度良く 成形すること力 Sできる。
[0030] なお、シャフトを形成するパイプ素材の材質として、例えば、 STKMや STMA等の 機械構造用炭素鋼、または、それらをベースに加工性や焼入れ性等の改善のため に合金元素を添加した合金鋼、あるいは、 SCr、 SCM、 SNCM等のはだ焼鋼等の 金属材料を用いることができる。また、パイプ素材として、継目無管(シームレス管)、 電縫管、鍛接管、冷牽管の何れも採用することができる。
[0031] また、上記の塑性カ卩ェとしては、スウェージンダカ卩ェゃプレス加工等がある。前者の スウェージング加工には、ロータリースウェージングとリンクタイプスウェージングがあり 、その何れも採用することができる。例えば、ロータリースウェージングは、機内の主 軸に組込まれた一対又は複数対のダイスとパッカーとが回転運動を行なうと共に、外 周ローラとパッカー上の突起により一定ストロークの上下運動を行なって、揷入される パイプ素材に打撃をカ卩えて絞り加工を行なう加工法である。また、プレス加工は、パ ィプ素材をダイスに軸方向に押し込んで絞り加工を行なう加工法である。このような絞 り加工は、パイプ素材の軸方向両側部に対してのみ部分的に行なっても良いし、パ ィプ素材の軸方向全域に対して行なっても良い。 [0032] また、上記課題を解決するため、本発明は、軸方向中間部が大径部に形成される と共に、大径部よりも軸方向両側部がそれぞれ小径部に形成され、内周に中空部を 有する中空状動力伝達シャフトにおいて、中空部に充填された発泡樹脂によって、 中空部が封止されている構成を提供する。
[0033] 上記構成において、発泡樹脂は少なくとも中空部の端部領域に充填されていれば 良いが、発泡樹脂の充填作業を簡素化し、また、中空部の封止効果を高める点から 、発泡樹脂は中空部の軸方向全域にわたって充填されていることが好ましい。
[0034] 上記の発泡樹脂としては、発泡ウレタン、発泡ポリスチレン、発泡ポリプロピレン等を 採用すること力 Sできる。耐久性、断熱性、軽量性、 自己接着性、経済性等の点から、 発泡ウレタン、特に硬質発泡ウレタンが好ましい。
発明の効果
[0035] 本発明によれば、軸方向に肉厚差や焼入れ率の差がある場合でも、安定した品質 を確保することができる中空状動力伝達シャフトの製造方法を提供することができる。
[0036] また、本発明によれば、この種の中空状動力伝達シャフトのスプラインをプレス加工 で精度良く成形することができる。
[0037] また、本発明によれば、中空部に充填された発泡樹脂によって中空部を封止する ので、金属製、ゴム製、又はエラストマ一製の封止プラグを用いる従来構成に比べて 、中空部の封止作業が容易で、部品点数が少なぐ軽量で低コストな中空状動力伝 達シャフトを提供することができる。
発明を実施するための最良の形態
[0038] 以下、本発明の実施形態を図面に従って説明する。
[0039] 図 1は、中空状の動力伝達シャフト 1と、動力伝達シャフト 1の一端部に連結された 摺動型等速自在継手 2と、動力伝達シャフト 1の他端部に連結された固定型等速自 在継手 3とを備えた自動車の動力伝達機構を示している。この実施形態の動力伝達 機構において、摺動型等速自在継手 2は減速装置 (ディファレンシャル)に連結され 、固定型等速自在継手 3は駆動輪側に連結される。動力伝達シャフト 1の一端部は 摺動型等速自在継手 2のトリポード部材 2aにスプライン連結され、摺動型等速自在 継手 2の外輪 2bの端部外周と動力伝達シャフト 1の外周にブーツ 2cがそれぞれ固定 されている。また、動力伝達シャフト 1の他端部は固定型等速自在継手 3の内輪 3aに スプライン連結され、固定型等速自在継手 3の外輪 3bの端部外周と動力伝達シャフ ト 1の外周にブーツ 3cがそれぞれ固定されている。尚、同図には、摺動型等速自在 継手 2としてトリボード型等速自在継手が例示され、固定型等速自在継手 3としてバ 一フィールド型等速自在継手が例示されてレ、る力 他の型式の等速自在継手が用い られる場合 ある。
[0040] 図 2は、動力伝達シャフト(ドライブシャフト) 1を示している。この動力伝達シャフト 1 は、軸方向の全域に亘つて中空状をなし、軸方向中間部に大径部 la、大径部 laより も軸方向両側部にそれぞれ小径部 lbを有している。大径部 laと小径部 lbとは、軸 端側に向かって漸次縮径したテーパ部 lcを介して連続している。小径部 lbは、等速 自在継手(2、 3)との連結に供される端部側の連結部 Idと、ブーツ(2c、 3c)が固定 される軸方向中間部側のブーツ固定部 leとを有している。連結部 Idには、等速自在 継手(2、 3)にスプライン連結されるスプライン ldlと、等速自在継手(2、 3)に対する 軸方向抜け止め用の止め輪を装着するための止め輪溝 l d2が形成されている。ブー ッ固定部 leには、ブーツ(2c、 3c)の小径端部の内周を嵌合するための嵌合溝 lei が形成されている。
[0041] 大径部 laは比較的薄肉に形成され、小径部 lbは比較的厚肉に形成されている。
小径部 lbの肉厚に対する大径部 laの肉厚の比率(大径部 laZ小径部 lb)は、例え ば、 0. 7以下である。
[0042] また、同図にハッチングを付して示しているように、この動力伝達シャフト 1は、軸方 向のほぼ全域に亘つて、焼入れ処理による硬化層 Sを有している。軸方向全域にお いて、硬化層 Sは、外周表面 lgから所定深さ hの領域に形成され、硬化層 Sから内周 表面 liに至る領域は焼入れ処理により硬化していない未硬化層 SOになっている。口 ックウエル硬さ HRC40 (Hv391)以上の硬度を有する硬化層 Sの深さ hと肉厚 tとの 比率 (h/t)で定義される焼入れ率ひは、例えば、大径部 laについて 0. 6以下、小 径部 lbについて 0. 6以上である。
[0043] 上記構成の動力伝達シャフト 1は、例えば、パイプ素材に絞り加工を施して、軸方 向中間部に大径部、軸方向両側部に小径部を有する中空状シャフト素材を成形し、 この中空状シャフト素材に所要の機械加工 (スプラインの転造カ卩ェ等)を施した後、 焼入れ処理を施すことによって製造される。
[0044] 図 3は、焼入れ処理前の中空状パイプ素材 1 'を示している。まず、機械構造用炭 素鋼管(STKM)等のパイプ素材にスウェージンダカ卩ェを施して、軸方向中間部に 大径部 la、軸方向両側部に小径部 lbを有する形態に成形する。そして、小径部 lb の端部に転造カ卩ェ等によってスプライン ldlを成形して連結部 Idを形成すると共に 、連結部 Idに転造力卩ェゃ切削加工等によって止め輪溝 ld2を形成する。さらに、ブ ーッ固定部 leとなる部位に転造加工や切削加工等によってブーツ固定溝 leiを形 成する。
[0045] その後、図 3に示すように、中空状シャフト素材 1 'の外周表面 lgの側に、例えば移 動式の誘導加熱コイル 5を外装し、誘導加熱コイル 5に所定周波数の高周波電流を 通じつつ、これを軸方向に移動させて、外周表面 lgの側から高周波焼入れを行う。 その際、比較的厚肉の小径部 lbに対しては、誘導加熱コイル 5に通じる高周波電流 の周波数を相対的に低くし、比較的薄肉の大径部 laに対しては、誘導加熱コイル 5 に通じる高周波電流の周波数を相対的に高くする。これにより、大径部 laと小径部 1 bとの間で肉厚差があり、また、焼入れ率 αの差を設ける場合であっても、各部位に おける熱処理品質を高め、全体として安定した品質を確保することができる。
[0046] 図 4は、他の実施形態に係る中空状の動力伝達シャフト 11を示している。この実施 形態に係る動力伝達シャフト 11が上述した動力伝達シャフト 1と異なる点は、大径部 laについて焼入れ率ひを 1. 0としている点、すなわち、大径部 laの全肉厚 tに亘っ て硬化層 Sを形成している点にある。その他の事項は上述した実施形態に準じるの で、重複する説明を省略する。
[0047] 図 5は、他の実施形態に係る中空状の動力伝達シャフト 21を示している。この実施 形態に係る動力伝達シャフト 21が上述した動力伝達シャフト 1と異なる点は、軸方向 全域に亘つて焼入れ率ひを 1. 0としている点、すなわち、軸方向全域の全肉厚 tに 亘つて硬化層 Sを形成している点にある。その他の事項は上述した実施形態に準じ るので、重複する説明を省略する。
[0048] 図 6は、他の実施形態に係る中空状の動力伝達シャフト 31を示している。この実施 形態に係る動力伝達シャフト 31が上述した動力伝達シャフト 1と異なる点は、小径部 lbについて焼入れ率ひを 1. 0としてレ、る点、すなわち、小径部 lbの全肉厚 tに亘っ て硬化層 Sを形成している点にある。その他の事項は上述した実施形態に準じるの で、重複する説明を省略する。
[0049] 図 7は、他の実施形態に係る動力伝達シャフト(ドライブシャフト) 1を示している。こ の動力伝達シャフト 1は、軸方向全域に亘つて中空状をなし、軸方向中間部に大径 部 la、大径部 laよりも軸方向両側部にそれぞれ小径部 lbを有している。大径部 laと 小径部 lbとは、軸端側に向かって漸次縮径したテーパ部 lcを介して連続している。 小径部 lbは、等速自在継手(2、 3)との連結に供される端部側の連結部 Idと、ブー ッ(2c、 3c)が固定される軸方向中間部側のブーツ固定部 leとを有している。連結部 Idには、等速自在継手(2、 3)にスプライン連結されるスプライン ldlと、等速自在継 手(2、 3)に対する軸方向抜け止め用の止め輪を装着するための止め輪溝 ld2が形 成されている。ブーツ固定部 leには、ブーツ(2c、 3c)の小径端部の内周を嵌合する ための嵌合溝 leiが形成されている。
[0050] また、この動力伝達シャフト 1は、止め輪溝 ld2の近傍から軸端に至る一部領域を 除ぐ軸方向のほぼ全域に亘つて、焼入れ処理による硬化層を有している。この硬ィ匕 層は、外周表面から所定深さの領域又は全深さの領域に形成されている。
[0051] 上記構成の動力伝達シャフト 1は、例えば、パイプ素材にスウェージング加工を施し て、軸方向中間部に大径部 la、軸方向両側部に小径部 lbを有する中空状シャフト 素材を成形し、この中空状シャフト素材に所要の機械加工 (スプライン ldlの成形加 ェ等)を施した後、焼入れ処理を施すことによって製造される。
[0052] 図 8は、中空状シャフト素材の小径部 lbの連結部 Idにスプライン ldlを成形するェ 程で用いるダイス 4を示している。ダイス 4は、ダイス孔 4cを有し、そのダイス孔 4cの奥 側領域にスプライン成形部 4aを有している。スプライン成形部 4aは、中空状シャフト 素材の連結部 Idに形成すべきスプライン ldl (図 9参照)の形状に対応する歯型を 有し、その最大径(歯型の底部 4alの直径)は φ B、最小径(歯型の頂部 4a2の直径 )は じに設定されている。
[0053] 図 10に示すように、ダイス 4のスプライン成形部 4aの最大径 (歯型の底部 4alの直 径)(ί> Βは、中空状シャフト素材の連結部 Idの外径 (ί> Αよりも大きく設定され、最小径 (歯型の頂部 4a2の直径) φ。は外径 (ί> Aよりも小さく設定されている。そして、このよ うなダイス 4のスプライン成形部 4aに中空状シャフト素材の連結部 Idを軸方向に圧入 する。そうすると、連結部 Idの素材の一部が塑性流動を起こし、スプライン成形部 4a の最大径(歯型の底部 4al)に向かって盛り上がるように流動する素材の流れが起こ り、これにより、連結部 Idの外周にスプライン ldlが成形される。この実施形態では、 スプライン成形部 4aの最大径(歯型の底部 4al)に向かって盛り上がるように塑性流 動した素材が、スプライン成形部 4aの最大径 (歯型の底部 4al)と接触しないように、 Φ Α、 φ Β、 φ〇の関係が設定されている。
[0054] φ Α、 φ Β、 φ。の関係を上記のように設定することにより、スプライン ldlの成形時 、ダイス 4のスプライン成形部 4aの入り口部分における素材の滞留がなくなり、反圧入 方向へ流動する素材量がより低減される。したがって、スプライン ldlは、その終端部 において〇. P. D.が大きく増加することなぐ精度良く成形される。ここで、 O. P. D . (オーバーピン径)は、図 9に示すように、スプライン ldlの 180度対向した歯部にそ れぞれ所定径のピン 5をあて力 Sい、連結部 Idの直径方向における両ピン 5間の最大 離間寸法を測定して得られる値である。
[0055] 上記のようにしてスプライン ldlを成形し、止め輪溝 ld2やブーツ固定部 leの嵌合 溝 1 e 1等を加ェした後、中空状シャフト素材に焼入れ処理を施して硬化層を形成す る。焼入れ処理としては、パイプ素材の材質や動力伝達シャフトに要求される特性等 に応じて、高周波焼入れ、浸炭焼入れ、浸炭窒化焼入れ等の種々の手段を採用す ること力 Sできる力 硬化層の範囲や深さを自由に選択でき、また、表面に残留圧縮応 力が生成されることによる耐疲れ疲労性の改善等の点から、高周波焼入れを採用す るのが好ましい。例えば、中空状シャフト素材の外周表面の側に高周波誘導加熱コ ィルを配置して、外周表面の側から高周波焼入れを行なう。この高周波焼入れは、定 置式焼入れ、移動式焼入れの何れの方式で行なっても良い。
[0056] 中空状シャフト素材の小径部 lbの連結部 Idに上述した態様でスプライン ldlを成 形した実施例と、図 12に示すような態様で、中空状シャフト素材の小径部 l ibの連 結部 l idにスプライン 1 ldlを成形した比較例について、〇. P. D. の増加量 δを測 定した。その結果を図 11に示す。
[0057] 図 12に示すように、比較例では、ダイス 14のスプライン成形部 14aの最大径(歯型 の底部 14alの直径) φ Β'を、中空状シャフト素材の連結部 l idの外径 (ί> Αよりも小 さく設定した。そして、このようなダイス 14のスプライン成形部 14aに中空状シャフト素 材の連結部 1 Idを軸方向に圧入して、スプライン 1 ldlを成形した。
[0058] 図 11に示す測定結果から明ら力なように、実施例ではスプラインの終端部(〇. P.
D.の増加エリア)において O. P. D.の増加量は比較的少なかった力 比較例では スプラインの終端部(〇. P. D.の増加エリア)において〇. P. D.の増加量が顕著に 大きかった。
[0059] 図 13は、他の実施形態に係る動力伝達シャフト(ドライブシャフト) 1を示している。
この動力伝達シャフト 1は、軸方向全域に亘つて中空状をなし、軸方向中間部に大径 部 la、大径部 laよりも軸方向両側部にそれぞれ小径部 lbを有している。大径部 laと 小径部 lbとは、軸端側に向かって漸次縮径したテーパ部 lcを介して連続している。 小径部 lbは、等速自在継手(2、 3)との連結に供される端部側の連結部 Idと、ブー ッ(2c、 3c)が固定される軸方向中間部側のブーツ固定部 leとを有している。連結部 Idには、等速自在継手(2、 3)にスプライン連結されるスプライン ldlと、等速自在継 手(2、 3)に対する軸方向抜け止め用の止め輪を装着するための止め輪溝 ld2が形 成されている。ブーツ固定部 leには、ブーツ(2c、 3c)の小径端部の内周を嵌合する ための嵌合溝 leiが形成されている。
[0060] また、この動力伝達シャフト 1は、止め輪溝 ld2の近傍から軸端に至る一部領域を 除ぐ軸方向のほぼ全域に亘つて、焼入れ処理による硬化層を有している。この硬ィ匕 層は、外周表面から所定深さの領域又は全深さの領域に形成されている。
[0061] さらに、この動力伝達シャフト 1は、内周の中空部 Ifに発泡樹脂 4が充填され、中空 部 Ifが発泡樹脂 4によって封止されている。この実施形態において、発泡樹脂 4は硬 質発泡ウレタンであり、また、発泡樹脂 4は中空部 Ifの軸方向全域にわたって充填さ れている。中空部 Πに充填された発泡樹脂 4によって、等速自在継手(2、 3)の内部 に封入されたグリースが中空部 Πに侵入することが防止される。
[0062] 上記構成の動力伝達シャフト 1は、例えば、パイプ素材に絞り加工を施して、軸方 向中間部に大径部 la 、軸方向両側部に小径部 lbを有する中空状シャフト素材を 成形し、この中空状シャフト素材に所要の機械加工 (スプライン ldlの転造カ卩ェ等)を 施した後、焼入れ処理を施し、さらに、中空部 Ifに発泡樹脂 4を充填することによって 製造される。
[0063] 上記のパイプ素材の材質としては、例えば、 STKMや STMA等の機械構造用炭 素鋼、または、それらをベースに加工性や焼入れ性等の改善のために合金元素を添 加した合金鋼、あるいは、 SCr、 SCM、 SNCM等のはだ焼鋼を用いることができる。 また、パイプ素材として、継目無管(シームレス管)、電縫管、鍛接管、冷牽管の何れ ち採用することがでさる。
[0064] 上記の絞り加工としては、スウェージング加工やプレス加工等がある。前者のスゥェ 一ジング加工には、ロータリースウェージングとリンクタイプスウェージングがあり、そ の何れも採用することができる。例えば、ロータリースウェージングは、機内の主軸に 組込まれた一対又は複数対のダイスとパッカーとが回転運動を行なうと共に、外周口 ーラとバッカー上の突起により一定ストロークの上下運動を行なって、挿入されるパイ プ素材に打撃を加えて絞り加工を行なう加工法である。また、プレス加工は、パイプ 素材をダイスに軸方向に押し込んで絞り加工を行なう加工法である。このような絞り加 ェは、パイプ素材の軸方向全域に対して行なって良いし、パイプ素材の軸方向両側 部に対してのみ部分的に行なっても良い。この実施形態では、パイプ素材の軸方向 全域に絞り加工を施してレ、る。
[0065] 上記のような絞り加工を施した中空状シャフト素材の小径部 lbの端部に転造カロェ 等によってスプライン 1 dlを成形して連結部 1 dを形成すると共に、連結部 1 dに転造 加工や切削加工等によって止め輪溝 ld2を形成する。また、ブーツ固定部 leとなる 部位に転造加工や切削加工等によってブーツ固定溝 leiを形成する。
[0066] その後、上記の中空状シャフト素材に焼入れ処理を施して硬化層を形成する。焼 入れ処理としては、ノイプ素材の材質や動力伝達シャフトに要求される特性等に応 じて、高周波焼入れ、浸炭焼入れ、浸炭窒化焼入れ等の種々の手段を採用すること ができるが、硬化層の範囲や深さを自由に選択でき、また、表面に残留圧縮応力が 生成されることによる耐疲労強度の改善等の点から、高周波焼入れを採用するのが 好ましい。例えば、中空状シャフト素材の外周表面の側に高周波誘導加熱コイルを 配置して、外周表面の側から高周波焼入れを行なう。この高周波焼入れは、定置式 焼入れ、移動式焼入れの何れの方式で行なっても良い。
[0067] そして、上記の工程を経て製造された動力伝達シャフト 1の中空部 Ifに、例えば、 一端側から発泡ウレタン原料を注入し、中空部 Ifの内部で発泡させる。これにより、 中空部 Ifに発泡樹脂 4が発泡充填され、中空部 Ifが発泡樹脂 4によって封止される 図面の簡単な説明
[0068] [図 1]自動車の動力伝達機構を示す図である。
[図 2]実施形態に係る動力伝達シャフトを示す断面図である。
[図 3]中空状シャフト素材を示す断面図である。
[図 4]他の実施形態に係る動力伝達シャフトを示す断面図である。
[図 5]他の実施形態に係る動力伝達シャフトを示す断面図である。
[図 6]他の実施形態に係る動力伝達シャフトを示す断面図である。
[図 7]他の中空状動力伝達シャフトを示す一部断面図である。
[図 8]図 8 (a)は、ダイスのスプライン成形部を示す縦断面、図 8 (b)は、ダイスのスプラ イン成形部を示す横断面図である。
[図 9]動力伝達シャフトにおける連結部の断面図である。
[図 10]図 10 (a)は、プレス加工工程を示す拡大断面図、図 10 (b)は、動力伝達シャ フトのスプライン終端部の拡大断面図である。
[図 11]スプラインの〇. P. D.増加量を測定した結果を示す図である。
[図 12]図 12 (a)は、比較例に係るプレス加工を示す拡大断面図、図 12 (b)は、比較 例に係る動力伝達シャフトのスプライン終端部の拡大断面図である。
[図 13]他の実施形態に係る動力伝達シャフトを示す一部断面図である。
符号の説明
[0069] 1 動力伝達シャフト
11 動力伝達シャフト
21 動力伝達シャフト 31 動力伝達シャフト
1' 中空状パイプ素材
la 大径部
lb 小径部
Id 連結部
ldl スプライン
4 ダイス
4a スプライン成形部
4al 歯型の底部
4a2 歯型の頂部
4c ダイス孔
L スプライン成形部長さ
ΦΑ 中空状シャフト素材の連結部 Idの外径 φ B ダイス 4のスプライン成形部 4aの最大径
Φ C ダイス 4のスプライン成形部 4aの最小径 δ O. P. D.増カロ量
If 中空部
4 発泡樹脂

Claims

請求の範囲
[1] 軸方向中間部が大径部に形成されると共に、該大径部よりも軸方向両側部がそれ ぞれ小径部に形成された中空状動力伝達シャフトの製造方法であって、
ノ イブ素材に塑性加工を施して、前記大径部と小径部を有する中空状シャフト素 材を成形し、
前記中空状シャフト素材に対して、所定の領域とその他の領域とで高周波電流の 周波数を変えて高周波焼入れを行うことを特徴とする中空状動力伝達シャフトの製 造方法。
[2] 前記中空状シャフト素材の大径部を高周波焼入れする際の高周波電流の周波数 を相対的に高くし、前記中空状シャフト素材の小径部を高周波焼入れする際の高周 波電流の周波数を相対的に低くすることを特徴とする請求項 1に記載の中空状動力 伝達シャフトの製造方法。
[3] 軸方向中間部が大径部に形成されると共に、該大径部よりも軸方向両端部がそれ ぞれ小径部に形成され、該小径部の端部にスプラインが形成された中空状動力伝達 シャフトの製造方法にぉレ、て、
ノ イプ素材に絞り加工を施して、前記大径部と小径部とを有する中空状シャフト素 材を形成し、
内周にスプライン成形部を有し、該スプライン成形部の最大径が、前記中空状シャ フト素材の小径部の端部外径よりも大き かつ、該スプライン成形部の最小径が、前 記中空状シャフト素材の小径部の端部外径よりも小さなダイスを用意し、
前記ダイスのスプライン成形部に前記シャフト素材の小径部の端部を軸方向に圧 入して、該端部にスプラインを成形することを特徴とする中空状動力伝達シャフトの 製造方法。
[4] 前記スプラインの成形時に、前記スプラインの最大径が前記ダイスのスプライン成 形部の最大径に接触しないことを特徴とする請求項 3記載の中空状動力伝達シャフ トの製造方法。
[5] 軸方向中間部が大径部に形成されると共に、該大径部よりも軸方向両側部がそれ ぞれ小径部に形成され、内周に中空部を有する中空状動力伝達シャフトにおいて、 前記中空部に充填された発泡樹脂によって、前記中空部が封止されていることを 特徴とする中空状動力伝達シャフト。
[6] 前記発泡樹脂が、前記中空部の軸方向全域にわたって充填されていることを特徴 とする請求項 5に記載の中空状動力伝達シャフト。
[7] 前記発泡樹脂が、発泡ウレタンであることを特徴とする請求項 5又は 6に記載の中 空状動力伝達シャフト。
PCT/JP2005/013390 2004-08-02 2005-07-21 中空状動力伝達シャフト及びその製造方法 WO2006013730A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AT05766324T ATE489560T1 (de) 2004-08-02 2005-07-21 Verfahren zur herstellung einer hohlen antriebswelle
US11/659,135 US8101031B2 (en) 2004-08-02 2005-07-21 Hollow power transmission shaft and method of manufacturing the same
EP05766324A EP1798427B1 (en) 2004-08-02 2005-07-21 Method of producing a hollow transmission shaft
DE602005024997T DE602005024997D1 (de) 2004-08-02 2005-07-21 vERFAHREN ZUR HERSTELLUNG EINER HOHLEN ANTRIEBSWELLE

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2004-225730 2004-08-02
JP2004225730A JP2006046408A (ja) 2004-08-02 2004-08-02 中空状動力伝達シャフト
JP2004-227013 2004-08-03
JP2004227013A JP2006045605A (ja) 2004-08-03 2004-08-03 中空状動力伝達シャフトの製造方法
JP2004245784A JP4554299B2 (ja) 2004-08-25 2004-08-25 中空状動力伝達シャフトの製造方法
JP2004-245784 2004-08-25

Publications (1)

Publication Number Publication Date
WO2006013730A1 true WO2006013730A1 (ja) 2006-02-09

Family

ID=35787021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013390 WO2006013730A1 (ja) 2004-08-02 2005-07-21 中空状動力伝達シャフト及びその製造方法

Country Status (5)

Country Link
US (1) US8101031B2 (ja)
EP (3) EP1975423B1 (ja)
AT (2) ATE449654T1 (ja)
DE (2) DE602005024997D1 (ja)
WO (1) WO2006013730A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10182705B2 (en) 2013-11-18 2019-01-22 Meditech Endoscopy Ltd Gripping device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010028898A1 (de) * 2010-05-11 2011-11-17 Tedrive Holding B.V. Seitenwelle zwischen einem Achsdifferenzial und den Rädern eines Kraftfahrzeugs
DE102010040017A1 (de) * 2010-08-31 2012-03-01 Zf Lenksysteme Gmbh Hohlwelle zur Kraftübertragung innerhalb eines EPS-Lenksystems
JP5468644B2 (ja) * 2012-06-15 2014-04-09 日本発條株式会社 スタビリンク
CN105026779B (zh) 2013-03-25 2018-02-16 Ntn株式会社 动力传递轴以及花键加工方法
KR101363401B1 (ko) * 2013-09-11 2014-02-14 한국델파이주식회사 중공 구동축 및 이의 제조 방법
WO2016068465A1 (ko) * 2014-10-31 2016-05-06 현대위아 주식회사 등속 조인트 연결용 샤프트 및 그 샤프트를 갖는 차량용 등속 조인트 조립체
CN104785689B (zh) * 2015-04-10 2017-07-25 通裕重工股份有限公司 大型轴类锻件均温锻造工艺
US20170089422A1 (en) * 2015-09-25 2017-03-30 GM Global Technology Operations LLC Propshaft liner
JP6781608B2 (ja) * 2016-11-01 2020-11-04 Ntn株式会社 インホイールモータ駆動装置
WO2018235222A1 (ja) * 2017-06-22 2018-12-27 日本精工株式会社 ステアリング装置用シャフト、ステアリング装置用シャフトの製造方法及び電動パワーステアリング装置
DE102020200853A1 (de) * 2020-01-24 2021-07-29 Volkswagen Aktiengesellschaft Verfahren zur umformenden Herstellung einer geschlossenen Hohlwelle

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6376821A (ja) * 1986-09-17 1988-04-07 Fuji Denshi Kogyo Kk 中空シヤフトの高周波焼入方法及びその装置
JPH0195822A (ja) * 1987-10-05 1989-04-13 Fuji Tool & Die Co Ltd 中空軸端部のスプライン成形方法
JPH06281010A (ja) 1993-03-24 1994-10-07 Toyoda Gosei Co Ltd 中空シャフト用プラグ
JPH0968233A (ja) 1995-08-30 1997-03-11 Matsui Seisakusho:Kk 等速ジョイント及びその組立方法
JPH11101259A (ja) 1997-09-26 1999-04-13 Ntn Corp 等速自在継手
JPH11247835A (ja) * 1998-03-04 1999-09-14 Nippon Seiko Kk 中空ステアリングシャフトとその製造方法及び中空ステアリングシャフト製造用工具
JP2001208037A (ja) 2000-01-26 2001-08-03 Ntn Corp ドライブシャフト用中間軸及びその製造方法
EP1262671A1 (en) 2001-05-28 2002-12-04 Ntn Corporation Power transmission shaft
JP2002349538A (ja) 2001-05-28 2002-12-04 Ntn Corp 動力伝達シャフト
JP2002356742A (ja) 2001-05-28 2002-12-13 Ntn Corp 動力伝達シャフト
JP2003090325A (ja) 2001-09-18 2003-03-28 Toyoda Mach Works Ltd 等速ジョイントが両端に連結された中間シャフト
JP2003094141A (ja) 2001-09-21 2003-04-02 Toyota Motor Corp 中空スプラインシャフトの製造方法
JP2003343539A (ja) * 2002-05-28 2003-12-03 Mitsubishi Heavy Ind Ltd 主 軸

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1583333B1 (de) * 1967-11-14 1971-01-14 Aeg Elotherm Gmbh Induktor zum Oberflaechenhaerten von langgestreckten mit einem Flansch versehenen Werkstuecken unterschiedlichen Durchmessers
JPH0414818A (ja) 1990-05-08 1992-01-20 Mitsubishi Electric Corp イオン注入方法
DE19929639B4 (de) * 1999-06-28 2004-02-12 GKN Löbro GmbH Welle-Nabe-Verbindung mit umgeformten Anschlagschrägen in Wellenverzahnung
JP3958568B2 (ja) * 2001-12-13 2007-08-15 Ntn株式会社 駆動車輪用軸受装置
JP2003314579A (ja) 2002-04-23 2003-11-06 Toyoda Mach Works Ltd スライド式等速ジョイントを連結した中空ドライブシャフト
JP4255312B2 (ja) * 2003-05-19 2009-04-15 Ntn株式会社 動力伝達シャフト
US7442906B2 (en) * 2004-04-28 2008-10-28 Neturen Co., Ltd. Induction heating coil for shaft member having multiple steps and heating method
WO2007031052A2 (de) * 2005-09-13 2007-03-22 Neumayer Tekfor Holding Gmbh Hohlwelle und verfahren zur herstellung
JP2007239872A (ja) * 2006-03-08 2007-09-20 Ntn Corp 動力伝達軸及びその製造方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6376821A (ja) * 1986-09-17 1988-04-07 Fuji Denshi Kogyo Kk 中空シヤフトの高周波焼入方法及びその装置
JPH0195822A (ja) * 1987-10-05 1989-04-13 Fuji Tool & Die Co Ltd 中空軸端部のスプライン成形方法
JPH06281010A (ja) 1993-03-24 1994-10-07 Toyoda Gosei Co Ltd 中空シャフト用プラグ
JPH0968233A (ja) 1995-08-30 1997-03-11 Matsui Seisakusho:Kk 等速ジョイント及びその組立方法
JPH11101259A (ja) 1997-09-26 1999-04-13 Ntn Corp 等速自在継手
JPH11247835A (ja) * 1998-03-04 1999-09-14 Nippon Seiko Kk 中空ステアリングシャフトとその製造方法及び中空ステアリングシャフト製造用工具
JP2001208037A (ja) 2000-01-26 2001-08-03 Ntn Corp ドライブシャフト用中間軸及びその製造方法
EP1262671A1 (en) 2001-05-28 2002-12-04 Ntn Corporation Power transmission shaft
JP2002349538A (ja) 2001-05-28 2002-12-04 Ntn Corp 動力伝達シャフト
JP2002356742A (ja) 2001-05-28 2002-12-13 Ntn Corp 動力伝達シャフト
JP2003090325A (ja) 2001-09-18 2003-03-28 Toyoda Mach Works Ltd 等速ジョイントが両端に連結された中間シャフト
JP2003094141A (ja) 2001-09-21 2003-04-02 Toyota Motor Corp 中空スプラインシャフトの製造方法
JP2003343539A (ja) * 2002-05-28 2003-12-03 Mitsubishi Heavy Ind Ltd 主 軸

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10182705B2 (en) 2013-11-18 2019-01-22 Meditech Endoscopy Ltd Gripping device

Also Published As

Publication number Publication date
EP1974837A3 (en) 2008-10-15
EP1974837A2 (en) 2008-10-01
DE602005017954D1 (de) 2010-01-07
EP1975423A3 (en) 2008-10-15
US8101031B2 (en) 2012-01-24
DE602005024997D1 (de) 2011-01-05
EP1798427B1 (en) 2010-11-24
EP1798427A1 (en) 2007-06-20
EP1798427A4 (en) 2008-05-28
EP1974837B1 (en) 2009-11-25
EP1975423B1 (en) 2013-04-17
US20090082117A1 (en) 2009-03-26
ATE449654T1 (de) 2009-12-15
EP1975423A2 (en) 2008-10-01
ATE489560T1 (de) 2010-12-15

Similar Documents

Publication Publication Date Title
WO2006013730A1 (ja) 中空状動力伝達シャフト及びその製造方法
JP5718003B2 (ja) 等速自在継手の外側継手部材およびその摩擦圧接方法
CN1989351A (zh) 中空状动力传递轴及其制造方法
JP6304458B2 (ja) ラック軸及びその製造方法
CN102666251A (zh) 伸缩轴的制造方法以及利用该制造方法制造的伸缩轴
KR20140039660A (ko) 자동차용 유니버설 조인트의 샤프트조인트 및 그 제조방법
EP2738408B1 (en) Cruciform-shaft universal joint and method for producing same
JP2013066903A (ja) 中空状動力伝達シャフト
WO2007086262A1 (ja) 中空状動力伝達シャフト
JP2011236976A (ja) 等速自在継手
US6802781B2 (en) Longitudinal plunging unit having a material with a uniform wall thickness
JP2009097716A (ja) ディファレンシャル装置
JP4554299B2 (ja) 中空状動力伝達シャフトの製造方法
US11767050B2 (en) Plastic injected rigid splined shaft connection
US7056218B2 (en) Elastic shaft coupling and method of manufacturing coupling element
JP2006002185A (ja) 中空状動力伝達シャフトの熱処理方法
JP2006002809A (ja) 中空状動力伝達シャフト
JP2020063784A (ja) 動力伝達シャフト
JP2007064266A (ja) 中空シャフト
JP2006250332A (ja) 中空状動力伝達シャフト
JP2009275878A (ja) スプライン軸、動力伝達シャフトおよび等速自在継手外輪
JP2006045605A (ja) 中空状動力伝達シャフトの製造方法
JP2011237017A (ja) 摺動型等速自在継手
JP2006029472A (ja) 中空状動力伝達シャフト
JP4920469B2 (ja) 等速自在継手用ケージおよび等速自在継手用ケージの製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580025004.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2005766324

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005766324

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11659135

Country of ref document: US