WO2006004046A1 - 給湯装置 - Google Patents

給湯装置 Download PDF

Info

Publication number
WO2006004046A1
WO2006004046A1 PCT/JP2005/012218 JP2005012218W WO2006004046A1 WO 2006004046 A1 WO2006004046 A1 WO 2006004046A1 JP 2005012218 W JP2005012218 W JP 2005012218W WO 2006004046 A1 WO2006004046 A1 WO 2006004046A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
hot water
refrigerant
refrigerant circuit
water supply
Prior art date
Application number
PCT/JP2005/012218
Other languages
English (en)
French (fr)
Inventor
Tadafumi Nishimura
Takahiro Yamaguchi
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to EP05765228A priority Critical patent/EP1780476A4/en
Priority to US11/630,617 priority patent/US7640763B2/en
Priority to AU2005258416A priority patent/AU2005258416B2/en
Publication of WO2006004046A1 publication Critical patent/WO2006004046A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/06Heat pumps characterised by the source of low potential heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0096Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater combined with domestic apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/18Details or features not otherwise provided for combined with domestic apparatus
    • F24F2221/183Details or features not otherwise provided for combined with domestic apparatus combined with a hot-water boiler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit

Definitions

  • the present invention relates to a hot water supply apparatus using a heat pump.
  • a hot water supply apparatus that supplies hot water obtained by using a heat pump to a user side is known.
  • the hot water supply apparatus disclosed in Patent Document 1 generates high-temperature water of about 90 ° C with one heat pump unit, and supplies high-temperature water stored in a hot-water storage tank to the user side.
  • This hot water supply device generates medium-temperature water by heat exchange with high-temperature water, and supplies the obtained medium-temperature water to heat-utilizing equipment such as radiators for floor heating.
  • the hot water supply device disclosed in Patent Document 2 separately generates high-temperature water of about 90 ° C and medium-temperature water of about 60 ° C to 80 ° C with one heat pump unit.
  • This hot water supply device supplies the obtained high-temperature water to the user side, and supplies the obtained medium-temperature water to a heat-utilizing device such as a radiator for floor heating.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-056905
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-364912
  • a hot water supply apparatus as disclosed in Patent Document 1, that is, a hot water supply apparatus that generates medium temperature hot water, even in an operation situation where only supply of medium temperature water is required, medium temperature water is generated. High temperature water must be generated. For this reason, this type of hot water supply apparatus may have an excessive consumption of energy such as electric power.
  • Patent Document 2 that is, a hot water supply apparatus that individually generates high-temperature water and medium-temperature water with a single heat pump unit, there is no refrigerant in the single refrigerant circuit. It is necessary to generate two types of hot water with different temperatures by heat exchange. For this reason, if the refrigeration cycle conditions in the refrigerant circuit are set to conditions suitable for the production of high-temperature water, for example. As a result, the temperature of the obtained medium-temperature water is restricted, making it impossible to set the temperature of the medium-temperature water according to the request from the user side.
  • the present invention has been made in view of power, and the object of the present invention is to reduce the amount of energy consumption such as electric power and to have a high degree of freedom in setting the hot water supply temperature and the like.
  • the object is to provide an easy water heater.
  • the first invention in addition to the operation of supplying hot water to the user side, an operation of supplying a heat medium having a medium temperature lower than the temperature of the hot water as a heating fluid to the heat utilization device (45) is possible.
  • a first refrigerant circuit (20) that heats the refrigerant to a medium temperature by heat exchange with the first refrigerant, and a refrigeration cycle in which the second refrigerant is circulated and water is heated with the second refrigerant for hot water supply.
  • the second refrigerant circuit (60) includes an evaporator that exchanges heat between the second refrigerant and the heat medium in the heat medium passage (40).
  • a heat pump using the heat medium in the heat medium passage (40) as a heat source is configured.
  • the heat medium passage (40) is configured such that the heat medium after passing through the heat utilization device (45) is converted into the evaporator (50) of the second refrigerant circuit (60). The operation to supply to is enabled.
  • the heat medium passage (40) causes the heat medium heated to an intermediate temperature to evaporate the heat utilization device (45) and the second refrigerant circuit (60). It is possible to distribute to the container (50).
  • the heat medium passage (40) converts the heat medium heated to an intermediate temperature into the evaporator (50) of the second refrigerant circuit (60). ) Can only be supplied.
  • the first refrigerant circuit (20) includes:
  • the air conditioner heat exchanger (24) for exchanging heat between the first refrigerant and room air is provided.
  • the first refrigerant circuit (20) includes an operation in which the heat exchanger for air conditioning (24) serves as an evaporator, and the heat exchanger for air conditioning ( 24) is turned off as a condenser. It can be replaced.
  • first refrigerant circuit (20) and the second refrigerant circuit (60) are provided, and the heat medium passage (40) is provided.
  • the first refrigerant in each first refrigerant circuit (20) and the second refrigerant in each second refrigerant circuit (60) circulate in one heat medium passage (40) and heat medium. To be exchanged.
  • the hot water supply device (10) can operate not only to supply hot water to the user side but also to supply a medium temperature heat medium to the heat-use device (45)! /,
  • the In the first refrigerant circuit (20) the refrigeration cycle is performed by circulating the first refrigerant. At that time, the first refrigerant dissipates heat to the heat medium in the heat medium passage (40) and condenses. The heat medium flowing through the heat medium passage (40) is heated to the medium temperature by the first refrigerant, and then sent to the heat utilization device (45) and the evaporator (50) of the second refrigerant circuit (60). In the thermal energy utilization device (45), an object such as indoor air is heated using the supplied heat medium.
  • the refrigeration cycle is performed by circulating the second refrigerant.
  • the second refrigerant absorbs heat from the heat medium in the heat medium passage (40) and evaporates. That is, the second refrigerant circuit (60) constitutes a heat pump using the heat medium as a heat source.
  • hot water for hot water supply is generated by heating water with the second refrigerant in the second refrigerant circuit (60).
  • the heat medium that has passed through the heat utilization device (45) is supplied to the evaporator (50) of the second refrigerant circuit (60). Operation is possible.
  • the evaporator (50) of the second refrigerant circuit (60) is located downstream of the heat utilization device (45) in the circulation direction of the heat medium, and the heat utilization device (45 ) And the heat medium whose temperature has dropped slightly exchanges heat with the second refrigerant in the evaporator (50) of the second refrigerant circuit (60).
  • the first refrigerant in the first refrigerant circuit (20) exchanges heat with the heat medium whose temperature has further decreased by releasing heat to the second refrigerant.
  • the heat medium heated by heat exchange with the first refrigerant is used as an evaporator of the heat utilization device (45) and the second refrigerant circuit (60). (50) can be distributed.
  • the medium temperature heat medium is supplied not only to the heat utilization device (45) but also to the evaporator (50) of the second refrigerant circuit (60).
  • the second refrigerant absorbs heat from the medium temperature heat medium.
  • the operation of supplying the heat medium heated to an intermediate temperature only to the evaporator (50) of the second refrigerant circuit (60) is performed. It becomes possible. This operation is performed when it is not necessary to heat the object with the thermal equipment (45).
  • the first refrigerant circuit (20) is provided with the air conditioner heat exchanger (24).
  • the first refrigerant circulating in the first refrigerant circuit (20) is also sent to the air conditioner heat exchanger (24).
  • the air conditioner heat exchanger (24) causes the indoor air to exchange heat with the first refrigerant, and cools or heats the indoor air.
  • the air-conditioning heat exchanger (24) cools the room air.
  • the indoor air is heated in the air conditioner heat exchanger (24).
  • a heating operation in which the indoor air is heated in the air conditioner heat exchanger (24). Can be switched.
  • one or both of the first refrigerant circuit (20) and the second refrigerant circuit (60) are provided, and the first refrigerant circuit (20) and the second refrigerant circuit (60) ) Is connected to one heat medium passage (40).
  • the first refrigerants of all the first refrigerant circuits (20) can exchange heat with the heat medium in the heat medium passage (40).
  • the second refrigerants of all the second refrigerant circuits (60) can exchange heat with the heat medium in the heat medium passage (40).
  • the first refrigerant circuit (20) performs the refrigeration cycle to heat the heat medium in the heat medium passage (40), and the second refrigerant circuit (60) serves as a heat source for the second refrigerant circuit (60).
  • hot water for hot water supply is generated.
  • the thermal energy utilization device (45) only the first refrigerant circuit (20) needs to be operated. There is no need to operate to produce hot water for hot water supply. Therefore, according to the present invention, it is not necessary to generate high-temperature hot water just to obtain a medium-temperature heat medium as in the prior art, and wasteful consumption of energy such as electric power can be suppressed.
  • the operation state of the first refrigerant circuit (20) when the demand for the medium temperature heat medium or the required value of the heat medium temperature changes, the operation state of the first refrigerant circuit (20) is changed. If the required amount of hot water supply or hot water temperature changes by adjusting the heating amount for the heat medium, the operating state of the second refrigerant circuit (60) may be changed to adjust the heating amount for water. Therefore, according to the present invention, the operation of the first refrigerant circuit (20) and the second refrigerant circuit (60) can be individually controlled to appropriately cope with the demand for the medium temperature heat medium and the demand for hot water supply. This makes it possible to realize a hot water supply device (10) that can be easily controlled according to load fluctuations.
  • the second invention an operation of supplying the heat medium after passing through the heat utilization device (45) to the evaporator (50) of the second refrigerant circuit (60) is possible.
  • the heat medium that has dissipated heat to the refrigerant and the temperature further decreases, and the first refrigerant in the first refrigerant circuit (20) exchanges heat.
  • the enthalpy of the first refrigerant exchanged with the heat medium can be reduced, thereby increasing the amount of heat that the first refrigerant absorbs heat, such as outside air, and the refrigeration in the first refrigerant circuit (20).
  • Cycle COP coefficient of performance
  • the operation of distributing the heat medium heated by heat exchange with the first refrigerant to the heat utilization device (45) and the evaporator (50) of the second refrigerant circuit (60) is performed.
  • the second refrigerant of the second refrigerant circuit (60) absorbs heat during the operation.
  • the second refrigerant in the second refrigerant circuit (60) is heat-exchanged with a heat medium having the highest possible temperature. Therefore, according to the present invention, the low pressure of the refrigeration cycle in the second refrigerant circuit (60) can be set higher, and the power required for compression of the second refrigerant can be reduced to reduce the refrigeration cycle.
  • COP can be reduced.
  • the hot water supply device (10) is provided with one or a plurality of one or both of the first refrigerant circuit (20) and the second refrigerant circuit (60), and these are provided as one heat medium passage (40). Connected to.
  • first refrigerant circuits (20) when a plurality of first refrigerant circuits (20) are provided, another first refrigerant circuit (when the heating amount to the heat medium is insufficient only by operation of one first refrigerant circuit (20)). It is also possible to drive 20). Therefore, according to the present invention, it is possible to realize a working water heater (10) that can flexibly cope with load fluctuations, good usability, and a hot water supply device (10).
  • FIG. 1 is a piping system diagram showing a schematic configuration of a hot water supply apparatus and an operation during cooling operation in an embodiment.
  • FIG. 2 is a schematic diagram of a hot water supply apparatus according to the embodiment and a piping system diagram showing an operation during heating operation.
  • FIG. 3 is a piping system diagram showing a schematic configuration of a hot water supply apparatus in Modification 1 of the embodiment.
  • FIG. 4 is a piping system diagram showing a schematic configuration of a hot water supply apparatus in Modification 2 of the embodiment. Explanation of symbols
  • the hot water supply device (10) of the present embodiment includes a heat source unit (11), an indoor unit (12) for air conditioning, a hot water hot water supply unit (13), and a hot water storage unit (14). It is configured by.
  • the hot water supply device (10) includes a first refrigerant circuit (20), an intermediate temperature water circuit (40), a second refrigerant circuit (60), and a high temperature water circuit (80).
  • the first refrigerant circuit (20) is formed across the heat source unit (11) and the indoor unit (12).
  • the first refrigerant circuit (20) includes a first compressor (21), a four-way switching valve (22), an outdoor heat exchanger (23), an indoor heat exchanger (24), and a first heat exchange.
  • a vessel (30) and two electric expansion valves (25, 26) are provided. Of these, only indoor heat exchange (24) is stored in the indoor unit (12), and the rest is stored in the heat source unit (11).
  • the first refrigerant circuit (20) is filled with the first refrigerant.
  • hydrocarbon refrigerants such as methane and propane may be used in addition to so-called freon refrigerants such as R407C and R410A.
  • Both the outdoor heat exchange ⁇ 23 (23) and the indoor heat exchange ⁇ (24) are constituted by cross-fin plate 'and' tube heat exchange ⁇ .
  • Outdoor heat exchange (23) causes the first refrigerant to exchange heat with outdoor air.
  • the indoor heat exchanger (24) exchanges heat between the first refrigerant and room air. This indoor heat exchange (24) constitutes a heat exchange for air conditioning.
  • the first heat exchanger (30) is constituted by a so-called plate heat exchanger ⁇ , and includes a plurality of first flow paths (31) and second flow paths (32) separated from each other! /, The
  • the four-way switching valve (22) has a first state (state shown in Fig. 1) in which the first port and the third port communicate with each other and the second port and the fourth port communicate with each other; The first port and the fourth port communicate with each other, and the second port and the third port communicate with each other.
  • the second state (the state shown in FIG. 2) can be switched.
  • the first compressor (21) has a discharge side on the first port of the four-way switching valve (22) and a suction side on the second port of the four-way switching valve (22). Are connected to each.
  • One end of the outdoor heat exchanger (23) is connected to the third port of the four-way switching valve.
  • the other end of the outdoor heat exchanger (23) is connected to both one end of the first electric expansion valve (25) and one end of the second electric expansion valve (26).
  • the other end of the first electric expansion valve (25) is connected to one end of the indoor heat exchanger (24).
  • the other end of the indoor heat exchanger (24) is connected to the fourth port of the four-way switching valve (22).
  • the other end of the second electric expansion valve (26) is connected to one end of the first flow path (31) in the first heat exchange (30).
  • the other end of the first flow path (31) in the first heat exchanger (30) is connected between the discharge side of the first compressor (21) and the four-way switching valve (22).
  • the medium hot water circuit (40) is formed across the heat source unit (11) and the high temperature water hot water supply unit (13).
  • This medium hot water circuit (40) has a first heat exchanger (30), a pump (41) and a three-way control valve (42 ) And second heat exchange (50). Of these, only the second heat exchanger (50) is stored in the hot water hot water supply unit (13), and the rest is stored in the heat source unit (11).
  • the intermediate hot water circuit (40) is connected to a floor heating radiator (45) serving as a thermal utilization device.
  • the intermediate hot water circuit (40) constitutes a heat medium passage for circulating water (heat medium water) filled as a heat medium between the floor heating radiator (45).
  • the heat medium filled in the intermediate temperature water circuit (40) is not limited to water, and brine such as an aqueous solution of ethylene glycol may be used as the heat medium.
  • brine such as an aqueous solution of ethylene glycol
  • what is connected to the intermediate hot water circuit (40) as a device for using heat is not limited to the radiator for floor heating (45).
  • a hot water heater or a bathroom dryer that heats the air using heat transfer water may be connected to the intermediate hot water circuit (40) as a device using heat.
  • the three-way control valve (42) sends the fluid flowing into the first port to one of the second port and the third port, and the fluid flowing into the first port into the second port. It is possible to send to both the third port and the third port.
  • the ratio of the fluid flowing into the first port that is directed toward the second port and that directed toward the third port is variable.
  • the second heat exchange (50) is constituted by a so-called plate-type heat exchange ⁇ , and includes a plurality of first flow paths (51) and second flow paths (52) separated from each other! /, The
  • the discharge side of the pump (41) is connected to the first port of the three-way control valve (42).
  • the first flow path (51) of the second heat exchange (50) has one end connected to the second port of the three-way control valve (42) and the other end connected to the second flow path of the first heat exchanger (30). (32) is connected to one end of each.
  • the other end of the second flow path (32) of the first heat exchange (30) is connected to the suction side of the pump (41).
  • the third port of the three-way control valve (42) is connected to one end of the floor heating radiator (45).
  • the other end of the floor heating radiator (45) is connected to a pipe connecting the first flow path (51) of the second heat exchange (50) and the second flow path (32) of the first heat exchange (30).
  • the second refrigerant circuit (60) is housed in the high-temperature hot water supply unit (13).
  • the second refrigerant circuit (60) is provided with a second compressor (61), a third heat exchanger (70), an electric expansion valve (62), and a second heat exchanger (50). ing.
  • the second refrigerant circuit (60) is filled with the second refrigerant.
  • carbon dioxide (CO 2) is used as the second refrigerant.
  • the third heat exchange (70) is constituted by so-called plate heat exchange ⁇ A plurality of divided first flow paths (71) and second flow paths (72) are provided.
  • the discharge side of the second compressor (61) is connected to one end of the first flow path (71) of the third heat exchanger (70).
  • the other end of the first flow path (71) of the third heat exchanger (70) is connected to one end of the second flow path (52) of the second heat exchanger (50) via the electric expansion valve (62). It has been.
  • the other end of the second flow path (52) of the second heat exchanger (50) is connected to the suction side of the second compressor (61).
  • the high-temperature water circuit (80) is formed across the high-temperature water hot water supply unit (13) and the hot water storage unit (14).
  • the hot water circuit (80) includes a hot water storage tank (81), a pump (82), a third heat exchanger (70), and a mixing valve (83).
  • the mixing valve (83) is configured to mix the fluid that has flowed into the first port and the fluid that has flowed into the second port, and to send the mixed fluid from the third port. Further, the mixing valve (83) can change the flow rate ratio between the fluid flowing into the first port and the fluid flowing into the second port.
  • the hot water storage tank (81) is formed in the shape of a vertically long, cylindrical sealed container!
  • the discharge side of the pump (82) is the second flow path of the third heat exchanger (70).
  • the other end of the second flow path (72) of the third heat exchanger (70) is connected to the first port of the mixing valve (83).
  • the second port of the mixing valve (83) is connected to the suction side of the pump (82).
  • the third port of the mixing valve (83) is connected to a hot water supply pipe (85) extending to the use side such as a kitchen, a wash basin or a bath.
  • the bottom of the hot water storage tank (81) is connected to the pipe connecting the mixing valve (83) and the pump (82), and the top is connected to the second flow path (72) of the third heat exchanger (70) and the mixing valve (83). It is connected to each connecting pipe.
  • the water to which an external force is also supplied into the high-temperature water circuit (80) is introduced near the suction side of the pump (82).
  • the hot water supply device (10) The operation of the hot water supply device (10) will be described.
  • this hot water supply device (10) it is possible to switch between a cooling operation in which the indoor unit (12) cools the room and a heating operation in which the indoor unit (12) heats the room.
  • the four-way selector valve (22) is set to the first state.
  • the opening degree of the first electric expansion valve (25) is appropriate.
  • the opening of the second electric expansion valve (26) is set almost fully open.
  • the first compressor (21) is operated in this state, the first refrigerant circulates in the first refrigerant circuit (20) and a refrigeration cycle is performed.
  • the outdoor heat exchanger (23) and the first heat exchanger (30) serve as a condenser, and the indoor heat exchanger (24) serves as an evaporator.
  • the first refrigerant circuit (20) constitutes a heat pump using indoor air as a heat source.
  • a part of the first refrigerant discharged from the first compressor (21) flows into the outdoor heat exchanger (23) through the four-way switching valve (22), and the remaining part is the first refrigerant.
  • 1 Flows into the first flow path (31) of the heat exchanger (30).
  • the first refrigerant flowing into the outdoor heat exchanger (23) dissipates heat to the outdoor air and condenses.
  • the first refrigerant flowing into the first flow path (31) of the first heat exchanger (30) dissipates heat and condenses to the heat transfer medium in the intermediate hot water circuit (40), and then the second electric expansion valve (26 ) And the first refrigerant condensed in the outdoor heat exchanger (23).
  • the first refrigerant is decompressed when passing through the first electric expansion valve (25), and then flows into the indoor heat exchanger (24).
  • the indoor heat exchanger (24) the inflowing first refrigerant absorbs heat from the indoor air and evaporates, and the indoor air is cooled.
  • the first refrigerant evaporated in the indoor heat exchanger (24) passes through the four-way switching valve (22) and then is sucked into the first compressor (21) and compressed.
  • the four-way selector valve (22) is set to the second state.
  • the opening degrees of the first electric expansion valve (25) and the second electric expansion valve (26) are appropriately adjusted.
  • the first compressor (21) is operated in this state, the first refrigerant circulates in the first refrigerant circuit (20) and a refrigeration cycle is performed.
  • the indoor heat exchange (24) and the first heat exchange (30) serve as a condenser, and the outdoor heat exchange (23) serves as an evaporator.
  • the first refrigerant circuit (20) constitutes a heat pump using outdoor air as a heat source.
  • the first refrigerant condensed in the indoor heat exchanger (24) is decompressed when passing through the first electric expansion valve (25), and then the first refrigerant in the first heat exchanger (30).
  • the first refrigerant condensed in the flow path (31) is decompressed when passing through the second electric expansion valve (26) and then flows into the outdoor heat exchanger (23).
  • the outdoor heat exchanger (23) the inflowing first refrigerant absorbs heat from the outdoor air and evaporates.
  • the first refrigerant evaporated in the outdoor heat exchanger (23) is sucked into the first compressor (21) and compressed after passing through the four-way switching valve (22).
  • the heat transfer water circulates in the intermediate temperature water circuit (40).
  • the heat transfer water flowing into the second flow path (32) of the first heat exchanger (30) is heated by the first refrigerant flowing through the first flow path (31).
  • the heat transfer water heated to a medium temperature of about 30 ° C to 60 ° C while passing through the second flow path (32) flows into the three-way control valve (42).
  • the three-way control valve (42) is set in a state where the first port communicates with the second and third ports, a part of the medium temperature heat transfer water is heat radiation for floor heating. Flows into the heat exchanger (45), and the remainder flows into the first flow path (51) of the second heat exchanger (50).
  • the flow rate of the heat transfer water to the floor heating radiator (45) and the flow rate of the heat transfer water to the second heat exchange (50) The ratio of can be changed. If the three-way control valve (42) is set so that the first port communicates only with the second port, the heat transfer water heated by the first heat exchanger (30) is transferred to the second heat exchanger (50 ) Only supplied. If the three-way control valve (42) is set so that the first port communicates only with the third port, the heat transfer water heated by the first heat exchanger (30) Supplied only to 45).
  • the second compressor (61) of the second refrigerant circuit (60) When the second compressor (61) of the second refrigerant circuit (60) is operated, the second refrigerant circulates in the second refrigerant circuit (60) to perform a refrigeration cycle. At that time, in the second refrigerant circuit (60), the third heat exchanger (70) serves as a condenser, and the second heat exchanger (50) serves as an evaporator. In the second refrigerant circuit (60), the high pressure of the refrigeration cycle is set higher than the critical pressure of the second refrigerant. That is, in the second refrigerant circuit (60), a so-called supercritical cycle is performed.
  • the second refrigerant circuit (60) constitutes a heat pump using the heat transfer water of the intermediate temperature water circuit (40) as a heat source.
  • the second refrigerant discharged from the second compressor (61) is the first flow of the third heat exchanger (70). It flows into the channel (71), dissipates heat to the hot water supply water flowing through the second channel (72), and condenses.
  • the second refrigerant condensed in the third heat exchanger (70) is decompressed when passing through the electric expansion valve (62) and then flows into the second flow path (52) of the second heat exchanger (50). .
  • the second refrigerant flowing into the second flow path (52) of the second heat exchanger (50) absorbs heat from the heat medium flowing through the first flow path (51) and evaporates.
  • the refrigerant evaporated in the second heat exchanger (50) is sucked into the second compressor (61) and compressed.
  • Hot water supply water flows through the high temperature water circuit (80).
  • the hot water for which the pump (82) force is also discharged flows into the second flow path (72) of the third heat exchanger (70) and is heated by the second refrigerant flowing through the first flow path (71).
  • Hot water for hot water heated to about 60 ° C to 90 ° by the third heat exchanger (70) is supplied to the user side through the hot water pipe (85) or stored in the hot water storage tank (81). It is done.
  • the mixing valve (83) is operated, the flow rate ratio between the hot water supply water flowing into the first port and the room temperature water flowing into the second port changes, and as a result, the hot water supply from the third port changes.
  • the temperature of the hot water flowing into the pipe (85) is adjusted.
  • the first refrigerant circuit (20) performs the refrigeration cycle to heat the heat transfer water in the intermediate hot water circuit (40), and the second heat transfer water is used as a heat source.
  • the refrigerant circuit (60) heats the hot water supply water to a high temperature of about 60 ° C to 90 ° by performing a refrigeration cycle. For this reason, for example, when no hot water supply is required, but heat medium water needs to be supplied to the floor heating radiator (45), the second refrigerant circuit that only needs to perform the refrigeration cycle with the first refrigerant circuit (20). It is not necessary to heat the hot water supply water to a high temperature by performing a refrigeration cycle in the channel (60). Therefore, according to the hot water supply device (10), there is no need to generate high-temperature water just to obtain a medium-temperature heat medium as in the prior art, and wasteful consumption of electric power can be suppressed.
  • the hot water supply device (10) of the present embodiment if the operating capacity of the first compressor (21) is changed, the amount of heat applied to the heat transfer water in the first heat exchanger (30) changes. For this reason, when the demand value of the heat medium water temperature changes, the operation state corresponding to these changes can be realized by the operation control of the first compressor (21). Further, in the hot water supply device (10), if the operating capacity of the second compressor (61) is changed, the amount of heating with respect to the hot water supply water in the third heat exchanger (70) changes. For this reason, the required value for hot water supply and hot water temperature changes. In such a case, the operation state corresponding to these changes can be realized by the operation control of the second compressor (61).
  • the first compressor (21) and the second compressor (61) are individually operated and controlled, so that the demand for medium temperature heat transfer water and the demand for hot water supply are increased. It is possible to respond appropriately. Therefore, according to the present embodiment, it is possible to realize a hot water supply device (10) in which operation control according to load fluctuation is easy.
  • the heat transfer water heated by heat exchange with the first refrigerant is distributed to the floor heating radiator (45) and the second heat exchanger (50).
  • the second refrigerant in the medium temperature heat medium hydraulic power second refrigerant circuit (60) that has flowed out the first heat exchange (30) force absorbs heat. That is, in the hot water supply device (10), the second refrigerant in the second refrigerant circuit (60) exchanges heat with the heat transfer water having the highest temperature. Therefore, according to this embodiment, the low pressure of the refrigeration cycle in the second refrigerant circuit (60) can be set higher, and the power consumption of the second compressor (61) can be reduced to reduce the power consumption of the refrigeration cycle. COP can be reduced.
  • the hot water supply device (10) of the present embodiment it is possible to cut off the supply of heat transfer water to the floor heating radiator (45), which does not require operation. Therefore, it is possible to avoid heat dissipation loss of the heat transfer water in the floor heating radiator (45) that does not require operation.
  • the hot water supply device (10) of the present embodiment it is possible to perform indoor heating and cooling using the first refrigerant circuit (20). Therefore, the installation space for the equipment can be reduced compared to the case where the hot water supply device (10) and the air conditioner are individually installed.
  • the heat exchange in which the refrigerant exchanges heat with water is smaller than the heat exchanger in which the refrigerant exchanges heat with air.
  • the second refrigerant circuit (60) for heating the hot water supply water in the high temperature water circuit (80) uses the heat transfer water of the intermediate hot water circuit (40).
  • the second heat exchanger (50), which constitutes the heat pump as the heat source and serves as the evaporator of the second refrigerant circuit (60), is a plate type heat exchanger that exchanges heat between the second refrigerant and the heat transfer medium.
  • the hot water supply device (10) can be significantly reduced in size.
  • the configuration of the intermediate hot water circuit (40) may be changed! /.
  • a floor heating radiator (45) is connected to a pipe connecting the three-way control valve (42) and the second heat exchanger (50) in the intermediate hot water circuit (40). ) Can be connected at the other end! / ⁇ .
  • the heat transfer water radiated by the floor heating radiator (45) passes through the first flow path (51) of the second heat exchanger (50) and then passes through the first heat flow path (51). 1 Flows into the second flow path (32) of the heat exchanger (30)
  • the hot water supply device (10) of the present modification it is possible to perform an operation of supplying the heat transfer water after passing through the floor heating radiator (45) to the second heat exchanger (50).
  • the heat transfer water radiated by the floor heating radiator (45) further dissipates heat to the second refrigerant in the second heat exchanger (50), and the first heat exchange (30) generates the first heat. It will exchange heat with the refrigerant.
  • the enthalpy of the first refrigerant at the outlet of the first flow path (31) of the first heat exchanger (30) can be reduced, thereby increasing the amount of heat that the first refrigerant absorbs from a heat source such as outside air. it can. Therefore, according to this modification, the COP (coefficient of performance) of the refrigeration cycle in the first refrigerant circuit (20) can be improved.
  • the configuration of the first refrigerant circuit (20) may be changed! /.
  • the indoor heat exchanger (24) and the four-way switching valve (22) may be omitted from the first refrigerant circuit (20).
  • the first compressor (21) has a discharge side on the first flow path (31) of the first heat exchanger (30) and an intake side on the outdoor heat exchanger ( 23) is connected to each.
  • a plurality of first refrigerant circuits (20) may be provided.
  • a plurality of first heat exchangers (30) are connected in series or in parallel to the intermediate temperature water circuit (40), and the first refrigerant is connected to the first flow path (31) of each first heat exchanger (30).
  • Circuits (20) are connected one by one. Even if only one first refrigerant circuit (20) is operated, the amount of heating to the heat transfer medium is insufficient. Can be compensated. Therefore, according to this modification, it is possible to flexibly cope with load fluctuations.
  • the hot water supply device (10) can be realized.
  • a plurality of second refrigerant circuits (60) may be provided.
  • a plurality of second heat exchangers (50) are connected in series or in parallel to the intermediate temperature water circuit (40), and the second flow path (52) of each second heat exchanger (50) is connected to the second flow path (52).
  • One refrigerant circuit (60) is connected.
  • the high temperature water hot water supply unit (13) and the hot water storage unit (14) may be integrated. That is, the second refrigerant circuit (60) and the high-temperature water circuit (80) may be housed in one casing. By integrating the high-temperature water hot water supply unit (13) and the hot water storage unit (14) in this way, the installation area of the hot water supply device (10) can be reduced.
  • the present invention is useful for a hot water supply apparatus.

Abstract

 給湯装置(10)には、第1冷媒回路(20)、中温水回路(40)、第2冷媒回路(60)、及び高温水回路(80)が設けられる。第1冷媒回路(20)は、室外空気を熱源としたヒートポンプを構成し、中温水回路(40)内の熱媒水を加熱する。中温水回路(40)では、床暖房用放熱器(45)や第2熱交換器(50)と第1熱交換器(30)との間で熱媒水が循環する。第2冷媒回路(60)は、中温水回路(40)の熱媒水を熱源としたヒートポンプを構成し、高温水回路(80)内の給湯用水を加熱する。

Description

明 細 書
給湯装置
技術分野
[0001] 本発明は、ヒートポンプを利用した給湯装置に関するものである。
背景技術
[0002] 従来より、ヒートポンプを利用して得られた温水を利用側へ供給する給湯装置が知 られている。
[0003] 例えば、特許文献 1に開示された給湯装置は、 1つのヒートポンプユニットで 90°C 程度の高温水を生成し、貯湯タンクに蓄えた高温水を利用側へ供給している。この 給湯装置は、高温水との熱交換によって中温水を生成し、得られた中温水を床暖房 用の放熱器等の温熱利用機器へ供給している。
[0004] また、特許文献 2に開示された給湯装置は、 1つのヒートポンプユニットで 90°C程度 の高温水と 60°C〜80°C程度の中温水とを別々に生成している。この給湯装置は、 得られた高温水を利用側へ供給する一方、得られた中温水を床暖房用の放熱器等 の温熱利用機器へ供給して ヽる。
特許文献 1 :特開 2003— 056905号公報
特許文献 2:特開 2002— 364912号公報
発明の開示
発明が解決しょうとする課題
[0005] 上記特許文献 1に開示されたような給湯装置、即ち高温水力 中温水を生成する 給湯装置では、例え中温水の供給だけが求められる運転状況であっても、中温水を 生成するために必ず高温水を生成しなければならない。このため、この種の給湯装 置については、電力等のエネルギの消費量が過大となるおそれがあった。
[0006] また、上記特許文献 2に開示されたような給湯装置、即ち 1つのヒートポンプユニット で高温水と中温水を個別に生成する給湯装置では、単一の冷媒回路内を循環する 冷媒との熱交換によって温度の異なる 2種類の温水を生成する必要がある。このため 、冷媒回路での冷凍サイクル条件を例えば高温水の生成に適した条件に設定すると 、得られる中温水の温度が制約されてしまって利用側の要求に応じて中温水の温度 を設定できなくなる等、給湯装置の適切な運転制御が困難になるおそれがあった。
[0007] 本発明は、力かる点に鑑みてなされたものであり、その目的とするところは、電力等 のエネルギの消費量が少なぐし力も給湯温度等の設定自由度が高くて運転制御の 容易な給湯装置を提供することにある。
課題を解決するための手段
[0008] 第 1の発明は、温水を利用側へ供給する動作に加え、該温水の温度よりも低い中 温度の熱媒体を加熱用の流体として温熱利用機器 (45)へ供給する動作が可能な給 湯装置を対象とする。そして、上記温熱利用機器 (45)との間で熱媒体を循環させる ための熱媒体通路 (40)と、第 1冷媒を循環させて冷凍サイクルを行い、上記熱媒体 通路 (40)の熱媒体を第 1冷媒との熱交換によって中温度にまで加熱する第 1冷媒回 路 (20)と、第 2冷媒を循環させて冷凍サイクルを行い、該第 2冷媒で水を加熱して給 湯用の温水を生成する第 2冷媒回路 (60)とを備える一方、上記第 2冷媒回路 (60)は 、第 2冷媒を上記熱媒体通路 (40)の熱媒体と熱交換させる蒸発器を備え、該熱媒体 通路 (40)の熱媒体を熱源としたヒートポンプを構成して ヽるものである。
[0009] 第 2の発明は、上記第 1の発明において、熱媒体通路 (40)は、温熱利用機器 (45) を通過後の熱媒体を第 2冷媒回路 (60)の蒸発器 (50)へ供給する動作が可能となつ ているものである。
[0010] 第 3の発明は、上記第 1の発明において、熱媒体通路 (40)は、中温度にまで加熱 された熱媒体を温熱利用機器 (45)と第 2冷媒回路 (60)の蒸発器 (50)とに分配する 動作が可能となって 、るものである。
[0011] 第 4の発明は、上記第 2又は第 3の発明において、熱媒体通路 (40)は、中温度にま で加熱された熱媒体を第 2冷媒回路 (60)の蒸発器 (50)だけに供給する動作が可能 となっているものである。
[0012] 第 5の発明は、上記第 1〜第 4の何れ力 1つの発明において、第 1冷媒回路 (20)は
、第 1冷媒を室内空気と熱交換させる空調用熱交 器 (24)を備えるものである。
[0013] 第 6の発明は、上記第 5の発明において、第 1冷媒回路 (20)は、空調用熱交換器 器 (24)が蒸発器となる動作と、該空調用熱交換器器 (24)が凝縮器となる動作とを切 り換え可會となつて ヽるものである。
[0014] 第 7の発明は、上記第 1の発明において、第 1冷媒回路 (20)と第 2冷媒回路 (60)の 一方又は両方が複数設けられる一方、熱媒体通路 (40)がーつだけ設けられており、 各第 1冷媒回路 (20)の第 1冷媒と各第 2冷媒回路 (60)の第 2冷媒とが一つの熱媒 体通路 (40)内を循環する熱媒体と熱交換するものである。
[0015] 一作用
上記第 1の発明において、給湯装置(10)では、温水を利用側へ供給する動作だけ でなく、中温度の熱媒体を温熱利用機器 (45)へ供給する動作が可能となって!/、る。 第 1冷媒回路 (20)では、第 1冷媒を循環させることによって冷凍サイクルが行われる。 その際、第 1冷媒は、熱媒体通路 (40)の熱媒体へ放熱して凝縮する。熱媒体通路 (4 0)を流れる熱媒体は、第 1冷媒によって加熱されて中温度となり、その後に温熱利用 機器 (45)や第 2冷媒回路 (60)の蒸発器 (50)へ送られる。温熱利用機器 (45)では、 供給された熱媒体を利用して室内空気等の対象物を加熱する。第 2冷媒回路 (60) では、第 2冷媒を循環させることによって冷凍サイクルが行われる。その際、第 2冷媒 は、熱媒体通路 (40)の熱媒体から吸熱して蒸発する。つまり、第 2冷媒回路 (60)は、 熱媒体を熱源としたヒートポンプを構成する。この給湯装置 (10)では、第 2冷媒回路 ( 60)の第 2冷媒によって水を加熱することにより、給湯用の温水が生成する。
[0016] 上記第 2の発明にお 、て、熱媒体通路 (40)では、温熱利用機器 (45)を通過後の 熱媒体を第 2冷媒回路 (60)の蒸発器 (50)へ供給する動作が可能となる。この動作中 において、熱媒体通路 (40)では、熱媒体の循環方向における温熱利用機器 (45)の 下流に第 2冷媒回路 (60)の蒸発器 (50)が位置し、温熱利用機器 (45)で放熱して温 度のやや低下した熱媒体が第 2冷媒回路 (60)の蒸発器 (50)で第 2冷媒と熱交換す る。また、この動作中において、第 1冷媒回路 (20)の第 1冷媒は、第 2冷媒へ放熱し て更に温度低下した熱媒体と熱交換する。
[0017] 上記第 3の発明において、熱媒体通路 (40)では、第 1冷媒との熱交換によって加 熱された熱媒体を温熱利用機器 (45)と第 2冷媒回路 (60)の蒸発器 (50)とに分配す る動作が可能となる。この動作中において、熱媒体通路 (40)では、温熱利用機器 (4 5)だけでなく第 2冷媒回路 (60)の蒸発器 (50)へも中温度の熱媒体が供給され、第 2 冷媒回路 (60)の蒸発器 (50)では第 2冷媒が中温度の熱媒体から吸熱する。
[0018] 上記第 4の発明にお 、て、熱媒体通路 (40)では、中温度にまで加熱された熱媒体 を第 2冷媒回路 (60)の蒸発器 (50)だけに供給する動作が可能となる。この動作は、 温熱利用機器 (45)によって対象物を加熱する必要がな!ヽ場合に行われる。
[0019] 上記第 5の発明では、第 1冷媒回路 (20)に空調用熱交換器器 (24)が設けられる。
第 1冷媒回路 (20)内を循環する第 1冷媒は、空調用熱交換器器 (24)へも送られる。 空調用熱交換器器 (24)は、室内空気を第 1冷媒と熱交換させ、室内空気を冷却し、 又は加熱する。
[0020] 上記第 6の発明において、空調用熱交換器器 (24)が蒸発器となる動作中は、この 空調用熱交翻器 (24)において室内空気が冷却される。一方、空調用熱交翻器 (24)が凝縮器となる動作中は、この空調用熱交換器器 (24)において室内空気が加 熱される。この発明の給湯装置(10)では、空調用熱交翻器 (24)において室内空 気が冷却される冷房運転と、空調用熱交換器器 (24)において室内空気が加熱され る暖房運転とが切換可能となる。
[0021] 上記第 7の発明では、第 1冷媒回路 (20)と第 2冷媒回路 (60)の一方又は両方が複 数設けられ、これら第 1冷媒回路 (20)及び第 2冷媒回路 (60)がーつの熱媒体通路( 40)に接続される。例えば第 1冷媒回路 (20)が複数設けられる状態では、全ての第 1 冷媒回路 (20)の第 1冷媒が熱媒体通路 (40)内の熱媒体と熱交換可能となる。また、 第 2冷媒回路 (60)が複数設けられる状態では、全ての第 2冷媒回路 (60)の第 2冷媒 が熱媒体通路 (40)内の熱媒体と熱交換可能となる。
発明の効果
[0022] 本発明では、第 1冷媒回路 (20)が冷凍サイクルを行うことにより熱媒体通路 (40)の 熱媒体を加熱し、この熱媒体を熱源として第 2冷媒回路 (60)が冷凍サイクルを行うこ とにより給湯用の温水を生成している。このため、例えば給湯は不要だが温熱利用機 器 (45)へ熱媒体を供給する必要がある状態では、第 1冷媒回路 (20)だけを運転す ればよぐ第 2冷媒回路 (60)を運転して給湯用の温水を生成する必要はない。従つ て、本発明によれば、従来のように中温度の熱媒体を得るためだけに高温の温水を 生成する必要が無くなり、電力等のエネルギの無駄な消費を抑制できる。 [0023] また、本発明の給湯装置(10)では、中温度の熱媒体の需要や熱媒体温度の要求 値が変化した場合には、第 1冷媒回路 (20)の運転状態を変更して熱媒体に対する 加熱量を調節すればよぐ給湯需要や給湯温度の要求値が変化した場合には、第 2 冷媒回路 (60)の運転状態を変更して水に対する加熱量を調節すればよい。従って、 本発明によれば、第 1冷媒回路 (20)と第 2冷媒回路 (60)を個別に運転制御すること で中温度の熱媒体の需要等や給湯需要等に適切に対応することが可能となり、負荷 変動に応じた運転制御が容易な給湯装置(10)を実現できる。
[0024] 上記第 2の発明では、温熱利用機器 (45)を通過後の熱媒体を第 2冷媒回路 (60) の蒸発器 (50)へ供給する動作が可能となり、この動作中には第 2冷媒へ放熱して更 に温度低下した熱媒体と第 1冷媒回路 (20)の第 1冷媒が熱交換する。このため、熱 媒体と熱交換した第 1冷媒のェンタルピを低下させ、それによつて第 1冷媒が外気等 の熱源力 吸熱する熱量を増大させることができ、第 1冷媒回路 (20)での冷凍サイク ルの COP (成績係数)を向上させることができる。
[0025] 上記第 3の発明では、第 1冷媒との熱交換によって加熱された熱媒体を温熱利用 機器 (45)と第 2冷媒回路 (60)の蒸発器 (50)とに分配する動作が可能となり、この動 作中には中温度の熱媒体力 第 2冷媒回路 (60)の第 2冷媒が吸熱する。つまり、こ の発明では、第 2冷媒回路 (60)の第 2冷媒を、可能な限り温度の高い熱媒体と熱交 換させている。従って、この発明によれば、第 2冷媒回路 (60)での冷凍サイクルの低 圧を高めに設定することができ、第 2冷媒の圧縮に要する動力を削減することによつ て冷凍サイクルの COPを削減できる。
[0026] 上記第 4の発明によれば、運転の必要がな 、温熱利用機器 (45)に対する熱媒体 の供給を遮断することが可能となる。従って、運転が不要な温熱利用機器 (45)での 熱媒体の放熱ロスを回避することができる。
[0027] 上記第 5及び第 6の発明によれば、給湯装置(10)の第 1冷媒回路 (20)を用いて室 内の空調を行うことが可能となる。従って、給湯装置(10)と空気調和装置を個別に設 置する場合に比べ、機器の設置スペースを削減することができる。特に、第 6の発明 によれば、冷房運転と暖房運転の切り換えが可能となり、給湯装置(10)の空調機能 を高めることができる。 [0028] 上記第 7の発明では、給湯装置(10)に第 1冷媒回路 (20)と第 2冷媒回路 (60)の一 方又は両方を複数設け、これらを一つの熱媒体通路 (40)に接続している。このため 、例えば第 1冷媒回路 (20)が複数設けられている場合、一つの第 1冷媒回路 (20)の 運転だけでは熱媒体への加熱量が不足する状態では別の第 1冷媒回路 (20)を運転 することも可能となる。従って、この発明によれば、負荷変動に柔軟に対応可能な使 V、勝手の良 、給湯装置(10)を実現できる。
図面の簡単な説明
[0029] [図 1]実施形態における給湯装置の概略構成と冷房運転時の動作を示す配管系統 図である。
[図 2]実施形態における給湯装置の概略構成と暖房運転時の動作を示す配管系統 図である。
[図 3]実施形態の変形例 1における給湯装置の概略構成を示す配管系統図である。
[図 4]実施形態の変形例 2における給湯装置の概略構成を示す配管系統図である。 符号の説明
[0030] 10 給湯装置
20 第 1冷媒回路
24 空調用熱交換器器
40 中温水回路 (熱媒体通路)
45 床暖房用放熱器 (温熱利用機器)
50 第 2熱交換器 (第 2冷媒回路の蒸発器)
60 第 2冷媒回路
発明を実施するための最良の形態
[0031] 以下、本発明の実施形態を図面に基づいて詳細に説明する。
[0032] 《発明の実施形態 1》
図 1に示すように、本実施形態の給湯装置(10)は、熱源ユニット(11)と、空調用の 室内ユニット(12)と、高温水給湯ユニット(13)と、貯湯ユニット(14)とによって構成さ れている。この給湯装置(10)は、第 1冷媒回路 (20)と、中温水回路 (40)と、第 2冷媒 回路 (60)と、高温水回路 (80)とを備えている。 [0033] 第 1冷媒回路 (20)は、熱源ユニット(11)と室内ユニット(12)に亘つて形成されてい る。この第 1冷媒回路 (20)には、第 1圧縮機 (21)と、四方切換弁 (22)と、室外熱交換 器 (23)と、室内熱交換器 (24)と、第 1熱交換器 (30)と、 2つの電動膨張弁 (25,26)と が設けられている。このうち室内ユニット(12)に収納されるのは室内熱交^^ (24)だ けであり、残りは熱源ユニット(11)に収納されている。また、第 1冷媒回路 (20)には、 第 1冷媒が充填されている。この第 1冷媒としては、 R407Cや R410A等のいわゆる フロン冷媒の他、メタンやプロパン等の炭化水素冷媒 (HC冷媒)を用いてもょ 、。
[0034] 室外熱交^^ (23)と室内熱交^^ (24)とは、いずれもクロスフィン型のプレート'ァ ンド 'チューブ熱交^^により構成されている。室外熱交 (23)は、第 1冷媒を室 外空気と熱交換させる。室内熱交換器 (24)は、第 1冷媒を室内空気と熱交換させる。 この室内熱交 (24)は、空調用熱交 を構成している。第 1熱交 (30)は、 いわゆるプレート式熱交^^により構成されており、互いに仕切られた第 1流路 (31) と第 2流路 (32)とを複数ずつ備えて!/、る。
[0035] 四方切換弁(22)は、第 1のポートと第 3のポートが互いに連通し且つ第 2のポートと 第 4のポートが互いに連通する第 1状態(図 1に示す状態)と、第 1のポートと第 4のポ ートが互いに連通し且つ第 2のポートと第 3のポートが互いに連通する第 2状態(図 2 に示す状態)とに切り換え自在となって 、る。
[0036] 第 1冷媒回路 (20)において、第 1圧縮機 (21)は、その吐出側が四方切換弁 (22)の 第 1のポートに、吸入側が四方切換弁 (22)の第 2のポートにそれぞれ接続されている 。室外熱交翻(23)は、その一端が四路切換弁の第 3のポートに接続されている。 室外熱交換器 (23)の他端は、第 1電動膨張弁 (25)の一端と第 2電動膨張弁 (26)の 一端との両方に接続されている。第 1電動膨張弁 (25)の他端は、室内熱交翻 (24) の一端に接続されている。室内熱交換器 (24)の他端は、四方切換弁 (22)の第 4の ポートに接続されている。一方、第 2電動膨張弁 (26)の他端は、第 1熱交 (30)に おける第 1流路 (31)の一端に接続されて!、る。第 1熱交換器 (30)における第 1流路( 31)の他端は、第 1圧縮機 (21)の吐出側と四方切換弁 (22)の間に接続されて ヽる。
[0037] 中温水回路 (40)は、熱源ユニット(11)と高温水給湯ユニット(13)に亘つて形成され ている。この中温水回路 (40)には、第 1熱交 (30)とポンプ (41)と三方調節弁 (42 )と、第 2熱交 (50)とが設けられている。このうち高温水給湯ユニット(13)に収納 されるのは第 2熱交 (50)だけであり、残りは熱源ユニット(11)に収納されている。 また、中温水回路 (40)は、温熱利用機器としての床暖房用放熱器 (45)に接続されて いる。この中温水回路 (40)は、熱媒体として充填された水 (熱媒水)を床暖房用放熱 器 (45)との間で循環させる熱媒体通路を構成している。
[0038] 尚、中温水回路 (40)に充填する熱媒体は水に限定されるものではなぐ例えばェ チレングリコール水溶液等のブラインを熱媒体として用いてもよい。また、中温水回路 (40)に温熱利用機器として接続されるものは、床暖房用放熱器 (45)に限定されない 。例えば熱媒水によって空気を加熱する温水暖房機や浴室乾燥機などを温熱利用 機器として中温水回路 (40)に接続してもよい。
[0039] 三方調節弁 (42)は、第 1のポートへ流入した流体を第 2のポートと第 3のポートの何 れか一方へ送る動作と、第 1のポートへ流入した流体を第 2のポートと第 3のポートの 両方へ送る動作とが可能となっている。また、三方調節弁 (42)では、第 1のポートへ 流入した流体のうち第 2のポートへ向力うものと第 3のポートへ向力うものの比率が可 変となっている。第 2熱交 (50)は、いわゆるプレート式熱交^^により構成され ており、互いに仕切られた第 1流路 (51)と第 2流路 (52)とを複数ずつ備えて!/、る。
[0040] 中温水回路 (40)において、ポンプ (41)の吐出側は、三方調節弁 (42)の第 1のポー トに接続されている。第 2熱交翻 (50)の第 1流路 (51)は、その一端が三方調節弁( 42)の第 2のポートに、他端が第 1熱交換器 (30)の第 2流路 (32)の一端にそれぞれ 接続されている。第 1熱交翻 (30)の第 2流路 (32)は、その他端がポンプ (41)の吸 入側に接続されている。三方調節弁 (42)の第 3のポートは、床暖房用放熱器 (45)の 一端に接続されている。床暖房用放熱器 (45)の他端は、第 2熱交 (50)の第 1流 路 (51)と第 1熱交 (30)の第 2流路 (32)とを繋ぐ配管に接続されて!、る。
[0041] 第 2冷媒回路 (60)は、高温水給湯ユニット(13)に収納されて 、る。この第 2冷媒回 路 (60)には、第 2圧縮機 (61)と、第 3熱交換器 (70)と、電動膨張弁 (62)と、第 2熱交 (50)とが設けられている。また、第 2冷媒回路 (60)には、第 2冷媒が充填されて いる。この第 2冷媒としては、二酸ィ匕炭素(CO )が用いられている。
2
[0042] 第 3熱交 (70)は、いわゆるプレート式熱交^^により構成されており、互いに 仕切られた第 1流路 (71)と第 2流路 (72)とを複数ずつ備えて!/ヽる。
[0043] 第 2冷媒回路 (60)において、第 2圧縮機 (61)の吐出側は、第 3熱交換器 (70)の第 1流路 (71)の一端に接続されている。第 3熱交翻 (70)の第 1流路 (71)は、その他 端が電動膨張弁 (62)を介して第 2熱交換器 (50)の第 2流路 (52)の一端に接続され ている。第 2熱交翻 (50)の第 2流路 (52)は、その他端が第 2圧縮機 (61)の吸入側 に接続されている。
[0044] 高温水回路 (80)は、高温水給湯ユニット(13)と貯湯ユニット(14)に亘つて形成され て 、る。この高温水回路 (80)には、貯湯タンク (81)とポンプ (82)と第 3熱交 (70) と混合弁 (83)とが設けられて 、る。
[0045] 混合弁 (83)は、第 1のポートへ流入した流体と第 2のポートへ流入した流体とを混 合して第 3のポートから送出するように構成されている。また、混合弁 (83)は、第 1の ポートへ流入する流体と第 2のポートへ流入する流体との流量割合を変更可能となつ て ヽる。貯湯タンク (81)は縦長で円筒形の密閉容器状に形成されて!ヽる。
[0046] 高温水回路 (80)において、ポンプ (82)の吐出側は、第 3熱交換器 (70)の第 2流路
(72)の一端に接続されている。第 3熱交換器 (70)の第 2流路 (72)は、その他端が混 合弁(83)の第 1のポートに接続されている。混合弁(83)の第 2のポートは、ポンプ(82 )の吸入側に接続されている。混合弁 (83)の第 3のポートには、台所や洗面台、風呂 などの利用側へ延びる給湯管(85)が接続されている。貯湯タンク(81)は、その底部 が混合弁 (83)とポンプ (82)を繋ぐ配管に、頂部が第 3熱交換器 (70)の第 2流路 (72) と混合弁 (83)を繋ぐ配管にそれぞれ接続されている。この高温水回路 (80)内へ外部 力も供給される水は、ポンプ (82)の吸入側近傍へ導入される。
[0047] 運転動作
上記給湯装置(10)の運転動作について説明する。この給湯装置(10)では、室内 ユニット(12)が室内を冷房する冷房運転と、室内ユニット(12)が室内を暖房する暖房 運転とが切り換え可能となって 、る。
[0048] 先ず、第 1冷媒回路 (20)の動作について説明する。
[0049] 図 1に示すように、冷房運転中の第 1冷媒回路 (20)では、四方切換弁 (22)が第 1 状態に設定される。また、第 1冷媒回路 (20)では、第 1電動膨張弁 (25)の開度が適 宜調節され、第 2電動膨張弁 (26)の開度がほぼ全開に設定される。この状態で第 1 圧縮機 (21)を運転すると、第 1冷媒回路 (20)内を第 1冷媒が循環して冷凍サイクル が行われる。その際、第 1冷媒回路 (20)では、室外熱交換器 (23)と第 1熱交換器 (30 )が凝縮器となり、室内熱交換器 (24)が蒸発器となる。この冷房運転中において、第 1冷媒回路 (20)は、室内空気を熱源としたヒートポンプを構成する。
[0050] 具体的に、第 1圧縮機 (21)から吐出された第 1冷媒は、その一部が四方切換弁 (22 )を通って室外熱交換器 (23)へ流入し、残りが第 1熱交換器 (30)の第 1流路 (31)へ 流入する。室外熱交換器 (23)へ流入した第 1冷媒は、室外空気へ放熱して凝縮する 。第 1熱交換器 (30)の第 1流路 (31)へ流入した第 1冷媒は、中温水回路 (40)の熱媒 水へ放熱して凝縮し、その後に第 2電動膨張弁 (26)を通過して室外熱交換器 (23) で凝縮した第 1冷媒と合流する。続いて、第 1冷媒は、第 1電動膨張弁 (25)を通過す る際に減圧され、その後に室内熱交換器 (24)へ流入する。室内熱交換器 (24)では 、流入した第 1冷媒が室内空気から吸熱して蒸発し、室内空気が冷却される。室内熱 交換器 (24)で蒸発した第 1冷媒は、四方切換弁 (22)を通過後に第 1圧縮機 (21)へ 吸入されて圧縮される。
[0051] 図 2に示すように、暖房運転中の第 1冷媒回路 (20)では、四方切換弁 (22)が第 2 状態に設定される。また、第 1冷媒回路 (20)では、第 1電動膨張弁 (25)及び第 2電 動膨張弁 (26)の開度が適宜調節される。この状態で第 1圧縮機 (21)を運転すると、 第 1冷媒回路 (20)内を第 1冷媒が循環して冷凍サイクルが行われる。その際、第 1冷 媒回路 (20)では、室内熱交翻 (24)と第 1熱交翻 (30)が凝縮器となり、室外熱交 翻 (23)が蒸発器となる。この暖房運転中において、第 1冷媒回路 (20)は、室外空 気を熱源としたヒートポンプを構成する。
[0052] 具体的に、第 1圧縮機 (21)から吐出された第 1冷媒は、その一部が四方切換弁 (22 )を通って室内熱交換器 (24)へ流入し、残りが第 1熱交換器 (30)の第 1流路 (31)へ 流入する。室内熱交換器 (24)では、流入した冷媒が室内空気へ放熱して凝縮し、室 内空気が加熱される。第 1熱交換器 (30)の第 1流路 (31)へ流入した第 1冷媒は、中 温水回路 (40)の熱媒水へ放熱して凝縮する。室内熱交換器 (24)で凝縮した第 1冷 媒は第 1電動膨張弁 (25)を通過する際に減圧されてから、第 1熱交換器 (30)の第 1 流路 (31)で凝縮した第 1冷媒は第 2電動膨張弁 (26)を通過する際に減圧されてから 、それぞれ室外熱交換器 (23)へ流入する。室外熱交換器 (23)では、流入した第 1冷 媒が室外空気から吸熱して蒸発する。室外熱交換器 (23)で蒸発した第 1冷媒は、四 方切換弁 (22)を通過後に第 1圧縮機 (21)へ吸入されて圧縮される。
[0053] 次に、中温水回路 (40)、第 2冷媒回路 (60)、及び高温水回路 (80)の動作につい て説明する。これらの動作は、冷房運転中か暖房運転中かに拘わらず同じである。
[0054] 中温水回路 (40)のポンプ (41)を運転すると、中温水回路 (40)内を熱媒水が循環 する。第 1熱交換器 (30)の第 2流路 (32)へ流入した熱媒水は、その第 1流路 (31)内 を流れる第 1冷媒によって加熱される。この第 2流路 (32)を通過する間に加熱されて 30°C〜60°C程度の中温度となった熱媒水は、三方調節弁 (42)へ流入する。仮に三 方調節弁 (42)が第 1のポートを第 2及び第 3のポートに連通させた状態に設定されて いるとすると、中温度の熱媒水は、その一部が床暖房用放熱器 (45)へ流入し、残り が第 2熱交換器 (50)の第 1流路 (51)へ流入する。床暖房用放熱器 (45)で室内空気 等へ放熱した熱媒水と、第 2熱交換器 (50)で第 2流路 (52)の第 2冷媒へ放熱した熱 媒水とは、共に第 1熱交換器 (30)の第 2流路 (32)へ流入して加熱される。
[0055] 尚、三方調節弁 (42)を操作すれば、床暖房用放熱器 (45)へ向力ぅ熱媒水の流量 と第 2熱交 (50)へ向力 熱媒水の流量との比率を変更できる。また、三方調節弁 (42)を第 1のポートが第 2のポートだけと連通する状態に設定すれば、第 1熱交換器 (30)で加熱された熱媒水が第 2熱交 (50)だけに供給される。また、三方調節弁 (42)を第 1のポートが第 3のポートだけと連通する状態に設定すれば、第 1熱交換器 (30)で加熱された熱媒水が床暖房用放熱器 (45)だけに供給される。
[0056] 第 2冷媒回路 (60)の第 2圧縮機 (61)を運転すると、第 2冷媒回路 (60)内を第 2冷 媒が循環して冷凍サイクルが行われる。その際、第 2冷媒回路 (60)では、第 3熱交換 器 (70)が凝縮器となり、第 2熱交 (50)が蒸発器となる。また、第 2冷媒回路 (60) では、冷凍サイクルの高圧が第 2冷媒の臨界圧力よりも高く設定されている。つまり、 第 2冷媒回路 (60)では、いわゆる超臨界サイクルが行われる。この第 2冷媒回路 (60) は、中温水回路 (40)の熱媒水を熱源としたヒートポンプを構成する。
[0057] 具体的に、第 2圧縮機 (61)から吐出された第 2冷媒は、第 3熱交 (70)の第 1流 路 (71)へ流入し、その第 2流路 (72)を流れる給湯用水へ放熱して凝縮する。第 3熱 交換器 (70)で凝縮した第 2冷媒は、電動膨張弁 (62)を通過する際に減圧されてから 第 2熱交換器 (50)の第 2流路 (52)へ流入する。第 2熱交換器 (50)の第 2流路 (52)へ 流入した第 2冷媒は、その第 1流路 (51)を流れる熱媒水力 吸熱して蒸発する。第 2 熱交換器 (50)で蒸発した冷媒は、第 2圧縮機 (61)へ吸入されて圧縮される。
[0058] 高温水回路 (80)のポンプ (41)を運転すると、高温水回路 (80)内を給湯用水が流 通する。ポンプ (82)力も吐出された給湯用水は、第 3熱交翻 (70)の第 2流路 (72) へ流入し、その第 1流路 (71)を流れる第 2冷媒によって加熱される。第 3熱交換器 (7 0)で加熱されて 60°C〜90° 程度の高温となった給湯用水は、給湯管(85)を通じて 利用側へ供給され、あるいは貯湯タンク (81)内へ蓄えられる。また、混合弁 (83)を操 作すると、第 1のポートへ流入する高温の給湯用水と第 2のポートへ流入する常温水 との流量割合が変化し、その結果、第 3のポートから給湯管(85)へ流入する温水の 温度が調節される。
[0059] 一実施形態の効果
本実施形態の給湯装置(10)では、第 1冷媒回路 (20)が冷凍サイクルを行うことによ り中温水回路 (40)の熱媒水を加熱し、この熱媒水を熱源として第 2冷媒回路 (60)が 冷凍サイクルを行うことにより給湯用水を 60°C〜90° 程度の高温にまで加熱してい る。このため、例えば給湯は不要だが床暖房用放熱器 (45)へ熱媒水を供給する必 要がある状態では、第 1冷媒回路 (20)だけで冷凍サイクルを行えばよぐ第 2冷媒回 路 (60)で冷凍サイクルを行って給湯用水を高温にまで加熱する必要はな 、。従って 、上記給湯装置(10)によれば、従来のように中温度の熱媒体を得るためだけに高温 水を生成する必要が無くなり、電力の無駄な消費を抑制できる。
[0060] 本実施形態の給湯装置(10)において、第 1圧縮機 (21)の運転容量を変更すれば 、第 1熱交換器 (30)での熱媒水に対する加熱量が変化する。このため、中温度の熱 媒水の需要ゃ熱媒水温度の要求値が変化した場合には、これらの変化に対応した 運転状態を第 1圧縮機 (21)の運転制御によって実現できる。また、この給湯装置(10 )において、第 2圧縮機 (61)の運転容量を変更すれば、第 3熱交換器 (70)での給湯 用水に対する加熱量が変化する。このため、給湯需要や給湯温度の要求値が変化 した場合には、これらの変化に対応した運転状態を第 2圧縮機 (61)の運転制御によ つて実現でさる。
[0061] このように、本実施形態によれば、第 1圧縮機 (21)と第 2圧縮機 (61)を個別に運転 制御することで、中温度の熱媒水の需要等や給湯需要等に適切に対応することが可 能となる。従って、本実施形態によれば、負荷変動に応じた運転制御が容易な給湯 装置(10)を実現することができる。
[0062] また、本実施形態の給湯装置(10)では、第 1冷媒との熱交換によって加熱された 熱媒水を床暖房用放熱器 (45)と第 2熱交 (50)とに分配する動作が可能となり、 この動作中には第 1熱交^^ (30)力 流出した中温度の熱媒水力 第 2冷媒回路 (6 0)の第 2冷媒が吸熱する。つまり、この給湯装置(10)では、第 2冷媒回路 (60)の第 2 冷媒を、可能な限り温度の高い熱媒水と熱交換させている。従って、本実施形態によ れば、第 2冷媒回路 (60)での冷凍サイクルの低圧を高めに設定することができ、第 2 圧縮機 (61)の消費電力を削減することによって冷凍サイクルの COPを削減できる。
[0063] また、本実施形態の給湯装置(10)によれば、運転の必要がな 、床暖房用放熱器 ( 45)に対する熱媒水の供給を遮断することが可能となる。従って、運転が不要な床暖 房用放熱器 (45)での熱媒水の放熱ロスを回避することができる。
[0064] また、本実施形態の給湯装置(10)によれば、第 1冷媒回路 (20)を用いて室内の暖 房や冷房を行うことが可能となる。従って、給湯装置 (10)と空調機を個別に設置する 場合に比べ、機器の設置スペースを削減することができる。
[0065] ここで、一般に、熱交換能力が同じであれば、冷媒を水と熱交換させる熱交 は 、冷媒を空気と熱交換させる熱交換器に比べて小型となる。一方、本実施形態の給 湯装置(10)において、高温水回路 (80)内の給湯用水を加熱するための第 2冷媒回 路 (60)は、中温水回路 (40)の熱媒水を熱源とするヒートポンプを構成しており、第 2 冷媒回路 (60)の蒸発器となる第 2熱交換器 (50)は、第 2冷媒を熱媒水と熱交換させ るプレート式熱交^^で構成されている。従って、本実施形態によれば、中温水回路 (40)の熱媒水を加熱するための第 1冷媒回路 (20)と、高温水回路 (80)内の給湯用 水を加熱するための第 2冷媒回路 (60)との両方が空気を熱源とするヒートポンプであ る場合に比べ、給湯装置(10)を大幅に小型化することができる。 [0066] 実施形態の変形例 1
本実施形態の給湯装置(10)では、中温水回路 (40)の構成を変更してもよ!/、。
[0067] 具体的には、図 3に示すように、中温水回路 (40)のうち三方調節弁 (42)と第 2熱交 換器 (50)を繋ぐ配管に床暖房用放熱器 (45)の他端を接続してもよ!/ヽ。この変形例の 中温水回路 (40)において、床暖房用放熱器 (45)で放熱した熱媒水は、第 2熱交換 器 (50)の第 1流路 (51)を通過してから第 1熱交換器 (30)の第 2流路 (32)へ流入する
[0068] このように、本変形例の給湯装置(10)では、床暖房用放熱器 (45)を通過後の熱媒 水を第 2熱交 (50)へ供給する動作が可能となる。この動作中には、床暖房用放 熱器 (45)で放熱した熱媒水が第 2熱交換器 (50)で更に第 2冷媒へ放熱して力 第 1 熱交 (30)で第 1冷媒と熱交換することになる。このため、第 1熱交 (30)の第 1流路 (31)の出口における第 1冷媒のェンタルピを低下させ、それによつて第 1冷媒 が外気等の熱源から吸熱する熱量を増大させることができる。従って、本変形例によ れば、第 1冷媒回路 (20)での冷凍サイクルの COP (成績係数)を向上させることがで きる。
[0069] 一実施形態の変形例 2—
本実施形態の給湯装置(10)では、第 1冷媒回路 (20)の構成を変更してもよ!/、。
[0070] 具体的には、図 4に示すように、第 1冷媒回路 (20)から室内熱交換器 (24)と四方切 換弁 (22)を省略してもよい。この変形例の第 1冷媒回路 (20)において、第 1圧縮機( 21)は、その吐出側が第 1熱交換器 (30)の第 1流路 (31)に、吸入側が室外熱交換器 (23)にそれぞれ接続される。
[0071] 一実施形態の変形例 3—
本実施形態の給湯装置(10)では、第 1冷媒回路 (20)が複数設けられて 、てもよ!/、 。この場合、中温水回路 (40)には複数の第 1熱交換器 (30)が直列又は並列に接続 され、各第 1熱交換器 (30)の第 1流路 (31)に第 1冷媒回路 (20)が 1つずつ接続され る。そして、一つの第 1冷媒回路 (20)の運転だけでは熱媒水への加熱量が不足する 状態に陥っても、別の第 1冷媒回路 (20)を運転することによって加熱量の不足分を 補うことが可能となる。従って、この変形例によれば、負荷変動に柔軟に対応可能な 使 、勝手の良 、給湯装置(10)を実現できる。
[0072] 同様に、本実施形態の給湯装置(10)では、第 2冷媒回路 (60)が複数設けられてい てもよい。この場合、中温水回路 (40)には複数の第 2熱交換器 (50)が直列又は並列 に接続され、各第 2熱交換器 (50)の第 2流路 (52)には第 2冷媒回路 (60)が 1つずつ 接続される。
[0073] 実施形態の変形例 4
本実施形態の給湯装置(10)では、高温水給湯ユニット(13)と貯湯ユニット(14)とを 一体ィ匕してもよい。つまり、第 2冷媒回路 (60)と高温水回路 (80)とを 1つのケーシング 内に収納してもよい。このように高温水給湯ユニット(13)と貯湯ユニット(14)とを一体 化すれば、給湯装置 (10)の設置面積を削減することができる。
産業上の利用可能性
[0074] 以上説明したように、本発明は、給湯装置について有用である。

Claims

請求の範囲
[1] 温水を利用側へ供給する動作に加え、該温水の温度よりも低い中温度の熱媒体を 加熱用の流体として温熱利用機器 (45)へ供給する動作が可能な給湯装置であって 上記温熱利用機器 (45)との間で熱媒体を循環させるための熱媒体通路 (40)と、 第 1冷媒を循環させて冷凍サイクルを行!、、上記熱媒体通路 (40)の熱媒体を第 1 冷媒との熱交換によって中温度にまで加熱する第 1冷媒回路 (20)と、
第 2冷媒を循環させて冷凍サイクルを行い、該第 2冷媒で水を加熱して給湯用の温 水を生成する第 2冷媒回路 (60)とを備える一方、
上記第 2冷媒回路 (60)は、第 2冷媒を上記熱媒体通路 (40)の熱媒体と熱交換させ る蒸発器を備え、該熱媒体通路 (40)の熱媒体を熱源としたヒートポンプを構成して!/ヽ る給湯装置。
[2] 請求項 1に記載の給湯装置において、
熱媒体通路 (40)は、温熱利用機器 (45)を通過後の熱媒体を第 2冷媒回路 (60)の 蒸発器 (50)へ供給する動作が可能となって!/、る給湯装置。
[3] 請求項 1に記載の給湯装置において、
熱媒体通路 (40)は、中温度にまで加熱された熱媒体を温熱利用機器 (45)と第 2冷 媒回路 (60)の蒸発器 (50)とに分配する動作が可能となって!/、る給湯装置。
[4] 請求項 2又は 3に記載の給湯装置において、
熱媒体通路 (40)は、中温度にまで加熱された熱媒体を第 2冷媒回路 (60)の蒸発 器 (50)だけに供給する動作が可能となって!/、る給湯装置。
[5] 請求項 1に記載の給湯装置において、
第 1冷媒回路 (20)は、第 1冷媒を室内空気と熱交換させる空調用熱交 器 (24) を備えている給湯装置。
[6] 請求項 5に記載の給湯装置において、
第 1冷媒回路 (20)は、空調用熱交換器器 (24)が蒸発器となる動作と、該空調用熱 交 器 (24)が凝縮器となる動作とを切り換え可能となって!/ヽる給湯装置。
[7] 請求項 1に記載の給湯装置において、 第 1冷媒回路 (20)と第 2冷媒回路 (60)の一方又は両方が複数設けられる一方、熱 媒体通路 (40)がーつだけ設けられており、
各第 1冷媒回路 (20)の第 1冷媒と各第 2冷媒回路 (60)の第 2冷媒とが一つの熱媒 体通路 (40)内を循環する熱媒体と熱交換する給湯装置。
PCT/JP2005/012218 2004-07-01 2005-07-01 給湯装置 WO2006004046A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05765228A EP1780476A4 (en) 2004-07-01 2005-07-01 HOT WATER SUPPLY DEVICE
US11/630,617 US7640763B2 (en) 2004-07-01 2005-07-01 Hot water supply system
AU2005258416A AU2005258416B2 (en) 2004-07-01 2005-07-01 Hot water supply system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-195154 2004-07-01
JP2004195154A JP4599910B2 (ja) 2004-07-01 2004-07-01 給湯装置

Publications (1)

Publication Number Publication Date
WO2006004046A1 true WO2006004046A1 (ja) 2006-01-12

Family

ID=35782850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012218 WO2006004046A1 (ja) 2004-07-01 2005-07-01 給湯装置

Country Status (7)

Country Link
US (1) US7640763B2 (ja)
EP (1) EP1780476A4 (ja)
JP (1) JP4599910B2 (ja)
KR (1) KR100810870B1 (ja)
CN (1) CN100465542C (ja)
AU (1) AU2005258416B2 (ja)
WO (1) WO2006004046A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110283726A1 (en) * 2010-05-20 2011-11-24 Lg Electronics Inc. Hot water supply device associated with heat pump and method for controlling the same
US20110296861A1 (en) * 2009-02-24 2011-12-08 Daikin Industries, Ltd. Heat pump system
EP2246649B1 (en) 2008-02-29 2017-07-19 Daikin Industries, Ltd. Refrigerating apparatus

Families Citing this family (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3966889B2 (ja) * 2005-12-28 2007-08-29 シャープ株式会社 ヒートポンプ式給湯機
JP2007218301A (ja) * 2006-02-15 2007-08-30 Daikin Ind Ltd 管継手、冷凍装置、ヒートポンプ式給湯機、及び給水配管
JP2007255779A (ja) * 2006-03-23 2007-10-04 Kenji Umetsu 温冷熱供給システム
JP4743039B2 (ja) * 2006-08-07 2011-08-10 ダイキン工業株式会社 建物において温水を循環させて暖房を行う温水循環暖房システム
JP4799347B2 (ja) * 2006-09-28 2011-10-26 三菱電機株式会社 給湯、冷温水空気調和装置
KR100803144B1 (ko) 2007-03-28 2008-02-14 엘지전자 주식회사 공기조화기
SE531581C2 (sv) * 2007-10-12 2009-05-26 Scandinavian Energy Efficiency Anordning vid värmepump
CN101158506B (zh) * 2007-11-30 2012-01-25 武汉朗肯节能技术有限公司 热泵高温热水机组
KR100849613B1 (ko) * 2008-01-24 2008-07-31 이대우 온수 급탕 및 바닥 난방이 가능한 고효율 히트 펌프식냉난방 장치
US20110016897A1 (en) * 2008-02-04 2011-01-27 Mitsubishi Electric Corporation Air conditioning-hot water supply combined system
DE102008019878A1 (de) * 2008-04-21 2009-10-22 Friedhelm Meyer Verfahren und Vorrichtung zum Abführen der Abwärme von Kälteanlagen
JP5181813B2 (ja) * 2008-05-02 2013-04-10 ダイキン工業株式会社 冷凍装置
CN101586854B (zh) * 2008-05-23 2012-01-04 华为技术有限公司 一种散热系统、控制方法及机房
US20100000709A1 (en) * 2008-07-02 2010-01-07 Tsung-Che Chang Heating and heat recovery unit for an air conditioning system
US8312734B2 (en) * 2008-09-26 2012-11-20 Lewis Donald C Cascading air-source heat pump
JP4740991B2 (ja) * 2008-10-27 2011-08-03 三菱電機株式会社 冷凍サイクル装置、並びにそれを備えた空気調和機及び給湯器
EP2211125A1 (en) * 2009-01-27 2010-07-28 Zanotti S.p.A. Plant and process for producing cold and for producing hot water to be supplied to one or more thermal users
JP5316074B2 (ja) * 2009-02-24 2013-10-16 ダイキン工業株式会社 ヒートポンプシステム
WO2010109627A1 (ja) * 2009-03-26 2010-09-30 三菱電機株式会社 冷凍空調装置の情報伝達システム
JP5042262B2 (ja) 2009-03-31 2012-10-03 三菱電機株式会社 空調給湯複合システム
JP5585003B2 (ja) * 2009-05-27 2014-09-10 三洋電機株式会社 冷凍装置
JP5248437B2 (ja) * 2009-07-23 2013-07-31 株式会社コロナ 貯湯式暖房装置
JP5380226B2 (ja) * 2009-09-25 2014-01-08 株式会社日立製作所 空調給湯システム及びヒートポンプユニット
JP5253582B2 (ja) * 2009-09-29 2013-07-31 三菱電機株式会社 蓄熱給湯空調機
ES2932601T3 (es) * 2009-10-23 2023-01-23 Mitsubishi Electric Corp Dispositivo de aire acondicionado
KR20110056061A (ko) * 2009-11-20 2011-05-26 엘지전자 주식회사 히트 펌프식 급탕장치
US9423159B2 (en) * 2009-12-21 2016-08-23 Trane International Inc. Bi-directional cascade heat pump system
KR101266675B1 (ko) * 2009-12-31 2013-05-28 엘지전자 주식회사 냉매사이클 연동 물 순환 시스템
KR101608538B1 (ko) * 2009-12-31 2016-04-01 엘지전자 주식회사 냉매사이클 연동 물 순환 시스템
WO2011104877A1 (ja) * 2010-02-26 2011-09-01 株式会社 日立製作所 空調給湯システム
KR101155496B1 (ko) * 2010-04-23 2012-06-15 엘지전자 주식회사 히트펌프식 급탕장치
CN102235745A (zh) * 2010-04-28 2011-11-09 于润淇 一种高温热泵制热方法及装置
KR101190492B1 (ko) 2010-05-20 2012-10-12 엘지전자 주식회사 히트펌프 연동 급탕장치
JPWO2011158305A1 (ja) * 2010-06-18 2013-08-15 三菱電機株式会社 冷凍空調装置
JP5527043B2 (ja) * 2010-06-25 2014-06-18 ダイキン工業株式会社 空調システム
WO2012005608A1 (en) * 2010-07-07 2012-01-12 Black Diamond Technologies Limited Heat pump system
ES2648910T3 (es) * 2010-09-10 2018-01-08 Mitsubishi Electric Corporation Dispositivo de aire acondicionado
KR101203579B1 (ko) * 2010-11-05 2012-11-21 엘지전자 주식회사 공조 겸용 급탕 장치 및 그 운전방법
JP5661119B2 (ja) * 2010-11-12 2015-01-28 三菱電機株式会社 プレート式熱交換器及びヒートポンプ装置
MY161767A (en) * 2010-12-14 2017-05-15 Du Pont Combinations of e-1,3,3,3-tetrafluoropropene and at least one tetrafluoroethane and their use for heating
JP5511983B2 (ja) * 2010-12-15 2014-06-04 三菱電機株式会社 空調給湯複合システム
JP5824066B2 (ja) * 2010-12-17 2015-11-25 ボルボ トラック コーポレイション 冷凍室を備えたトラック
GB2486646A (en) * 2010-12-20 2012-06-27 Sublogic Mfg Ltd Method and Apparatus for Cascade Refrigeration and for Central Heating Hot Water Supply
EP2657628B1 (en) * 2010-12-22 2023-07-05 Mitsubishi Electric Corporation Hot-water-supplying, air-conditioning composite device
KR101212683B1 (ko) * 2010-12-30 2013-01-09 엘지전자 주식회사 히트펌프 연동 급탕장치
US20120180986A1 (en) * 2011-01-18 2012-07-19 Mathews Thomas J Modular cooling and heating systems
US20130186122A1 (en) * 2011-07-25 2013-07-25 David Hamilton Hot Water Heater Pre-Heating Apparatus
KR101280113B1 (ko) * 2011-08-25 2013-07-05 대성히트펌프 주식회사 중온수 배출라인을 갖는 2원 압축 히트펌프 시스템
US9052125B1 (en) 2011-09-08 2015-06-09 Dennis S. Dostal Dual circuit heat pump
CN102353179B (zh) * 2011-09-21 2013-06-19 海信(山东)空调有限公司 空调热水系统
US10378800B2 (en) * 2011-09-23 2019-08-13 Lennox Industries Inc. Multi-staged water manifold system for a water source heat pump
CA2790732C (en) 2011-09-26 2020-03-10 Lennox Industries Inc. Multi-staged water manifold system for a water source heat pump
EP2789933B1 (en) * 2011-12-06 2016-11-23 Mitsubishi Electric Corporation Heat pump type heating/hot-water supply system
ITMI20120132A1 (it) * 2012-02-01 2013-08-02 Olimpia Splendid S P A Dispositivo di condizionamento aria-acqua
ITMI20120500A1 (it) * 2012-03-28 2013-09-29 Argoclima S P A Apparecchiatura per il riscaldamento di acqua sanitaria contenuta in un boiler a partire da una unita' di condizionamento
JP2012149883A (ja) * 2012-03-29 2012-08-09 Mitsubishi Electric Corp ヒートポンプ装置
US20140020637A1 (en) * 2012-07-22 2014-01-23 Ofir Yamin Apparatus for using cast-off heat to warm water from household water heater
KR101327073B1 (ko) 2012-09-21 2013-11-07 한국전력공사 캐스케이드 히트펌프 시스템
KR102025740B1 (ko) * 2012-10-29 2019-09-26 삼성전자주식회사 히트펌프장치
GB201220186D0 (en) * 2012-11-09 2012-12-26 Styles Scott Heating system
DE102012024347A1 (de) * 2012-12-13 2014-06-18 Robert Bosch Gmbh Heizungsvorrichtung und Verfahren zu deren Betrieb
CN103868176A (zh) * 2012-12-13 2014-06-18 刘季林 空气源热泵低温地板辐射采暖、制冷及热水系统装置
KR101262927B1 (ko) * 2013-03-26 2013-05-13 주식회사 신우종합에너지 이원 히트펌프장치
US10006670B2 (en) * 2013-05-02 2018-06-26 Carrier Corporation Method for managing a refrigerant charge in a multi-purpose HVAC system
US10775056B2 (en) * 2014-09-08 2020-09-15 United Maintenance, Inc. Natatorium dehumidifier
WO2016057854A1 (en) * 2014-10-08 2016-04-14 Inertech Ip Llc Systems and methods for cooling electrical equipment
JP6427380B2 (ja) * 2014-10-09 2018-11-21 リンナイ株式会社 ヒートポンプシステム
CN105588352A (zh) * 2014-11-20 2016-05-18 海信(山东)空调有限公司 一种制取不同水温的空调系统和方法
CN104482691B (zh) * 2015-01-07 2017-04-19 清华大学 一种从环境取热的土壤源热泵系统及运行方法
US9915436B1 (en) 2015-01-20 2018-03-13 Ralph Feria Heat source optimization system
US11067317B2 (en) 2015-01-20 2021-07-20 Ralph Feria Heat source optimization system
FR3047301A1 (fr) * 2016-01-29 2017-08-04 Stephane Boulet Dispositif d’optimisation des performances d’une installation de chauffage par pompe a chaleur par l’adjonction d’une pompe a chaleur auxiliaire captant l’energie thermique dans un milieu rechargeable
EP3421900B1 (en) * 2016-02-22 2020-05-27 Mitsubishi Electric Corporation Storage type hot water supplying system
JP6559339B2 (ja) * 2016-05-10 2019-08-14 三菱電機株式会社 ヒートポンプシステム
CN107044729A (zh) * 2017-05-16 2017-08-15 浙江正理生能科技有限公司 一种复叠式热泵热水器
CN109931703A (zh) * 2018-04-11 2019-06-25 浙江工业大学 一种高效的梯级耦合热泵热水器
US10941965B2 (en) * 2018-05-11 2021-03-09 Mitsubishi Electric Us, Inc. System and method for providing supplemental heat to a refrigerant in an air-conditioner
WO2020235058A1 (ja) * 2019-05-22 2020-11-26 三菱電機株式会社 空気調和装置および熱媒体流量算出方法
JP7469583B2 (ja) * 2019-06-12 2024-04-17 ダイキン工業株式会社 空調機

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04263758A (ja) * 1991-02-18 1992-09-18 Kansai Electric Power Co Inc:The ヒートポンプ式給湯装置
JP2003222395A (ja) * 2002-02-01 2003-08-08 Denso Corp 多機能給湯装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4194368A (en) * 1976-10-04 1980-03-25 Borg-Warner Corporation Combination split system air conditioner and compression cycle domestic hot water heating apparatus
DE3104566A1 (de) * 1981-02-10 1982-10-07 Kurt 4000 Düsseldorf Schlodowitzki Waermepumpen-heizungsanlage
US4391104A (en) * 1982-01-15 1983-07-05 The Trane Company Cascade heat pump for heating water and for cooling or heating a comfort zone
JPS5946465A (ja) * 1982-09-10 1984-03-15 三菱電機株式会社 空調給湯装置
JPH01196468A (ja) * 1988-02-01 1989-08-08 Yazaki Corp 冷暖負荷駆動方法およびその装置
JPH01256754A (ja) * 1988-04-04 1989-10-13 Sun Wave Ind Co Ltd 冷暖房・給湯システム
JPH02251060A (ja) * 1989-03-24 1990-10-08 Fujitsu General Ltd 冷暖房給湯システム
US5335508A (en) * 1991-08-19 1994-08-09 Tippmann Edward J Refrigeration system
JP3080558B2 (ja) * 1995-02-03 2000-08-28 株式会社日立製作所 寒冷地向けヒートポンプ空調機
JP2000329424A (ja) * 1999-05-20 2000-11-30 Science Kk 冷凍サイクルからなる冷暖房給湯装置
JP2001099514A (ja) * 1999-09-30 2001-04-13 Sanyo Electric Co Ltd 蓄熱式空調冷凍装置
CN2413237Y (zh) * 2000-01-11 2001-01-03 汪洋 带热泵热水器的空调器
JP4244533B2 (ja) * 2001-06-04 2009-03-25 株式会社デンソー 多機能給湯装置
JP2003056905A (ja) * 2001-08-09 2003-02-26 Denso Corp 給湯装置
JP2003185290A (ja) * 2001-12-21 2003-07-03 Denso Corp 給湯冷房装置
JP3815341B2 (ja) * 2002-02-12 2006-08-30 松下電器産業株式会社 ヒートポンプ給湯装置
JP4062930B2 (ja) * 2002-02-13 2008-03-19 株式会社デンソー 多機能給湯装置
CN1228588C (zh) * 2002-04-20 2005-11-23 浙江国祥制冷工业股份有限公司 复合式风冷热泵机组
KR100471441B1 (ko) * 2002-07-03 2005-03-08 엘지전자 주식회사 2개의 압축기를 적용한 공기조화기의 압축기 동작방법
JP2004156806A (ja) * 2002-11-05 2004-06-03 Sanyo Electric Co Ltd 温冷熱システム
JP3668785B2 (ja) * 2003-10-09 2005-07-06 ダイキン工業株式会社 空気調和装置
KR100769057B1 (ko) * 2006-02-24 2007-10-22 진주환 히트 펌프 시스템

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04263758A (ja) * 1991-02-18 1992-09-18 Kansai Electric Power Co Inc:The ヒートポンプ式給湯装置
JP2003222395A (ja) * 2002-02-01 2003-08-08 Denso Corp 多機能給湯装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2246649B1 (en) 2008-02-29 2017-07-19 Daikin Industries, Ltd. Refrigerating apparatus
EP2246649B2 (en) 2008-02-29 2023-10-25 Daikin Industries, Ltd. Refrigerating apparatus
US20110296861A1 (en) * 2009-02-24 2011-12-08 Daikin Industries, Ltd. Heat pump system
US9581361B2 (en) * 2009-02-24 2017-02-28 Daikin Industries, Ltd. Heat pump system
US20110283726A1 (en) * 2010-05-20 2011-11-24 Lg Electronics Inc. Hot water supply device associated with heat pump and method for controlling the same

Also Published As

Publication number Publication date
CN1969154A (zh) 2007-05-23
JP2006017376A (ja) 2006-01-19
KR20070028605A (ko) 2007-03-12
US7640763B2 (en) 2010-01-05
AU2005258416B2 (en) 2008-06-26
EP1780476A4 (en) 2013-03-06
AU2005258416A1 (en) 2006-01-12
CN100465542C (zh) 2009-03-04
KR100810870B1 (ko) 2008-03-07
EP1780476A1 (en) 2007-05-02
US20090211282A1 (en) 2009-08-27
JP4599910B2 (ja) 2010-12-15

Similar Documents

Publication Publication Date Title
JP4599910B2 (ja) 給湯装置
WO2012070192A1 (ja) 空気調和装置
JP5183804B2 (ja) 冷凍サイクル装置、空気調和装置
JP5595521B2 (ja) ヒートポンプ装置
JP5419437B2 (ja) 空調複合給湯装置
WO2006006515A1 (ja) 熱搬送システム
KR100758902B1 (ko) 멀티 공기조화 시스템 및 그 제어방법
JPWO2012104891A1 (ja) 空気調和装置
EP3115701B1 (en) Heat-pump hot water generator
WO2009142004A1 (ja) 暖房システム
EP1972862B1 (en) Heat pump hot water supply device
JP6576603B1 (ja) 空気調和装置
JP2008249248A (ja) ヒートポンプ式給湯システム
JP5312681B2 (ja) 空気調和装置
JP4753791B2 (ja) ヒートポンプ式給湯機
JP4749228B2 (ja) ヒートポンプ式給湯機
KR100877056B1 (ko) 하이브리드 히트펌프 시스템
JP2005147409A (ja) ヒートポンプ式冷暖房装置
KR100866736B1 (ko) 급탕기능을 갖는 하이브리드 히트펌프 시스템
KR100866737B1 (ko) 급탕기능을 갖는 하이브리드 히트펌프 시스템
JP2009281642A (ja) 空調システムの熱源装置
JP2007278582A (ja) ヒートポンプ装置およびその運転方法
JP2006322705A (ja) 空気調和機

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580019182.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2005258416

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 11630617

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 2005258416

Country of ref document: AU

Date of ref document: 20050701

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005258416

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2005765228

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077002344

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020077002344

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005765228

Country of ref document: EP