JP6427380B2 - ヒートポンプシステム - Google Patents

ヒートポンプシステム Download PDF

Info

Publication number
JP6427380B2
JP6427380B2 JP2014208327A JP2014208327A JP6427380B2 JP 6427380 B2 JP6427380 B2 JP 6427380B2 JP 2014208327 A JP2014208327 A JP 2014208327A JP 2014208327 A JP2014208327 A JP 2014208327A JP 6427380 B2 JP6427380 B2 JP 6427380B2
Authority
JP
Japan
Prior art keywords
heat
heating
refrigerant
heat storage
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014208327A
Other languages
English (en)
Other versions
JP2016080194A (ja
Inventor
祖父江 務
務 祖父江
今井 誠士
誠士 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2014208327A priority Critical patent/JP6427380B2/ja
Priority to KR1020150139893A priority patent/KR101752974B1/ko
Publication of JP2016080194A publication Critical patent/JP2016080194A/ja
Application granted granted Critical
Publication of JP6427380B2 publication Critical patent/JP6427380B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/13Hot air central heating systems using heat pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Description

本発明は、ヒートポンプシステムに関する。
特許文献1には、冷媒を加圧する圧縮機、熱媒との熱交換によって冷媒を凝縮させる熱媒熱交換器、冷媒を減圧させる減圧機構、及び、冷媒を蒸発させる蒸発器を備えるヒートポンプと、熱媒の熱を利用して室内を暖房する暖房端末と、熱を蓄える蓄熱槽と、蓄熱槽内に蓄えられた熱を利用して温水を温水利用箇所に供給する供給手段とを備えるヒートポンプシステムが開示されている。このヒートポンプシステムは、熱媒を熱媒熱交換器と暖房端末との間で循環させる暖房と、熱媒を熱媒熱交換器と蓄熱槽との間で循環させる蓄熱とを同時に行う蓄熱暖房同時運転を実行可能である。
特開2010−196950号公報
特許文献1のヒートポンプシステムでは、圧縮機の能力に応じて、暖房能力及び蓄熱能力が決定される。特許文献1のヒートポンプシステムでは、蓄熱暖房同時運転を実行している間は、圧縮機の能力によって、暖房能力と蓄熱能力の両方を賄わなければならない。しかしながら、特許文献1のヒートポンプシステムでは、蓄熱暖房同時運転を実行する際に、圧縮機の能力を暖房と蓄熱とに適切に割り当てることは考慮されていない。
本明細書では、圧縮機の能力を暖房と蓄熱とに適切に割り当てることができるヒートポンプシステムを開示する。
本明細書が開示する一つのヒートポンプシステムは、冷媒を加圧する圧縮機、熱媒との熱交換によって冷媒を凝縮させる熱媒熱交換器、冷媒を減圧させる減圧機構、冷媒を蒸発させる蒸発器、及び、室内空気との熱交換によって冷媒を凝縮させることで、冷媒の熱によって室内を暖房する室内空気熱交換器を備える1個のヒートポンプと、熱媒の熱を利用して室内を暖房する暖房端末と、熱を蓄える蓄熱槽と、蓄熱槽内に蓄えられた熱を利用して温水を温水利用箇所に供給する供給手段と、室内の温度を検出する検出手段と、を備えている。そのヒートポンプシステムは、熱媒を熱媒熱交換器と暖房端末との間で循環させる第1暖房と、冷媒を圧縮機、室内空気熱交換器、減圧機構、蒸発器の順に循環させる第2暖房と、熱媒を熱媒熱交換器と蓄熱槽との間で循環させる蓄熱とを同時に行う蓄熱暖房同時運転を実行可能であり、蓄熱暖房同時運転の実行中であって検出手段によって検出される温度が特定温度以上である第1の場合には、蓄熱暖房同時運転の実行中であって検出手段によって検出される温度が特定温度より低い第2の場合に比べて、第1暖房と第2暖房のうちの一方の暖房能力を低下させる。
蓄熱暖房同時運転を実行する場合(即ち、室内を暖房するとともに、蓄熱槽内の蓄熱量を増加させる場合)において、室内の温度が特定温度以上である第1の場合には、室内の温度が特定温度より低い第2の場合に比べて、要求される暖房能力が低い。上記の構成によると、第1の場合に、第2の場合に比べて、暖房能力を低下させる。そのため、第1の場合に、第2の場合に比べて、圧縮機の能力を、暖房に少なく割り当て、蓄熱により多く割り当てることができる。従って、上記のヒートポンプシステムによると、状況に応じて、圧縮機の能力を暖房と蓄熱に適切に割り当てることができる。
ヒートポンプシステムは、第1の場合に、第2の場合に比べて、暖房端末への熱媒流量を減少させ、蓄熱槽への熱媒流量を増加させることによって、第1暖房の暖房能力を低下させることが好ましい。
この構成によると、供給される熱媒流量を調節することによって、圧縮機の能力を暖房と蓄熱に適切に割り当てることができる。
ートポンプシステムは、第1の場合に、第2の場合に比べて、室内空気熱交換器への冷媒流量を減少させ、熱媒熱交換器への冷媒流量を増加させることによって、第2暖房の暖房能力を低下させることが好ましい。
この構成によると、ヒートポンプシステムが、暖房端末と室内空気熱交換器の両方を用いて室内を暖房することができる構成を有する場合においても、第2暖房の暖房能力を調節することによって、圧縮機の能力を暖房と蓄熱に適切に割り当てることができる。
本明細書が開示するもう一つのヒートポンプシステムは、冷媒を加圧する圧縮機、熱媒との熱交換によって冷媒を凝縮させる熱媒熱交換器、室内空気との熱交換によって冷媒を凝縮させることで冷媒の熱によって室内を暖房する室内空気熱交換器、冷媒を減圧させる減圧機構、及び、冷媒を蒸発させる蒸発器を備える1個のヒートポンプと、熱媒の熱を利用して室内を暖房する暖房端末と、熱を蓄える蓄熱槽と、蓄熱槽内に蓄えられた熱を利用して温水を温水利用箇所に供給する供給手段と、を備えている。そのヒートポンプシステムは、室内を暖房するとともに蓄熱槽内の熱量を増やす蓄熱を同時に行う蓄熱暖房同時運転と、を実行可能であり、蓄熱暖房同時運転を実行する場合には、冷媒を圧縮機、熱媒熱交換器、減圧機構、蒸発器の順に循環させ、かつ、熱媒を熱媒熱交換器と暖房端末との間で循環させる第1暖房と、冷媒を圧縮機、室内空気熱交換器、減圧機構、蒸発器の順に循環させる第2暖房と、熱媒を熱媒熱交換器と蓄熱槽との間で循環させる蓄熱と、を同時に行うものであって、(i)暖房端末による第1暖房の暖房効率が、室内空気熱交換器による第2暖房の暖房効率よりも悪い場合においては、暖房端末への熱媒流量を蓄熱槽への熱媒流量よりも少なくして、第1暖房の暖房能力を低下させ、(ii)室内空気熱交換器による前記第2暖房の暖房効率が、暖房端末による第1暖房の暖房効率よりも悪い場合においては、室内空気熱交換器への冷媒流量を、熱媒熱交換器への冷媒流量よりも少なくして、第2暖房の暖房能力を低下させる。
上記の構成によると、暖房端末と室内空気熱交換器の両方を用いて室内を暖房する蓄熱暖房同時運転を実行する場合に、暖房端末による第1暖房と、室内空気熱交換器による第2暖房とのうち、暖房効率が悪い方の暖房能力を抑制させて、圧縮機の能力を、蓄熱により多く割り当てることができる。なお、暖房効率が良い方の暖房能力は抑制しないため、室内の利用者の暖房要求を満たすことができる。
本明細書が開示するもう一つのヒートポンプシステムは、冷媒を加圧する圧縮機、熱媒との熱交換によって冷媒を凝縮させる熱媒熱交換器、室内空気との熱交換によって冷媒を凝縮させることで冷媒の熱によって室内を暖房する室内空気熱交換器、冷媒を減圧させる減圧機構、及び、冷媒を蒸発させる蒸発器を備える1個のヒートポンプと、熱媒の熱を利用して室内を暖房する暖房端末と、熱を蓄える蓄熱槽と、蓄熱槽内に蓄えられた熱を利用して温水を温水利用箇所に供給する供給手段と、を備えている。そのヒートポンプシステムは、室内を暖房するとともに蓄熱槽内の熱量を増やす蓄熱を同時に行う蓄熱暖房同時運転と、を実行可能であり、蓄熱暖房同時運転を実行する場合には、冷媒を圧縮機、熱媒熱交換器、減圧機構、蒸発器の順に循環させ、かつ、熱媒を熱媒熱交換器と暖房端末との間で循環させる第1暖房と、冷媒を圧縮機、室内空気熱交換器、減圧機構、蒸発器の順に循環させる第2暖房と、熱媒を熱媒熱交換器と蓄熱槽との間で循環させる蓄熱と、を同時に行うものであって、(a)暖房端末が、室内において、室内空気熱交換器よりも高い位置に設けられている場合においては、暖房端末への熱媒流量を、蓄熱槽への熱媒流量よりも少なくして、第1暖房の暖房能力を低下させ、(b)室内空気熱交換器が、室内において、暖房端末よりも高い位置に設けられている場合においては、室内空気熱交換器への冷媒流量を、熱媒熱交換器への冷媒流量よりも少なくして、第2暖房の暖房能力を低下させる。
上記の構成によると、暖房端末と室内空気熱交換器の両方を用いて室内を暖房する蓄熱暖房同時運転を実行する場合に、室内空気熱交換器と、暖房端末とのうち、室内においてより高い位置に設けられている方による暖房の能力を抑制させて、圧縮機の能力を蓄熱により多く割り当てることができる。なお、通常、室内を暖房する場合、室内において低い位置に設けられている端末を用いて暖房する方が、高い位置に設けられている端末を用いて暖房する場合に比べ、室内の利用者が快適に感じる可能性が高い。上記のヒートポンプシステムでは、室内の低い位置に設けられている方の暖房能力は抑制しないため、室内の利用者の暖房要求を満たすことができる。
給湯暖房システム2の構成を模式的に示す図。 給湯暖房システム2における蓄熱単独運転の様子を模式的に示す図。 給湯暖房システム2における暖房単独運転の様子を模式的に示す図。 給湯暖房システム2における第1の蓄熱暖房同時運転の様子を模式的に示す図。 給湯暖房システム2における第2の蓄熱暖房同時運転の様子を模式的に示す図。 給湯暖房システム2における第3の蓄熱暖房同時運転の様子を模式的に示す図。 第1実施例で制御装置8が実行する蓄熱暖房制御処理を示すフローチャート。 第2、第3実施例で制御装置8が実行する蓄熱暖房制御処理を示すフローチャート。
(第1実施例)
(システム構成;図1)
図1に示すように、本実施例の給湯暖房システム2は、ヒートポンプ空調装置4と、給湯床暖房装置6と、制御装置8と、を備えている。
ヒートポンプ空調装置4は、冷媒(例えば、R32やR410といったHFC冷媒や、R744といったCO2冷媒等)を用いて、室外空気からの吸熱及び室内空気への放熱を行う。ヒートポンプ空調装置4は、圧縮機12と、流量調整弁14と、熱媒熱交換器16と、第1膨張弁18と、室外空気熱交換器20と、第1ファン22と、室内空気熱交換器26と、第2ファン28と、第2膨張弁30と、冷媒循環路32と、を備えている。
圧縮機12は、気相状態の冷媒を圧縮して送り出す。流量調整弁14は、3つのポートa、b及びcを備えており、圧縮機12からポートaに供給された気相状態の冷媒を、ポートbとポートcとに供給可能である。流量調整弁14は、開度を調整することにより、ポートaからポートcに流れる冷媒(即ち熱媒熱交換器16に供給される冷媒)の流量と、ポートaからポートbに流れる冷媒(即ち室内空気熱交換器26に供給される冷媒)の流量との割合を調整することができる。熱媒熱交換器16は、後述の熱媒循環路50内を通過する熱媒と、冷媒循環路32内を通過する冷媒との間で熱交換する。第1膨張弁18は、液相状態の冷媒を断熱膨張させて減圧する。室外空気熱交換器20は、第1ファン22によって送風される室外空気と、冷媒との間で熱交換をする。室外空気熱交換器20及び第1ファン22は、室外に配置されている。第1ファン22の近傍には、外気温を検出する外気温サーミスタ40が備えられている。
室内空気熱交換器26は、第2ファン28によって送風される室内空気と、冷媒との間で熱交換をする。室内空気熱交換器26及び第2ファン28は、室内であって、後述の暖房端末56(即ち床暖房用の端末)よりも室内の高い位置に配置されている。第2ファン28の近傍には、室内の温度を検出する室内温度サーミスタ42が備えられている。第2膨張弁30は、液相状態の冷媒を断熱膨張させて減圧する。
冷媒循環路32は、冷媒を、圧縮機12と、流量調整弁14と、熱媒熱交換器16と、第1膨張弁18と、室外空気熱交換器20と、室内空気熱交換器26と、第2膨張弁30と、の間で循環させる。
給湯床暖房装置6は、熱媒(例えば、水、不凍液等)の熱を用いて室内空気への放熱(いわゆる床暖房)を行うとともに、熱媒の熱を用いてタンク62内の水を加熱し、タンク62に蓄えられた温水を温水利用箇所に供給する。給湯床暖房装置6は、熱媒熱交換器16と、熱媒循環路50と、流量調整弁52と、ポンプ54と、暖房端末56と、タンク62と、タンクサーミスタ63と、温水供給管66と、水導入管68と、を備えている。
熱媒循環路50は、熱媒を、熱媒熱交換器16と暖房端末56とタンク62との間で循環させる。流量調整弁52は、3つのポートd、e及びfを備えており、熱媒熱交換器16からからポートdに供給された高温の熱媒を、ポートeとポートfとに供給可能である。流量調整弁52は、開度を調整することにより、ポートdからポートeに流れる熱媒(即ちタンク62に供給される熱媒)の流量と、ポートdからポートfに流れる熱媒(即ち暖房端末56に供給される熱媒)の流量との割合を調整することができる。ポンプ54は、熱媒循環路50内の熱媒を循環させる。暖房端末56は、熱媒の熱を室内に放熱する。暖房端末56は、室内の床に配置されている床暖房端末である。即ち、暖房端末56は、室内において、上記の室内空気熱交換器26よりも低い位置に設けられている。暖房端末56は、熱媒循環路50のうち熱媒熱交換器16よりも下流側に備えられている。そのため、暖房端末56には、熱媒熱交換器16で加熱された後の熱媒が供給される。熱媒熱交換器16は、熱媒循環路50のうち暖房端末56及びタンク62よりも下流側の部分に備えられている。熱媒熱交換器16には、暖房端末56とタンク62の一方又は双方で放熱した後の低温の熱媒が供給される。
タンク62は、温水供給管66を介して温水利用箇所で利用される水を蓄える。タンク62は密閉型であり、断熱材により外側が覆われている。タンク62内には熱媒循環路50が通されている。タンク62内を通過する熱媒循環路50内の熱媒とタンク62内の水との間で熱交換が行われることにより、タンク62内の水が加熱される。温水供給管66は、上流端がタンク62の上部に接続されている。温水供給管66の下流端側は温水利用箇所に配置されている。温水供給管66は、ユーザの操作(例えばカランを開く操作)に従って、タンク62内の温水を温水利用箇所に供給する。水導入管68の上流端は、図示しない上水道に接続されており、下流端は、タンク62の下部に接続されている。温水供給管66からタンク62内の温水が温水利用箇所に供給されると、水導入管68は、温水利用箇所に供給された温水の量と同じ量の水を上水道からタンク62内に導入する。そのため、タンク62内には常時満水まで水が蓄えられる。タンクサーミスタ63は、タンク62内の水の温度を検出する。
制御装置8は、CPU、ROM、RAM等を備えている。ROMには各種の運転プログラムが格納されている。RAMには、制御装置8に入力される各種信号や、CPUが処理を実行する過程で生成される種々のデータが一時的に記憶される。制御装置8では、CPUがROMやRAMに記憶された情報に基づいて、ヒートポンプ空調装置4及び給湯床暖房装置6の各構成要素の動作を制御する。また、制御装置8には、図示しないリモコンが接続されている。リモコンには、ユーザが給湯暖房システム2を操作するためのスイッチ、ユーザに給湯暖房システム2の動作状態を表示する液晶表示器等が設けられている。
(給湯暖房システム2の動作)
次いで、給湯暖房システム2の動作について説明する。給湯暖房システム2は、給湯運転、蓄熱単独運転、暖房単独運転、及び、蓄熱暖房同時運転(即ち、第1の蓄熱暖房同時運転、第2の蓄熱暖房同時運転、第3の蓄熱暖房同時運転)を実行可能である。
(給湯運転)
ユーザによって台所や浴室のカランが開かれた場合や、浴槽への湯張りを行う場合に、給湯暖房システム2は給湯運転を開始する。浴槽への湯張りは、例えばユーザがリモコンの湯張り開始スイッチを押すことで開始することもあるし、ユーザがリモコンに設定した湯張り完了時刻に基づく湯張り開始時刻が到来することで開始することもある。給湯運転は、後述する蓄熱単独運転、暖房単独運転、蓄熱暖房同時運転と並行して行うことも可能である。給湯運転では、給湯暖房システム2は、タンク62内の温水を、温水供給管66を介して温水利用箇所に供給する。
(蓄熱単独運転;図2)
ユーザから暖房が指示されておらず、かつ、タンク62への蓄熱要求が発生した場合に、給湯暖房システム2は蓄熱単独運転を行う。蓄熱要求は、例えば給湯運転を行った結果、タンク62内の蓄熱量が少なくなった場合に発生する。具体的に言うと、蓄熱要求は、タンクサーミスタ63が検出する温度が、所定の蓄熱開始温度より低くなった場合に発生する。蓄熱単独運転では、タンク62内の水を所定の蓄熱終了温度まで沸かし上げて、タンク62に蓄熱する。図2に示すように、蓄熱単独運転では、制御装置8は、流量調整弁14を、ポートaに供給された冷媒の全流量がポートcに供給され、ポートbに供給されないように調整する(即ち、ポートaとポートcが連通し、ポートaとポートbが連通しない)。また、制御装置8は、第1ファン22を駆動するとともに、圧縮機12を駆動する。さらに、制御装置8は、流量調整弁52を、ポートdに供給された熱媒の全流量がポートe(即ち、タンク62側)に供給され、ポートf(即ち、暖房端末56側)には熱媒が供給されないように調整する(即ち、ポートdとポートeが連通し、ポートdとポートfが連通しない)。さらに、制御装置8は、ポンプ54を駆動する。
圧縮機12で加圧されて高温高圧となった気相状態の冷媒は、流量調整弁14(ポートc)を介して、熱媒熱交換器16へ送られる。高温高圧の気相状態の冷媒は、熱媒熱交換器16での熱媒循環路50内の熱媒との熱交換によって冷却されて凝縮し、液相状態となる。熱媒熱交換器16で液相状態となった冷媒は第1膨張弁18へ送られる。第1膨張弁18で減圧されて低温低圧となった液相状態の冷媒は、室外空気熱交換器20へ送られる。低温低圧の液相状態の冷媒は、室外空気熱交換器20での室外空気との熱交換によって加熱されて蒸発し、気相状態となる。気相状態となった冷媒は、圧縮機12に戻される。
また、ポンプ54が駆動することによって、熱媒循環路50内で熱媒が循環する。熱媒熱交換器16での高温高圧の冷媒との熱交換によって加熱された高温の熱媒は、流量調整弁52(ポートe)を介して、タンク62へ送られる。高温の熱媒は、タンク62内を通過する間に、タンク62内の水と熱交換を行うことによって冷却される。この結果、タンク62内の水が熱媒の熱によって加熱される。タンク62を通過した後の低温の熱媒は、熱媒熱交換器16に供給され、冷媒との熱交換によって再度加熱される。
給湯暖房システム2は、上記のようなサイクルで冷媒及び熱媒を循環させることにより、タンク62内の温水を加熱することができる。制御装置8は、上記の蓄熱単独運転を開始した後、タンクサーミスタ63が検出する温度が所定の蓄熱終了温度に到達すると、蓄熱単独運転を終了する。
(暖房単独運転;図3)
ユーザから暖房が指示されており、タンク62への蓄熱要求が発生していない場合に、給湯暖房システム2は暖房単独運転を行う。図3に示すように、暖房単独運転では、制御装置8は、流量調整弁14を、ポートaに供給された冷媒の一部がポートbに供給され、他の一部がポートcに供給されるように開度を調整する(即ち、ポートaとポートb、ポートaとポートcがそれぞれ連通する)。この際、制御装置8は、ポートbに供給される冷媒の流量と、ポートcに供給される冷媒の流量とがほぼ等しくなるように、流量調整弁14の開度を調整する(即ちb=c)。また、制御装置8は、第1ファン22及び第2ファン28を駆動するとともに、圧縮機12を駆動する。さらに、制御装置8は、流量調整弁52を、ポートdに供給された熱媒の全流量がポートf(即ち、暖房端末56側)に供給され、ポートe(即ち、タンク62側)には熱媒が供給されないように調整する(即ち、ポートdとポートfが連通し、ポートdとポートeが連通しない)。さらに、制御装置8は、ポンプ54を駆動する。
圧縮機12で加圧されて高温高圧となった気相状態の冷媒の一部は、流量調整弁14(ポートb)を介して、室内空気熱交換器26へ送られる。高温高圧の気相状態の冷媒は、室内空気熱交換器26での室内空気との熱交換によって冷却されて凝縮し、液相状態となる。室内空気熱交換器26で液相状態となった冷媒は第2膨張弁30へ送られる。第2膨張弁30で減圧されて低温低圧となった液相状態の冷媒は、第1膨張弁18から送られる低温低圧の液相状態の冷媒と合流し、室外空気熱交換器20へ送られる。低温低圧の液相状態の冷媒は、室外空気熱交換器20での室外空気との熱交換によって加熱されて蒸発し、気相状態となる。気相状態となった冷媒は、圧縮機12に戻される。
一方、圧縮機12で加圧されて高温高圧となった気相状態の冷媒の他の一部は、流量調整弁14(ポートc)を介して、熱媒熱交換器16へ送られる。高温高圧の気相状態の冷媒は、熱媒熱交換器16での熱媒との熱交換によって冷却されて凝縮し、液相状態となる。熱媒熱交換器16で液相状態となった冷媒は第1膨張弁18へ送られる。第1膨張弁18で減圧されて低温低圧となった液相状態の冷媒は、第2膨張弁30から送られた低温低圧の液相状態の冷媒と合流し、室外空気熱交換器20へ送られる。その後の冷媒の流れは上記の通りであるため、詳しい説明を省略する。
また、ポンプ54が駆動することによって、熱媒循環路50内で熱媒が循環する。熱媒熱交換器16での高温高圧の冷媒との熱交換によって加熱された高温の熱媒は、流量調整弁52(ポートf)を介して、暖房端末56に送られる。高温の熱媒は、暖房端末56で室内に熱を放熱することによって冷却される。暖房端末56を通過した後の低温の熱媒は、ポンプ54を介して熱媒熱交換器16に供給され、冷媒との熱交換によって再度加熱される。
暖房単独運転では、給湯暖房システム2は、上記のようなサイクルで冷媒及び熱媒を循環させることにより、室内空気熱交換器26及び暖房端末56の両方で室内を暖房することができる。
(蓄熱暖房同時運転)
ユーザから暖房が指示されており、かつ、タンク62への蓄熱要求が発生した場合に、給湯暖房システム2は蓄熱暖房同時運転を行う。本実施例では、給湯暖房システム2は、室内温度が暖房設定温度Ts以上であるか否かに応じて、異なる内容の蓄熱暖房同時運転を行うことができる。以下、三つの蓄熱暖房同時運転(第1の蓄熱暖房同時運転、第2の蓄熱暖房同時運転、第3の蓄熱暖房同時運転)の内容について説明する。
(第1の蓄熱暖房同時運転;図4)
本実施例では、第1の蓄熱暖房同時運転は、給湯暖房システム2が蓄熱暖房同時運転を実行すべき場合において、室内温度サーミスタ42が検出する室内温度が暖房設定温度Tsより低い場合に実行される運転である。室内温度が暖房設定温度Tsより低い場合には、室内温度が暖房設定温度Ts以上である場合に比べ、要求される暖房能力が高い。図4に示すように、第1の蓄熱暖房同時運転では、制御装置8は、流量調整弁14を、ポートaに供給された冷媒の一部がポートbに供給され、他の一部がポートcに供給されるように開度を調整する(即ち、ポートaとポートb、ポートaとポートcがそれぞれ連通する)。この際、制御装置8は、ポートbに供給される冷媒の流量と、ポートcに供給される冷媒の流量とがほぼ等しくなるように、流量調整弁14の開度を調整する。また、制御装置8は、第1ファン22及び第2ファン28を駆動するとともに、圧縮機12を駆動する。さらに、制御装置8は、流量調整弁52を、ポートdに供給された熱媒の一部がポートeに供給され、他の一部がポートfに供給されるように開度を調整する(即ち、ポートdとポートe、ポートdとポートfがそれぞれ連通する)。この際、制御装置8は、ポートeに供給される熱媒の流量と、ポートfに供給される熱媒の流量とがほぼ等しくなるように、流量調整弁52の開度を調整する。さらに、制御装置8は、ポンプ54を駆動する。
圧縮機12が駆動することによる冷媒の動きは、上記の暖房単独運転(図3参照)の場合と同様であるため、詳しい説明は省略する。
第1の蓄熱暖房同時運転では、ポンプ54が駆動することによって、熱媒循環路50内で熱媒が循環する。熱媒熱交換器16での高温高圧の冷媒との熱交換によって加熱された高温の熱媒の一部は、流量調整弁52(ポートf)を介して、暖房端末56に送られる。高温の熱媒は、暖房端末56で室内に熱を放熱することによって冷却される。暖房端末56を通過した後の低温の熱媒は、ポンプ54を介して熱媒熱交換器16に供給され、冷媒との熱交換によって再度加熱される。また、熱媒熱交換器16での高温高圧の冷媒との熱交換によって加熱された高温の熱媒の他の一部は、流量調整弁(ポートe)を介して、タンク62へ送られる。高温の熱媒は、タンク62内を通過する間に、タンク62内の水と熱交換を行うことによって冷却される。この結果、タンク62内の水が熱媒の熱によって加熱される。タンク62を通過した後の低温の熱媒は、熱媒熱交換器16に供給され、冷媒との熱交換によって再度加熱される。
第1の蓄熱暖房同時運転では、給湯暖房システム2は、上記のようなサイクルで冷媒及び熱媒を循環させることにより、室内空気熱交換器26及び暖房端末56の両方で室内を暖房することができるとともに、タンク62内に温水を蓄えることができる。制御装置8は、第1の蓄熱暖房同時運転を開始した後、タンクサーミスタ63が検出する温度が所定の蓄熱終了温度に到達すると、第1の蓄熱暖房同時運転を終了する。この時点で、引き続き暖房運転指示が行われている場合(ユーザによって暖房の終了が指示されていない場合)には、制御装置8は、第1の蓄熱暖房同時運転の終了後、引き続いて上記の暖房単独運転を実行する。
(第2の蓄熱暖房同時運転;図5)
本実施例では、第2の蓄熱暖房同時運転は、給湯暖房システム2が蓄熱暖房同時運転を実行すべき場合において、室内温度サーミスタ42が検出する室内温度が暖房設定温度Ts以上である場合に実行される運転である。室内温度が暖房設定温度Ts以上である場合には、室内温度が暖房設定温度Tsより低い場合に比べ、要求される暖房能力が低い。図5に示すように、第2の蓄熱暖房同時運転では、制御装置8は、流量調整弁14を、ポートaに供給された冷媒の一部がポートbに供給され、他の一部がポートcに供給されるように開度を調整する(即ち、ポートaとポートb、ポートaとポートcがそれぞれ連通する)。第2の蓄熱暖房同時運転でも、制御装置8は、ポートbに供給される冷媒の流量と、ポートcに供給される冷媒の流量とがほぼ等しくなるように、流量調整弁14の開度を調整する。また、制御装置8は、第1ファン22及び第2ファン28を駆動するとともに、圧縮機12を駆動する。さらに、制御装置8は、流量調整弁52を、ポートdに供給された熱媒の全流量がポートe(即ち、タンク62側)に供給され、ポートf(即ち、暖房端末56側)には熱媒が供給されないように調整する(即ち、ポートdとポートeが連通し、ポートdとポートfが連通しない)。さらに、制御装置8は、ポンプ54を駆動する。
圧縮機12が駆動することによる冷媒の動きは、上記の暖房単独運転(図3参照)、及び、上記の第1の蓄熱暖房同時運転(図4参照)の場合と同様であるため、詳しい説明は省略する。また、ポンプ54が駆動することによる熱媒の動きは、上記の蓄熱単独運転(図2参照)の場合と同様であるため、詳しい説明は省略する。
第2の蓄熱暖房同時運転では、給湯暖房システム2は、上記のようなサイクルで冷媒及び熱媒を循環させることにより、室内空気熱交換器26で室内空気に放熱することによって室内を暖房することができるとともに、タンク62内に温水を蓄えることができる。第2の蓄熱暖房同時運転では、暖房端末56を熱媒が通過しないため、暖房端末56による暖房は行われない。そのため、第1の蓄熱暖房同時運転に比べて、システム全体の暖房能力(即ち、単位時間当たりの室内への放熱量)は低くなる。しかしながら、熱媒熱交換器16における冷媒との熱交換で加熱された高温の熱媒の全量がタンク62を通過することになるため、第1の蓄熱暖房同時運転に比べて、蓄熱能力(即ち、単位時間当たりのタンク62内の水への放熱量)は高くなる。上記の通り、本実施例では、第2の蓄熱暖房同時運転が行われるべき場合には、第1の蓄熱暖房同時運転が行われるべき場合に比べて必要な暖房能力が低い。この点、第2の蓄熱暖房同時運転では、第1の蓄熱暖房同時運転に比べてシステム全体の暖房能力を低くし、蓄熱能力を高くすることができる。状況に応じて、圧縮機12の能力を適切に蓄熱と暖房に割り当てることができる。
なお、制御装置8は、第2の蓄熱暖房同時運転を開始した後、タンクサーミスタ63が検出する温度が所定の蓄熱終了温度に到達すると、第2の蓄熱暖房同時運転を終了する。この時点で、引き続き暖房運転指示が行われている場合には、制御装置8は、第2の蓄熱暖房同時運転の終了後、引き続いて上記の暖房単独運転を実行する。
(第3の蓄熱暖房同時運転;図6)
第3の蓄熱暖房同時運転は、後述する本実施例の変形例で、給湯暖房システム2が蓄熱暖房同時運転を実行すべき場合において、室内温度サーミスタ42が検出する室内温度が暖房設定温度Ts以上である場合に実行される運転である。図6に示すように、第3の蓄熱暖房同時運転では、流量調整弁14を、ポートaに供給された冷媒の全流量がポートcに供給され、ポートbには冷媒が供給されないように調整する(即ち、ポートaとポートcが連通し、ポートaとポートbが連通しない)。また、制御装置8は、第1ファン22を駆動するとともに、圧縮機12を駆動する(第2ファン28は駆動しない)。さらに、制御装置8は、流量調整弁52を、ポートdに供給された熱媒の一部がポートeに供給され、他の一部がポートfに供給されるように開度を調整する(即ち、ポートdとポートe、ポートdとポートfがそれぞれ連通する)。この際、制御装置8は、ポートeに供給される熱媒の流量と、ポートfに供給される熱媒の流量とがほぼ等しくなるように、流量調整弁52の開度を調整する。さらに、制御装置8は、ポンプ54を駆動する。
圧縮機12が駆動することによる冷媒の動きは、上記の蓄熱単独運転(図2参照)の場合と同様であるため、詳しい説明は省略する。また、ポンプ54が駆動することによる熱媒の動きは、上記の第1の蓄熱暖房同時運転(図3参照)の場合と同様であるため、詳しい説明は省略する。
第3の蓄熱暖房同時運転では、給湯暖房システム2は、上記のようなサイクルで冷媒及び熱媒を循環させることにより、暖房端末56で室内を暖房することができるとともに、タンク62内に温水を蓄えることができる。第3の蓄熱暖房同時運転では、室内空気熱交換器26に冷媒が供給されないため、室内空気熱交換器26による暖房は行われない。そのため、第1の蓄熱暖房同時運転に比べて、システム全体の暖房能力は低くなる。しかしながら、圧縮機12で加圧されて高温高圧となった気相状態の冷媒の全量が熱媒熱交換器16を通過することになるため、第1の蓄熱暖房同時運転に比べて、熱媒熱交換器16において、熱媒に加えられる熱量が増える。その結果、第1の蓄熱暖房同時運転に比べて、蓄熱能力が高くなる。上記の通り、第3の蓄熱暖房同時運転が行われるべき場合には、第1の蓄熱暖房同時運転が行われるべき場合に比べて必要な暖房能力が低い。この点、第3の蓄熱暖房同時運転では、第1の蓄熱暖房同時運転に比べてシステム全体の暖房能力を低くし、蓄熱能力を高くすることができる。圧縮機12の能力を適切に蓄熱と暖房に割り当てることができる。
(第1実施例における蓄熱暖房制御処理;図7)
ユーザによって暖房が指示された際に、図3〜図6を用いて説明した暖房単独運転及び各蓄熱暖房同時運転のうちのいずれが実行されるのかは、制御装置8が実行する蓄熱暖房制御処理(図7参照)によって決められる。以下、本実施例において、制御装置8が実行する蓄熱暖房制御処理の内容について説明する。
ユーザによって暖房が指示されると、制御装置8は、図7の蓄熱暖房制御処理を開始する。蓄熱暖房制御処理が開始されると、S10では、制御装置8は、タンクサーミスタ63が検出するタンク62内の水の温度(以下では「タンク温度」と呼ぶ場合がある)が、所定の蓄熱開始温度より低いか否かを判断する。
S10の時点でタンク温度が蓄熱開始温度より低い場合、制御装置8は、S10でYESと判断し、S12に進む。S10でYESの場合は、タンク62への蓄熱要求が発生している場合である。一方、タンク温度が蓄熱開始温度以上である場合、制御装置8は、S10でNOと判断し、S11に進む。S10でNOの場合は、タンク62への蓄熱要求が発生していない場合である。この場合、S11では、制御装置8は、暖房単独運転(図3参照)を実行する。S11の時点で既に暖房単独運転が行われている場合には、暖房単独運転を継続する。その後、制御装置8はS10に戻る。
S12では、制御装置8は、室内温度サーミスタ42が検出する室内温度が暖房設定温度Ts以上であるか否かを判断する。室内温度が暖房設定温度Ts以上である場合、制御装置8は、S12でYESと判断し、S14に進む。本実施例において、S12でYESの場合とは、室内温度がユーザによって要求されている暖房設定温度Tsに到達しており、高い暖房能力が必要とされない場合である。この場合、S14では、制御装置8は、第2の蓄熱暖房同時運転(図5参照)を実行する。S14の時点で既に第2の蓄熱暖房同時運転が行われている場合には、第2の蓄熱暖房同時運転を継続する。その後、制御装置8はS20に進む。
一方、S12の時点で室内温度が暖房設定温度Tsより低い場合、制御装置8は、S12でNOと判断し、S16に進む。本実施例において、S10でNOの場合とは、室内温度がユーザによって要求されている暖房設定温度Tsに到達しておらず、高い暖房能力が必要とされる場合である。この場合、S16では、制御装置8は、第1の蓄熱暖房同時運転(図4参照)を実行する。S16の時点で既に第1の蓄熱暖房同時運転が行われている場合には、第1の蓄熱暖房同時運転を継続する。その後、制御装置8はS20に進む。
S20では、制御装置8は、タンク温度が所定の蓄熱終了温度以上であるか否かを判断する。S20の時点でタンク温度が蓄熱終了温度以上である場合、制御装置8は、S20でYESと判断し、S10に戻る。S20でYESの場合とは、タンク62内の水の沸き上げが完了している場合である。一方、S20の時点でタンク温度が蓄熱終了温度より低い場合、制御装置8は、S20でNOと判断し、S12に戻る。S20でNOの場合とは、第2の蓄熱暖房同時運転(S14)又は第1の蓄熱暖房同時運転(S16)のいずれかが既に行われているが、タンク62内の水の沸き上げが完了していない場合である。
制御装置8は、ユーザから暖房の停止が指示されるまで、上記の蓄熱暖房処理(S10〜S20)を繰り返し実行する。ユーザから暖房の停止が指示されると、制御装置8は、蓄熱暖房処理を終了する。
以上、本実施例の給湯暖房システム2の構成及び運転内容について説明した。上記の通り、蓄熱暖房同時運転を実行すべき場合(図7のS10でYES)において、室内温度が暖房設定温度Ts以上である場合(S12でYES)は、室内温度が暖房設定温度Tsより低い場合(S12でNO)に比べて必要な暖房能力が低い。この点、本実施例の給湯暖房システム2は、蓄熱暖房同時運転を実行すべき場合(図7のS10でYES)において、室内温度が暖房設定温度以上である場合(S12でYES)に、第2の蓄熱暖房同時運転(図5参照)を実行する。第2の蓄熱暖房同時運転では、暖房端末56を熱媒が通過しないため、暖房端末56による暖房は行われない。そのため、第1の蓄熱暖房同時運転に比べて、システム全体の暖房能力(即ち、単位時間当たりの室内への放熱量)は低くなる。ただし、熱媒熱交換器16における冷媒との熱交換で加熱された高温の熱媒の全量がタンク62を通過することになるため、第1の蓄熱暖房同時運転に比べて、蓄熱能力(即ち、単位時間当たりのタンク62内の水への放熱量)は高くなる。そのため、本実施例の給湯暖房システム2は、第2の蓄熱暖房同時運転を行うことで、第1の蓄熱暖房同時運転に比べてシステム全体の暖房能力を低くし、蓄熱能力を高くすることができる。状況に応じて、圧縮機12の能力を適切に蓄熱と暖房に割り当てることができる。
本実施例と請求項の記載との対応関係を説明しておく。給湯暖房システム2が「ヒートポンプシステム」の一例である。ヒートポンプ空調装置4が「ヒートポンプ」の一例である。第1膨張弁18及び第2膨張弁30が「減圧機構」の一例である。室外空気熱交換器20が「蒸発器」の一例である。暖房端末56が「暖房端末」の一例である。図7のS12でYESの場合が「第1の場合」の一例であり、S12でNOの場合が「第2の場合」の一例である。暖房設定温度Tsが「特定温度」の一例である。暖房端末56による暖房が「第1暖房」の一例であり、室内空気熱交換器26による暖房が「第2暖房」の一例である。
(第1実施例の変形例1)
上記の通り、第1実施例では、制御装置8は、図7のS14において、第2の蓄熱暖房同時運転を実行する。本変形例では、S14で第2の蓄熱暖房同時運転を実行する際に、制御装置8は、流量調整弁52の開度を、ポートdに供給される熱媒の一部がポートe(タンク62側)に供給され、他の一部がポートf(暖房端末56側)に供給されるように調整する。この際、制御装置8は、流量調整弁52の開度を、ポートe(タンク62側)に供給される熱媒の流量が、ポートf(暖房端末56側)に供給される熱媒の流量よりも大きくなるように調整する(即ち、e>f)。この場合、暖房端末56にも、熱媒が一部供給される。ただし、S14の第2の蓄熱暖房同時運転で暖房端末56に供給される熱媒の流量は、S16の第1の蓄熱暖房同時運転で暖房端末56に供給される熱媒の流量よりも小さい。そのため、この場合も、S16の第1の蓄熱同時運転に比べて、システム全体の暖房能力は低くなる。ただし、熱媒熱交換器16における冷媒との熱交換で加熱された高温の熱媒の多くがタンク62を通過することになるため、第1の蓄熱暖房同時運転に比べて、蓄熱能力は高くなる。従って、この変形例1による場合も、第1実施例と同様の効果を発揮し得る。
(第1実施例の変形例2)
制御装置8は、図7のS14において、第3の蓄熱暖房同時運転(図6参照)を実行してもよい。上記の通り、第3の蓄熱暖房同時運転では、室内空気熱交換器26に冷媒が供給されないため、室内空気熱交換器26による暖房は行われない。そのため、第1の蓄熱暖房同時運転に比べて、システム全体の暖房能力は低くなる。しかしながら、この場合も、圧縮機12で加圧されて高温高圧となった気相状態の冷媒の全量が熱媒熱交換器16を通過することになるため、第1の蓄熱暖房同時運転に比べて、熱媒循環路50を通過する熱媒の加熱量が増える。その結果、第1の蓄熱暖房同時運転に比べて、蓄熱能力が高くなる。即ち、第3の蓄熱暖房同時運転でも、第1の蓄熱暖房同時運転に比べてシステム全体の暖房能力を低くし、蓄熱能力を高くすることができる。第1実施例と同様に、圧縮機12の能力を適切に蓄熱と暖房に割り当てることができる。
(第1実施例の変形例3)
上記の通り、上記変形例2では、制御装置8は、図7のS14において、第3の蓄熱暖房同時運転を実行する。本変形例では、S14で第3の蓄熱暖房同時運転を実行する際に、制御装置8は、流量調整弁14の開度を、ポートaに供給された冷媒の一部がポートc(熱媒熱交換器16側)に供給され、他の一部がポートb(室内空気熱交換器26側)に供給されるように調整する。この際、制御装置8は、流量調整弁14の開度を、ポートc(熱媒熱交換器16側)に供給される冷媒の流量が、ポートb(室内空気熱交換器26側)に供給される冷媒の流量よりも大きくなるように調整する(即ち、c>b)。この場合、室内空気熱交換器26にも、圧縮機12で加圧された高温高圧の冷媒が一部供給される。ただし、S14の第3の蓄熱暖房同時運転で室内空気熱交換器26に供給される冷媒の流量は、S16の第1の蓄熱暖房同時運転で室内空気熱交換器26に供給される冷媒の流量よりも小さい。そのため、この場合も、S16の第1の蓄熱同時運転に比べて、システム全体の暖房能力は低くなる。ただし、圧縮機12で加圧されて高温高圧となった冷媒の多くが熱媒熱交換器16を通過することになるため、第1の蓄熱暖房同時運転に比べて、蓄熱能力は高くなる。従って、この変形例3による場合も、上記変形例2と同様の効果を発揮し得る。
(第2実施例)
第1実施例と異なる点を中心に説明する。本実施例の給湯暖房システム2の構成は、第1実施例の給湯暖房システム2と共通する(図1参照)。ただし、本実施例では、室内空気熱交換器26による暖房(即ち空気暖房)よりも、暖房端末56による暖房(即ち床暖房)の方が、暖房効率が悪い(即ち、単位時間当たりの室内への放熱量が少ない)。このような前提が存在する状況で、図8に示すように、蓄熱暖房同時運転を行うべき場合(図8のS30でYES)に、暖房効率が比較的悪い暖房端末56による暖房を行わない蓄熱暖房同時運転(即ち、第2の蓄熱暖房同時運転)を行う。
(第2実施例における蓄熱暖房制御処理;図8)
ユーザによって暖房が指示されると、制御装置8は、図8の蓄熱暖房制御処理を開始する。蓄熱暖房制御処理が開始されると、S30では、制御装置8は、タンク温度が、所定の蓄熱開始温度より低いか否かを判断する。S30の判断は、図7のS10と同様の判断であるため、詳しい説明は省略する。
S30でYESの場合、S32に進み、制御装置8は、第2の蓄熱暖房運転(図5参照)を実行する。S32を終えると、S36に進む。S36では、制御装置8は、タンク温度が所定の蓄熱終了温度以上であるか否かを判断する。S36の判断は、図7のS20と同様の判断であるため、詳しい説明は省略する。S36でYESの場合、S0に戻る。S36でNOの場合、S32に戻り、第2の蓄熱暖房運転を継続する。
一方、S30でNOの場合、S34に進み、制御装置8は、暖房単独運転(図3参照)を実行する。S34を終えると、S30に戻る。
本実施例の給湯暖房システム2は、蓄熱暖房同時運転を実行すべき場合(図8のS30でYES)に、暖房効率が比較的悪い暖房端末56を行わない第2の蓄熱暖房同時運転を実行する(S32)。そのため、本実施例でも、蓄熱暖房同時運転を実行する場合に、圧縮機12の能力を、暖房により少なく割り当て、蓄熱により多く割り当てることができる。また、暖房効率が比較的良い室内空気熱交換器26による暖房の暖房能力は抑制させないため、室内の利用者の暖房要求を満たすことができる。即ち、本実施例の給湯暖房システム2は、状況に応じて、圧縮機12の能力を暖房と蓄熱に適切に割り当てることができる。
(第2実施例の変形例1)
上記の通り、第2実施例では、制御装置8は、図8のS32において、第2の蓄熱暖房同時運転を実行する。本変形例では、S32で第2の蓄熱暖房同時運転を実行する際に、制御装置8は、流量調整弁52の開度を、ポートdに供給される熱媒の一部がポートe(タンク62側)に供給され、他の一部がポートf(暖房端末56側)に供給されるように調整する。この際、制御装置8は、流量調整弁52の開度を、ポートe(タンク62側)に供給される熱媒の流量が、ポートf(暖房端末56側)に供給される熱媒の流量よりも大きくなるように調整する(即ち、e>f)。この場合も、暖房単独運転を行う場合に比べると、暖房端末56の暖房能力を減少させることができる。また、熱媒熱交換器16における冷媒との熱交換で加熱された高温の熱媒の多くがタンク62を通過することになるため、圧縮機12の能力の多くを蓄熱に割り当てることができる。従って、この変形例1による場合も、第2実施例と同様の効果を発揮し得る。
(第2実施例の変形例2)
上記の第2実施例の場合とは反対に、暖房端末56による暖房(即ち床暖房)よりも、室内空気熱交換器26による暖房(即ち空気暖房)の方が、暖房効率が悪いという前提が存在する状況では、制御装置8は、図8のS32において、第3の蓄熱暖房同時運転(図6参照)を実行してもよい。この場合、暖房効率が悪い室内空気熱交換器26による暖房は行われない。そのため、蓄熱暖房同時運転を実行すべき場合に、圧縮機12の能力を、暖房により少なく割り当て、蓄熱により多く割り当てることができる。また、暖房効率が比較的良い暖房端末56による暖房の暖房能力は抑制させないため、室内の利用者の暖房要求を満たすことができる。この変形例2による場合も、第2実施例と同様の効果を発揮し得る。
(第2実施例の変形例3)
上記の通り、上記変形例2では、図8のS32において、暖房効率の悪い室内空気熱交換器26による暖房を行わない第3の蓄熱暖房同時運転を実行する。本変形例では、S32で第3の蓄熱暖房同時運転を実行する際に、制御装置8は、流量調整弁14の開度を、ポートaに供給された冷媒の一部がポートc(熱媒熱交換器16側)に供給され、他の一部がポートb(室内空気熱交換器26側)に供給されるように調整する。この際、制御装置8は、流量調整弁14の開度を、ポートc(熱媒熱交換器16側)に供給される冷媒の流量が、ポートb(室内空気熱交換器26側)に供給される冷媒の流量よりも大きくなるように調整する(即ち、c>b)。この場合も、暖房単独運転を行う場合に比べると、室内空気熱交換器26の暖房能力を減少させることができる。また、圧縮機12で加圧されて高温高圧となった冷媒の多くが熱媒熱交換器16を通過することになるため、蓄熱能力は高くなる。従って、この変形例3による場合も、上記変形例2と同様の効果を発揮し得る。
(第3実施例)
第2実施例と異なる点を中心に説明する。本実施例の給湯暖房システム2の構成も、第1及び第2実施例の給湯暖房システム2と共通する(図1参照)。上記の通り、本実施例の給湯暖房システム2では、室内において、室内空気熱交換器26が、暖房端末56(いわゆる床暖房用の端末)よりも高い位置に設けられている。本実施例では、蓄熱暖房同時運転を行うべき場合(図8のS30でYES)に、より高い位置に設けられている室内空気熱交換器26による暖房を行わない蓄熱暖房同時運転(即ち、第3の蓄熱暖房同時運転)を実行する。
(第3実施例における蓄熱暖房制御処理;図8)
本実施例において制御装置8が実行する蓄熱暖房制御処理は、第2実施例の蓄熱暖房制御処理(図8参照)と基本的に共通する。ただし、本実施例では、S32において、制御装置8は、より高い位置に設けられている室内空気熱交換器26による暖房を行わない第3の蓄熱暖房同時運転を実行する点が第2実施例とは異なる。
本実施例の給湯暖房システム2は、蓄熱暖房同時運転を実行すべき場合(図8のS30でYES)に、より高い位置に設けられている室内空気熱交換器26による暖房を行わない第3の蓄熱暖房同時運転を実行する(S32)。そのため、本実施例でも、蓄熱暖房同時運転を実行する場合に、暖房単独運転を実行する場合に比べて、圧縮機12の能力を、暖房により少なく割り当て、蓄熱により多く割り当てることができる。また、通常、室内を暖房する場合、室内において低い位置に設けられている端末(即ち暖房端末56)を用いて暖房する方が、高い位置に設けられている端末(即ち室内空気熱交換器26)を用いて暖房する場合に比べ、室内の利用者が快適に感じる。第3の蓄熱暖房同時運転では、より低い位置に設けられている暖房端末56による暖房の能力は抑制しないため、室内空気熱交換器26による暖房の能力を抑制させた場合であっても、室内の利用者の暖房要求を満たすことができる。即ち、本実施例の給湯暖房システム2は、状況に応じて、圧縮機12の能力を暖房と蓄熱に適切に割り当てることができる。
(第3実施例の変形例1)
上記の通り、第3実施例では、図8のS32において、より高い位置に設けられている室内空気熱交換器26による暖房運転を実行しない第3の蓄熱暖房同時運転を実行する。本変形例では、S32で第3の蓄熱暖房同時運転を実行する際に、制御装置8は、流量調整弁14の開度を、ポートaに供給された冷媒の一部がポートc(熱媒熱交換器16側)に供給され、他の一部がポートb(室内空気熱交換器26側)に供給されるように調整する。この際、制御装置8は、流量調整弁14の開度を、ポートc(熱媒熱交換器16側)に供給される冷媒の流量が、ポートb(室内空気熱交換器26側)に供給される冷媒の流量よりも大きくなるように調整する(即ち、c>b)。この場合も、暖房単独運転を行う場合に比べると、室内空気熱交換器26の暖房能力を減少させることができる。また、蓄熱能力は高くなる。従って、この変形例3による場合も、第2実施例と同様の効果を発揮し得る。
(第3実施例の変形例2)
上記の第3実施例の場合とは反対に、暖房端末56が、室内において、室内空気熱交換器26よりも高い位置に設けられていてもよい。この場合には、制御装置8は、図8のS32において、第2の蓄熱暖房同時運転(図5参照)を実行してもよい。この場合、より高い位置に設けられている暖房端末56による暖房は行われない。そのため、蓄熱暖房同時運転を実行する場合に、暖房単独運転を実行する場合に比べて、圧縮機12の能力を、暖房により少なく割り当て、蓄熱により多く割り当てることができる。また、より低い位置に設けられている室内空気熱交換器26による暖房の暖房能力は抑制させないため、室内の利用者の暖房要求を満たすことができる。即ち、この変形例2による場合も、第3実施例と同様の効果を発揮し得る。
(第3実施例の変形例3)
上記の通り、上記変形例2では、図8のS32において、より高い位置に設けられている暖房端末56による暖房を行わない第2の蓄熱暖房同時運転を実行する。本変形例では、S32で第2の蓄熱暖房同時運転を実行する際に、制御装置8は、流量調整弁52の開度を、ポートdに供給される熱媒の一部がポートe(タンク62側)に供給され、他の一部がポートf(暖房端末56側)に供給されるように調整する。この際、制御装置8は、流量調整弁52の開度を、ポートe(タンク62側)に供給される熱媒の流量が、ポートf(暖房端末56側)に供給される熱媒の流量よりも大きくなるように調整する(即ち、e>f)。この場合も、暖房単独運転を行う場合に比べると、暖房端末56の暖房能力を減少させることができる。また、熱媒熱交換器16における冷媒との熱交換で加熱された高温の熱媒の多くがタンク62を通過することになるため、圧縮機12の能力の多くを蓄熱に割り当てることができる。従って、この変形例3による場合も、第2実施例と同様の効果を発揮し得る。
以上、各実施例について詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。例えば、以下の変形例が含まれる。
(変形例)ヒートポンプ空調装置4は、室内空気熱交換器26を備えていなくてもよい。その場合、第1実施例において、図7のS14では、制御装置8は、第2の蓄熱暖房同時運転を実行するようにしてもよい。
また、本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
2:給湯暖房システム
4:ヒートポンプ空調装置
6:給湯床暖房装置
8:制御装置
12:圧縮機
14:流量調整弁
16:熱媒熱交換器
18:第1膨張弁
20:室外空気熱交換器
22:第1ファン
26:室内空気熱交換器
28:第2ファン
30:第2膨張弁
32:冷媒循環路
40:外気温サーミスタ
42:室内温度サーミスタ
50:熱媒循環路
52:流量調整弁
54:ポンプ
56:暖房端末
62:タンク
63:タンクサーミスタ
66:温水供給管
68:水導入管

Claims (5)

  1. 冷媒を加圧する圧縮機、熱媒との熱交換によって冷媒を凝縮させる熱媒熱交換器、冷媒を減圧させる減圧機構、冷媒を蒸発させる蒸発器、及び、室内空気との熱交換によって冷媒を凝縮させることで、冷媒の熱によって室内を暖房する室内空気熱交換器を備える1個のヒートポンプと、
    熱媒の熱を利用して室内を暖房する暖房端末と、
    熱を蓄える蓄熱槽と、
    蓄熱槽内に蓄えられた熱を利用して温水を温水利用箇所に供給する供給手段と、
    室内の温度を検出する検出手段と、
    を備えており、
    熱媒を熱媒熱交換器と暖房端末との間で循環させる第1暖房と、冷媒を圧縮機、室内空気熱交換器、減圧機構、蒸発器の順に循環させる第2暖房と、熱媒を熱媒熱交換器と蓄熱槽との間で循環させる蓄熱とを同時に行う蓄熱暖房同時運転を実行可能であり、
    蓄熱暖房同時運転の実行中であって検出手段によって検出される温度が特定温度以上である第1の場合には、蓄熱暖房同時運転の実行中であって検出手段によって検出される温度が特定温度より低い第2の場合に比べて、第1暖房と第2暖房のうちの一方の暖房能力を低下させる、
    ヒートポンプシステム。
  2. 第1の場合に、第2の場合に比べて、暖房端末への熱媒流量を減少させ、蓄熱槽への熱媒流量を増加させることによって、前記第1暖房の暖房能力を低下させる、
    請求項1のヒートポンプシステム。
  3. 第1の場合に、第2の場合に比べて、室内空気熱交換器への冷媒流量を減少させ、熱媒熱交換器への冷媒流量を増加させることによって、前記第2暖房の暖房能力を低下させる、
    請求項1のヒートポンプシステム。
  4. 冷媒を加圧する圧縮機、熱媒との熱交換によって冷媒を凝縮させる熱媒熱交換器、室内空気との熱交換によって冷媒を凝縮させることで冷媒の熱によって室内を暖房する室内空気熱交換器、冷媒を減圧させる減圧機構、及び、冷媒を蒸発させる蒸発器を備える1個のヒートポンプと、
    熱媒の熱を利用して室内を暖房する暖房端末と、
    熱を蓄える蓄熱槽と、
    蓄熱槽内に蓄えられた熱を利用して温水を温水利用箇所に供給する供給手段と、
    を備えており、
    室内を暖房するとともに蓄熱槽内の熱量を増やす蓄熱を同時に行う蓄熱暖房同時運転と、を実行可能であり、
    蓄熱暖房同時運転を実行する場合には、冷媒を圧縮機、熱媒熱交換器、減圧機構、蒸発器の順に循環させ、かつ、熱媒を熱媒熱交換器と暖房端末との間で循環させる第1暖房と、冷媒を圧縮機、室内空気熱交換器、減圧機構、蒸発器の順に循環させる第2暖房と、熱媒を熱媒熱交換器と蓄熱槽との間で循環させる蓄熱と、を同時に行うものであって、
    (i)暖房端末による前記第1暖房の暖房効率が、室内空気熱交換器による前記第2暖房の暖房効率よりも悪い場合においては、暖房端末への熱媒流量を蓄熱槽への熱媒流量よりも少なくして、前記第1暖房の暖房能力を低下させ、
    (ii)室内空気熱交換器による前記第2暖房の暖房効率が、暖房端末による前記第1暖房の暖房効率よりも悪い場合においては、室内空気熱交換器への冷媒流量を、熱媒熱交換器への冷媒流量よりも少なくして、前記第2暖房の暖房能力を低下させる、
    ヒートポンプシステム。
  5. 冷媒を加圧する圧縮機、熱媒との熱交換によって冷媒を凝縮させる熱媒熱交換器、室内空気との熱交換によって冷媒を凝縮させることで冷媒の熱によって室内を暖房する室内空気熱交換器、冷媒を減圧させる減圧機構、及び、冷媒を蒸発させる蒸発器を備える1個のヒートポンプと、
    熱媒の熱を利用して室内を暖房する暖房端末と、
    熱を蓄える蓄熱槽と、
    蓄熱槽内に蓄えられた熱を利用して温水を温水利用箇所に供給する供給手段と、
    を備えており、
    室内を暖房するとともに蓄熱槽内の熱量を増やす蓄熱を同時に行う蓄熱暖房同時運転と、を実行可能であり、
    蓄熱暖房同時運転を実行する場合には、冷媒を圧縮機、熱媒熱交換器、減圧機構、蒸発器の順に循環させ、かつ、熱媒を熱媒熱交換器と暖房端末との間で循環させる第1暖房と、冷媒を圧縮機、室内空気熱交換器、減圧機構、蒸発器の順に循環させる第2暖房と、熱媒を熱媒熱交換器と蓄熱槽との間で循環させる蓄熱と、を同時に行うものであって、
    (a)暖房端末が、室内において、室内空気熱交換器よりも高い位置に設けられている場合においては、暖房端末への熱媒流量を、蓄熱槽への熱媒流量よりも少なくして、前記第1暖房の暖房能力を低下させ、
    (b)室内空気熱交換器が、室内において、暖房端末よりも高い位置に設けられている場合においては、室内空気熱交換器への冷媒流量を、熱媒熱交換器への冷媒流量よりも少なくして、前記第2暖房の暖房能力を低下させる、
    ヒートポンプシステム。
JP2014208327A 2014-10-09 2014-10-09 ヒートポンプシステム Active JP6427380B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014208327A JP6427380B2 (ja) 2014-10-09 2014-10-09 ヒートポンプシステム
KR1020150139893A KR101752974B1 (ko) 2014-10-09 2015-10-05 히트펌프시스템

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014208327A JP6427380B2 (ja) 2014-10-09 2014-10-09 ヒートポンプシステム

Publications (2)

Publication Number Publication Date
JP2016080194A JP2016080194A (ja) 2016-05-16
JP6427380B2 true JP6427380B2 (ja) 2018-11-21

Family

ID=55917092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014208327A Active JP6427380B2 (ja) 2014-10-09 2014-10-09 ヒートポンプシステム

Country Status (2)

Country Link
JP (1) JP6427380B2 (ja)
KR (1) KR101752974B1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6830339B2 (ja) * 2016-11-01 2021-02-17 リンナイ株式会社 熱源装置
KR102491228B1 (ko) 2018-07-02 2023-01-25 엘지전자 주식회사 공기 조화 시스템
CN111707111B (zh) * 2020-06-20 2022-06-14 天津大学 一种冬夏两用的集管型蓄热辐射板式室内换热器
CN111928333B (zh) * 2020-07-28 2021-09-10 烟台厚德瑞华节能科技有限公司 供热控制方法及系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01256754A (ja) * 1988-04-04 1989-10-13 Sun Wave Ind Co Ltd 冷暖房・給湯システム
JP4599910B2 (ja) * 2004-07-01 2010-12-15 ダイキン工業株式会社 給湯装置
JP4254648B2 (ja) * 2004-07-30 2009-04-15 ダイキン工業株式会社 暖房装置
JP5200996B2 (ja) * 2009-02-24 2013-06-05 ダイキン工業株式会社 ヒートポンプシステム
KR101175516B1 (ko) * 2010-05-28 2012-08-23 엘지전자 주식회사 히트펌프 연동 급탕장치
JP5747838B2 (ja) * 2012-02-22 2015-07-15 三菱電機株式会社 暖房給湯システム
JP5746104B2 (ja) * 2012-07-09 2015-07-08 リンナイ株式会社 給湯暖房システム
GB2524673B (en) * 2013-01-07 2019-08-21 Mitsubishi Electric Corp Heat pump system
JP5920251B2 (ja) * 2013-03-08 2016-05-18 株式会社デンソー 暖房給湯装置
JP5892120B2 (ja) * 2013-08-02 2016-03-23 三菱電機株式会社 暖房給湯システム

Also Published As

Publication number Publication date
KR20160042384A (ko) 2016-04-19
JP2016080194A (ja) 2016-05-16
KR101752974B1 (ko) 2017-06-30

Similar Documents

Publication Publication Date Title
JP6320633B2 (ja) ヒートポンプ式設備装置
JP6007123B2 (ja) ヒートポンプシステム
JP6427380B2 (ja) ヒートポンプシステム
JP6499906B2 (ja) 空調床暖房システム
JP6207600B2 (ja) 循環加温装置
JP2009281650A (ja) 暖房システム
EP1972862A1 (en) Heat pump hot water supply device
JP6326344B2 (ja) 給湯暖房装置
JP6438765B2 (ja) 熱機器
JP5176474B2 (ja) ヒートポンプ給湯装置
JP4618074B2 (ja) ヒートポンプ給湯器
JP4749228B2 (ja) ヒートポンプ式給湯機
JP6465987B2 (ja) 空気調和装置および空気調和制御方法
JP2009264716A (ja) ヒートポンプ温水システム
JP6387271B2 (ja) ヒートポンプシステム
JP6389703B2 (ja) ヒートポンプシステム
JP6964482B2 (ja) ヒートポンプ式温調システム
JP6357389B2 (ja) ヒートポンプシステム
JP6383610B2 (ja) ヒートポンプシステム
JP4251227B2 (ja) ヒートポンプ給湯装置
JP6389704B2 (ja) ヒートポンプシステム
JP2008111657A (ja) ヒートポンプ給湯機
JP6442206B2 (ja) 熱機器
JP2008032333A (ja) ヒートポンプ式給湯機
JP2006234272A (ja) ヒートポンプ給湯機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181029

R150 Certificate of patent or registration of utility model

Ref document number: 6427380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250