WO2006013727A1 - 溶接継手およびその溶接材料 - Google Patents

溶接継手およびその溶接材料 Download PDF

Info

Publication number
WO2006013727A1
WO2006013727A1 PCT/JP2005/013353 JP2005013353W WO2006013727A1 WO 2006013727 A1 WO2006013727 A1 WO 2006013727A1 JP 2005013353 W JP2005013353 W JP 2005013353W WO 2006013727 A1 WO2006013727 A1 WO 2006013727A1
Authority
WO
WIPO (PCT)
Prior art keywords
content
welded joint
metal
mass
weld
Prior art date
Application number
PCT/JP2005/013353
Other languages
English (en)
French (fr)
Inventor
Takahiro Osuki
Kazuhiro Ogawa
Yoshitaka Nishiyama
Original Assignee
Sumitomo Metal Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries, Ltd. filed Critical Sumitomo Metal Industries, Ltd.
Priority to EP05762011.4A priority Critical patent/EP1780295B1/en
Priority to DK05762011.4T priority patent/DK1780295T3/da
Priority to CA002575109A priority patent/CA2575109A1/en
Publication of WO2006013727A1 publication Critical patent/WO2006013727A1/ja
Priority to US11/700,175 priority patent/US20070187379A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/053Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 30% but less than 40%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%

Definitions

  • the present invention relates to a welded joint of a member used in a high-temperature corrosive environment and its welding material.
  • materials used in high-temperature corrosive environments include, for example, containers used in heat exchange hydrocarbon reformers and waste heat recovery equipment in GTL plants such as petroleum refining and petrochemical plants, reaction tubes, parts, etc. Is mentioned.
  • metal materials such as the reaction tube of the above apparatus are exposed to a reaction gas containing H, CO, CO, H 0, hydrocarbons (methane, etc.) at a temperature of about 1000 ° C or higher. Is done. This temperature
  • elements such as Cr and Si, which have a higher tendency to oxidize than Fe and Ni, are selectively oxidized on the surface of the metal material to form a dense oxide film. This suppresses the corrosion of the metal material.
  • Patent Document 1 specifies the chemical composition, and the relationship between the content of Si, Cu or S and the content of Nb, Ta, Ti and Zr, and the relationship between the contents of Ni, Co and Cu There is disclosed a welded joint in which is specified within a certain range. According to Patent Document 1, this welded joint is excellent in corrosion resistance and weld crack resistance in a sulfuric acid environment.
  • Patent Document 2 discloses a Ni-base heat-resistant alloy welded joint that positively contains A1 and that defines a relational expression between the amount of grain boundary fusion and the grain boundary fixing force. In Patent Document 2, this welded joint is excellent in carburization resistance and high-temperature strength.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-107196
  • Patent Document 2 JP 2002-235136 A
  • the welded joint disclosed in Patent Document 1 has a low Si content and is therefore difficult to use in an environment where metal dusting occurs.
  • the welded joint disclosed in Patent Document 2 when the minimum amount of Si necessary to ensure metal dusting resistance is added, weld solidification cracking occurs and it is difficult to ensure excellent weldability. .
  • An object of the present invention is to provide a welded joint that has excellent metal dusting resistance and does not cause weld solidification cracking.
  • Metal dusting resistance is improved by the inclusion of elements such as Si, Cu and P. These elements significantly increase the weld solidification cracking susceptibility. Therefore, the present inventors have made various studies for the purpose of suppressing weld solidification cracking while ensuring metal dusting resistance.
  • Weld solidification cracking is a phenomenon in which the strain applied by solidification shrinkage or heat shrinkage is close to the weld metal at the stage where a film-like liquid phase exists mainly at the grain boundary, near the end of the weld solidification process. Occurs when the deformability is exceeded.
  • As a method of reducing the susceptibility to weld solidification cracking it is conceivable to improve the deformability of the weld metal, but it is necessary to change the basic component system, and this goes back to the purpose of ensuring the resistance to metal dusting. become. For this reason, the present inventors have further studied the chemical composition that can reduce the melting point of the liquid phase without changing the basic component system and complete the coagulation at an early stage.
  • weld solidification cracking is a serious weld defect, and several methods for preventing it are known.
  • the inventors of the present invention as a chemical composition that can achieve both metal dusting resistance and weld solidification cracking resistance, the austenite phase is crystallized as primary crystals and solidification is completed in the austenite single phase. Based on high Ni-base alloy.
  • Elements such as Si, Cu, and P increase the weld solidification cracking susceptibility because they significantly reduce the liquidus temperature. In general, it is known that when Ti is added to an austenite single-phase metal material, the susceptibility to weld solidification cracking increases.
  • the present invention has been made on the basis of the above-mentioned knowledge, and the following (a) force is also suitable up to (d).
  • the weld joint shown in the above and the welding material shown in any of the following (e) force (h) are essential.
  • (a) are both base metal and weld metal, in mass 0/0, C: 0.01 ⁇ 0.45% , Si: 1% to 4% greater than or less, Mn: 0.01 ⁇ 2%, P: 0.05% or less, S: 0.01% or less, Cr: 15 to 35%, Ni: 40 to 78%, Al: 0.005 to 2%,? ⁇ : Welding characterized by containing 0.001 to 0.2% and 01: 0.015 to 5.5%, further containing Ti that satisfies the following formula (1), with the balance having a chemical composition of Fe and impurities Fittings.
  • the element symbol in the formula (1) means the content (mass%) of the element.
  • GTL is an abbreviation for “Gas To Liquid” and refers to the production of petroleum products from natural gas.
  • the element symbol in the formula (1) means the content (mass%) of the element.
  • the welding material according to any one of the above (e) force (g) has a chemical composition including REM: 0.005 to 0.3% in mass% instead of a part of Fe.
  • the welded joint according to the present invention has excellent metal dusting resistance, it can be used for heating furnace tubes, piping, heat exchanger tubes, etc. in petroleum refining and petrochemical plants, The weldability, durability and safety of the device can be greatly improved.
  • the welding material according to the present invention is optimal for producing the above-described welded joint by the TIG welding method.
  • the reason for limiting the chemical composition of the base metal of the weld joint and the weld metal is as follows.
  • the “%” display of the content of each element is “mass”.
  • C is an element having an effect of increasing the strength of the base metal and the weld metal of the weld joint.
  • the C content is set to 0.01 to 0.45%.
  • the content of C is preferably 0.02 to 0.4%, and most preferably 0.04 to 0.4%.
  • Si more than 1% and less than 4%
  • Si is an element having a deoxidizing action when a metal material is melted. Si also forms a Si oxide film under the Cr oxide film on the surface of the welded joint to suppress the penetration of C into the welded joint and increase the C activity in the welded joint. Thus, it is an element that also has the effect of greatly improving the metal dusting resistance. These effects are not achieved below 1%. However, if its content exceeds 4%, the hot workability and weldability of the base metal will be significantly reduced. Therefore, the Si content is more than 1% and less than 4%. The lower limit of the Si content is preferably 1.2%, and more preferably 1.5%.
  • the upper limit of the Si content is preferably 2% from the viewpoint of the weldability and hot workability of the base metal.
  • Mn has an effect of suppressing brittleness during hot working of the base metal due to S contained as an impurity, and is an element effective for deoxidation during melting. In order to obtain these effects, it is necessary to contain Mn in an amount of 0.01% or more. However, if the Mn content exceeds 2%, the activity of C in the welded joint made of the base metal and weld metal will be reduced, and the formation of the Cr and A1 acid film on the surface of the welded joint will be inhibited. To do. For this reason, intrusion of C from the atmosphere is promoted and metal dusting is likely to occur. Therefore, the Mn content is set to 0.01-2%. The Mn content is preferably 0.05 to 1.0%, and most preferably 0.1 to 0.8%.
  • the P is an impurity element that mixes forces such as raw materials when melting a metal material, causing a decrease in corrosion resistance and degrading hot workability and weldability. Therefore, the P content is 0.05% or less, which is desirable to reduce as much as possible.
  • the P content is preferably 0.03% or less, and most preferably 0.02% or less.
  • S is also an impurity element mixed in from the raw materials when melting metal materials, causing a decrease in corrosion resistance and degrading hot workability and weldability. Therefore, it is desirable to reduce the S content as much as possible to 0.01% or less. 0.007% or less is more preferable Is less than 0.002%.
  • Cr has a function of delaying the growth of the carburized layer by combining with C that has penetrated into the weld joint in a high temperature use environment. This ensures good metal dusting resistance. This effect is exhibited when the content is 15% or more. However, if its content exceeds 35%, the toughness is lowered and the hot workability is deteriorated, which makes it difficult to manufacture the base material. Therefore, the Cr content is 15-35%. A Cr content of 18-33% is more desirable and 25.2-33%.
  • Ni is an element that maintains high-temperature strength and structural stability and has the effect of enhancing corrosion resistance by coexisting with Cr. Ni also has the effect of suppressing the occurrence of metal dusting. These effects saturate even when the strength of 78% is exceeded when the Ni content is 40% or more. Therefore, the Ni content is 40-78%.
  • the Ni content is preferably 48 to 78%, and more preferably 50 to 78%. Most preferred is 56-78%.
  • A1 is an element having a deoxidizing action when a metal material is melted.
  • A1 forms an A1 oxide film on the lower layer of the Cr oxide film on the surface of the welded joint or on the outermost surface of the welded joint to suppress the penetration of C into the metal material and the activity of C in the metal material. And has the effect of significantly improving metal dusting resistance.
  • the A1 content needs to be 0.005% or more.
  • the content of A1 is set to 0.005 to 2%.
  • the upper limit of the A1 content is more preferably 1.5% or less. It is even more preferable if the lower limit of the A1 content is 0.01% and the upper limit force is less than .8%!
  • N 0.001 to 0.2%
  • N is an element that has the effect of increasing the activity of C in the base material and improving the resistance to metal dusting. This effect is insufficient when its content is less than 0.001%. However, if the N content is exceeded, a large amount of Cr and A1 nitrides are formed, and hot workability and The weldability is significantly reduced. Therefore, the N content is set to 0.001 to 0.2%. The upper limit should be less than 0.02%.
  • the lower limit of the N content is preferably 0.005%.
  • the upper limit of N content is 0.055% from the viewpoint of weldability and hot workability. Is good.
  • the upper limit of the N content is more preferably 0.035%, and very preferably 0.025%.
  • Cu is an element that improves the metal dusting resistance by increasing the C activity in the welded joint and suppressing the growth of the carburized layer. This effect is exhibited by adding 0.015% or more of Cu. However, if Cu is contained in excess of 5.5%, the toughness of the base metal and the weld metal is lowered, and the hot workability is significantly lowered. It also significantly increases weld solidification cracking susceptibility. Therefore, the Cu content is set to 0.015 to 5.5%. The Cu content is preferably 0.04 to 4.8%, more preferably 1.5 to 4.2%.
  • the element symbol in the formula (1) means the content (mass%) of the element.
  • Ti is a carbide forming element, and is an element having an action of suppressing the growth of the carburized layer to increase the metal dusting resistance and the high temperature strength. Ti also forms a compound with Si at high temperatures to reduce weld solidification cracking susceptibility.
  • the Ti content needs to be ⁇ (Si-0.01) / 30 ⁇ + 0.01Cu ⁇ Ti in relation to the Si and Cu contents. This is because as the Si and Cu contents decrease, the amount of Ti added to reduce the susceptibility to solidification cracking decreases. If Ti in the range of ⁇ (Si-0.01) / 30 ⁇ + 0.01Cu ⁇ Ti is included, the adverse effect on weld solidification cracking susceptibility due to P can be suppressed.
  • the Ti content exceeds 5%, the crystallization growth of the Si-Ti compound is not induced by the eutectic solidification structure with the austenite phase, and only the growth of the solidification cracking is reversed. To increase. In addition, the crystallization amount of the Si-Ti compound increases and the hot workability decreases. T The upper limit for the i content is preferably 4%. Based on the above, Ti was included in a range that satisfies the above formula (1).
  • the base material and the weld metal constituting the welded joint of the present invention only have to have the chemical composition described above, and the balance is Fe and impurity power. Also, in order to further improve metal dusting resistance, instead of part of Fe, Co: 0.015-5.5%, Mo: 0.05-10%, Ta: 0.05-5%, W: 0.05-5% , V: 0.01 to l%, Zr: 0.01 to 1.4%, Nb: 0.01 to 1.4%, and Hf: 0.01 to l% force One or more selected may be included. This is due to the following reasons.
  • Co has the action of increasing the activity of C in the metal material and suppressing the growth of the carburized layer to improve the metal dusting resistance.
  • Mo, Ta, W, V, Zr, Nb, and Hf are all carbide-forming elements and have the effect of suppressing the growth of the carburized layer and improving the metal dusting resistance. These effects are significant when Co is 0.015% or more, Mo, Ta, and W are 0.05% or more, respectively, and V, Zr, Nb, and Hf are 0.01% or more. However, if the content of these elements is too large, it adversely affects hot workability, manufacturability, toughness and weldability.
  • the content of Co is 0.015 to 5.5%
  • Mo is 0.05 to 10%
  • Ta is 0.05 to 5%
  • W is 0.05 to 5
  • %, V are 0.01 to 1%
  • Zr is 0.01 to 1.4%
  • Nb is 0.01 to 1.4%
  • Hf is 0.01 to 1%.
  • the content of these elements is 0.02 to 4.8% for Co, 1 to 10% for Mo, 0.5 to 5% for both Ta and W, 0.01 to 0.8% for Zr and Nb, V and It is desirable that all Hf be 0.01 to 0.6%, and the most desirable is that Co is 0.05 to 4.2%, Mo is 1 to 8%, Ta and W are both 1 to 3%, Zr and Nb is 0.02 to 0.8%, V is 0.01 to 0.3%, and Hf is 0.02 to 0.6 ⁇ / ⁇ .
  • the base metal and weld metal of the welded joint of the present invention are replaced with a part of Fe, B: 0.0005 to 0.3%, Ca: 0.0005 to 0.02%, and Mg: 0.0005. It may contain at least one selected from ⁇ 0.02%.
  • the content of Ca or Mg exceeds 0.02%, it becomes an oxide inclusion and causes deterioration of the product surface quality and corrosion resistance. Accordingly, when one or more elements selected from these elemental forces are contained, the content of B is preferably 0.0005 to 0.3%, and Ca and Mg are each preferably 0.0005 to 0.02%. It is more desirable and most desirable that 0.0005 to 0.012% of any element is 0.0005 to 0.012%.
  • the base metal and weld metal of the weld joint of the present invention may contain REM: 0.005 to 0.3% in place of part of Fe for the purpose of improving corrosion resistance.
  • REM is a collective term for a total of 17 elements including Sc and Y and lanthanoid elements.
  • REM has the effect of improving the corrosion resistance by increasing the uniformity of the oxide film containing Cr and A1 formed on the surface of the welded joint in the use environment, thereby improving the adhesion. This effect becomes significant when the content is 0.005% or more. However, if its content exceeds 0.3%, a coarse acidified product is formed, leading to a decrease in toughness and hot workability, and an increase in the occurrence of surface defects. Therefore, the content when REM is added is preferably 0.005 to 0.3%. The REM content is more preferably 0.005 to 0.07%, more preferably 0.005 to 0.1%.
  • the base material and the weld metal have been described above. Both the base metal and the weld metal have chemical compositions that are within the same content range for each component, but this does not mean that the base metal and the weld metal must have exactly the same chemical composition.
  • Each component of a base material and a weld metal should just be in the range of the above-mentioned content.
  • the base metal C may be 0.10% and the weld metal C may be 0.15%.
  • the welded joint of the present invention can be produced by various welding methods such as TIG welding and MIG welding. What is necessary is just to select the welding material of the composition from which the composition of the said weld metal is obtained according to the welding method and welding conditions to employ
  • TIG welding it is desirable to use the one shown in (e) Force (h) above.
  • Metal materials having chemical compositions shown in Table 1 and Table 2 were melted using a high-frequency heating vacuum furnace. . After forging each metal material ingot by a normal method, it was subjected to a solution heat treatment at 1200 ° C, and a 60 ° V groove processing with a butt portion of 1.5 mm was performed. Thickness 12 mm, width 50 mm, long A test piece for restraint weld cracking test with a thickness of 150 mm and a metal dusting resistance evaluation test piece with a thickness of 4 mm, a width of 10 mm and a length of 20 mm were prepared.
  • means a force that does not cause any crack in the bead.
  • X in “Metal dusting resistance” indicates that pits occurred in less than 200 hours
  • indicates that pits occurred in 200 hours or more and less than 500 hours
  • indicates 500 hours. More than 1000 hours pits occurred, “ ⁇ ” means no pits occurred in 1000 hours.
  • the Ti content is within the range specified by the present invention.
  • the No. 33 where the Si and Cu content is outside the range specified by the present invention can ensure sufficient metal dusting resistance. It wasn't.
  • Ti content is within the range specified by the present invention No. 34, where the content of force A1 exceeds the range specified by the present invention, metal dusting resistance is secured! A large number of cracks occurred in the heat affected zone of the weld.
  • the welded joint of the present invention is excellent in metal dusting resistance and weldability, it should be used for heating furnace tubes, piping, heat exchanger tubes, etc. in petroleum refineries and petrochemical plants. This can greatly improve the welding workability, durability, and safety of the equipment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Arc Welding In General (AREA)

Abstract

 母材および溶接金属がともに、C:0.01~0.45%、Si:1%を超え4%以下、Mn:0.01~2%、P:0.05%以下、S:0.01%以下、Cr:15~35%、Ni:40~78%、Al:0.005~2%、N:0.001~0.2%およびCu:0.015~5.5%を含み、更に下記(1)式を満足するTiを含有し、残部はFeおよび不純物からなる化学組成を有することを特徴とする溶接継手。母材および溶接金属は、さらにCo、Mo、Ta、W、V、Zr、Nb、Hf、B、Ca、MgおよびREMの1種以上を含有してもよい。          {(Si-0.01)/30}+ 0.01Cu ≦Ti≦5   ・・・(1)  但し、(1)式中の元素記号は、その元素の含有量(質量%)を意味する。

Description

溶接継手およびその溶接材料
技術分野
[0001] 本発明は、高温の腐食環境で使用される部材の溶接継手およびその溶接材料に 関する。高温の腐食環境で使用される部材としては、例えば、石油精製、石油化学 プラント等の GTLプラントにおける熱交換型炭化水素改質装置、廃熱回収装置等に 使用される容器、反応管、部品等が挙げられる。
背景技術
[0002] 石油精製、石油化学プラント等における改質装置、石油等を原料とするアンモニア 製造装置、水素製造装置等においては、エネルギー効率を高めるために廃熱回収 のための熱交換が多用されるようになってきている。一方、今後、水素ガス、メタノー ルガス等のクリーンエネルギーは、大幅な需要増加が予想され、これらの製造に欠か せない改質装置には大型で熱効率が高い、量産に適したものが要求される。
[0003] 通常、上記の装置の反応管などの金属材料は、 1000°C程度またはそれ以上の温 度で、 H、 CO、 CO、 H 0、炭化水素 (メタン等)を含む反応ガスに曝される。この温
2 2 2
度域においては、金属材料の表面は、 Fe、 Ni等よりも酸化傾向の大きい Cr、 Si等の元 素が選択的に酸化され、緻密な酸化皮膜を形成する。これにより金属材料の腐食が 抑制される。
[0004] しかし、高温ガスの熱を有効活用するためには、従来よりも低い、 400〜700°Cの温 度域における熱交換が重要である。そして、この温度域において反応管や熱交翻 等に使用する高 Cr一高 Ni— Fe合金系金属材料の浸炭が生じ、これに伴う腐食が問 題となる。金属材料に浸炭が生じるのは、熱交 等の相対的に温度の低い部分で は、腐食抑制効果のある酸ィ匕皮膜の形成が遅れる力もである。
[0005] 金属材料中に Cr、 Fe等の炭化物を含む浸炭層が形成されると、その部分が膨張し て微細な割れが生じやすくなる。更に、金属材料中の炭化物形成が飽和すると、金 属材料の表面から炭化物が分解して金属粉末が発生し、これが剥離して腐食消耗 が進行する。これ力 Sメタルダステイング発生の原理である。剥離した金属粉末は、金 属材料の表面における炭素析出を促進させる。このような損耗、炭素析出等によって 管内閉塞が拡大すると、装置の故障を招くおそれがあるので、装置部材としての材 料選定に十分な配慮が必要である。
[0006] 従来、このような装置部材用合金としては、高 Cr-高 M-Fe合金が用いられてきた。
例えば、特許文献 1には、化学組成を規定するとともに、 Si、 Cuまたは Sの含有量と N b、 Ta、 Tiおよび Zrの含有量との関係、ならびに Ni、 Coおよび Cuの含有量の関係を一 定範囲に規定した溶接継手が開示されている。特許文献 1では、この溶接継手は硫 酸環境下での耐食性および耐溶接割れ性に優れて 、るとして 、る。
[0007] 特許文献 2には、 A1を積極的に含有させるとともに、粒界溶融量と粒界固着力との 関係式を規定した Ni基耐熱合金溶接継手が開示されている。特許文献 2では、この 溶接継手は耐浸炭性および高温強度に優れて ヽるとして 、る。
[0008] 特許文献 1:特開 2001-107196号公報
特許文献 2:特開 2002-235136号公報
発明の開示
発明が解決しょうとする課題
[0009] 特許文献 1に開示された溶接継手は、 Siの含有量が少な 、ため、メタルダスティン グが生じる環境下での使用は困難である。特許文献 2に開示された溶接継手は、耐 メタルダステイング性を確保するために必要な最小限の Siを添加した場合、溶接凝固 割れが生じ、優れた溶接性を確保することは困難である。
[0010] 本発明は、耐メタルダステイング性に優れ、かつ溶接凝固割れが生じな ヽ溶接継手 を提供することを目的とする。
課題を解決するための手段
[0011] 耐メタルダステイング性は、 Si、 Cu、 P等の元素を含有させることで向上する力 これ らの元素は、溶接凝固割れ感受性を著しく増大させる。そこで、本発明者らは、耐メタ ルダステイング性を確保しつつも、溶接凝固割れを抑制することを目的として、種々 の検討を行った。
[0012] 溶接凝固割れは、溶接凝固過程の終了期に近い、主として結晶粒界に膜状の液 相が存在する段階において、凝固収縮または熱収縮により加わる歪みが溶接金属の 変形能以上になった場合に発生する。溶接凝固割れ感受性を低減する方法として は、溶接金属の変形能を向上させることも考えられるが、基本成分系を変更する必要 が生じて、耐メタルダステイング性を確保するという目的に逆行することになる。このた め、本発明者らは、基本成分系を変更することなぐ液相の融点低下を軽減して早期 に凝固を完了させることができる化学組成について更に研究を重ねた。
[0013] Niおよび Crを高 、濃度で含有する高合金鋼にお!、ては、溶接凝固割れが重大な 溶接欠陥であり、それを防止する方法はいくつか知られている。例えば、 P、 S等の液 相線を低温側に移動させる元素の含有量を低減する方法、 Ni、 C、 Mn、 Co等のォー ステナイト生成元素の含有量を低減し、 Cr、 Si、 Mo等のフェライト生成元素を増加す ることにより、初めにフェライト相を晶出させ、その後に包共晶反応によりオーステナイ ト相を晶出させて、凝固形態をフェライト'オーステナイト二相組織にする方法等であ る。
[0014] しかし、靱性の低下および熱間加工性の劣化を防止するためには、 35%を超える C rを含有させることができない。また、高温強度、組織安定性および耐食性の向上の ためには、 Niを 40%以上含有させる必要がある。このため、凝固形態を二相組織に する上記の方法を用いることはできな 、。
[0015] そこで、本発明者らは、耐メタルダステイング性と耐溶接凝固割れ性とを両立させる ことができる化学組成として、オーステナイト相が初晶として晶出し、オーステナイト単 相で凝固を完了する高 Ni基合金をベースとした。
[0016] Si、 Cu、 P等の元素は、液相線温度を著しく低下させるため、溶接凝固割れ感受性 を増大させる。また、一般にオーステナイト単相の金属材料に Tiを添加した場合、溶 接凝固割れ感受性が増大することが知られて 、る。
[0017] し力し、本発明者らの研究により、 Siおよび Cuの含有量と関係づけて、適量の Ήを 含有させると、溶接凝固割れ感受性を著しく小さくすることができることが判明した。こ れは、 Si-Tiィ匕合物が溶接金属凝固過程において液相中からオーステナイト相との共 晶凝固組織の形態で晶出し、 Si、 Cu、 P等の液相への濃化が抑制され、液相が早期 に凝固を完了するからであると考えられる。
[0018] 本発明は、上記の知見を基礎としてなされたものであり、下記の (a)力も (d)までのい ずれかに示す溶接継手および下記の (e)力 (h)までのいずれか〖こ示す溶接材料を要 旨とする。
[0019] (a) 母材および溶接金属がともに、質量0 /0で、 C:0.01〜0.45%、 Si: 1%を超え 4% 以下、 Mn:0.01〜2%、 P:0.05%以下、 S:0.01%以下、 Cr:15〜35%、 Ni:40〜78% 、 Al:0.005〜2%、?^:0.001〜0.2%ぉょび01:0.015〜5.5%を含み、更に下記 (1)式 を満足する Tiを含有し、残部は Feおよび不純物からなる化学組成を有することを特 徴とする溶接継手。
{(Si-0.01)/30}+ O.OlCu≤Ti≤5 ·'·(1)
但し、(1)式中の元素記号は、その元素の含有量 (質量%)を意味する。
[0020] (b) 上記の (a)に記載の溶接継手において、母材および溶接金属力 Feの一部に 代えて、質量0 /oで、 Co:0.015〜5.5%、 Mo:0.05〜10%、 Ta:0.05〜5%、 W:0.05〜5 %、 V:0.01〜l%、 Zr:0.01〜1.4%、 Nb:0.01〜1.4%ぉょびHf:0.01〜l%カら選択さ れる 1種以上を含む化学組成を有することを特徴とする溶接継手。
[0021] (c) 上記の (a)または (b)に記載の溶接継手において、母材および溶接金属力 Fe の一部に代えて、質量0 /0で、 B:0.0005〜0.3%、 Ca:0.0005〜0.02%および Mg:0.00 05〜0.02%から選択される 1種以上を含む化学組成を有することを特徴とする溶接 継手。
[0022] (d) 上記の (a)力 (c)までのいずれかに記載の溶接継手において、母材および溶 接金属が、 Feの一部に代えて、質量%で、 REM:0.005〜0.3%を含む化学組成を有 することを特徴とする溶接継手。
[0023] 上記の本発明の溶接継手は、 GTLプラント用の溶接継手として好適である。なお、 GTLとは、 "Gas To Liquid"の略称であり、天然ガスからの石油製品生産のことをいう
[0024] (e) 質量0 /0で、 C:0.01〜0.45%、 Si: 1%を超え 4%以下、 Mn:0.01〜2%、 P:0.05 %以下、 S:0.01%以下、 Cr:15〜35%、 Ni:40〜78%、 Al:0.005〜2%、 N:0.001〜0. 2%および Cu:0.015〜5.5%を含み、更に下記 (1)式を満足する Tiを含有し、残部は F eおよび不純物からなる化学組成を有することを特徴とする上記の (a)に係る溶接材料 を TIG溶接法により作製するために用いる溶接材料。 { (Si-0.01) /30} + O.OlCu≤Ti≤5 · ' ·(1)
但し、(1)式中の元素記号は、その元素の含有量 (質量%)を意味する。
[0025] (D 上記の (e)に記載の溶接材料において、 Feの一部に代えて、質量%で、 Co : 0.0 15〜5.5%、 Mo : 0.05〜10%、 Ta: 0.05〜5%、 W: 0.05〜5%、 V: 0.01〜l%、 Zr: 0.01 〜1.4%、Nb : 0.01〜1.4%ぉょびHf: 0.01〜l%カら選択されるl種以上を含む化学 組成を有することを特徴とする上記の (b)に係る溶接材料を TIG溶接法により作製する ために用いる溶接材料。
[0026] (g) 上記の (e)または (1)に記載の溶接材料において、 Feの一部に代えて、質量%で 、 B: 0.0005〜0.3%、。&: 0.0005〜0.02%ぉょび\1§: 0.0005〜0.02%カら選択される1 種以上を含む化学組成を有することを特徴とする上記の (c)に係る溶接材料を TIG溶 接法により作製するために用いる溶接材料。
[0027] (h) 上記の (e)力 (g)までのいずれかに記載の溶接材料において、 Feの一部に代 えて、質量%で、 REM : 0.005〜0.3%を含む化学組成を有することを特徴とする上記 の (d)に係る溶接材料を TIG溶接法により作製するために用いる溶接材料。
発明の効果
[0028] 本発明に係る溶接継手は、耐メタルダステイング性に優れて 、るので、石油精製や 石油化学プラントなどにおける加熱炉管、配管、或いは熱交換器管などに利用する ことができ、装置の溶接施工性や耐久性、安全性を大幅に向上させることができる。 また、本発明に係る溶接材料は、上記の溶接継手を TIG溶接法により作製するのに 最適である。
発明を実施するための最良の形態
[0029] 本発明にお ヽて、溶接継手の母材と溶接金属の化学組成を限定する理由は、下 記のとおりである。なお、以下の説明において、各元素の含有量の「%」表示は「質量
%」を意味する。
[0030] C : 0.01〜0.45%
Cは、溶接継手の母材および溶接金属の強度を高める作用を有する元素である。
C含有量が 0.01%未満では高温強度が不十分となる。しかし、その含有量が 0.45% を超えると、溶接継手の靭性が低下する。従って、 Cの含有量を 0.01〜0.45%とした。 Cの含有量は 0.02〜0.4%が好ましぐ最も好ましいのは 0.04〜0.4%である。
[0031] Si: 1%を超え 4%以下
Siは、金属材料の溶製時に脱酸作用を有する元素である。 Siは、また、溶接継手表 面の Cr酸ィ匕皮膜の下層に Si酸ィ匕皮膜を形成して溶接継手中への Cの侵入を抑制す るとともに溶接継手中の Cの活量を高めて、耐メタルダステイング性を大幅に向上さ せる作用も有する元素である。これらの効果は、 1%以下では発揮されない。しかし、 その含有量が 4%を超えると、母材の熱間加工性および溶接性の低下が著しくなる。 従って、 Siの含有量は 1%を超え 4%以下とした。 Siの含有量の下限は、 1.2%が望ま しぐ更に望ましいのは 1.5%である。
[0032] なお、 Nの含有量が 0.055%を超える場合には、母材の溶接性や熱間加工性の観 点から Siの含有量の上限を 2%とするのがよい。
[0033] Mn: 0.01〜2%
Mnは、不純物として含まれる Sによる母材の熱間加工時の脆性を抑制する効果を 有するとともに、溶製時の脱酸に有効な元素である。これらの効果を得るためには、 Mnは 0.01%以上含有させる必要がある。しかし、 Mnの含有量が 2%を超えると、母材 および溶接金属カゝらなる溶接継手中の Cの活量を低下させ、溶接継手表面における Crおよび A1の酸ィ匕皮膜の形成を阻害する。このため、雰囲気中からの Cの侵入が促 進されてメタルダステイングが発生しやすくなる。従って、 Mnの含有量は 0.01〜2%と した。 Mnの含有量は 0.05〜1.0%が好ましぐ最も好ましいのは 0.1〜0.8%である。
[0034] P : 0.05%以下
Pは、金属材料を溶製する際に原料など力も混入してくる不純物元素であり、耐食 性の低下を招き、熱間加工性、溶接性を劣化させる。従って、 Pの含有量は、可能な 限り低減することが望ましぐ 0.05%以下とした。 Pの含有量は、 0.03%以下が好ましく 、最も好ましいのは 0.02%以下である。
[0035] S : 0.01%以下
Sも金属材料を溶製する際に原料などから混入してくる不純物元素であり、耐食性 の低下を招き、熱間加工性、溶接性を劣化させる。従って、 Sの含有量は、可能な限 り低減することが望ましぐ 0.01%以下とした。 0.007%以下が好ましぐさらに好ましい のは 0.002%以下である。
[0036] Cr: 15〜35%
Crは、高温の使用環境において、溶接継手中に侵入した Cと結合して浸炭層の成 長を遅延する作用を有する。これによつて良好な耐メタルダステイング性が確保され る。この効果はその含有量が 15%以上の場合に発揮される。しかし、その含有量が 3 5%を超えると、靱性の低下、熱間加工性の劣化が生じて母材の製造が困難になる。 従って、 Crの含有量は 15〜35%とした。 Crの含有量は 18〜33%が望ましぐ更に望 ましいのは、 25.2〜33%である。
[0037] Ni:40〜78%
Niは、高温強度と組織安定性を維持し、 Crと共存することによって耐食性を高める 作用を有する元素である。また、 Niはメタルダステイングの発生を抑制する効果も有 する。これらの効果は Niの含有量が 40%以上の場合に発揮される力 78%を超えて もその効果は飽和する。従って、 Niの含有量は 40〜78%とした。 Niの含有量は、 48〜 78%が好ましぐ更に 50〜78%であれば一層好ましい。最も好ましいのは 56〜78% である。
[0038] Al: 0.005〜2%
A1は、金属材料の溶製時に脱酸作用を有する元素である。 A1は、溶接継手表面の Cr酸ィ匕皮膜の下層または溶接継手の最表面に A1酸ィ匕皮膜を形成し、 Cの金属材料 中への侵入を抑制するとともに金属材料中の Cの活量を高めて、耐メタルダスティン グ性を大幅に向上させる作用も有する。これらの効果を得るためには、 A1の含有量は 0.005%以上とする必要がある。しかし、その含有量力 を超えると、母材の熱間加 工性ゃ溶接性の低下が著しくなる。従って、 A1の含有量は 0.005〜2%とした。 A1の含 有量の上限は 1.5%以下であれば更に好ましい。 A1の含有量の下限が 0.01%、上限 力 .8%未満であれば一層好まし!/、。
[0039] N: 0.001〜0.2%
Nは、母材中の Cの活量を高めて、耐メタルダステイング性を向上させる作用を有す る元素である。この効果は、その含有量が 0.001%未満では不十分である。し力し、 N の含有量力 を超えると、 Crや A1の窒化物が多く形成されて、熱間加工性および 溶接性が著しく低下する。従って、 Nの含有量は 0.001〜0.2%とした。上限は 0.02% 未満とするのが望ましい。
[0040] なお、 Siが 2%以下の場合には、 Nの含有量の下限は 0.005%とするのが望ましい。
一方、耐メタルダステイング性を大きく高めるために、 Siの含有量を 1.5%以上とした場 合には、溶接性および熱間加工性の観点から Nの含有量の上限は 0.055%とするの がよい。この場合、 Nの含有量の上限は、 0.035%とすることが一層好ましぐ 0.025% とすれば極めて好ましい。
[0041] Cu: 0.015〜5.5%
Cuは、溶接継手中の Cの活量を高めて浸炭層の成長を抑制して、耐メタルダスティ ング性を向上させる元素である。この効果は、 0.015%以上の Cuを含有させることで 発揮される。しかし、 5.5%を超えて Cuを含有させると、母材及び溶接金属の靱性が 低下し、熱間加工性が著しく低下する。また溶接凝固割れ感受性を著しく増大させる 。従って、 Cuの含有量は 0.015〜5.5%とした。 Cuの含有量は 0.04〜4.8%が好ましぐ 更に好ましいのは 1.5〜4.2%である。
[0042] Ti:下記 (1)式を満足する量
{ (Si-0.01) /30} +0.01Cu≤Ti≤5 · ' ·(1)
但し、(1)式中の元素記号は、その元素の含有量 (質量%)を意味する。
[0043] Tiは、炭化物形成元素であり、浸炭層の成長を抑制して耐メタルダステイング性を 高め、高温強度を高める作用を有する元素である。 Tiには Siと高温にて化合物を形 成して溶接凝固割れ感受性を低減させる作用もある。
[0044] 溶接凝固割れ感受性を低減するため、 Tiの含有量は、 Siおよび Cuの含有量との関 係で、 {(Si-0.01)/30} +0.01Cu≤Tiとする必要がある。これは、 Siおよび Cu含有量が 小さくなるほど、凝固割れ感受性を低減するために必要な Tiの添加量は減少するか らである。 {(Si- 0.01)/30} +0.01Cu≤Tiの範囲の Tiを含有すれば、 Pによる溶接凝固 割れ感受性への悪影響も抑制することができる。
[0045] しかし、 Tiの含有量が 5%を超えると、 Si-Ti化合物の晶出形態をオーステナイト相と の共晶凝固組織ではなぐ化合物のみの晶出成長を誘発し、凝固割れ感受性を逆 に増大させる。し力も、 Si-Tiィ匕合物の晶出量が増大して熱間加工性の低下を招く。 T iの含有量の上限は 4%であるのが望ましい。以上により、 Tiは上記の (1)式を満足す る範囲で含有させることとした。
[0046] 本発明の溶接継手を構成する母材および溶接金属は、上記の化学組成を有し、残 部は Feおよび不純物力 なるものであればよい。また、耐メタルダステイング性を更に 高めることを目的として、 Feの一部に代えて、 Co : 0.015〜5.5%、 Mo : 0.05〜10%、 Ta : 0.05〜5%、 W: 0.05〜5%、 V: 0.01〜l%、 Zr: 0.01〜1.4%、 Nb : 0.01〜1.4%および Hf: 0.01〜l%力 選択される 1種以上を含有させてもよい。これは、下記の理由によ る。
[0047] Coは金属材料中の Cの活量を高め、浸炭層の成長を抑制して耐メタルダステイング 性を向上させる作用を有する。また、 Mo、 Ta、 W、 V、 Zr、 Nbおよび Hfはいずれも炭 化物形成元素であり、浸炭層の成長を抑制して耐メタルダステイング性を高める作用 を有する。これらの効果が顕著となるのは、それぞれ Coは 0.015%以上、 Mo、 Taおよ び Wは 0.05%以上、 V、 Zr、 Nbおよび Hfは 0.01%以上の場合である。し力し、これら の元素の含有量が多すぎると、熱間加工性、製造性、靱性および溶接性に悪影響を 及ぼす。
[0048] 従って、これらの元素から選択される 1種以上を含有させる場合の含有量は、 Coは 0.015〜5.5%、 Moは 0.05〜10%、 Taは 0.05〜5%、 Wは 0.05〜5%、 Vは 0.01〜1%、 Zrは 0.01〜1.4%、 Nbは 0.01〜1.4%、 Hfは 0.01〜1%とするのが望ましい。これらの元 素の含有量は、それぞれ Coは 0.02〜4.8%、 Moは 1〜10%、 Taおよび Wはいずれも 0 .5〜5%、 Zrおよび Nbはいずれも 0.01〜0.8%、 Vおよび Hfはいずれも 0.01〜0.6%と するのが望ましぐ更に、最も望ましいのは、それぞれ Coは 0.05〜4.2%、 Moは 1〜8 %、 Taおよび Wはいずれも 1〜3%、 Zrおよび Nbはいずれも 0.02〜0.8%、 Vは 0.01〜 0.3%, Hfは 0.02〜0.6ο/οである。
[0049] 本発明の溶接継手の母材および溶接金属は、熱間加工性向上を目的として、 Feの 一部に代えて、 B: 0.0005〜0.3%、 Ca: 0.0005〜0.02%および Mg: 0.0005〜0.02%か ら選択される 1種以上を含有させてもょ ヽ。
[0050] これらの元素は、いずれも熱間加工性を高める作用を有する元素である。この効果 が顕著となるのは、それぞれ 0.0005%以上含有させた場合である。しかし、 Bの含有 量が 0.3%を超えると、溶接継手が脆ィ匕するとともに融点が低下して熱間加工性と溶 接性の低下を招く。
[0051] Caまたは Mgの含有量が 0.02%を超えると、酸ィ匕物系介在物となって製品表面品質 の劣化および耐食性の低下を招く。従って、これらの元素力 選択される 1種以上を 含有させる場合の含有量は、それぞれ Bは 0.0005〜0.3%、 Caおよび Mgはいずれも 0 .0005〜0.02%とするのが好ましい。いずれの元素も 0.0005〜0.015%とするのがより 望ましぐ最も望ましいのは、 0.0005〜0.012%である。
[0052] 本発明の溶接継手の母材および溶接金属は、耐食性向上を目的として、 Feの一部 に代えて、 REM : 0.005〜0.3%を含有させてもよい。なお、 REMとは、 Scおよび Yとラン タノイド元素の合計 17元素の総称である。
[0053] REMは、使用環境において溶接継手表面に生成する Crおよび A1を含む酸ィ匕皮膜 の均一性を高めて密着性を向上させ、耐食性を高める作用を有する。この効果が顕 著となるのは、 0.005%以上の場合である。しかし、その含有量が 0.3%を超えると、粗 大な酸ィ匕物を形成して靱性および熱間加工性の低下を招くとともに、表面疵の発生 を増大させる。従って、 REMを添加する場合の含有量は、 0.005〜0.3%とするのがよ い。 REM含有量は 0.005〜0.1%がより好ましぐ最も好ましいのは 0.005〜0.07%であ る。
[0054] 以上、母材と溶接金属を構成する成分につ!ヽて説明した。母材と溶接金属は、とも に各成分同じ含有量の範囲内にある化学組成を有するが、これは、母材と溶接金属 の化学組成がまったく同一でなければならない、ということではない。母材と溶接金属 のそれぞれの各成分が上述の含有量の範囲内であればよい。例えば、母材の Cが 0. 10%で、溶接金属の Cが 0.15%であっても差し支えはない。
[0055] 本発明の溶接継手は、 TIG溶接、 MIG溶接等の種々の溶接方法で作製することが できる。溶接材料は、採用する溶接方法と溶接条件に応じて、前記の溶接金属の組 成が得られる組成のものを選べばよい。また、 TIG溶接を採用する場合には、前述の ( e)力 (h)に示すものを用いるのが望まし 、。
実施例
[0056] 表 1および表 2に示す化学組成の金属材料を高周波加熱真空炉を用いて溶製した 。各金属材料のインゴットを通常の方法で鍛造した後、 1200°Cで固溶化熱処理を施 し、突き合わせ部 1.5mmの 60° V開先加工が施された厚さ 12 mm、幅 50 mm、長さ 150 mmの拘束溶接割れ試験用試験片および厚さ 4mm、幅 10mm、長さ 20mmの耐メタル ダステイング性評価用試験片を作製した。
[0057] 得られた拘束溶接割れ試験用試験片を用いて、周囲を拘束溶接し、あらカゝじめ各 母材から作製した外径 1.2 mmの溶接材料 (溶接ワイヤー)を使用して、溶接電流 150 A、溶接電圧 15V、溶接速度 10 cm/minの条件で TIG溶接により多層盛り溶接を行つ た。ここで、溶接金属の化学組成は、 TIG溶接の場合には希釈はほとんど生じないた め、母材と同一である。
[0058] 次いで、拘束溶接割れ試験片の溶接ビード長に対する凝固割れ発生率を測定した 。その調査結果を表 1および表 2に併記する。また、各金属材料の耐メタルダスティン グ性評価用試験片を用いて、体積比で 26%H -60%CO-11.5%CO -2.5%H Oの
2 2 2 雰囲気中で 630°Cにて 1000時間保持する試験を行った。その後、試験片の表面堆積 物を除去し、超音波洗浄を施した後、光学顕微鏡にてピットの発生有無を調査した。 この結果も表 1および表 2に併記する。なお、耐メタルダステイング性は 200時間未満 でピットが発生しな 、ことを目標とする。
[0059] [表 1]
Figure imgf000013_0001
「*」は本発明で規定される範囲を外れるこ <! ::を意味する。
0061
Figure imgf000014_0001
しでも割れが生じたものを意味し、「〇」は、ビード内に割れが全く生じな力つたものを 意味する。また、「耐メタルダステイング性」の「X」は、 200時間未満でピットが発生し たもの、「△」は、 200時間以上 500時間未満でピットが発生したもの、「〇」は 500時間 以上 1000時間未満でピットが発生したもの、「◎」は 1000時間にてピットが発生しなか つたものを意味する。
[0062] 表 1および表 2に示すように、 Tiの含有量が本発明で規定される範囲を下回る No.l 〜6では、溶接ビード全長に渡って溶接凝固割れが発生しており、溶接性に劣ってい た。また、 Tiの含有量が本発明で規定される範囲を上回る No.29では、耐メタルダステ イング性だけでなぐ鍛造時に多数の凝固割れを生じ、溶接性も非常に劣っていた。 Tiの含有量は本発明で規定される範囲内である力 Cuを含有しない No.7では、溶接 凝固割れは発生しな力つた力 十分な耐メタルダステイング性を確保できな力つた。
[0063] Tiの含有量は本発明で規定される範囲内である力 Siおよび Cuの含有量が本発明 で規定される範囲を外れる No.33では、充分な耐メタルダステイング性を確保できな かった。また、 Tiの含有量は本発明で規定される範囲内である力 A1の含有量が本 発明で規定される範囲を超える No.34は、耐メタルダステイング性は確保されて!、た 力 溶接熱影響部に多数の割れが生じた。
[0064] これに対し、本発明で規定される条件を全て満たす No.8〜28および 30〜32、 35、 3 6では、拘束溶接割れ試験での溶接ビード内に溶接凝固割れが全く無ぐ溶接凝固 割れ感受性が極めて低減されており、しカゝも、耐メタルダステイング性に優れていた。 産業上の利用可能性
[0065] 本発明の溶接継手は、耐メタルダステイング性および溶接性に優れて ヽるので、石 油精製や石油化学プラントなどにおける加熱炉管、配管、或いは熱交換器管などに 利用することができ、装置の溶接施工性や耐久性、安全性を大幅に向上させること ができる。

Claims

請求の範囲
[1] 母材および溶接金属がともに、質量0 /0で、 C:0.01〜0.45%、 Si: 1%を超え 4%以下 、 Mn:0.01〜2%、 P: 0.05%以下、 S: 0.01%以下、 Cr:15〜35%、 Ni:40〜78%、 Al: 0.005〜2%、?^:0.001〜0.2%ぉょび01:0.015〜5.5%を含み、更に下記 (1)式を満足 する Tiを含有し、残部は Feおよび不純物からなる化学組成を有することを特徴とする 溶接継手。
{(Si-0.01)/30}+ O.OlCu≤Ti≤5 ·'·(1)
但し、(1)式中の元素記号は、その元素の含有量 (質量%)を意味する。
[2] 請求項 1に記載の溶接継手において、母材および溶接金属がともに、 Feの一部に 代えて、質量0 /oで、 Co:0.015〜5.5%、 Mo:0.05〜10%、 Ta:0.05〜5%、 W:0.05〜5 %、 V:0.01〜l%、 Zr:0.01〜1.4%、 Nb:0.01〜1.4%ぉょびHf:0.01〜l%カら選択さ れる 1種以上を含む化学組成を有することを特徴とする溶接継手。
[3] 請求項 1または 2に記載の溶接継手において、母材および溶接金属がともに、 Feの 一部に代えて、質量0 /0で、 B:0.0005〜0.3%、 Ca:0.0005〜0.02%および Mg:0.0005 〜0.02%から選択される 1種以上を含む化学組成を有することを特徴とする溶接継 手。
[4] 請求項 1から 3までのいずれか〖こ記載の溶接継手において、母材および溶接金属 がともに、 Feの一部に代えて、質量%で、 REM:0.005〜0.3%を含む化学組成を有す ることを特徴とする溶接継手。
[5] 質量0 /0で、 C:0.01〜0.45%、 Si: 1%を超え 4%以下、 Mn:0.01〜2%、 P:0.05%以 下、 S:0.01%以下、 Cr:15〜35%、 Ni:40〜78%、 Al:0.005〜2%、 N:0.001〜0.2% および Cu:0.015〜5.5%を含み、更に下記 (1)式を満足する Tiを含有し、残部は Feお よび不純物からなる化学組成を有することを特徴とする請求項 1に係る溶接継手を TI G溶接法により作製するために用いる溶接材料。
{(Si-0.01)/30}+ O.OlCu≤Ti≤5 ·'·(1)
但し、(1)式中の元素記号は、その元素の含有量 (質量%)を意味する。
[6] 請求項 5に記載の溶接材料において、 Feの一部に代えて、質量%で、 Co:0.015〜 5.5%、 Mo:0.05〜10%、 Ta:0.05〜5%、 W:0.05〜5%、 V:0.01〜l%、 Zr:0.01〜l. 4%、 Nb : 0.01〜1.4%および Hf: 0.01〜l%力 選択される 1種以上を含む化学組成 を有することを特徴とする請求項 2に係る溶接継手を TIG溶接法により作製するため に用いる溶接材料。
[7] 請求項 5または 6に記載の溶接材料にぉ 、て、 Feの一部に代えて、質量%で、 B: 0 .0005〜0.3%、。&: 0.0005〜0.02%ぉょび\1§: 0.0005〜0.02%カら選択される1種以 上を含む化学組成を有することを特徴とする請求項 3に係る溶接継手を TIG溶接法 により作製するために用いる溶接材料。
[8] 請求項 5から 7までのいずれかに記載の溶接材料において、 Feの一部に代えて、 質量%で、 REM: 0.005〜0.3%を含む化学組成を有することを特徴とする請求項 4に 係る溶接継手を TIG溶接法により作製するために用いる溶接材料。
PCT/JP2005/013353 2004-08-02 2005-07-21 溶接継手およびその溶接材料 WO2006013727A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP05762011.4A EP1780295B1 (en) 2004-08-02 2005-07-21 Weld joint and welding material thereof
DK05762011.4T DK1780295T3 (da) 2004-08-02 2005-07-21 Svejseforbindelse og svejsemateriale deraf
CA002575109A CA2575109A1 (en) 2004-08-02 2005-07-21 Weld joint and welding material thereof
US11/700,175 US20070187379A1 (en) 2004-08-02 2007-01-31 Weld joint and weld material thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-226110 2004-08-02
JP2004226110A JP4506958B2 (ja) 2004-08-02 2004-08-02 溶接継手およびその溶接材料

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/700,175 Continuation US20070187379A1 (en) 2004-08-02 2007-01-31 Weld joint and weld material thereof

Publications (1)

Publication Number Publication Date
WO2006013727A1 true WO2006013727A1 (ja) 2006-02-09

Family

ID=35787019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013353 WO2006013727A1 (ja) 2004-08-02 2005-07-21 溶接継手およびその溶接材料

Country Status (7)

Country Link
US (1) US20070187379A1 (ja)
EP (1) EP1780295B1 (ja)
JP (1) JP4506958B2 (ja)
CN (1) CN1993488A (ja)
CA (1) CA2575109A1 (ja)
DK (1) DK1780295T3 (ja)
WO (1) WO2006013727A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012105452A1 (ja) * 2011-02-01 2012-08-09 三菱重工業株式会社 Ni基高Cr合金溶接ワイヤ、被覆アーク溶接棒及び被覆アーク溶着金属
CN111220437A (zh) * 2020-01-20 2020-06-02 西安交通大学 一种焊接氢气孔缺陷试板的制作方法

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5629279B2 (ja) * 2005-08-08 2014-11-19 株式会社神戸製鋼所 耐食性に優れた溶接継手および溶接構造体
JP5216199B2 (ja) * 2005-08-08 2013-06-19 株式会社神戸製鋼所 耐すきま腐食性に優れた船舶用溶接継手および溶接構造体
JP4724685B2 (ja) * 2007-03-30 2011-07-13 三井造船株式会社 耐高温腐食Ni基合金溶接構造体および熱交換器
CN100451151C (zh) * 2007-04-20 2009-01-14 上海工程技术大学 稀土添加堆焊合金及在铝基复合材料制备中的堆焊工艺
DE102007055379A1 (de) * 2007-11-19 2009-05-20 Alstom Technology Ltd. Herstellungsprozess für einen Rotor
CN101945724A (zh) * 2007-12-17 2011-01-12 埃克森美孚研究工程公司 通过应变硬化的高强度镍合金焊接
JP4310664B1 (ja) 2008-01-25 2009-08-12 住友金属工業株式会社 溶接材料および溶接継手構造体
US10041153B2 (en) 2008-04-10 2018-08-07 Huntington Alloys Corporation Ultra supercritical boiler header alloy and method of preparation
CN101260487B (zh) * 2008-04-17 2010-06-02 攀钢集团攀枝花钢铁研究院有限公司 由含钛高铬镍合金制得的喷涂材料及其制备方法和用途
US20090321405A1 (en) * 2008-06-26 2009-12-31 Huntington Alloys Corporation Ni-Co-Cr High Strength and Corrosion Resistant Welding Product and Method of Preparation
CN101748344B (zh) * 2008-12-09 2011-11-23 山东远大模具材料有限公司 铁路轨道焊接钢及制造工艺
JP4839388B2 (ja) * 2009-03-31 2011-12-21 株式会社日立製作所 溶接材料および溶接ロータ
JP5284252B2 (ja) * 2009-12-10 2013-09-11 株式会社神戸製鋼所 耐割れ性に優れたNi−Cr−Fe合金系溶接金属
US9770788B2 (en) 2010-02-10 2017-09-26 Hobart Brothers Company Aluminum alloy welding wire
MX2012009187A (es) * 2010-02-10 2012-08-31 Hobart Brothers Co Alambre de soldadura de aleacion de aluminio.
US10654135B2 (en) 2010-02-10 2020-05-19 Illinois Tool Works Inc. Aluminum alloy welding wire
CN102233494B (zh) * 2010-04-27 2012-12-05 昆山京群焊材科技有限公司 不锈钢带极电渣堆焊焊带及焊剂
JP4835770B1 (ja) * 2010-06-07 2011-12-14 住友金属工業株式会社 オーステナイト系耐熱鋼用溶接材料ならびにそれを用いてなる溶接金属および溶接継手
JP4835771B1 (ja) * 2010-06-14 2011-12-14 住友金属工業株式会社 Ni基耐熱合金用溶接材料ならびにそれを用いてなる溶接金属および溶接継手
JP5310655B2 (ja) * 2010-06-17 2013-10-09 新日鐵住金株式会社 溶接材料ならびに溶接継手およびその製造方法
JP5895370B2 (ja) * 2010-08-30 2016-03-30 大同特殊鋼株式会社 パネル用Cu電極保護膜用NiCu合金ターゲット材及び積層膜
CN101948994B (zh) * 2010-09-17 2015-06-17 江西恒大高新技术股份有限公司 一种生物质锅炉专用热喷涂丝材
JP5606994B2 (ja) 2010-09-30 2014-10-15 株式会社神戸製鋼所 肉盛溶接材料及び肉盛溶接金属が溶接された機械部品
ES2633019T3 (es) * 2011-05-13 2017-09-18 Nippon Steel & Sumitomo Metal Corporation Material de soldadura y unión de soldadura
TW201318757A (zh) * 2011-11-01 2013-05-16 Sorex Welding Co Ltd 不鏽鋼帶極電渣堆焊材料
CN102581512B (zh) * 2012-03-06 2016-04-20 中国科学院金属研究所 一种镍基焊缝点状缺陷控制方法
CN102581513B (zh) * 2012-03-06 2015-01-14 中国科学院金属研究所 一种用于核电站核岛主设备的镍基焊丝
US9029733B2 (en) * 2012-04-13 2015-05-12 Hobart Brothers Company Systems and methods for tubular welding wire
CN102732771B (zh) * 2012-06-20 2014-04-09 内蒙古包钢钢联股份有限公司 一种制作高尔夫球杆球头的铁合金材料
US9174309B2 (en) * 2012-07-24 2015-11-03 General Electric Company Turbine component and a process of fabricating a turbine component
JP6107170B2 (ja) * 2013-01-25 2017-04-05 新日鐵住金株式会社 オーステナイト系耐熱鋼用溶接材料ならびにそれを用いて製造される溶接金属及び溶接継手
CN103962748B (zh) * 2013-01-25 2016-04-27 宝山钢铁股份有限公司 耐热高温镍基合金焊丝及焊接方法
JP6257193B2 (ja) * 2013-07-12 2018-01-10 株式会社神戸製鋼所 肉盛溶接用フラックス入りワイヤ
CN103789576B (zh) * 2014-01-15 2016-03-02 常州大学 一种高晶界强度镍基合金及其制备方法
BR112016012184B1 (pt) * 2014-02-13 2021-04-27 Vdm Metals International Gmbh Processo para produção de uma liga livre de titânio, e seu uso
CA2938190C (en) 2014-02-26 2018-08-21 Nippon Steel & Sumitomo Metal Corporation Welded joint
JP6398277B2 (ja) * 2014-04-14 2018-10-03 新日鐵住金株式会社 Ni基耐熱合金溶接継手の製造方法
JP6323188B2 (ja) * 2014-06-11 2018-05-16 新日鐵住金株式会社 Ni基耐熱合金溶接継手の製造方法
US10421159B2 (en) * 2015-02-25 2019-09-24 Hobart Brothers Llc Systems and methods for additive manufacturing using aluminum metal-cored wire
US11370068B2 (en) * 2015-02-25 2022-06-28 Hobart Brothers Llc Systems and methods for additive manufacturing using aluminum metal-cored wire
CN104801891A (zh) * 2015-04-24 2015-07-29 柳州金茂机械有限公司 一种焊接工艺用焊丝的制造方法
CN105033501B (zh) * 2015-08-03 2017-10-27 合肥通用机械研究院 一种乙烯裂解炉管用微合金化35Cr45NiNb焊丝
CN105039827B (zh) * 2015-08-03 2017-09-29 合肥通用机械研究院 一种乙烯裂解炉管用微合金化35Cr45NiNb合金钢
US10252378B2 (en) * 2015-12-10 2019-04-09 Caterpillar Inc. Hybrid laser cladding composition and component therefrom
RU2632728C2 (ru) * 2016-02-10 2017-10-09 Байдуганов Александр Меркурьевич Жаропрочный сплав
RU2653376C1 (ru) * 2017-12-05 2018-05-08 Юлия Алексеевна Щепочкина Коррозионностойкий сплав
JP6418365B1 (ja) 2018-03-27 2018-11-07 新日鐵住金株式会社 サブマージアーク溶接用Ni基合金ワイヤ、及び溶接継手の製造方法
US10981254B2 (en) 2018-03-27 2021-04-20 Nippon Steel Corporation Ni-based alloy core wire for covered electrode, covered electrode, and method of manufacturing covered electrode
JP2021525310A (ja) * 2018-05-23 2021-09-24 エービー サンドビック マテリアルズ テクノロジー 新しいオーステナイト合金
EP3797180A1 (en) * 2018-05-23 2021-03-31 AB Sandvik Materials Technology New austenitic alloy
CN109848609A (zh) * 2019-04-11 2019-06-07 华能国际电力股份有限公司 一种低膨胀性镍基焊丝
CN110551951B (zh) * 2019-09-27 2020-11-13 常州长海焊材有限公司 一种超低碳耐高温焊丝及其制备方法
CN111118349B (zh) * 2020-01-15 2021-03-30 阳江职业技术学院 陶瓷相镍基合金复合涂层的反应钎涂工艺
CN113020839A (zh) * 2021-03-18 2021-06-25 天津市金桥焊材集团股份有限公司 一种新型工艺性优良的Ni-Cr-Mo型镍基焊丝

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003073763A (ja) * 2001-06-19 2003-03-12 Sumitomo Metal Ind Ltd 耐メタルダスティング性を有する金属材料
JP2004197150A (ja) * 2002-12-18 2004-07-15 Sumitomo Metal Ind Ltd 高温強度に優れた耐メタルダスティング金属材料

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3495977A (en) * 1965-09-30 1970-02-17 Armco Steel Corp Stainless steel resistant to stress corrosion cracking
JPS5456018A (en) * 1977-10-12 1979-05-04 Sumitomo Metal Ind Ltd Austenitic steel with superior oxidation resistance for high temperature use
US4911886A (en) * 1988-03-17 1990-03-27 Allegheny Ludlum Corporation Austentitic stainless steel
US5378427A (en) * 1991-03-13 1995-01-03 Sumitomo Metal Industries, Ltd. Corrosion-resistant alloy heat transfer tubes for heat-recovery boilers
ATE123819T1 (de) * 1991-12-20 1995-06-15 Inco Alloys Ltd Gegen hohe temperatur beständige ni-cr-legierung.
US5824264A (en) * 1994-10-25 1998-10-20 Sumitomo Metal Industries, Ltd. High-temperature stainless steel and method for its production
CA2396578C (en) * 2000-11-16 2005-07-12 Sumitomo Metal Industries, Ltd. Ni-base heat-resistant alloy and weld joint thereof
CA2556128A1 (en) * 2004-02-12 2005-08-25 Sumitomo Metal Industries, Ltd. Metal tube for use in a carburizing gas atmosphere

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003073763A (ja) * 2001-06-19 2003-03-12 Sumitomo Metal Ind Ltd 耐メタルダスティング性を有する金属材料
JP2004197150A (ja) * 2002-12-18 2004-07-15 Sumitomo Metal Ind Ltd 高温強度に優れた耐メタルダスティング金属材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1780295A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012105452A1 (ja) * 2011-02-01 2012-08-09 三菱重工業株式会社 Ni基高Cr合金溶接ワイヤ、被覆アーク溶接棒及び被覆アーク溶着金属
JP5270043B2 (ja) * 2011-02-01 2013-08-21 三菱重工業株式会社 Ni基高Cr合金溶接ワイヤ、被覆アーク溶接棒及び被覆アーク溶着金属
US10675720B2 (en) 2011-02-01 2020-06-09 Mitsubishi Heavy Industries, Ltd. High Cr Ni-based alloy welding wire, shielded metal arc welding rod, and weld metal formed by shielded metal arc welding
CN111220437A (zh) * 2020-01-20 2020-06-02 西安交通大学 一种焊接氢气孔缺陷试板的制作方法

Also Published As

Publication number Publication date
EP1780295B1 (en) 2013-09-11
JP4506958B2 (ja) 2010-07-21
EP1780295A4 (en) 2012-04-04
US20070187379A1 (en) 2007-08-16
CN1993488A (zh) 2007-07-04
DK1780295T3 (da) 2013-10-07
CA2575109A1 (en) 2006-02-09
JP2006045597A (ja) 2006-02-16
EP1780295A1 (en) 2007-05-02

Similar Documents

Publication Publication Date Title
JP4506958B2 (ja) 溶接継手およびその溶接材料
CA2711415C (en) Carburization resistant metal material
JP6274303B2 (ja) 溶接継手
KR100473039B1 (ko) 용접성 및 고온강도가 우수한 니켈기 내열 합금, 이를 이용한 용접 조인트, 및 이를 이용한 에틸렌 플랜트용 분해로 또는 개질로에 사용하는 관
JP5177330B1 (ja) 耐浸炭性金属材料
WO2002103072A1 (en) Metal material having good resistance to metal dusting
WO2016204005A1 (ja) 高Cr系オーステナイトステンレス鋼
JP2014084493A (ja) 溶接性に優れる被覆管用オーステナイト系Fe−Ni−Cr合金
JP4154885B2 (ja) Ni基耐熱合金からなる溶接継手
WO1998022255A1 (fr) Fil-electrode pour le soudage de l&#39;acier a haute teneur en chrome
JP4513466B2 (ja) 溶接継手および溶接材料
JP2002331387A (ja) 高靱性マルテンサイト系ステンレス鋼用溶接ワイヤ
JP2000015447A (ja) マルテンサイト系ステンレス鋼の溶接方法
KR20180083694A (ko) 이종모재 접합용 용접 금속 및 이를 이용한 용접 방법
JP5310655B2 (ja) 溶接材料ならびに溶接継手およびその製造方法
JPH11277293A (ja) 耐再熱割れ性に優れる溶接材料および溶接継手
JP5609735B2 (ja) オーステナイト系ステンレス鋼の溶接継手
JP2019136756A (ja) 9Cr−1Mo鋼溶接用TIGワイヤ
JPH09295185A (ja) 高Cr鋼の溶接方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2575109

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 11700175

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005762011

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580026255.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005762011

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11700175

Country of ref document: US