WO2006011454A1 - 発熱ローラ、定着装置、および画像形成装置 - Google Patents

発熱ローラ、定着装置、および画像形成装置 Download PDF

Info

Publication number
WO2006011454A1
WO2006011454A1 PCT/JP2005/013593 JP2005013593W WO2006011454A1 WO 2006011454 A1 WO2006011454 A1 WO 2006011454A1 JP 2005013593 W JP2005013593 W JP 2005013593W WO 2006011454 A1 WO2006011454 A1 WO 2006011454A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive layer
heat generating
fixing device
roller
heat
Prior art date
Application number
PCT/JP2005/013593
Other languages
English (en)
French (fr)
Inventor
Masaru Imai
Noboru Katakabe
Youichi Nakamura
Naoto Matsuo
Tomoyuki Noguchi
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2006529322A priority Critical patent/JP4403180B2/ja
Priority to US11/572,521 priority patent/US7486923B2/en
Publication of WO2006011454A1 publication Critical patent/WO2006011454A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/20Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat
    • G03G15/2003Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat
    • G03G15/2014Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat using contact heat
    • G03G15/2039Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat using contact heat with means for controlling the fixing temperature
    • G03G15/205Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat using contact heat with means for controlling the fixing temperature specially for the mode of operation, e.g. standby, warming-up, error

Definitions

  • Heat generating roller, fixing device, and image forming apparatus Heat generating roller, fixing device, and image forming apparatus
  • the present invention relates to a fixing device used in an image forming apparatus such as an electrophotographic or electrostatic recording type copying machine, facsimile, and printer, and more particularly, records an unfixed image by an electromagnetic induction heating method.
  • the present invention relates to a fixing device that heats and fixes to a material, and an image forming apparatus using the fixing device.
  • an electromagnetic induction heating type fixing device an alternating current is applied to an exciting coil, and a magnetic flux that repeatedly generates and disappears is generated around the exciting coil.
  • An eddy current is generated when the generated magnetic flux passes through the conductor, and heat generated by the conductor due to the eddy current is used for fixing an unfixed image.
  • heat generated by the conductor is transmitted to an ep formed by two rollers, and when the recording material passes through the nip, the pressure by the rollers and the transmitted heat are used.
  • the toner on the recording material is fixed.
  • the roller forming the two cups itself is formed of the conductor, or a thin film is formed on one of the rollers forming the two cups with the conductor. You can suspend the belt.
  • the heat transmitted to the two cups is taken away by the surrounding members of the recording material passing through the two cups, and the temperature of the rollers and belts that transmit the heat to the two cups is lowered.
  • the width of the recording material passing through the two-pipe is various, and heat is not always taken from the entire width of the roller or belt.
  • the entire roller width of the heat-generating roller formed of a conductor always makes contact with the recording material in a two-ply manner. Therefore, when a narrow recording material passes through the nip, heat is not taken away from a portion that does not contact the recording material. Therefore, the recording material width of the heat roller The outside may be too hot. When a wide recording material is passed in a state where the temperature of such a portion is higher than the fixing temperature suitable for fixing the toner, the toner once transferred to the recording material is reattached to the heating roller. An offset occurs. In addition, the life of the rubber member that contacts the heat roller may be significantly shortened.
  • the Curie temperature is a temperature that is a threshold value for the presence or absence of magnetic properties of the magnetic shunt metal, and even at a normal temperature, even a magnetic shunt metal having ferromagnetism loses magnetism at a temperature exceeding the Curie temperature.
  • a material having a Curie temperature equal to the fixing temperature is used as the material of the conductive layer of the film that generates heat. This reduces the eddy current and suppresses heat generation.
  • Patent Document 1 Japanese Patent Laid-Open No. 7-114276
  • the magnetic shunt metal has an excessive skin resistance and also has a large inductance at the time of coupling, so that even if excited by an exciting coil, an eddy current hardly occurs. For this reason, there is a problem that it takes time to warm up until the temperature required for fixing is increased.
  • image forming apparatuses such as copiers, facsimiles, and printers raise the temperature of the fixing device to a temperature required for toner fixing when the power is turned on or after returning from the sleep state. Therefore, it takes a long time to actually form an image.
  • the specific resistance is electromagnetic induction heating an integer ⁇ genus 70 X 10- 6 ⁇ cm (ohm-cm) with an alternating current having a frequency 20 kHz (Ruth to kilometers), magnetic shunt metal skin resistance of the 33 ⁇ 41 ⁇ 10- 4 ⁇ (ohm). This value is too large is also seen from Table skin resistance 8.8 chi 10- 4 Omega induction heating easy iron, because the inductance is large, an eddy current is Kuku calorific flow is small.
  • An object of the present invention is to reduce the warm-up time and eliminate the abnormal excessive temperature rise outside the recording material width, thereby preventing the occurrence of offset, breakage of the rubber member, and life deterioration. It is an object of the present invention to provide a fixing device capable of realizing excellent fixing performance.
  • the fixing device of the present invention is generated in the magnetic field by being arranged in the magnetic field formed by the excitation means to which a voltage is applied and forms a magnetic field around at least a part of the excitation means.
  • a heating unit that generates heat by penetrating the magnetic flux inside; and a fixing unit that heats and fixes an image formed on the recording material using the heat of the heating unit.
  • a magnetically permeable conductive layer made of a magnetic shunt material that has magnetism and loses magnetism at a predetermined temperature or more, and a nonmagnetic conductive layer laminated on the exciting means side of the permeable conductive layer are employed. .
  • the heat generating roller according to the present invention is a heat generating roller that is disposed in a magnetic field formed by the excitation means and generates heat by penetrating the magnetic flux generated in the magnetic field into the magnetic field. And a non-magnetic conductive layer laminated on the exciting means side of the magnetically permeable conductive layer. .
  • FIG. 1 is a diagram showing a schematic configuration of an image forming apparatus according to an embodiment of the present invention.
  • FIG. 2 (a) is a cross-sectional view showing the configuration of the fixing device according to Embodiment 1, and (b) is another cross-sectional view showing the configuration of the fixing device according to Embodiment 1.
  • FIG. 3 is a partial cross-sectional view showing a detailed configuration of the heat generating roller according to the first embodiment.
  • FIG. 4 is a diagram showing an equivalent circuit of a system including a heating roller and an excitation coil according to Embodiment 1.
  • FIG. 5 is a diagram showing a change in resistance R of the equivalent circuit according to Embodiment 1.
  • FIG. 6 is a diagram showing a change in inductance L of the equivalent circuit according to Embodiment 1.
  • FIG. 7 is a diagram showing a change in the coupling coefficient k of the equivalent circuit according to Embodiment 1.
  • FIG. 8A is a cross-sectional view showing a configuration of a fixing device according to Embodiment 2 of the present invention
  • FIG. 8B is another cross-sectional view showing a configuration of the fixing device according to Embodiment 2.
  • FIG. 9 is a diagram showing the relationship between the thickness of the nonmagnetic conductor according to Embodiment 2 and the resistance of the equivalent circuit
  • FIG. 10 is a diagram showing a change in resistance R of the equivalent circuit according to Embodiment 2.
  • FIG. 11 is a diagram showing a change in inductance L of the equivalent circuit according to Embodiment 2.
  • FIG. 12 is a diagram showing a change in the coupling coefficient k of the equivalent circuit according to Embodiment 2.
  • FIG. 13 is a cross-sectional view showing a configuration of a fixing device according to Embodiment 3 of the present invention.
  • FIG. 14 is a partial cross-sectional view showing a detailed configuration of the heat generating roller according to the third embodiment.
  • FIG. 15 (a) is a cross-sectional view showing the configuration of the fixing device according to Embodiment 4 of the present invention, and (b) is another cross-sectional view showing the configuration of the fixing device according to Embodiment 4.
  • FIG. 15 (a) is a cross-sectional view showing the configuration of the fixing device according to Embodiment 4 of the present invention, and (b) is another cross-sectional view showing the configuration of the fixing device according to Embodiment 4.
  • FIG. 16 (a) is a cross-sectional view showing the configuration of the fixing device according to Embodiment 5 of the present invention, and (b) is another cross-sectional view showing the configuration of the fixing device according to Embodiment 5.
  • FIG. 17 is a view showing a modification of the nonmagnetic conductor according to Embodiment 5
  • the present inventors have taken time S to heat up in heat fixing using a magnetic shunt metal having a set Curie temperature, and when only the magnetic shunt metal is heated alone, the recording material width It was found that when the outer part of the material exceeded the Curie temperature, the magnetic coupling of the part became good and the calorific value could not be sufficiently suppressed.
  • the essence of the present invention is that a nonmagnetic conductive layer is provided between the exciting coil and the magnetic shunt metal excited by the exciting coil to promote heat generation of the magnetic shunt metal until the Curie temperature is reached.
  • FIG. 1 is a diagram showing a schematic configuration of an image forming apparatus according to Embodiment 1 of the present invention.
  • an electrophotographic photosensitive member hereinafter referred to as “photosensitive drum” 101 is rotatably disposed in an image forming apparatus main body 100 of this image forming apparatus.
  • the surface of the photosensitive drum 101 is uniformly charged to a predetermined negative dark potential V0 by the charger 102 while being rotated at a predetermined peripheral speed in the direction of the arrow.
  • the laser beam scanner 103 outputs a laser beam 104 modulated in accordance with a time-series electric digital pixel signal of image information input from a host device such as an image reading device or a computer (not shown).
  • the uniformly charged surface of the photosensitive drum 101 is subjected to scanning exposure by a laser beam 104.
  • the absolute value of the potential of the exposed portion of the photosensitive drum 101 decreases to a bright potential VL, and an electrostatic latent image is formed on the surface of the photosensitive drum 101.
  • This electrostatic latent image is reversely developed by the negatively charged toner of the developing device 105 to be a visible image (toner image).
  • the developing device 105 includes a developing roller 106 that is rotationally driven.
  • the developing roller 106 is disposed so as to face the photosensitive drum 101, and a thin layer of toner is formed on the outer peripheral surface thereof.
  • the developing roller 106 is applied with a developing bias voltage whose absolute value is smaller than the negative potential V0 of the photosensitive drum 101 and larger than the light potential VL.
  • the toner on the developing roller 106 is transferred only to the light potential VL portion of the photosensitive drum 101, and the electrostatic latent image is visualized, and an unfixed toner image (hereinafter, “ 111) is formed.
  • a recording sheet 109 as a recording material is fed from the sheet feeding unit 107 one by one by a feeding roller 108.
  • the fed recording paper 109 passes through a pair of registration rollers 110 and is fed to the ep of the photosensitive drum 101 and the transfer roller 112 at an appropriate timing synchronized with the rotation of the photosensitive drum 101.
  • the toner image 111 on the photosensitive drum 101 is transferred onto the recording paper 109 by the transfer roller 112 to which a transfer bias is applied.
  • the recording paper 109 on which the toner image 111 is formed and supported in this manner is guided by the recording paper guide 114 and separated from the photosensitive drum 101, and then is heated and fixed (hereinafter referred to as “fixing device”). It is conveyed toward 200 fixing parts. Then, the toner image 111 is heated and fixed by the fixing device 200 onto the recording paper 109 conveyed to the fixing portion.
  • the recording paper 109 on which the toner image 111 has been heat-fixed passes through the fixing device 200 and is then discharged onto a paper discharge tray 115 disposed outside the image forming apparatus main body 100.
  • Residues such as transfer residual toner on the surface of the photosensitive drum 101 from which the recording paper 109 has been separated are removed by the cleaning device 113, and are repeatedly used for the next image formation.
  • FIGS. 2A and 2B are cross-sectional views showing the configuration of the fixing device 200 according to the present embodiment.
  • FIG. 2 (a) shows the magnetic path of the magnetic flux M in a state below the Curie temperature
  • FIG. 2 (b) shows the magnetic path of the magnetic flux M in a state exceeding the Curie temperature.
  • the fixing device 200 includes a heat generating roller 210, a pressure roller 220, a temperature sensor 230, and an exciting coil unit 240.
  • the heating roller 210 is a cylindrical roller having a bottom diameter of 34 mm (millimeters), for example, and rotates around the central axis so as to convey the recording paper 109 on which the toner image 111 is formed and conveyed in the direction of the arrow (see FIG. (Counterclockwise)
  • the heat generating roller 210 is mainly formed by laminating a highly permeable conductive layer 212 and a nonmagnetic conductive layer 214. More specifically, as shown in FIG. 3, the highly permeable conductive layer 212, the nonmagnetic conductive layer 214, and the protective two-layered layer (hereinafter referred to as “the protective layer”) in order from the side closer to the central axis of the heat generating roller 210. 216) and release layer 218 are laminated.
  • the total thickness of the heat generating roller 210 is preferably 100 to 1000 ⁇ m (micrometer).
  • the highly magnetically conductive layer 212 is composed of a magnetic shunt gold whose Curie temperature is set to a predetermined temperature. It consists of a genus and is formed into a cylindrical shape with a wall thickness of, for example, 500 xm. Considering the heat capacity of the heat generating roller 210, it is desirable to make the highly magnetically permeable conductive layer 212 thin to reduce the heat capacity and to quickly raise the temperature of the heat generating roller 210. However, if the Curie temperature is exceeded, as shown in Fig. 2 (b), the skin depth, which is the depth at which the magnetic flux ⁇ penetrates the heat generating roller 210, becomes deep. However, it may penetrate through this layer and heat surrounding members other than the heating port 210.
  • the high magnetic permeability conductive layer 212 needs to be thicker than the skin depth of the magnetic shunt metal forming this layer. Specifically, the thickness of the high magnetic permeability conductive layer 212 is desirably 300 / im force im ⁇ .
  • the magnetic shunt metal forming the high magnetic permeability conductive layer 212 for example, an alloy of iron and nickel or an alloy of iron, nickel and chromium is used.
  • the Curie temperature of the magnetic shunt metal can be set to a predetermined temperature by adjusting the composition of these metals. In this embodiment, it is assumed that the Curie temperature of the magnetic shunt metal forming the highly permeable conductive layer 212 is set to 220 degrees close to the fixing temperature of the toner. Therefore, the highly permeable conductive layer 212 exhibits a characteristic as a non-magnetic material when the temperature exceeds 220 degrees C. Note that the Curie temperature is not limited to 220 degrees and may be set to a lower temperature.
  • the nonmagnetic conductive layer 214 is made of, for example, a nonmagnetic material such as copper, and the outer peripheral surface of the highly permeable conductive layer 212 is processed by plating, metalizing, or cladding, and has a thickness. For example, a 5 zm layer.
  • a thickness For example, a 5 zm layer.
  • the material of the nonmagnetic conductive layer 214 in addition to the aluminum, silver, and gold or the like may be of desirable tool copper ones resistivity below 10 X 10- 6 ⁇ cm.
  • the thickness of the nonmagnetic conductive layer 214 is preferably about 2 to 30 xm.
  • the nonmagnetic conductive layer 214 can also be made thin to reduce the heat capacity in the same manner as the high magnetic permeability conductive layer 212 described above. desirable.
  • the thickness is less than 2 xm, the actual resistance becomes excessive, and the generation of eddy current is hindered, resulting in a decrease in heat generation.
  • the Ni layer 216 is formed on the outer peripheral surface of the nonmagnetic conductive layer 214 by plating, metalizing, or cladding. This is a nickel layer made of a material and having a thickness of, for example, 2 zm.
  • the Ni layer 216 covers the surface of the nonmagnetic conductive layer 214, thereby preventing oxidation of the nonmagnetic conductive layer 214 and improving durability, and improving adhesion of the release layer 218 and preventing peeling. .
  • a protective layer having a thickness of 2 to 10 zm using chromium or zinc may be formed. When the thickness of the protective layer is 2 zm or less, the protective layer may not function sufficiently. On the other hand, when it exceeds 10 zm, the heat capacity of the protective layer increases and it takes time to warm up.
  • the release layer 218 is made of a fluororesin such as PTFE, PFA, or FEP, and is a layer formed on the outer surface of the heat roller 210 and having a thickness of, for example, 20 / im.
  • a silicon rubber layer may be provided between the Ni layer 216 and the release layer 218 so that the heat generating roller 210 has elasticity.
  • the pressure roller 220 is pressed against the heat roller 210 to form an EP through which the recording paper 109 passes.
  • the caloric pressure roller 220 is rotated around the central axis (clockwise in the figure) so as to convey the recording paper 109 in the direction of the arrow, following the rotation of the heat generating roller 210.
  • the force that the pressure roller 220 is driven by the rotation of the heat generating roller 210 may rotate the pressure roller 220 to drive the heat generating roller 210.
  • the pressure roller 220 is formed of a material having low thermal conductivity such as hard SJISA 30 degree silicon rubber.
  • a material of the pressure roller 220 for example, heat-resistant resin such as fluoro rubber and fluoro resin or other rubber may be used.
  • resin or rubber such as PTFE, PFA, or FEP alone or mixed.
  • the temperature sensor 230 is provided in contact with the outer peripheral surface of the heat generating roller 210 on the downstream side in the rotation direction from the exciting coil unit 240 of the heat generating roller 210, and detects the temperature of the heat generating roller 210.
  • a control unit instructs the feeding roller 108 to start feeding the recording paper 109, or from the power source to the exciting coil unit 240, not shown.
  • the supply of alternating current is controlled. More specifically, if the temperature sensor 230 detects that the temperature of the heat generating roller 210 has reached a temperature suitable for fixing the toner image 111, a control unit (not shown) feeds the feed roller.
  • the start of operation of the printer 108 is instructed, and printing is started.
  • the temperature sensor 230 detects that the temperature of the heat generating roller 210 is higher than a predetermined threshold, the supply of alternating current from the power source (not shown) to the exciting coil unit 240 is controlled.
  • the excitation coin unit 240 has a coil holding member 242, an excitation coil 244, and a core member 246.
  • the coil holding member 242 is formed of a semi-cylindrical insulator disposed to face the outer peripheral surface of the upper half of the heat generating roller 210.
  • the exciting coil 244 is formed by rotating a conducting wire on the surface opposite to the surface facing the heat generating roller 210 of the coil holding member 242, and a voltage is applied from a power source (not shown) to allow an alternating current to flow.
  • a magnetic field is generated by generating a magnetic flux around.
  • the core member 246 is made of a magnetic material having a high magnetic permeability and specific resistance, such as ferrite and permalloy, and is disposed so as to cover the exciting coil 244. Specifically, the core member 246 is in contact with the coil holding member 242 at the center of winding of the conducting wire forming the exciting coil 244 and the outermost periphery of the winding, and is held in the other portions with the exciting coil 244 interposed therebetween. It is substantially parallel to the member 242.
  • the core member 246 serves as a magnetic path for the magnetic flux generated on the side opposite to the heating roller 210 out of the magnetic flux generated by the exciting coil 244.
  • the exciting coil unit 240 excites the heat generating roller 210 from the outside of the heat generating roller 210, so that the work efficiency of maintenance of replacing parts such as the heat generating roller 210 which is a consumable item is improved. It is good.
  • the temperature of the heat generating roller 210 is equal to or lower than the Curie temperature.
  • the temperature of the heat generating roller 210 of the fixing apparatus 200 continues to drop to about room temperature, which is significantly higher than the Curie temperature of 220 degrees in the present embodiment. The temperature is low.
  • the heating roller 210 is heated to a temperature suitable for fixing the toner image 111.
  • a voltage is applied to the excitation coil 244 of the power source excitation coil unit 240 (not shown), and an alternating current flows.
  • the frequency of this alternating current is 20 ⁇ : 100kHz Is desirable. In the present embodiment, this frequency is set to 20 to 60 kHz.
  • a magnetic flux M is generated around the excitation coil 244 as shown in FIG. 2 (a). The generated magnetic flux M passes through the nonmagnetic conductive layer 214 of the heat roller 210 and reaches the highly permeable conductive layer 212, and permeates near the outer peripheral surface of the highly permeable conductive layer 212 due to the skin effect.
  • an eddy current for canceling the magnetic flux M is generated in the vicinity of the outer peripheral surfaces of the nonmagnetic conductive layer 214 and the highly permeable conductive layer 212, and the nonmagnetic conductive layer 214 and the highly permeable conductive layer 212 are caused by Joule heat. Fever.
  • the heat generating roller 210 is formed by laminating the highly magnetically conductive layer 212 and the nonmagnetic conductive layer 214, the heat generating roller 210 and the exciting coil 244 are included. The magnetic coupling of the system is improved, and the heat generation of the heating roller 210 is promoted
  • the highly permeable conductive layer 212 becomes non-magnetic and the skin depth increases as shown in FIG. 2 (b).
  • the magnetic flux M penetrates to the vicinity of the inner peripheral surface of the highly permeable conductive layer 212.
  • the skin resistance is inversely proportional to the skin depth, so when the Curie temperature is exceeded, the skin resistance decreases, the generation of joule heat is suppressed, and the heating value of the heating roller 210 is Decrease.
  • the system composed of the heating roller 210 and the excitation coil 244 according to the present embodiment includes the resistance r and inductance L1 of the excitation coil 244 (primary side), It can be expressed by the resistance R2 and inductance L2 of the heating roller 210 (secondary side) electromagnetically coupled to the exciting coil 244 and the mutual inductance M between the primary side and the secondary side.
  • the coupling coefficient k indicating the quality of the magnetic coupling between the primary side and the secondary side is expressed by (Equation 2).
  • Fig. 5 and subsequent figures show the measured temperature characteristics of these primary and secondary combined resistors as R and combined inductance as L.
  • Fig. 5 shows the measured values of the temperature and resistance R of the heating roller 210 at an alternating current frequency of 20 kHz
  • Fig. 6 shows the measured values of the temperature and inductance L of the heating roller 210 at an alternating current frequency of 20 kHz.
  • Figure 7 shows FIG. 6 is a diagram showing the correspondence between the temperature of the heat generating roller 210 and the coupling coefficient k at a flow current frequency of 20 kHz.
  • a curve 310r plotted with white circles indicates the resistance R according to the present embodiment.
  • Curve 320r plotted with black circles shows the resistance when a magnetic shunt metal is used as a heating roller.
  • Curve 330r plotted with black triangles shows resistance when iron is used as a heating roller. Show me.
  • the resistance R according to the present embodiment is constant at about 2.0 ⁇ , which is larger than the resistance of the magnetic shunt metal alone or iron. This means that a large amount of Joule heat is generated in the heat generating roller 210, and heat generation is promoted more than when a magnetic shunt metal or iron is used for the heat generating roller.
  • the resistance R decreases to the same level as the resistance of the magnetic shunt metal alone, and it can be seen that the amount of heat generation is greatly reduced. On the contrary, the resistance of the magnetic shunt metal is almost unchanged in the section 350r. In addition, since the Curie temperature of iron is very high at 769 degrees, the resistance does not change greatly even in the section 350r, and the calorific value does not decrease.
  • a curve 3101 with white circles plotted represents the inductance L according to the present embodiment.
  • a curve 3201 plotted with black circles shows the inductance when a magnetic shunt metal is used as a heating roller, and a curve 3301 plotted with black triangles shows the inductance when iron is used as a heating roller. Show.
  • the inductance L according to the present embodiment is about 30 ⁇ (microhenry) to 37 ⁇ , which is 45 ⁇ or more. It is smaller than the inductance of the magnetic shunt metal. This shows that it is easier to apply power than when a magnetic shunt metal is used as a heating roller.
  • both the inductance L and the inductance of the magnetic shunt metal unit are reduced and both values are close to each other. Also, iron inductance gradually increases as temperature rises.
  • a curve 310k on which white circles are plotted represents the coupling coefficient k according to the present embodiment.
  • the curve 320k with black circles plotted shows the heat-generating
  • the curve 330k in which the black triangles are plotted shows the coupling coefficient when iron is used for the heating roller.
  • the coupling coefficient k is about 0.80, which is larger than the coupling coefficient of the magnetic shunt metal or iron. This means that the system consisting of the heating roller 210 and the excitation coil 244 has good magnetic coupling, and heat is generated more efficiently than when a magnetic shunt metal or iron is used for the heating hole roller. .
  • the coupling coefficient k decreases to the same degree as the coupling coefficient of the magnetic shunt metal or iron, and it can be seen that the efficiency of heat generation deteriorates. Therefore, in the section 350k, the heat generation amount of the heat generating roller 210 is reduced and the temperature rise is suppressed.
  • the coupling coefficient of the magnetic shunt metal alone tends to increase in the section 350k, and it can be seen that the heat generation efficiency increases when the Curie temperature is exceeded.
  • the iron coupling coefficient does not change rapidly as the temperature rises, and is stable at about 0.65 to 0.70.
  • the change in the parameter depending on the temperature of the heat generating roller 210 formed by laminating the highly permeable conductive layer 212 and the nonmagnetic conductive layer 214 and the heat generating roller using the magnetic shunt metal alone are compared. Then, it can be seen that the heating roller 210 is more likely to generate heat at temperatures lower than the Curie temperature.
  • the non-magnetic conductive layer 214 on the highly permeable conductive layer 212 which is a magnetic shunt metal
  • the heat generation of the heat generating roller 210 at low temperatures can be promoted, and the entire fixing roller 210 can be heated from the normal temperature to the Curie temperature. It is possible to reduce the warm-up time of the fixing device 200 that raises the fixing temperature to the following fixing temperature as compared with the case of using a magnetic shunt metal alone.
  • the nonmagnetic conductive layer 214 is laminated on the highly magnetically conductive layer 212, which is a magnetic shunt metal, so that the heat generation is suppressed more strongly than in the case of a magnetic shunt alloy alone. It will be.
  • the difference in heat generation between the part below the Curie temperature within the recording material width and the part near the Curie temperature outside the recording material width can be greatly expanded, the amount of heat generation outside the recording material width is minimized and the temperature rises. It is possible to reliably suppress the occurrence of hot offset and damage to the members around the heat generating roller 210 that are vulnerable to high heat and deterioration of the service life.
  • Embodiment 2 of the present invention is that a non-magnetic conductor is arranged inside the heat generating roller, and when the temperature of the heat generating roller partially becomes close to the Curie temperature, the excessive temperature increase in that part is more effective. In addition, the warm-up time is further shortened by thinning the highly permeable conductive layer of the heat generating roller.
  • FIGS. 8A and 8B are cross-sectional views showing the configuration of the fixing device 200 according to the present embodiment.
  • FIG. 8 (a) shows the magnetic path of the magnetic flux M in a state below the Curie temperature
  • FIG. 8 (b) shows the magnetic path of the magnetic flux M in a state exceeding the Curie temperature.
  • the fixing device 200 according to the present embodiment includes a heat generating roller 210a instead of the heat generating roller 210 of the fixing device 200 according to the first embodiment, and has a configuration in which a nonmagnetic conductor 410 and an auxiliary roller 420 are added. ing.
  • the heating roller 210a is a cylindrical roller having a bottom diameter of, for example, 34 mm, and rotates around the central axis so as to convey the recording paper 109 on which the toner image 111 is formed and carried in the direction of the arrow ( (Clockwise in the figure).
  • the heat generating roller 210a is mainly formed by stacking the high magnetic permeability conductive layer 212a and the nonmagnetic conductive layer 214.
  • the thickness of the high magnetic permeability conductive layer 212a is the same as that of the first embodiment. Is different.
  • the other layers are the same as those of the heating roller 210 (Fig. 3) of the first embodiment.
  • the high magnetic permeability conductive layer 212a is formed into a cylindrical shape with a thickness of, for example, 200 ⁇ m. Since the high magnetic permeability conductive layer 212a is thinner than the high magnetic permeability conductive layer 212 of Embodiment 1, the temperature of the heat generating roller 210a can be quickly increased from the viewpoint of the heat capacity described above. It is desirable that the thickness of the high magnetic permeability conductive layer 212a be 100 to 700/1111.
  • the nonmagnetic conductor 410 is made of a semi-cylindrical nonmagnetic material having a thickness of, for example, 500 ⁇ m, and is disposed to face the exciting coil unit 240 with the peripheral surface of the heat roller 210a interposed therebetween.
  • the material of the nonmagnetic conductor 410 for example, copper, aluminum, silver, gold, and the like can be applied in the same manner as the material of the nonmagnetic conductive layer 214.
  • Fig. 8 (b) when the heating roller 210a exceeds the Curie temperature, the skin depth increases and the magnetic flux M penetrates the heating roller 210a, and the nonmagnetic conductor 410 has a magnetic flux.
  • the thickness of the nonmagnetic conductor 410 is about 200 to 2000111. The reason for this will be explained below.
  • FIG. 9 is a diagram showing the resistance R of the equivalent circuit of the system including the heating roller 210a and the exciting coil 244 when the frequency of the alternating current is 20 kHz and the thickness of the nonmagnetic conductor 410 is changed. It is. However, in the figure, the resistance R when copper is used as the nonmagnetic conductor 410 and the temperature of the heating roller 210a is a high temperature near the Curie temperature is shown. When the temperature of the heating port 210a is high around the Curie temperature, it is desirable to suppress the heat generation. Therefore, the thickness of the nonmagnetic conductor 410 should be a value that makes the resistance R as low as possible.
  • the thickness of the nonmagnetic conductor 410 is at least about 0.2 mm, heat generation can be suppressed at a high temperature near the Curie temperature.
  • the thickness of the nonmagnetic conductor 410 is excessively thick, heat is taken from the heat generating roller 210a and the heat generation of the heat generating roller 210a is obstructed, so the maximum is about 2000 / im. Is desirable.
  • the auxiliary roller 420 is formed with a rubber layer 424 made of silicon rubber having high heat insulation on the surface of the cored bar 422.
  • a rubber layer 424 made of silicon rubber having high heat insulation on the surface of the cored bar 422.
  • the heat generating roller 210a is thin and the mechanical strength is weakened, there is a possibility that the heat generating roller 210a is deformed by the pressure contact with the pressure roller 220.
  • an auxiliary roller 420 that is rotatable so as to press the heat generating roller 210a from the inside during the ep is disposed.
  • the auxiliary roller 420 is not limited to this form, and the contact portion with the heat generating roller 210a, which may be constituted by a fixed pressure plate or the like, is preferably highly heat insulating.
  • the highly permeable conductive layer 212a becomes nonmagnetic, and the magnetic flux M passes through this layer as shown in FIG. 8 (b). To penetrate.
  • the magnetic flux M penetrating through the highly permeable conductive layer 212a enters the nonmagnetic conductor 410 and creates a repulsive magnetic field. Produced and reduces the magnetic flux.
  • the generation of eddy currents in the heating roller 210a is also suppressed, and as described above, since the resistance of the entire system is small at high temperatures, the heat generation amount of the heating roller 210a is greatly reduced.
  • the nonmagnetic conductor 410 is made of a material having a small specific resistance and is thick, so that the skin resistance is small and the heat generation is small.
  • the nonmagnetic conductor 410 is disposed inside the heat generating roller 210a, the magnetic coupling when the Curie temperature is exceeded becomes weak, and the heat generation Heat generation of the roller 210a is more strongly suppressed. As a result, it is possible to effectively prevent the temperature of the heat generating roller 210a outside the paper material from becoming abnormally high, particularly when a narrow recording material is continuously passed.
  • a curve 510r in which white squares are plotted indicates the resistance R according to the present embodiment.
  • a curved line 310r plotted with white circles indicates the resistance R according to the first embodiment, and a curved line 520r plotted with black squares indicates the resistance when a magnetic shunt metal is used as a heating roller.
  • a curve 530r in which triangles are plotted shows the resistance when aluminum is used as the material of the nonmagnetic conductor 410.
  • the resistance R according to the present embodiment is almost the same as the resistance R according to the first embodiment, and is larger than the resistance of the magnetic shunt metal alone.
  • heat generation is promoted almost similarly.
  • the resistance R due to the lamination of the highly permeable conductive layer 212a and the nonmagnetic conductive layer 214 which has little relation to the presence or absence of the nonmagnetic conductor 410 and the material, is R It can be said that the effect of the increase is dominant. This is supported by the fact that the magnetic flux M penetrates only to the vicinity of the outer peripheral surfaces of the nonmagnetic conductive layer 214 and the highly permeable conductive layer 212a in the section 540r (see Fig. 8 (a)).
  • the resistance R decreases to a value lower than the resistance of the magnetic shunt metal according to the first embodiment, and the amount of generated heat further decreases.
  • the temperature exceeds the Curie temperature and the skin depth increases, the magnetic flux M penetrates the heating roller 210a and enters the nonmagnetic conductor 410 that does not easily generate heat. This is probably because an eddy current is generated in the conductor 410 in the direction to cancel the magnetic flux M, and the magnetic flux M is reduced as compared with the case of the first embodiment.
  • aluminum is used for the nonmagnetic conductor 410, the tendency is almost the same as when copper is used.
  • a curve 5101 in which white squares are plotted shows the inductance L according to the present embodiment.
  • a curve 3101 in which white circles are plotted shows the inductance L according to the first embodiment, and a curve 5201 in which black squares are plotted shows the inductance when a magnetic shunt metal is used as a heating roller.
  • a curve 5301 in which triangles are plotted shows the inductance when aluminum is used as the material of the nonmagnetic conductor 410.
  • inductance L according to the present embodiment is substantially the same as inductance L according to the first embodiment, and is based on the inductance of the magnetic shunt metal alone. Is also small. Therefore, as in the first embodiment, when the nonmagnetic conductive layer 214 is laminated, the laminating power S angle is greater when the nonmagnetic conductive layer 214 is laminated than when the magnetic shunt metal alone is used for the heating roller.
  • the inductance L according to the present embodiment rapidly decreases to a value smaller than the inductance L according to the first embodiment.
  • the same tendency as the inductance according to the present embodiment is shown. This is because, when the temperature exceeds the Curie temperature, the magnetic flux M penetrates the heating roller 21 Oa and enters the nonmagnetic conductor 410, so that an eddy current is generated in the nonmagnetic conductor 410 in the direction to cancel the magnetic flux M. This is considered to be because the magnetic flux M decreases compared to the case of.
  • a curve 510k in which white squares are plotted represents the coupling coefficient k according to the present embodiment.
  • a curved line 310k plotted with white circles indicates the coupling coefficient k according to the first embodiment, and a curved line 520k plotted with black squares indicates that the magnetic shunt metal is a heating roller.
  • a curve 530k in which a white triangle is plotted indicates a coupling coefficient when aluminum is used as the material of the nonmagnetic conductor 410.
  • the coupling coefficient k according to the present embodiment is almost the same as the coupling coefficient k according to the first embodiment, and the coupling coefficient of the magnetic shunt metal alone. Bigger than ,.
  • the coupling coefficient k according to the present embodiment is reduced to a value smaller than the coupling coefficient k according to the first embodiment, and the efficiency of heat generation is further deteriorated.
  • the present embodiment in a state where the temperature is higher than the Curie temperature, the amount of heat generated by the heat roller 210a is reduced as compared with the first embodiment, and the temperature rise is further suppressed.
  • both values are the nonmagnetic conductor 410.
  • the difference is larger than that of the first embodiment in which no is provided. This is due to the difference in the amount of heat generated between the paper passing area and the outside paper passing area when the recording width is narrow, the recording material is continuously fed, and the temperature outside the recording material is adjusted to the Curie temperature or lower. This means that it will be larger than that of Form 1. As a result, heat generation near the Curie temperature becomes extremely small, and temperature rise outside the recording material width can be minimized.
  • the nonmagnetic conductor 410 is disposed inside the heat generating roller 210a, the thickness of the high magnetic permeability conductive layer 212a can be set thinner, and the heat generating roller 210a The heat capacity can be reduced. For this reason, the fixing device 200 is warmed up. This time can be further shortened. Further, the magnetic flux force auxiliary roller 420 penetrating the heat generating roller 210a does not penetrate and be heated.
  • a feature of the third embodiment of the present invention is that an exciting coil is arranged inside the heat generating roller to reduce the size of the fixing device.
  • FIG. 13 is a cross-sectional view showing a configuration of fixing device 200 according to the present embodiment.
  • the fixing device 200 according to the present embodiment includes a heating roller 610 and an excitation coil unit 620 instead of the heating roller 210 and the excitation coil unit 240 of the fixing device 200 according to Embodiment 1, and includes a nonmagnetic conductor 630. It has a configuration with added.
  • the heat generating roller 610 is a cylindrical roller having a bottom diameter of, for example, 34 mm, and rotates around the central axis so as to convey the recording paper 109 on which the toner image 111 is formed and carried in the direction of the arrow (in FIG. Clockwise).
  • the heat generating roller 610 is mainly formed by laminating a highly permeable conductive layer 612 and a nonmagnetic conductive layer 614. More specifically, as shown in FIG. 14, the Ni layer 616, the nonmagnetic conductive layer 614, the highly permeable conductive layer 612, the silicon rubber layer 618, and the mold release are arranged in order from the side closer to the central axis of the heat generating roller 610. Layer 619 is laminated. Among these layers, the highly permeable conductive layer 612, the nonmagnetic conductive layer 614, the Ni layer 616, and the release layer 619 are different in layer thickness, material, etc. according to Embodiment 1. This is the same as the highly permeable conductive layer 212, the nonmagnetic conductive layer 214, the Ni layer 216, and the release layer 218 (FIG. 3).
  • exciting coil unit 620 is arranged inside heat generating roller 610, the inside and outside of highly magnetically permeable conductive layer 212 and nonmagnetic conductive layer 214 in Embodiment 1 are reversed to generate heat.
  • a highly permeable conductive layer 612 is provided on the outer peripheral side of the roller 610, and the nonmagnetic conductive layer 614 is covered with an inner peripheral surface of the highly permeable conductive layer 612 by plating or the like.
  • the peripheral surface of the heat generating roller 610 is elastic, and the pressure roller 220 Both rollers can be brought into close contact with each other in a nip formed between and.
  • exciting coil unit 620 includes coil holding member 622, exciting coil 624, and core member 626.
  • the coil holding member 622 is formed of a cylindrical insulator disposed to face the inner peripheral surface of the heat generation roller 610.
  • the exciting coil 624 is formed by winding a conducting wire on the surface opposite to the surface facing the heat generating roller 610 of the coil holding member 622, and an alternating current flows when a voltage is applied from a power source (not shown). Thus, magnetic flux is generated around.
  • the core member 626 is made of a magnetic material having a high magnetic permeability and specific resistance, such as ferrite and permalloy, and has a substantially T-shaped cross section. Specifically, the core member 626 is in contact with the coil holding member 622 at the center of winding of the conductive wire forming the exciting coil 624 and the outermost periphery of the winding, and has a shape that connects these portions with a plane.
  • the core member 626 serves as a magnetic path for the magnetic flux generated on the side opposite to the heating roller 610 out of the magnetic flux generated by the exciting coil 624.
  • the nonmagnetic conductor 630 is made of a semi-cylindrical nonmagnetic material having a thickness of, for example, 500 ⁇ m, and is disposed to face the exciting coil unit 620 with the peripheral surface of the heat roller 610 interposed therebetween.
  • the heat generating roller 610 exceeds the Curie temperature, the nonmagnetic conductor 630 becomes a magnetic path of magnetic flux that penetrates the peripheral surface of the heat generating roller 610 with the skin depth deepening. Therefore, even if the thickness of the highly permeable conductive layer 612 is reduced, the surrounding members are not heated by the magnetic flux penetrating the heating roller 610. Since the heat capacity of the heat generating roller 610 is reduced, the heat generation of the heat generating roller 610 can be further promoted.
  • non-magnetic conductor 630 is disposed outside heat generating roller 610
  • excitation coil unit 620 larger than non-magnetic conductor 630 is disposed inside heat generating roller 610. Therefore, the fixing device 200 can be downsized.
  • the highly permeable conductive layer 612 becomes nonmagnetic, and the magnetic flux penetrates this layer.
  • the magnetic flux penetrating through the highly permeable conductive layer 612 permeates the non-magnetic conductor 630.
  • the non-magnetic conductor 630 generates little heat, and the eddy current in the heating roller 610 Since the generation is also suppressed, the heat generation amount of the heat generating roller 610 is reduced.
  • the exciting coil is provided inside the heat generating roller, and the nonmagnetic conductive layer is provided between the exciting coil and the highly permeable conductive layer of the heat generating roller.
  • the warm-up time can be shortened while preventing excessive temperature rise, and the fixing device can be downsized. As a result, the image forming apparatus can be downsized.
  • a feature of the fourth embodiment of the present invention is that the warm-up time is shortened while preventing an excessive temperature rise in a belt-type fixing device that transmits heat generated by the heat generating roller to the fixing roller by a belt.
  • the schematic configuration of the image forming apparatus according to the present embodiment is the same as that of the first embodiment (Fig. 1), and thus the description thereof is omitted. In the present embodiment, only the configuration of the fixing device 200 is different from the first embodiment.
  • FIGS. 15A and 15B are cross-sectional views showing the configuration of the fixing device 200 according to the present embodiment.
  • FIG. 15 (a) shows the magnetic path of the magnetic flux M in a state below the Curie temperature
  • FIG. 15 (b) shows the magnetic path of the magnetic flux M in a state exceeding the Curie temperature.
  • the fixing device 200 includes a heat generating roller 710, a nonmagnetic conductor 720, a belt 730, a fixing roller 740, a caloric pressure roller 220, a temperature sensor. 230 and excitation coil unit 240.
  • the heat generating roller 710 is a cylindrical roller having a bottom diameter of, for example, 20 mm, and rotates around the central axis so that the belt 730 suspended on this roller conveys the recording paper 109 in the direction of the arrow (in the figure). Counterclockwise).
  • the heat generating roller 710 is mainly formed by laminating a highly permeable conductive layer 712 and a nonmagnetic conductive layer 714. More specifically, a highly permeable conductive layer 712, a nonmagnetic conductive layer 714, and a Ni layer are laminated in order from the side closer to the central axis of the heat generating roller 710.
  • the highly magnetically conductive layer 712 is made of a magnetic shunt metal set so that the Curie temperature becomes a predetermined temperature, and is formed into a cylindrical shape with a thickness of, for example, 200 ⁇ .
  • the highly permeable conductive layer 712 is the same as the highly permeable conductive layer 212a according to Embodiment 2 except that the diameter is different.
  • the nonmagnetic conductive layer 714 is a layer having a thickness of, for example, 10 / m, in which the outer peripheral surface of the highly permeable conductive layer 712 is processed by plating, metalizing, or cladding.
  • the nonmagnetic conductive layer 714 is the same as the nonmagnetic conductive layer 214 according to Embodiment 1 except that the diameter and thickness are different.
  • the Ni layer is laminated on the outer peripheral surface of the nonmagnetic conductive layer 714.
  • This Ni layer is the same as the Ni layer 216 according to the first embodiment. Further, in the present embodiment, the Ni layer prevents wear of the heat generating roller 710 due to contact with the benolet 730, and reduces the friction coefficient to prevent meandering and shifting of the belt 730.
  • chrome, zinc, or fluorine resin can be formed as a single layer or laminated.
  • the nonmagnetic conductor 720 is made of a cylindrical nonmagnetic material having a thickness of, for example, 500 ⁇ m, is formed integrally with the heat generating roller 710, and rotates around the same central axis as the heat generating roller 710.
  • the material of the nonmagnetic conductor 720 for example, copper, aluminum, silver, gold, and the like can be applied in the same manner as the nonmagnetic conductor 410 of the second embodiment.
  • Fig. 15 (b) when the heating port temperature 710 exceeds the Curie temperature, the skin depth increases and the magnetic flux M penetrates the heating roller 710 and enters the nonmagnetic conductor 720. To do. Thereafter, the magnetic flux M passes through the nonmagnetic conductor 720.
  • the nonmagnetic conductor 720 is made of a material having a small specific resistance and is thick, so that the skin resistance is small and the heat generation is slight.
  • the nonmagnetic conductor 720 is integrally formed with the heating roller 710 and rotates, the structure of the fixing device can be simplified, and further, the nonmagnetic conductor 720 can be concentrated on a part of the nonmagnetic conductor 720. Therefore, heat generation can be reliably suppressed at high temperatures without allowing magnetic flux to permeate.
  • Benoleto 730 is an endless belt stretched around heat generating roller 710 and fixing roller 740, and transfers heat from heat generating roller 710 to an epoxy formed by fixing roller 740 and pressure roller 220.
  • the belt 730 is made of a heat-resistant polyimide resin with a diameter of 45 mm and a thickness of 80 ⁇ m.
  • the mold layer is formed to be covered. Note that the dimensions of the belt 730 are not limited to those described above.
  • a base material a fluororesin or PPS is used in addition to a polyimide resin, and a conductive material powder is further dispersed in these base materials. It is also possible to use thin metals such as nickel and stainless steel manufactured by Dentsu.
  • PTFE, PFA, FEP, and fluoroelastomer resin such as PTFE, PFA, FEP, and fluoro rubber can be used alone or in combination.
  • the fixing roller 740 is a cylindrical roller having a bottom diameter of, for example, 30 mm. Then, the fixing roller 740 rotates around the central axis (counterclockwise in the figure) so as to convey the recording paper 109 in the direction of the arrow, following the transfer of the belt 730 by the rotation of the heat generating roller 710.
  • the fixing roller 740 is formed of a material having low thermal conductivity such as silicon rubber having a hard i3 ⁇ 4ISA of 30 degrees. As the fixing roller 740, a silicone rubber foam may be used.
  • the temperature of the heat generating roller 710 when the temperature of the heat generating roller 710 is equal to or lower than the Curie temperature, an alternating current flows through the exciting coil 244, and as shown in FIG. 15 (a), around the exciting coil 244. Magnetic flux M is generated.
  • the generated magnetic flux M passes through the belt 730 and the nonmagnetic conductive layer 714 of the heat generating roller 710 and reaches the highly permeable conductive layer 712, and permeates near the outer peripheral surface of the highly permeable conductive layer 712 due to the skin effect.
  • the nonmagnetic conductive layer 714 and the highly permeable conductive layer 712 generate heat due to Joule heat.
  • the highly permeable conductive layer 712 becomes non-magnetic, and the magnetic flux M is applied to this layer as shown in FIG. 15 (b). To penetrate.
  • the magnetic flux M penetrating through the highly permeable conductive layer 712 permeates the nonmagnetic conductor 720.
  • the nonmagnetic conductor 720 generates little heat. The generation of eddy currents is also suppressed, so that the heat generation amount of the heat generating roller 710 is reduced.
  • the heat-generating roller formed by laminating the highly permeable conductive layer and the nonmagnetic conductive layer is excited by the exciting coil, and the generated heat is nipped by the belt. Therefore, even in the belt type fixing device, it is possible to reduce the warm-up time while preventing excessive temperature rise, and to prevent the occurrence of offset and achieve good fixing performance.
  • Embodiment 5 of the present invention is that, in a belt-type fixing device, the belt passing between the exciting coil and the heat generating roller has a function as a nonmagnetic conductive layer, thereby simplifying the structure of the heat generating roller. Is a point.
  • FIGS. 16A and 16B are cross-sectional views showing the configuration of the fixing device 200 according to the present embodiment.
  • FIG. 16 (a) the magnetic path of the magnetic flux M in a state below the Curie temperature is shown, and in FIG. 16 (b), the magnetic path of the magnetic flux M in a state exceeding the Curie temperature is shown.
  • the fixing device 200 according to the present embodiment includes a heating port of the fixing device 200 according to the fourth embodiment.
  • a heating roller 810, a nonmagnetic conductor 720a, and a belt 730a are provided.
  • the heating roller 810 is a cylindrical roller having a bottom diameter of, for example, 20 mm, and rotates around the central axis so that the belt 730a suspended on this roller conveys the recording paper 109 in the direction of the arrow (in the figure). Counterclockwise).
  • the heat generating roller 810 does not have a nonmagnetic conductive layer, and is mainly formed of only a highly magnetically conductive layer. More specifically, it has a simple configuration in which a protective layer is provided on the outer peripheral surface of a highly permeable conductive layer having a thickness of, for example, 200 ⁇ m. In this embodiment, the configuration of the heat generating roller 810 may be further simplified and may be configured without a protective layer.
  • the nonmagnetic conductor 720a has a semi-cylindrical shape and does not rotate integrally with the heat roller 810.
  • the nonmagnetic conductor 720a has a semi-cylindrical shape, so that the heat capacity of the nonmagnetic conductor 720a is reduced, and the amount of heat taken away from the heating roller 810 by the nonmagnetic conductor 720a is reduced. It can be kept to a minimum.
  • the belt 730a is an endless belt stretched around the heating roller 810 and the fixing roller 740, and transfers the heat of the heating roller 810 to the two-ply formed by the fixing roller 740 and the pressure roller 220. As will be described later, the belt 730a itself also generates heat due to the excitation of the excitation coil unit 240.
  • Benoleto 730a is based on a heat-resistant polyimide resin with a diameter of 45 mm and a thickness of 80 ⁇ m. Silver powder is dispersed in this base material, and a silicon rubber layer with a wall thickness of 150 xm and a wall thickness of 30 zm. And a release layer made of a fluororesin.
  • the dimensions and materials of the belt 730a are not limited to the above, but as a base material, fluorine resin or PPS may be used in addition to polyimide resin, and instead of dispersing silver powder, copper Alternatively, a nonmagnetic high conductivity layer such as silver or gold may be formed. Alternatively, a thin metal surface such as stainless steel with a non-magnetic high conductivity layer such as copper, silver, or gold formed by plating, metalizing, or grading may be used. Further, as the release layer, resins or rubbers having good release properties such as PTFE, PFA, FEP, and fluoro rubber may be used alone or in combination.
  • the belt 730a functions as a nonmagnetic conductive layer of the heating hole roller 810, the surface of the substrate or the nonmagnetic high It is necessary to disperse silver or the like, which is a conductivity material, or to form a layer.
  • the heat generating roller 810 is mainly formed of only the highly magnetically conductive layer, and the belt 730a that forms a layer with the heat generating roller 8 10 is used as the nonmagnetic conductive layer within the range in which the exciting coil unit 240 is excited. Make it work. Therefore, the structure of the heat generating roller 810 can be simplified, and the belt 730a itself having a thin film and a small heat capacity generates heat, and the warm-up time can be further shortened.
  • the heat generated in the belt 730a and the heat generating roller 810 is transmitted to the two nips between the fixing roller 740 and the pressure roller 220 by the belt 730a, and used for fixing the toner image 111 on the recording paper 109.
  • the nonmagnetic conductor 720a generates little heat, and the generation of eddy current in the heat generating roller 810 is also suppressed, so that the heat generation amount of the heat generating roller 810 and the belt 730a is reduced.
  • the heat generating roller 210 having a roller configuration is used as the heat generating means, and the belt 730 is supported by the heat generating roller 210.
  • a support plate having an arc shape may be applied as the heat generating means, and the belt 730 may be supported by the support plate.
  • a belt functioning as a non-magnetic conductive layer is suspended from a heat-generating roller made of a highly permeable conductive layer, and a contact portion between the heat-generating roller and the belt is excited by an excitation coinore. Therefore, the warm-up time can be shortened while preventing excessive temperature rise, and the structure of the heat generating roller can be simplified to reduce the cost.
  • the fixing device includes an excitation unit that forms a magnetic field around a voltage applied thereto, and at least a part thereof is disposed in a magnetic field formed by the excitation unit.
  • a magnetically permeable conductive layer made of a magnetic shunt material that has predetermined magnetism at normal temperature and loses magnetism when the temperature exceeds a predetermined temperature; and a nonmagnetic conductive layer laminated on the exciting means side of the magnetically permeable conductive layer. The structure which has is taken.
  • the magnetically permeable conductive layer is used alone at a low temperature below the Curie temperature.
  • the magnetic coupling is better than exciting and heat generation is promoted, and when the part outside the width of the recording material becomes high near the Curie temperature, the magnetically permeable conductive layer is excited alone. Rather, the heat generation in this part is reduced. Therefore, it is possible to shorten the warm-up time while preventing excessive temperature rise in the fixing device, and to realize good fixing performance by preventing the occurrence of offset, damage to the rubber member, and life deterioration.
  • the fixing device is the heating device according to the first aspect. Is made of a non-magnetic material, and further includes a non-magnetic conductor facing the exciting means with the non-magnetic conductive layer sandwiched between the non-magnetic conductive layer, and the permeable conductive layer has a temperature at which no magnetism is present. In this case, a configuration is adopted in which the magnetic flux penetrates and reaches a thickness of the nonmagnetic conductor.
  • the thickness of the magnetically permeable conductive layer can be reduced, the heat capacity can be reduced, and the warm-up time at low temperatures can be shortened.
  • the magnetic flux penetrates the magnetically permeable conductive layer and reaches the nonmagnetic conductor at a high temperature equal to or higher than the Curie temperature, an eddy current flows through the nonmagnetic conductor in the direction of decreasing the magnetic flux M, and the permeable conductive layer Heat generation can be suppressed and overheating can be prevented.
  • the nonmagnetic conductor is configured to partially face the excitation means.
  • the heat generating means includes: a rotating cylindrical permeable conductive layer; and the exciting means side of the permeable conductive layer.
  • the non-magnetic conductive layer that is laminated on the surface of the magnetically conductive layer and rotates integrally with the magnetically permeable conductive layer, and a heating roller that is powerful are adopted.
  • the permeable conductive layer and the non-permeable conductive layer are formed on the peripheral surface of the heat generating roller, and the non-permeable conductive layer is formed on the excitation means side of the permeable conductive layer.
  • the heat generating means further includes a non-magnetic conductor facing the exciting means across the circumferential surface of the heat generating roller.
  • the heat generating roller has a structure in which the magnetic flux penetrates the peripheral surface to reach the nonmagnetic conductor at a temperature at which the magnetic permeability of the magnetically permeable conductive layer disappears.
  • the magnetic flux penetrates the peripheral surface of the heat generating roller when the temperature is higher than the Curie temperature.
  • the non-magnetic conductor that does not easily generate heat is reached, so that the heat generation of the heating roller can be suppressed and excessive temperature rise can be prevented.
  • the thickness of the peripheral surface of the heat generating roller can be reduced, and the heat capacity can be reduced to promote heat generation at low temperatures.
  • the non-magnetic conductor is formed along a peripheral surface of the heat-generating roller and is in a range facing the exciting means. The construction is drawn only at
  • the nonmagnetic conductor is formed in a cylindrical shape along a peripheral surface of the heat generating roller, A structure that rotates integrally is adopted.
  • the nonmagnetic conductor is formed in a cylindrical shape along the peripheral surface of the heat generating roller and rotates integrally, it is possible to simplify the structure of the fixing device and It is possible to suppress heat generation reliably at high temperatures where magnetic flux does not penetrate through concentrated magnetic conductors.
  • the fixing device is the fixing device according to the fourth aspect, wherein the exciting means includes an exciting coil disposed to face the outer peripheral surface of the heat generating roller, The structure is used to excite the laser from the outside.
  • the fixing device is the fixing device according to the fourth aspect, wherein the exciting means includes an exciting coil disposed to face an inner peripheral surface of the heat generating roller, Adopts a configuration to excite the roller from the inside.
  • the exciting coil is arranged inside the heat generating roller, the fixing device can be downsized.
  • the fixing device is the fixing device according to the first aspect, wherein the heat generating means is suspended from a rotating cylindrical heat generating roller and the heat generating roller.
  • the structure linked to the rotation of the magnetically permeable conductive layer is employed.
  • the magnetically permeable conductive layer is formed on the peripheral surface of the heat generating roller, and the non-magnetic conductive layer is formed on the belt suspended from the heat generating roller.
  • the belt itself generates heat with a thin film and a small heat capacity. Therefore, it is possible to accelerate the heat generation and further shorten the warm-up time.
  • the heat generating unit further includes a protective layer laminated on the exciting means side of the nonmagnetic conductive layer. Adopt the composition.
  • the nonmagnetic conductive layer has a thickness of 2 ⁇ m to 30 ⁇ m.
  • the resistance of the nonmagnetic conductive layer is optimized, and the amount of heat generation is increased.
  • fixing device in the first aspect, the non-magnetic conductive layer, the resistivity takes a configuration which is less metallic material 10 X 10- 6 ⁇ cm.
  • the excitation means adopts a configuration in which a current having a frequency of 20 kHz to 100 kHz is applied.
  • the magnetically permeable conductive layer has a thickness of 0.3 mm to lmm.
  • the magnetically permeable conductive layer has a thickness of 0.1 mm to 0.5 mm.
  • the heat capacity of the magnetically permeable conductive layer can be further reduced, and the warm-up time can be further shortened.
  • the nonmagnetic conductor has a thickness of 0.2 mm to 2 mm.
  • An image forming apparatus employs a configuration having the fixing device according to any one of the first to seventeenth aspects.
  • the heat generating roller according to the nineteenth aspect of the present invention is a heat generating roller that is disposed in the magnetic field formed by the excitation means and generates heat by permeating the magnetic flux generated in the magnetic field into the interior.
  • a magnetically permeable conductive layer made of a magnetic shunt material that has a predetermined magnetic property and loses its magnetic property when a predetermined temperature is exceeded, and a nonmagnetic conductive layer laminated on the exciting means side of the magnetically permeable conductive layer. Take the configuration.
  • the magnetically permeable conductive layer is used alone at a low temperature below the Curie temperature.
  • the magnetic coupling is better than exciting and heat generation is promoted, and when the part outside the width of the recording material becomes high near the Curie temperature, the magnetically permeable conductive layer is excited alone. Rather, the heat generation in this part is reduced. Therefore, it is possible to shorten the warm-up time while preventing excessive temperature rise in the fixing device provided with the heat generating roller, and to realize good fixing performance by preventing the occurrence of offset, the damage of the rubber member and the life deterioration. it can.
  • the heat generating roller according to the twentieth aspect of the present invention is the heating roller according to the nineteenth aspect, wherein the protective layer is laminated on the excitation means side of the non-magnetic conductive layer, and the excitation means side of the protection layer. And a release layer laminated on the substrate.
  • the fixing device can reduce the warm-up time while preventing excessive temperature rise, and can prevent the occurrence of offset to realize good fixing performance.
  • the electromagnetic induction heating method Therefore, it is useful for a fixing device that heats and fixes an unfixed image on a recording material.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fixing For Electrophotography (AREA)
  • General Induction Heating (AREA)

Abstract

  過昇温を防止しつつウォームアップの時間を短縮するとともに、オフセットの発生を防止して良好な定着性能を実現する発熱ローラ、定着装置、および画像形成装置。この発熱ローラ、定着装置、および画像形成装置において、発熱ローラ210は、主に高透磁性導電層212と非磁性導電層214とが積層されて形成されている。励磁コイル244は、図示しない電源から電圧が印加されて交流電流が流れることにより、周囲に磁束を発生させて磁界を形成する。発熱ローラ210において、高透磁性導電層212と非磁性導電層214とが積層されているため、低温時には発熱ローラ210および励磁コイル244からなる系の磁気的な結合が良好となり、発熱ローラ210の発熱が促進される。一方、キュリー温度を超えた場合は、表皮深さが深くなって表皮抵抗が小さくなり、ジュール熱の発生が抑制され、発熱ローラ210の発熱量は減少する。  

Description

明 細 書
発熱ローラ、定着装置、および画像形成装置
技術分野
[0001] 本発明は、電子写真方式あるいは静電記録方式の複写機、ファクシミリ、およびプ リンタなどの画像形成装置に用レ、られる定着装置に関し、特に、電磁誘導加熱方式 によって未定着画像を記録材に加熱定着する定着装置およびこの定着装置を用い た画像形成装置に関する。
背景技術
[0002] 近年、複写機、ファクシミリ、およびプリンタなどに用いられる定着装置に、電磁誘導 加熱方式を採用することが盛んに検討されている。電磁誘導加熱方式の定着装置に おいては、励磁コイルに交流電流が印加され、この励磁コイルの周囲に生成消滅を 繰り返す磁束が発生する。そして、発生した磁束が導電体を透過することによって渦 電流が発生し、この渦電流により導電体で生じた熱が未定着画像の定着に用いられ る。
[0003] 具体的には、例えば 2つのローラによって形成されるエップに導電体で生じた熱が 伝達され、記録材がニップを通過する際に、ローラによる圧力と伝達された熱とによつ て記録材上のトナーが定着する。導電体で生じた熱を二ップへ伝達するには、例え ば二ップを形成するローラそのものを導電体で形成したり、導電体と二ップを形成す るローラの 1つとに薄膜のベルトを懸架したりすれば良い。
[0004] ところで、二ップへ伝達された熱は、二ップを通過する記録材ゃ周囲の部材に奪わ れて、二ップへ熱を伝達するローラやベルトの温度は低下する。このとき、二ップを通 過する記録材の幅は多様であり、常にローラやベルトの幅全体から万遍なく熱が奪 われるとは限らない。
[0005] すなわち、例えば二ップを形成するローラそのものを導電体で形成するローラ方式 を例にとると、導電体で形成された発熱ローラのローラ幅全体が常に二ップで記録材 に接するわけではなぐ幅の狭い記録材がニップを通過する際には記録材に接する ことが無い部分からは熱が奪われることがない。したがって、発熱ローラの記録材幅 の外側は温度が高くなりすぎることがある。そして、このような部分の温度がトナーの 定着に適した定着温度よりも高くなつた状態で幅の広い記録材を通過させると、一旦 記録材に転写されたトナーが発熱ローラに再び付着するホットオフセットが生じる。ま た、発熱ローラに接触するゴム部材などの寿命を大幅に縮めることがある。
[0006] このような過昇温の問題に対して、キュリー温度が設定された整磁金属を導電体と して用いる自己温度制御を行うことが考えられる。キュリー温度とは、整磁金属の磁 性の有無の閾値となる温度であり、通常温度では強磁性を有する整磁金属でも、キ ユリ一温度を超えた温度では磁性が消失する。このような整磁金属の特性を利用して 、例えば特許文献 1に開示されているように、発熱するフィルムの導電層の材料として キュリー温度が定着温度に等しいものを使用することにより、キュリー温度以上での渦 電流が減少して発熱が抑制される。
特許文献 1:特開平 7— 114276号公報
発明の開示
発明が解決しょうとする課題
[0007] し力しながら、一般に、整磁金属は表皮抵抗が過大であり、また、結合時のインダク タンスも大きいため、励磁コイルによって励磁しても渦電流が生じにくい。このため、 整磁金属の発熱量は大きくなぐ定着に必要な温度に達するまでのウォームアップに 時間が力かるという問題がある。
[0008] すなわち、複写機、ファクシミリ、およびプリンタなどの画像形成装置は、電源投入 時やスリープ状態からの復帰時に、定着装置をトナーの定着に必要な温度にまで昇 温させるが、整磁金属の温度上昇が緩やかであるため、実際に画像形成が可能とな るまでに長時間を要してしまう。
[0009] 具体的には、例えば固有抵抗が 70 X 10— 6 Ω cm (オームセンチメートル)の整磁金 属を周波数 20kHz (キロへルツ)の交流電流で電磁誘導加熱する場合、整磁金属の 表皮抵抗は 33〜41 Χ 10— 4 Ω (オーム)となる。この値は、誘導加熱しやすい鉄の表 皮抵抗 8.8 Χ 10— 4 Ωよりも過大であり、インダクタンスも大きいため、渦電流が流れに くく発熱量は小さい。
[0010] また、定着装置の温度が十分に高くなつていない状態でトナーの定着を行うと、記 録材に転写されたトナーが十分に溶けずにコールドオフセットが生じる。
[0011] 本発明の目的は、ウォームアップの時間を短縮するとともに、記録材幅外の異常な 過昇温を無くすことで、オフセットの発生やゴム部材の破損や寿命劣化を防止して良 好な定着性能を実現することができる定着装置を提供することである。
課題を解決するための手段
[0012] 本発明の定着装置は、電圧が印加され、周囲に磁界を形成する励磁手段と、少な くとも一部が前記励磁手段によって形成された磁界内に配置され、磁界内に発生す る磁束を内部に浸透させて発熱する発熱手段と、前記発熱手段の熱を用いて記録 材に担持形成された像を加熱定着する定着手段と、を有し、前記発熱手段は、常温 で所定の磁性を有し、所定の温度以上になると磁性が無くなる整磁材料からなる透 磁性導電層と、前記透磁性導電層の前記励磁手段側に積層される非磁性導電層と 、を有する構成を採る。
[0013] また、本発明に係る発熱ローラは、励磁手段によって形成された磁界内に配置され 、磁界内に発生する磁束を内部に浸透させて発熱する発熱ローラであって、常温で 所定の磁性を有し、所定の温度以上になると磁性が無くなる整磁材料からなる透磁 性導電層と、前記透磁性導電層の前記励磁手段側に積層される非磁性導電層と、 を有する構成を採る。
発明の効果
[0014] 本発明によれば、過昇温を防止しつつウォームアップの時間を短縮するとともに、 オフセットの発生を防止して良好な定着性能を実現することができる。
図面の簡単な説明
[0015] [図 1]本発明の実施の形態に係る画像形成装置の概略構成を示す図
[図 2] (a)は実施の形態 1に係る定着装置の構成を示す断面図、 (b)は実施の形態 1 に係る定着装置の構成を示す他の断面図
[図 3]実施の形態 1に係る発熱ローラの詳細な構成を示す一部断面図
[図 4]実施の形態 1に係る発熱ローラおよび励磁コイルからなる系の等価回路を示す 図
[図 5]実施の形態 1に係る等価回路の抵抗 Rの変化を示す図 [図 6]実施の形態 1に係る等価回路のインダクタンス Lの変化を示す図
[図 7]実施の形態 1に係る等価回路の結合係数 kの変化を示す図
[図 8] (a)は本発明の実施の形態 2に係る定着装置の構成を示す断面図、 (b)は実施 の形態 2に係る定着装置の構成を示す他の断面図
[図 9]実施の形態 2に係る非磁性導電体の肉厚と等価回路の抵抗との関係を示す図
[図 10]実施の形態 2に係る等価回路の抵抗 Rの変化を示す図
[図 11]実施の形態 2に係る等価回路のインダクタンス Lの変化を示す図
[図 12]実施の形態 2に係る等価回路の結合係数 kの変化を示す図
[図 13]本発明の実施の形態 3に係る定着装置の構成を示す断面図
[図 14]実施の形態 3に係る発熱ローラの詳細な構成を示す一部断面図
[図 15] (a)は本発明の実施の形態 4に係る定着装置の構成を示す断面図、 (b)は実 施の形態 4に係る定着装置の構成を示す他の断面図
[図 16] (a)は本発明の実施の形態 5に係る定着装置の構成を示す断面図、 (b)は実 施の形態 5に係る定着装置の構成を示す他の断面図
[図 17]実施の形態 5に係る非磁性導電体の変形例を示す図
発明を実施するための最良の形態
[0016] 本発明者らは、キュリー温度が設定された整磁金属を用いた加熱定着ではウォー ムアップに時間力 Sかかるとともに、整磁金属のみを単体で発熱させた場合には、記録 材幅の外側部分がキュリー温度を超えた際その部分の磁気的な結合が良好となり、 発熱量十分に抑制できないことを見出した。
[0017] そして、一般には表皮抵抗が過小で反抗電流が流れるため磁束が内部を透過でき ず、電磁誘導加熱が困難であるとされている銅やアルミなどの非磁性材料でも、肉厚 によっては見かけの表皮抵抗が適正値まで大きくなり、電磁誘導加熱が可能となるこ とに着目した。すなわち、肉厚が表皮深さより小さくなると、見かけの表皮抵抗 Rsは、 固有抵抗 Pおよび肉厚 δを用いて、以下の(式 1)によって求められることから、肉厚 を薄くすることにより見かけの表皮抵抗が大きくなり、表皮抵抗が過小である非磁性 材料でも電磁誘導加熱が可能となることに着目した。
Rs= ρ / δ · · · (式 1) [0018] 整磁金属の表面に肉厚の薄い非磁性材料を積層することにより、キュリー温度以下 での磁気的な結合が強くなり、整磁金属または非磁性材料を単体で用いる場合より も発熱量が増加することを見出して本発明をするに至った。
[0019] すなわち、本発明の骨子は、励磁コイルと励磁コイルによって励磁される整磁金属 との間に非磁性導電層を設け、キュリー温度に達するまでの整磁金属の発熱を促進 するとともに、幅の狭い記録材を連続して通した時、記録材幅外の過昇温をより効果 的に抑えることである。
[0020] 以下、本発明の実施の形態について、図面を参照して詳細に説明する。
[0021] (実施の形態 1)
図 1は、本発明の実施の形態 1に係る画像形成装置の概略構成を示す図である。 同図に示すように、この画像形成装置の画像形成装置本体 100には、電子写真感 光体(以下、「感光ドラム」という) 101が回転自在に配設されている。図 1において、 感光ドラム 101は、矢印の方向に所定の周速度で回転駆動されながら、その表面が 帯電器 102によってマイナスの所定の暗電位 V0に一様に帯電される。
[0022] レーザービームスキャナ 103は、図示しない画像読取装置やコンピュータ等のホス ト装置から入力される画像情報の時系列電気デジタル画素信号に対応して変調され たレーザービーム 104を出力する。
[0023] 一様に帯電された感光ドラム 101の表面は、レーザービーム 104によって走查露光 される。これにより、感光ドラム 101の露光部分は電位絶対値が低下して明電位 VLと なり、感光ドラム 101の表面に静電潜像が形成される。この静電潜像は、現像器 105 のマイナスに帯電したトナーによって反転現像され、顕像(トナー像)化される。
[0024] 現像器 105は、回転駆動される現像ローラ 106を備えている。現像ローラ 106は、 感光ドラム 101と対向して配置されており、その外周面にはトナーの薄層が形成され る。現像ローラ 106には、その絶対値が感光ドラム 101の喑電位 V0よりも小さぐ明 電位 VLよりも大きい現像バイアス電圧が印加されている。これにより、現像ローラ 10 6上のトナーが、感光ドラム 101の明電位 VLの部分にのみ転写されて、静電潜像が 顕像化され、感光ドラム 101上に未定着トナー像(以下、「トナー像」という) 111が形 成される。 [0025] 一方、給紙部 107からは、記録材としての記録紙 109が給送ローラ 108によって一 枚ずつ給送される。給送された記録紙 109は、一対のレジストローラ 110を経て、感 光ドラム 101と転写ローラ 112とのエップに、感光ドラム 101の回転と同期した適切な タイミングで送られる。これにより、感光ドラム 101上のトナー像 111が、転写バイアス が印加された転写ローラ 112により、記録紙 109に転写される。
[0026] このようにしてトナー像 111が形成担持された記録紙 109は、記録紙ガイド 114によ り案内されて感光ドラム 101から分離された後、加熱定着装置 (以下、「定着装置」と いう) 200の定着部位に向けて搬送される。そして、この定着部位に搬送された記録 紙 109に、定着装置 200によってトナー像 111が加熱定着される。
[0027] トナー像 111が加熱定着された記録紙 109は、定着装置 200を通過した後、画像 形成装置本体 100の外部に配設された排紙トレイ 115上に排出される。
[0028] 記録紙 109が分離された後の感光ドラム 101は、その表面の転写残トナー等の残 留物がクリーニング装置 113によって除去され、繰り返し次の画像形成に供される。
[0029] 図 2 (a)、 (b)は、本実施の形態に係る定着装置 200の構成を示す断面図である。
なお、図 2 (a)では、キュリー温度以下の状態における磁束 Mの磁路を示しており、 図 2 (b)では、キュリー温度を超えた状態における磁束 Mの磁路を示している。これら の図に示すように、定着装置 200は、発熱ローラ 210、加圧ローラ 220、温度センサ 2 30、および励磁コイルユニット 240を有している。
[0030] 発熱ローラ 210は、底面の直径が例えば 34mm (ミリメートル)の円筒形状のローラ で、トナー像 111が形成担持された記録紙 109を矢印方向へ搬送するように中心軸 周りに回転(図では反時計回り)する。
[0031] また、発熱ローラ 210は、主に高透磁性導電層 212と非磁性導電層 214とが積層さ れて形成されている。より具体的には、図 3に示すように、発熱ローラ 210の中心軸に 近い方から順に、高透磁性導電層 212、非磁性導電層 214、保護層としての保護二 ッケノレ層(以下、「Ni層」という) 216、および離型層 218が積層されている。これらの 層を合計した発熱ローラ 210の厚さは 100〜: 1000 μ m (マイクロメートル)程度が望 ましい。
[0032] 高透磁性導電層 212は、キュリー温度が所定の温度となるように設定された整磁金 属からなつており、肉厚が例えば 500 x mの円筒形状に成形されている。発熱ローラ 210の熱容量を考慮すると、高透磁性導電層 212を薄くして熱容量を小さくし、発熱 ローラ 210の温度を速やかに上昇させるのが望ましい。しかし、キュリー温度を超える と図 2 (b)に示すように、磁束 Μが発熱ローラ 210に浸透する深さである表皮深さが 深くなるため、高透磁性導電層 212が過度に薄いと磁束がこの層を貫通して、発熱口 ーラ 210以外の周囲の部材を加熱してしまうことがある。そして、例えば発熱ローラ 2 10を軸支する軸受などの高熱に弱い部材の破損を招くという問題が生じる。このため 、高透磁性導電層 212は、この層を形成する整磁金属の表皮深さよりも厚くしておく 必要がある。具体的には、高透磁性導電層 212の肉厚は、 300 /i m力 ΙΟΟΟ μ ΐη であるのが望ましい。
[0033] 高透磁性導電層 212を形成する整磁金属としては、例えば鉄とニッケノレの合金ま たは鉄とニッケルとクロムの合金などが用いられる。そして、これらの各金属の配合を 調整することにより、整磁金属のキュリー温度を所定の温度に設定することができる。 本実施の形態においては、高透磁性導電層 212を形成する整磁金属のキュリー温 度を、トナーの定着温度に近い 220度に設定してあるものとする。したがって、高透 磁性導電層 212は、温度が 220度以下では強磁性体としての特性を示す力 温度 力 S220度を超えると非磁性体としての特性を示す。なお、キュリー温度は 220度に限 らず、より低い温度に設定しても良い。
[0034] 非磁性導電層 214は、例えば銅などの非磁性材料からなっており、高透磁性導電 層 212の外周面にメツキ、メタライジング、またはクラッド材による加工が施された、肉 厚が例えば 5 z mの層である。なお、非磁性導電層 214の材料としては、固有抵抗が 10 X 10— 6 Ω cm以下のものが望ましぐ銅の他にはアルミ、銀、および金などでも良い 。また、非磁性導電層 214の肉厚は 2〜30 x m程度が望ましい。熱容量の観点から は、肉厚が 30 x m以上になると発熱量が減少してしまうため、非磁性導電層 214も 上述した高透磁性導電層 212と同様に、薄くして熱容量を小さくすることが望ましい。 一方で、 2 x mより薄くなると実質の抵抗が過大となり、渦電流の発生が阻害されて発 熱量が減少してしまう。
[0035] Ni層 216は、非磁性導電層 214の外周面にメツキ、メタライジング、またはクラッド 材により形成された、肉厚が例えば 2 z mのニッケル層である。 Ni層 216は、非磁性 導電層 214の表面を覆うことにより、非磁性導電層 214の酸化を防止し、耐久性を向 上するとともに、離型層 218の密着性が向上し剥離を防止する。本発明においては、 Ni層 216の代わりに、クロムや亜鉛などを用いた肉厚が 2〜10 z mの保護層を形成 しても良い。保護層の肉厚が 2 z m以下となると、保護層としての働きが不十分になる 場合がある一方、 10 z mを超えると、保護層の熱容量が大きくなりウォームアップに 時間がかかってしまう。
[0036] 離型層 218は、例えば PTFE、 PFA、または FEPなどのフッ素樹脂力らなっており 、発熱ローラ 210の外表面に形成された、肉厚が例えば 20 /i mの層である。
[0037] なお、 Ni層 216と離型層 218との間にシリコンゴム層を設けて、発熱ローラ 210に 弾力性を持たせても良い。
[0038] 再度図 2 (a)、 (b)を参照して、加圧ローラ 220は、発熱ローラ 210に圧接して記録 紙 109が通過するエップを形成する。そして、カロ圧ローラ 220は、発熱ローラ 210の 回転に従動して、記録紙 109を矢印方向へ搬送するように中心軸周りに回転(図で は時計回り)する。ここでは、加圧ローラ 220が発熱ローラ 210の回転に従動するもの とした力 加圧ローラ 220を回転させて発熱ローラ 210を従動させても良い。
[0039] また、加圧ローラ 220は、例えば硬 SJISA30度のシリコンゴムなどの熱伝導性が小 さい材料によって成形されている。加圧ローラ 220の材料としては、例えばフッ素ゴム およびフッ素樹脂などの耐熱性樹脂や他のゴムを用いても良い。また、耐摩耗性や 離型性を高めるために、 PTFE、 PFA、または FEPなどの樹脂やゴムを単独もしくは 混合して加圧ローラ 220の外周面を被覆することが望ましい。
[0040] 温度センサ 230は、発熱ローラ 210の励磁コイルユニット 240より回転方向下流側 に、発熱ローラ 210の外周面に当接して設けられ、発熱ローラ 210の温度を検知する 。温度センサ 230によって発熱ローラ 210の温度が検知されると、例えば図示しない 制御部によって給送ローラ 108による記録紙 109の給送開始が指示されたり、図示し なレ、電源から励磁コイルユニット 240への交流電流の供給が制御されたりする。より 具体的には、温度センサ 230によって発熱ローラ 210の温度がトナー像 111の定着 に適した温度になったことが検知された場合は、図示しない制御部によって給送ロー ラ 108の動作開始が指示され、印字が開始される。また、温度センサ 230によって発 熱ローラ 210の温度が所定の閾値よりも高くなつたことが検知された場合は、図示し ない電源から励磁コイルユニット 240への交流電流の供給が制御される。
[0041] 励磁コィノレユニット 240は、コイル保持部材 242、励磁コイル 244、およびコア部材 246を有してレ、る。
[0042] コイル保持部材 242は、発熱ローラ 210の上半分の外周面に対向して配設される 半円筒形状の絶縁体によって形成されている。
[0043] 励磁コイル 244は、コイル保持部材 242の発熱ローラ 210に対向する面とは反対の 面に導線を周回させて形成されており、図示しない電源から電圧が印加されて交流 電流が流れることにより、周囲に磁束を発生させて磁界を形成する。
[0044] コア部材 246は、例えばフェライトやパーマロイなどの透磁率および比抵抗が高い 磁性材料によって形成され、励磁コイル 244を覆うように配設される。具体的には、コ ァ部材 246は、励磁コイル 244を形成する導線の周回中心と周回最外縁とでコィノレ 保持部材 242に当接しており、その他の部分では励磁コイル 244を挟んでコイル保 持部材 242と略平行になっている。コア部材 246は、励磁コイル 244によって発生す る磁束のうち、発熱ローラ 210とは反対側に発生する磁束の磁路となる。
[0045] なお、本実施の形態に係る励磁コイルユニット 240は、発熱ローラ 210の外部から 発熱ローラ 210を励磁するため、消耗品である発熱ローラ 210などの部品の交換ゃメ ンテナンスの作業効率が良好である。
[0046] 次いで、上記のように構成された定着装置 200の発熱の原理について説明する。
[0047] まず、発熱ローラ 210の温度がキュリー温度以下である場合について説明する。画 像形成装置の電源切断時やスリープ状態時は、通常、定着装置 200の発熱ローラ 2 10の温度が室温程度にまで低下し続け、本実施の形態のキュリー温度である 220度 よりも大幅に低温となっている。そして、印字を行うために電源が投入されたりスリー プ状態から復帰したりする際には、トナー像 111の定着に適した温度にまで発熱ロー ラ 210が昇温される。
[0048] すなわち、図示しない電源力 励磁コイルユニット 240の励磁コイル 244に電圧が 印加され、交流電流が流れる。この交流電流の周波数は、 20〜: 100kHzであること が望ましい。本実施の形態においては、この周波数を 20〜60kHzとした。励磁コィ ル 244に交流電流が流れることにより、図 2 (a)に示すように、励磁コイル 244の周囲 に磁束 Mが発生する。発生した磁束 Mは、発熱ローラ 210の非磁性導電層 214を貫 通して高透磁性導電層 212に達し、表皮効果によって高透磁性導電層 212の外周 面付近に浸透する。これにより、非磁性導電層 214および高透磁性導電層 212の外 周面付近に、磁束 Mを打ち消すための渦電流が生じ、ジュール熱によって非磁性導 電層 214および高透磁性導電層 212が発熱する。
[0049] 後に詳述するが、本実施の形態においては、発熱ローラ 210を高透磁性導電層 21 2および非磁性導電層 214を積層して形成したため、発熱ローラ 210および励磁コィ ル 244からなる系の磁気的な結合が良好となり、発熱ローラ 210の発熱が促進される
[0050] 一方、発熱ローラ 210の温度が上昇し、キュリー温度を超えた場合は、高透磁性導 電層 212が非磁性となって図 2 (b)に示すように表皮深さが深くなり、磁束 Mは高透 磁性導電層 212の内周面付近にまで浸透する。そして、上述の(式 1)により、表皮抵 抗は表皮深さに反比例するため、キュリー温度を超えると表皮抵抗が小さくなり、ジュ ール熱の発生が抑制され、発熱ローラ 210の発熱量は減少する。
[0051] 次に、本実施の形態における定着装置 200の発熱に関するパラメータの挙動につ いて説明する。
[0052] 本実施の形態に係る発熱ローラ 210および励磁コイル 244からなる系は、図 4の等 価回路に示すように、励磁コイル 244 (1次側)の抵抗 rおよびインダクタンス L1と、こ の励磁コイル 244と電磁結合する発熱ローラ 210 (2次側)の抵抗 R2およびインダク タンス L2と、 1次側と 2次側の相互インダクタンス Mで表すことができる。そして、 1次 側と 2次側の磁気的な結合の良否を示す結合係数 kは、(式 2)によって表される。
k = M/ (Ll -L2) 1/2 · · · (式 2)
[0053] また、これらの 1次と 2次の合成の抵抗を R、合成のインダクタンスを Lとして、これら の温度特性を測定した値を図 5以降に示す。図 5は交流電流の周波数 20kHzにお ける発熱ローラ 210の温度と抵抗 Rの測定値を示し、図 6は交流電流の周波数 20kH zにおける発熱ローラ 210の温度とインダクタンス Lの測定値を示す。また、図 7は交 流電流の周波数 20kHzにおける発熱ローラ 210の温度と結合係数 kの対応を示す 図である。
[0054] 図 5においては、白丸がプロットされた曲線 310rが本実施の形態に係る抵抗 Rを示 している。また、黒丸がプロットされた曲線 320rは、整磁金属単体を発熱ローラに用 いた場合の抵抗を示し、黒三角がプロットされた曲線 330rは、鉄を発熱ローラに用 レ、た場合の抵抗を示してレ、る。
[0055] 同図に示すように、キュリー温度以下の区間 340rでは、本実施の形態に係る抵抗 Rは約 2.0 Ωで一定であり、整磁金属単体や鉄の抵抗よりも大きい。これは、発熱口 ーラ 210においてジュール熱が多く発生することを意味しており、発熱ローラに整磁 金属単体や鉄を用いる場合よりも発熱が促進される。
[0056] 一方、キュリー温度以上となる区間 350rでは、抵抗 Rは整磁金属単体の抵抗と同 程度にまで低下し、発熱量が大きく減少することが分かる。逆に、整磁金属単体の抵 抗は、区間 350rではほとんど変化しなレ、。また、鉄のキュリー温度は、 769度と非常 に高いため、区間 350rにおいても抵抗が大きく変化することはなぐ発熱量の減少 は生じない。
[0057] 図 6においては、白丸がプロットされた曲線 3101が本実施の形態に係るインダクタ ンス Lを示している。また、黒丸がプロットされた曲線 3201は、整磁金属単体を発熱口 ーラに用いた場合のインダクタンスを示し、黒三角がプロットされた曲線 3301は、鉄を 発熱ローラに用いた場合のインダクタンスを示している。
[0058] 同図に示すように、キュリー温度以下の区間 3401では、本実施の形態に係るインダ クタンス Lは 30 μ Η (マイクロヘンリー)から 37 μ Η程度であり、 45 μ Η以上となって レ、る整磁金属単体のインダクタンスよりも小さい。このことにより整磁金属単体を発熱 ローラに用いた場合よりも電力を投入しやすレ、ことが解る。
[0059] 一方、キュリー温度以上となる区間 3501では、インダクタンス Lおよび整磁金属単 体のインダクタンスはいずれも低下して両者は近い値になってくる。また、鉄のインダ クタンスは温度が上昇するにつれて徐々に増加する。
[0060] 図 7においては、白丸がプロットされた曲線 310kが本実施の形態に係る結合係数 kを示している。また、黒丸がプロットされた曲線 320kは、整磁金属単体を発熱ロー ラに用いた場合の結合係数を示し、黒三角がプロットされた曲線 330kは、鉄を発熱 ローラに用いた場合の結合係数を示している。
[0061] 同図に示すように、キュリー温度以下の区間 340kでは、結合係数 kは約 0.80とな つており、整磁金属単体や鉄の結合係数よりも大きい。これは、発熱ローラ 210およ び励磁コイル 244からなる系の磁気的結合が良好であることを意味しており、発熱口 ーラに整磁金属単体や鉄を用いる場合よりも効率良く発熱する。
[0062] 一方、キュリー温度以上となる区間 350kでは、結合係数 kは整磁金属単体や鉄の 結合係数と同程度にまで低下し、発熱の効率が悪化することが分かる。したがって、 区間 350kでは、発熱ローラ 210の発熱量が減少し、温度上昇が抑制される。逆に、 整磁金属単体の結合係数は、区間 350kではむしろ増加傾向にあり、キュリー温度を 超えると発熱の効率が良くなつてしまうことが分かる。また、鉄の結合係数は温度が上 昇しても急激な変化はせず、およそ 0.65〜0.70程度で安定している。
[0063] 以上のように、高透磁性導電層 212および非磁性導電層 214を積層して形成され た発熱ローラ 210と整磁金属単体を用いた発熱ローラとの温度によるパラメータの変 化を比較すると、キュリー温度より低い温度では、いずれも発熱ローラ 210の方が発 熱しやすい値となっていることが分かる。つまり、整磁金属である高透磁性導電層 21 2に非磁性導電層 214を積層することにより、低温時の発熱ローラ 210の発熱を促進 することができ、定着ローラ 210全体を常温からキュリー温度以下の定着温度まで上 昇させる定着装置 200のウォームアップの時間を整磁金属単体を用いた場合より短 縮すること力 Sできる。
[0064] また、発熱ローラ 210の温度がキュリー温度付近まで上昇すると、抵抗 Rおよび結 合係数 kが低下して、発熱ローラ 210の発熱が抑制されるようになる。反対に、整磁 金属単体を用いる場合には抵抗 Rの変化もほとんど無 結合係数が上昇するため、 整磁金属の発熱量が減少しにくいことがわかる。つまり、幅の狭い記録材を連続して 通紙した場合、記録材幅の外側は温度が上昇しキュリー温度付近になると、この部 分の整磁金属が非磁性となってその磁束が減少し発熱は抑制される力 この時、整 磁金属である高透磁性導電層 212に非磁性導電層 214が積層されていることにより 、整磁合金単体の場合に比べてより強く発熱が抑制されることになる。その結果、記 録材幅内のキュリー温度以下の部分と記録材幅外のキュリー温度に近づいた部分と の発熱量の差を大きく拡大できるため、記録材幅の外側の発熱量を最小限に抑え過 昇温を確実に抑えることができ、ホットオフセットの発生や高熱に弱い発熱ローラ 210 の周囲の部材の破損や寿命劣化を防止することができる。
[0065] このように、本実施の形態によれば、キュリー温度がトナーの定着温度に設定され た整磁金属からなる高透磁性導電層と非磁性導電層とを積層して形成された発熱口 ーラを励磁コイルによって励磁するため、キュリー温度以下の低温時には整磁金属 を単体で励磁する場合よりも発熱が促進され、キュリー温度付近の高温時には発熱 が抑制される。したがって、定着装置における過昇温を防止しつつウォームアップの 時間を短縮するとともに、オフセットの発生を防止して良好な定着性能を実現すること ができる。
[0066] (実施の形態 2)
本発明の実施の形態 2の特徴は、発熱ローラの内部に非磁性導電体を配置して、 発熱ローラの温度が部分的にキュリー温度近くになった時に、その部分の過昇温を より効果的に防止するとともに発熱ローラの高透磁性導電層を薄くしてウォームアツ プ時間をより短縮する点である。
[0067] 本実施の形態に係る画像形成装置の概略構成は、実施の形態 1 (図 1)と同様であ るため、その説明を省略する。本実施の形態においては、定着装置 200の構成のみ が実施の形態 1と異なっている。
[0068] 図 8 (a)、 (b)は、本実施の形態に係る定着装置 200の構成を示す断面図である。
なお、図 8 (a)では、キュリー温度以下の状態における磁束 Mの磁路を示しており、 図 8 (b)では、キュリー温度を超えた状態における磁束 Mの磁路を示している。また、 これらの図において、実施の形態 1に係る定着装置 200 (図 2)と同じ部分には同じ符 号を付し、その説明を省略する。本実施の形態に係る定着装置 200は、実施の形態 1に係る定着装置 200の発熱ローラ 210に代えて発熱ローラ 210aを有し、非磁性導 電体 410および補助ローラ 420を追加した構成となっている。
[0069] 発熱ローラ 210aは、底面の直径が例えば 34mmの円筒形状のローラで、トナー像 111が形成担持された記録紙 109を矢印方向へ搬送するように中心軸周りに回転( 図では反時計回り)する。
[0070] また、発熱ローラ 210aは、主に高透磁性導電層 212aと非磁性導電層 214とが積 層されて形成されているが、高透磁性導電層 212aの肉厚が実施の形態 1とは異なつ ている。その他の層については、実施の形態 1の発熱ローラ 210 (図 3)と同様である
[0071] すなわち、高透磁性導電層 212aは、肉厚が例えば 200 μ mの円筒形状に成形さ れている。高透磁性導電層 212aは、実施の形態 1の高透磁性導電層 212よりも薄い ため、上述した熱容量の観点から、発熱ローラ 210aの温度を速やかに上昇させるこ とができる。なお、高透磁性導電層 212aの肉厚は、 100〜700 /1 111でぁることカ望ま しい。
[0072] 非磁性導電体 410は、肉厚が例えば 500 μ mの半円筒形状の非磁性材料からなり 、発熱ローラ 210aの周面を挟んで励磁コイルユニット 240に対向して配設される。非 磁性導電体 410の材料としては、非磁性導電層 214の材料と同様に、例えば銅、ァ ルミ、銀、および金などが適用可能である。図 8 (b)に示すように、発熱ローラ 210aが キュリー温度を超えた場合には、その表皮深さが深くなつて磁束 Mは発熱ローラ 210 aを貫通し、非磁性導電体 410には磁束 Mを減衰させる方向に過電流が発生し、発 熱ローラ 210aのキュリー温度を超えた部分の磁束を大幅に減少させ、過昇温を防止 できる。したがって、高透磁性導電層 212aの肉厚を薄くしても、発熱ローラ 210aを 貫通した磁束 Mによって補助ローラ 420などの周囲の部材が加熱されることがない。 そして、発熱ローラ 210aの熱容量が小さくなるため、さらに発熱ローラ 210aの発熱を 促進すること力 Sできる。
[0073] また、非磁性導電体 410の肉厚は、 200〜2000 111程度カ望ましレ、。この理由を 以下に説明する。
[0074] 図 9は、交流電流の周波数を 20kHzとし、非磁性導電体 410の肉厚を変化させた 場合の、発熱ローラ 210aおよび励磁コイル 244からなる系の等価回路の抵抗 Rを示 す図である。ただし、同図においては、非磁性導電体 410として銅を用レ、、発熱ロー ラ 210aの温度がキュリー温度付近の高温である場合の抵抗 Rを示している。発熱口 ーラ 210aの温度がキュリー温度付近の高温の時には、発熱が抑制されることが望ま しいので、非磁性導電体 410の肉厚は、できるだけ抵抗 Rを低くする値が良い。
[0075] そこで、図 9を参照すると、非磁性導電体 410を発熱ローラ 210aの内部に配設しな い場合(肉厚が Ommの場合)は、抵抗 Rが 0.9 Ω程度である力 非磁性導電体 410 の肉厚が 0.2mm ( = 200 μ m)となると、急激に抵抗 Rが低下して 0.3 Ω程度となる。 そして、肉厚を 0.2mm以上としても、抵抗 Rはあまり変化しない。
[0076] このため、非磁性導電体 410の肉厚が少なくとも 0.2mm程度であれば、キュリー温 度付近の高温時に発熱を抑制することができる。
[0077] また、非磁性導電体 410の肉厚を過度に厚くすると発熱ローラ 210aから熱を奪つ て、発熱ローラ 210aの発熱を阻害することになるため、最大でも 2000 /i m程度とす るのが望ましい。
[0078] 補助ローラ 420は、芯金 422の表面に断熱性の高いシリコンゴムからなるゴム層 42 4を形成してなっている。本実施の形態においては、発熱ローラ 210aが薄くなつて機 械的強度が弱くなるため、加圧ローラ 220との圧接により変形する虞がある。これを防 止するために、エップにおいて発熱ローラ 210aを内部から押圧するように回転可能 な補助ローラ 420を配置する。なお、補助ローラ 420はこの形態に限らず、固定され た加圧板などで構成しても良ぐ発熱ローラ 210aとの接触部は断熱性の高いことが 望ましい。
[0079] 次いで、上記のように構成された定着装置 200の発熱の原理について説明する。
[0080] 本実施の形態においても発熱ローラ 210aの温度がキュリー温度以下である場合は 、励磁コイル 244に交流電流が流れることにより、図 8 (a)に示すように、励磁コイル 2 44の周囲に磁束 Mが発生する。発生した磁束 Mは、発熱ローラ 210aの非磁性導電 層 214を貫通して高透磁性導電層 212aに達し、表皮効果によって高透磁性導電層 212aの外周面付近に浸透する。これにより、非磁性導電層 214および高透磁性導 電層 212aの外周面付近に、磁束 Mを打ち消す方向の渦電流が生じ、ジュール熱に よつて非磁性導電層 214および高透磁性導電層 212aが発熱する。
[0081] 一方、発熱ローラ 210aの温度が上昇し、キュリー温度を超えた場合は、高透磁性 導電層 212aが非磁性となって、図 8 (b)に示すように磁束 Mがこの層を貫通する。高 透磁性導電層 212aを貫通した磁束 Mは、非磁性導電体 410に侵入して反抗磁界を 生じ、磁束を減少させる。その結果、発熱ローラ 210aにおける渦電流の発生も抑制 され、上述したように高温時は系全体の抵抗が小さいため、発熱ローラ 210aの発熱 量が大幅に減少する。このとき、非磁性導電体 410は、固有抵抗が小さい材料から なっており肉厚も厚いため、表皮抵抗が小さく発熱は僅力^なる。
[0082] 後に詳述するが、本実施の形態においては、発熱ローラ 210aの内部に非磁性導 電体 410を配設したため、キュリー温度を超えた場合の磁気的な結合が弱くなり、発 熱ローラ 210aの発熱がより強く抑制される。その結果、特に幅の狭い記録材を連続 で通過させた場合など、用紙材外側の発熱ローラ 210aの温度が異常に高くなるのを 効果的に防止できる。
[0083] 次に、本実施の形態における定着装置 200の発熱に関するパラメータの挙動につ いて説明する。
[0084] 本実施の形態においても図 4に示した等価回路の抵抗 R、インダクタンスレおよび 結合係数 kと温度との対応を図 10から図 12に示す。
[0085] 図 10においては、白四角がプロットされた曲線 510rが本実施の形態に係る抵抗 R を示している。また、白丸がプロットされた曲線 310rは、実施の形態 1に係る抵抗 Rを 示し、黒四角がプロットされた曲線 520rは、整磁金属単体を発熱ローラに用いた場 合の抵抗を示し、白三角がプロットされた曲線 530rは、非磁性導電体 410の材料と してアルミを用いた場合の抵抗を示してレ、る。
[0086] 同図に示すように、キュリー温度以下の区間 540rでは、本実施の形態に係る抵抗 Rは実施の形態 1に係る抵抗 Rとほぼ同じであり、整磁金属単体の抵抗よりも大きい。 これは、実施の形態 1と同様に、発熱ローラ 210aにおいてジュール熱が多く発生す ることを意味しており、発熱ローラに整磁金属単体を用いる場合よりも発熱が促進さ れる。また、非磁性導電体 410の材料としてアルミを用いた場合もほぼ同様に発熱が 促進される。つまり、キュリー温度以下の区間 540rにおける発熱ローラ 210aの発熱 においては、非磁性導電体 410の有無や材料はあまり関係な 高透磁性導電層 2 12aと非磁性導電層 214を積層したことによる抵抗 Rの増大の効果が支配的であると 言える。このことは、区間 540rにおいては磁束 Mが非磁性導電層 214および高透磁 性導電層 212aの外周面付近までしか浸透しないことからも裏付けられる(図 8 (a)参 [0087] 一方、キュリー温度以上となる区間 550rでは、抵抗 Rは実施の形態 1に係る抵抗 R ゃ整磁金属単体の抵抗よりも小さレ、値にまで低下し、発熱量がより減少することが分 かる。これは、本実施の形態においては、温度がキュリー温度を超えて表皮深さが深 くなると、磁束 Mが発熱ローラ 210aを貫通し、発熱しにくい非磁性導電体 410に浸 入するため非磁性導電体 410に磁束 Mを打ち消す方向に渦電流が発生し、実施の 形態 1の場合よりも磁束 Mが減少するためであると考えられる。また、非磁性導電体 4 10にアルミを用いた場合も、銅を用いた場合とほぼ同様の傾向を示している。
[0088] 図 11においては、白四角がプロットされた曲線 5101が本実施の形態に係るインダ クタンス Lを示している。また、白丸がプロットされた曲線 3101は、実施の形態 1に係 るインダクタンス Lを示し、黒四角がプロットされた曲線 5201は、整磁金属単体を発熱 ローラに用いた場合のインダクタンスを示し、白三角がプロットされた曲線 5301は、非 磁性導電体 410の材料としてアルミを用いた場合のインダクタンスを示している。
[0089] 同図に示すように、キュリー温度以下の区間 5401では、本実施の形態に係るインダ クタンス Lは実施の形態 1に係るインダクタンス Lとほぼ同じであり、整磁金属単体のィ ンダクタンスよりも小さい。従って、実施の形態 1と同様に、整磁金属単体を発熱ロー ラに用いた場合よりも非磁性導電層 214が積層された場合の方が電力を投入しやす レヽこと力 S角军る。
[0090] 一方、キュリー温度以上となる区間 5501では、本実施の形態に係るインダクタンス L は実施の形態 1に係るインダクタンス Lよりも急激に小さい値にまで低下する。また、 非磁性導電体 410にアルミを用いた場合も、本実施の形態に係るインダクタンス と 同様の傾向を示している。これは温度がキュリー温度を超えると磁束 Mが発熱ローラ 21 Oaを貫通し非磁性導電体 410に侵入するため非磁性導体 410に磁束 Mを打ち 消す方向に渦電流が発生し、実施の形態 1の場合よりも磁束 Mが減少するためであ ると考免られる。
[0091] 図 12においては、白四角がプロットされた曲線 510kが本実施の形態に係る結合 係数 kを示している。また、白丸がプロットされた曲線 310kは、実施の形態 1に係る結 合係数 kを示し、黒四角がプロットされた曲線 520kは、整磁金属単体を発熱ローラに 用いた場合の結合係数を示し、白三角がプロットされた曲線 530kは、非磁性導電体 410の材料としてアルミを用いた場合の結合係数を示している。
[0092] 同図に示すように、キュリー温度以下の区間 540kでは、本実施の形態に係る結合 係数 kは実施の形態 1に係る結合係数 kとほぼ同じであり、整磁金属単体の結合係数 よりも大きレ、。これは、実施の形態 1と同様に、発熱ローラ 210aおよび励磁コイル 24 4からなる系の磁気的結合が良好であることを意味しており、発熱ローラに整磁金属 単体を用いる場合よりも効率良く発熱する。
[0093] 一方、キュリー温度以上となる区間 550kでは、本実施の形態に係る結合係数 kは 実施の形態 1に係る結合係数 kよりも小さい値にまで低下し、発熱の効率がより悪化 することが分かる。つまり、本実施の形態においては、キュリー温度を超える高温の状 態では、実施の形態 1よりも発熱ローラ 210aの発熱量が減少し、温度上昇がさらに 抑制される。
[0094] 以上のように、内部に非磁性導電体 410を配設した発熱ローラ 210aと実施の形態 1に係る発熱ローラ 210との温度によるパラメータの変化を比較すると、キュリー温度 より低い温度では、いずれもそれほど大きな差異が見られないことが分かる。これは、 上述したように、比較的低温時には磁束 Mが発熱ローラ 210aの外周面付近までしか 浸透せず、発熱ローラ 210aの内部に配設された非磁性導電体 410が発熱に関与し ないためと考えられる。
[0095] これに対して、発熱ローラ 210aの温度がキュリー温度以下の場合とキュリー温度を 超えた場合のインダクタンスレ抵抗 Rおよび結合係数 kの差を見ると、いずれの値も 非磁性導電体 410を配設しない実施の形態 1よりも差が拡大している。これは、幅の 狭レ、記録材を連続通紙し記録材幅外の温度がキュリー温度以下に温調してレ、る通 紙領域と通紙外領域との発熱量の差が実施の形態 1の場合よりも大きくなることを意 味している。その結果、キュリー温度に近づいた部分の発熱が非常に小さくなり、記 録材幅外の温度上昇を最小限に抑えられる。
[0096] さらに、本実施の形態においては、発熱ローラ 210aの内部に非磁性導電体 410を 配設したため、高透磁性導電層 212aの肉厚をより薄く設定することができ、発熱ロー ラ 210aの熱容量を小さくすることができる。このため、定着装置 200のウォームアップ の時間をさらに短縮することができる。また、発熱ローラ 210aを貫通した磁束力 補 助ローラ 420に浸透して加熱することもない。
[0097] (実施の形態 3)
本発明の実施の形態 3の特徴は、発熱ローラの内部に励磁コイルを配置して、定着 装置の小型化を図る点である。
[0098] 本実施の形態に係る画像形成装置の概略構成は、実施の形態 1 (図 1)と同様であ るため、その説明を省略する。本実施の形態においては、定着装置 200の構成のみ が実施の形態 1と異なっている。
[0099] 図 13は、本実施の形態に係る定着装置 200の構成を示す断面図である。なお、同 図において、実施の形態 1に係る定着装置 200 (図 2)と同じ部分には同じ符号を付 し、その説明を省略する。本実施の形態に係る定着装置 200は、実施の形態 1に係 る定着装置 200の発熱ローラ 210および励磁コイルユニット 240に代えて発熱ローラ 610および励磁コイルユニット 620を有し、非磁性導電体 630を追加した構成となつ ている。
[0100] 発熱ローラ 610は、底面の直径が例えば 34mmの円筒形状のローラで、トナー像 1 11が形成担持された記録紙 109を矢印方向へ搬送するように中心軸周りに回転(図 では反時計回り)する。
[0101] また、発熱ローラ 610は、主に高透磁性導電層 612と非磁性導電層 614とが積層さ れて形成されている。より具体的には、図 14に示すように、発熱ローラ 610の中心軸 に近い方から順に、 Ni層 616、非磁性導電層 614、高透磁性導電層 612、シリコン ゴム層 618、および離型層 619が積層されている。これらの層のうち、高透磁性導電 層 612、非磁性導電層 614、 Ni層 616、および離型層 619は、層の位置が異なるも のの肉厚や材質などは実施の形態 1に係る高透磁性導電層 212、非磁性導電層 21 4、 Ni層 216、および離型層 218 (図 3)と同様である。
[0102] 本実施の形態においては、励磁コイルユニット 620を発熱ローラ 610の内部に配設 するため、実施の形態 1における高透磁性導電層 212と非磁性導電層 214の内外が 逆転し、発熱ローラ 610のより外周側に高透磁性導電層 612が設けられ、高透磁性 導電層 612の内周面に非磁性導電層 614がメツキなどによってカ卩ェされる。 [0103] また、本実施の形態においては、高透磁性導電層 612の外周面にはシリコンゴム 層 618が形成されるため、発熱ローラ 610の周面は弾力性を有し、加圧ローラ 220と の間に形成されるニップにおいて両ローラを密接させることができる。
[0104] 再度図 13を参照して、励磁コイルユニット 620は、コイル保持部材 622、励磁コイル 624、およびコア部材 626を有している。
[0105] コイル保持部材 622は、発熱ローラ 610の内周面に対向して配設される円筒形状 の絶縁体によって形成されている。
[0106] 励磁コイル 624は、コイル保持部材 622の発熱ローラ 610に対向する面とは反対の 面に導線を周回させて形成されており、図示しない電源から電圧が印加されて交流 電流が流れることにより、周囲に磁束を発生させる。
[0107] コア部材 626は、例えばフェライトやパーマロイなどの透磁率および比抵抗が高い 磁性材料によって形成され、断面が略 T字形状をしている。具体的には、コア部材 6 26は、励磁コイル 624を形成する導線の周回中心と周回最外縁とでコイル保持部材 622に当接しており、これらの部分を平面で結ぶ形状となっている。コア部材 626は 、励磁コイル 624によって発生する磁束のうち、発熱ローラ 610とは反対側に発生す る磁束の磁路となる。
[0108] 非磁性導電体 630は、肉厚が例えば 500 μ mの半円筒形状の非磁性材料からなり 、発熱ローラ 610の周面を挟んで励磁コイルユニット 620に対向して配設される。非 磁性導電体 630は、発熱ローラ 610がキュリー温度を超えた場合に、表皮深さが深く なって発熱ローラ 610の周面を貫通した磁束の磁路となる。したがって、高透磁性導 電層 612の肉厚を薄くしても、発熱ローラ 610を貫通した磁束によって周囲の部材が 加熱されることがなレ、。そして、発熱ローラ 610の熱容量が小さくなるため、さらに発 熱ローラ 610の発熱を促進することができる。
[0109] 本実施の形態においては、非磁性導電体 630が発熱ローラ 610の外部に配置され るものの、非磁性導電体 630よりも大きい励磁コイルユニット 620が発熱ローラ 610の 内部に配置されるため、定着装置 200の小型化を図ることができる。
[0110] 次いで、上記のように構成された定着装置 200の発熱の原理について説明する。
[0111] 本実施の形態においても発熱ローラ 610の温度がキュリー温度以下である場合は 、励磁コイル 624に交流電流が流れることにより、励磁コイル 624の周囲に磁束が発 生する。発生した磁束は、発熱ローラ 610の非磁性導電層 614を貫通して高透磁性 導電層 612に達し、表皮効果によって高透磁性導電層 612の内周面付近に浸透す る。これにより、非磁性導電層 614および高透磁性導電層 612の内周面付近に、磁 束を打ち消すための渦電流が生じ、ジュール熱によって非磁性導電層 614および高 透磁性導電層 612が発熱する。
[0112] 一方、発熱ローラ 610の温度が上昇し、キュリー温度を超えた場合は、高透磁性導 電層 612が非磁性となって、磁束がこの層を貫通する。高透磁性導電層 612を貫通 した磁束は、非磁性導電体 630に浸透するが、実施の形態 2で述べたように非磁性 導電体 630は発熱が少なぐまた、発熱ローラ 610における渦電流の発生も抑制され るため、発熱ローラ 610の発熱量が減少する。
[0113] このように、本実施の形態によれば、発熱ローラの内部に励磁コイルを配設し、この 励磁コイルと発熱ローラの高透磁性導電層との間に非磁性導電層を設けるため、過 昇温を防止しつつウォームアップの時間を短縮することができるとともに、定着装置の 小型化を図ることができ、結果として画像形成装置の小型化を図ることができる。
[0114] (実施の形態 4)
本発明の実施の形態 4の特徴は、発熱ローラで発生した熱を定着ローラまでベルト によって伝達するベルト方式の定着装置において過昇温を防止しつつウォームアツ プの時間を短縮する点である。
[0115] 本実施の形態に係る画像形成装置の概略構成は、実施の形態 1 (図 1)と同様であ るため、その説明を省略する。本実施の形態おいては、定着装置 200の構成のみが 実施の形態 1と異なってレ、る。
[0116] 図 15 (a)、(b)は、本実施の形態に係る定着装置 200の構成を示す断面図である。
なお、図 15 (a)では、キュリー温度以下の状態における磁束 Mの磁路を示しており、 図 15 (b)では、キュリー温度を超えた状態における磁束 Mの磁路を示している。また 、これらの図において、実施の形態 1に係る定着装置 200 (図 2)と同じ部分には同じ 符号を付し、その説明を省略する。本実施の形態に係る定着装置 200は、発熱ロー ラ 710、非磁性導電体 720、ベルト 730、定着ローラ 740、カロ圧ローラ 220、温度セン サ 230、および励磁コイルユニット 240を有している。
[0117] 発熱ローラ 710は、底面の直径が例えば 20mmの円筒形状のローラで、このローラ に懸架されるベルト 730が記録紙 109を矢印方向へ搬送するように中心軸周りに回 転(図では反時計回り)する。
[0118] また、発熱ローラ 710は、主に高透磁性導電層 712と非磁性導電層 714とが積層さ れて形成されている。より具体的には、発熱ローラ 710の中心軸に近い方から順に、 高透磁性導電層 712、非磁性導電層 714、および Ni層が積層されている。
[0119] 高透磁性導電層 712は、キュリー温度が所定の温度となるように設定された整磁金 属からなつており、肉厚が例えば 200 μ ΐηの円筒形状に成形されている。高透磁性 導電層 712は、直径が異なる以外は実施の形態 2に係る高透磁性導電層 212aと同 様である。
[0120] 非磁性導電層 714は、高透磁性導電層 712の外周面にメツキ、メタライジング、また はクラッド材による加工が施された、肉厚が例えば 10 / mの層である。非磁性導電層 714は、直径および肉厚が異なる以外は実施の形態 1に係る非磁性導電層 214と同 様である。
[0121] 非磁性導電層 714の外周面には Ni層が積層されるが、この Ni層は、実施の形態 1 に係る Ni層 216と同様である。また、本実施の形態においては、 Ni層は、ベノレト 730 との接触による発熱ローラ 710の摩耗を防止し、摩擦係数を小さくしてベルト 730の 蛇行や片寄りを防止する。 Ni層の代わりに、クロム、亜鉛、またはフッ素系樹脂を単 体あるいは積層して形成しても良レ、。
[0122] 非磁性導電体 720は、肉厚が例えば 500 μ mの円筒形状の非磁性材料からなり、 発熱ローラ 710と一体的に形成されて発熱ローラ 710と同じ中心軸周りに回転する。 非磁性導電体 720の材料としては、実施の形態 2の非磁性導電体 410と同様に、例 えば銅、アルミ、銀、および金などが適用可能である。図 15 (b)に示すように、発熱口 ーラ 710がキュリー温度を超えた場合には、その表皮深さが深くなつて磁束 Mは発熱 ローラ 710を貫通し、非磁性導電体 720に侵入する。その後、磁束 Mは、非磁性導 電体 720を通過するが、そのときに、非磁性導電体 720には磁束 Mを減衰させる方 向に渦電流が発生し、発熱ローラ 710のキュリー温度を超えた部分の磁束を大幅に 減少させ、過昇温を防止できる。また、このとき、非磁性導電体 720は、固有抵抗が 小さい材料からなっており肉厚も厚いため、表皮抵抗が小さく発熱は僅かである。
[0123] また、非磁性導電体 720が発熱ローラ 710と一体的に形成されて回転するため、定 着装置の構造を簡素化することができ、さらに、非磁性導電体 720の一部分に集中 して磁束が透過することがな 高温時に確実に発熱を抑制することができる。
[0124] ベノレト 730は、発熱ローラ 710および定着ローラ 740に張架された無端状のベルト で、発熱ローラ 710の熱を定着ローラ 740および加圧ローラ 220によって形成される エップへ伝達する。ベルト 730は、直径 45mm、厚さ 80 μ mの耐熱性があるポリイミド 樹脂を基材とし、基材の表面に肉厚 150 x mのシリコンゴム層と、肉厚 30 x mのフッ 素樹脂からなる離型層とが被覆されて形成されている。なお、ベルト 730の寸法ゃ材 質は上記に限定されるものではなぐ基材としてはポリイミド樹脂の他にフッ素樹脂や PPSなどを用いて、さらにこれらの基材に導電材料の粉末を分散しても良いし、電铸 によって製作されたニッケルやステンレス鋼などの薄い金属を用いても良レ、。また、 離型層として PTFE、 PFA、 FEP、およびフッ素ゴムなどの離型性が良好な樹脂ゃゴ ムを単独もしくは混合して用レ、ても良レ、。
[0125] 定着ローラ 740は、底面の直径が例えば 30mmの円筒形状のローラで、ベノレト 73 0を介して加圧ローラ 220に圧接し、記録紙 109が通過する二ップを形成する。そし て、定着ローラ 740は、発熱ローラ 710の回転によるベルト 730の移送に従動して、 記録紙 109を矢印方向へ搬送するように中心軸周りに回転(図では反時計回り)する 。また、定着ローラ 740は、例えば硬 i¾ISA30度のシリコンゴムなどの熱伝導性が小 さい材料によって成形されている。なお、定着ローラ 740としては、シリコンゴムを発 泡させたものを用いても良い。
[0126] 次いで、上記のように構成された定着装置 200の発熱の原理について説明する。
[0127] 本実施の形態においても発熱ローラ 710の温度がキュリー温度以下である場合は 、励磁コイル 244に交流電流が流れることにより、図 15 (a)に示すように、励磁コイル 244の周囲に磁束 Mが発生する。発生した磁束 Mは、ベルト 730および発熱ローラ 7 10の非磁性導電層 714を貫通して高透磁性導電層 712に達し、表皮効果によって 高透磁性導電層 712の外周面付近に浸透する。これにより、非磁性導電層 714およ び高透磁性導電層 712の外周面付近に、磁束 Mを打ち消すための渦電流が生じ、 ジュール熱によって非磁性導電層 714および高透磁性導電層 712が発熱する。
[0128] 非磁性導電層 714および高透磁性導電層 712において発生した熱は、ベノレト 730 によって定着ローラ 740および加圧ローラ 220の間のエップへ伝達され、記録紙 109 上のトナー像 111の定着に供される。
[0129] 一方、発熱ローラ 710の温度が上昇し、キュリー温度を超えた場合は、高透磁性導 電層 712が非磁性となって、図 15 (b)に示すように磁束 Mがこの層を貫通する。高透 磁性導電層 712を貫通した磁束 Mは、非磁性導電体 720に浸透するが、実施の形 態 2で述べたように非磁性導電体 720は発熱が少なぐまた、発熱ローラ 710におけ る渦電流の発生も抑制されるため、発熱ローラ 710の発熱量が減少する。
[0130] このように、本実施の形態によれば、高透磁性導電層と非磁性導電層とを積層して 形成された発熱ローラを励磁コイルによって励磁し、発生した熱をベルトによってニッ プへ伝達するため、ベルト方式の定着装置においても過昇温を防止しつつウォーム アップの時間を短縮するとともに、オフセットの発生を防止して良好な定着性能を実 現すること力 Sできる。
[0131] (実施の形態 5)
本発明の実施の形態 5の特徴は、ベルト方式の定着装置において、励磁コイルと 発熱ローラの間を通過するベルトに非磁性導電層としての機能を持たせ、発熱ロー ラの構造を簡便にする点である。
[0132] 本実施の形態に係る画像形成装置の概略構成は、実施の形態 1 (図 1)と同様であ るため、その説明を省略する。本実施の形態においては、定着装置 200の構成のみ が実施の形態 1と異なっている。
[0133] 図 16 (a)、(b)は、本実施の形態に係る定着装置 200の構成を示す断面図である。
なお、図 16 (a)では、キュリー温度以下の状態における磁束 Mの磁路を示しており、 図 16 (b)では、キュリー温度を超えた状態における磁束 Mの磁路を示している。また 、これらの図において、実施の形態 1に係る定着装置 200 (図 2)および実施の形態 4 に係る定着装置 200 (図 15)と同じ部分には同じ符号を付し、その説明を省略する。 本実施の形態に係る定着装置 200は、実施の形態 4に係る定着装置 200の発熱口 ーラ 710、非磁性導電体 720、およびベルト 730に代えて、それぞれ発熱ローラ 810 、非磁性導電体 720a、およびベルト 730aを有する構成となっている。
[0134] 発熱ローラ 810は、底面の直径が例えば 20mmの円筒形状のローラで、このローラ に懸架されるベルト 730aが記録紙 109を矢印方向へ搬送するように中心軸周りに回 転(図では反時計回り)する。
[0135] また、発熱ローラ 810は、非磁性導電層を有さず、主に高透磁性導電層のみから 形成されている。より具体的には、肉厚が例えば 200 x mの高透磁性導電層の外周 面に保護層を設けた単純な構成となっている。本実施の形態においては、発熱ロー ラ 810の構成をさらに単純にして、保護層がない構成にしても良い。
[0136] 非磁性導電体 720aは、実施の形態 4に係る非磁性導電体 720とは異なり、半円筒 形状を有して、発熱ローラ 810と一体的に回転することはない。本実施の形態におい ては、非磁性導電体 720aを半円筒形状としたことにより、非磁性導電体 720aの熱 容量が小さくなり、発熱ローラ 810から非磁性導電体 720aに奪われる熱の量を最小 限に抑えることができる。
[0137] ベルト 730aは、発熱ローラ 810および定着ローラ 740に張架された無端状のベル トで、発熱ローラ 810の熱を定着ローラ 740および加圧ローラ 220によって形成され る二ップへ伝達し、後述するようにベルト 730a自体も励磁コイルユニット 240の励磁 によって発熱する。ベノレト 730aは、直径 45mm、厚さ 80 μ mの耐熱性があるポリイミ ド樹脂を基材とし、この基材に銀の粉末が分散され、さらに肉厚 150 x mのシリコンゴ ム層と肉厚 30 z mのフッ素樹脂からなる離型層とが被覆されて形成されている。なお 、ベルト 730aの寸法や材質は上記に限定されるものではなぐ基材としてはポリイミド 樹脂の他にフッ素樹脂や PPSなどを用レ、ても良いし、銀の粉末を分散させる代わり に、銅、銀、または金などの非磁性高導電率の層を形成しても良い。また、ステンレス 鋼などの薄い金属の表面に、メツキ、メタライジング、グラッドなどにより銅、銀、または 金などの非磁性高導電率の層を形成したものを用いても良い。また、離型層として P TFE、 PFA、 FEP、およびフッ素ゴムなどの離型性が良好な樹脂やゴムを単独もしく は混合して用いても良い。ただし、本実施の形態においては、ベルト 730aが発熱口 ーラ 810の非磁性導電層として機能するため、基材の表面あるいは基材に非磁性高 導電率材料である銀などを分散あるいは層を形成しておく必要がある。
[0138] すなわち、図 16 (a)に示すように、励磁コイルユニット 240に覆われる発熱ローラ 81 0の上半分においては、ベノレト 730aカ発熱ローラ 810に接触しており、層をなしてい ると見なすことができる。そこで、本実施の形態においては、発熱ローラ 810を主に高 透磁性導電層のみで形成し、励磁コイルユニット 240が励磁する範囲で発熱ローラ 8 10と層をなすベルト 730aを非磁性導電層として機能させる。このため、発熱ローラ 8 10の構成を簡素化することができるとともに、薄膜で熱容量が小さいベルト 730a自 体が発熱し、ウォームアップの時間をさらに短縮することができる。
[0139] 次いで、上記のように構成された定着装置 200の発熱の原理について説明する。
[0140] 本実施の形態においても発熱ローラ 810およびベルト 730aの温度がキュリー温度 以下である場合は、励磁コイル 244に交流電流が流れることにより、図 16 (a)に示す ように、励磁コイル 244の周囲に磁束 Mが発生する。発生した磁束 Mは、ベルト 730 aを貫通して発熱ローラ 810の外周面付近に浸透する。これにより、ベルト 730aおよ び発熱ローラ 810の外周面付近に、磁束 Mを打ち消すための渦電流が生じ、ジユー ル熱によってベルト 730aおよび発熱ローラ 810が発熱する。
[0141] ベルト 730aおよび発熱ローラ 810において発生した熱は、ベルト 730aによって定 着ローラ 740および加圧ローラ 220の間の二ップへ伝達され、記録紙 109上のトナー 像 111の定着に供される。
[0142] 一方、発熱ローラ 810およびベルト 730aの温度が上昇し、キュリー温度を超えた場 合は、発熱ローラ 810が非磁性となって、図 16 (b)に示すように磁束 Mが発熱ローラ 810を貫通する。発熱ローラ 810を貫通した磁束 Mは、非磁性導電体 720aに侵入 する。その後、磁束 Mは、非磁性導電体 720aを通過するが、そのときに、非磁性導 電体 720aには磁束 Mを減衰させる方向に渦電流が発生し、発熱ローラ 710のキユリ 一温度を超えた部分の磁束を大幅に減少させ、過昇温を防止できる。実施の形態 2 で述べたように非磁性導電体 720aは発熱が小さぐまた、発熱ローラ 810における 渦電流の発生も抑制されるため、発熱ローラ 810およびベルト 730aの発熱量が減少 する。なお、本実施の形態 5や実施の形態 4では、発熱手段として、ローラ構成の発 熱ローラ 210を用レ、、発熱ローラ 210によりベルト 730を支持するように構成していた 力 これに限らず、例えば、発熱手段として、円弧状を有する支持板を適用し、この 支持板によりベルト 730を支持するように構成することも可能である。
[0143] このように、本実施の形態によれば、高透磁性導電層からなる発熱ローラに非磁性 導電層として機能するベルトを懸架し、発熱ローラとベルトの接触部分を励磁コィノレ によって励磁するため、過昇温を防止しつつウォームアップの時間を短縮することが できるとともに、発熱ローラの構造を簡素化してコストの低減を図ることができる。
[0144] なお、本実施の形態において、発熱ローラ 810の内部に配設する非磁性導電体と して、例えば図 17に示すような空隙を有する非磁性導電体 720bを用いると、等価回 路の抵抗が微増して発熱量の減少は僅かに小さくなるが、非磁性導電体 720bの表 面積が小さいため、発熱ローラ 810から非磁性導電体 720bへ奪われる熱が減少し、 ウォームアップの時間をさらに短縮することができる。同様に考えて、実施の形態 2〜 4における非磁性導電体に空隙を設けるようにしても良い。
[0145] 本発明の第 1の態様に係る定着装置は、電圧が印加され、周囲に磁界を形成する 励磁手段と、少なくとも一部が前記励磁手段によって形成された磁界内に配置され、 磁界内に発生する磁束を内部に浸透させて発熱する発熱手段と、前記発熱手段の 熱を用いて記録材に担持形成された像を加熱定着する定着手段と、を有し、前記発 熱手段は、常温で所定の磁性を有し、所定の温度以上になると磁性が無くなる整磁 材料からなる透磁性導電層と、前記透磁性導電層の前記励磁手段側に積層される 非磁性導電層と、を有する構成を採る。
[0146] この構成によれば、整磁材料からなる透磁性導電層に非磁性材料からなる非磁性 導電層を積層して励磁するため、キュリー温度以下の低温時には、透磁性導電層を 単体で励磁するよりも磁気的な結合が良好となって発熱が促進されるとともに、記録 材の幅より外の部分がキュリー温度近くの高温になった時には、透磁性導電層を単 体で励磁する場合よりもむしろこの部分の発熱が減少する。したがって、定着装置に おける過昇温を防止しつつウォームアップの時間を短縮するとともに、オフセットの発 生やゴム部材の破損や寿命劣化を防止して良好な定着性能を実現することができる
[0147] 本発明の第 2の態様に係る定着装置は、上記第 1の態様において、前記発熱手段 は、非磁性材料からなり、前記透磁性導電層および前記非磁性導電層を挟んで前 記励磁手段に対向する非磁性導電体、をさらに有し、前記透磁性導電層は、磁性が 無くなる温度においては前記磁束が貫通して前記非磁性導電体へ達する厚さに形 成される構成を採る。
[0148] この構成によれば、透磁性導電層の肉厚を薄くすることができ、熱容量が小さくなつ て低温時のウォームアップ時間を短縮できる。また同時にキュリー温度以上の高温時 に、磁束が透磁性導電層を貫通して非磁性導電体に達するため、非磁性導電体に 磁束 Mを減少させる方向に渦電流が流れ、透磁性導電層の発熱を抑制することがで き、過昇温を防止することができる。
[0149] 本発明の第 3の態様に係る定着装置は、上記第 2の態様において、前記非磁性導 電体は、前記励磁手段に部分的に対向する構成を採る。
[0150] この構成によれば、非磁性導電体が部分的に励磁手段に対向するため、非磁性導 電体の表面積が小さくなつて、透磁性導電層および非磁性導電層から非磁性導電 体へ奪われる熱の量を最小限に抑えることができる。
[0151] 本発明の第 4の態様に係る定着装置は、上記第 1の態様において、前記発熱手段 は、回転する円筒形状の前記透磁性導電層と、前記透磁性導電層の前記励磁手段 側の表面に積層されて前記透磁性導電層と一体的に回転する前記非透磁性導電 層と、力 なる発熱ローラを含む構成を採る。
[0152] この構成によれば、発熱ローラの周面に透磁性導電層および非透磁性導電層が形 成され、透磁性導電層の励磁手段側に非透磁性導電層が形成されるため、定着装 置の発熱手段として発熱ローラを用いる場合に、過昇温を防止しつつウォームアップ の時間を短縮するとともに、オフセットの発生を防止して良好な定着性能を実現する こと力 Sできる。
[0153] 本発明の第 5の態様に係る定着装置は、上記第 4の態様において、前記発熱手段 は、前記発熱ローラの周面を挟んで前記励磁手段に対向する非磁性導電体、をさら に有し、前記発熱ローラは、前記透磁性導電層の磁性が無くなる温度においては前 記磁束が周面を貫通して前記非磁性導電体へ達する厚さに形成される構成を採る。
[0154] この構成によれば、キュリー温度以上の高温時に、磁束が発熱ローラの周面を貫通 して発熱しにくい非磁性導電体に達するため、発熱ローラの発熱を抑制することがで き、過昇温を防止することができる。また、発熱ローラの周面の肉厚を薄くすることが でき、熱容量が小さくなつて低温時の発熱を促進することができる。
[0155] 本発明の第 6の態様に係る定着装置は、上記第 5の態様において、前記非磁性導 電体は、前記発熱ローラの周面に沿って形成され、前記励磁手段に対向する範囲に のみ延伸される構成を採る。
[0156] この構成によれば、非磁性導電体が励磁手段に対向する範囲にのみ延伸されるた め、非磁性導電体の熱容量が小さくなつて、発熱ローラから非磁性導体へ奪われる 熱の量を最小限に抑えることができる。
[0157] 本発明の第 7の態様に係る定着装置は、上記第 5の態様において、前記非磁性導 電体は、前記発熱ローラの周面に沿った円筒形状に形成され、前記発熱ローラと一 体的に回転する構成を採る。
[0158] この構成によれば、非磁性導電体が発熱ローラの周面に沿った円筒形状に形成さ れて一体的に回転するため、定着装置の構造を簡素化することができるとともに、非 磁性導電体の一部分に集中して磁束が透過することがなぐ高温時に確実に発熱を 抑制すること力 Sできる。
[0159] 本発明の第 8の態様に係る定着装置は、上記第 4の態様において、前記励磁手段 は、前記発熱ローラの外周面に対向して配置される励磁コイルを含み、前記発熱口 ーラを外部から励磁する構成を採る。
[0160] この構成によれば、励磁コイルが発熱ローラの外部に配置されるため、消耗品であ る発熱ローラなどの部品の交換やメンテナンスの作業効率を向上することができる。
[0161] 本発明の第 9の態様に係る定着装置は、上記第 4の態様において、前記励磁手段 は、前記発熱ローラの内周面に対向して配置される励磁コイルを含み、前記発熱口 ーラを内部から励磁する構成を採る。
[0162] この構成によれば、励磁コイルが発熱ローラの内部に配置されるため、定着装置の 小型化を図ることができる。
[0163] 本発明の第 10の態様に係る定着装置は、上記第 1の態様において、前記発熱手 段は、回転する円筒形状の発熱ローラと、前記発熱ローラに懸架され、前記定着手 段へ熱を伝達する無端状のベルトと、を含み、前記透磁性導電層は、前記発熱ロー ラの周面に形成されて回転し、前記非透磁性導電層は、前記ベルトに形成されて前 記透磁性導電層の回転に連動する構成を採る。
[0164] この構成によれば、発熱ローラの周面に透磁性導電層が形成され、発熱ローラに 懸架されるベルトに非透磁性導電層が形成されるため、ベルト方式の定着装置にお いて、発熱ローラの構造を簡素化することができるとともに、薄膜で熱容量が小さい ベルト自体が発熱するため、発熱を促進してウォームアップの時間をさらに短縮する こと力 Sできる。
[0165] 本発明の第 11の態様に係る定着装置は、上記第 1の態様において、前記発熱手 段は、前記非磁性導電層の前記励磁手段側に積層される保護層、をさらに有する構 成を採る。
[0166] この構成によれば、非磁性導電層の励磁手段側に保護層を積層するため、非磁性 導電層の酸化を防止し、耐久性を向上することができる。
[0167] 本発明の第 12の態様に係る定着装置は、上記第 1の態様において、前記非磁性 導電層は、肉厚が 2 μ mから 30 μ mである構成を採る。
[0168] この構成によれば、非磁性導電層の抵抗の適正化が図られ、発熱量が増加する。
[0169] 本発明の第 13の態様に係る定着装置は、上記第 1の態様において、前記非磁性 導電層は、固有抵抗が 10 X 10— 6 Ω cm以下の金属材料である構成を採る。
[0170] この構成によれば、薄い肉厚で適正な抵抗が得られ、熱容量を増加させることなく 発熱量の増加を図ることができる。
[0171] 本発明の第 14の態様に係る定着装置は、上記第 1の態様において、前記励磁手 段は、周波数が 20kHzから 100kHzである電流が印加される構成を採る。
[0172] この構成によれば、電源のロスが少なぐ安価な回路構成で発熱量の増加を図るこ とがでさる。
[0173] 本発明の第 15の態様に係る定着装置は、上記第 1の態様において、前記透磁性 導電層は、肉厚が 0.3mmから lmmある構成を採る。
[0174] この構成によれば、透磁性導電層の熱容量の増大を抑制しつつ、機械的強度を確 保し、磁束の透過を抑制して発熱量の低減を図ることができる。 [0175] 本発明の第 16の態様に係る定着装置は、上記第 2の態様において、前記透磁性 導電層は、肉厚が 0.1mmから 0.5mmである構成を採る。
[0176] この構成によれば、透磁性導電層の熱容量を一層低減することができ、ウォームァ ップ時間をさらに短縮することができる。
[0177] 本発明の第 17の態様に係る定着装置は、上記第 5の態様において、前記非磁性 導電体は、肉厚が 0.2mmから 2mmである構成を採る。
[0178] この構成によれば、反抗磁界によって磁束を低減し、発熱量を低減するとともに、非 磁性導電体の熱容量を著しく増加させることがなぐ非磁性導電体への熱吸収による ウォームアップ時間が遅くなることがない。
[0179] 本発明の第 18の態様に係る画像形成装置は、上記第 1の態様から第 17の態様の レヽずれかに記載の定着装置を有する構成を採る。
[0180] この構成によれば、上記第 1の態様から第 17の態様のいずれかに記載の定着装置 と同様の作用効果を、画像形成装置において実現することができる。
[0181] 本発明の第 19の態様に係る発熱ローラは、励磁手段によって形成された磁界内に 配置され、磁界内に発生する磁束を内部に浸透させて発熱する発熱ローラであって 、常温で所定の磁性を有し、所定の温度以上になると磁性が無くなる整磁材料から なる透磁性導電層と、前記透磁性導電層の前記励磁手段側に積層される非磁性導 電層と、を有する構成を採る。
[0182] この構成によれば、整磁材料からなる透磁性導電層に非磁性材料からなる非磁性 導電層を積層して励磁するため、キュリー温度以下の低温時には、透磁性導電層を 単体で励磁するよりも磁気的な結合が良好となって発熱が促進されるとともに、記録 材の幅より外の部分がキュリー温度近くの高温になった時には、透磁性導電層を単 体で励磁する場合よりもむしろこの部分の発熱が減少する。したがって、発熱ローラ を設けた定着装置における過昇温を防止しつつウォームアップの時間を短縮すると ともに、オフセットの発生やゴム部材の破損や寿命劣化を防止して良好な定着性能 を実現することができる。
[0183] 本発明の第 20の態様に係る発熱ローラは、上記第 19の態様において、前記非磁 性導電層の前記励磁手段側に積層される保護層と、前記保護層の前記励磁手段側 に積層される離型層と、をさらに有する構成を採る。
[0184] この構成によれば、非磁性導電層の励磁手段側に保護層および離型層を積層す るため、非磁性導電層の酸化を防止し、耐久性を向上することができる。
[0185] 本明糸田書は、 2004年 7月 26曰出願の特願 2004— 217663に基づく。この内容は すべてここに含めておく。
産業上の利用可能性
[0186] 本発明に係る定着装置は、過昇温を防止しつつウォームアップの時間を短縮する とともに、オフセットの発生を防止して良好な定着性能を実現することができ、電磁誘 導加熱方式によって未定着画像を記録材に加熱定着する定着装置などに有用であ る。

Claims

請求の範囲
[1] 電圧が印加され、周囲に磁界を形成する励磁手段と、
少なくとも一部が前記励磁手段によって形成された磁界内に配置され、磁界内に 発生する磁束を内部に浸透させて発熱する発熱手段と、
前記発熱手段の熱を用いて記録材に担持形成された像を加熱定着する定着手段 と、を有し、
前記発熱手段は、
常温で所定の磁性を有し、所定の温度以上になると磁性が無くなる整磁材料から なる透磁性導電層と、
前記透磁性導電層の前記励磁手段側に積層される非磁性導電層と、 を有する定着装置。
[2] 前記発熱手段は、
非磁性材料からなり、前記透磁性導電層および前記非磁性導電層を挟んで前記 励磁手段に対向する非磁性導電体、をさらに有し、
前記透磁性導電層は、
磁性が無くなる温度においては前記磁束が貫通して前記非磁性導電体へ達する 厚さに形成される、請求項 1記載の定着装置。
[3] 前記非磁性導電体は、
前記励磁手段に部分的に対向する請求項 2記載の定着装置。
[4] 前記発熱手段は、
回転する円筒形状の前記透磁性導電層と、
前記透磁性導電層の前記励磁手段側の表面に積層されて前記透磁性導電層と一 体的に回転する前記非透磁性導電層と、からなる発熱ローラを含む、請求項 1記載 の定着装置。
[5] 前記発熱手段は、
前記発熱ローラの周面を挟んで前記励磁手段に対向する非磁性導電体、をさらに 有し、
前記発熱ローラは、 前記透磁性導電層の磁性が無くなる温度においては前記磁束が周面を貫通して 前記非磁性導電体へ達する厚さに形成される、請求項 4記載の定着装置。
[6] 前記非磁性導電体は、
前記発熱ローラの周面に沿って形成され、前記励磁手段に対向する範囲にのみ延 伸される請求項 5記載の定着装置。
[7] 前記非磁性導電体は、
前記発熱ローラの周面に沿った円筒形状に形成され、前記発熱ローラと一体的に 回転する請求項 5記載の定着装置。
[8] 前記励磁手段は、
前記発熱ローラの外周面に対向して配置される励磁コイルを含み、前記発熱口ーラ を外部から励磁する請求項 4記載の定着装置。
[9] 前記励磁手段は、
前記発熱ローラの内周面に対向して配置される励磁コイルを含み、前記発熱ローラ を内部から励磁する請求項 4記載の定着装置。
[10] 前記発熱手段は、
回転する円筒形状の発熱ローラと、
前記発熱ローラに懸架され、前記定着手段へ熱を伝達する無端状のベルトと、を含 み、
前記透磁性導電層は、
前記発熱ローラの周面に形成されて回転し、
前記非透磁性導電層は、
前記ベルトに形成されて前記透磁性導電層の回転に連動する、請求項 1記載の定 着装置。
[11] 前記発熱手段は、
前記非磁性導電層の前記励磁手段側に積層される保護層、をさらに有する請求項 1記載の定着装置。
[12] 前記非磁性導電層は、肉厚が 2 x mから 30 z mである請求項 1記載の定着装置。
[13] 前記非磁性導電層は、固有抵抗が 10 X 10— 6 Ω cm以下の金属材料である請求項 1 記載の定着装置。
[14] 前記励磁手段は、周波数が 20kHzから 100kHzである電流が印加される請求項 1 記載の定着装置。
[15] 前記透磁性導電層は、肉厚が 0.3mmから lmmある請求項 1記載の定着装置。
[16] 前記透磁性導電層は、肉厚が 0.1mmから 0.5mmである請求項 2記載の定着装置
[17] 前記非磁性導電体は、肉厚が 0.2mmから 2mmである請求項 5記載の定着装置。
[18] 請求項 1から請求項 17のいずれかに記載の定着装置を有する画像形成装置。
[19] 励磁手段によって形成された磁界内に配置され、磁界内に発生する磁束を内部に 浸透させて発熱する発熱ローラであって、
常温で所定の磁性を有し、所定の温度以上になると磁性が無くなる整磁材料から なる透磁性導電層と、
前記透磁性導電層の前記励磁手段側に積層される非磁性導電層と、
を有する発熱ローラ。
[20] 前記非磁性導電層の前記励磁手段側に積層される保護層と、
前記保護層の前記励磁手段側に積層される離型層と、
をさらに有する請求項 19記載の発熱ローラ。
PCT/JP2005/013593 2004-07-26 2005-07-25 発熱ローラ、定着装置、および画像形成装置 WO2006011454A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006529322A JP4403180B2 (ja) 2004-07-26 2005-07-25 定着装置、および画像形成装置
US11/572,521 US7486923B2 (en) 2004-07-26 2005-07-26 Heat generating roller, fixing equipment, and image forming apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004217663 2004-07-26
JP2004-217663 2004-07-26

Publications (1)

Publication Number Publication Date
WO2006011454A1 true WO2006011454A1 (ja) 2006-02-02

Family

ID=35786203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013593 WO2006011454A1 (ja) 2004-07-26 2005-07-25 発熱ローラ、定着装置、および画像形成装置

Country Status (4)

Country Link
US (1) US7486923B2 (ja)
JP (1) JP4403180B2 (ja)
CN (1) CN100517117C (ja)
WO (1) WO2006011454A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007272073A (ja) * 2006-03-31 2007-10-18 Kyocera Mita Corp 定着装置および画像形成装置
JP2008129517A (ja) * 2006-11-24 2008-06-05 Fuji Xerox Co Ltd 定着装置、及び画像形成装置
JP2008216390A (ja) * 2007-02-28 2008-09-18 Ricoh Co Ltd 定着装置及び画像形成装置
JP2009152041A (ja) * 2007-12-20 2009-07-09 Konica Minolta Business Technologies Inc 誘導加熱装置,定着装置および画像形成装置
CN101187797B (zh) * 2006-11-24 2011-10-19 富士施乐株式会社 定影装置和图像形成装置
JP2011221557A (ja) * 2006-03-17 2011-11-04 Ricoh Co Ltd 定着装置及び画像形成装置
US8116670B2 (en) * 2006-11-14 2012-02-14 Ricoh Company, Ltd. Fixing device and image forming apparatus using the same
CN101266446B (zh) * 2007-03-12 2012-07-11 株式会社理光 定影装置及使用该定影装置的图像形成装置和定影方法
JP2013003511A (ja) * 2011-06-21 2013-01-07 Ricoh Co Ltd 定着装置及びこれを備えた画像形成装置
JP2015111237A (ja) * 2013-11-01 2015-06-18 株式会社リコー 定着装置および画像形成装置

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4325662B2 (ja) * 2006-11-09 2009-09-02 コニカミノルタビジネステクノロジーズ株式会社 定着装置
US8019266B2 (en) * 2006-11-24 2011-09-13 Fuji Xerox Co., Ltd. Fixing device and image forming device
JP4930026B2 (ja) * 2006-12-13 2012-05-09 富士ゼロックス株式会社 積層体、無端状ベルト、定着装置及び画像形成装置
JP2008199143A (ja) * 2007-02-09 2008-08-28 Matsushita Electric Ind Co Ltd 画像読取装置
JP5061672B2 (ja) * 2007-03-16 2012-10-31 富士ゼロックス株式会社 定着装置及び画像形成装置
JP2008233790A (ja) * 2007-03-23 2008-10-02 Ricoh Co Ltd 定着装置、これを用いた画像形成装置
JP2009058829A (ja) * 2007-08-31 2009-03-19 Ricoh Co Ltd 画像形成装置、定着装置、発熱回転体、温度制御方法
JP4712788B2 (ja) * 2007-12-26 2011-06-29 シャープ株式会社 定着装置及び画像形成装置
JP5016497B2 (ja) * 2008-01-07 2012-09-05 京セラドキュメントソリューションズ株式会社 画像形成装置
JP2009217160A (ja) * 2008-03-12 2009-09-24 Fuji Xerox Co Ltd 定着装置及び画像形成装置
JP5286869B2 (ja) * 2008-03-25 2013-09-11 株式会社リコー 定着装置、画像形成装置
JP2010224186A (ja) * 2009-03-23 2010-10-07 Fuji Xerox Co Ltd 加熱回転体、定着装置、及び画像形成装置
JP4821873B2 (ja) * 2009-03-24 2011-11-24 富士ゼロックス株式会社 定着装置、および画像形成装置
JP5284859B2 (ja) * 2009-04-24 2013-09-11 京セラドキュメントソリューションズ株式会社 定着装置及びこれを搭載した画像形成装置
WO2011104442A1 (fr) * 2010-02-23 2011-09-01 Arcelormittal Investigación Y Desarrollo Sl Moule, procédé de fabrication d'un moule et procédé de fabrication d'un produit en matière plastique ou composite au moyen de ce moule
JP5575605B2 (ja) * 2010-03-08 2014-08-20 京セラドキュメントソリューションズ株式会社 定着装置及びこれを搭載した画像形成装置
JP5641749B2 (ja) * 2010-03-09 2014-12-17 キヤノン株式会社 画像形成装置
JP5673053B2 (ja) * 2010-12-09 2015-02-18 株式会社リコー 定着装置、及び、画像形成装置
JP2012145647A (ja) * 2011-01-07 2012-08-02 Kyocera Document Solutions Inc 定着装置及び画像形成装置
JP2012168403A (ja) * 2011-02-15 2012-09-06 Ricoh Co Ltd 定着装置及び画像形成装置
JP5434949B2 (ja) * 2011-03-31 2014-03-05 ブラザー工業株式会社 乾燥装置、この乾燥装置を備えた記録装置、及び挟持体の製造方法
US8855542B2 (en) * 2011-08-26 2014-10-07 Kabushiki Kaisha Toshiba Fuser, image forming apparatus, and image forming method
KR20140101243A (ko) * 2013-02-08 2014-08-19 삼성디스플레이 주식회사 라미네이트 장치 및 이를 이용한 유기발광표시장치 제조 방법
WO2019163311A1 (ja) * 2018-02-23 2019-08-29 Tmtマシナリー株式会社 加熱ローラ及び紡糸延伸装置
CN110244535A (zh) * 2019-07-08 2019-09-17 广州精驰商贸有限公司 一种合金定影辊
CN113251067B (zh) * 2021-04-21 2022-10-28 江苏永辉橡胶有限公司 一种具有导电性和发热性的橡胶辊

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07114276A (ja) * 1993-10-18 1995-05-02 Canon Inc 像加熱装置
JP2001125407A (ja) * 1999-10-27 2001-05-11 Matsushita Electric Ind Co Ltd 像加熱装置および画像形成装置
JP2004151470A (ja) * 2002-10-31 2004-05-27 Konica Minolta Holdings Inc 誘導加熱定着装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002056961A (ja) * 2000-08-11 2002-02-22 Canon Inc 加熱装置および画像形成装置
JP4077410B2 (ja) * 2001-11-14 2008-04-16 松下電器産業株式会社 加熱ローラ、加熱ベルト、像加熱装置および画像形成装置
JP2003223063A (ja) * 2002-01-30 2003-08-08 Matsushita Electric Ind Co Ltd 定着装置
US7239836B2 (en) * 2002-08-23 2007-07-03 Kyocera Mita Corporation Fixing apparatus
WO2004063820A1 (ja) 2003-01-14 2004-07-29 Matsushita Electric Industrial Co., Ltd. 像加熱装置及び画像形成装置
US7391983B2 (en) 2003-07-30 2008-06-24 Matsushita Electric Industrial Co., Ltd. Method and apparatus for controlling image forming operation of an image forming apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07114276A (ja) * 1993-10-18 1995-05-02 Canon Inc 像加熱装置
JP2001125407A (ja) * 1999-10-27 2001-05-11 Matsushita Electric Ind Co Ltd 像加熱装置および画像形成装置
JP2004151470A (ja) * 2002-10-31 2004-05-27 Konica Minolta Holdings Inc 誘導加熱定着装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011221557A (ja) * 2006-03-17 2011-11-04 Ricoh Co Ltd 定着装置及び画像形成装置
JP2007272073A (ja) * 2006-03-31 2007-10-18 Kyocera Mita Corp 定着装置および画像形成装置
US8116670B2 (en) * 2006-11-14 2012-02-14 Ricoh Company, Ltd. Fixing device and image forming apparatus using the same
JP2008129517A (ja) * 2006-11-24 2008-06-05 Fuji Xerox Co Ltd 定着装置、及び画像形成装置
US7647017B2 (en) 2006-11-24 2010-01-12 Fuji Xerox Co., Ltd. Fixing device and image-forming apparatus
CN101187797B (zh) * 2006-11-24 2011-10-19 富士施乐株式会社 定影装置和图像形成装置
JP2008216390A (ja) * 2007-02-28 2008-09-18 Ricoh Co Ltd 定着装置及び画像形成装置
CN101266446B (zh) * 2007-03-12 2012-07-11 株式会社理光 定影装置及使用该定影装置的图像形成装置和定影方法
JP2009152041A (ja) * 2007-12-20 2009-07-09 Konica Minolta Business Technologies Inc 誘導加熱装置,定着装置および画像形成装置
JP2013003511A (ja) * 2011-06-21 2013-01-07 Ricoh Co Ltd 定着装置及びこれを備えた画像形成装置
JP2015111237A (ja) * 2013-11-01 2015-06-18 株式会社リコー 定着装置および画像形成装置

Also Published As

Publication number Publication date
US7486923B2 (en) 2009-02-03
CN100517117C (zh) 2009-07-22
JPWO2006011454A1 (ja) 2008-05-01
JP4403180B2 (ja) 2010-01-20
US20080063445A1 (en) 2008-03-13
CN1989461A (zh) 2007-06-27

Similar Documents

Publication Publication Date Title
WO2006011454A1 (ja) 発熱ローラ、定着装置、および画像形成装置
JPWO2006098275A1 (ja) 定着装置、加熱ローラ、および画像形成装置
JP2007264421A (ja) 定着部材、定着装置及び画像形成装置
JP4909083B2 (ja) 加熱装置
JP4636870B2 (ja) 像加熱装置
JP2007079131A (ja) 定着装置及び画像形成装置
JP2007108213A (ja) 定着装置
JP5575605B2 (ja) 定着装置及びこれを搭載した画像形成装置
JP5029656B2 (ja) 電磁誘導加熱装置及びこれを用いた定着装置、画像形成装置
JP4999496B2 (ja) 定着装置及び画像形成装置
JP4962201B2 (ja) 定着装置及び発熱ローラ並びにそれを用いた画像形成装置
JP5522135B2 (ja) 定着装置及び画像形成装置
JP5194769B2 (ja) 誘導加熱装置,定着装置および画像形成装置
JP2006011217A (ja) 定着装置および画像形成装置
JP3323658B2 (ja) 加熱装置
JP2008122771A (ja) 像加熱装置及びこれを備えた画像形成装置
JP4947685B2 (ja) 定着装置及び画像形成装置
JP5699676B2 (ja) 定着装置及び画像形成装置
JP2001051530A (ja) 定着装置
JP5509545B2 (ja) 定着装置及び画像形成装置
JP5136097B2 (ja) 定着装置および画像形成装置
JP2007272073A (ja) 定着装置および画像形成装置
JP5853061B2 (ja) 定着装置及びこれを搭載した画像形成装置
JP2010002657A (ja) 定着装置および画像形成装置
JP5472619B2 (ja) 定着装置及び画像形成装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2006529322

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11572521

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580025074.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 11572521

Country of ref document: US