WO2006011747A1 - Composition aqueuse de decapage de resist - Google Patents
Composition aqueuse de decapage de resist Download PDFInfo
- Publication number
- WO2006011747A1 WO2006011747A1 PCT/KR2005/002429 KR2005002429W WO2006011747A1 WO 2006011747 A1 WO2006011747 A1 WO 2006011747A1 KR 2005002429 W KR2005002429 W KR 2005002429W WO 2006011747 A1 WO2006011747 A1 WO 2006011747A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hydroxide
- weight
- stripper composition
- resist stripper
- resist
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 58
- -1 tetraalkylammonium hydroxide compound Chemical class 0.000 claims abstract description 29
- 239000003960 organic solvent Substances 0.000 claims abstract description 19
- 150000001875 compounds Chemical class 0.000 claims abstract description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 11
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 15
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 9
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 9
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 8
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 claims description 8
- 239000004094 surface-active agent Substances 0.000 claims description 7
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 6
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 claims description 4
- ATHHXGZTWNVVOU-UHFFFAOYSA-N N-methylformamide Chemical compound CNC=O ATHHXGZTWNVVOU-UHFFFAOYSA-N 0.000 claims description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 4
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 claims description 4
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 claims description 4
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 claims description 4
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 claims description 4
- HHVIBTZHLRERCL-UHFFFAOYSA-N sulfonyldimethane Chemical compound CS(C)(=O)=O HHVIBTZHLRERCL-UHFFFAOYSA-N 0.000 claims description 4
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 claims description 3
- 235000019441 ethanol Nutrition 0.000 claims description 3
- LPSKDVINWQNWFE-UHFFFAOYSA-M tetrapropylazanium;hydroxide Chemical compound [OH-].CCC[N+](CCC)(CCC)CCC LPSKDVINWQNWFE-UHFFFAOYSA-M 0.000 claims description 3
- PJEXUIKBGBSHBS-UHFFFAOYSA-N 1-(hydroxymethyl)pyrrolidin-2-one Chemical compound OCN1CCCC1=O PJEXUIKBGBSHBS-UHFFFAOYSA-N 0.000 claims description 2
- ZFPGARUNNKGOBB-UHFFFAOYSA-N 1-Ethyl-2-pyrrolidinone Chemical compound CCN1CCCC1=O ZFPGARUNNKGOBB-UHFFFAOYSA-N 0.000 claims description 2
- MBDUIEKYVPVZJH-UHFFFAOYSA-N 1-ethylsulfonylethane Chemical compound CCS(=O)(=O)CC MBDUIEKYVPVZJH-UHFFFAOYSA-N 0.000 claims description 2
- DCALJVULAGICIX-UHFFFAOYSA-N 1-propylpyrrolidin-2-one Chemical compound CCCN1CCCC1=O DCALJVULAGICIX-UHFFFAOYSA-N 0.000 claims description 2
- AKSNZBFJZLTUHB-UHFFFAOYSA-M 2-(2-hydroxyethoxy)ethyl-trimethylazanium;hydroxide Chemical compound [OH-].C[N+](C)(C)CCOCCO AKSNZBFJZLTUHB-UHFFFAOYSA-M 0.000 claims description 2
- QQLILYBIARWEIF-UHFFFAOYSA-N 2-(2-hydroxyethylsulfonyl)ethanol Chemical compound OCCS(=O)(=O)CCO QQLILYBIARWEIF-UHFFFAOYSA-N 0.000 claims description 2
- KIZQNNOULOCVDM-UHFFFAOYSA-M 2-hydroxyethyl(trimethyl)azanium;hydroxide Chemical compound [OH-].C[N+](C)(C)CCO KIZQNNOULOCVDM-UHFFFAOYSA-M 0.000 claims description 2
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 claims description 2
- OHLUUHNLEMFGTQ-UHFFFAOYSA-N N-methylacetamide Chemical compound CNC(C)=O OHLUUHNLEMFGTQ-UHFFFAOYSA-N 0.000 claims description 2
- 239000004111 Potassium silicate Substances 0.000 claims description 2
- 239000004115 Sodium Silicate Substances 0.000 claims description 2
- JQDCIBMGKCMHQV-UHFFFAOYSA-M diethyl(dimethyl)azanium;hydroxide Chemical compound [OH-].CC[N+](C)(C)CC JQDCIBMGKCMHQV-UHFFFAOYSA-M 0.000 claims description 2
- 229940035429 isobutyl alcohol Drugs 0.000 claims description 2
- 229960004592 isopropanol Drugs 0.000 claims description 2
- AJFDBNQQDYLMJN-UHFFFAOYSA-N n,n-diethylacetamide Chemical compound CCN(CC)C(C)=O AJFDBNQQDYLMJN-UHFFFAOYSA-N 0.000 claims description 2
- 229910000027 potassium carbonate Inorganic materials 0.000 claims description 2
- NNHHDJVEYQHLHG-UHFFFAOYSA-N potassium silicate Chemical compound [K+].[K+].[O-][Si]([O-])=O NNHHDJVEYQHLHG-UHFFFAOYSA-N 0.000 claims description 2
- 229910052913 potassium silicate Inorganic materials 0.000 claims description 2
- 235000019353 potassium silicate Nutrition 0.000 claims description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims description 2
- 229910052911 sodium silicate Inorganic materials 0.000 claims description 2
- VDZOOKBUILJEDG-UHFFFAOYSA-M tetrabutylammonium hydroxide Chemical compound [OH-].CCCC[N+](CCCC)(CCCC)CCCC VDZOOKBUILJEDG-UHFFFAOYSA-M 0.000 claims description 2
- 229940073455 tetraethylammonium hydroxide Drugs 0.000 claims description 2
- LRGJRHZIDJQFCL-UHFFFAOYSA-M tetraethylazanium;hydroxide Chemical compound [OH-].CC[N+](CC)(CC)CC LRGJRHZIDJQFCL-UHFFFAOYSA-M 0.000 claims description 2
- VHLDQAOFSQCOFS-UHFFFAOYSA-M tetrakis(2-hydroxyethyl)azanium;hydroxide Chemical compound [OH-].OCC[N+](CCO)(CCO)CCO VHLDQAOFSQCOFS-UHFFFAOYSA-M 0.000 claims description 2
- 239000000758 substrate Substances 0.000 abstract description 44
- 239000011521 glass Substances 0.000 abstract description 18
- 238000000034 method Methods 0.000 abstract description 14
- 230000008569 process Effects 0.000 abstract description 9
- 230000007797 corrosion Effects 0.000 abstract description 6
- 238000005260 corrosion Methods 0.000 abstract description 6
- 238000001704 evaporation Methods 0.000 abstract description 6
- 230000008020 evaporation Effects 0.000 abstract description 6
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 229910052751 metal Inorganic materials 0.000 abstract description 3
- 239000002184 metal Substances 0.000 abstract description 3
- 230000032683 aging Effects 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 11
- 239000011159 matrix material Substances 0.000 description 10
- 238000011156 evaluation Methods 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 125000006850 spacer group Chemical group 0.000 description 6
- 125000000217 alkyl group Chemical group 0.000 description 5
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 4
- PAFZNILMFXTMIY-UHFFFAOYSA-N cyclohexylamine Chemical compound NC1CCCCC1 PAFZNILMFXTMIY-UHFFFAOYSA-N 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 3
- KCTAWXVAICEBSD-UHFFFAOYSA-N prop-2-enoyloxy prop-2-eneperoxoate Chemical compound C=CC(=O)OOOC(=O)C=C KCTAWXVAICEBSD-UHFFFAOYSA-N 0.000 description 3
- 125000000547 substituted alkyl group Chemical group 0.000 description 3
- PVOAHINGSUIXLS-UHFFFAOYSA-N 1-Methylpiperazine Chemical compound CN1CCNCC1 PVOAHINGSUIXLS-UHFFFAOYSA-N 0.000 description 2
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 2
- GIAFURWZWWWBQT-UHFFFAOYSA-N 2-(2-aminoethoxy)ethanol Chemical compound NCCOCCO GIAFURWZWWWBQT-UHFFFAOYSA-N 0.000 description 2
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 description 2
- SBASXUCJHJRPEV-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethanol Chemical compound COCCOCCO SBASXUCJHJRPEV-UHFFFAOYSA-N 0.000 description 2
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- WGQKYBSKWIADBV-UHFFFAOYSA-N benzylamine Chemical compound NCC1=CC=CC=C1 WGQKYBSKWIADBV-UHFFFAOYSA-N 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000003093 cationic surfactant Substances 0.000 description 2
- 229960001760 dimethyl sulfoxide Drugs 0.000 description 2
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical compound C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 description 2
- XLLIQLLCWZCATF-UHFFFAOYSA-N ethylene glycol monomethyl ether acetate Natural products COCCOC(C)=O XLLIQLLCWZCATF-UHFFFAOYSA-N 0.000 description 2
- 239000002736 nonionic surfactant Substances 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- AOHJOMMDDJHIJH-UHFFFAOYSA-N propylenediamine Chemical compound CC(N)CN AOHJOMMDDJHIJH-UHFFFAOYSA-N 0.000 description 2
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical compound NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 2
- 230000001172 regenerating effect Effects 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000002522 swelling effect Effects 0.000 description 2
- XFNJVJPLKCPIBV-UHFFFAOYSA-N trimethylenediamine Chemical compound NCCCN XFNJVJPLKCPIBV-UHFFFAOYSA-N 0.000 description 2
- 229910021642 ultra pure water Inorganic materials 0.000 description 2
- 239000012498 ultrapure water Substances 0.000 description 2
- WDQFELCEOPFLCZ-UHFFFAOYSA-N 1-(2-hydroxyethyl)pyrrolidin-2-one Chemical compound OCCN1CCCC1=O WDQFELCEOPFLCZ-UHFFFAOYSA-N 0.000 description 1
- HXKKHQJGJAFBHI-UHFFFAOYSA-N 1-aminopropan-2-ol Chemical compound CC(O)CN HXKKHQJGJAFBHI-UHFFFAOYSA-N 0.000 description 1
- LJDSTRZHPWMDPG-UHFFFAOYSA-N 2-(butylamino)ethanol Chemical compound CCCCNCCO LJDSTRZHPWMDPG-UHFFFAOYSA-N 0.000 description 1
- IWSZDQRGNFLMJS-UHFFFAOYSA-N 2-(dibutylamino)ethanol Chemical compound CCCCN(CCO)CCCC IWSZDQRGNFLMJS-UHFFFAOYSA-N 0.000 description 1
- MIJDSYMOBYNHOT-UHFFFAOYSA-N 2-(ethylamino)ethanol Chemical compound CCNCCO MIJDSYMOBYNHOT-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- LTHNHFOGQMKPOV-UHFFFAOYSA-N 2-ethylhexan-1-amine Chemical compound CCCCC(CC)CN LTHNHFOGQMKPOV-UHFFFAOYSA-N 0.000 description 1
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- 125000004200 2-methoxyethyl group Chemical group [H]C([H])([H])OC([H])([H])C([H])([H])* 0.000 description 1
- WFCSWCVEJLETKA-UHFFFAOYSA-N 2-piperazin-1-ylethanol Chemical compound OCCN1CCNCC1 WFCSWCVEJLETKA-UHFFFAOYSA-N 0.000 description 1
- GVNWZKBFMFUVNX-UHFFFAOYSA-N Adipamide Chemical compound NC(=O)CCCCC(N)=O GVNWZKBFMFUVNX-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- WJYIASZWHGOTOU-UHFFFAOYSA-N Heptylamine Chemical compound CCCCCCCN WJYIASZWHGOTOU-UHFFFAOYSA-N 0.000 description 1
- CJKRXEBLWJVYJD-UHFFFAOYSA-N N,N'-diethylethylenediamine Chemical compound CCNCCNCC CJKRXEBLWJVYJD-UHFFFAOYSA-N 0.000 description 1
- OPKOKAMJFNKNAS-UHFFFAOYSA-N N-methylethanolamine Chemical compound CNCCO OPKOKAMJFNKNAS-UHFFFAOYSA-N 0.000 description 1
- MHABMANUFPZXEB-UHFFFAOYSA-N O-demethyl-aloesaponarin I Natural products O=C1C2=CC=CC(O)=C2C(=O)C2=C1C=C(O)C(C(O)=O)=C2C MHABMANUFPZXEB-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 108010077895 Sarcosine Proteins 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- SLINHMUFWFWBMU-UHFFFAOYSA-N Triisopropanolamine Chemical compound CC(O)CN(CC(C)O)CC(C)O SLINHMUFWFWBMU-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000003679 aging effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000005210 alkyl ammonium group Chemical group 0.000 description 1
- 150000008051 alkyl sulfates Chemical class 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 229940028356 diethylene glycol monobutyl ether Drugs 0.000 description 1
- 229940075557 diethylene glycol monoethyl ether Drugs 0.000 description 1
- LAWOZCWGWDVVSG-UHFFFAOYSA-N dioctylamine Chemical compound CCCCCCCCNCCCCCCCC LAWOZCWGWDVVSG-UHFFFAOYSA-N 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- CRVGTESFCCXCTH-UHFFFAOYSA-N methyl diethanolamine Chemical compound OCCN(C)CCO CRVGTESFCCXCTH-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- UDGSVBYJWHOHNN-UHFFFAOYSA-N n',n'-diethylethane-1,2-diamine Chemical compound CCN(CC)CCN UDGSVBYJWHOHNN-UHFFFAOYSA-N 0.000 description 1
- SCZVXVGZMZRGRU-UHFFFAOYSA-N n'-ethylethane-1,2-diamine Chemical compound CCNCCN SCZVXVGZMZRGRU-UHFFFAOYSA-N 0.000 description 1
- DAZXVJBJRMWXJP-UHFFFAOYSA-N n,n-dimethylethylamine Chemical compound CCN(C)C DAZXVJBJRMWXJP-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- JCGNDDUYTRNOFT-UHFFFAOYSA-N oxolane-2,4-dione Chemical compound O=C1COC(=O)C1 JCGNDDUYTRNOFT-UHFFFAOYSA-N 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- 229920001281 polyalkylene Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 239000011369 resultant mixture Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000009528 severe injury Effects 0.000 description 1
- HIEHAIZHJZLEPQ-UHFFFAOYSA-M sodium;naphthalene-1-sulfonate Chemical compound [Na+].C1=CC=C2C(S(=O)(=O)[O-])=CC=CC2=C1 HIEHAIZHJZLEPQ-UHFFFAOYSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 239000002341 toxic gas Substances 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 1
- ZMANZCXQSJIPKH-UHFFFAOYSA-O triethylammonium ion Chemical compound CC[NH+](CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-O 0.000 description 1
- YFTHZRPMJXBUME-UHFFFAOYSA-N tripropylamine Chemical compound CCCN(CCC)CCC YFTHZRPMJXBUME-UHFFFAOYSA-N 0.000 description 1
- 238000004506 ultrasonic cleaning Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
- G03F7/42—Stripping or agents therefor
- G03F7/422—Stripping or agents therefor using liquids only
- G03F7/425—Stripping or agents therefor using liquids only containing mineral alkaline compounds; containing organic basic compounds, e.g. quaternary ammonium compounds; containing heterocyclic basic compounds containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D9/00—Chemical paint or ink removers
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/027—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
- G03F7/032—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
- G03F7/033—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
- G03F7/42—Stripping or agents therefor
- G03F7/422—Stripping or agents therefor using liquids only
- G03F7/426—Stripping or agents therefor using liquids only containing organic halogen compounds; containing organic sulfonic acids or salts thereof; containing sulfoxides
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D2111/00—Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
- C11D2111/10—Objects to be cleaned
- C11D2111/14—Hard surfaces
- C11D2111/22—Electronic devices, e.g. PCBs or semiconductors
Definitions
- the present invention relates to aqueous resist stripper composition capable of removing a cured resist, and more particularly to aqueous resist stripper composition capable of being used to regenerate a substrate by stripping a resist from a resist-coated substrate such as a color filter substrate or a TFT substrate.
- a color TFT-LCD is manufactured in several steps of forming, on a transparent substrate such as a glass, a color filter forming a black matrix resin and a pixel consisting of red (R), green (G) and blue (B); forming on the color filter a transparent conducting film as an electrode using a sputtering method; forming an alignment layer on the transparent conducting film; and filling a liquid crystal into the LCD.
- the resist has been widely used to form patterns of the color TFT-LCD such as an overcoat, a photo spacer, a color filter, a black matrix, etc.
- patterns of the color TFT-LCD such as an overcoat, a photo spacer, a color filter, a black matrix, etc.
- it was very difficult to remove the various resists such as an epoxy-based, epoxy acrylate-based, acrylate-based UV overcoat and a thermal overcoat, a photo spacer resist, a color filter resist, a black matrix resin and resists used in IPA and MVA modes.
- the conventional resist stripper composition has a problem that a poor color filter substrate or a poor TFT substrate with the incorrect pattern is wasted without undergoing regeneration processes such as a repair and regeneration due to absence of solvents for effectively removing a large quantity of the cured resist from the substrate.
- U.S.A. Patent Nos. 5,091,103, 5,308,745, 5,102,777, 5,597,678 disclose a resist stripper including N-methylpyrrolidone, alkylene glycol ether and l,3-dimethyl-2-imidazolidinone for stripping a cross-linked photoresist film.
- the stripper has a problem that it shows an insufficient solubility to remove the color filter resist.
- Korean Patent Publication No. 2003-2664 discloses aqueous stripper composition for a color filter including (a) the group consisting of inorganic alkaline hydroxide, alkylammonium hydroxide, alkylarylammonium hydroxide, (b) alkylene glycol ether, (c) aqueous amine compound, and (d) water.
- the aqueous stripper has a problem that a working time increases in the re- work process since a stripping rate is slow for a thermal overcoat. Disclosure of Invention Technical Problem
- the present invention is designed to solve the problems of the prior art, and therefore it is an object of the present invention to provide aqueous resist stripper composition for easily and simply removing a variety of resists which are generated during the process of manufacturing TFT-LCD but not easily removed by the con ⁇ ventional methods, the resists selected from the group consisting of an epoxy-based, epoxy acrylate-based, acrylate-based UV overcoat and a thermal overcoat, a photo spacer resist, a color filter resist, a black matrix resin and resists used in IPA and MVA modes, as well as minimizing corrosions of the lower metal layer and the glass substrate during the stripping process, maximizing a replacement cycle of the stripper due to its low evaporative loss and its high stripping speed for regenerating the color substrate and the TFT substrate at a large scale.
- the resists selected from the group consisting of an epoxy-based, epoxy acrylate-based, acrylate-based UV overcoat and a thermal overcoat, a photo spacer resist, a color filter
- the present invention provides aqueous resist stripper composition
- aqueous resist stripper composition comprising 0.3 to 15 % by weight of an inorganic alkaline compound; 0.1 to 12 % by weight of a tetraalkylammonium hydroxide compound; 0.1 to 40 % by weight of a water-soluble organic solvent; and 33 to 99.5 % by weight of water, based on total weight of the composition.
- the aqueous resist stripper composition according to the present invention includes an inorganic alkaline compound.
- the inorganic alkaline compound functions to easily remove a resist from a glass surface by weakening a binding force between binder components and/or cured poly-functional monomers composed of the resist composition.
- An example of the inorganic alkaline compound may include, but is not limited to, sodium carbonate, potassium carbonate, sodium silicate, potassium silicate, sodium hydroxide, potassium hydroxide, etc. if it functions as described previously. Especially it is preferred to use sodium hydroxide or potassium hydroxide.
- the inorganic alkaline compound has a content of 0.3 to 15
- the inorganic alkaline compound has a problem of showing a poor stripping property if it has a content of less than 0.3 % by weight, while it has a problem of depositing an organic salt and an inorganic alkaline compound into a solid due to evaporation of moisture and an organic solvent during the stripping process, and therefore resulting in a severe damage to the glass substrate if it exceeds a content of 15 % by weight.
- the inorganic alkaline compound preferably has a content of 1 to 7 % by weight.
- a tetraalkylammonium hydroxide compound, which is included in the aqueous resist stripper composition of the present invention, is represented by Chemistry Figure 1, as follows.
- R to R is independently a substituted alkyl group or an unsubstituted alkyl group.
- the unsubstituted alkyl group includes an alkyl group having 1 to 4 carbon atoms selected from the group consisting of a methyl group, an ethyl group, an n- propyl group, an n-butyl group, etc.
- the substituted alkyl group is preferably an alkyl group where a hydrogen atom of the alkyl group having 1 to 4 carbon atoms is substituted with a hydroxy group, an alkoxy group or a hydroxyalkyl group, and an example of the substituted alkyl group includes a 2-hydroxy ethyl group, a 3-hydroxy propyl group, a 4-hydroxy butyl group, a 2-methoxyethyl group, a 2-(2-hydroxyethoxy)ethyl group, etc.
- Such a tetraalkylammonium hydroxide compound includes tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetra n-propylammoniumhydroxide, tetra n-butylammonium hydroxide, tetra(2-hydroxyethyl)ammonium hydroxide, trimethyl(2-hydroxyethyl)ammonium hydroxide, trimethyl2-(2-hydroxyethoxy)ethylammonium hydroxide, dimethyldiethy- lammonium hydroxide, etc.
- the compounds may be used alone or with a mixture thereof.
- the tetraalkylammonium hydroxide compound which mainly functions to remove the color resists of R, G and B from the color filter substrate, has a content of 0.1 to 12 % by weight and preferably 0.1 to 8 % by weight, based on a total weight of the aqueous resist stripper composition of the present invention.
- the tetraalkylammonium hydroxide compound has a poor stripping property of the resist if it has a content of less than 0.1 % by weight, while the tetraalkylammonium hydroxide compound has an advantage of easily stripping the resist, but a disadvantage of causing corrosion of the glass substrate if it exceeds a content of 12 % by weight.
- the aqueous resist stripper composition of the present invention includes a water- soluble organic solvent.
- the water-soluble organic solvent allows a cured portion to be effectively stripped from the substrate by swelling only the cured portion of the resist components, and especially it is effective to remove the thermal overcoat.
- the water-soluble organic solvent includes amides such as dimethylsulf oxide; N- methyl-2-pyrrolidinone, N-ethyl-2-pyrrolidinone, N-propyl-2-pyrrolidinone, N- hydroxymethyl-2-pyrrolidinone, N-hydroxyethyl-2-pyrrolidinone, N- methylformamide, N,N-dimethylformamide, N-methylacetamide, N,N-dimethylacetamide, N,N-diethylacetamide, etc.; sulfones such as dimethylsulf one, diethylsulfone, bis(2-hydroxyethyl)sulfone, tetramethylenesulfone, etc.; alcohols such as methylalcohol, ethylalcohol, propylalcohol, butylalcohol, pentylalcohol, hexylalcohol, isopropylalcohol, isobutylal
- Such a water-soluble organic solvent has a content of 0.1 to 40 % by weight, and preferably 1 to 30 % by weight, based on a total weight of the aqueous stripper composition.
- the water-soluble organic solvent shows a poor swelling effect on the resist and therefore a poor stripping property if it has a content of less than 0.1 % by weight, while the water-soluble organic solvent shows an excellent swelling effect on the resist if it exceeds a content of 40 % by weight, but shows a poor stripping property as its duration of use increases since the stability of the composition is lowered.
- water may be used as a solvent since it is an environment-friendly solvent and shows improved properties such as stability and a stripping property against flammability.
- Water used in the aqueous resist stripper composition of the present invention may preferably be a pure water or ultra pure water such as ion-exchanged water, distilled water, etc, and it has a content of 33 to 99.5 % by weight, based on the composition of the present invention.
- an amine compound or an alkylene glycol-based organic solvent may further be added to improve the stripping property of the aqueous resist stripper composition according to the present invention.
- the amine compound preferably has a negative logarithm of the acid dissociation constant (pH) of 7.5 to 13.5 in the aqueous solution at 25 0 C, considered to the corrosivity by Ti and Al.
- an example of such an amine compound includes alkanol amines such as hydroxylamine, monoethanolamine, diethanolamine, triethanolamine, 2-(2-aminoethoxy)ethanol, N,N-dimethylethylamine, N,N-diethylethanolamine, N,N-dibutylethanolamine, N-methylethanolamine, N- ethylethanolamine, N-butylethanolamine, N-methyldiethanolamine, monoiso- propanolamine, triisopropanolamine, etc.; polyalkylene polyamines such as diethylen- etriamine, triethylenetetraamine, propylenediamine, N,N-diethylethylenediamine, N,N'-diethylethylenediamine, 1 ,4-butanediamine, N-ethyl-ethylenediamine, 1,2-propanediamine, 1,3-propanediamine, 1,6-hexanediamide, etc.; aliphatic amine
- the amine compound may have a content of 1 to 30 % by weight considered to its stability and stripping property, based on a total weight of the composition.
- an example of the alkylene glycol-based organic solvent includes, but is not limited to, an organic solvent of carbitols such as methylcarbitol, ethylcarbitol, butyl carbitol; a glycol organic solvent of polyhydric alcohols such as ethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol monomethyl ether acetate, ethyleneglyco- lethyletheracetate, diethyleneglycol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether; and derivatives thereof. They may be used alone or with a mixture thereof.
- the alkylene glycol-based organic solvent may have a content of 1 to 45 % by weight considered to its stripping property and compatability with water, based on a total weight of the composition.
- a surfactant may be added to remove the resist components in a more effective manner.
- the surfactant functions to lower an interaction between the resist film and a glass substrate, and therefore reduce a surface energy to penetrate an alkaline compound and an organic solvent into a resist paint film, finally giving an excellent stripping property to the glass substrate.
- the surfactant may prevent the stripped resist components from being reattached to the glass substrate, and also prevent the aqueous stripper from being decolored due to its oxidation even when it is used for a long time.
- the surfactant is not limited if it may be used in the aqueous resist stripper.
- the surfactant includes a sulfoxide -based or carboxy-based cationic surfactant such as alkylbenzene sulfonate, alkylsulfate, poly- oxyalkylethersulfate, alkansulfonate, polyoxyethylene alkylether methylcarboxylate, alkylphosphate, alkylsulfosuccinate, olefinsulfonate, aceylamidoalkyl sulfate, aceyl- sarcosinate, sodium naphthalene sulfonate formalin condensate, etc., or a non-ionic surfactant having 5 to 20 % by weight of an ethylene oxide adduct, and they may be used alone or with a mixture thereof.
- the surfactant preferably has a content of 0.05 to 10 % by weight considered to an effect on its addition and a washing property after treatment of the aqueous stripper, based on a total weight of the
- the aqueous resist stripper composition according to the present invention shows an excellent stripping property, a very low corrosivity of the lower substrate, and a low evaporation and aging properties.
- the aqueous stripper composition also allows mass- production of the glass substrate due to a low environmental pollution and working stability in the field because water is used as a solvent in the composition, as described previously. Accordingly, unlike the conventional color filter or TFT substrates which have been wasted due to the incorrect pattern formation, the color filter or TFT substrates obtained from the aqueous resist stripper composition according to the present invention may effectively remove a variety of the resists present in large areas of the color filter substrate and the TFT substrate, and therefore regenerate the color substrate and the TFT substrate.
- Comparative embodiments 1 to 3 [30] Aqueous resist aqueous stripper compositions were prepared in the same manner as the Embodiments 1 to 16, based on the components and contents listed in a following Table 2.
- KOH represents potassium hydroxide
- TMAH tetramethylammonium hydroxide
- TEAH tetraethylmmonium hydroxide
- TPAH tetrapropylammonium hydroxide
- NMP represents N-methyl pyrrolidone
- DMSO dimethyl sulfoxide
- BzOH represents benzyl alcohol
- BDG butyldiglycol
- EC ethylcarbitol
- HDA represents hydroxyl amine
- MEA represents monoethanolamine
- DMAC represents N,N-dimethylacetamide
- DI represents an ultra pure water
- K-290 represents cationic surfactant commercially available from the company Hannong Chemicals Inc.
- OP-IO represents non-ionic surfactant commercially available from the company Hannong Chemicals Inc.
- aqueous resist stripper compositions of the Embodiments and the Comparative embodiments prepared in the above mentioned manner were measured for a stripping property, corrosivity and evaporation rate, as follows.
- Composition A is comprised of a black matrix resin, a color filter photoresist, a UV overcoat and a photo spacer resist
- Composition B is identical to the Composition A, except that a thermal overcoat was used instead of the UV overcoat.
- the Com ⁇ positions A and B were evaluated for their stripping properties.
- the aqueous stripper compositions prepared in the Embodiments and the Comparative embodiments were kept at 55 0 C, and then a stripping level of test samples were investigated at the time points of 10 minutes, 15 minutes and 20 minutes by an ultrasonic cleaning.
- the evaluation standard is as follows.
- test samples which were used in the evaluation of a stripping property, were also used to carry out a corrosion test of the aqueous stripper composition.
- the aqueous stripper compositions prepared in the Embodiments and the Comparative em ⁇ bodiments were kept at 55 0 C, and the organic substrates treated with a Cr black matrix were immersed into the compositions for 25 minutes and then washed with DI.
- the Cr black matrix treated thus was removed with an etchant, and then a corrosion level of the glass substrate was evaluated by measuring deviations from a damaged portion and a remaining portion of Cr black matrix in the glass substrate.
- the aqueous stripper was quantitified to 100 g in a glass beaker, and then weighed at one-hour intervals while keeping a temperature at 55 0 C. the weight was measured and recorded up to the time points of 6 hours, and then an evaporative loss was evaluated as a percentage, based on the weight recorded at the first onset.
- aqueous resist stripper compositions (Embodiments 1 to 16) according to the present invention easily and completely remove the various resists such as a black matrix resin, a color filter resist, a UV overcoat, a photo spacer resist, a thermal overcoat, etc., as well as show a very low corrosivity.
- Comparative embodiments 1 to 3 show a poor stripping property and corrode the lower substrate.
- the aqueous resist stripper composition of the present invention may be useful to easily and simply remove a variety of resists which are generated during the process of manufacturing TFT-LCD but not easily removed by the con ⁇ ventional methods, the resists selected from the group consisting of an epoxy-based, epoxy acrylate-based, acrylate-based UV overcoat and a thermal overcoat, a photo spacer resist, a color filter resist, a black matrix resin and resists used in IPA and MVA modes.
- aqueous resist stripper composition of the present invention may be useful to minimize corrosions of the lower metal layer and the glass substrate during the stripping process, and to maximize a replacement cycle of the stripper due to its low evaporative loss and its high stripping speed for regenerating the color substrate and the TFT substrate at a large scale.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Photosensitive Polymer And Photoresist Processing (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2004-0059033 | 2004-07-28 | ||
KR1020040059033A KR100629416B1 (ko) | 2004-07-28 | 2004-07-28 | 레지스트 수계 박리액 조성물 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006011747A1 true WO2006011747A1 (fr) | 2006-02-02 |
Family
ID=35786454
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2005/002429 WO2006011747A1 (fr) | 2004-07-28 | 2005-07-26 | Composition aqueuse de decapage de resist |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR100629416B1 (fr) |
TW (1) | TWI311585B (fr) |
WO (1) | WO2006011747A1 (fr) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2138557A1 (fr) * | 2008-06-18 | 2009-12-30 | Paul Hughett | Composition de nettoyage d'un moteur à combustion interne supérieure |
CN102626699A (zh) * | 2012-04-25 | 2012-08-08 | 华灿光电股份有限公司 | 一种提高芯片亮度的方法 |
EP2432035A3 (fr) * | 2010-09-21 | 2013-01-02 | Rohm and Haas Electronic Materials LLC | Procédé amélioré de décapage de résistants à la gravure thermofusibles de semi-conducteurs |
CN102854761A (zh) * | 2012-08-08 | 2013-01-02 | 华灿光电股份有限公司 | 一种刻蚀后去胶的溶液和方法 |
TWI478888B (zh) * | 2008-08-04 | 2015-04-01 | Toppan Printing Co Ltd | 玻璃基板再生裝置 |
CN109896742A (zh) * | 2019-04-23 | 2019-06-18 | 蚌埠中光电科技有限公司 | 一种tft-lcd基板玻璃的镀膜方法 |
JP2019124948A (ja) * | 2019-02-20 | 2019-07-25 | 東京応化工業株式会社 | リソグラフィー用洗浄液、及び基板の洗浄方法 |
CN116770308A (zh) * | 2023-08-24 | 2023-09-19 | 昆山市板明电子科技有限公司 | 一种适用于超精细线路制作的剥膜液及其应用 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8110535B2 (en) * | 2009-08-05 | 2012-02-07 | Air Products And Chemicals, Inc. | Semi-aqueous stripping and cleaning formulation for metal substrate and methods for using same |
KR101375100B1 (ko) * | 2012-08-31 | 2014-03-17 | 주식회사 이엔에프테크놀로지 | 후막의 네가티브 포토레지스트용 박리액 조성물 |
KR102010593B1 (ko) * | 2013-05-28 | 2019-08-13 | 동우 화인켐 주식회사 | 칼라 레지스트 및 유기계 절연막 박리액 조성물 |
JP6438649B2 (ja) * | 2013-12-10 | 2018-12-19 | 株式会社Screenホールディングス | 基板処理方法および基板処理装置 |
KR102347618B1 (ko) * | 2015-04-02 | 2022-01-05 | 동우 화인켐 주식회사 | 레지스트 박리액 조성물 |
JP6862027B2 (ja) * | 2018-01-08 | 2021-04-21 | エムティーアイ カンパニー, リミテッドMti Co., Ltd. | ウェハ加工用保護コーティング剤組成物、及びそれを含む保護コーティング剤 |
CN110161812A (zh) * | 2019-06-06 | 2019-08-23 | 成都中电熊猫显示科技有限公司 | 重工药液及其制备方法、重工装置 |
KR102040066B1 (ko) * | 2019-08-02 | 2019-11-04 | 동우 화인켐 주식회사 | 칼라 레지스트 및 유기계 절연막 박리액 조성물 |
WO2022232751A1 (fr) * | 2021-04-30 | 2022-11-03 | Versum Materials Us, Llc | Compositions pour éliminer une photorésine d'un substrat et leurs utilisations |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4904571A (en) * | 1987-07-21 | 1990-02-27 | Tokyo Ohka Kogyo Co., Ltd. | Remover solution for photoresist |
US5780406A (en) * | 1996-09-06 | 1998-07-14 | Honda; Kenji | Non-corrosive cleaning composition for removing plasma etching residues |
US5798323A (en) * | 1997-05-05 | 1998-08-25 | Olin Microelectronic Chemicals, Inc. | Non-corrosive stripping and cleaning composition |
US6030932A (en) * | 1996-09-06 | 2000-02-29 | Olin Microelectronic Chemicals | Cleaning composition and method for removing residues |
US6413923B2 (en) * | 1999-11-15 | 2002-07-02 | Arch Specialty Chemicals, Inc. | Non-corrosive cleaning composition for removing plasma etching residues |
US6455479B1 (en) * | 2000-08-03 | 2002-09-24 | Shipley Company, L.L.C. | Stripping composition |
-
2004
- 2004-07-28 KR KR1020040059033A patent/KR100629416B1/ko active IP Right Grant
-
2005
- 2005-07-26 WO PCT/KR2005/002429 patent/WO2006011747A1/fr active Application Filing
- 2005-07-27 TW TW094125443A patent/TWI311585B/zh active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4904571A (en) * | 1987-07-21 | 1990-02-27 | Tokyo Ohka Kogyo Co., Ltd. | Remover solution for photoresist |
US5780406A (en) * | 1996-09-06 | 1998-07-14 | Honda; Kenji | Non-corrosive cleaning composition for removing plasma etching residues |
US6030932A (en) * | 1996-09-06 | 2000-02-29 | Olin Microelectronic Chemicals | Cleaning composition and method for removing residues |
US5798323A (en) * | 1997-05-05 | 1998-08-25 | Olin Microelectronic Chemicals, Inc. | Non-corrosive stripping and cleaning composition |
US6413923B2 (en) * | 1999-11-15 | 2002-07-02 | Arch Specialty Chemicals, Inc. | Non-corrosive cleaning composition for removing plasma etching residues |
US6455479B1 (en) * | 2000-08-03 | 2002-09-24 | Shipley Company, L.L.C. | Stripping composition |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2138557A1 (fr) * | 2008-06-18 | 2009-12-30 | Paul Hughett | Composition de nettoyage d'un moteur à combustion interne supérieure |
TWI478888B (zh) * | 2008-08-04 | 2015-04-01 | Toppan Printing Co Ltd | 玻璃基板再生裝置 |
EP2432035A3 (fr) * | 2010-09-21 | 2013-01-02 | Rohm and Haas Electronic Materials LLC | Procédé amélioré de décapage de résistants à la gravure thermofusibles de semi-conducteurs |
US9130110B2 (en) | 2010-09-21 | 2015-09-08 | Rohm And Haas Electronic Materials Llc | Method of stripping hot melt etch resists from semiconductors |
CN102626699A (zh) * | 2012-04-25 | 2012-08-08 | 华灿光电股份有限公司 | 一种提高芯片亮度的方法 |
CN102854761A (zh) * | 2012-08-08 | 2013-01-02 | 华灿光电股份有限公司 | 一种刻蚀后去胶的溶液和方法 |
JP2019124948A (ja) * | 2019-02-20 | 2019-07-25 | 東京応化工業株式会社 | リソグラフィー用洗浄液、及び基板の洗浄方法 |
CN109896742A (zh) * | 2019-04-23 | 2019-06-18 | 蚌埠中光电科技有限公司 | 一种tft-lcd基板玻璃的镀膜方法 |
CN116770308A (zh) * | 2023-08-24 | 2023-09-19 | 昆山市板明电子科技有限公司 | 一种适用于超精细线路制作的剥膜液及其应用 |
CN116770308B (zh) * | 2023-08-24 | 2023-11-14 | 昆山市板明电子科技有限公司 | 一种适用于超精细线路制作的剥膜液及其应用 |
Also Published As
Publication number | Publication date |
---|---|
TW200613543A (en) | 2006-05-01 |
KR20060010366A (ko) | 2006-02-02 |
KR100629416B1 (ko) | 2006-09-28 |
TWI311585B (en) | 2009-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2006011747A1 (fr) | Composition aqueuse de decapage de resist | |
KR101488265B1 (ko) | 박리 조성물 및 박리 방법 | |
JP5647685B2 (ja) | レジスト剥離液組成物及びこれを用いたレジストの剥離方法 | |
JP2914646B2 (ja) | 非腐食性フォトレジスト剥離用組成物 | |
TWI223660B (en) | Polymer removal | |
CN101373343B (zh) | 用于薄膜晶体管液晶显示器的彩色光阻剂剥离溶液组合物 | |
CN1577112B (zh) | 去除tft-lcd制造工艺中彩色抗蚀剂的剥离组合物 | |
CN101000468B (zh) | 薄膜晶体管液晶显示器用彩色抗蚀剂剥离液组合物 | |
US8883699B2 (en) | Resist stripping composition and method of stripping resist using the same | |
WO2006062534A1 (fr) | Compositions de nettoyage microelectronique non aqueuses et non corrosives | |
JP5937854B2 (ja) | オフセット印刷用凹版洗浄液組成物及びこれを用いた洗浄方法 | |
KR102032321B1 (ko) | 얼룩 발생 방지용 레지스트 박리액 조성물 | |
JP7244519B2 (ja) | フォトレジスト剥離組成物 | |
TWI406112B (zh) | 光阻清除組成物及清除光阻之方法 | |
CN101676806A (zh) | 薄膜晶体管液晶显示器用热固性树脂的剥离剂组合物 | |
KR20130049577A (ko) | 포토레지스트 박리액 조성물 | |
KR100544889B1 (ko) | 포토레지스트용 스트리퍼 조성물 | |
KR100483372B1 (ko) | 포토레지스트용 수계 박리액 | |
KR100324172B1 (ko) | 포토레지스트박리액조성물및이를이용한포토레지스트박리방법 | |
KR20130068903A (ko) | 전자재료용 세정액 조성물 | |
CN106997158B (zh) | 光刻胶去除用剥离液组合物 | |
KR20130019729A (ko) | 평판표시장치용 세정액 조성물 및 평판표시장치의 세정 방법 | |
KR101957524B1 (ko) | 포토레지스트 박리액 조성물 | |
KR101292497B1 (ko) | 레지스트 박리액 조성물 및 이를 이용한 레지스트의박리방법 | |
KR20130048698A (ko) | 액정표시장치 공정에 사용되는 배향막의 염기성 박리액 조성물 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |