WO2006009206A1 - 燃料電池用結着剤、電極形成用組成物、電極およびそれを用いた燃料電池 - Google Patents

燃料電池用結着剤、電極形成用組成物、電極およびそれを用いた燃料電池 Download PDF

Info

Publication number
WO2006009206A1
WO2006009206A1 PCT/JP2005/013389 JP2005013389W WO2006009206A1 WO 2006009206 A1 WO2006009206 A1 WO 2006009206A1 JP 2005013389 W JP2005013389 W JP 2005013389W WO 2006009206 A1 WO2006009206 A1 WO 2006009206A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
binder
acid group
electrode
group
Prior art date
Application number
PCT/JP2005/013389
Other languages
English (en)
French (fr)
Inventor
Masahiro Toriida
Junichi Ishikawa
Takehiko Omi
Satoko Fujiyama
Kuniyuki Takamatsu
Shoji Tamai
Original Assignee
Mitsui Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals, Inc. filed Critical Mitsui Chemicals, Inc.
Priority to CA2574646A priority Critical patent/CA2574646C/en
Priority to CN2005800247022A priority patent/CN101002352B/zh
Priority to US11/658,178 priority patent/US8288058B2/en
Priority to JP2006529274A priority patent/JP4150408B2/ja
Priority to EP05766321A priority patent/EP1788649B1/en
Publication of WO2006009206A1 publication Critical patent/WO2006009206A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/20Polysulfones
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • Binder for fuel cell composition for electrode formation, electrode and fuel cell using the same
  • the present invention relates to a binder used in a fuel cell using hydrogen, alcohol or the like as a fuel, an electrode-forming composition containing the same, a fuel cell electrode, and a fuel cell using them.
  • a polymer electrolyte fuel cell is a fuel cell that uses a proton-conducting polymer as an electrolyte.
  • the fuel is produced by electrochemically oxidizing a fuel such as hydrogen or methanol using oxygen or air.
  • the chemical energy is converted into electrical energy and extracted.
  • the polymer electrolyte fuel cell there are types that use pure hydrogen supplied from cylinders and pipes as fuel, and types that use gasoline and methanol power to generate hydrogen by a reformer.
  • direct methanol fuel cells that directly generate electricity using aqueous methanol as fuel
  • Methanol Fuel Cell Methanol Fuel Cell
  • This DMFC does not require a reformer to generate hydrogen, so it can be configured as a simple and compact system, and is especially attracting attention as a power source for portable devices.
  • a polymer electrolyte fuel cell is composed of a polymer electrolyte membrane and a positive electrode and a negative electrode arranged in contact with both sides thereof.
  • Fuel hydrogen or methanol is electrochemically oxidized at the negative electrode to produce protons and electrons. This proton moves through the polymer electrolyte membrane to the positive electrode to which oxygen is supplied.
  • electrons generated at the negative electrode pass through a load connected to the battery and flow to the positive electrode, where protons and electrons react to generate water. Therefore, polymer materials used as electrolyte membranes, binders that connect membranes and electrodes, binders that fix catalysts that promote the reduction reaction of hydrogen and methanol, and oxygen have high proton conductivity. Desired.
  • the electrolyte membrane is required to block hydrogen and methanol in the fuel, but the binder for fixing the electrode catalyst supplies fuel to the catalyst. Conversely, methanol permeability is required.
  • the adhesion between the interface between the electrolyte membrane and the electrode or the interface between the catalyst and the binder is insufficient, proton conduction is inhibited at the peeling interface, so the polymer materials used for these have high adhesion. Desired.
  • Proton acid group-containing fluorine-based polymer compounds such as Nafion (registered trademark, manufactured by Dubon) or a polymer film manufactured by Dow Chemical are known as polymer materials having high proton conductivity.
  • this protonic acid group-containing fluorine-based polymer compound is extremely expensive, generates hydrofluoric acid gas when incinerated at the time of disposal, and has a low methanol blocking property, so the polymer electrolyte membrane for DMFC When proton conductivity decreases sharply under high temperature and low humidity, which is unsuitable for!
  • Non-Patent Document 1 a large number of polymer compounds containing protonic acid groups containing no aliphatic chain in the main chain, that is, aromatic hydrocarbons have been developed (for example, Non-Patent Document 1).
  • a membrane having an aromatic polyether strength that is sulphony has excellent heat resistance and chemical durability and can withstand long-time use as a polymer electrolyte membrane.
  • sulfonated aromatic polyether cross-linked membranes with molecular chains cross-linked are excellent in water resistance and methanol solubility, and are suitable for polymer electrolyte membranes for DMFC because they have both methanol blocking properties and proton conductivity.
  • Patent Document 1 a large number of polymer compounds containing protonic acid groups containing no aliphatic chain in the main chain, that is, aromatic hydrocarbons.
  • a fuel cell using a proton acid group-containing aromatic hydrocarbon polymer compound has a problem that battery characteristics deteriorate due to changes in humidity and temperature. This is thought to be because the interface between the membrane and the electrode and the interface between the catalyst and the binder peel off as a result of repeated expansion and contraction of the proton conducting material due to fluctuations in humidity and temperature.
  • a protonic acid group-containing fluorine-based polymer compound is used as a binder, the problem is remarkable.
  • Met Since the glass transition temperature of the protonic acid group-containing fluorine-based polymer compound is as low as about 140 ° C.
  • Examples of the method for suppressing peeling include high adhesion, use of a film, high adhesion, and use of a binder.
  • a film having high adhesiveness a film whose surface is modified, for example, a film whose surface is roughened (for example, Patent Document 2), a film whose surface is hydrophilized by discharge treatment (for example, Patent Document 3), etc. Although reported, the effect of improving adhesiveness was insufficient.
  • Patent Document 4 several polymer electrolyte membranes or binders using protonic acid group-containing aromatic hydrocarbon polymers are known (for example, Patent Document 4 and Patent Document 5).
  • the polymer compound described in the patent literature has a glass transition temperature of 200 ° C or higher. Therefore, when a polymer compound having a strong glass transition temperature is used as a binder, there is a problem that it cannot be bonded to an electrode unless the temperature is raised.
  • the thermal stability of the protonic acid group is low and desorbs at a relatively low temperature, there is a problem that it cannot be firmly melt bonded to the electrode. Therefore, a binder using a protonic acid group-containing aromatic hydrocarbon polymer compound having good adhesion has been demanded.
  • Patent Literature l WO03Z. No. 33566
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-317735
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-237315
  • Patent Document 4 Japanese Patent Laid-Open No. 2004-359925
  • Patent Document 5 Japanese Unexamined Patent Application Publication No. 2004-47244
  • Non-patent literature l Macromol. Chem. Phys., 199, 1421-1426 (1998)
  • An object of the present invention is to provide a binder for a fuel cell having high adhesion, low methanol solubility, high methanol permeability and high proton conductivity, an electrode forming composition, a fuel cell electrode, and the like. It is providing the fuel cell using this.
  • the object is to provide a binder suitable for a direct methanol fuel cell that requires high proton conductivity. Means for solving the problem
  • the present invention includes a block having a divalent aromatic group having a protonic acid group as a repeating structural unit and a block having a protonic acid group having a divalent aromatic group as a repeating structural unit.
  • a binder for a fuel cell comprising a block copolymer having a glass transition temperature (Tg) of 180 ° C. or lower.
  • the block copolymer has an ion exchange group equivalent of 200 to: LOOOgZmol, and has a weight maintenance ratio of 90% or more when immersed in a 64 wt% methanol aqueous solution at 25 ° C. for 24 hours. It is preferable to include a repeating structural unit represented by general formula (1) or general formula (2).
  • X ⁇ X 5 represents a hydrogen atom or a protonic acid group independently, at least one ⁇ is a protonic acid group,
  • a ⁇ A 4 are each independently Direct bond, -CH-, — C (CH)-, — C (CF)-, -0-, -SO— or — CO
  • —, G, h, i, j, k, 1 each independently represents 0 or 1, and a hydrogen atom substituted with an aromatic ring is —CH (m represents an integer of 1 to 10), -CI, -F, —CF or —CN m 2m + l 3
  • the present invention provides a fuel cell electrode forming composition containing the fuel cell binder and an electrode material, a fuel cell electrode comprising the fuel cell electrode forming composition, and the fuel cell electrode. Relates to a fuel cell. The invention's effect
  • the binder for fuel cells of the present invention has low methanol solubility, high methanol permeability, high proton conductivity, and a relatively low glass transition temperature.
  • a fuel cell using an electrode using a binder has a good binding property to the electrolyte membrane, and it is difficult for the electrode and the electrolyte membrane to peel off, so that a fuel cell showing good performance over a long period of time can be obtained. Therefore, the binder for fuel cells according to the present invention is particularly suitable as a binder for electrode formation in direct methanol fuel cells that require high proton conductivity.
  • the block copolymer contained in the binder for a fuel cell according to the present invention includes a block having a divalent aromatic group having a protonic acid group as a repeating structural unit and a divalent aromatic having no protonic acid group. And a block copolymer having a glass transition temperature (Tg) of 180 ° C. or lower.
  • Tg glass transition temperature
  • the divalent aromatic group means a divalent aromatic ring and an aromatic group in which they are connected by a linking group.
  • Specific examples of the divalent aromatic ring include the following groups.
  • 2m + l m represents an integer from 1 to 10), substituted by -C1, F, -CF or -CN group
  • Linking groups include direct bonds, CO—, —SO 1, S—, —CH 1, —CF 1, —
  • Examples of the compound having these divalent aromatic groups as repeating structural units include, for example, aromatic Examples include polyether, aromatic polysulfide, aromatic polyamide, aromatic polyimide, aromatic polyamide, aromatic polyester, aromatic polycarbonate, and aromatic polyarylene. Of these, aromatic polyester is preferable because it is excellent in solvent solubility and can be easily processed into a film.
  • the aromatic polyether in the present invention refers to, for example, a linking group formed only by an aromatic polyether in which the linking group of the aromatic ring has only the ether group, such as polyphenylene oxide, and the ether group and the carbo group group.
  • polyether ketones polyether sulfones whose connecting groups are ether groups and sulfone groups, polysulfones, and polyether-tolyl and polyether pyridine.
  • the divalent aromatic group having a proton acid group according to the present invention has an aromatic hydrocarbon compound unit having a proton acid group.
  • the aromatic hydrocarbon compound unit having a proton acid group has a structure containing one or more aromatic rings, and the aromatic ring may be condensed with one or more aromatic rings or complex rings. Also, some of the carbon atoms in the aromatic ring may be substituted with other atoms.
  • protonic acid group according to the present invention examples include sulfonic acid groups, carboxylic acid groups, and phosphonic acid groups represented by the following formulas (3) to (5). Of these, sulfonic acid groups represented by the following formula (3) are preferred! /.
  • the block copolymer contained in the fuel cell binder according to the present invention has a glass transition temperature of 180 ° C or lower, preferably 100 to 180 ° C, more preferably 120 to 160 ° C. The range of. When the temperature is higher than 180 ° C., it is necessary to heat-seal at a temperature higher than the glass transition temperature when forming into a fuel cell, which may be unfavorable because the protonic acid group may fall off the aromatic ring force. If the glass transition temperature is lower than 100 ° C, the operating temperature of a hydrogen fuel cell (PEFC) is about 80 ° C when it is used as a fuel cell. As a result, the battery characteristics may be degraded.
  • PEFC hydrogen fuel cell
  • the glass transition temperature is a value measured by using a differential scanning calorimeter and raising the temperature from room temperature to 300 ° C at a heating rate of 10 ° CZmin.
  • the glass transition temperature of the block copolymer of the present invention is 180 ° C or lower.
  • both of a block having a divalent aromatic group having a protonic acid group as a repeating structural unit and a block having a protonic acid group having a divalent aromatic group as a repeating structural unit are used.
  • the glass transition temperature may be 180 ° C or lower, but the glass transition temperature of only one of them may be 180 ° C or lower.
  • the block copolymer has an alkali metal salt as a proton acid group, and is usually a sodium type.
  • the alkali metal ion is replaced with a hydrogen ion and converted to the H type (free sulfonic acid group). Conversion to type H is usually performed by immersing in 2N sulfuric acid aqueous solution and pure water for 1 day.
  • the glass transition temperature of the block copolymer of the present invention is the same regardless of whether the block copolymer is a sodium type or an H type, and the glass transition temperature of any form of the block copolymer is the same. Just measure.
  • the block copolymer is a linear aromatic rosin having a main chain that does not have an aliphatic chain and is composed of an aromatic ring and a linking group thereof, and a part of the structural unit is a protonic acid.
  • a polymer having a group is preferred.
  • the block copolymer having an aromatic polyether structure has a linking group that is easily hydrolyzed by hot water, acid, alkali, alcohol, etc., heat resistance, and radical resistance. Since it does not have a low group, it is preferable because it hardly causes deterioration or modification when used as a fuel cell material. If the block copolymer has an ester bond, carbonate bond, amide bond, imide bond, an alkylene bond with an ⁇ -hydrogen that has low heat resistance and is susceptible to radical attack, an aliphatic ether bond, etc. It tends to be preferable because it is hydrolyzed by alkali, alcohol or the like and deteriorates in the fuel cell immediately.
  • the ion exchange group equivalent of the block copolymer according to the present invention is preferably 200 to 1000 gZmol, more preferably 250 to 600 gZmol.
  • the measurement is usually performed by forming a block copolymer into a film by casting it on a substrate.
  • the protonic acid group of the block copolymer is a sodium type, it may be measured by converting to a H type after forming a film.
  • the ion-exchange group equivalent is defined as the weight of the resin per mole of proton acid groups, It means the reciprocal of the number of moles of protonic acid groups per unit weight of coconut resin. That is, the smaller the ion exchange group equivalent, the higher the proportion of blocks in the block copolymer that have a divalent aromatic group having a proton acid group as a repeating structural unit, and the larger the ion exchange group equivalent, the more the proton acid The proportion of blocks in which the divalent aromatic group having a group is a repeating structural unit is reduced.
  • the block copolymer has insufficient water resistance because the proportion of the block having a divalent aromatic group having no proton acid group as a repeating structural unit is too small. As a result, the water absorption is increased, and the electrode and the polymer electrolyte may be easily separated.
  • the ion exchange group equivalent is too large, the proportion of blocks having a divalent aromatic group having a protonic acid group as a repeating structural unit is too small, so that sufficient proton conductivity cannot be obtained. There is a case.
  • the block copolymer useful in the present invention preferably has a weight retention ratio of 90% or more when immersed in a 64% by weight aqueous methanol solution at 25 ° C for 24 hours, and is preferably 95% or more. Is more preferable.
  • the weight retention rate by dipping in a 64 wt% methanol aqueous solution is obtained from the reduced weight of the block copolymer before and after dipping the dried block copolymer in a 64 wt% methanol aqueous solution at 25 ° C for 24 hours. be able to.
  • the measurement is usually performed by forming the block copolymer into a film by casting it on a substrate.
  • the block copolymer proton group is sodium type, it is converted into H type after film-like measurement.
  • the binder for fuel cells containing it is preferable because it dissolves in methanol and cannot immediately retain adhesiveness.
  • the divalent aromatic group having a protonic acid group according to the present invention is represented by the following general formula (1), and the divalent aromatic group having no protonic acid group is represented by the following general formula (2) Preferred to be.
  • X ⁇ X 5 is table a hydrogen atom or a protonic acid group independently, at least one of X ⁇ X 5 is a protonic acid group, AA 4 are each independently Direct bond, — CH—, — C (CH)-, — C (CF)-, -0-, — SO — or — CO— G, h, i, j, k, 1 each independently represents 0 or 1, an aromatic ring
  • Hydrogen atom of -C H (m represents an integer of 1 to 10), -CI, -F, —CF or
  • the glass transition temperature of the block copolymer containing a block having the general formula (1) as a repeating structural unit and a block having the general formula (2) as a repeating structural unit is 180 ° C or lower.
  • both the block having the general formula (1) as a repeating structural unit and the block having the general formula (2) as a repeating structural unit are used.
  • the glass transition temperature may be 180 ° C or lower, but the glass transition temperature of only one of them may be 180 ° C or lower.
  • the glass transition temperature of a block having a repeating structural unit force represented by the general formula (1) tends to be higher than 180 ° C, but the repeating structural unit represented by the general formula (2)
  • the block having the repeating structural unit force represented by the general formula (2) has a glass transition temperature of 180 ° C. or less, and the glass transition temperature of the copolymerized aromatic hydrocarbon compound is 180 ° C. It is necessary to select one that is C or less.
  • the glass transition temperature is a value measured by using a differential scanning calorimeter and raising the temperature from room temperature to 300 ° C at a rate of temperature increase of 10 ° CZmin.
  • the glass transition temperature of the block portion is the value that forms the block. This is the glass transition temperature of the oligomer.
  • the block having the general formula (1) as a repeating structural unit is hydrophilic, and the block having the general formula (2) as a repeating structural unit is preferably hydrophobic. That's right.
  • the block having the general formula (2) as a repeating structural unit is preferably a structure that has low water absorption and is not susceptible to hydrolysis, and can suppress dissolution of the proton conductive copolymer in water and water absorption expansion.
  • the block having the general formula (2) as a repeating structural unit may use two or more types of repeating structural units represented by the general formula (2). If the block having the general formula (2) as a repeating structural unit contains an ester bond, a carbonate bond, an amide bond, an imide bond or a protonic acid group, the block is susceptible to expansion due to hydrolysis or water absorption. It tends to be unfavorable because of its high solubility and water absorption. [0026] In the general formula (1), X 1 and X 2 are protonic acid groups, and A 1 is -SO or CO
  • a 3 is —SO 2 or CO 2 or an aromatic ring
  • Some of the bonded hydrogen atoms are one C H (m represents an integer from 1 to: L0), one Cl, one F, one
  • a structure in which j in the general formula (2) is 1 and k is 0 is preferable because of high methanol resistance and easy synthesis.
  • a structure in which j is 1, k is 0, and A 3 is —CO 2 is particularly preferred because of its excellent methanol resistance and low glass transition temperature and high adhesive strength.
  • the block copolymer containing a block having the general formula (1) and the general formula (2) as a repeating structural unit according to the present invention includes, for example, an aromatic dihalide compound, an aromatic dihydroxy compound, And these compounds having a protonic acid group are polymerized. Typical examples of monomers are shown below.
  • aromatic dihalide compound examples include 4,4'-difluorobenzophenone, 3, 3, 1 difunoleo benzophenone, 4, 4, 1 dicyclo benzophenone, 3, 3'-dichloro.
  • Aromatic dihydroxy compounds include, for example, hydroquinone, resorcin, force alcohol, 4,4'-dihydroxybiphenyl, 4,4'-dihydroxydiphenylsulfide, 4,4, -dihydroxydiphenylmethane, 4 , 4'-dihydroxydiphenyl ether, 4, 4'-dihydroxydiphenyl sulfone, 4, 4 'dihydroxybenzophenone, 2, 2 bis (4-hydroxyphenyl) propane, 1, 1, 1, 3 , 3, 3 Hexafluoro-2,2 bis (4-hydroxyphenyl) propane, 1,4 bis (4 hydroxyphenyl) benzene, ⁇ , 3, 1 bis (4-hydroxyphenyl) 1,4 dimethyl Benzene, ⁇ , ⁇ , monobis (4 hydroxyphenenole) 1, 1,4 diisopropino benzene, ⁇ , ⁇ '-bis (4 hydroxyphenol-nore) — 1,3 diisopropylbenzene, 4, 4
  • the aromatic dino having a protonic acid group and a ride compound include the above-mentioned aromatic dino, sulfonated compounds of the compounds, and alkylsulfonated compounds.
  • Examples of the aromatic dihydroxy compound having a protonic acid group include sulfonated products of the above-mentioned aromatic dihydroxy compounds, the power of alkyl sulfonated products, 2,5 dihydroxybenzoic acid, 2,5 dihydroxyterephthalic acid, List aromatic dihydroxy compounds having phosphate groups such as 5,5, -methylenedisalicylic acid, 5,5, monothiodisalicylic acid, 2,5 dihydroxyphenylphosphonic acid, and alkali metal salts thereof. Can do.
  • the aromatic dinolide compound and the aromatic dihydroxy compound, the sulfone compound, and the alkyl sulfone compound emit the smoke of the aromatic dinolide compound and the aromatic dihydroxy compound.
  • Sulfonation with a known sulfonating agent such as sulfuric acid (Macromol. Chem. Phys., 199,
  • Examples of the repeating structural unit of V ⁇ aromatic group having a protonic acid group represented by the general formula (2) that forms the hydrophobic block include the following.
  • a monomer having a proton acid group and a monomer having no proton acid group or a monomer having a proton acid group are subjected to polycondensation to obtain an oligomer having the general formula (1) as a repeating structural unit.
  • a monomer having no proton acid is subjected to polycondensation to form an oligomer having the general formula (2) as a repeating structural unit.
  • a precursor block copolymer having a block that easily introduces a protonic acid group and a structural unit force that is difficult to introduce a protonic acid group and a block that repeats general formula (2) as a structural unit is synthesized.
  • the method (A) is preferable because it is easy to control the ion exchange group equivalent of the block copolymer.
  • a method in which a monomer having a proton acid group is polycondensed to form an oligomer having the general formula (1) as a structural unit and this oligomer is reacted with a monomer or oligomer having no proton acid group is a proton acid. It is more preferable that the block copolymer having a group is easily controlled.
  • the method for producing the block copolymer of the present invention specifically includes an aromatic dihalide compound and an aromatic dihydroxy compound having a proton acid group, or an aromatic dihalide compound and a proton acid. Or an aromatic dihydroxy compound having a protonic acid group and an aromatic dihydroxy compound having a protonic acid group are polymerized to form a general formula (1)
  • a proton acid group-containing oligomer having a repeating structural unit is synthesized.
  • the resulting oligomer preferably has a reduced viscosity at 35 ° C of 0.05-1-2 dlZg, and the molecular weight of the oligomer is the reaction time, reaction temperature, aromatic dihalide compound and aromatic dihydroxy compound. It can be controlled by a general method such as a charging ratio.
  • an aromatic dihalide compound and an aromatic dihydroxy compound are added and subjected to condensation polycondensation to form a block having the general formula (2) as a repeating structural unit to obtain a block copolymer.
  • block co-polymerization may be carried out by adding an oligomer having a repeating unit of the general formula (2) obtained by polycondensation of an aromatic dihalide compound and an aromatic dihydroxy compound, and then performing polycondensation. Get coalesced.
  • the resulting block copolymer force is determined by block binding or random force binding, for example, a method for obtaining the number of repeating units of a block by NMR measurement described in JP-A-2001-278978, And a method of observing the presence or absence of a microphase separation structure peculiar to the block copolymer with a transmission electron microscope described in JP-A-2003-31232.
  • the block copolymer according to the present invention may be converted to the H type in the case where the proton group may be in the sodium type by the polymerization process of the oligomer or the block copolymer.
  • Conversion to the H form is usually carried out by immersing in a 2N sulfuric acid aqueous solution and pure water for 1 day at a time for proton exchange of the proton acid salt.
  • the binder for a fuel cell of the present invention has a glass transition temperature (Tg) of 180 ° C. or lower.
  • Tg glass transition temperature
  • a block copolymer having a tonic acid group is included.
  • the form of the binder for a fuel cell of the present invention is not particularly limited, but depending on the application, it can be dissolved in a powder or a solvent, or can be obtained by applying and drying the varnish. It can be in the form of a membrane.
  • the solvent is not particularly limited, for example, water, methanol, ethanol, 1 propanol, 2-propanol, butanol, methoxyethanol, etc.
  • Alcohols such as toluene and xylene, halogenated hydrocarbons such as methyl chloride and methylene chloride, ethers such as dichloroethyl ether, 1,2 dimethoxyethane, 1,4-dioxane and tetrahydrofuran , Fatty acid esters such as methyl acetate and ethyl acetate, ketones such as acetone and methyl ethyl ketone, N, N-dimethylformamide, N, N dimethylacetamide, N-methyl-2- Aprotic polar solvents such as pyrrolidone, dimethyl sulfoxide, dimethyl carbonate, etc. Mixing can be used to.
  • hydrocarbons such as toluene and xylene
  • halogenated hydrocarbons such as methyl chloride and methylene chloride
  • ethers such as dichloroethyl ether, 1,2 dimethoxyethane, 1,4-diox
  • the binder for fuel cells of the present invention can be used by combining the block copolymer according to the present invention with other conventionally known ion conductive polymer materials.
  • fluorine-containing protonic acid groups can be used. It is possible to use a polymer or a conventionally known protonic acid group-containing hydrocarbon polymer.
  • the mixing ratio of the block copolymer according to the present invention in the fuel cell binder is preferably 5 to 95% by weight, more preferably 10 to 90% by weight. If the amount of the block copolymer mixed is small, the adhesion to the electrode material or polymer electrolyte may be reduced.
  • the adhesion of the fuel cell binder of the present invention was evaluated by applying the varnish-like fuel cell binder to both the polymer electrolyte membrane and the electrode sheet having a protonic acid group-containing hydrocarbon compound power. After coating and drying, it can be hot-pressed at a specific temperature to produce a polymer electrolyte membrane / electrode assembly, which is then peeled off using a tensile tester and the average peel strength is measured. . T-type peeling is performed after the bonded body is in a dry state or immersed in distilled water or methanol aqueous solution for a certain period of time.
  • the composition for forming a fuel cell electrode according to the present invention contains the binder for a fuel cell and an electrode material.
  • the peel strength can be increased, and if necessary, other various ion conductive polymer compounds may be mixed. .
  • Examples of the electrode material include a conductive material having electrical conductivity and a catalyst for promoting a hydrogen oxidation reaction and an oxygen reduction reaction.
  • the conductive material examples include various metals and carbon materials as long as they are electrically conductive substances.
  • carbon black such as acetylene black, activated charcoal, black bell, lead, iron, manganese, cobalt, chromium, gallium, vanadium, tungsten, ruthenium, iridium, no ⁇ radium, platinum, rhodium and their alloy strength It is at least one selected from. These may be used alone or in combination as a powder or a sheet.
  • the catalyst is not particularly limited as long as it is a metal or metal oxide that promotes hydrogen oxidation reaction and oxygen reduction reaction.
  • a metal or metal oxide that promotes hydrogen oxidation reaction and oxygen reduction reaction.
  • metal oxides such as iridium, rhodium, platinum, rhodium, alloys thereof, and molybdenum oxide.
  • the mixing ratio of these electrode materials and the binder for fuel cells is not particularly limited, but it is preferable that the ratio of the binder for fuel cells is 5 to 90% by weight because both the strength and efficiency of the electrode can be achieved.
  • the electrode for a fuel cell according to the present invention comprises a current collector and a layer of the composition for forming a fuel cell electrode, and the layer of the composition for forming a fuel cell electrode is in contact with an electrolyte membrane.
  • various current collectors are conceivable, it is preferable to use carbon paper.
  • the force that can be obtained by various methods for the electrode for a fuel cell according to the present invention Usually, the electrode can be easily obtained by applying a solution of the electrode forming composition to a current collector and drying it. preferable.
  • the fuel cell of the present invention may be a hydrogen fuel cell (PEFC) or a direct methanol fuel cell (DMFC), but is preferably a direct methanol fuel cell.
  • PEFC hydrogen fuel cell
  • DMFC direct methanol fuel cell
  • Main departure The bright fuel cell uses an electrolyte membrane, the fuel cell binder and the fuel cell electrode, and has a structure having a fuel cell binder between the electrolyte membrane and the positive and negative electrodes, respectively.
  • the electrolyte membrane used in the fuel cell according to the present invention various known membranes can be used, but it is preferable to use an electrolyte membrane having a high polymer compound power. It is preferable that a molecular compound is contained because the peel strength from the electrode is high.
  • the interface between the membrane and the electrode or the interface between the catalyst and the binder does not peel off. It is difficult for output to decrease.
  • the protonic acid group does not fall off when the electrolyte membrane and the electrode are joined. Therefore, it is highly efficient and reliable.
  • the fuel cell binder in the form of a film was precisely weighed into a glass container that could be sealed, and an excess amount of an aqueous solution of calcium chloride and calcium salt was added thereto and stirred overnight.
  • the salt and hydrogen generated in the system were titrated with 0.1N sodium hydroxide standard aqueous solution using phenolphthalein indicator and calculated.
  • Weight retention rate by immersion in 64 wt% methanol aqueous solution was precisely weighed into a glass container that could be sealed, and an excess amount of an aqueous solution of calcium chloride and calcium salt was added thereto and stirred overnight.
  • the salt and hydrogen generated in the system were titrated with 0.1N sodium hydroxide standard aqueous solution using phenolphthalein indicator and calculated.
  • the film-like binder for a fuel cell was dried at 120 ° C for 12 hours under a nitrogen stream, immersed in a 64 wt% methanol aqueous solution at 25 ° C for 24 hours, and calculated from the weight change from the time of drying.
  • Ionic conductivity 25 ° C, film thickness direction
  • a fuel cell binder is wetted with 1 M sulfuric acid and sandwiched between two measuring cells with a platinum electrode attached to one side of a 100 ⁇ m-thick polyethylene terephthalate film with 1 cm 2 pores. The pores were filled with 1M sulfuric acid water. This is installed in a constant temperature room at 25 ° C. The resistance value of was measured. From the difference from the resistance value when the binder was sandwiched, the resistance value of the binder alone was determined, and the ionic conductivity (25 ° C, film thickness direction) was calculated. The film thickness necessary for calculating the ionic conductivity was measured using a micrometer in a dry state.
  • Distilled water and ImolZL methanol aqueous solution were brought into contact with each other via a film-like binder having a diameter of 23 mm ⁇ at room temperature, and the change in methanol concentration on the distilled water side up to 3 hours was measured by gas chromatography.
  • the methanol permeability at a film thickness of 50 m was calculated from the slope of the obtained methanol concentration increase line.
  • the block copolymer or oligomer was measured by differential scanning calorimetry (DSC, DSC-60A manufactured by Shimadzu Corporation) at a heating rate of 10 ° C. Zmin.
  • the sample When the protonic acid group of the block copolymer was sodium sulfonate, the sample was heated to 250 ° C and then rapidly cooled to room temperature, and then the temperature was raised from room temperature to 300 ° C to measure the glass transition temperature. If the block copolymer's protonic acid group is a free sulfonic acid group, the sample is heated to 170 ° C and held at 170 ° C for 10 minutes, then rapidly cooled to room temperature and then from room temperature to 200 ° C. The glass transition temperature was measured by raising the temperature.
  • a varnish-like fuel cell binder in which a block copolymer is dissolved is applied to both a polymer electrolyte membrane made of a hydrocarbon compound containing a protonic acid group and an electrode sheet, dried, and then dried at 1 MPa for a fuel cell.
  • the polymer electrolyte membrane and electrode assembly were fabricated by hot pressing for 8 minutes at a set temperature of the polymer glass transition temperature + 20 ° C.
  • the obtained polymer electrolyte membrane / electrode assembly was immersed in distilled water for 10 minutes, and T-peeling was performed using a tensile tester at a peeling rate of lOmmZmin, and the average peel force was measured.
  • the obtained polymer powder was dissolved in dimethyl sulfoxide, cast on a glass substrate, and dried at 200 ° C for 4 hours to obtain a polyetherketone film containing sodium sulfonate groups.
  • the obtained film was very flexible and tough.
  • This film was cross-linked by irradiating light of 6000 mjZcm2 using a metal nanoride lamp.
  • the bridge film was immersed in a 2N aqueous sulfuric acid solution and pure water for 1 day to conduct proton exchange of sodium sulfonate groups, and a polymer electrolyte comprising a crosslinked sulfonate group-containing polyetherketone having free sulfonate groups.
  • a membrane was obtained.
  • the obtained viscous reaction product was diluted with 50 g of NMP and then discharged into 2 L of acetone.
  • the precipitated polymer was collected by filtration, washed with acetone and distilled water, dried at 50 ° C. for 8 hours, and further 110 Drying at 4 ° C. for 4 hours gave 36.
  • the resulting block copolymer had a reduced viscosity of 1.29 dlZg (NMP) and a glass transition temperature of 122 ° C.
  • the obtained film was immersed in a 2N aqueous sulfuric acid solution and pure water for 1 day, and proton exchange of sodium sulfonate groups was carried out to obtain a fuel cell binder film having free sulfonate groups.
  • the proton exchange binder film for this fuel cell has an ion exchange group equivalent of 570 g / mol, a weight retention rate of 98% by immersion in a 64 wt% methanol aqueous solution, an ionic conductivity of 0.037 SZcm, and a methanol permeability of 4 It was 8 molZcm 2 'min.
  • the resulting block copolymer polymer powder was stirred in a 2N sulfuric acid aqueous solution and pure water for 1 day, and proton exchange of sodium sulfonate groups was carried out to obtain polymer powder having free sulfonic acid groups. .
  • the resulting glass copolymer having free sulfonic acid groups had a glass transition temperature of 121 ° C.
  • the block copolymer is composed of “a divalent aromatic group having a proton protonic acid group.
  • the glass transition temperature of the “block as a returning structural unit” and the “block having a repeating divalent aromatic group that does not have a proton acid group as a structural unit” are determined by generating each block into an oligomer or polymer. Ask.
  • the glass transition temperature of the oligomer of “block having a divalent aromatic group having a protonic acid group as a repeating structural unit” obtained in 1 above was not observed in the measurement range.
  • the glass transition temperature of the oligomer of "a block having a protonic acid group and a divalent aromatic group as a repeating structural unit” was measured as follows.
  • the viscous reaction mass obtained was cooled and diluted with 80 g of N-methyl-2-pyrrolidone, and then the by-product salt was removed by Celite filtration.
  • This polymer solution was discharged into 500 ml of a water-methanol (5Z5, wtZwt) mixed solution, and the precipitated polymer was collected by filtration, washed with 5 wt% hydrochloric acid aqueous solution, pure water and methanol, and then dried at 100 ° C for 4 hours. 25.8 g (yield 90%) of polyaryl ether ketone powder having no sulfonic acid group of 1 and having the same repeating unit force as the block was obtained.
  • the resulting polyaryletherketone powder had a reduced viscosity of 0.56 dl / g (solvent: p-chlorophenol / phenol (9/1, wtZwt) mixture) and a glass transition temperature of 118 ° C. From the above, it is clear that the glass transition temperature of the block copolymer obtained in Example 1 is derived from a block having a divalent aromatic group having no sulfonic acid group as a repeating structural unit.
  • a film of a binder for a fuel cell having a free sulfonic acid group was obtained in the same manner as in Example 1.
  • the ion exchange group equivalent was 590 gZmol
  • the weight retention rate after immersion in a 64 wt% methanol aqueous solution was 96%
  • the ionic conductivity was 0.036 SZcm
  • the methanol permeability was 4.9 ⁇ mol / cm 2 -miii.
  • Example 2 a polymer powder having a free sulfonic acid group was obtained in the same manner as in Example 1.
  • the resulting block copolymer having free sulfonic acid groups had a glass transition temperature of 155 ° C.
  • a sulfonic acid group-containing polyetherketone crosslinked membrane using a varnish in which this polymer was dissolved in the same manner as in Example 1 was bonded to a commercially available electrode (EC-20-20-7 manufactured by Electguchi Chem). Average peel strength was 11. INZm
  • a block copolymer having a reduced viscosity 1.34 dlZg (NMP) and a sodium sulfonate base having a glass transition temperature of 143 ° C. was used in the same manner as in Example 1 except that 2-09 g hydroquinone instead of resorcin was used. Obtained.
  • a film having free sulfonic acid groups was obtained in the same manner as in Example 1.
  • the resulting film has an ion exchange group equivalent of 585 g / mol, a weight retention rate of 95% by immersion in 64 wt methanol aqueous solution, an ionic conductivity of 0.038 S / cm, and a methanol permeability of 5.1 ⁇ molZcm 2 '. It was min.
  • Example 2 Using the obtained block copolymer, a polymer powder having free sulfonic acid groups was obtained in the same manner as in Example 1. The resulting block copolymer having free sulfonic acid groups had a glass transition temperature of 143 ° C.
  • a block copolymer having a reduced viscosity of 1. OldlZg (NMP) and a sodium sulfonate group having a glass transition temperature of 210 ° C. was obtained in the same manner as in Example 1 except that 14.61 g of TMBPF was used instead of resorcin.
  • a film having free sulfonic acid groups was obtained in the same manner as in Example 1.
  • the obtained film had an ion exchange group equivalent of 722 gZmol, a weight retention rate of 99% by immersion in a 64 weight methanol aqueous solution, an ionic conductivity of 0.016 SZcm, and a methanol permeability of 1.1 ⁇ mol Zcm 2 'min. .
  • Example 2 Using the obtained block copolymer, proton exchange was performed in the same manner as in Example 1 to obtain a polymer powder having a free sulfonic acid group. Using a varnish in which this polymer powder was dissolved in the same manner as in Example 1, an attempt was made to bond the sulfonic acid group-containing polyetherketone crosslinked membrane and a commercially available electrode (EC-20-10-7 manufactured by Electrochem). At the hot press set temperature of 230 ° C, the crosslinked film after bonding was changed to black. At a hot press set temperature of 140 ° C, no film discoloration was observed, but the average peel strength of the adhesive was 0.8 NZm.
  • EC-20-10-7 commercially available electrode
  • the fuel cell of FIG. 1 was prepared as follows. Sulfonic acid group-containing polyetherketone crosslinked membrane as electrolyte membrane 1
  • Electrochem EC-20-20C-7RU laminate electrode 2 / electrolyte membrane 1 / electrode 2 'in this order, It was introduced into a heat press heated to 80 ° C and pressurized only to the electrode surface at 0.8 MPa. Then caro
  • the pressure was raised from 80 ° C to 140 ° C over 8 minutes, and the pressure was maintained at 140 ° C for 5 minutes.
  • the electrolyte membrane electrode assembly after bonding was almost dry, but the electrode was not peeled o
  • the obtained electrolyte membrane electrode assembly was assembled in a fuel cell test cell (product number: EFC-05-REF) manufactured by Electrochem, and the fuel cell of Fig. 1 was assembled.
  • the electrolyte membrane 1 is sandwiched between the electrode with catalyst 2 and electrode 2 ′ prepared above and the gasket 3, and the separator 4 is placed on the outside, and the whole is secured with the clamping plate 7 using the pressure plate 5. It has a tight structure.
  • Gas assembly 6 was provided inside the cell. After assembling the cell, the cell characteristics were measured using 1M methanol aqueous solution as fuel using a fuel cell evaluation device as shown in Fig. 2.
  • Power generation conditions are fuel cell temperature 80 ° C, methanol water solution flow rate 2ccZmin, air pressure 0.05 MPa, air flow rate 100sccm. A maximum output of 7.4mW Zcm2 was obtained (voltage 0.20V, current 36mAZcm2).
  • FIG. 2 the fuel cell of FIG.
  • a methanol aqueous solution is fed from the left side to the right side through the fuel cell 8 by the feed pump 12.
  • air is supplied from the left side to the right side through 8 while being humidified by the publishing tank 9 for humidification.
  • 6 flow paths on the fuel electrode side are methanol aqueous solution. Air flows through the gas flow path 6 on the air electrode side. Each flow rate is controlled by the mass flow controller 11.
  • the fuel cell is evaluated by measuring the voltage and current density generated by flowing aqueous methanol and air with an electronic load 10. The cell after the power generation test was disassembled and the electrolyte membrane electrode assembly was observed, but the separation of the electrolyte membrane and the electrode was strong.
  • Proton-exchanged block copolymer powder obtained in Example 1 0.5 g as a binder, 10 g of varnish dissolved in a mixed solvent of distilled water 5.
  • Og and tetrahydrofuran 4.5 g were manufactured by Ishifuku Metal Co., Ltd.
  • 20 wt% Pt-supported catalyst (name: IFPC20) was mixed with 0.5 g, stirred after application of ultrasonic waves to obtain an electrode-forming composition for an air electrode catalyst.
  • Example 2 Using 0.5 g of the proton-exchanged block copolymer powder obtained in Example 1 as a binder, Distilled water 5. Og, tetrahydrofuran 4.5 g of varnish dissolved in a mixed solvent of 4.5 g is mixed with 0.5 g of 30 wt% PtRu supported catalyst (name: IFPC30A) manufactured by Ishifuku Kikinzoku, and stirred after applying ultrasonic waves. An electrode forming composition for a fuel electrode catalyst was obtained.
  • PtRu supported catalyst name: IFPC30A
  • a catalyst composition for electrode formation was applied onto carbon paper (product number: TGP-H-060) manufactured by Toray Industries, Inc., vacuum-dried at 70 ° C. for 12 hours, and cut into 5 cm 2 to form an electrode.
  • the amount of catalyst applied was 2 mgZcm2 in terms of PtRu.
  • An electrolyte membrane / electrode assembly was produced in the same manner as in Example 4 except that the electrode produced in 5-1 was used as electrode 2 and the electrode produced in 5-2 was used as electrode 2 ′. The electrode was not peeled off.
  • a power generation test was conducted in the same manner as in Example 4 using 1M aqueous methanol as fuel, and the battery characteristics were measured. A maximum output of about 6 lmWZcm2 was obtained (voltage 0.19 V, current 32 mA / cm2) 0 The cell after the power generation test was disassembled and the electrolyte membrane electrode assembly was observed, but there was no separation of the electrolyte membrane and electrode. I helped.
  • FIG. 1 is a schematic diagram showing a cross-sectional structure of a fuel cell used in Example 4.
  • FIG. 2 is a diagram showing a fuel cell evaluation apparatus used for evaluation of a fuel cell in Example 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)
  • Polyethers (AREA)

Abstract

【課題】  高接着性、低メタノール溶解性、高メタノール透過性と高プロトン伝導性を有する燃料電池用結着剤、電極形成用組成物、燃料電池用電極およびそれらを用いた燃料電池を提供する。特に、高いプロトン伝導性を必要とする直接メタノール型燃料電池の結着剤として好適である。 【解決手段】  プロトン酸基を有する2価の芳香族基を繰り返し構造単位とするブロックと、プロトン酸基を有さない2価の芳香族基を繰り返し構造単位とするブロックを含み、かつガラス転移温度(Tg)が180°C以下であるブロック共重合体を含む燃料電池用結着剤である。特に、前記ブロック共重合体は、イオン交換基当量が200~1000g/molであり、かつ、64重量%メタノール水溶液に25°Cで24時間浸漬したときの重量維持率が90%以上であることが好ましい。

Description

明 細 書
燃料電池用結着剤、電極形成用組成物、電極およびそれを用いた燃料 電池
技術分野
[0001] 本発明は水素、アルコールなどを燃料に用いる燃料電池などにおいて用いられる結 着剤、それを含有してなる電極形成用組成物、燃料電池用電極およびそれらを用い た燃料電池に関する。
背景技術
[0002] 高分子電解質型燃料電池とは、電解質としてプロトン伝導性高分子を用いる燃料 電池で、水素やメタノールなどの燃料を酸素または空気を用いて電気化学的に酸ィ匕 することにより、燃料の化学エネルギーを電気エネルギーに変換して取り出すもので ある。高分子電解質型燃料電池には、燃料として、ボンべ、配管などカゝら供給される 純水素を用いるタイプのほか、改質器によりガソリンやメタノール力も水素を発生させ て用いるタイプなどがある。また、燃料としてメタノール水溶液を用いて直接発電を行 う直接メタノール型燃料電池(DMFC: Direct
Methanol Fuel Cell)も開発されている。この DMFCは、水素を発生させるための改 質器が不要なためシンプルでコンパクトなシステムを構成とすることができ、特に携帯 機器用電源として注目されている。
高分子電解質型燃料電池は、高分子電解質膜とこの両側に接触して配置される正 極および負極から構成される。燃料の水素あるいはメタノールは負極において電気 化学的に酸化されてプロトンと電子を生成する。このプロトンは高分子電解質膜内を 、酸素が供給される正極に移動する。一方、負極で生成した電子は電池に接続され た負荷を通り、正極に流れ、正極においてプロトンと電子が反応して水を生成する。 そのため、電解質膜、膜と電極をつなぐ結着剤、水素やメタノールの酸ィ匕および酸素 の還元反応を促進する触媒を固定する結着剤等として用いられる高分子材料には 高いプロトン伝導性が求められる。さらに、電解質膜には燃料の水素やメタノールの 遮断性が求められるが、電極用の触媒を固定する結着剤には触媒に燃料を供給す る必要があるため逆にメタノールの透過性が求められる。また、電解質膜と電極の界 面や、触媒と結着剤の界面の接着が不十分な場合、剥離界面でプロトン伝導が阻害 されるため、これらに用いられる高分子材料には高い接着性が求められる。
高いプロトン伝導性を有する高分子材料としては、商品名 Nafion (登録商標、デュ ボン社製)または Dow Chemical社製の高分子膜などのプロトン酸基含有フッ素系 高分子化合物が知られている。し力しながら、このプロトン酸基含有フッ素系高分子 化合物は、非常に高価格である、廃棄時に焼却するとフッ酸ガスが発生する、膜のメ タノール遮断性が低いため DMFC用高分子電解質膜に不向きである、高温低湿度 下ではプロトン伝導性が急激に低下すると!/、つた問題を有して 、た。
[0003] 一方、プロトン酸基含有炭化水素系高分子化合物を用いた非フッ素系の高分子電 解質材料の開発も進められている。プロトン酸基含有炭化水素系高分子化合物は低 価格で製造できるほか、焼却時のハロゲン系ガスの発生もなぐ高温低湿度下での プロトン伝導性の低下も少ないことが知られている。しかし、たとえばスルホンィ匕ポリス チレンは、その主鎖構造が有する 3級炭素がラジカルの攻撃を受けやすぐ電池内 で容易に α位の水素を放出してしまうため、電池特性が経時的に悪化することが知 られている。
そのため、主鎖に脂肪族鎖を有さない、すなわち芳香族炭化水素系のプロトン酸 基含有高分子化合物が数多く開発されてきた (例えば、非特許文献 1)。なかでも、ス ルホンィ匕した芳香族ポリエーテル力もなる膜は、耐熱性と化学的耐久性に優れ、高 分子電解質膜として長時間の使用に耐えうることが報告されている。さらに分子鎖間 を架橋させたスルホン化芳香族ポリエーテル架橋膜は耐水性、耐メタノール溶解性 に優れ、メタノール遮断性とプロトン伝導性を両立しているため DMFC用の高分子 電解質膜に適している (例えば、特許文献 1)。
[0004] しかしながら、プロトン酸基含有芳香族炭化水素系高分子化合物を用いた燃料電 池は、湿度や温度の変動により、電池特性が低下するといつた問題を有していた。こ れは、湿度や温度の変動によりプロトン伝導材料が膨張と収縮を繰り返した結果、膜 と電極の界面や触媒と結着剤の界面が剥離するためであると考えられる。特に結着 剤としてプロトン酸基含有フッ素系高分子化合物を用いた場合は、その問題が顕著 であった。プロトン酸基含有フッ素系高分子化合物のガラス転移温度は Nafionで 14 0°C程度と低いため、高分子電解質膜がプロトン酸基含有フッ素系高分子化合物で ある場合には、熱プレスにより強固に膜と電極を熱融着させることができる。しかし、 高分子電解質膜がプロトン酸基含有芳香族炭化水素系高分子化合物である場合は 、結着剤のプロトン酸基含有フッ素系高分子化合物との親和性が低いため接着界面 で剥離が生じ易力つた。
剥離を抑制する方法としては接着性が高 、膜を使用することや接着性が高 、結着剤 を使用することが挙げられられる。接着性が高い膜としては、表面を改質した膜、例 えば表面を粗ィ匕した膜 (例えば、特許文献 2)、放電処理により表面を親水化した膜( 例えば、特許文献 3)等が報告されているが接着性の向上効果は不十分であった。
[0005] 一方、プロトン酸基含有芳香族炭化水素系高分子化合物を用いた高分子電解質 膜または結着剤はいくつか知られている(例えば、特許文献 4及び特許文献 5)が、 力かる特許文献に記載されている高分子化合物は、ガラス転移温度が 200°C以上で ある。したがって、力かる高いガラス転移温度を有する高分子化合物を結着剤として 用いる場合には、高温にしなければ電極と接着できない問題がある。その一方、その プロトン酸基の熱安定性が低ぐ比較的低温で脱離するため、その結果、電極と強固 に溶融接着することができない問題がある。そのため、良好な接着性を有するプロト ン酸基含有芳香族炭化水素系高分子化合物を用いた結着剤が求められていた。
[0006] 本発明の目的は、良好な接着性を有し、且つ、高メタノール透過性と高プロトン伝 導性を有する燃料電池用結着剤を提供することにある。また、それを用いた燃料電 池電極形成用組成物、燃料電池用電極および燃料電池を提供することにある。
[0007] 特許文献 l :WO03Z。33566号公報
特許文献 2:特開 2003— 317735号公報
特許文献 3:特開 2002— 237315号公報
特許文献 4:特開 2004— 359925号公報
特許文献 5 :特開 2004— 47244号公報
非特許文献 l : Macromol. Chem. Phys., 199, 1421-1426(1998)
発明の開示 発明が解決しょうとする課題
[0008] 本発明の目的は、高接着性、低メタノール溶解性、高メタノール透過性と高プロトン 伝導性を有する燃料電池用結着剤、電極形成用組成物、燃料電池用電極およびそ れらを用いた燃料電池を提供することにある。特に、高いプロトン伝導性を必要とする 直接メタノール型燃料電池の結着剤として好適であるものを提供することにある。 課題を解決するための手段
[0009] 本発明は、プロトン酸基を有する 2価の芳香族基を繰り返し構造単位とするブロック と、プロトン酸基を有さな ヽ 2価の芳香族基を繰り返し構造単位とするブロックを含み 、かつガラス転移温度 (Tg)が 180°C以下であるブロック共重合体を含むことを特徴と する燃料電池用結着剤に関する。前記ブロック共重合体は、イオン交換基当量が 20 0〜: LOOOgZmolであり、かつ、 64重量%メタノール水溶液に 25°Cで 24時間浸漬し たときの重量維持率が 90%以上であることが好ましぐ一般式(1)および一般式(2) で表される繰り返し構造単位を含んでなることが好ましい。
[化 1]
)
Figure imgf000006_0001
[一般式(1)および (2)中、 X^X5はそれぞれ独立して水素原子またはプロトン酸基 を表し、 〜 の少なくとも一つはプロトン酸基であり、 A^A4はそれぞれ独立して 直接結合, -CH - , — C (CH ) - , — C (CF ) - , -0- , -SO—または— CO
2 3 2 3 2 2
—を表し、 g, h, i, j, k, 1はそれぞれ独立して 0または 1を表し、芳香環に置換した水 素原子は、 -C H (mは 1〜10の整数を表す), -CI, -F, —CFまたは—CN m 2m+l 3
で置換されていてもよい。 ]
また本発明は、前記燃料電池用結着剤と電極材料を含有する燃料電池電極形成用 組成物、その燃料電池電極形成用組成物からなる燃料電池用電極、および該燃料 電池用電極を用 ヽた燃料電池に関する。 発明の効果
[0010] 本発明の燃料電池用結着剤は、低メタノール溶解性、高メタノール透過性、高プロト ン伝導性であって、且つ、ガラス転移温度が比較的低いので、本発明の燃料電池用 結着剤を用いた電極を用いる燃料電池は、電解質膜との結着性が良好であり、電極 と電解質膜との剥離が生じ難く、長期にわたり良好な性能を示す燃料電池が得られ る。従って本発明に係る燃料電池用結着剤は、特に高いプロトン伝導性を必要とす る直接メタノール型燃料電池の電極形成用結着剤として好適である。
発明を実施するための最良の形態
[0011] ブロック共重合体
本発明に係わる燃料電池用結着剤に含まれるブロック共重合体は、プロトン酸基を 有する 2価の芳香族基を繰り返し構造単位とするブロックと、プロトン酸基を有さない 2価の芳香族基を繰り返し構造単位とするブロックを含み、かつガラス転移温度 (Tg) が 180°C以下であるブロック共重合体である。
[0012] 本発明において、 2価の芳香族基とは、 2価の芳香環およびそれらが連結基で結合 した芳香族基を意味する。 2価の芳香環としては具体的には下記の基を挙げることが できる。
Figure imgf000007_0001
[0013] :れらの芳香環は、その水素原子の一部あるいは全部がプロトン酸基、 C H (
2m+l mは 1〜10の整数を表す), -C1, F, —CFまたは—CN基で置換されているもの
3
をも包含する。
連結基としては、直接結合、 CO—、 -SO 一、 S—、 -CH 一、 -CF 一、 -
2 2 2
C (CH ) 一、 -C (CF ) 一、 一O 、 一NH— CO 、 一CO— O 、 一O— CO—
3 2 3 2
0—、 9, 9 フルオレン基などを挙げることができる。
[0014] これらの 2価の芳香族基を繰り返し構造単位とする化合物としては、例えば、芳香族 ポリエーテル、芳香族ポリスルフイド、芳香族ポリアミド、芳香族ポリイミド、芳香族ポリ ァゾール、芳香族ポリエステル、芳香族ポリカーボネート、芳香族ポリアリーレンなど が挙げられる。中でも、溶剤溶解性に優れ、製膜などの加工が容易な芳香族ポリエ 一テルが好ましい。ここで、本発明における芳香族ポリエーテルとは、たとえば、ポリ フエ-レンォキシドなど、芳香環の連結基がエーテル基のみ力もなる芳香族ポリエー テルだけでなぐ連結基がエーテル基とカルボ-ル基カもなるポリエーテルケトン、連 結基がエーテル基とスルホン基からなるポリエーテルスルホン、ポリスルホン、および ポリエーテル-トリル、ポリエーテルピリジンをも包含する。
[0015] 本発明に係わるプロトン酸基を有する 2価の芳香族基は、プロトン酸基を有する芳 香族炭化水素系化合物単位を有する。プロトン酸基を有する芳香族炭化水素系化 合物単位は、 1つ以上の芳香環を含む構造を有し、芳香環は 1つ以上の芳香環又は 複合環と縮合していても良い。また芳香環の炭素原子は一部が他の原子に置換され ていても良い。
[0016] 本発明に係わるプロトン酸基は、具体的には、下記式(3)〜(5)で示されるスルホ ン酸基、カルボン酸基、ホスホン酸基などが挙げられる。中でも下記式(3)で示される スルホン酸基が好まし!/、。
— C H SO H (nは 0〜10の整数)…(3)
n 2n 3
C H — COOH (nは 0〜10の整数)…(4)
n 2n
— C H —PO H (nは 0〜10の整数)…(5)
n 2n 3 2
[0017] 本発明に係わる燃料電池用結着剤に含まれるブロック共重合体は、ガラス転移温 度が 180°C以下であり、好ましくは 100〜180°C、より好ましくは 120〜160°Cの範囲 である。 180°Cよりも高い場合には、燃料電池に成形する際にガラス転移温度以上 で熱融着する必要があるのでプロトン酸基が芳香環力 脱落する虞があり好ましくな い場合がある。ガラス転移温度が 100°Cよりも低い場合は、燃料電池にした場合に水 素型燃料電池 (PEFC)では運転温度が 80°C程度であることから、運転中にその接着 力が低下することにより、電池特性の低下を引き起こす虞がある。尚、ガラス転移温 度は、示差走査熱量計を用い昇温速度 10°CZminで室温から 300°Cまで昇温して 測定した値である。本発明のブロック共重合体のガラス転移温度が 180°C以下であ るためには、プロトン酸基を有する 2価の芳香族基を繰り返し構造単位とするブロック 及び、プロトン酸基を有さな ヽ 2価の芳香族基を繰り返し構造単位とするブロックの両 方のガラス転移温度が 180°C以下であれば良いが、いずれか一方のみのガラス転移 温度が 180°C以下であっても良い。
[0018] 前記ブロック共重合体は、合成直後はプロトン酸基がアルカリ金属塩となっており、 通常はナトリウム型である。結着剤等として使用する場合にはアルカリ金属イオンを 水素イオンに置換し、 H型 (フリーのスルホン酸基)に変換する。 H型への変換は、通 常は、 2N硫酸水溶液および純水に 1日ずっ浸漬して行う。尚、本発明のブロック共 重合体のガラス転移温度は、ブロック共重合体がナトリウム型であっても H型であって も同一であり、いずれかの形態のブロック共重合体のガラス転移温度を測定すればよ い。
[0019] ブロック共重合体は、主鎖が脂肪族鎖を有さず、芳香環及びその連結基で構成さ れる直鎖状芳香族榭脂であって、その構成単位の一部がプロトン酸基を有する重合 体であることが好ましい。
[0020] 更には、ブロック共重合体が、芳香族ポリエーテル構造により構成されていることは 、熱水、酸、アルカリ、アルコールなどにより加水分解を受けやすい連結基や耐熱性 、耐ラジカル性が低い基を有さないため、燃料電池の材料として用いた場合に劣化 や変性を起こすことがほとんどないので好ましい。ブロック共重合体が、エステル結合 、カーボネート結合、アミド結合、イミド結合や、耐熱性が低くラジカルの攻撃を受け やすい α水素を持つアルキレン結合、脂肪族エーテル結合などを有する場合は、熱 水、酸、アルカリ、アルコールなどにより加水分解を受けやすぐ燃料電池内で劣化 するため好ましくな 、傾向にある。
[0021] 本発明に係わるブロック共重合体のイオン交換基当量は 200〜1000gZmolであ ることが好ましぐ 250〜600gZmolであることがさらに好ましい。測定は、通常、ブロ ック共重合体を基板にキャスト等によりフィルム状にして行う。ブロック共重合体のプロ トン酸基がナトリウム型である場合には、フィルム状にした後に H型に変換して測定し ても良い。
ここで、イオン交換基当量とは、プロトン酸基 1モル当たりの榭脂重量で定義され、 榭脂単位重量当たりのプロトン酸基のモル数の逆数を意味する。すなわち、イオン交 換基当量が小さいほどブロック共重合体中の、プロトン酸基を有する 2価の芳香族基 を繰り返し構造単位とするブロックの割合は高くなり、イオン交換基当量が大きいほど プロトン酸基を有する 2価の芳香族基を繰り返し構造単位とするブロックの割合が低く なる。イオン交換基当量力 、さすぎる場合には、プロトン酸基を有さない 2価の芳香 族基を繰り返し構造単位とするブロックの割合が少なすぎるため、該ブロック共重合 体の耐水性が不十分となり、吸水性が高くなり、電極と高分子電解質とが剥離しやす くなる場合がある。イオン交換基当量が大きすぎる場合には、プロトン酸基を有する 2 価の芳香族基を繰り返し構造単位とするブロックの割合が少なすぎるため、十分なプ 口トン伝導性を得ることができな 、場合がある。
[0022] 本発明に力かるブロック共重合体は、 64重量%メタノール水溶液に 25°Cで 24時間 浸漬したときの重量維持率が 90%以上であることが好ましぐ 95%以上であることが より好ましい。ここで、 64重量%メタノール水溶液浸漬による重量維持率は、乾燥し たブロック共重合体を 25°Cで 24時間 64重量%メタノール水溶液に浸漬した前後で のブロック共重合体の減少した重量から求めることができる。測定は、通常、ブロック 共重合体を基板にキャスト等によりフィルム状にして行う。ブロック共重合体のプロトン 基がナトリウム型である場合には、フィルム状にした後に H型に変換して測定する。メ タノール浸漬による重量維持率が低 、場合には、それを含む燃料電池用結着剤はメ タノールに溶解しやすぐ接着性が保持できな 、ため好ましくな!/、傾向にある。
[0023] 本発明に係わるプロトン酸基を有する 2価の芳香族基は、下記一般式(1)であり、 プロトン酸基を有さな 、2価の芳香族基は下記一般式 (2)であることが好ま 、。
Figure imgf000010_0001
[式(1)および (2)中、 X^X5はそれぞれ独立して水素原子またはプロトン酸基を表 し、 X^X5の少なくとも一つはプロトン酸基であり、 A A4はそれぞれ独立して直接 結合, — CH— , — C (CH ) - , — C (CF ) - , -0- , — SO —または— CO—を 表し、 g, h, i, j, k, 1はそれぞれ独立して 0または 1を表し、芳香環
の水素原子は、 -C H (mは 1〜 10の整数を表す), -CI, -F,—CFまたは
m 2m+l 3
CNに置換していてもよい。 ]
[0024] 本発明の一般式(1)を繰り返し構造単位とするブロックと一般式 (2)を繰り返し構造 単位とするブロックを含むブロック共重合体のガラス転移温度は、 180°C以下である 。ブロック共重合体のガラス転移温度が 180°C以下であるためには、前記一般式(1) を繰り返し構造単位とするブロック及び、一般式(2)を繰り返し構造単位とするブロッ クの両方のガラス転移温度が 180°C以下であれば良いが、いずれか一方のみのガラ ス転移温度が 180°C以下であっても良い。例えば、一般式(1)で表される繰り返し構 造単位力もなるブロックのガラス転移温度は 180°Cより大きくなる傾向があるが、一般 式 (2)で表される繰り返し構造単位カゝらなるブロックを適宜選択することにより芳香族 炭化水素系化合物のガラス転移温度を 180°C以下とすることができる。そのためには 、一般式(2)で表される繰り返し構造単位力 なるブロックは、そのガラス転移温度が 180°C以下であり、共重合させた芳香族炭化水素系化合物のガラス転移温度が 180 °C以下となるものを選択する必要がある。尚、ガラス転移温度は、示差走査熱量計を 用い昇温速度 10°CZminで室温から 300°Cまで昇温して測定した値であり、ブロック の部分のガラス転移温度とは、当該ブロックを形成するオリゴマーのガラス転移温度 のことをいう。
[0025] 本発明に係るブロック共重合体は一般式(1)を繰り返し構造単位とするブロックが親 水性であり、一般式(2)を繰り返し構造単位とするブロックが疎水性であることが好ま しい。
一般式 (2)を繰り返し構造単位とするブロックは、吸水性が低く且つ加水分解を受 けにくい構造であり、プロトン伝導性共重合体の水への溶解や吸水膨張を抑制する ことができ好ましい。ここで、一般式 (2)を繰り返し構造単位とするブロックは、一般式 (2)で表わされる 2種類以上の繰り返し構造単位を使用してもよい。一般式 (2)を繰り 返し構造単位とするブロックに、エステル結合、カーボネート結合、アミド結合、イミド 結合やプロトン酸基を含むと、加水分解や吸水による膨張を受けやすくなり、共重合 体の水への溶解性、吸水性が高くなるため好ましくない傾向にある。 [0026] また、一般式(1)において、 X1および X2がプロトン酸基、 A1がー SO または CO
2
一、 gが 1であることは、該ブロック共重合体のプロトン酸基と、電子吸引基である S o または CO—に直接結合した芳香環とが結合しており、他の芳香環に結合し
2
たプロトン酸基に比べ結合力が強ぐ分解や解離を受けにくいので特に好ましい。
[0027] 更に、一般式(2)において、 A3がー SO または CO である、もしくは芳香環に
2
結合した水素原子の一部が、一 C H (mは 1〜: L0の整数を表す)、一 Cl、 一 F、 一
m 2m+l
CFまたは CNで置換しているものが特に好ましい。
3
[0028] 本発明に係わるブロック共重合体の分子量に特に制限はな!/、が、還元粘度 (濃度 0. 5g/dl、 35。Cで柳』定)にして 0. 4〜3. Odl/gの範囲力 S好ましく、 0. 6〜2. 5dl Zgの範囲が特に好ま ヽ。分子量が低すぎると燃料電池用結着剤とした場合の強 度が低ぐ十分な接着力が得られない場合があり、分子量が高すぎると溶融流動が 不十分となり、十分な接着力が得られな ヽ場合がある。
[0029] また、一般式(2)の jが 1、 kが 0である構造のものは耐メタノール性が高くまた合成が 容易であるので好ましい。特に jが 1、 kが 0であり且つ A3がー CO である構造のもの は、耐メタノール性に優れ且つガラス転移温度が低く接着力が高 、ので特に好まし い。
[0030] 本発明に係わる一般式(1)及び一般式 (2)を繰り返し構造単位とするブロックを含 むブロック共重合体は、例えば芳香族ジハライドィ匕合物、芳香族ジヒドロキシィ匕合物 、及びこれらのプロトン酸基を有する化合物を重合することにより得られる。モノマー 類の代表的な具体例を以下に例示する。
[0031] 芳香族ジハライド化合物としては、例えば、 4, 4'ージフルォロベンゾフヱノン、 3, 3 ,一ジフノレオ口べンゾフエノン、 4, 4,一ジクロ口べンゾフエノン、 3, 3'—ジクロ口ベン ゾフエノン、 4, 4,ージフルォロジフエニルスルホン、 4, 4,ージクロロジフエニルスル ホン、 1, 4 ジフノレオ口ベンゼン、 1, 3 ジフノレオ口ベンゼン、 2, 6 ジクロ口べンゾ 二トリノレ、 4, 4,ージフルォロビフエニル、 3, 3, 一ジブ口モー 4, 4,ージフルォロビフ ェニル、 4, 4'ージフルォロジフエニルメタン、 4, 4'ージクロロジフエニルメタン、 4, 4 ,一ジフルォロジフエ-ルエーテル、 2, 2 ビス(4 フルオロフェ -ル)プロパン、 2, 2 ビス(4 クロ口フエ-ル)プロパン、 α , α , 一ビス(4 フルオロフェ-ル)一1, 4 ージイソプロピルベンゼン、 3, 3, 一ジメチルー 4, 4,ージフルォロベンゾフエノン、 3 , 3 '—ジェチルー 4, 4,ージフルォロベンゾフエノン、 3, 3 ' , 5, 5 '—テトラメチルー 4, 4'ージフルォロベンゾフエノン、 3, 3 '—ジメチルー 4, 4'ージクロ口べンゾフエノン 、 3, 3 ' , 4, 4, 一テトラメチル一 5, 5, 一ジクロロべンゾフエノン、 3, 3, 一ジメチルー 4 , 4'ージフルォロジフエニルスルホン、 3, 3, 一ジメチルー 4, 4'ージクロロジフエニル スルホン、 2, 5 ジフルォロトノレェン、 2, 5 ジフルォロェチルベンゼン、 2, 5 ジフ ルオロー p キシレン、パーフルォロベンゼンなどが挙げられ、単独あるいは 2種以上 を混合して用いることができる。
芳香族ジヒドロキシ化合物としては、例えば、ハイドロキノン、レゾルシン、力テコー ル、 4, 4'ージヒドロキシビフエ-ル、 4, 4'ージヒドロキシジフエ-ルスルフイド、 4, 4, ージヒドロキシジフエニルメタン、 4, 4'ージヒドロキシジフエニルエーテル、 4, 4'ージ ヒドロキシジフエニルスルホン、 4, 4' ジヒドロキシベンゾフエノン、 2, 2 ビス(4ーヒ ドロキシフエ-ル)プロパン、 1, 1, 1, 3, 3, 3 へキサフルオロー 2, 2 ビス(4ーヒ ドロキシフエ-ル)プロパン、 1, 4 ビス(4 ヒドロキシフエ-ル)ベンゼン、 α , ひ , 一 ビス(4 -ヒドロキシフエニル) 1, 4 ジメチルベンゼン、 α , α , 一ビス(4 ヒドロキ シフエ二ノレ)一 1, 4 ジイソプロピノレベンゼン、 α , α '—ビス(4 ヒドロキシフエ-ノレ )— 1, 3 ジイソプロピルベンゼン、 4, 4'—ジヒドロキシベンゾフエノン、 1, 4 ビス( 4ーヒドロキシベンゾィル)ベンゼン、 3, 3—ジフルオロー 4, 4,ージヒドロキビフエニル 、 2—メチルハイドロキノン、 2—ェチルハイドロキノン、 2—イソプロピルハイドロキノン 、 2—ォクチルハイドロキノン、 2, 3 ジメチルハイドロキノン、 2, 3 ジェチルハイド ロキノン、 2, 5 ジメチルハイドロキノン、 2, 5 ジェチルハイドロキノン、 2, 5 ジィ ソプロピルハイドロキノン、 2, 6 ジメチルハイドロキノン、 2, 3, 5 トリメチルハイド口 キノン、 2, 3, 5, 6—テトラメチルハイドロキノン、 3, 3 '—ジメチル一 4, 4'ージヒドロ キシビフエニル、 3, 3 ' , 5, 5,ーテトラメチルー 4, 4,ージヒドロキシビフエニル、 3, 3, ジメチルー 4, 4'ージヒドロキシジフエニルメタン、 3, 3 ' , 5, 5 '—テトラメチルー 4, 4,ージヒドロキシジフエニルメタン、 3, 3 ' , 5, 5 '—テトラエチノレー 4, 4,ージヒドロキ シジフエニルメタン、 3, 3, 一ジメチルー 4, 4'ージヒドロキシジフエニルエーテル、 3, 3 ' , 5, 5,ーテトラメチルー 4, 4'ージヒドロキシジフエニルエーテル、 3, 3 '—ジメチ ルー 4, 4 '―ジヒドロキシジフエ-ルスルフイド、 3, 3 ' , 5, 5,一テトラメチル一 4, 4, ージヒドロキシジフエ-ルスルフイド、 3, 3,一ジメチルー 4, 4 'ージヒドロキシジフエ- ルスルホン、 3, 3 ' , 5, 5,ーテトラメチルー 4, 4 'ージヒドロキシジフエニルスルホン、 2, 2 ビス(3—メチル 4 ヒドロキシフエ-ル)プロパン、 2, 2 ビス(3 ェチノレ一 4 ヒドロキシフエ-ル)プロパン、 2, 2 ビス(3, 5 ジメチル一 4 ヒドロキシフエ- ル)プロパン、 α , ひ,一ビス(3—メチル 4—ヒドロキシフエ-ル
)—1 , 4 ジイソプロピルベンゼン、 at , α,一ビス(3, 5 ジメチルー 4 ヒドロキシフ ェ -ル) 1 , 4 ジイソプロピルベンゼン、 α , α,一ビス(3—メチル 4 ヒドロキシ フエ-ル)一 1 , 3 ジイソプロピルベンゼン、 at , α,一ビス(3, 5 ジメチル一 4 ヒ ドロキシフエ-ル) 1 , 3 ジイソプロピルベンゼンなどが挙げられ、単独あるいは 2 種以上を混合して用いることができる。
[0033] プロトン酸基を有する芳香族ジノ、ライド化合物としては、前記の芳香族ジノ、ライドィ匕 合物のスルホン化物、アルキルスルホン化物のほ力 2, 5 ジクロ口安息香酸、 2, 5 ージフルォロ安息香酸、 5, 5,一カルボ-ルビス(2 フルォロ安息香酸)、 5, 5,ース ルホ-ルビス(2 フルォロ安息香酸)、 2, 5 ジクロ口フエ-ルホスホン酸、 5, 5,一 カルボ-ルビス(2—フルォロベンゼンホスホン酸)およびそのアルカリ金属塩などを 挙げることができる。
[0034] プロトン酸基を有する芳香族ジヒドロキシィ匕合物としては、前記の芳香族ジヒドロキ シ化合物のスルホン化物、アルキルスルホン化物のほ力、 2, 5 ジヒドロキシ安息香 酸、 2, 5 ジヒドロキシテレフタル酸、 5, 5,ーメチレンジサリチル酸、 5, 5,一チォジ サリチル酸、 2, 5 ジヒドロキシフヱ-ルホスホン酸などのリン酸基を有する芳香族ジ ヒドロキシィ匕合物およびそのアルカリ金属塩などを挙げることができる。
[0035] なお、芳香族ジノヽライドィ匕合物及び芳香族ジヒドロキシィ匕合物のスルホンィ匕物、ァ ルキルスルホンィ匕物は、前記芳香族ジノヽライドィ匕合物及び前記芳香族ジヒドロキシ 化合物を、発煙硫酸などの公知のスルホン化剤でスルホン化する等の方法 (Macrom ol.Chem.Phys. , 199,
1421 (1998))により得ることができる。
[0036] 親水性ブロックを形成する一般式(1)で表されるプロトン酸基を有する芳香族基の繰 り返し構造単位の例としては以下のものが挙げられる。
Figure imgf000015_0001
疎水性ブロックを形成する一般式 (2)で表されるプロトン酸基を有しな Vヽ芳香族基の 繰り返し構造単位の例としては以下のものが挙げられる。
Figure imgf000015_0002
~^Ο^ ^ 。-
Figure imgf000015_0003
Figure imgf000016_0001
ブロック共重合体の製造方法
本発明のブロック共重合体の製造方法に特に制限はないが、例えば、以下の公知 の方法で合成することができる。
(A)プロトン酸基を有するモノマーと、プロトン酸基を有しな 、モノマーまたは有する モノマーとを縮重合して、一般式(1)を繰り返し構造単位とするオリゴマーとする。そ のオリゴマーと、一般式(2)を繰り返し構造単位とするオリゴマーまたはその原料モノ マーとを縮重合させてブロック共重合体を得る方法。
(B)プロトン酸を有しな 、モノマーを縮重合して、一般式 (2)を繰り返し構造単位とす るオリゴマーとする。そのオリゴマーと、一般式(1)を構造単位とするオリゴマーまたは その原料モノマーとを縮重合させてブロック共重合体を得る方法。
(C)プロトン酸基を有しな!/、モノマーを縮重合して前駆体オリゴマーとし、次にスルホ ン化等の方法で前駆体オリゴマーにプロトン酸基を導入して、一般式(1)を繰り返し 構造単位とするオリゴマーとする。そのオリゴマーと、プロトン酸基を有しないモノマー またはそのオリゴマーとを縮重合させてブロック共重合体を得る方法。
(D)プロトン酸基が導入され易い構造単位力もなるブロックと、プロトン酸基が導入さ れ難 ゝ一般式 (2)を繰り返し構造単位とするブロックとを有する前駆体ブロック共重 合体を合成する。この前駆体ブロック共重合体中の、プロトン酸基が導入され易い構 造単位力 なるブロックにのみスルホン化等の方法でプロトン酸基を導入して一般式 (1)を繰り返し構造単位とするブロックとし、ブロック共重合体を得る方法。 [0039] 本発明のブロック共重合体の製造方法は、上記 (A)の方法がブロック共重合体のィ オン交換基当量の制御が容易であるので好ましい。特にプロトン酸基を有するモノマ 一を重縮合して一般式(1)を繰り返し構造単位とするオリゴマーとし、このオリゴマー と、プロトン酸基を有しな 、モノマーまたはオリゴマーとを反応させる方法がプロトン酸 基を有するブロック共重合体の制御が容易であることより好ましい。
[0040] 本発明のブロック共重合体の製造方法は、具体的には、プロトン酸基を有する芳香 族ジハライドィ匕合物と芳香族ジヒドロキシィ匕合物を、または、芳香族ジハライド化合物 とプロトン酸基を有する芳香族ジヒドロキシィ匕合物を、あるいは、プロトン酸基を有す る芳香族ジノヽライド化合物とプロトン酸基を有する芳香族ジヒドロキシィ匕合物を重合し 、一般式(1)を繰り返し構造単位とするプロトン酸基含有オリゴマーを合成する。得ら れたオリゴマーは、好ましくは 35°Cにおける還元粘度が 0. 05-1. 2dlZgであり、ォ リゴマーの分子量は反応時間、反応温度、芳香族ジハライド化合物と芳香族ジヒドロ キシィ匕合物の仕込み比等の一般的な方法により制御することができる。
[0041] 前記オリゴマーに、芳香族ジハライド化合物と芳香族ジヒドロキシィ匕合物を添加して 縮合重縮合して一般式(2)を繰り返し構造単位とするブロックを形成させてブロック 共重合体とするか、或いは、別途、芳香族ジハライド化合物と芳香族ジヒドロキシィ匕 合物を重縮合して得られた一般式 (2)を繰り返し構造単位とするオリゴマーを添加し て重縮合することによりブロック共重合体を得る。
[0042] 得られたブロック共重合体力 ブロック結合して 、る力ランダム結合して 、るかは、例 えば特開 2001— 278978に記載の NMR測定によりブロックの繰り返し単位数を求 める方法や、特開 2003— 31232に記載の透過型電子顕微鏡によりブロック共重合 体に特有のミクロ相分離構造の有無を観察する方法等により識別することができる。
[0043] 本発明に係わるブロック共重合体は、前記オリゴマー或は前記ブロック共重合体等 の重合の過程によりプロトン基がナトリウム型となっても良ぐその場合には、 H型に変 換して使用する。 H型への変換は、通常は、 2N硫酸水溶液および純水に 1日ずつ 浸漬してプロトン酸塩のプロトン交換を行うことにより行う。
[0044] 燃料雷湘,用結着剤
本発明の燃料電池用結着剤は、前記のガラス転移温度 (Tg)が 180°C以下のプロ トン酸基を有するブロック共重合体を含む。
[0045] 本発明の燃料電池用結着剤の形態に特に制限はないが、用途に応じて、粉体、溶 剤に溶解ある 、は分散したワニス、該ワニスを塗布及び乾燥して得られる膜などの形 態とすることができる。なお、該ブロック共重合体を溶剤に溶解あるいは分散したヮ- スとする場合には、その溶剤に特に制限はなぐ例えば、水、メタノール、エタノール、 1 プロパノール、 2—プロパノール、ブタノール、メトキシエタノールなどのアルコー ル類、トルエン、キシレンなどの炭化水素類、塩化メチル、塩化メチレンなどのハロゲ ン化炭化水素類、ジクロロェチルエーテル、 1, 2 ジメトキシェタン、 1, 4ージォキサ ン、テトラヒドロフランなどのエーテル類、酢酸メチル、酢酸ェチルなどの脂肪酸エス テル類、アセトン、メチルェチルケトンなどのケトン類のほ力、 N, N—ジメチルホルム アミド、 N, N ジメチルァセトアミド、 N—メチル—2—ピロリドン、ジメチルスルホキシ ド、炭酸ジメチルなどの非プロトン性極性溶剤類などを単独で、あるいは混合して使 用できる。
[0046] 本発明の燃料電池用結着剤は、本発明にかかるブロック共重合体に従来公知の 他のイオン伝導性高分子材料を組合せて用いることもでき、例えば、プロトン酸基含 有フッ素系高分子、あるいは、従来公知のプロトン酸基含有炭化水素系高分子を用 いることがでさる。
この場合、燃料電池用結着剤中の本発明に係わるブロック共重合体の混合割合は 5〜95重量%とすることが好ましぐさらに好ましくは 10〜90重量%である。ブロック 共重合体の混合量が少ない場合には電極材料や高分子電解質との接着性が低下 する恐れがある。
[0047] 本発明の燃料電池用結着剤の接着性の評価は、ワニス状の燃料電池用結着剤を 、プロトン酸基含有炭化水素系化合物力 なる高分子電解質膜および電極シートの 双方に塗布乾燥後、特定温度で熱プレスして高分子電解質膜と電極の接合体を作 製し、これを引張り試験装置を用いて T形剥離を行い、平均剥離強度を測定して行う ことができる。 T型剥離は、接合体が乾燥状態、あるいは蒸留水やメタノール水溶液 に一定時間浸漬したのちに行う。
[0048] 燃料 湘,雷極形成用組成物 本発明の燃料電池電極形成用組成物は、前記燃料電池用結着剤および電極材料 を含有する。燃料電池電極形成用組成物に前記燃料電池用結着剤を含ませること で剥離強度をあげることができ、必要に応じて更に他の各種イオン伝導性高分子化 合物を混合しても良い。
前記電極材料としては、電気導電性を有する導電材料や、水素の酸化反応及び酸 素の還元反応を促進する触媒などが挙げられる。
前記導電材料としては、電気伝導性物質であればいずれのものでもよぐ各種金属 や炭素材料などが挙げられる。例えば、アセチレンブラック等のカーボンブラック、活 性炭、黒鈴、鉛、鉄、マンガン、コバルト、クロム、ガリウム、バナジウム、タングステン、 ルテニウム、イリジウム、ノ《ラジウム、白金、ロジウムおよびそれらの合金力もなる群より 選ばれる少なくとも 1種である。これらが単独あるいは混合して、粉末状あるいはシー ト状で使用される。
前記触媒としては、水素の酸化反応および酸素の還元反応を促進する金属または 金属酸ィ匕物であれば特に限定されないが、例えば鉛、鉄、マンガン、コバルト、クロム 、ガリウム、バナジウム、タングステン、ルテニウム、イリジウム、ノ《ラジウム、白金、ロジ ゥムまたはそれらの合金や酸化モリブデン等の金属酸化物が挙げられる。
これらの電極材料と燃料電池用結着剤の混合比率は特に制限はないが、燃料電 池用結着剤の比率が 5〜90重量%であると電極の強度と効率が両立でき好ましい。
[0049] 燃料雷池用雷欏
本発明に係わる燃料電池用電極は、集電材と前記燃料電池電極形成用組成物の 層を結合したものからなり、燃料電池電極形成用組成物の層が電解質膜と接してな る。集電材は種々のものが考えられるがカーボンペーパーを用いるのが好ましい。 本発明に係わる燃料電池用電極は、種々の方法で得ることができる力 通常は、集 電材に前記電極形成用組成物の溶液を塗布し、乾燥するのが容易に電極を得られ ること力 好ましい。
[0050] 燃料電池
本発明の燃料電池は、水素型燃料電池 (PEFC)であっても直接メタノール型燃料 電池 (DMFC)であっても良いが、好ましくは直接メタノール型燃料電池である。本発 明の燃料電池は、電解質膜、前記の燃料電池用結着剤及び燃料電池用電極を用 いてなり、電解質膜と正負の電極との間にそれぞれ燃料電池用結着剤を有する構造 をとる。本発明に係わる燃料電池に用いる電解質膜は、種々公知のものを用いること ができるが、高分子化合物力もなる電解質膜であることが好ましぐフッ素原子を含ま ないプロトン酸基含有炭化水素系高分子化合物を含むことが電極との剥離強度が強 いことから好ましい。本発明の燃料電池は、湿度や温度の変動により、プロトン伝導 材料の膨張及び収縮が繰り返された場合においても、膜と電極の界面や触媒と結着 剤の界面が剥離することがないため、出力低下が生じにくい。本発明の燃料電池は
、ガラス転移温度が 180°C以下の結着剤を用いるので、電解質膜と電極を接合する 際にプロトン酸基が脱落しない。そのため、高効率で信頼性に優れる。
実施例
以下、本発明を実施例によりさらに詳細に説明するが、本発明はこれにより何ら制 限されるものではない。
実施例中の各種試験の試験方法は次に示すとおりである。
(ϋ遠元粘度、 η inh)
ブロック共重合体 0. 50gを N—メチルピロリドン 100mlに加熱溶解したのち、 35°C にお 、てウベローデ粘度計で測定した。
(ii)イオン交換基当量
フィルム状にした燃料電池用結着剤を密閉できるガラス容器中に精秤し、そこに過剰 量の塩ィ匕カルシウム水溶液を添加して一晩攪拌した。系内に発生した塩ィ匕水素を 0 . 1N水酸ィ匕ナトリウム標準水溶液にてフエノールフタレイン指示薬を用いて滴定し、 計算した。 (iii) 64重量%メタノール水溶液浸漬による重量維持率
フィルム状にした燃料電池用結着剤を、窒素通風下 120°C12時間乾燥し、 25°Cで 6 4重量%メタノール水溶液に 24時間浸漬し、その乾燥時との重量変化より算出した。 (iv)イオン伝導度 (25°C、膜厚方向)
フィルム状にした燃料電池用結着剤を、 1M硫酸で湿潤し、 1cm2の空孔を有する 1 00 μ m厚のポリエチレンテレフタレートフィルムの片面に白金電極を貼った測定用セ ル 2個で挟み、空孔を 1M硫酸水で満たした。これを 25°Cの恒温室内に設置してそ の抵抗値を測定した。結着剤を挟まなカゝつた場合の抵抗値との差から、結着剤単体 の抵抗値を求め、イオン伝導度(25°C、膜厚方向)を算出した。なお、イオン伝導度 の計算に必要な膜厚は乾燥状態でマイクロメータを用いて測定した。
[0052] (V)メタノール透過性
室温にて蒸留水と、 ImolZLメタノール水溶液を、直径 23mm φのフィルム状にし た燃料電池用結着剤を介して接し、 3時間までの蒸留水側のメタノール濃度変化を ガスクロにて測定した。得られたメタノール濃度増加直線の傾きより、膜厚 50 mで のメタノール透過性を計算した。
(vi)ガラス転移温度 (Tg)
ブロック共重合体又はオリゴマーを、示差走査熱量測定 (DSC、島津製作所社製 D SC-60A)により、昇温速度 10°CZminで測定した。
ブロック共重合体のプロトン酸基がスルホン酸ナトリウムの場合は、試料を 250°C迄 昇温後に室温まで急冷し、次に室温から 300°C迄昇温してガラス転移温度を測定し た。ブロック共重合体のプロトン酸基がフリーのスルホン酸基の場合は、試料を 170 °C迄昇温して 170°Cで 10分間保持した後に室温まで急冷し、次に室温から 200°C 迄昇温してガラス転移温度を測定した。
(vii)接着性評価
ブロック共重合体を溶解したワニス状の燃料電池用結着剤を、プロトン酸基含有炭化 水素系化合物からなる高分子電解質膜および電極シートの双方に塗布し乾燥後、 1 MPa、燃料電池用共重合体のガラス転移温度 + 20°Cの設定温度にて 8分熱プレス し、高分子電解質膜と電極の接合体を作製した。得られた高分子電解質膜と電極の 接合体を蒸留水に 10分間浸漬後、引張り試験装置を用いて剥離速度 lOmmZmin にて T形剥離を行い、平均剥離力を測定した。
[0053] 高分子雷解皙膜の製诰
窒素導入管、温度計、分液器を備えた冷却器、及び撹拌装置を備えたフラスコに、 3 , 3,一カルボ-ルビス(6—フルォロベンゼンスルホン酸ナトリウム)(以下、 DSDFBP と略す) 4. 22g (0. Olmol)、 4, 4 '—ジフルォ口べンゾフエノン 2. 18g (以下、 DFB Pと略す)、 2, 2—ビス(3, 5—ジメチルー 4—ヒドロキシフエ-ル)プロパン 5. 69g (0 . 02mol)および無水炭酸カリウム 3. 46g (0. O25mol)を精秤した。これにジメチル スルホキシド 40gとトルエン 28gを加え、窒素ガスを通じ撹拌しながら、 130°Cまで昇 温した後、 2時間共沸脱水を行い、生成する水を除去した後、トルエンを留去した。 引き続き 160°Cで 14時間反応を行い、粘稠なポリマー溶液を得た。得られた溶液 にジメチルスルホキシド 60gをカ卩えて希釈した後、ろ過した。このポリマー溶液をァセ トン 600gに排出し、析出したポリマー粉をろ過後、 160°Cで 4時間乾燥してポリマー 粉 10.39g (収率 92%)を得た。得られたポリエーテルケトンの対数粘度は 0. 85dl/ g、ガラス転移温度は 230°Cであった。
[0054] 得られたポリマー粉をジメチルスルホキシドに溶解させガラス基板上にキャストし、 20 0°Cで 4時間乾燥してスルホン酸ナトリウム基を含有するポリエーテルケトンフィルムを 得た。得られたフィルムは可とう性に富み、強靭であった。このフィルムをメタルノヽイド ライドランプを用いて 6000mjZcm2の光照射を行い、架橋させた。引き続きこの架 橋フィルムを 2N硫酸水溶液および純水に 1日ずつ浸漬してスルホン酸ナトリウム基 のプロトン交換を行 ヽ、フリーのスルホン酸基を有するスルホン酸基含有ポリエーテ ルケトン架橋体からなる高分子電解質膜を得た。
[0055] (実施例 1)
1.プロトン酸基を有する 2価の芳香族基を繰り返し構造単位とするブロックのオリゴマ 一の合成
窒素導入管、温度計、分液器を備えた冷却器、及び撹拌装置を備えたフラスコに、 DSDFBP14. 36g (0. 034mol)、 4, 4 '—メチレンビス(2, 6—ジメチノレフエノーノレ) (以下 TMBPFと略す) 10. 25g (0. 04mol)および無水炭酸ナトリウム 5. 30g (0. 0 5mol)を精秤した。これに N—メチルピロリドン (以下 NMPと略す) 98gをカ卩え、窒素 ガスを通じ撹拌しながら、 202°Cまで昇温した後、 8時間反応を行った。冷却後、反 応物の一部をサンプリングし、 NMPで希釈、その上澄みをアセトンに排出してオリゴ マーを析出させ、アセトンで洗浄したのち、窒素通風下 150°C4時間乾燥してオリゴ マーを得た。得られたオリゴマーの還元粘度は 0. 27dlZg (NMP)であった。
[0056] 2.ブロック共重合体の合成
前記オリゴマーに、 DFBP13. 78g (0. O63mol)、レゾルシン 6. 29g (0. O57mol )、無水炭酸ナトリウム 7. 57g (0. 071mol)および NMP80gを添カ卩し、窒素ガスを 通じ撹拌しながら、 202°Cまで昇温した後、 6時間反応を行った。
得られた粘稠な反応物を NMP50gで希釈した後、アセトン 2Lに排出し、析出した ポリマーを濾集、アセトン、蒸留水で洗浄した後、 50°Cで 8時間乾燥させた後更に 11 0°Cで 4時間乾燥してプロトン酸基のアルカリ金属塩基 (スルホン酸ナトリウム基)を有 するブロック共重合体 36. Og (収率 85%)を得た。得られたブロック共重合体の還元 粘度は 1. 29dlZg (NMP)、ガラス転移温度は 122°Cであった。
[0057] 3.フィルムの成形
得られたブロック共重合体 2gを NMP13. 3gに加熱溶解し、ポリマー濃度 15%の ワニスを得た。得られたワニスを、スぺーサーを有するブレードを用いてガラス基板上 にキャストし、窒素通風下室温から 200°Cまで 2時間かけて昇温した後、更に 4時間 乾燥し、厚さ 50 mのフィルムを得た。
得られたフィルムを 2N硫酸水溶液および純水に 1日ずつ浸漬してスルホン酸ナトリウ ム基のプロトン交換を行 ヽ、フリーのスルホン酸基を有する燃料電池用結着剤のフィ ルムを得た。この燃料電池用プロトン伝導性結着剤のフィルムのイオン交換基当量は 570g/mol、 64重量%メタノール水溶液浸漬による重量維持率は 98%、イオン伝 導度は 0. 037SZcm、メタノール透過性は 4. 8 molZcm2 'minであった。
[0058] 4.ワニスの生成
得られたブロック共重合体ポリマー粉を 2N硫酸水溶液および純水中にて 1日ずつ 撹拌してスルホン酸ナトリウム基のプロトン交換を行 、、フリーのスルホン酸基を有す るポリマー粉を得た。得られたフリーのスルホン酸基を有するブロック共重合体のガラ ス転移温度は 121°Cであった。プロトン交換されたブロック共重合体 2gを水: 1, 2- ジメトキシェタン = 25 : 75 (重量比) 38gに加熱溶解し、ポリマー濃度 5%の燃料電池 用プロトン伝導性結着剤のワニスを得た。このワニスを用いて、前記高分子電解質膜 と巿販電極 (エレクトロケム社製 EC - 20- 10- 7)とを接着し、その平均剥離強度を 測定したところ、 11. 6NZmであった。
[0059] 5.ブロック共重合体を構成する、 2種類のブロックのガラス転移温度
ブロック共重合体を構成する、「プロトンプロトン酸基を有する 2価の芳香族基を繰り 返し構造単位とするブロック」及び「プロトン酸基を有さない 2価の芳香族基を繰り返 し構造単位とするブロック」のガラス転移温度は、それぞれのブロックをオリゴマー又 はポリマーに生成して求める。
上記 1で得られた「プロトン酸基を有する 2価の芳香族基を繰り返し構造単位とするブ ロック」のオリゴマーのガラス転移温度は、測定範囲では観察されな力 た。
[0060] 「プロトン酸基を有さな 、2価の芳香族基を繰り返し構造単位とするブロック」のオリ ゴマーのガラス転移温度は、以下のようにして測定した。
窒素導入管、温度計、分液器を備えた冷却器、及び撹拌装置を備えたフラスコに、 DFBP21. 82g (0. lOmol)、レゾルシン 10. 57g (0. O96mol)および無水炭酸ナト リウム 11. 02g (0. 104mol)を精秤した。これに N—メチルー 2—ピロリドン 86. 5gお よび純水 1. 8gをカ卩え、窒素ガスを通じ撹拌しながら、 200°Cまで 2時間かけて昇温し た後、 6時間反応を行った。この際、留出する水は分液器より回収した。得られた粘 稠な反応マスを冷却、 N—メチルー 2—ピロリドン 80gで希釈した後、セライト濾過によ り副生する塩を除去した。このポリマー溶液を、水一メタノール(5Z5、 wtZwt)混合 液 500mlに排出し、析出したポリマーを濾集、 5wt%塩酸水溶液、純水、メタノール で洗浄した後、 100°C4時間乾燥して実施例 1のスルホン酸基を有しな 、ブロックと 同じ繰り返し単位力もなるポリアリールエーテルケトン粉 25. 8g (収率 90%)を得た。 得られたポリアリールエーテルケトン粉の還元粘度は 0. 56dl/g (溶剤: p-クロロフ ェノール/フエノール(9/1, wtZwt)混合液)、ガラス転移温度は 118°Cであった。 以上より、実施例 1で得られたブロック共重合体のガラス転移温度はスルホン酸基を 有しない 2価の芳香族基を繰り返し構造単位とするブロックに由来するものであること は明らかである。
[0061] (実施例 2)
レゾルシンの代わりに 2, 2—ビス(4—ヒドロキシフエ-ル)プロパン 13. Olgを用い た他は実施例 1と同様にして還元粘度 1. 40dlZg (NMP)、ガラス転移温度 155°C のスルホン酸ナトリウム塩基を有するブロック共重合体を得た。
得られたブロック共重合体を用い、実施例 1と同様にしてフリーのスルホン酸基を有 する燃料電池用結着剤のフィルムを得た。得られた燃料電池用結着剤のフィルムの イオン交換基当量は 590gZmol、 64重量%メタノール水溶液浸漬による重量維持 率は 96%、イオン伝導度は 0. 036SZcm、メタノール透過性は 4. 9 μ mol/cm2- miiiで teつた。
また、得られたブロック共重合体を用い、実施例 1と同様にしてフリーのスルホン酸基 を有するポリマー粉を得た。得られたフリーのスルホン酸基を有するブロック共重合 体のガラス転移温度は 155°Cであった。このポリマーを実施例 1と同様にして溶解し たワニスを用いたスルホン酸基含有ポリエーテルケトン架橋膜と巿販電極 (エレクト口 ケム社製 EC— 20— 10— 7)とを接着し、その平均剥離強度は 11. INZmであった
[0062] (実施例 3)
レゾルシンの代わりに 2—メチルハイドロキノン 7. 09gを用いた他は実施例 1と同様 にして還元粘度 1. 34dlZg (NMP)、ガラス転移温度 143°Cのスルホン酸ナトリウム 塩基を有するブロック共重合体を得た。
得られたブロック共重合体を用い、実施例 1と同様にしてフリーのスルホン酸基を有 するフィルムを得た。得られたフィルムのイオン交換基当量は 585g/mol、 64重量メ タノール水溶液浸漬による重量維持率は 95%、イオン伝導度は 0. 038S/cm、メタ ノール透過性は 5. 1 μ molZcm2 'minであった。
得られたブロック共重合体を用 ヽ、実施例 1と同様にしてフリーのスルホン酸基を有 するポリマー粉を得た。得られたフリーのスルホン酸基を有するブロック共重合体の ガラス転移温度は 143°Cであった。このポリマーを実施例 1と同様にして溶解したヮ- スを用いたスルホン酸基含有ポリエーテルケトン架橋膜と市販電極 (エレクトロケム社 製
EC— 20— 10— 7)とを接着し、その平均剥離強度は 11. 6NZmであった。
[0063] (比較例 1)
市販のプロトン酸基含有フッ素系高分子「ナフイオン (Nafion デュポン社の登録商 標、ガラス転移温度は 143°C)」を含むワニスを用い、スルホン酸基含有ポリエーテル ケトン架橋膜と市販電極 (エレクトロケム社製
EC— 20— 10— 7)とを接着し、ワニスその平均剥離強度を測定したところ、 0. 2NZ mであった。またナフイオンをフィルム状にした際のイオン交換基当量は、 llOOgZ molで teつた。
[0064] (比較例 2)
レゾルシンの代わりに TMBPF14. 61gを用いた他は実施例 1と同様にして還元粘 度 1. OldlZg (NMP)、ガラス転移温度 210°Cのスルホン酸ナトリウム塩基を有する ブロック共重合体を得た。
得られたブロック共重合体を用い、実施例 1と同様にしてフリーのスルホン酸基を有 するフィルムを得た。得られたフィルムのイオン交換基当量は 722gZmol、 64重量メ タノール水溶液浸漬による重量維持率は 99%、イオン伝導度は 0. 016SZcm、メタ ノール透過性は 1. 1 μ molZcm2 'minであった。
得られたブロック共重合体を用い、実施例 1と同様にプロトン交換してフリーのスルホ ン酸基を有するポリマー粉を得た。このポリマー粉を実施例 1と同様にして溶解したヮ ニスを用いてスルホン酸基含有ポリエーテルケトン架橋膜と巿販電極 (エレクトロケム 社製 EC— 20— 10— 7)の接着を試みた。熱プレス設定温度 230°Cでは、接着後の 架橋膜は黒色に変色していた。熱プレス設定温度 140°Cでは膜の変色は見られな かったが、接着体の平均剥離強度は 0. 8NZmであった。
[0065] (実施例 4)
実施例 1で得られた燃料電池用結着剤のワニスを接着剤として、図 1の燃料電池を 以下のように作成した。スルホン酸基含有ポリエーテルケトン架橋膜を電解質膜 1、 巿販電極エレクトロケム社製
EC— 20— 10— 7を電極 2、エレクトロケム社製 EC— 20— C— 7RUを電極 2,に用い て、電極 2/電解質膜 1/電極 2'の順番に積層し、あら力じめ 80°Cに加熱した熱プ レスに導入し、 0. 8MPaで電極面にのみ加圧した。その後、カロ
圧した状態のまま、 80°Cから 140°Cまで 8分かけて昇温させ 140°Cにて 5分間保持し た。接合後の電解質膜電極接合体はほぼ乾燥状態であつたが、電極の剥離はなか つた o
[0066] 得られた電解質膜電極接合体を、エレクトロケム社製の燃料電池試験セル (品番: EFC-05-REF)に組み込み、図 1の燃料電池を組み立てた。図 1では、電解質膜 1を上記で作製した触媒付き電極 2および電極 2'とガスケット 3を使用して挟み、さら にその外側にセパレータ 4が置かれて、全体を、加圧板 5を用いて締め付けボルト 7 でしつ力りと締め付けられた構造となっている。内部にはガス流路 6が設けられている セル組み立て後、図 2のような燃料電池評価装置を使用して、 1Mメタノール水溶 液を燃料として電池特性を測定した。発電条件は燃料電池温度 80°C、メタノール水 溶液流量 2ccZmin、空気圧力 0. 05MPa、空気流量 100sccm。最大約 7. 4mW Zcm2の出力を得た(電圧 0. 20V、電流 36mAZcm2)。
図 2において、燃料電池セル 8の中には図 1の燃料電池が組み込んである。図の上 側のラインでは、メタノール水溶液を送液ポンプ 12により燃料電池セル 8を通して左 側から右側に送液している。また、下側のラインでは、空気を加湿用パブリングタンク 9により加湿した状態で 8を通して左側から右側に通気して 、る。燃料極側の 6の流 路をメタノール水溶液力 空気極側のガス流路 6を空気が流れる様になつている。そ れぞれの流量はマスフローコントローラー 11で制御する。メタノール水溶液および空 気を流すことにより生じる電圧および電流密度を電子負荷 10で測定することにより燃 料電池を評価する仕組みになっている。発電試験後のセルを分解し、電解質膜電極 接合体を観察したが、電解質膜と電極の剥離はな力つた。
[0067] (実施例 5)
5- 1)空気極空気極 (正極)電極の作製
実施例 1で得られたプロトン交換されたブロック共重合体粉末 0. 5gを結着剤として 、蒸留水 5. Og、テトラヒドロフラン 4. 5gの混合溶媒に溶解したワニス 10gを石福金属 興業社製の 20wt%Pt担持触媒 (名称: IFPC20) 0. 5gと混合し、超音波印加のの ち撹拌し、空気極触媒用の電極形成用組成物とした。
東レ製カーボンペーパー(品番: TGP—H— 060)の上にアプリケータを用いて、電 極形成用触媒組成物を塗工し、 70°Cで 12時間真空乾燥した後、 5cm2に切り出し 電極とした。触媒塗工量は Pt量で 2mgZcm2とした。
[0068] 5— 2)燃料極燃料極 (負極)電極の作成
実施例 1で得られたプロトン交換されたブロック共重合体粉末 0. 5gを結着剤として、 蒸留水 5. Og、テトラヒドロフラン 4. 5gの混合溶媒に溶解したワニス 10gを石福貴金 属製の 30wt%PtRu担持触媒 (名称: IFPC30A) 0. 5gと混合し、超音波印加のの ち撹拌し、燃料極触媒用の電極形成用組成物とした。
東レ (株)製カーボンペーパー(品番: TGP— H— 060)の上に電極形成用触媒組 成物を塗工し、 70°Cで 12時間真空乾燥した後、 5cm2に切り出し電極とした。触媒 塗工量は PtRu量で 2mgZcm2とした。
[0069] 5— 3)接合体の作製および発電試験
5—1で作製した電極を電極 2に、 5— 2で作製した電極を電極 2'として用い、他は 実施例 4と同様にして電解質膜電極接合体を作製した。電極の剥離はなカゝつた。実 施例 4と同様にして 1Mメタノール水溶液を燃料として発電試験を実施したところ、電 池特性を測定した。最大約 6. lmWZcm2の出力を得た(電圧 0. 19 V、電流 32mA /cm2) 0発電試験後のセルを分解し、電解質膜電極接合体を観察したが、電解質 膜と電極の剥離はな力つた。
図面の簡単な説明
[0070] [図 1]実施例 4で用いた燃料電池の断面構造を示す概略図である。
[図 2]実施例 4で燃料電池の評価に用いた燃料電池評価装置を示- 図である。
符号の説明
[0071]
2、 2 触媒付き電極
3 ガスケット
4 セノ レ1 ~~々■ ~~
5 加圧板
6 ガス流路
7 締め付けボルト
8 燃料電池セル
9 加湿用パブリングタンク
10 電子負荷 マスフローコント口 送液ポンプ

Claims

請求の範囲
[1] プロトン酸基を有する 2価の芳香族基を繰り返し構造単位とするブロックと、プロトン酸 基を有さな ヽ 2価の芳香族基を繰り返し構造単位とするブロックを含み、かつガラス 転移温度 (Tg)が 180°C以下であるブロック共重合体を含むことを特徴とする燃料電 池用結着剤。
[2] 前記ブロック共重合体が、イオン交換基当量が 200〜1000gZmolであり、かつ、 6 4重量%メタノール水溶液に 25°Cで 24時間浸漬したときの重量維持率が 90%以上 であることを特徴とする請求項 1に記載の燃料電池用結着剤。
[3] プロトン酸基を有する 2価の芳香族基が下記一般式(1)であり、プロトン酸基を有さな V、2価の芳香族基が下記一般式 (2)であることを特徴とする請求項 1に記載の燃料 電池用結着剤。
[化 1]
Figure imgf000030_0001
[化 2]
(2)
Figure imgf000030_0002
[一般式(1)及び一般式 (2)中、 1〜^はそれぞれ独立して水素原子またはプロトン 酸基を表し、 〜 5の少なくとも一つはプロトン酸基であり、 ^〜A4はそれぞれ独立 して直接結合, CH - , -C (CH ) - , -C (CF ) - , -0- , -SO—または
2 3 2 3 2 2
— CO を表し、 g, h, i、 j、 k、 1はそれぞれ独立して 0または 1を表し、芳香環の水素 原子は、 -C H (mは 1〜10の整数を表す), -CI, -F, —CFまたは—CNに m 2m+l 3
置換していてもよい。 ]
[4] X1および X2がプロトン酸基、 X3〜X5が水素原子、 Α1が— SO—または— CO—、 gが
2
1である請求項 3に記載の燃料電池用結着剤。
[5] プロトン酸基力 -C H SO H (nは 0〜 10の整数)であることを特徴とする請求項 n 2n 3
3記載の燃料電池用結着剤。
[6] jが 1、 kが 0である請求項 3に記載の燃料電池用結着剤。
[7] 請求項 1〜6のいずれかに記載の燃料電池用結着剤と、電極材料を含有することを 特徴とする燃料電池電極形成用組成物。
[8] 電極材料が、カーボンブラック、活性炭、黒鉛、鉛、鉄、マンガン、コバルト、クロム、 ガリウム、バナジウム、タングステン、ルテニウム、イリジウム、ノ《ラジウム、白金、ロジゥ ムおよびそれらの合金力 なる群より選ばれる少なくとも一種であることを特徴とする 請求項 7記載の燃料電池電極形成用組成物。
[9] 請求項 7又は 8に記載の燃料電池電極形成用組成物を用いた燃料電池用電極。
[10] 請求項 9に記載の燃料電池用電極を用いて得られる燃料電池。
[11] 一般式(1)で表されるプロトン酸基を有する 2価の芳香族基を繰り返し構造単位とす るブロックと、一般式 (2)で表されるプロトン酸基を有さな!/ヽ 2価の芳香族基を繰り返し 構造単位とするブロックを含むことを特徴とするブロック共重合体。
[化 3]
Figure imgf000031_0001
[化 4]
(2)
Figure imgf000031_0002
[一般式(1)及び一般式 (2)中、 1〜^はそれぞれ独立して水素原子またはプロトン 酸基を表し、 〜 5の少なくとも一つはプロトン酸基であり、 ^〜A4はそれぞれ独立 して直接結合,— CH - , -C (CH ) - , -C (CF ) - , -0- , -SO—または
2 3 2 3 2 2
— CO—を表し、 g, h, i、 j、 k、 1はそれぞれ独立して 0または 1を表し、芳香環の水素 原子は、 -C H (mは 1〜10の整数を表す), -CI, -F, —CFまたは—CNに m 2m+l 3
置換していてもよい。 ]
PCT/JP2005/013389 2004-07-23 2005-07-21 燃料電池用結着剤、電極形成用組成物、電極およびそれを用いた燃料電池 WO2006009206A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2574646A CA2574646C (en) 2004-07-23 2005-07-21 Binder for fuel cell, composition for forming electrode, electrode, and fuel cell using the electrode
CN2005800247022A CN101002352B (zh) 2004-07-23 2005-07-21 燃料电池用粘结剂、电极形成用组合物、电极以及使用该电极的燃料电池
US11/658,178 US8288058B2 (en) 2004-07-23 2005-07-21 Binder for fuel cell, composition for forming electrode, electrode, and fuel cell using the electrode
JP2006529274A JP4150408B2 (ja) 2004-07-23 2005-07-21 燃料電池用結着剤、電極形成用組成物、電極およびそれを用いた燃料電池
EP05766321A EP1788649B1 (en) 2004-07-23 2005-07-21 Binder for fuel cell, composition for electrode formation, electrode, and fuel cell using the electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-215469 2004-07-23
JP2004215469 2004-07-23

Publications (1)

Publication Number Publication Date
WO2006009206A1 true WO2006009206A1 (ja) 2006-01-26

Family

ID=35785314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013389 WO2006009206A1 (ja) 2004-07-23 2005-07-21 燃料電池用結着剤、電極形成用組成物、電極およびそれを用いた燃料電池

Country Status (8)

Country Link
US (1) US8288058B2 (ja)
EP (1) EP1788649B1 (ja)
JP (1) JP4150408B2 (ja)
KR (1) KR100848414B1 (ja)
CN (1) CN101002352B (ja)
CA (1) CA2574646C (ja)
TW (1) TWI308917B (ja)
WO (1) WO2006009206A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006096989A (ja) * 2004-08-30 2006-04-13 Jsr Corp スルホン酸基を有するポリアリーレンブロック共重合体およびその製造方法、ならびに高分子固体電解質およびプロトン伝導膜
WO2007077972A1 (ja) * 2005-12-28 2007-07-12 Toyota Jidosha Kabushiki Kaisha 燃料電池電極用触媒、燃料電池電極用触媒の製造方法、膜電極接合体、燃料電池
KR100760763B1 (ko) 2006-10-17 2007-10-04 삼성에스디아이 주식회사 고전압 리튬 이차 전지용 전해액 및 이를 채용하는 고전압리튬 이차 전지
JP2007294240A (ja) * 2006-04-25 2007-11-08 Jsr Corp 高分子型燃料電池用電極電解質およびその用途
JP2008007759A (ja) * 2006-05-31 2008-01-17 Sumitomo Chemical Co Ltd ブロック共重合体及びその用途
JP2008106098A (ja) * 2006-10-24 2008-05-08 Mitsui Chemicals Inc 重合体組成物、それを用いて製造される高分子電解質膜ならびにそれを含んで構成される燃料電池

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100975357B1 (ko) * 2007-11-27 2010-08-11 한양대학교 산학협력단 맞춤형 비불소계 촉매 바인더, 막-전극 어셈블리 및 이를포함하는 연료전지
WO2013085463A1 (en) * 2011-12-09 2013-06-13 Shogo Takamuku Polymeric material comprising ortho-positioned acidic groups
RU2669362C2 (ru) * 2012-04-13 2018-10-11 Аркема Инк. Батарея на основе сераорганических соединений
KR101465139B1 (ko) * 2012-12-10 2014-11-25 한국과학기술원 고분자 전해질 연료 전지용 양극 조성물, 이를 포함하는 막/전극 접합체 및 그 제조방법
CN109546052A (zh) * 2018-09-29 2019-03-29 大连中比动力电池有限公司 一种全氟磺酸锂涂覆隔膜的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002184420A (ja) * 2000-10-03 2002-06-28 Mitsubishi Chemicals Corp 燃料電池用セパレータ及びその製造方法
JP2002289222A (ja) * 2001-03-26 2002-10-04 Mitsui Chemicals Inc イオン伝導性高分子およびそれを用いた高分子膜と燃料電池
JP2003031231A (ja) * 2001-07-12 2003-01-31 Mitsui Chemicals Inc 燃料電池用イオン伝導性高分子膜およびそれを用いた燃料電池
JP2003109624A (ja) * 2001-09-27 2003-04-11 Mitsui Chemicals Inc 燃料電池用イオン伝導性高分子膜とそれを用いた燃料電池
JP2004047244A (ja) * 2002-07-11 2004-02-12 Mitsui Chemicals Inc 燃料電池用イオン伝導性結着剤、電極形成用組成物およびワニス、並びに燃料電池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7361729B2 (en) * 2000-09-20 2008-04-22 Virginia Tech Intellectual Properties, Inc. Ion-conducting sulfonated polymeric materials
JP4848589B2 (ja) 2001-02-07 2011-12-28 株式会社カネカ 膜−電極接合体及びその製造方法並びに燃料電池
JP4221164B2 (ja) 2001-03-30 2009-02-12 本田技研工業株式会社 固体高分子型燃料電池
TWI236486B (en) 2001-10-10 2005-07-21 Mitsui Chemicals Inc Crosslinkable aromatic resin having protonic acid group, and ion conductive polymer membrane, binder and fuel cell using the resin
CA2481343C (en) * 2002-04-01 2011-01-25 Virginia Tech Intellectual Properties, Inc. Sulfonated polymer composition for forming fuel cell electrodes
JP2003317735A (ja) 2002-04-18 2003-11-07 Nec Corp 固体高分子電解質型燃料電池、燃料電池用固体高分子電解質膜および燃料電池の製造方法
AU2003299502A1 (en) * 2002-05-13 2004-06-07 Polyfuel, Inc. Ion conductive block copolymers
TW200416257A (en) 2002-10-15 2004-09-01 Sumitomo Chemical Co Block copolymer and application thereof
JP2004359925A (ja) 2003-04-07 2004-12-24 Mitsui Chemicals Inc プロトン伝導性ブロック共重合体およびプロトン伝導膜

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002184420A (ja) * 2000-10-03 2002-06-28 Mitsubishi Chemicals Corp 燃料電池用セパレータ及びその製造方法
JP2002289222A (ja) * 2001-03-26 2002-10-04 Mitsui Chemicals Inc イオン伝導性高分子およびそれを用いた高分子膜と燃料電池
JP2003031231A (ja) * 2001-07-12 2003-01-31 Mitsui Chemicals Inc 燃料電池用イオン伝導性高分子膜およびそれを用いた燃料電池
JP2003109624A (ja) * 2001-09-27 2003-04-11 Mitsui Chemicals Inc 燃料電池用イオン伝導性高分子膜とそれを用いた燃料電池
JP2004047244A (ja) * 2002-07-11 2004-02-12 Mitsui Chemicals Inc 燃料電池用イオン伝導性結着剤、電極形成用組成物およびワニス、並びに燃料電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1788649A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006096989A (ja) * 2004-08-30 2006-04-13 Jsr Corp スルホン酸基を有するポリアリーレンブロック共重合体およびその製造方法、ならびに高分子固体電解質およびプロトン伝導膜
WO2007077972A1 (ja) * 2005-12-28 2007-07-12 Toyota Jidosha Kabushiki Kaisha 燃料電池電極用触媒、燃料電池電極用触媒の製造方法、膜電極接合体、燃料電池
JP2007294240A (ja) * 2006-04-25 2007-11-08 Jsr Corp 高分子型燃料電池用電極電解質およびその用途
JP2008007759A (ja) * 2006-05-31 2008-01-17 Sumitomo Chemical Co Ltd ブロック共重合体及びその用途
KR100760763B1 (ko) 2006-10-17 2007-10-04 삼성에스디아이 주식회사 고전압 리튬 이차 전지용 전해액 및 이를 채용하는 고전압리튬 이차 전지
US7655361B2 (en) 2006-10-17 2010-02-02 Samsung Sdi Co., Ltd. Electrolyte for high voltage lithium rechargeable battery and high voltage lithium rechargeable battery employing the same
JP2008106098A (ja) * 2006-10-24 2008-05-08 Mitsui Chemicals Inc 重合体組成物、それを用いて製造される高分子電解質膜ならびにそれを含んで構成される燃料電池

Also Published As

Publication number Publication date
TWI308917B (en) 2009-04-21
EP1788649A1 (en) 2007-05-23
JP4150408B2 (ja) 2008-09-17
CN101002352A (zh) 2007-07-18
US8288058B2 (en) 2012-10-16
EP1788649A4 (en) 2010-01-20
CA2574646A1 (en) 2006-01-26
KR20070024661A (ko) 2007-03-02
CA2574646C (en) 2012-02-21
EP1788649B1 (en) 2012-09-26
US20070292733A1 (en) 2007-12-20
JPWO2006009206A1 (ja) 2008-05-01
CN101002352B (zh) 2010-10-20
KR100848414B1 (ko) 2008-07-28
TW200615300A (en) 2006-05-16

Similar Documents

Publication Publication Date Title
JP4076951B2 (ja) プロトン酸基含有架橋性芳香族樹脂、ならびにそれを用いたイオン伝導性高分子膜、結着剤および燃料電池
WO2006009206A1 (ja) 燃料電池用結着剤、電極形成用組成物、電極およびそれを用いた燃料電池
JP2004359925A (ja) プロトン伝導性ブロック共重合体およびプロトン伝導膜
JP2003187826A (ja) 燃料電池、それに用いる高分子電解質及びイオン交換性樹脂
EP1612232B1 (en) Crosslinked ionically conducting resin, and ionically conducting polymer membranes, binders and fuel cells, made by using the resin
JP3973503B2 (ja) 燃料電池用イオン伝導性結着剤、電極形成用組成物およびワニス、並びに燃料電池
KR101059197B1 (ko) 광 가교 그룹을 포함한 술폰화 폴리아릴렌에테르술폰 공중합체, 그를 이용한 수소 이온 전도성 고분자 전해질 막의 제조방법 및 그로부터 제조된 고분자 전해질막을 구비한 연료전지
JP4774718B2 (ja) 高分子電解質膜
JP4146753B2 (ja) プロトン伝導性樹脂組成物ならびに電解質膜、電解質膜/電極接合体および燃料電池
JP4202806B2 (ja) 電解質膜/電極接合体、その製造法および燃料電池
JP4360113B2 (ja) プロトン伝導性樹脂組成物および熱融着可能なプロトン伝導膜
JP5549970B2 (ja) 超強酸基を有する芳香族高分子電解質及びその利用
JP4370505B2 (ja) 複合膜
JP2007119654A (ja) プロトン伝導性ブロック共重合体、その架橋体ならびにそれを用いたプロトン伝導膜および燃料電池
JP4633569B2 (ja) 架橋型プロトン伝導性ブロック共重合体、その架橋体ならびにそれを用いたプロトン伝導膜および燃料電池
Wang et al. Synthesis and Properties of Sulfonated Poly (arylene ether) Containing Triphenyl Methane Moieties from Isocynate Masked Bisphenol
JP2004026935A (ja) スルホン酸基含有樹脂硬化物およびそれから得られる燃料電池用イオン伝導性高分子膜並びに燃料電池
JP2006032182A (ja) 固体高分子型燃料電池用膜・電極構造体及び固体高分子型燃料電池

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067027511

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006529274

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2574646

Country of ref document: CA

Ref document number: 200580024702.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005766321

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067027511

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11658178

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005766321

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11658178

Country of ref document: US