WO2006012838A2 - Verfahren zur herstellung von halbleiterchips in dünnfilmtechnik und halbleiterchip in dünnfilmtechnik - Google Patents

Verfahren zur herstellung von halbleiterchips in dünnfilmtechnik und halbleiterchip in dünnfilmtechnik Download PDF

Info

Publication number
WO2006012838A2
WO2006012838A2 PCT/DE2005/001276 DE2005001276W WO2006012838A2 WO 2006012838 A2 WO2006012838 A2 WO 2006012838A2 DE 2005001276 W DE2005001276 W DE 2005001276W WO 2006012838 A2 WO2006012838 A2 WO 2006012838A2
Authority
WO
WIPO (PCT)
Prior art keywords
electrically conductive
thin
layer
film
film semiconductor
Prior art date
Application number
PCT/DE2005/001276
Other languages
English (en)
French (fr)
Other versions
WO2006012838A3 (de
Inventor
Berthold Hahn
Volker HÄRLE
Stephan Kaiser
Andreas PLÖSSL
Original Assignee
Osram Opto Semiconductors Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102004036962A external-priority patent/DE102004036962A1/de
Application filed by Osram Opto Semiconductors Gmbh filed Critical Osram Opto Semiconductors Gmbh
Priority to EP05770659.0A priority Critical patent/EP1774599B1/de
Priority to KR1020077004553A priority patent/KR101158601B1/ko
Priority to JP2007522909A priority patent/JP5305655B2/ja
Publication of WO2006012838A2 publication Critical patent/WO2006012838A2/de
Publication of WO2006012838A3 publication Critical patent/WO2006012838A3/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/6835Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used as a support during build up manufacturing of active devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68354Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to support diced chips prior to mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68368Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used in a transfer process involving at least two transfer steps, i.e. including an intermediate handle substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05639Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05644Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/3201Structure
    • H01L2224/32012Structure relative to the bonding area, e.g. bond pad
    • H01L2224/32014Structure relative to the bonding area, e.g. bond pad the layer connector being smaller than the bonding area, e.g. bond pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3185Partial encapsulation or coating the coating covering also the sidewalls of the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01025Manganese [Mn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01032Germanium [Ge]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01042Molybdenum [Mo]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01068Erbium [Er]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01073Tantalum [Ta]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • H01L2924/12036PN diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the invention relates to a method for the production of semiconductor chips in thin-film technology and to a semiconductor chip in thin-film technology (thin-film semiconductor chip).
  • Thin-film semiconductor chips are known, for example, from Druck ⁇ EP 0 905 797 A2.
  • an active layer sequence which is suitable for emitting photons is grown on a growth substrate. Since the growth substrate usually absorbs a portion of the photons generated by the active layer sequence, the active layer sequence is separated from the growth substrate and applied to another substrate in order to increase the luminous efficacy. Between the carrier and the active layer sequence is a reflective layer. The connection between active layer sequence and carrier is made by gluing or soldering. Usually, rigid carriers such as gallium arsenide or germanium wafers are used. However, these have the disadvantage that the carrier thickness can not be arbitrarily reduced due to the risk of breakage. In particular, it is difficult to realize carrier thicknesses below 100 .mu.m with conventional methods. This represents a hurdle for limiting the overall height of thin-film semiconductor chips.
  • a method according to the invention for the production of thin-film semiconductor chips comprises the steps:
  • the contact material layer for example by means of mask technology, can also be applied laterally structured and subsequently only the underlying active layer sequence can be structured in such a way that one contact material layer is located on one active layer stack.
  • the contact material layer preferably contains a metal.
  • This method offers the advantage that the rear sides of the thin-film semiconductor chips provided with the contact material layer are electrically conductively connected to one another via the flexible film and consequently each thin-film semiconductor chip is opposite to the contact material layer by means of a respective further contact ⁇ ing front can be easily tested on wafer level.
  • the use of the electrically conductive flexible film as a subcarrier layer offers the advantage that due to its high ductility in the case of impurities (eg in the form of particles) between the film and the layer composite stack only a small parasitic radius arises around the contamination. A loss in the yield due to impurities can thus be advantageously reduced. Furthermore, the use of a flexible film as a carrier allows smaller heights of the thin-film semiconductor chips, since the thickness of a flexible film may be less than that of rigid carriers, in which the risk of breakage with Verrin ⁇ thickness decreases usually increases considerably.
  • the small overall height of the thin-film semiconductor chips makes it easier to place additional elements within a component housing on the thin-film semiconductor chip later.
  • These are phosphors which convert the wavelength of a radiation emitted by the thin-film semiconductor chip.
  • Such so-called wavelength conversion materials are described, for example, in WO 98/12757 A1, the disclosure content of which is hereby incorporated by reference.
  • beam-shaping optical elements such as lenses, directly on the thin-film semiconductor chip.
  • thin-film light-emitting diode chips By means of the method according to the invention, for example, thin-film light-emitting diode chips ("thin-film LED chips" for short) can be produced.
  • a thin-film LED chip is characterized in particular by the following characteristic features: on a first main surface of an epitaxial layer sequence, which can generate electromagnetic radiation, which is turned toward a carrier element, a reflective layer is applied or formed which forms at least a part of the reflected in the epitaxial layer sequence elektro ⁇ magnetic radiation reflected back into this; and the epitaxial layer sequence has a thickness in the range of 20 ⁇ m or less, in particular in the range of 10 ⁇ m.
  • the epitaxial layer sequence contains at least one semiconductor layer having at least one surface which has an intermixing structure which, in the ideal case, leads to an approximately ergodic distribution of the light in the epitaxial epitaxial layer sequence, ie it has a possibly ergodically stochastic scattering behavior.
  • a basic principle of a thin-film LED is, for example, in I. Schnitzer et al. , Appl. Phys. Lett. 63 (16), 18 October 1993, 2174 - 2176, the disclosure content of which is hereby incorporated by reference.
  • a thin-film LED chip is to a good approximation a Lambert surface radiator.
  • such a thin-film semiconductor chip is preferably based on nitride compound semiconductor material.
  • nitride compound semiconductors in the present context means that the active epitaxial layer sequence or at least one of these is a nitride III / V
  • Compound semiconductor material preferably Al n Ga m ini- n _ m N environmentally holds, where 0 ⁇ n ⁇ 1, O ⁇ m ⁇ l and n + m is not ⁇ 1.
  • this material need have a mathematically exact composition according to the above Zu ⁇ Have formula. Rather, it may have one or more dopants and additional ingredients which properties the characteristic physical Eigen ⁇ one of Al n Ga m ini- n. m N material essentially does not change.
  • the above formula contains only the essential constituents of the crystal lattice (Al, Ga, In, N), even if these may be partially replaced by small amounts of other substances.
  • the flexible, electrically conductive foil is a carbon foil, as known, for example, from US Pat. Nos. 5,695,847 and 5,849,130, the disclosure content of which is hereby incorporated by reference is recorded.
  • This carbon film is characterized by a low price advantageously especially by a high thermal and electrical conductivity, as well as by a small thickness.
  • the carbon film also has the advantage that it can be connected to the composite layer, comprising the epitaxial layer sequence and the contact material layer, by a relatively small application of pressure and temperature. This reduces the risk of damage to the active Schicht ⁇ stack during the connecting step.
  • thin-film semiconductor chips which contain a carbon foil as the lowermost layer, can simply be conventionally installed in a housing and electrically contacted.
  • the high thermal conductivity of the carbon foil advantageously makes it possible to effectively dissipate the heat which arises during operation of a thin-film semiconductor chip.
  • the electrically conductive film preferably has a thickness of less than 100 ⁇ m. Since the film is flexible in contrast to a rigid carrier, such low carrier thicknesses can be realized.
  • a passivation layer for example silicon nitride, can be applied at least to parts of the side surfaces of the layer composite stacks which are released during patterning contains.
  • the passivation layer can also fulfill other tasks, such as electrical insulation, for example.
  • an electrically conductive reinforcing layer e.g. contains a metal, applied auf ⁇ on the reflective er ⁇ electrically conductive contact material layer. This serves, on the one hand, to stabilize the active layer sequence and, on the other hand, also enables later electrical contacting of the thin-film semiconductor chips via the rear side.
  • a rigid auxiliary carrier can be connected to the flexible, electrically conductive film. This additional rigid auxiliary carrier stiffens the composite layer so that it can be introduced into standard test systems or process systems and processed at the wafer level.
  • a carbon film as a connecting layer between the layer composite and the rigid auxiliary carrier offers the particular advantage that it is compatible with many process technologies. Thus, unlike, for example, adhesive layers under vacuum, it does not emit any interfering gaseous substances to the environment.
  • electrically conductive further contact layers can be applied to the side of the active layer stack in a conventional manner, which was previously located on the growth substrate.
  • These further electrically conductive contact layers contain, for example, a metal.
  • These further contact layers each represent the second electrical contact point of each thin-film semiconductor chip, on which, for example, a bonding wire can be applied.
  • an intermediate carrier can preferably be applied to the electrically conductive further contact points and the flexible, electrically conductive film can be removed.
  • the thin-film semiconductor chips are then fixed separately from one another on the intermediate carrier, from which they can be easily, e.g. can be removed and built with conventional pick-and-place machines.
  • the subcarrier may be another foil, e.g. a sawing foil act. On such a sawing foil, semiconductor chips in the wafer composite are, for example, fi xed by means of a wafer saw prior to singulation.
  • the side surfaces of the subsequent thin-film semiconductor chips can also be provided over the whole area with the passivation layer. This is expediently carried out after the electrically conductive film is bonded to the rigid auxiliary carrier and the growth substrate is detached.
  • the rigid auxiliary carrier then stabilizes the layer composite in such a way that it can be provided with the passivation layer in normal processing systems.
  • a thin-film semiconductor chip according to the invention includes: an active layer sequence which is suitable for generating electromagnetic radiation,
  • a flexible, electrically conductive film as a carrier layer on the electrically conductive, reflective contact material layer.
  • Such a thin-film semiconductor chip has the advantage that it has a low overall height, preferably less than 150 ⁇ m and in particular less than 100 ⁇ m. Therefore, it can be installed without er ⁇ increased risk of breakage in a housing. Due to the low overall height, such a thin-film semiconductor chip is particularly suitable for being installed together with wavelength conversion material in a housing of very small dimensions.
  • Such a thin-film semiconductor chip can be contacted electrically at the rear simply via the flexible, electrically conductive foil.
  • the flexible, electrically conductive foil is a carbon foil. This is characterized by particularly high elekt ⁇ witz and thermal conductivities and a low price.
  • Both the reflective, electrically conductive contact material layer and the electrically conductive reinforcing layer preferably contain a metal.
  • the side surfaces of the thin-film semiconductor chip according to the invention are preferably provided with a passivation layer over the whole area.
  • a thin-film semiconductor chip is particularly suitable for being electrically contacted without a bonding wire.
  • an electrical connection conductor which is located, for example, on a chip carrier or itself as a chip carrier (for example, a leadframe).
  • the thin-film semiconductor chip can then be contacted by an electrically conductive layer applied over the entire surface or in a structured manner, which expediently enables a good transmission of the electromagnetic radiation emitted by the thin-film semiconductor chip.
  • FIG. 4 shows a schematic sectional illustration of a thin-film semiconductor chip according to the invention, which is applied to a chip carrier and electrically contacted.
  • an active layer sequence 20 is applied to a growth substrate 3 in a first step (FIG. 1a). This is done in a preferred embodiment, for example, by epitaxial beautiful growth of several different layers of nitride III / V compound semiconductor material, preferably from the
  • Such an active layer sequence which is suitable for generating electromagnetic radiation may have, for example, a conventional pn junction, a double heterostructure, a single quantum well structure (SQW structure) or a multiple quantum well structure (MQW structure).
  • SQW structure single quantum well structure
  • MQW structure multiple quantum well structure
  • an electrical conductive reflective contact material layer 40 is formed on the active layer sequence 20 (FIG. 1b).
  • this contact material layer 40 has the task of reflecting radiation which is emitted by the active layer sequence 20 in the direction of this contact material layer 40 to the emission side of the thin-film semiconductor chip 1 opposite to it, in order to remove the radiation output increase booty.
  • the contact material layer 40 can contain a metallic material over its entire surface, such as Ag, Al or Au, which can be vapor-deposited.
  • dielectric reflectors can be used which consist of a plurality of dielectric layers with integrated electrical contacts. Suitable reflectors are known, for example, from WO 01/82384, the disclosure content of which is hereby incorporated by reference.
  • the contact material layer 40 functions as a back-side contact material layer for the active layer sequence 20.
  • the active layer sequence 20 and the reflective, electrically conductive contact material layer 40 together have, for example, a thickness of 8 ⁇ m.
  • active layer stacks 2 each having an electrically conductive re-inflecting contact material layer 4, are formed from the layer composite with active layer sequence 20 and contact material layer 40 on the growth substrate 1 (FIG. 1c). This is done for example by wet chemical etching or by dry etching.
  • the contact material layer 40 may also be laterally patterned, e.g. are applied to the active layer sequence 20 by a mask, and the active layer sequence 20 is subsequently patterned into active layer stacks 2 such that an electrically conductive reflective contact metal layer 4 is located on an active layer stack 2.
  • a flexible electrically conductive film 6 is applied to the electrically conductive reflective contact material layers 4.
  • This may be, for example, a carbon foil having a thickness of between 30 and 80 ⁇ m.
  • the carbon film has the advantage that it can be (about 1 bar) connected at temperatures ⁇ 150 0 C and under relatively low pressure to the composite layer stacks 21st
  • the carbon foil can be applied to a holder. So that the carbon foil does not also bond with this holder during the process, it is possible, for example, to use a non-stick film, for B. Teflon, between the holder and carbon foil were ⁇ introduced. Of course, during the joining process, such a non-stick film can also be used at other locations where there is a risk that the carbon fiber may unintentionally be connected to other surfaces.
  • a non-stick film for B. Teflon
  • the growth substrate 1 is removed, on which the active layer sequence 20 was grown, for B. by a laser lift-off process, as spielmud described in WO 98/14986.
  • the active layer stacks 2 with a rear-side reflective electrically conductive contacting layer 4 are now next to one another on the flexible, electrically conductive film 6.
  • a passivation layer 5 may be at least partially formed on the side surfaces of the layer composite stacks 21, as in FIG. shown. This may consist, for example, of silicon nitride, aluminum oxide, aluminum nitride or silicon oxynitride.
  • the thin-film semiconductor chips 1 can be singulated by separating the film (6) by conventional methods such as laser cutting, water-jet cutting or sawing.
  • Thin-film semiconductor chips 1, which are provided with a carbon film 6 on the back, can be fastened in a housing simply by application of pressure and temperature by means of the carbon foil 6.
  • such a thin-film semiconductor chip 1 can be connected to a housing by gluing.
  • the first three process steps, production of the active layer sequence 20, application of an electrically conductive contact material layer 40 and structuring of these two layers into layer composite stacks 21 are carried out.
  • a further electrically conductive reinforcing layer 7 is now applied to the contact material layer 4 of the layer composite stack 21 so that it now contains at least three layers.
  • the electrically conductive reinforcing layer 7 can consist, for example, of a metallic material that is applied galvanically.
  • the thickness of the active layer sequence 2 including the reflecting electrically conductive contact material layer 4 and the metallic reinforcing material layer 7 is z. B. between 20 microns and 25 microns.
  • a passivation layer 5 is formed on exposed side surfaces of the active layer stacks 2 and a carbon foil 6 is applied to the metallic reinforcing layers 7 assigned to the layer composite stacks 2 (FIG. 2 a).
  • This rigid subcarrier 8 allows for simplified handling of the layer composite and further processing of the layer composite in conventional LED production systems.
  • the rigid submount is made of an electrically conductive material, e.g. Molybdenum tantalum or tungsten, the later thin-film semiconductor chips 1 can still be electrically contacted on the back side at the level of the wafer. This makes it possible to test all thin-film semiconductor chips 1 produced on a wafer in conventional measuring devices.
  • the growth substrate 3 is removed again (FIG. 2 b) and electrically conductive metallic contact points 9 are formed on the front sides of the active layer stacks 2, which were previously connected to the growth substrate 1.
  • These may contain, for example, Ag, Au or Al that is vapor-deposited.
  • all thin-film semiconductor chips 1, in each case consisting of active layer stack 2, electrical contact material layer 4, reinforcing layer 7, carbon foil 6 and contact point 9, can be tested in conventional wafer-composite test systems.
  • an intermediate carrier 10 can now be applied to the front sides of the electrically conductive contact points 9. This may be a film, as it is also used in sawing wafers.
  • the thin-film semiconductor chips 1 can again be removed from the rigid auxiliary carrier 8 and at the same time be singulated.
  • the individual thin-film semiconductor chips 1 on the intermediate carrier 10 are now ready for conventional further processing, such as, for example, mounting on leadframes and / or housing bodies.
  • layer composite stacks 21 are produced in the wafer composite, each of which contains an active layer stack 2 with a reflective electrically conductive contact material layer 4, on which optionally a further electrically conductive reinforcing layer 7 is located. These layer composite stacks 21 are located on after the removal of the growth substrate 3 on the electrically conductive film 6, which may be connected to a star ⁇ ren subcarrier 8.
  • the passivation layer 5 can also be applied over the entire area on the sides of the subsequent thin-film semiconductor chips 1 consisting of the active layer stacks 2, the reflective electrically conductive contact material layer 4 and the metallic reinforcement layer 7.
  • the passivation layer 5 is expediently applied after the layer composite consisting of active layer stack 2, reflective electrically conductive contact material layer 4 and optional metallic reinforcement layer 7 has been connected to a rigid auxiliary carrier 8 via the carbon foil 6.
  • the thin-film semiconductor chips 1 can then be singulated by selective removal of the carbon foil 6.
  • the thin-film semiconductor chip 1 is therefore present with complete lateral isolation.
  • An additional passivation step in the later design can thus be dispensed with. Such has usually to be carried out in the case of thin-film semiconductor chips 1 which are produced by standard methods.
  • FIG. 3b shows thin-film semiconductor chips 1 with a laterally entire passivation layer 5 on a flexible electrically conductive film 6, which are connected to a rigid, stable auxiliary carrier 8. If the rigid subcarrier 8 is made of an electrically conductive material, e.g. Molyb ⁇ Denmark, Figure 3b again shows the state in which the later thin-film semiconductor chips 1 of this embodiment can be tested simultane- ously tig.
  • an electrically conductive material e.g. Molyb ⁇ Denmark
  • FIG. 4 shows a thin-film semiconductor chip 1, which consists of an active layer stack 2 on which a reflective electrically conductive contact material layer 4 is located on the rear side, which in turn is reinforced by a metallic reinforcing layer 7.
  • the sides of the thin-film semiconductor chips 1 are in this case covered over the whole area with a passivation layer 5.
  • Such a thin-film semiconductor chip 1 is suitable, in particular, for being electrically contacted after application to a suitable chip carrier 11, without a bonding wire.
  • the thin-film semiconductor chip 1 is applied to a suitable chip carrier 11, such as a printed circuit board.
  • a suitable chip carrier 11 such as a printed circuit board.
  • the thin-film semiconductor chips are positioned on the electrically conductive structures 12 of the chip carrier 11 and then electrically contacted by full-surface application of an electrically conductive layer 13 via the thin-film semiconductor chip 1 and onto the surface of the chip carrier 11.
  • this electrically conductive layer 13 consists of a material which has a high transmission coefficient for the electromagnetic radiation emitted by the thin-film semiconductor chip, such as, for. Indium tin oxide (ITO) or zinc oxide.
  • ITO Indium tin oxide

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Devices (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

Zur Herstellung von Halbleiterchips (1) in Dünnfilmtechnik wird eine aktive Schichtenfolge auf einem Wachstumssubstrat (3) aufgebracht auf der anschließend eine strukturierte re­flektierende elektrisch leitfähige Kontaktmaterialschicht (4) ausgebildet wird. Dann wird die aktive Schichtenfolge zu ak­tiven Schichtstapeln (2) strukturiert, so dass sich auf jedem aktiven Schichtstapel (2) eine reflektierende elektrisch leitfähige Kontaktmaterialschicht (4) befindet. Anschließend wird als Hilfsträgerschicht eine flexible elektrisch leitfä­hige Folie (6) auf die Kontaktmaterialschichten (4) aufge­bracht und das Wachstumssubstrat entfernt.

Description

Beschreibung
Verfahren zur Herstellung von Halbleiterchips in Dünnfilm¬ technik und Halbleiterchip in Dünnfilmtechnik
Die Erfindung betrifft ein Verfahren zur Herstellung von Halbleiterchips in Dünnfilmtechnik und einen Halbleiterchip in Dünnfilmtechnik (Dünnfilm-Halbleiterchip) .
Dünnfilm-Halbleiterchips sind beispielsweise aus der Druck¬ schrift EP 0 905 797 A2 bekannt. Zur Herstellung derartiger Dünnfilm-Halbleiterchips wird eine aktive Schichtenfolge, die geeignet ist, Photonen zu emittieren, auf einem Wachstumssub¬ strat aufgewachsen. Da das Wachstumssubstrat meist einen Teil der von der aktiven Schichtenfolge erzeugten Photonen absor¬ biert, wird zur Erhöhung der Lichtausbeute die aktive Schich¬ tenfolge vom Wachstumssubstrat getrennt und auf einen anderen Träger aufgebracht. Zwischen dem Träger und der aktiven Schichtenfolge befindet sich eine reflektierende Schicht. Die Verbindung zwischen aktiver Schichtenfolge und Träger wird durch Kleben oder Löten hergestellt. Üblicherweise werden starre Träger, wie Galliumarsenid- oder Germanium-Wafer ver¬ wendet. Diese haben jedoch den Nachteil, dass die Trägerdicke aufgrund des Bruchrisikos nicht beliebig reduziert werden kann. Insbesondere ist es schwierig mit herkömmlichen Verfah¬ ren Trägerdicken unter 100 μm zu realisieren. Dies stellt ei¬ ne Hürde zur Limitierung der Bauhöhe von Dünnfilm- Halbleiterchips dar.
Ein weiterer Nachteil der bekannten Dünnfilm-Halbleiterchips ist, dass die Übertragung der aktiven Schichtenfolge vom Sub¬ strat auf den Trägerkörper schwierig zu handhaben ist. Zur Verminderung dieses Problems ist in der DE 100 40 448 Al vorgeschlagen, rückseitig auf die Kontaktmaterialschichten eine Verstärkungsschicht und eine Hilfsträgerschicht aufzu¬ bringen. Diese ersetzen den in herkömmlichen Verfahren ver¬ wendeten mechanischen Träger und ermöglichen die vereinfachte Handhabung der aktiven Schichtenfolge.
Allerdings ist es bei diesem Verfahren nicht oder nur sehr aufwändig möglich, die Funktion aller späteren Dünnfilm- Halbleiterchips nach dem Übertragen der aktiven Schichtenfol¬ ge auf den Hilfsträger auf Wafer-Level zu testen.
Eine Aufgabe der vorliegenden Erfindung ist es, ein verein¬ fachtes Verfahren zur Herstellung von Halbleiterchips mit ge¬ ringer Höhe in Dünnfilmtechnik anzugeben, wobei es möglich sein soll, die späteren Dünnfilm-Halbleiterchips auf Wafer- Level einfach zu testen. Weiterhin ist es Aufgabe der vorlie¬ genden Erfindung, einen Dünnfilm-Halbleiterchip mit geringer Bauhöhe bei gleichzeitig guter mechanischer Stabilität an¬ zugeben.
Diese Aufgaben werden durch ein Verfahren nach Patentanspruch 1 und einen Halbleiterchip nach Patentanspruch 16 gelöst. Vorteilhafte Weiterbildungen des Verfahrens und des Halblei¬ terchips sind in den Unteransprüchen 2-15 bzw. 17-23 zu fin¬ den.
Ein erfindungsgemäßes Verfahren zur Herstellung von Dünnfilm- Halbleiterchips beinhaltet die Schritte:
- Aufbringen einer aktiven Epitaxie-Schichtenfolge auf ein Wachstumssubstrat, die geeignet ist, elektromagnetische Strahlung zu erzeugen,
- Ausbilden einer reflektierenden elektrisch leitfähigen Kon¬ taktmaterialschicht auf der aktiven Schichtenfolge, - Strukturieren der aktiven Schichtenfolge einschließlich Kontaktmaterialschicht zu voneinander getrennten aktiven Schichtenstapeln auf dem Wachstumssubstrat,
- Aufbringen einer flexiblen, elektrisch leitfähigen Folie auf der elektrisch leitfähige, reflektierende Kontaktmateri¬ alschicht, und
- zumindest teilweises Entfernen des Wachstumssubstrat.
Alternativ kann die Kontaktmaterialschicht, beispielsweise mittels Maskentechnologie, auch lateral strukturiert aufge¬ bracht werden und anschließend nur die darunter liegende ak¬ tive Schichtenfolge so strukturiert werden, dass sich je eine Kontaktmaterialschicht auf einem aktiven Schichtstapel befin¬ det. Die Kontaktmaterialschicht enthält bevorzugt ein Metall.
Dieses Verfahren bietet den Vorteil, dass die mit der Kon¬ taktmaterialschicht versehenen Rückseiten der Dünnfilm- Halbleiterchips über die flexible Folie untereinander elekt¬ risch leitend verbunden sind und folglich jeder Dünnfilm- Halbleiterchip mit Hilfe von jeweils einer weiteren Kontak- tierung auf seiner der Kontaktmaterialschicht gegenüberlie¬ genden Vorderseite einfach auf Wafer-Level getestet werden können.
Die Verwendung der elektrisch leitfähigen flexiblen Folie als Hilfsträgerschicht bietet den Vorteil, dass auf Grund ihrer hohen Duktilität im Falle von Verunreinigungen (z.B. in Form von Partikeln) zwischen Folie und Schichtenverbundstapel nur ein kleiner Störradius um die Verunreinigung herum entsteht . Eine Einbuße bei der Ausbeute aufgrund von Verunreinigungen kann somit vorteilhafterweise verringert werden. Weiterhin ermöglicht die Verwendung einer flexiblen Folie als Träger geringere Bauhöhen der Dünnfilm-Halbleiterchips, da die Dicke einer flexiblen Folie geringer sein kann, als die von starren Trägern, bei welchen die Bruchgefahr mit Verrin¬ gerung der Dicke in der Regel beträchtlich zunimmt.
Die geringe Bauhöhe der Dünnfilm-Halbleiterchips vereinfacht es, später zusätzliche Elemente innerhalb eines Bauelement- Gehäuses auf dem Dünnfilm-Halbleiterchip zu platzie¬ ren.Hierbei kann es sich z.B. um Leuchtstoffe handeln, die die Wellenlänge einer von dem Dünnfilm-Halbleiterchip emit¬ tierten Strahlung konvertieren. Solche sogenannten Wellenlän¬ genkonversionsmaterialien sind beispielsweise aus der WO 98/12757 Al beschrieben, deren Offenbarungsgehalt insofern hiermit durch Rückbezug aufgenommen wird. Ebenso denkbar ist das aufbringen von strahlformenden optischen Elementen, wie beispielsweise Linsen, direkt auf den Dünnfilm- Halbleiterchip.
Mit dem erfindungsgemäßen Verfahren lassen sich beispielswei¬ se Dünnfilm-Leuchtdioden-Chips (kurz „Dünnfilm-LED-Chips") herstellen.
Ein Dünnfilm-LED-Chip zeichnet sich insbesondere durch fol¬ gende charakteristische Merkmale aus: an einer zu einem Trägerelement hin gewandten ersten Hauptfläche einer Epitaxieschichtenfolge, die elektromag¬ netische Strahlung erzeugen kann, ist eine reflektierende Schicht aufgebracht oder ausgebildet, die zumindest einen Teil der in der Epitaxieschichtenfolge erzeugten elektro¬ magnetischen Strahlung in diese zurückreflektiert; und die Epitaxieschichtenfolge weist eine Dicke im Bereich von 20μm oder weniger, insbesondere im Bereich von 10 μm auf. Besonders bevorzugt enthält die Epitaxieschichtenfolge ent¬ hält mindestens eine Halbleiterschicht mit zumindest einer Fläche, die eine Durchmischungsstruktur aufweist, die im Ide¬ alfall zu einer annähernd ergodischen Verteilung des Lichtes in der epitaktischen Epitaxieschichtenfolge führt, d.h. sie weist ein möglichst ergodisch stochastisches Streuverhalten auf.
Ein Grundprinzip einer Dünnfilm-LED ist beispielsweise in I . Schnitzer et al . , Appl. Phys. Lett. 63 (16), 18. Oktober 1993, 2174 - 2176 beschrieben, deren Offenbarungsgehalt inso¬ fern hiermit durch Rückbezug aufgenommen wird.
Ein Dünnfilm-LED-Chip ist in guter Näherung ein Lambert'scher Oberflächenstrahler.
Vorliegend basiert ein solcher Dünnfilm-Halbleiterchip vor¬ zugsweise auf Nitrid-Verbindungshalbleitermaterial. „Auf Nit¬ rid-Verbindungshalbleitern basierend" bedeutet im vorliegen¬ den Zusammenhang, dass die aktive Epitaxie-Schichtenfolge o- der zumindest ein davon ein Nitrid-III/V-
Verbindungshalbleitermaterial, vorzugsweise AlnGamIni-n_mN um- fasst, wobei 0 < n < 1, O ≤ m ≤ l und n+m < 1. Dabei muss dieses Material nicht zwingend eine mathematisch exakte Zu¬ sammensetzung nach obiger Formel aufweisen. Vielmehr kann es ein oder mehrere Dotierstoffe sowie zusätzliche Bestandteile aufweisen, die die charakteristischen physikalischen Eigen¬ schaften eines des AlnGamIni-n.mN-Materials im Wesentlichen nicht ändern. Der Einfachheit halber beinhaltet obige Formel jedoch nur die wesentlichen Bestandteile des Kristallgitters (Al, Ga, In, N) , auch wenn diese teilweise durch geringe Men¬ gen weiterer Stoffe ersetzt sein können. In einer besonders bevorzugten Ausführungsform des erfin¬ dungsgemäßen Verfahrens handelt es sich bei der flexiblen, elektrisch leitfähigen Folie um eine Karbonfolie, wie sie beispielsweise aus den Druckschriften US 5 695 847 und US 5 849 130 bekannt ist, deren Offenbarungsgehalt insofern hier¬ mit durch Rückbezug aufgenommen wird.
Diese Karbonfolie zeichnet sich neben einem geringen Preis vorteilhafterweise insbesondere durch eine hohe thermische und elektrische Leitfähigkeit, sowie durch eine geringe Dicke aus. Die Karbonfolie besitzt weiterhin den Vorteil, dass sie durch relativ geringe Beaufschlagung mit Druck und Temperatur mit dem Schichtverbund, umfassend die Epitaxie-Schichtenfolge und die Kontaktmaterialschicht verbunden werden kann. Dies verringert die Gefahr einer Schädigung der aktiven Schichten¬ stapel während des Verbindungsschrittes. Zudem können Dünn¬ film-Halbleiterchips, die als unterste Lage eine Karbonfolie beinhalten, einfach auf herkömmliche Weise in ein Gehäuse verbaut und elektrisch kontaktiert werden. Die hohe thermi¬ sche Leitfähigkeit der Karbonfolie ermöglicht vorteilhafter¬ weise eine effektive Abfuhr der Wärme, die beim Betrieb eines Dünnfilm-Halbleiterchips entsteht.
Bevorzugt hat die elektrisch leitfähige Folie eine Dicke kleiner als 100 μm. Da die Folie im Gegensatz zu einem star¬ ren Träger flexibel ist, können solche geringen Trägerdicken realisiert werden.
Zum Schutz des Dünnfilmhalbleiterchips vor Korrosion können zumindest auf Teile der beim Strukturieren freiwerdenden Sei¬ tenflächen der Schichtenverbundstapel eine Passivierungs- schicht aufgebracht werden, die beispielsweise Siliziumnitrid enthält. Die Passivierungsschicht kann neben ihrer Schutz¬ funktion auch noch weitere Aufgaben erfüllen, wie beispiels¬ weise elektrische Isolation.
In einer weiteren bevorzugten Ausführungsform des erfindungs¬ gemäßen Verfahrens wird eine elektrisch leitfähige Verstär¬ kungsschicht, die z.B. ein Metall enthält, auf die reflektie¬ rende elektrisch leitfähige Kontaktmaterialschicht aufge¬ bracht. Diese dient einerseits zur Stabilisierung der aktiven Schichtenfolge und ermöglicht außerdem andererseits eine spä¬ tere elektrische Kontaktierung der Dünnfilm-Halbleiterchips über die Rückseite.
Bei einer weiteren vorteilhaften Ausführungsform kann vor dem Entfernen des Wachstumssubstrats ein starrer Hilfsträger mit der flexiblen, elektrisch leitfähigen Folie verbunden werden. Dieser zusätzliche starre Hilfsträger versteift den Schicht¬ verbund, so dass dieser in übliche Testsysteme oder Prozess¬ anlagen eingebracht und auf Wafer-Level bearbeitet werden kann.
Die Verwendung einer Karbonfolie als Verbindungsschicht zwi¬ schen dem Schichtverbund und dem starren Hilfsträger bietet insbesondere den Vorteil, dass sie kompatibel zu vielen Pro- zessierungstechnologien ist. So gibt diese anders als bei¬ spielsweise Klebstoffschichten unter Vakuum keine eventuell störenden gasförmigen Stoffe an die Umgebung ab.
Nach dem Entfernen des Wachstumssubstrats können auf herkömm¬ liche Weise elektrisch leitfähige weitere Kontaktschichten jeweils auf die Seite der aktiven SchichtStapel aufgebracht werden, die sich vorher auf dem Wachstumssubstrats befunden hat. Diese weiteren elektrisch leitfähigen Kontaktschichten enthalten beispielsweise ein Metall. Diese weiteren Kontakt¬ schichten stellen jeweils die zweite elektrische Kontaktstel¬ le eines jeden Dünnfilm-Halbleiterchips dar, auf der bei¬ spielsweise ein Bonddraht aufgebracht werden kann.
Weiterhin kann bevorzugt auf die elektrisch leitfähigen wei¬ teren Kontaktstellen ein Zwischenträger aufgebracht und die flexible, elektrisch leitfähige Folie entfernt werden.Die Dünnfilmhalbleiterchips sind dann voneinander getrennt auf dem Zwischenträger fixiert, von dem sie einfach, z.B. mit herkömmlichen Pick-and-Place Maschinen, abgenommen und ver¬ baut werden können. Bei dem Zwischenträger kann es sich um eine weitere Folie, z.B. eine Sägefolie handeln. Auf einer solchen Sägefolie werden Halbleiterchips im Waferverbund bei¬ spielsweise vor dem Vereinzeln mittels eines Wafersäge fi¬ xiert .
Vorzugsweise können die Seitenflächen der späteren Dünnfilm¬ halbleiterchips auch ganzflächig mit der Passivierungsschicht versehen werden. Dies geschieht zweckmäßigerweise nach Ver¬ binden der elektrisch leitfähige Folie mit dem starren Hilfs¬ träger und Ablösen des Wachstumssubstrats. Der starre Hilfs¬ träger stabilisiert den Schichtverbund dann derart, dass die¬ ser in normalen Prozessierungsanlagen mit der Passivierungs¬ schicht versehen werden kann.
Das Vereinzeln der Dünnfilm-Halbleiterchips geschieht dann zweckmäßigerweise ebenfalls dadurch, dass ein weiteren Zwi¬ schenträger, beispielsweise eine Folie oder Sägefolie, auf die Seite der aktiven Schichtenstapel aufgebracht wird, die ursprünglich mit dem Wachstumssubstrat verbunden war und die flexible, elektrisch leitfähige Folie entfernt wird. Ein erfindungsgemäßer Dünnfilm-Halbleiterchip beinhaltet: - eine aktive Schichtenfolge, die geeignet ist, elektromagne¬ tische Strahlung zu erzeugen,
- eine elektrisch leitfähige, reflektierende Kontaktmaterial- schicht auf der aktiven Schichtenfolge und
- eine flexible, elektrisch leitfähige Folie als Träger¬ schicht auf der elektrisch leitfähigen, reflektierenden Kon¬ taktmaterialschicht .
Ein solcher Dünnfilm-Halbleiterchip bietet den Vorteil, dass er eine geringe Bauhöhe, vorzugsweise kleiner als 150 μm und insbesondere kleiner als 100 μm hat. Deshalb kann er ohne er¬ höhte Bruchgefahr in ein Gehäuse eingebaut werden kann. Auf Grund der geringen Bauhöhe eignet sich ein solcher Dünnfilm- Halbleiterchip besonders dazu, zusammen mit Wellenlängenkon¬ versionsmaterial in ein Gehäuse sehr kleiner Dimensionen ein¬ gebaut zu werden.
Weiterhin kann ein solcher Dünnfilm-Halbleiterchip rückseitig einfach über die flexible, elektrisch leitfähige Folie elekt¬ risch kontaktiert werden.
Die Verwendung einer flexiblen Folie verringert zugleich die Bruchgefahr bei der Handhabung und Verbauung des Dünnfilm- Halbleiterchips.
In einer besonders bevorzugten Ausführungsform handelt es sich bei der flexiblen, elektrisch leitfähigen Folie um eine Karbonfolie. Diese zeichnet sich durch besonders hohe elekt¬ rische und thermische Leitfähigkeiten sowie einen geringen Preis aus.
In einer weiteren bevorzugten Ausführungsform befindet sich auf der elektrisch leitfähigen reflektierenden Kontaktmate- rialschicht eine elektrisch leitfähige Verstärkungsschicht. Diese dient der weiteren Verstärkung der aktiven Schichten¬ folge und ermöglicht gleichzeitig eine rückseitige Kontaktie- rung des Dünnfilm-Halbleiterchips über die flexible, elekt¬ risch leitfähige Folie.
Sowohl die reflektierende elektrisch leitfähige Kontaktmate¬ rialschicht, als auch die elektrisch leitfähige Verstärkungs¬ schicht enthalten bevorzugt ein Metall.
Weiterhin sind die Seitenflächen des erfindungsgemäßen Dünn¬ film-Halbleiterchips bevorzugt ganzflächig mit einer Passi- vierungsschicht versehen. Ein solcher Dünnfilm-Halbleiterchip eignet sich insbesondere dazu, ohne Bonddraht elektrisch kon¬ taktiert zu werden. So kann ein solcher Dünnfilm- Halbleiterchip rückseitig kontaktiert werden indem er auf ei¬ nen elektrischen Anschlussleiter aufgebracht wird, der sich beispielsweise auf einem Chip-Träger befindet oder selbst als Chipträger (beispielsweise eines Leadframes) ausgebildet ist. Vorderseitig kann der Dünnfilm-Halbleiterchip dann durch eine ganzflächig oder strukturiert aufgebrachte elektrisch leitfä¬ hige Schicht kontaktiert werden, die zweckmäßigerweise eine gute Transmission der von dem Dünnfilm-Halbleiterchip emit¬ tierten elektromagnetischen Strahlung ermöglicht.
Weitere Vorteile und vorteilhafte Ausführungsformen des Ver¬ fahrens bzw. des Halbleiterchips ergeben sich aus den im Fol¬ genden in Verbindung mit den Figuren 1 a bis If, 2a bis 2c, 3a bis 3b und 4 näher erläuterten Ausführungsbeispielen.
Es zeigen: Figur Ia bis If, eine schematische Darstellung eines Ausfüh¬ rungsbeispieles des Verfahrens anhand von schematisehen Schnittdarstellungen eines Waferverbundes zu verschiedenen Stadien des Verfahrens,
Figuren 2a bis 2c, eine schematische Darstellung eines weite¬ ren Ausführungsbeispieles des Verfahrens anhand von schemati¬ schen Schnittdarstellungen eines Waferverbundes zu verschie¬ denen Stadien des Verfahrens,
Figuren 3a bis 3b, eine schematische Darstellung noch eines weiteren Ausführungsbeispieles des Verfahrens anhand von schematischen Schnittdarstellungen eines Waferverbundes zu verschiedenen Stadien des Verfahrens, und
Figur 4, eine schematische Schnittdarstellung eines erfin¬ dungsgemäßen Dünnfilm-Halbleiterchips, der auf einen Chipträ¬ ger aufgebracht und elektrisch kontaktiert ist.
In den Ausführungsbeispielen und Figuren sind gleiche oder gleichwirkende Bestandteile jeweils mit den gleichen Bezugs¬ zeichen versehen. Die dargestellten Elemente der Figuren, insbesondere die Größen von dargestellten Schichtdicken und Schichtdickenverhältnisse, sind grundsätzlich nicht als ma߬ stabsgerecht anzusehen. Vielmehr können sie zum besseren Ver¬ ständnis teilweise übertrieben groß dargestellt sein.
Ausführungsbeispiel 1
Bei einem Verfahren gemäß Ausführungsbeispiel 1 wird in einem ersten Schritt eine aktive Schichtenfolge 20 auf einem Wachs¬ tumssubstrat 3 aufgebracht (Figur Ia) . Dies erfolgt bei einer bevorzugten Ausführungsform beispielsweise durch epitakti- sches Wachstum mehrerer unterschiedlicher Schichten aus Nit- rid-III/V-Verbindungshalbleitermaterial, vorzugsweise aus dem
System AlnGamlni-n-mN, wobei 0 < n < 1, 0 < m < 1 und n+m < 1, auf einem Saphir- oder SiC-Substrat. Dies schließt natürlich nicht aus, dass neben In, Al und/oder Ga und N in der Zusam¬ mensetzung auch weitere Elemente enthalten sein können.
Eine solche zur Erzeugung von elektromagnetischer Strahlung geeignete aktive Schichtenfolge kann beispielsweise einen herkömmlichen^ pn-Übergang, eine Doppelheterostruktur, eine Einfach-Quantentopfstruktur (SQW-Struktur) oder eine Mehr- fach-QuantentopfStruktur (MQW-Strukur) aufweisen. Solche Strukturen sind dem Fachmann bekannt und werden von daher an dieser Stelle nicht näher erläutert. Eine geeignete Quanten¬ topfstruktur ist beispielsweise aus der WO01/39282 bekannt, deren Offenbarungsgehalt insofern hiermit durch Rückbezug aufgenommen wird.
Anschließend wird auf der aktiven Schichtenfolge 20 eine e- lektrische leitfähige reflektierende Kontaktmaterialschicht 40 ausgebildet (Figur Ib) . Diese Kontaktmaterialschicht 40 hat in einem späteren Dünnfilm-Halbleiterchip 1 unter anderem die Aufgabe, Strahlung, die von der aktiven Schichtenfolge 20 in Richtung dieser Kontaktmaterialschicht 40 emittiert wird, zu der dieser gegenüberliegenden Abstrahlseite des Dünnfilm- Halbleiterchips 1 hin zu reflektieren, um die Strahlungsaus¬ beute zu erhöhen.
Die Kontaktmaterialschicht 40, kann ganzflächig ein metalli¬ sches Material enthalten, wie Ag, Al oder Au, das aufgedampft werden kann. Weiterhin können dielektrische Reflektoren ein¬ gesetzt werden, die aus mehreren dielektrischen Schichten mit integrierten elektrischen Kontakten bestehen. Geeignete Reflektoren sind beispielsweise aus der WO 01/82384 bekannt, deren Offenbarungsgehalt insofern hiermit durch Rückbezug aufgenommen wird.
Gleichzeitig fungiert die Kontaktmaterialschicht 40 als rück¬ seitige Kontaktmaterialschicht für die aktive Schichtenfolge 20. Die aktive Schichtenfolge 20 und die reflektierende e- lektrisch leitfähige Kontaktmaterialschicht 40 haben zusammen beispielsweise eine Dicke von 8 μm.
In einem nachfolgenden Schritt werden aus dem Schichtenver¬ bund mit aktiver Schichtenfolge 20 und Kontaktmaterialschicht 40 auf dem Wachstumssubstrat 1 voneinander getrennte aktive Schichtstapel 2 mit jeweils einer elektrisch leitfähigen re¬ flektierenden Kontaktmaterialschicht 4 gebildet (Figur Ic) . Dies erfolgt beispielsweise durch nasschemisches Ätzen oder durch Trockenätzen.
Alternativ kann die Kontaktmaterialschicht 40 auch lateral strukturiert, z.B. durch eine Maske, auf die aktive Schich¬ tenfolge 20 aufgebracht werden und die aktive Schichtenfolge 20 anschließend so zu aktiven Schichtstapeln 2 strukturiert werden, dass sich auf einem aktiven Schichtstapel 2 je eine elektrisch leitfähige reflektierende Kontaktmetallschicht 4 befindet .
Anschließend wird auf die elektrisch leitfähigen reflektie¬ renden Kontaktmaterialschichten 4 eine flexible elektrisch leitfähige Folie 6 aufgebracht. Hierbei kann es sich bei¬ spielsweise um eine Karbonfolie mit einer Dicke zwischen 30 und 80 μm handeln. Die Karbonfolie bietet den Vorteil, dass sie bei Temperaturen ≤ 150 0C und unter relativ geringen Druck (ca. 1 bar) mit den Schichtverbundstapeln 21 verbunden werden kann.
Zur Durchführung dieses Verbindungsprozesses kann die Karbon¬ folie auf einen Halter aufgebracht werden. Damit sich die Karbonfolie während des Prozesses nicht auch mit diesem Hal¬ ter verbindet, kann beispielsweise eine Antihaftfolie, z. B. aus Teflon, zwischen Halter und Karbonfolie eingebracht wer¬ den. Selbstverständlich kann eine solche Antihaftfolie wäh¬ rend des Verbindungsprozesses auch an anderen Stellen einge¬ setzt werden, an denen die Gefahr besteht, dass die Karbonfo¬ lie unbeabsichtigt mit anderen Flächen verbunden wird.
In einem nächsten Schritt wird das Wachstumssubstrat 1 ent¬ fernt, auf dem die aktive Schichtenfolge 20 aufgewachsen wur¬ de, z. B. durch einen Laser-Lift-Off-Prozess, wie er bei¬ spielsweise in der WO 98/14986 beschrieben ist. Wie in Figur Ie dargestellt, befinden sich die aktiven Schichtenstapel 2 mit einer rückseitigen reflektierenden elektrisch leitfähigen Kontaktierungsschicht 4 nun nebeneinander auf der flexiblen, elektrisch leitfähigen Folie 6.
Als ein zusätzlicher Schritt kann nach dem Strukturieren der Schichtverbundstapel 21 eine Passivierungsschicht 5 auf den Seitenflächen der Schichtverbundstapel 21 zumindest teilweise ausgebildet werden, wie in Figur If. dargestellt. Diese kann beispielsweise aus Siliziumnitrid, Aluminiumoxid, Aluminium¬ nitrid oder Siliziumoxinitrid bestehen.
Die Dünnfilmhalbleiterchips 1 können durch Trennen der Folie (6) mit Hilfe herkömmlicher Methoden, wie Laserschneiden, Wasserstrahlschneiden oder Sägen vereinzelt werden. Dünnfilm-Halbleiterchips 1, die rückseitig mit einer Karbon¬ folie 6 versehen sind, können einfach durch Beaufschlagung mit Druck und Temperatur vermittels der Karbonfolie 6 in ei¬ nem Gehäuse befestigt werden. Alternativ lässt sich ein sol¬ cher Dünnfilm-Halbleiterchip 1 mittels Kleben mit einem Ge¬ häuse verbinden.
Ausführungsbeispiel 2
Analog zu Ausführungsbeispiel 1 werden die ersten drei Ver¬ fahrensschritte, Herstellen der aktiven Schichtenfolge 20, Aufbringen einer elektrisch leitfähigen Kontaktmaterial- schicht 40 und Strukturieren dieser beiden Schichten zu Schichtverbundstapeln 21 durchgeführt. Im Unterschied zu Aus¬ führungsbeispiel 1 wird nun eine weitere elektrisch leitfähi¬ ge Verstärkungsschicht 7 auf die Kontaktmaterialschicht 4 des Schichtverbundstapels 21 aufgebracht, so dass dieser nun min¬ destens drei Schichten beinhaltet. Die elektrisch leitfähige Verstärkungsschicht 7 kann beispielsweise aus einem metalli¬ schen Material bestehen, dass galvanisch aufgebracht wird.
Die Dicke der aktiven Schichtenfolge 2 einschließlich der re¬ flektierenden elektrisch leitfähigen Kontaktmaterialschicht 4 und der metallischen Verstärkungsmaterialschicht 7 liegt z. B. zwischen 20 μm und 25 μm.
Nach dem Strukturieren der Schichtenfolge 20 einschließlich der reflektierenden elektrisch leitfähigen Kontaktmaterial- schicht 40 zu voneinander getrennten aktiven Schichtenver- bundstapeln 2 und dem Aufbringen der metallischen Verstär¬ kungsmaterialschicht 7 wird eine Passivierungsschicht 5 auf freiliegenden Seitenflächen der aktiven Schichtenstapel 2 aufgebracht und eine Karbonfolie 6 auf die den Schichtenver- bundstapeln 2 zugeordneten metallischen Verstärkungsschichten 7 aufgebracht (Figur 2a) .
Um den so entstandenen Schichtverbund weiter zu verstärken, kann auf die Rückseite der Karbonfolie 6 wiederum durch die Beaufschlagung mit Druck und Temperatur ein weiterer starrer stabiler Hilfsträger 8 aufgebracht werden, dessen Dicke z.B. zwischen 100 und 150 μm beträgt. Es können auch dickere Trä¬ ger verwendet werden.
Dieser starre Hilfsträger 8 ermöglicht eine vereinfachte Handhabung des Schichtverbundes und ein weiteres Prozessieren des Schichtverbundes in herkömmlichen LED-Fertigungsanlagen. Besteht der starre Hilfsträger zudem aus einem elektrisch leitfähigen Material, wie z.B. Molybdän Tantal oder Wolfram, können die späteren Dünnfilm-Halbleiterchips 1 noch auf Wa- fer-Level rückseitig elektrisch kontaktiert werden. Dies er¬ möglicht ein Testen aller Dünnfilm-Halbleiterchips 1, die auf einem Wafer hergestellt wurden, in herkömmlichen Messgeräten.
In einem weiteren Schritt wird wieder das Wachstumssubstrat 3 entfernt (Figur 2b) und auf den Vorderseiten der aktiven Schichtstapel 2, die vorher mit dem Wachstumssubstrat 1 ver¬ bunden waren, elektrisch leitfähige metallische Kontaktstel¬ len 9 ausgebildet. Diese können beispielsweise Ag, Au oder Al enthalten, dass aufgedampft wird.
Danach können alle Dünnfilm-Halbleiterchips 1, jeweils beste¬ hend aus aktivem Schichtstapel 2, elektrischer Kontaktmate¬ rialschicht 4, Verstärkungsschicht 7, Karbonfolie 6 und Kon¬ taktstelle 9, in herkömmlichen Testsystemen im Waferverbund getestet werden. Wie in Figur 2c dargestellt, kann nun auf die Vorderseiten der elektrisch leitfähigen Kontaktstellen 9 ein Zwischenträ¬ ger 10 aufgebracht werden. Hierbei kann es sich um eine Folie handeln, wie sie auch beim Sägen von Wafern eingesetzt wird. Durch selektives Entfernen der Karbonfolie 6, beispielsweise nasschemisch, können die Dünnfilm-Halbleiterchips 1 wieder von dem starre Hilfsträger 8 entfernt und gleichzeitig ver¬ einzelt werden. Die einzelnen Dünnfilm-Halbleiterchips 1 auf dem Zwischenträger 10 stehen nun für eine herkömmliche Wei- terprozessierung, wie beispielsweise Montage auf Leadframes und/oder Gehäusekörper, bereit.
Ausführungsbeispiel 3
Wie in den Ausführungsbeispielen 1 und 2 beschrieben, werden Schichtverbundstapel 21 im Waferverbund hergestellt, von de¬ nen jeder einen aktiven Schichtstapel 2 mit einer reflektie¬ rende elektrisch leitfähige Kontaktmaterialschicht 4 beinhal¬ tet, auf dem sich optional eine weitere elektrisch leitfähige Verstärkungsschicht 7 befindet. Diese Schichtverbundstapel 21 befinden sich auf nach dem Entfernen des Wachstumssubstrates 3 auf der elektrisch leitfähigen Folie 6, die mit einem star¬ ren Hilfsträger 8 verbunden sein kann.
Wie in Figur 3a gezeigt, kann die Passivierungsschicht 5 auf den Seiten der späteren Dünnfilm-Halbleiterchips 1 bestehend aus den aktiven Schichtstapeln 2, der reflektierenden elekt¬ risch leitfähigen Kontaktmaterialschicht 4 und der metalli¬ schen Verstärkungsschicht 7 auch ganzflächig aufgebracht wer¬ den. Zweckmäßigerweise wird hierzu die Passivierungsschicht 5 auf¬ gebracht nachdem der Schichtverbund bestehend aus aktivem Schichtstapel 2, reflektierender elektrisch leitfähiger Kon¬ taktmaterialschicht 4 und optionaler metallischer Verstär¬ kungsschicht 7 über die Karbonfolie 6 mit einem starre Hilfs¬ träger 8 verbunden wurde. Die Dünnfilm-Halbleiterchips 1 kön¬ nen anschließend durch selektives Entfernen der Karbonfolie 6 vereinzelt werden.. Der Dünnfilm-Halbleiterchip 1 liegt da¬ nach mit vollständiger seitlicher Isolierung vor. Ein zusätz¬ licher Passivierungsschritt in der späteren Bauform kann so¬ mit entfallen. Ein solcher muss üblicherweise bei Dünnfilm- Halbleiterchips 1 durchgeführt werden, die nach Standardver¬ fahren hergestellt werden.
Figur 3b zeigt Dünnfilm-Halbleiterchips 1 mit seitlich ganz¬ flächiger Passivierungsschicht 5 auf einer flexiblen elekt¬ risch leitfähigen Folie 6, die mit einem starren stabilen Hilfsträger 8 verbunden sind. Besteht der starre Hilfsträger 8 aus einem elektrisch leitfähigen Material, wie z.B. Molyb¬ dän, zeigt Figur 3b wiederum den Zustand, in dem die späteren Dünnfilm-Halbleiterchips 1 dieser Ausführungsform gleichzei¬ tig getestet werden können.
Ausführungsbeispiel 4
In Figur 4 ist ein Dünnfilm-Halbleiterchip 1 dargestellt, der aus einem aktiven Schichtstapel 2 besteht, auf dem sich rück¬ seitig eine reflektierende elektrisch leitfähige Kontaktmate¬ rialschicht 4 befindet, die wiederum durch eine metallische Verstärkungsschicht 7 verstärkt ist. Die Seiten der Dünnfilm- Halbleiterchips 1 sind hierbei ganzflächig mit einer Passi¬ vierungsschicht 5 bedeckt . Ein solcher Dünnfilm-Halbleiterchip 1 eignet sich insbesonde¬ re dazu, nach dem Aufbringen auf einen geeigneten Chipträger 11, ohne Bonddraht elektrisch kontaktiert zu werden.
Hierzu wird der Dünnfilm-Halbleiterchip 1 auf einen geeigne¬ ten Chipträger 11, wie beispielsweise eine Leiterplatte, auf¬ gebracht. Dieser beinhaltet zweckmäßigerweise elektrisch leitfähige Strukturen 12 zur rückseitigen Kontaktierung des späteren Dünnfilm-Halbleiterchips, während der Rest des Chip¬ trägers 11 aus einem elektrisch isolierenden Material wie beispielsweise einem Kunststoff besteht. Die Dünnfilm- Halbleiterchips werden auf den elektrisch leitfähigen Struk¬ turen 12 des Chipträgers 11 positioniert und anschließend durch ganzflächiges Aufbringen einer elektrisch leitfähigen Schicht 13 über den Dünnfilm-Halbleiterchip 1 und auf die O- berflache des Chipträgers 11 elektrisch kontaktiert. Zweckmä¬ ßigerweise besteht diese elektrisch leitfähige Schicht 13 aus einem Material, das einen hohen Transmissionskoeffizienten für die von dem Dünnfilm-Halbleiterchip emittierte elektro¬ magnetische Strahlung hat, wie z. B. Indium-Zinn-Oxid (ITO) oder Zinkoxid.
Es sei an dieser Stelle darauf hingewiesen, dass diese Kon- taktierungsverfahren, bei dem auf einen Bonddraht verzichtet werden kann als eigenständige Erfindung gewertet wird.
Der Vollständigkeit halber sei darauf hingewiesen, dass die Erfindung selbstverständlich nicht auf die Ausführungsbei¬ spiele eingeschränkt ist, sondern dass alle Ausführungsformen in den Bereich der Erfindung fallen, denen deren im allgemei¬ nen Teil erläutertes grundsätzliches Prinzip zugrunde liegt. Gleichzeitig sei darauf hingewiesen, dass die verschiedenen Elemente der unterschiedlichen Ausführungsbeispiele unterein- ander kombiniert werden können ohne dass dabei der Grundge¬ danke der Erfindung verlassen wird.

Claims

Patentansprüche
1. Verfahren zur Herstellung von Dünnfilm-Halbleiterchips (1) mit den Schritten:
- Aufbringen einer aktiven Schichtenfolge (20) , die geeignet ist elektromagnetische Strahlung zu erzeugen, auf ein Wachstumssubstrat (3) ,
Ausbilden einer reflektierenden elektrisch leitfähigen Kontaktmaterialschicht (40) auf der aktiven Schichtenfol¬ ge,
Strukturieren der aktiven Schichtenfolge einschließlich Kontaktmaterialschicht (40) zu voneinander getrennten ak¬ tiven Schichtenverbundstapeln (21) , auf dem Wachstumssub¬ strat (3) ,
Aufbringen einer flexiblen elektrisch leitfähigen Folie (6) auf die reflektierende elektrisch leitfähige Kontakt¬ materialschicht (4) , und Zumindest teilweises Entfernen des Wachstumssubstrats (3) .
2. Verfahren nach Anspruch 1, bei dem als elektrisch leitfä¬ hige Folie (6) eine Karbonfolie verwendet wird.
3. Verfahren nach Anspruch 1 oder 2, bei dem die Dicke der elektrisch leitfähige Folie (6) kleiner als 100 μm ist.
4. Verfahren nach einem der obigen Ansprüche , bei dem die elektrisch leitfähige Kontaktmaterialschicht (40) ein Me¬ tall enthält.
5. Verfahren nach einem der obigen Ansprüche, bei dem zumin¬ dest auf Teilen der beim Strukturieren freigelegten Sei¬ tenflächen der Schichtenverbundstapel (21) eine Passivie- rungsschicht ausgebildet wird.
6. Verfahren nach einem der obigen Ansprüche, bei dem eine elektrisch leitfähige Verstärkungsschicht (7) auf die re¬ flektierende elektrisch leitfähige Kontaktmaterialschicht (4) aufgebracht wird.
7. Verfahren nach Anspruch 6, bei dem die elektrisch leitfä¬ hige Verstärkungsschicht (7) ein Metall enthält.
8. Verfahren nach einem der obigen Ansprüche, bei dem vor dem Entfernen des Wachstumssubstrats (3) ein starrer Hilfsträ¬ ger (8) mit der flexiblen elektrisch leitfähigen Folie (6) verbunden wird.
9. Verfahren nach einem der obigen Ansprüche, bei dem nach dem Entfernen des Wachstumssubstrates (3) elektrisch leit¬ fähige Kontaktstellen (9) auf die Seite der aktiven Schichtenfolge der Schichtenstapeln (2) aufgebracht wer¬ den, auf der sich vorher das Wachstumssubstrat (3) befand.
10. Verfahren nach Anspruch 9, bei dem die elektrisch leit¬ fähigen Kontaktstellen ein Metall enthalten.
11. Verfahren nach Anspruch 9 oder 10, bei dem auf die elektrisch leitfähigen Kontaktstellen (9) ein Zwischenträger(10) aufgebracht wird und die flexible elektrisch leitfähige Folie (6) entfernt wird, so dass die Dünnfilmhalbleiterchips vereinzelt auf dem Zwischenträger vorliegen.
12. Verfahren nach Anspruch 11 , bei dem als Zwischenträger eine weitere Folie verwendet wird.
13. Verfahren nach Anspruch 11 oder 12, bei dem die Passi- vierυngsschicht (5) ganzflächig auf den Seitenflächen der Schichtenverbundstapel (2) aufgebracht wird.
14. Verfahren nach einem der Ansprüche 9-13 , bei dem nach Entfernen des Wachstumssubstrates (3) ein Zwischen¬ träger (10) auf die aktiven Schichtenverbundstapel (21) aufgebracht wird, auf der sich vorher das Wachstumssub¬ strates (3) befand, und nachfolgend die flexible elektrisch leitfähige Folie (6) entfernt wird, so dass die Dünnfilmhalbleiterchips (1) vereinzelt auf dem Zwischenträger (10) vorliegen.
15. Verfahren nach Anspruch 14, bei dem als Zwischenträger (10) eine weitere Folie Verwendet wird.
16. Dünnfilm-Halbleiterchip (1) , der umfasst : einen aktiven Schichtenstapel (2) , der geeignet ist, e- lektromagnetische Strahlung zu erzeugen, eine elektrisch leitfähige reflektierende Kontaktmaterial- Schicht (4) auf dem aktiven Schichtenstapel (2) , und eine Trägerschicht aus einer flexiblen elektrisch leitfä¬ higen Folie (6) auf der elektrisch leitfähigen reflektie¬ renden Kontaktmaterialschicht (4) .
17. Dünnfilm-Halbleiterchip (1) nach Anspruch 16, bei dem die elektrisch leitfähige Folie (6) eine Karbonfolie ist.
18. Dünnfilm-Halbleiterchip nach Anspruch 16 oder 17, bei dem die elektrisch leitfähigen reflektierenden Kontaktma¬ terialschicht (4) ein metallisches Material enthält.
19. Dünnfilm-Halbleiterchip nach einem der Ansprüche 16 bis 18, bei dem sich zwischen der Trägerschicht und der re¬ flektierenden elektrisch leitfähigen Kontaktmaterial- Schicht (4) eine elektrisch leitende Verstärkungsschicht (7) befindet.
20. Dünnfilm-Halbleiterchip nach Anspruch 19, bei dem die elektrisch leitende Verstärkungsschicht (7) ein metalli¬ sches Material enthält .
21. Dünnfilm-Halbleiterchip (1) nach einem der Ansprüche 16 bis 20, bei dem Seitenflächen der Dünnfilm-Halbleiterchips
(1) zumindest teilweise mit einer Passivierungsschicht (5) versehen sind.
22. Dünnfilm-Halbleiterchip (1) nach einem der Ansprüche 16 bis 20, bei dem Seitenflächen der Dünnfilm-Halbleiterchips
(1) ganzflächig mit einer Passivierungsschicht (5) verse¬ hen sind.
23. Dünnfilm-Halbleiterchip (1) nach einem der Ansprüche 16- 21, dessen gesamte Dicke kleiner als 150 μm und insbeson¬ dere kleiner als 100 μm ist.
PCT/DE2005/001276 2004-07-30 2005-07-20 Verfahren zur herstellung von halbleiterchips in dünnfilmtechnik und halbleiterchip in dünnfilmtechnik WO2006012838A2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05770659.0A EP1774599B1 (de) 2004-07-30 2005-07-20 Verfahren zur herstellung von halbleiterchips in dünnfilmtechnik und halbleiterchip in dünnfilmtechnik
KR1020077004553A KR101158601B1 (ko) 2004-07-30 2005-07-20 박막기술을 사용하여 반도체 칩을 제조하는 방법 및박막기술을 사용하여 제조된 반도체 칩
JP2007522909A JP5305655B2 (ja) 2004-07-30 2005-07-20 薄膜技術による半導体チップの製造方法および薄膜半導体チップ

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US59296904P 2004-07-30 2004-07-30
DE102004036962.3 2004-07-30
US60/592,969 2004-07-30
DE102004036962A DE102004036962A1 (de) 2004-07-30 2004-07-30 Verfahren zur Herstellung von Halbleiterchips in Dünnfilmtechnik und Halbleiterchip in Dünnfilmtechnik

Publications (2)

Publication Number Publication Date
WO2006012838A2 true WO2006012838A2 (de) 2006-02-09
WO2006012838A3 WO2006012838A3 (de) 2006-04-13

Family

ID=35787480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2005/001276 WO2006012838A2 (de) 2004-07-30 2005-07-20 Verfahren zur herstellung von halbleiterchips in dünnfilmtechnik und halbleiterchip in dünnfilmtechnik

Country Status (5)

Country Link
US (1) US7649266B2 (de)
EP (1) EP1774599B1 (de)
JP (2) JP5305655B2 (de)
KR (1) KR101158601B1 (de)
WO (1) WO2006012838A2 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006024423A1 (de) * 2006-02-15 2007-08-16 Osram Opto Semiconductors Gmbh Verfahren zum Erzeugen von Strukturen in optoelektronischen Bauelementen und Vorrichtung dazu
US9174400B2 (en) 2006-02-15 2015-11-03 Osram Opto Semiconductors Gmbh Method for producing structures in optoelectronic components and device for this purpose
US10270011B2 (en) 2013-12-13 2019-04-23 Nichia Corporation Light emitting device

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005055293A1 (de) * 2005-08-05 2007-02-15 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung von Halbleiterchips und Dünnfilm-Halbleiterchip
WO2007142273A1 (ja) * 2006-06-08 2007-12-13 International Business Machines Corporation 高熱伝導で柔軟なシート
DE102007004303A1 (de) 2006-08-04 2008-02-07 Osram Opto Semiconductors Gmbh Dünnfilm-Halbleiterbauelement und Bauelement-Verbund
DE102007004304A1 (de) 2007-01-29 2008-07-31 Osram Opto Semiconductors Gmbh Dünnfilm-Leuchtdioden-Chip und Verfahren zur Herstellung eines Dünnfilm-Leuchtdioden-Chips
DE102007008524A1 (de) * 2007-02-21 2008-08-28 Osram Opto Semiconductors Gmbh Strahlung emittierender Chip mit mindestens einem Halbleiterkörper
JP4290745B2 (ja) * 2007-03-16 2009-07-08 豊田合成株式会社 Iii−v族半導体素子の製造方法
JP2009141093A (ja) * 2007-12-06 2009-06-25 Toshiba Corp 発光素子及び発光素子の製造方法
US9496454B2 (en) 2011-03-22 2016-11-15 Micron Technology, Inc. Solid state optoelectronic device with plated support substrate
US8349116B1 (en) 2011-11-18 2013-01-08 LuxVue Technology Corporation Micro device transfer head heater assembly and method of transferring a micro device
US10186458B2 (en) * 2012-07-05 2019-01-22 Infineon Technologies Ag Component and method of manufacturing a component using an ultrathin carrier
US8941128B2 (en) * 2012-11-21 2015-01-27 Intel Corporation Passivation layer for flexible display
JP2015046491A (ja) * 2013-08-28 2015-03-12 住友電気工業株式会社 ワイドバンドギャップ半導体装置および半導体モジュールの製造方法、ならびにワイドバンドギャップ半導体装置および半導体モジュール
JP6888650B2 (ja) * 2013-12-13 2021-06-16 日亜化学工業株式会社 発光装置
DE102015114587A1 (de) * 2015-09-01 2017-03-02 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauelement und Verfahren zu dessen Herstellung
DE102018132824A1 (de) * 2018-12-19 2020-06-25 Osram Opto Semiconductors Gmbh Verfahren zur herstellung einer optoelektronischen leuchtvorrichtung
DE102022119139A1 (de) 2022-07-29 2024-02-01 Trumpf Photonic Components Gmbh Laservorrichtung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5724376A (en) * 1995-11-30 1998-03-03 Hewlett-Packard Company Transparent substrate vertical cavity surface emitting lasers fabricated by semiconductor wafer bonding
US20040026709A1 (en) * 2000-04-26 2004-02-12 Stefan Bader Gan-based light emitting-diode chip and a method for producing a luminescent diode component
US20040077114A1 (en) * 1999-02-05 2004-04-22 Coman Carrie Carter III-nitride light emitting devices fabricated by substrate removal

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145987A (en) * 1974-10-17 1976-04-19 Oki Electric Ind Co Ltd pn setsugohatsukodaioodo
JPS5759465U (de) * 1980-09-25 1982-04-08
JPS6386578A (ja) * 1986-09-30 1988-04-16 Shimadzu Corp 発光ダイオ−ド
JPH04313282A (ja) * 1991-04-10 1992-11-05 Hitachi Cable Ltd 発光ダイオード
US5463242A (en) * 1994-05-03 1995-10-31 General Electric Company Thin film circuits with high density connector
DE19638667C2 (de) 1996-09-20 2001-05-17 Osram Opto Semiconductors Gmbh Mischfarbiges Licht abstrahlendes Halbleiterbauelement mit Lumineszenzkonversionselement
US5695847A (en) * 1996-07-10 1997-12-09 Browne; James M. Thermally conductive joining film
DE19640594B4 (de) 1996-10-01 2016-08-04 Osram Gmbh Bauelement
EP2169733B1 (de) 1997-09-29 2017-07-19 OSRAM Opto Semiconductors GmbH Halbleiterlichtquelle
JP3643225B2 (ja) * 1997-12-03 2005-04-27 ローム株式会社 光半導体チップ
US6803243B2 (en) * 2001-03-15 2004-10-12 Cree, Inc. Low temperature formation of backside ohmic contacts for vertical devices
DE19921230B4 (de) 1999-05-07 2009-04-02 Giesecke & Devrient Gmbh Verfahren zum Handhaben von gedünnten Chips zum Einbringen in Chipkarten
DE19955747A1 (de) 1999-11-19 2001-05-23 Osram Opto Semiconductors Gmbh Optische Halbleitervorrichtung mit Mehrfach-Quantentopf-Struktur
EP2270875B1 (de) * 2000-04-26 2018-01-10 OSRAM Opto Semiconductors GmbH Strahlungsmittierendes Halbleiterbauelement und dessen Herstellungsverfahren
TWI292227B (en) * 2000-05-26 2008-01-01 Osram Opto Semiconductors Gmbh Light-emitting-dioed-chip with a light-emitting-epitaxy-layer-series based on gan
DE10059532A1 (de) 2000-08-08 2002-06-06 Osram Opto Semiconductors Gmbh Halbleiterchip für die Optoelektronik
US20020017652A1 (en) 2000-08-08 2002-02-14 Stefan Illek Semiconductor chip for optoelectronics
DE10040448A1 (de) 2000-08-18 2002-03-07 Osram Opto Semiconductors Gmbh Halbleiterchip und Verfahren zu dessen Herstellung
JP2002100588A (ja) 2000-09-22 2002-04-05 Shinkawa Ltd 半導体装置の製造方法
US6791119B2 (en) * 2001-02-01 2004-09-14 Cree, Inc. Light emitting diodes including modifications for light extraction
DE10131062C1 (de) * 2001-06-27 2002-12-05 Sartorius Gmbh Wägeaufnehmer mit Parallelführung und Ecklasteinstellung
KR20040071142A (ko) * 2001-12-11 2004-08-11 후지 샤신 필름 가부시기가이샤 컬러필터, 그 형성재료 및 그 제조방법, 컬러필터가부착된 회로기판 및 그 형성방법과 액정소자
DE10245631B4 (de) * 2002-09-30 2022-01-20 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Halbleiterbauelement
JP2004186102A (ja) * 2002-12-06 2004-07-02 Jfe Engineering Kk 層構造を成しているカーボンナノチューブ集合体およびそれを用いた製品
JP4488702B2 (ja) * 2003-07-30 2010-06-23 株式会社沖データ 半導体装置の製造方法
DE10359532B3 (de) 2003-12-17 2005-06-09 Fachhochschule Dortmund Verfahren und Vorrichtung zur Erkennung einer breitbandigen Rauschquelle in einem Gleichspannungs-Verteilungsnetz
JP4771510B2 (ja) * 2004-06-23 2011-09-14 キヤノン株式会社 半導体層の製造方法及び基板の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5724376A (en) * 1995-11-30 1998-03-03 Hewlett-Packard Company Transparent substrate vertical cavity surface emitting lasers fabricated by semiconductor wafer bonding
US20040077114A1 (en) * 1999-02-05 2004-04-22 Coman Carrie Carter III-nitride light emitting devices fabricated by substrate removal
US20040026709A1 (en) * 2000-04-26 2004-02-12 Stefan Bader Gan-based light emitting-diode chip and a method for producing a luminescent diode component

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006024423A1 (de) * 2006-02-15 2007-08-16 Osram Opto Semiconductors Gmbh Verfahren zum Erzeugen von Strukturen in optoelektronischen Bauelementen und Vorrichtung dazu
US9174400B2 (en) 2006-02-15 2015-11-03 Osram Opto Semiconductors Gmbh Method for producing structures in optoelectronic components and device for this purpose
US10270011B2 (en) 2013-12-13 2019-04-23 Nichia Corporation Light emitting device

Also Published As

Publication number Publication date
KR20070043019A (ko) 2007-04-24
JP5693553B2 (ja) 2015-04-01
JP5305655B2 (ja) 2013-10-02
EP1774599A2 (de) 2007-04-18
JP2008508699A (ja) 2008-03-21
US7649266B2 (en) 2010-01-19
WO2006012838A3 (de) 2006-04-13
KR101158601B1 (ko) 2012-06-22
US20060051937A1 (en) 2006-03-09
EP1774599B1 (de) 2015-11-04
JP2013070094A (ja) 2013-04-18

Similar Documents

Publication Publication Date Title
WO2006012838A2 (de) Verfahren zur herstellung von halbleiterchips in dünnfilmtechnik und halbleiterchip in dünnfilmtechnik
DE102005007601B4 (de) Optoelektronisches Bauelement, Vorrichtung mit einer Mehrzahl optoelektronischer Bauelemente und Verfahren zur Herstellung eines optoelektronischen Bauelements
EP2149161B1 (de) Optoelektronisches bauelement
EP1314209B1 (de) Verfahren zum herstellen eines strahlungsemittierenden halbleiterchips auf iii-v-nitridhalbleiter-basis und strahlungsemittierender halbleiterchip
EP1430544B1 (de) Strahlungsemittierender halbleiterchip, verfahren zu dessen herstellung und strahlungsemittierendes bauelement
EP2057681B1 (de) Leuchtdiodenanordnung und verfahren zur herstellung einer solchen
EP2695207B1 (de) Optoelektronischer halbleiterchip
EP2149160B1 (de) Optoelektronisches bauelement und verfahren zur herstellung einer mehrzahl optoelektronischer bauelemente
DE102007022947B4 (de) Optoelektronischer Halbleiterkörper und Verfahren zur Herstellung eines solchen
DE112005003476T5 (de) Substratentfernungsprozess für LEDs mit hoher Lichtausbeute
EP1596442B1 (de) Optoelektronischer Halbleiterchip und Verfahren zum Ausbilden einer Kontaktstruktur zur elektrischen Kontaktierung eines optoelektronischen Halbleiterchips
EP2612372B1 (de) Leuchtdiodenchip
WO2009039841A1 (de) Optoelektronischer halbleiterchip, optoelektronisches bauelement und verfahren zum herstellen eines optoelektronischen bauelements
WO2007124737A1 (de) Strahlungsemittierender halbleiterkörper mit trägersubstrat und verfahren zur herstellung eines solchen
WO2010040331A1 (de) Verfahren zur herstellung eines optoelektronischen halbleiterbauelements und optoelektronisches halbleiterbauelement
EP1592070B1 (de) Strahlungsemittierendes und/oder -empfangendes Halbleiterbauelement und Verfahren zur strukturierten Aufbringung eines Kontakts auf einen Halbleiterkörper
WO2012130643A1 (de) Verfahren zum vereinzeln eines bauelementverbunds
DE102015104886A1 (de) Optoelektronischer Halbleiterchip, optoelektronisches Halbleiterbauelement und Verfahren zur Herstellung eines optoelektronischen Halbleiterchips
EP1794816A2 (de) Verfahren zur herstellung eines d]nnfilmhalbleiterchips
EP1929546A1 (de) Optoelektronischer halbleiterchip und verfahren zu dessen herstellung
WO2013131729A1 (de) Verfahren zur herstellung eines optoelektronischen halbleiterchips
DE102004036962A1 (de) Verfahren zur Herstellung von Halbleiterchips in Dünnfilmtechnik und Halbleiterchip in Dünnfilmtechnik
EP2223333A2 (de) Verfahren zur herstellung von halbleiterchips und halbleiterchip
DE10339982B4 (de) Verfahren zum Aufbringen einer Antireflexschicht auf eine Mehrzahl von strahlungsemittierenden Halbleiterchips
DE102015108056A1 (de) Optoelektronisches Halbleiterbauteil, optoelektronische Anordnung und Verfahren zur Herstellung eines optoelektronischen Halbleiterbauteils

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580025465.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007522909

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005770659

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077004553

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005770659

Country of ref document: EP