WO2006001149A1 - 転がり軸受 - Google Patents

転がり軸受 Download PDF

Info

Publication number
WO2006001149A1
WO2006001149A1 PCT/JP2005/009449 JP2005009449W WO2006001149A1 WO 2006001149 A1 WO2006001149 A1 WO 2006001149A1 JP 2005009449 W JP2005009449 W JP 2005009449W WO 2006001149 A1 WO2006001149 A1 WO 2006001149A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
bearing
test
nitrogen
value
Prior art date
Application number
PCT/JP2005/009449
Other languages
English (en)
French (fr)
Inventor
Takashi Tsujimoto
Rino Fukami
Original Assignee
Ntn Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004188690A external-priority patent/JP2006009964A/ja
Priority claimed from JP2004198617A external-priority patent/JP2006022819A/ja
Application filed by Ntn Corporation filed Critical Ntn Corporation
Priority to US11/628,671 priority Critical patent/US20080193069A1/en
Priority to EP05743781A priority patent/EP1770292A4/en
Publication of WO2006001149A1 publication Critical patent/WO2006001149A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/34Rollers; Needles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/32Balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/664Retaining the liquid in or near the bearing
    • F16C33/6651Retaining the liquid in or near the bearing in recesses or cavities provided in retainers, races or rolling elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/54Surface roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/62Selection of substances

Definitions

  • the present invention relates to a rolling bearing, and can be applied to, for example, a roller bearing used in a shaft support portion of an automobile transmission.
  • JP-A-2-168021 and JP-A-6-42536 describe rolling bearings in which minute irregularities are formed on the surface of a rolling element to improve oil film forming ability.
  • minute concave recesses are provided on the rolling surface and Z or inner and outer ring raceways, and the surface roughness is set as a parameter.
  • the value of the ratio of the axial surface roughness Rqni (L) to the circumferential surface roughness Rqni (C) Rqni (L) ZRqni (C) is 1.0 or less, and the surface roughness
  • the parameter Sk is set to ⁇ 1.6 or less, so that the long life is achieved even when the mating surface is rough or good.
  • the surface roughness is expressed by the parameter Rqni for a conventional recess with a small concave shape
  • the value of the ratio of the surface roughness Rqni (L) in the axial direction to the surface roughness Rqni (C) in the circumferential direction Rqni (L ) ZRqi (C) is 1.0 or less (Rqni ⁇ 0.10)
  • the surface roughness parameter Sk is set to 1.6 or less, so that even if the mating surface is rough, Although the finished surface has a long life, the effect may not be fully achieved when the oil film thickness is extremely thin under low viscosity and dilute lubrication.
  • the rolling bearing of the present invention at least on the surface of the rolling element, provided indentations having a micro recess-like shape are countless randomly, the average area of the recess 30: in LOO mu m 2 range, and, Ry max is in the range of 0.4 to 1.0.
  • At least one of the outer member, the inner member, and the rolling element of the rolling bearing has a nitrogen-enriched layer, and the particle size number of the austenite crystal grains in the nitrogen-enriched layer May be in the range above 10.
  • a rolling bearing is a mechanical element that supports a shaft that rotates or swings by a rolling motion of a rolling element (ball or roller).
  • the rolling element is freely rollable between the inner ring raceway and the outer ring raceway, but it does not have an inner ring with the outer peripheral surface of the shaft as the direct raceway surface, for example, the inner peripheral surface of a gear.
  • the inner member and the outer member are used is not limited to the inner ring and the outer ring, but does not exclude shafts or gears having raceway surfaces.
  • At least the surface of the rolling element is intended not to exclude the formation of a micro-concave depression on the raceway surface, and when the rolling element is a roller, not only the rolling surface. The purpose of this is not to exclude the formation of a concave indentation on the end face.
  • the value of the ratio between the axial surface roughness Rq ni (L) and the circumferential surface roughness Rqni (C) Rqni (L ) ZRqni (C) may be 1.0 or less.
  • Parameter Rqni is the square root of the value obtained by integrating the square of the height deviation up to the roughness center line force over the measurement length interval and averaging it over that interval, also known as the mean square root roughness. (ISO 4287: 1997) o Rqni is obtained by numerical calculation from the recorded cross-sectional curve and roughness curve, and is measured by moving the stylus probe in the width direction and circumferential direction. Determine.
  • the nitrogen-enriched layer is a layer with an increased nitrogen content formed on the surface layer of the raceway ring (outer ring or inner ring) or the rolling element, and is formed by a process such as carbonitriding, nitriding, or nitriding. Can be made.
  • the nitrogen content in the nitrogen enriched layer is preferably in the range of 0.1% to 0.7%. If the nitrogen content is less than 0.1%, the effect will be reduced, and the rolling life will be reduced, especially under the conditions of foreign matter contamination. If the nitrogen content is more than 0.7%, voids called voids will be formed, or the retained austenite will increase so much that the hardness will not be achieved, resulting in a short life.
  • the nitrogen content is the value at the surface layer of 50 m of the raceway surface after grinding, for example measured with EPMA (wavelength dispersive X-ray microanalyzer) Can do.
  • austenite grain size As the austenite grain size exceeds 10, the austenite grain size becomes finer, so that the rolling fatigue life can be greatly improved. If the austenite grain size number is 10 or less, the rolling fatigue life is not greatly improved. Usually 11 or higher. Although it is desirable that the austenite grain size is finer, it is usually difficult to obtain a grain size number exceeding 13. Note that the austenite grains of the bearing parts described above do not change either in the surface layer portion having the nitrogen-enriched layer or in the inside thereof. Therefore, the target positions in the above range of the grain size number are the surface layer and the inside.
  • An austenite crystal grain is, for example, a crystal grain based on the trace of the austenite crystal grain boundary immediately before quenching after quenching.
  • the nitrogen content in the nitrogen-enriched layer may be in the range of 0.1% to 0.7%.
  • the nitrogen content can be a value in the surface layer 50 m of the raceway surface after grinding.
  • FIG. 1 is a cross-sectional view of a needle roller bearing.
  • FIG. 2 is a cross-sectional view of a needle roller bearing used for a life test.
  • FIG. 3 is a roughness curve diagram showing a finished surface state of a rolling element in a test bearing.
  • FIG. 4 is a roughness curve diagram showing the finished surface condition of rolling elements in a test bearing.
  • FIG. 5 is a roughness curve diagram showing the finished surface condition of the rolling elements in the test bearing.
  • FIG. 6 is a schematic view of a test apparatus.
  • FIG. 7 is a graph showing the life test results.
  • FIG. 8 is a cross-sectional view of a roller bearing.
  • FIG. 9A is a graph showing the metal contact ratio of Examples.
  • FIG. 9B is a graph showing the metal contact ratio of a comparative example.
  • FIG. 11 A schematic cross-sectional view showing a rolling bearing in an embodiment of the present invention.
  • ⁇ 12] is a diagram for explaining a heat treatment method for a rolling bearing in an embodiment of the present invention.
  • ⁇ 13] is a diagram for explaining a modification of the heat treatment method for a rolling bearing in an embodiment of the present invention.
  • FIG. 14A is a diagram showing the microstructure of bearing parts according to the present invention, particularly austenite grains.
  • FIG. 14B is a view showing a microstructure of a conventional bearing part, particularly austenite grains.
  • FIG. 15A shows an austenite grain boundary illustrating FIG. 14A.
  • FIG. 15B shows an austenite grain boundary illustrating FIG. 14B.
  • FIG. 16 is a view showing a test piece of a static crushing strength test (measurement of fracture stress value).
  • [17A] A schematic front view of a rolling fatigue life tester.
  • FIG. 17B is a side view of the testing machine of FIG. 17A.
  • FIG. 18 is a view showing a test piece of a static fracture toughness test.
  • a rolling bearing has an inner ring, an outer ring, and rolling elements as main components. Then, an infinite number of minute concave recesses are randomly formed on at least one of the rolling surfaces and end surfaces of the rolling elements and the raceway surfaces of the inner and outer rings (and the large rib surface for the inner ring of the tapered roller bearing) to form minute amounts. It is roughened. This fine rough surface has an average area of depressions in the range of 30 to: LOO / zm 2 and the Rymax of the surface on which the depressions are provided is in the range of 0.4 to 1.0.
  • rough surface Rqni (L) is the ratio of the axial surface roughness Rqni (L) to the circumferential surface roughness Rqni (C) ) / Rqni (C) is 1.0 or less, and the surface roughness parameter Sk value is 1.6 or less in both axial and circumferential directions.
  • a force shot or the like that can obtain a desired finished surface by special barrel polishing may be used.
  • Measuring device Surface roughness measuring instrument Surfcom 1400A (Tokyo Seimitsu Co., Ltd.)
  • the area ratio of the indentation occupying the entire rolling surface is within the range of 5 to 20%, and the average area of the indentation is the equivalent circular diameter 3 ⁇ It is 30 to 100 / ⁇ ⁇ 2 when arranged except for the following.
  • Rymax is 0.4 to 1. Outside the range of 0, Ku BoMino area ratio exceeds 20%, the average area exceeds 100 m 2, contact effective length reduced a little, the effect of long-life decreased Tend to.
  • the surface of the roller is enlarged and its image power is also commercially available. Can be quantitatively measured by an image system. Furthermore, if the surface texture inspection method and the surface texture inspection apparatus disclosed in JP-A-2001-183124 are used, stable and accurate measurement can be performed. The white portion of the image is analyzed as a flat surface portion, and the minute depression is analyzed as a black portion. The measurement conditions are as follows. In addition, when measuring the indentation area and average area for components such as rolling elements of rolling bearings and rail surfaces, it is possible to rely on a single measured value as a representative value.
  • Area ratio Percentage of pixels (black) that are smaller than the binary threshold [(brightness + darkness) Z2] in the viewing field range
  • Fig. 1 shows a first example of a rolling bearing.
  • the rolling bearing 1 is a needle roller bearing in which a needle roller 2 is incorporated in an outer ring 3 as a rolling element. It comes to support.
  • the following describes the results of a life test conducted by manufacturing multiple types of needle roller bearings with different surface finishes on the needle roller surface.
  • This is a bearing with cage 5 using needle rollers.
  • Three types of needle rollers with different surface roughness finishes were manufactured as test bearings.
  • bearing A comparative example
  • bearing B comparative example
  • bearing C comparative example
  • Figures 3 to 5 show the surface finish of the needle rollers of each test bearing.
  • Fig. 3 shows the surface roughness of bearing A
  • Fig. 4 shows the surface roughness of bearing B
  • Fig. 5 shows the surface roughness of bearing C.
  • Table 1 shows a list of characteristic value parameters for the surface finish of each test bearing.
  • the parameter Sk refers to the degree of distortion of the roughness curve (skewness) (ISO 4287: 1997), which is a statistic that indicates the asymmetry of the uneven distribution, and is symmetric like a Gaussian distribution.
  • the Sk value is close to 0, and it is negative when the concave and convex portions are deleted, and is positive when the reverse is the case. It will be.
  • the Sk value can be controlled by selecting the barrel polishing machine's rotation speed, processing time, workpiece input amount, chip type and size, etc. For example, by setting the Sk value to 1.6 or less in both the width direction and the circumferential direction, a dent with a minute concave shape becomes an oil sump, and even if compressed, the oil film has less oil leakage in the sliding direction and at a right angle. Excellent formation, oil film formation is good, and has the effect of minimizing surface damage.
  • Rqni LZC
  • the bearing C is 1.0 or less
  • the bearing A is a value around 1.0.
  • the test apparatus used is a radial load tester 11 as schematically shown in FIG. 6, in which the test bearings 1 are mounted on both sides of the rotary shaft 12, and the test is performed by applying rotation and load.
  • the finish of the inner race (mating shaft) used in the test is a polished finish of RaO. 10 to 0.16 / z m.
  • the water race (outer ring) is also common.
  • the test conditions are as follows.
  • the vertical axis in the figure represents the L10 life (h).
  • bearing A was 78h and bearing B was 82h, while bearing C was 121h.
  • FIG. 8 shows a tapered roller bearing as a second example of the rolling bearing.
  • Tapered roller shaft The bearing is a radial bearing using a roller 16 as a rolling element, and a plurality of tapered rollers 16 are interposed between a raceway of the outer ring 13 and a raceway of the inner ring 14 so as to roll freely.
  • the rolling surface 17 of the tapered roller 16 is in rolling contact with the raceway of the outer ring 13 and the inner ring 14, and the large end surface 18 of the tapered roller 16 is in sliding contact with the inner surface of the large collar 15 of the inner ring 14. Therefore, in the case of the tapered roller 16, an infinite number of minute concave concaves may be formed on the large end surface 18 in addition to the rolling surface 17.
  • an infinite number of minute concave concaves may be formed on the inner surface of the large brim 5 in addition to the raceway surface.
  • roller bearing C E and the bearings F and G of the example are formed with an innumerable number of minute concave recesses by barrel polishing special processing.
  • roller bearing C G is 1.0 or less
  • roller bearings 8 and B are values before and after 1.0.
  • a peeling test was conducted using a two-cylinder testing machine shown in Fig. 10, and the metal contact rate was evaluated.
  • the drive side cylinder 22 (D cylinder: Driver) and the driven side cylinder 24 (F cylinder: Follow) er) is attached to one end of each rotating shaft, and the two rotating shafts 26 and 28 can be driven by separate motors via pulleys 30 and 32, respectively.
  • the shaft 26 on the D cylinder 22 side was driven by a motor, and the F cylinder 24 was free-rolled to follow the D cylinder 22.
  • two types of surface treatments were prepared: a comparative example and an example. Details of test conditions are as shown in Table 3.
  • FIGS. 9A and 9B Comparison data of metal contact ratio is shown in FIGS. 9A and 9B.
  • the horizontal axis represents the elapsed time
  • the vertical axis represents the metal contact rate
  • Fig. 9A shows the metal contact rate of the roller rolling surface of the bearing of the example
  • Fig. 9B shows the roller rolling surface of the comparative example bearing.
  • the metal contact ratio of each is shown.
  • FIG. 11 shows a cross section of a deep groove ball bearing as another example of a rolling bearing.
  • This rolling bearing is composed of an outer ring 34, an inner ring 36, a plurality of rolling elements 38 that are rotatably interposed between the raceway of the outer ring 34 and the raceway of the inner ring 36, and a cage 40. It holds as.
  • the rolling elements 38 are balls here, and are held by the retainer 40 at predetermined intervals in the circumferential direction.
  • At least one bearing component of the outer ring 34, the inner ring 36, and the rolling element 38 constituting the rolling bearing has a nitrogen-enriched layer.
  • a heat treatment including a carbonitriding process will be described as a specific example of the process for forming the nitrogen-enriched layer.
  • FIG. 12 is a diagram for explaining a heat treatment method for a rolling bearing according to the embodiment of the present invention
  • FIG. 13 is a diagram for explaining a modification thereof.
  • Fig. 12 is a heat treatment pattern showing the method of primary quenching and secondary quenching
  • Fig. 13 shows the material A during quenching.
  • treatment ⁇ diffuses carbon and nitrogen into the steel substrate.
  • process T in the figure, reheat to a temperature above the A transformation point temperature and lower than that of process T.
  • the rolling bearing of the present invention produced by the heat treatment pattern shown in FIG. 12 or FIG. 13 has a microstructure in which the grain size of austenite crystal grains is less than half of the conventional one. Bearing parts subjected to the above heat treatment have a long life against rolling fatigue, can improve the cracking strength, and can also reduce the rate of dimensional change over time. Since a heat treatment step for lowering the secondary quenching temperature is performed to refine the crystal grains, the amount of retained austenite is reduced on the surface layer and inside, and as a result, excellent crack strength and aging resistance can be obtained.
  • FIGS. 14A and 14B are diagrams showing the microstructure of bearing parts, particularly austenite grains.
  • FIG. 14A shows a bearing part of the present invention example
  • FIG. 14B shows a conventional bearing part.
  • Snow FIG. 14A shows the austenite grain size of the bearing ring of the rolling bearing according to the embodiment of the present invention to which the heat treatment pattern shown in FIG. 12 is applied.
  • FIG. 14B shows the austenite grain size of the bearing steel obtained by the conventional heat treatment method.
  • FIGS. 15A and 15B show the austenite grain sizes illustrated in FIGS. 14A and 14B. From the structure showing the austenite crystal grain size, the conventional austenite grain size ⁇ 3 standard grain size number is No. 10, and according to the heat treatment method shown in FIG. 12 or FIG. 13, No. 12 fine grains can be obtained. Further, the average particle diameter in FIG. 14A was measured by the intercept method, and was found to be 5.6 / m.
  • Samples A to D (Examples of the present invention): carbonitriding 850 ° C, holding time 150 minutes.
  • the atmosphere was a mixed gas of RX gas and ammonia gas.
  • the primary quenching is performed from the carbonitriding temperature of 850 ° C! The temperature is lower than the carbonitriding temperature at,,, and, and heated to 780 ° C to 830 ° C for secondary treatment. Quenching was performed. However, Sample A with a secondary quenching temperature of 780 ° C was also excluded from the test due to insufficient quenching.
  • Samples E and F (comparative examples): The carbonitriding process is performed with the same history as the inventive examples A to D, and the secondary quenching temperature is 850 ° C to 870 which is 850 ° C or higher. Performed at ° C.
  • Conventional carbonitrided product Carbonitriding 850 ° C, holding time 150 minutes. The atmosphere was a mixed gas of RX gas and ammonia gas. Quenching was performed as it was from the carbonitriding temperature, and secondary quenching was not performed.
  • Normal hardened product without any carbonitriding treatment, it was quenched by heating to 850 ° C. The secondary quenching was powerful.
  • the amount of hydrogen was analyzed for the amount of non-diffusible hydrogen in the steel using a DH-103 hydrogen analyzer manufactured by LECO. The amount of diffusible hydrogen is not measured.
  • the specifications of this LECO DH-103 hydrogen analyzer are shown below.
  • Sample weight size 1 Omg to 35 mg (Maximum: Diameter 12mm X Length 1 OOmm)
  • Carrier gas nitrogen gas
  • gas dosing gas hydrogen gas
  • both gases have a purity of 99.99% or more and a pressure of 40 psi (2.8 kgfZcm 2 ).
  • the outline of the measurement procedure is as follows. Sample collected by a dedicated sampler Insert the entire flask into the hydrogen analyzer. The internal diffusible hydrogen is led to the thermal conductivity detector by the nitrogen carrier gas. This diffusible hydrogen is not measured in this example. Next, the sample is taken out from the sampler, heated in a resistance heating furnace, and non-diffusible hydrogen is led to the thermal conductivity detector by nitrogen carrier gas. The amount of non-diffusible hydrogen can be determined by measuring the thermal conductivity with a thermal conductivity detector.
  • the crystal grain size was measured based on the JIS G 0551 steel austenite grain size test method.
  • the Charpy impact test was performed based on the Charpy impact test method for metal materials of JIS Z 2242.
  • As the test piece a U-notch test piece (JIS No. 3 test piece) shown in JIS Z 2202 was used.
  • FIG. 16 is a diagram showing a test piece for a static crushing strength test (measurement of fracture stress value). Measure the load until it breaks by applying the load in the P direction in the figure. After that, the obtained fracture load is converted into a stress value by the bending beam stress calculation formula shown below.
  • the test piece is not limited to the test piece shown in FIG. 16, and a test piece having another shape may be used.
  • the fiber stress on the convex surface of the test piece in FIG. 16 is ⁇ , and the fiber stress on the concave surface is ⁇ .
  • Outer radius, e represents inner radius.
  • is the section modulus of the curved beam.
  • FIGS. 17A and 17B are schematic views of a rolling fatigue life tester.
  • FIG. 17A is a front view
  • FIG. 17B is a side view.
  • the rolling fatigue life specimen 48 is driven by the drive roll 42. And rotating in contact with the ball 46.
  • the ball 46 is a 3Z4 inch ball, which is guided by the inner roll 44 and rolls while applying high surface pressure to the rolling fatigue life test piece 48.
  • the austenite grains are remarkably refined to a grain size number of 11 to 12. ! / Speak.
  • the austenite grains of Samples E and F, as well as the conventional carbonitrided and conventional quenched products have a grain size number of 10, and are coarser than those of Samples B to D of the inventive examples.
  • the Charpy impact value of the conventional carbonitrided product is 5.33 j / cm 2
  • the Charpy impact values of Samples B to D of the present invention are 6.30 to 6.65 jZcm. A high value of 2 is obtained. Of these, the lower the secondary quenching temperature, the higher the Charpy impact value.
  • Charpy impact value of the normal quenched sample as high as 6. 70jZcm 2.
  • the fracture stress value corresponds to the crack resistance strength.
  • the conventional carbonitrided product has a fracture stress value of 2330 MPa.
  • the fracture stress values of Samples B to D are improved to 2650 to 2840 MPa.
  • Fracture stress value of normal hardened product is It is estimated that the improved cracking resistance strength of Samples B to D, along with the refinement of austenite crystal grains, is significant due to the reduction of the hydrogen content!
  • the normal fatigue-hardened product has the lowest rolling fatigue life L, reflecting that it does not have a carbonitriding layer in the surface layer. Compared to this, the rolling fatigue life of conventional carbonitrided products is 3
  • Samples B to D of the examples of the present invention have a reduced hydrogen content, austenite grain size refined to 11th or more, Charpy impact value, crack resistance strength and rolling fatigue life. Will be improved.
  • Example II A series of tests were conducted on the following X, Y and Z materials.
  • JIS standard SUJ2 material (1.0 wt% C—0.25 wt% Si—0.4 wt% Mn—l. 5 wt% Cr) is used for the heat treatment material. did.
  • the manufacturing history of materials X to Z is as follows.
  • Y material (comparative example): quenching after carbonitriding (conventional carbonitriding). Carburizing Nitriding temperature 845 ° C, holding time 150 minutes. The atmosphere of carbonitriding was RX gas + ammonia gas.
  • Example of the present invention Bearing steel subjected to the heat treatment pattern of FIG. Carbonitriding temperature 845 ° C, holding time 150 minutes. The atmosphere of carbonitriding was RX gas + ammonia gas. The final quenching temperature was 800 ° C.
  • test conditions and test equipment for rolling fatigue life are as shown in Table 5 and FIGS. 17A and 17B as described above.
  • Table 6 shows the results of this rolling fatigue life test.
  • the Y material of the comparative example is the same as the L material of the X material, which was also subjected to normal quenching in the same comparative example.
  • the service life (the life of one of the 10 specimens that breaks) is 3.1 times longer, and the effect of extending the life by carbonitriding is recognized.
  • the Z material of the present invention shows a long life of 1.74 times that of the B material and 5.4 times that of the X material. The main reason for this improvement is thought to be the refinement of the microstructure.
  • the Charpy impact value of the carbonitrided ⁇ material is X
  • FIG. 18 is a view showing a test piece of the static fracture toughness test. After introducing a pre-crack about 1 mm into the notch of this test piece, a static load by three-point bending was applied to determine the fracture load P. The following formula was used to calculate the fracture toughness value ( KiC value). The test results are shown in Table 8 .
  • Klc (PLv r aXBW 2 ) ⁇ 5.8 ⁇ 9. 2 (a / W) +43.6 (a / W) 2
  • the brazing material of the present invention example can obtain a value about 1.2 times that of the comparative example. It was.
  • the static crushing strength test piece had the shape shown in FIG.
  • a static crushing strength test was performed with a load applied in the p direction.
  • Table 9 shows the test results.
  • the carbonitriding material subjected to carbonitriding is slightly lower than the ordinary quenching X material.
  • the brazing material of the example of the present invention has an improved static crushing strength than that of the brazing material, and a level comparable to that of the X material is obtained.
  • Table 10 shows the measurement results of the dimensional change over time at a holding temperature of 130 ° C and a holding time of 500 hours, together with the surface hardness and the amount of retained austenite (50 m depth).
  • the Z material of the example of the present invention has 2 minutes It turns out that it is suppressed to 1 or less.
  • Table 11 shows the results of tests conducted on the relationship between the nitrogen content and the rolling life under the contamination condition.
  • the tapered roller bearing shown in FIG. 8 is used, and in Examples 1 to 5, all of the outer ring 13, the inner ring 14, the tapered ring, and the roller 16 are manufactured by the heat treatment pattern shown in FIG. .
  • countless indentations shown in Tables 1 and 2 are formed on the surface of the tapered rollers innumerably.
  • Comparative Example 1 is a standard hardened product
  • Comparative Example 2 is a standard carbonitrided product.
  • Comparative Example 3 is a case where only the amount of nitrogen is excessive although the same treatment as in the embodiment of the present invention is performed.
  • the test conditions are as follows.
  • Test bearing Tapered, roller bearing 30206 (both inner and outer rings and rollers are made of JIS high carbon chrome bearing steel class 2 (SUJ2))

Abstract

 転がり軸受の少なくとも転動体の表面に、微小凹形状のくぼみをランダムに無数に設け、前記くぼみの平均面積を30~100μm2の範囲内とし、かつ、Rymaxを0.4~1.0の範囲内とする。

Description

明 細 書
転がり軸受
技術分野
[0001] この発明は転がり軸受に関するもので、たとえば自動車のトランスミッションの軸支 持部に使用されるころ軸受に適用することができる。
背景技術
[0002] 特開平 2— 168021号公報、特開平 6— 42536号公報に、転動体の表面に微小な 凹凸を形成して油膜形成能力を向上させた転がり軸受が記載されている。上記従来 の技術では、ころ軸受のピーリング損傷等潤滑不良に起因する損傷の対策として、こ ろの転動面および Zまたは内外輪の軌道面に微小凹形状のくぼみを設け、面粗さを パラメータ Rqniで表示したとき、軸方向面粗さ Rqni (L)と円周方向面粗さ Rqni (C)と の比の値 Rqni (L) ZRqni (C)が 1. 0以下となり、かつ、表面粗さのパラメータ Skが— 1. 6以下となるようにし、これにより、相手面が粗面でも仕上げのよい面でも長寿命と なるようにしている。
発明の開示
[0003] 近年、自動車トランスミッションをはじめ転がり軸受が使用される部位は小型化、高 出力化がますます進んでおり、潤滑油の低粘度化等使用環境が高荷重 ·高温ィ匕す る傾向にある。このため軸受にとつては今まで以上に厳しい潤滑環境へと変化してお り、潤滑不良による表面起点剥離や高面圧化による疲労寿命の低下、異物環境下で の剥離が発生しやすくなつてきている。そこで、低粘度過酷潤滑、異物環境、清浄油 潤滑等いかなる潤滑条件下でも寿命向上を図る必要がある。
[0004] 従来の微小凹部形状のくぼみは面粗さをパラメータ Rqniで表示したとき、軸方向面 粗さ Rqni (L)と円周方向面粗さ Rqni (C)との比の値 Rqni (L) ZRqi (C)が 1. 0以下と なり(Rqni≥0. 10)、あわせて面粗さのパラメータ Skが一 1. 6以下となるようにしてお り、これにより相手面が粗面でも仕上げ面のよい面でも長寿命になるようにしているが 、低粘度、希薄潤滑下で油膜厚さが極端に薄い場合にはその効果が十分に発揮で きない場合がある。 [0005] この発明の転がり軸受は、少なくとも転動体の表面に、微小凹形状のくぼみをラン ダムに無数に設け、前記くぼみの平均面積が 30〜: LOO μ m2の範囲内で、かつ、 Ry maxが 0. 4〜1. 0の範囲内である。少なくとも転動体の表面に、微小凹形状のくぼみ をランダムに無数に設けることによって、油膜形成能力が向上し、低粘度'希薄潤滑 下で極端に油膜厚さが薄い条件下でも長寿命となる。とくに、前記くぼみの平均面積 を 30〜100 /ζ πι2の範囲内とし、かつ、 Rymaxを 0. 4〜1. 0の範囲内としたことにより 、希薄潤滑下でも油膜切れを防ぐことが可能で、従来品に比べ、極端に油膜厚さが 薄 、条件下でも長寿命を得ることができる。
[0006] 前記転がり軸受の外方部材、内方部材および転動体のうち少なくともいずれか一 つの部材が、窒素富化層を有し、かつ、前記窒素富化層におけるオーステナイト結 晶粒の粒度番号が 10番を超える範囲にあるようにしてもよい。窒素富化層を形成し た上で、オーステナイト粒径を粒度番号で 11番以上に微細化することにより、転動疲 労寿命が大きく改善され、優れた耐割れ強度や耐経年寸法変化を得ることができる。
[0007] 周知のとおり、転がり軸受は転動体 (玉またはころ)の転がり運動によって回転また は揺動運動する軸を支持する機械要素である。通常、転動体は内輪の軌道と外輪の 軌道との間に転動自在に介在するが、軸の外周面を直接軌道面とした内輪を有しな Vヽタイプや、例えば歯車の内周面を直接軌道面とした外輪を有しな 、タイプも存在 する。内方部材、外方部材としたのは内輪、外輪に限らず軌道面を有する軸や歯車 等を排除しない趣旨である。また、少なくとも転動体の表面にとしたのは、軌道面にも 同様に微小凹形状のくぼみを形成したものを排除しない趣旨であり、また、転動体が ころの場合、転動面のみならず端面にも微小凹形状のくぼみを形成したものを排除 しない趣旨である。
[0008] 前記くぼみを設けた面の面粗さをパラメータ Rqniで表示したとき、軸方向面粗さ Rq ni (L)と円周方向面粗さ Rqni (C)との比の値 Rqni (L) ZRqni (C)が 1. 0以下である ようにしてもよい。パラメータ Rqniとは、粗さ中心線力 粗さ曲線までの高さの偏差の 自乗を測定長さの区間で積分し、その区間で平均した値の平方根であり、別名自乗 平均平方根粗さともいう(ISO 4287:1997) o Rqniは拡大記録した断面曲線、粗さ曲線 から数値計算で求められ、粗さ計の触針を幅方向および円周方向に移動させて測 定する。
[0009] 窒素富化層は、軌道輪 (外輪もしくは内輪)または転動体の表層に形成された窒素 含有量を増加した層であって、例えば浸炭窒化、窒化、浸窒などの処理によって形 成させることができる。窒素富化層における窒素含有量は、好ましくは 0. 1%〜0. 7 %の範囲である。窒素含有量が 0. 1%より少ないと効果がなぐ特に異物混入条件 での転動寿命が低下する。窒素含有量が 0. 7%より多いと、ボイドと呼ばれる空孔が できたり、残留オーステナイトが多くなりすぎて硬度が出なくなつたりして短寿命にな る。軌道輪に形成された窒素富化層については、窒素含有量は、研削後の軌道面 の表層 50 mにおける値であって、例えば EPMA (波長分散型 X線マイクロアナライ ザ)で測定することができる。
[0010] また、オーステナイト結晶粒の粒度番号が 10番を超えるほどオーステナイト粒径が 微細であることにより、転動疲労寿命を大幅に改良することができる。オーステナイト 粒径の粒度番号が 10番以下では、転動疲労寿命は大きく改善されないので、 10番 を超える範囲とする。通常、 11番以上とする。オーステナイト粒径は細かいほど望ま しいが、通常、 13番を超える粒度番号を得ることは難しい。なお、上記の軸受部品の オーステナイト粒は、窒素富化層を有する表層部でも、それより内側の内部でも変化 しない。したがって、上記の結晶粒度番号の範囲の対象となる位置は、表層部およ び内部とする。オーステナイト結晶粒は、たとえば焼入れ処理を行なった後も焼入れ 直前のオーステナイト結晶粒界の痕跡が残っており、その痕跡に基づいた結晶粒を いう。
[0011] 窒素富化層における窒素含有量は 0. 1%〜0. 7%の範囲とすることができる。
[0012] 前記部材が軌道輪である場合、前記窒素含有量は、研削後の軌道面の表層 50 mにおける値とすることができる。
[0013] これらのおよびその他のこの発明の目的および特徴は添付図面を参照して以下に 述べるところから一層明瞭になるであろう。
図面の簡単な説明
[0014] [図 1]針状ころ軸受の断面図である。
[図 2]寿命試験に用いた針状ころ軸受の断面図である。 [図 3]試験軸受における転動体の仕上げ面状況を示す粗さ曲線図である。
[図 4]試験軸受における転動体の仕上げ面状況を示す粗さ曲線図である。
[図 5]試験軸受における転動体の仕上げ面状況を示す粗さ曲線図である。
[図 6]試験装置の概略図である。
[図 7]寿命試験結果を示すグラフである。
[図 8]円す 、ころ軸受の断面図である。
[図 9A]実施例の金属接触率を示すグラフである。
[図 9B]比較例の金属接触率を示すグラフである。
圆 10]2円筒試験機の全体概略図である。
圆 11]この発明の実施の形態における転がり軸受を示す概略断面図である。
圆 12]この発明の実施の形態における転がり軸受の熱処理方法を説明する図である 圆 13]この発明の実施の形態における転がり軸受の熱処理方法の変形例を説明す る図である。
[図 14A]本発明例の軸受部品のミクロ組織、とくにオーステナイト粒を示す図である。
[図 14B]従来の軸受部品のミクロ組織、とくにオーステナイト粒を示す図である。
[図 15A]図 14Aを図解したオーステナイト粒界を示す。
[図 15B]図 14Bを図解したオーステナイト粒界を示す。
[図 16]静圧壊強度試験 (破壊応力値の測定)の試験片を示す図である。
圆 17A]転動疲労寿命試験機の概略正面図である。
[図 17B]図 17Aの試験機の側面図である。
圆 18]静的破壊靭性試験の試験片を示す図である。
発明を実施するための最良の形態
転がり軸受は内輪と外輪と転動体とを主要な構成要素としている。そして、転動体 の転動面および端面ならびに内外輪の軌道面(さらに円すいころ軸受の内輪につい ては大つば面)の少なくとも一つに、微小凹形状のくぼみをランダムに無数に形成し て微小粗面化してある。この微小粗面は、くぼみの平均面積が 30〜: LOO /z m2の範 囲内で、かつ、くぼみを設けた面の Rymaxが 0. 4〜1. 0の範囲内である。また、面粗 さを各表面の軸方向と円周方向のそれぞれで求めてパラメータ Rqniで表示したとき、 軸方向面粗さ Rqni (L)と円周方向面粗さ Rqni (C)の比の値 Rqni (L) /Rqni (C)を 1 . 0以下にするとともに、表面粗さのパラメータ Sk値が軸方向、円周方向とも 1. 6以 下になつている。このような微小粗面を得るための表面カ卩ェ処理としては、特殊なバ レル研磨によって、所望の仕上げ面を得ることができる力 ショット等を用いてもよい。 微小凹形状のくぼみの平均面積を 30〜: LOO m2の範囲内とし、くぼみを設けた面 の Rymaxを 0. 4〜1. 0 mの範囲内とすることにより、極端に油膜厚さが薄い条件下 でも、高い油膜形成効果を発揮することを可能とし、油膜パラメータ Λ = 0. 13という 非常に過酷な潤滑条件下でも充分な長寿命化効果を得ることができる。
[0016] パラメータ Rymax、 Rqniの測定方法、条件を例示するならば次のとおりである。なお 、これらのパラメータで表される表面性状を、転がり軸受の転動体や軌道輪といった 構成要素について測定する場合、一ヶ所の測定値でも代表値として信頼できるが、 たとえば直径方向に対向する二ケ所を測定するとよい。
パラメータ算出規格: JIS B 0601 : 1994 (サーフコム JIS 1994)
カットオフ種另 U :ガウシアン
測定長さ: 5 λ
カットオフ波長: 0. 25mm
測定倍率: X 10000
測定速度: 0. 30mm/s
測定箇所:ころ中央部
測定数: 2
測定装置:面粗さ測定器サーフコム 1400A (東京精密株式会社)
[0017] ころの転動面に設ける微小凹形状のくぼみの場合、転動面全体に占めるくぼみの 面積率を 5〜20%の範囲内とし、くぼみの平均面積は等価円直径 3 μ ΐη φ以下を除 いて整理したとき 30〜100 /ζ πι2になっている。 Rymaxが 0. 4〜1. 0の範囲外で、く ぼみの面積率が 20%を越え、平均面積が 100 m2を越えると、接触有効長さが減 少し、長寿命の効果は減少する傾向にある。
[0018] くぼみの定量的測定を行うには、ころの表面を拡大し、その画像力も市販されてい る画像システムにより定量ィ匕できる。さらには、特開 2001— 183124号の表面性状 検査方法および表面性状検査装置を用いれば安定して精度良く測定することができ る。画像の白い部分は表面平坦部、微小なくぼみは黒い部分として解析する。測定 条件は次のとおりである。また、くぼみの面積、平均面積を転がり軸受の転動体ゃ軌 道面といった構成要素について測定する場合、一ヶ所の測定値でも代表値として信 頼できるが、たとえば二ケ所を測定するとよい。
面積率:観察視野範囲で 2値ィ匕閾値 [ (明部の輝度 +暗部の輝度) Z2]よりも小さい 画素 (黒)の占める割合
平均面積:黒の面積の合計 Z総数
柳 J定視野: 826 mX 620 m (ころの直径力 S φ 4未満 ίま 413 mX 310 m力望ま しい)
測定箇所:ころ中央部
測定数: 2
図 1は転がり軸受の第一の例を示しており、この転がり軸受 1は転動体として針状こ ろ 2を外輪 3に組み込んだ針状ころ軸受であり、針状ころ 2で相手軸 4を支持するよう になっている。針状ころ表面に、仕上面の異なる表面処理を施した複数種類の針状 ころ軸受を製作し、寿命試験を行なった結果について説明する。寿命試験に用いた 針状ころ軸受は、図 2に示すように、外径 Dr= 33mm、内径 dr= 25mm、針状ころ 2 の直径 D=4mm、長さ L = 25. 8mmで、 15本の針状ころを用いた保持器 5付きの 軸受である。試験軸受として針状ころの表面粗さ仕上の異なる 3種類を製作した。す なわち、研削後スーパーフィニッシュを施した軸受 A (比較例)と、微小凹形状のくぼ みをランダムに無数に形成した軸受 B (比較例)および軸受 C (実施例)とである。各 試験軸受の針状ころにおける仕上面状況を図 3ないし図 5に示す。具体的には、図 3 は軸受 Aの表面粗さ、図 4は軸受 Bの表面粗さ、図 5は軸受 Cの表面粗さをそれぞれ 示す。また、各試験軸受の表面仕上面の特性値パラメータ一覧を表 1に示す。なお、 表 1中、パラメータ Skとは、粗さ曲線の歪み度 (スキューネス)を指し (ISO 4287:1997) 、凹凸分布の非対称性を知る目安の統計量であり、ガウス分布のような対称な分布 では Sk値は 0に近くなり、凹凸の凸部を削除した場合は負、逆の場合は正の値をとる ことになる。 Sk値のコントロールは、バレル研磨機の回転速度、加工時間、ワーク投 入量、チップの種類と大きさ等を選ぶことにより行える。たとえば、 Sk値を幅方向、円 周方向とも 1. 6以下とすることにより、微小凹形状のくぼみが油溜りとなり、圧縮さ れても滑り方向、直角方向への油のリークは少なぐ油膜形成に優れ、油膜形成状 況は良好で、表面損傷を極力抑える効果がある。なお、 Rqni (LZC)については、軸 受 、 Cは 1. 0以下であり、軸受 Aは 1. 0前後の値である。
[0020] [表 1]
Figure imgf000008_0001
[0021] 使用した試験装置は図 6に概略図で示したようなラジアル荷重試験機 11で、回転 軸 12の両側に試験軸受 1を取り付け、回転と荷重を与えて試験を行なうものである。 試験に用いたインナレース (相手軸)の仕上は研磨仕上の RaO. 10〜0. 16 /z mであ る。ァウタレース (外輪)も共通である。試験条件は以下のとおりである。
軸受ラジアル荷重: 2000kgf
回転数: 4000rpm
潤滑剤:クリセフォイル H8 (試験条件で 2cst)
[0022] 図 7に油膜パラメータ Λ =0. 13の下での寿命試験結果を示す。同図の縦軸が L10 寿命 (h)を表している。同図から明らかなとおり、軸受 Aが 78h、軸受 Bが 82hであつ たのに対して軸受 Cは 121hであった。このデータが示すように、実施例である軸受 C は、油膜パラメータ Λ =0. 13という非常に過酷な潤滑条件下でも長寿命効果を得る ことができる。
[0023] 次に、図 8に、転がり軸受の第二の例として円すいころ軸受を示す。円すいころ軸 受は転動体として円す 、ころ 16を使用したラジアル軸受で、外輪 13の軌道と内輪 1 4の軌道との間に複数の円すいころ 16が転動自在に介在させてある。運転中、円す いころ 16の転動面 17が外輪 13および内輪 14の軌道と転がり接触するほか、円すい ころ 16の大端面 18が内輪 14の大つば 15の内側面と滑り接触する。したがって、円 すいころ 16の場合、転動面 17のほか大端面 18にも微小凹形状のくぼみをランダム に無数に形成させてもよい。同様に、内輪 14の場合、軌道面のほか大つば 5の内側 面にも微小凹形状のくぼみをランダムに無数に形成させてもよい。
[0024] 円すいころの転動面を滑らかな面に仕上げた従来の円すいころ軸受 A, B (比較例 )と、円すいころの転動面に微小凹形状のくぼみをランダムに無数に形成した軸受 C E (比較例)ならびに軸受 F, G (実施例)について行った寿命試験について説明す る(表 2参照)。使用した軸受 A Gはいずれも、外輪の外径が 81mm、内輪の内径 力 S45mmの円すいころ軸受である。なお、比較例の軸受 A, Bにおけるころの転動面 は、研削後にスーパーフィニッシュ (超仕上げ)を施してカ卩ェされ、くぼみ力卩ェを施し てない。比較例の軸受 C Eならびに実施例の軸受 F, Gのころの転動面は、バレル 研磨特殊加工によって微小凹形状のくぼみがランダムに無数に形成してある。なお、 Rqni (LZC)については、ころ軸受 C Gは 1. 0以下であり、ころ軸受八、 Bは 1. 0前 後の値である。
[0025] [表 2]
Figure imgf000009_0001
図 10に示す 2円筒試験機を使用してピーリング試験を行 ヽ、金属接触率を評価し た。図 10において、駆動側円筒 22 (D円筒: Driver)と従動側円筒 24 (F円筒: Follow er)は各々の回転軸の片端に取り付けられ、 2本の回転軸 26, 28はそれぞれプーリ 3 0, 32を介して別々のモータで駆動できるようになつている。 D円筒 22側の軸 26をモ ータで駆動し、 F円筒 24は D円筒 22に従動させる自由転がりにした。 F円筒 24は、 表面処理に関して比較例と実施例の 2種類を用意した。試験条件等詳細は表 3のと おりである。
[表 3]
Figure imgf000010_0001
金属接触率の比較データを図 9Aおよび 9Bに示す。同図は横軸が経過時間、縦 軸が金属接触率を表し、図 9Aは実施例の軸受におけるころの転動面の金属接触率 を、図 9Bは比較例の軸受におけるころの転動面の金属接触率を、それぞれ示す。こ れらの図を対比すれば、比較例に比べて実施例では金属接触率が改善されている ことを明瞭に確認できる。言い換えれば、油膜形成率(= 100%—金属接触率)が、 実施例の軸受の方が比較例の軸受に比べて、運転開始時で 10%程度、試験終了 時(2時間後)で 2%程度、向上している。
[0029] 次に、図 11に転がり軸受の別の例として深溝玉軸受の断面を示す。この転がり軸 受は、外輪 34と、内輪 36と、外輪 34の軌道と内輪 36の軌道との間に転動自在に介 在させた複数の転動体 38と、保持器 40を主要な構成要素として成り立つている。転 動体 38はここでは玉であって、保持器 40により円周方向に所定間隔に保持されて いる。これら転がり軸受を構成する外輪 34、内輪 36および転動体 38の少なくとも一 つの軸受部品は窒素富化層を有する。窒素富化層を形成させるための処理の具体 例として浸炭窒化処理を含む熱処理について説明する。
[0030] 図 12は、本発明の実施の形態における転がり軸受の熱処理方法を説明する図で あり、図 13はその変形例を説明する図である。図 12は一次焼入れおよび二次焼入 れを行なう方法を示す熱処理パターンであり、図 13は焼入れ途中で材料を A
1変態 点温度未満に冷却し、その後、再加熱して最終的に焼入れする方法を示す熱処理 パターンである。これらの図において、処理 τでは鋼の素地に炭素や窒素を拡散さ
1
せたまま炭素の溶け込みを十分に行なった後、 A
1変態点未満に冷却する。次に、図 中の処理 Tにおいて、 A変態点温度以上かつ処理 Tよりも低温に再加熱し、そこか
2 1 1
ら油焼入れを施す。
[0031] 上記の熱処理により、従来の浸炭窒化焼入れすなわち浸炭窒化処理に引き続いて そのまま 1回焼入れするよりも、表層部分を浸炭窒化しつつ、割れ強度を向上させ、 経年寸法変化率を減少させることができる。上記図 12または図 13の熱処理パターン によって製造された本発明の転がり軸受は、オーステナイト結晶粒の粒径が従来の 2 分の 1以下となるミクロ組織を有している。上記の熱処理を受けた軸受部品は、転動 疲労に対して長寿命であり、割れ強度を向上させ、経年寸法変化率も減少させること ができる。結晶粒の微細化のために二次焼入れ温度を下げる熱処理工程をとるため 、残留オーステナイト量が表層および内部で減少する結果、すぐれた耐割れ強度や 耐経年寸法変化を得ることができるのである。
[0032] 図 14Aおよび 14Bは、軸受部品のミクロ組織、とくにオーステナイト粒を示す図であ る。図 14Aは本発明例の軸受部品であり、図 14Bは従来の軸受部品である。すなわ ち、図 12に示す熱処理パターンを適用した本発明の実施の形態である転がり軸受 の軌道輪のオーステナイト結晶粒度を図 14Aに示す。また、比較のため、従来の熱 処理方法による軸受鋼のオーステナイト結晶粒度を図 14Bに示す。また、図 15Aお よび 15Bに、上記図 14Aおよび 14Bを図解したオーステナイト結晶粒度を示す。これ らオーステナイト結晶粒度を示す組織より、従来のオーステナイト粒径 Ι3規格の 粒度番号で 10番であり、図 12または図 13による熱処理方法によれば 12番の細粒を 得ることができる。また、図 14Aの平均粒径は、切片法で測定した結果、 5. 6 / mで めった。
[0033] 次に、実施例について説明する。
実施例 I
[0034] JIS規格 SUJ2材 (1. 0重量%じ一 0. 25重量% — 0. 4重量%1^— 1. 5重量% Cr)を用いて、(1)水素量の測定、(2)結晶粒度の測定、(3)シャルピー衝撃試験、( 4)破壊応力値の測定、(5)転動疲労試験の各試験を行なった。表 4にその結果を示 す。
[0035] [表 4]
Figure imgf000012_0001
[0036] 各試料の製造履歴は次のとおりである。
[0037] 試料 A〜D (本発明例):浸炭窒化処理 850°C、保持時間 150分間。雰囲気は、 RX ガスとアンモニアガスとの混合ガスとした。図 12に示す熱処理パターンにおいて、浸 炭窒化処理温度 850°Cから一次焼入れをおこな!/、、、 、で浸炭窒化処理温度より 低い温度域 780°C〜830°Cに加熱して二次焼入れを行なった。ただし、二次焼入れ 温度 780°Cの試料 Aは焼入れ不足のため試験の対象力も外した。
[0038] 試料 E, F (比較例):浸炭窒化処理は、本発明例 A〜Dと同じ履歴で行 、、二次焼 入れ温度を浸炭窒化処理温度 850°C以上の 850°C〜870°Cで行なった。
[0039] 従来浸炭窒化処理品 (比較例):浸炭窒化処理 850°C、保持時間 150分間。雰囲 気は、 RXガスとアンモニアガスとの混合ガスとした。浸炭窒化処理温度からそのまま 焼入れを行い、二次焼入れは行わなかった。
[0040] 普通焼入れ品(比較例):浸炭窒化処理を行わずに、 850°Cに加熱して焼入れした 。二次焼入れは行わな力つた。
[0041] 次に、試験方法について説明する。
[0042] (1)水素量の測定
水素量は、 LECO社製 DH— 103型水素分析装置により、鋼中の非拡散性水素量 を分析した。拡散性水素量は測定してない。この LECO社製 DH—103型水素分析 装置の仕様を下記に示す。
分析範囲: 0. 01〜50. OOppm
分析精度: ±0. lppmまたは ± 3%H (いずれか大なるほう)
分析感度:0. Olppm
検出方式:熱伝導度法
試料重量サイズ: 1 Omg〜 35mg (最大:直径 12mm X長さ 1 OOmm)
加熱炉温度範囲: 50°C〜1100°C
試薬:アンハイドロン Mg (ClO ) 、ァスカライト NaOH
4 2
キャリアガス:窒素ガス、ガスドージングガス:水素ガス、いずれのガスも純度 99. 99 %以上、圧力 40psi (2. 8kgfZcm2)である。
[0043] 測定手順の概要は以下のとおりである。専用のサンプラーで採取した試料をサンプ ラーごと上記の水素分析装置に挿入する。内部の拡散性水素は窒素キャリアガスに よって熱伝導度検出器に導かれる。この拡散性水素は本実施例では測定しない。次 に、サンプラーから試料を取り出し、抵抗加熱炉内で加熱し、非拡散性水素を窒素キ ャリアガスによって熱伝導度検出器に導く。熱伝導度検出器において熱伝導度を測 定することによって非拡散性水素量を知ることができる。
[0044] (2)結晶粒度の測定
結晶粒度の測定は、 JIS G 0551の鋼のオーステナイト結晶粒度試験方法に基づ いて行った。
[0045] (3)シャルピー衝撃試験
シャルピー衝撃試験は、 JIS Z 2242の金属材料のシャルピー衝撃試験方法に基 づいて行なった。試験片は、 JIS Z 2202に示された Uノッチ試験片 (JIS 3号試験 片)を用いた。
[0046] (4)破壊応力値の測定
図 16は、静圧壊強度試験 (破壊応力値の測定)の試験片を示す図である。図中の P 方向に荷重を負荷して破壊されるまでの荷重を測定する。その後、得られた破壊荷 重を、下記に示す曲がり梁の応力計算式により応力値に換算する。なお、試験片は 図 16に示す試験片に限られず、他の形状の試験片を用いてもよい。
[0047] 図 16の試験片の凸表面における繊維応力を σ 、凹表面における繊維応力を σ と
1 2 すると、 σ および σ は下記の式によって求められる (機械工学便覧 Α4編材料力学
1 2
Α4— 40)。ここで、 Νは円環状試験片の軸を含む断面の軸力、 Αは横断面積、 eは
1 外半径、 eは内半径を表す。また、 κは曲がり梁の断面係数である。
2
σ = (N/A) + {M/ (A ) } [ l + e /{ K ( p +e ) } ]
1 0 1 0 1
σ = (Ν/Α) + {Μ/ (Α ) } [ 1— e Z — e ) } ]
0 2
Figure imgf000014_0001
[0048] (5)転動疲労寿命
転動疲労寿命試験の試験条件を表 5に示す。また、図 17Aおよび 17Bは、転動疲労 寿命試験機の概略図である。図 17Aは正面図であり、図 17Bは側面図である。図 17 Aおよび 17Bにおいて、転動疲労寿命試験片 48は、駆動ロール 42によって駆動さ れ、ボール 46と接触して回転している。ボール 46は、 3Z4インチのボールであり、案 内ロール 44にガイドされて、転動疲労寿命試験片 48との間で高 ヽ面圧を及ぼし合 いながら転動する。
[0049] 表 4に示した実施例 Iの試験結果を説明すると次のとおりである。
[0050] (1)水素量
浸炭窒化処理したままの従来浸炭窒化処理品は、 0. 72ppmと非常に高い値となつ ている。これは、浸炭窒化処理の雰囲気に含まれるアンモニア (NH )が分解して水
3
素が鋼中に浸入したためと考えられる。これに対し、試料 B〜Dは、水素量は 0. 37 〜0. 40ppmと半分近くまで減少している。この水素量は普通焼入れ品と同レベルで ある。
[0051] 上記の水素量の低減により、水素の固溶に起因する鋼の脆ィ匕を軽減することがで きる。すなわち、水素量の低減により、本発明例の試料 B〜Dのシャルピー衝撃値は 大きく改善されている。
[0052] (2)結晶粒度
結晶粒度は二次焼入れ温度が、浸炭窒化処理時の焼入れ (一次焼入れ)の温度より 低い場合、すなわち試料 B〜Dの場合、オーステナイト粒は、結晶粒度番号 11〜12 と顕著に微細化されて!/ヽる。試料 Eおよび Fならびに従来浸炭窒化処理品および普 通焼入れ品のオーステナイト粒は、結晶粒度番号 10であり、本発明例の試料 B〜D より粗大な結晶粒となっている。
[0053] (3)シャルピー衝撃試験
表 4によれば、従来浸炭窒化処理品のシャルピー衝撃値は 5. 33j/cm2であるのに 比して、本発明例の試料 B〜Dのシャルピー衝撃値は 6. 30〜6. 65jZcm2と高い 値が得られている。この中でも、二次焼入れ温度が低い方がシャルピー衝撃値が高 くなる傾向を示す。普通焼入れ品のシャルピー衝撃値は 6. 70jZcm2と高い。
[0054] (4)破壊応力値の測定
上記破壊応力値は、耐割れ強度に相当する。表 4によれば、従来浸炭窒化処理品 は 2330MPaの破壊応力値となっている。これに比して、試料 B〜Dの破壊応力値は 2650〜2840MPaと改善された値が得られて 、る。普通焼入れ品の破壊応力値は 2770MPaであり、試料 B〜Dの改良された耐割れ強度は、オーステナイト結晶粒の 微細化と並んで、水素含有率の低減による効果が大き!、と推定される。
[0055] (5)転動疲労試験
表 4によれば、普通焼入れ品は浸炭窒化層を表層部に有しないことを反映して、転 動疲労寿命 L は最も低い。これに比して従来浸炭窒化処理品の転動疲労寿命は 3
10
. 1倍となる。試料 B〜Dの転動疲労寿命は従来浸炭窒化処理品より大幅に向上する 。試料 E, Fは、従来浸炭窒化処理品とほぼ同等である。
[0056] 上記をまとめると、本発明例の試料 B〜Dは、水素含有率が低下し、オーステナイト 結晶粒度が 11番以上に微細化され、シャルピー衝撃値、耐割れ強度および転動疲 労寿命も改善される。
実施例 Π
[0057] 次に実施例 IIについて説明する。下記の X材、 Y材および Z材について、一連の試 験を行なった。熱処理用素材には、 JIS規格 SUJ2材(1. 0重量%C— 0. 25重量% Si— 0. 4重量%Mn—l. 5重量%Cr)を用い、 X材〜 Z材に共通とした。 X材〜 Z材 の製造履歴は次のとおりである。
X材 (比較例):普通焼入れのみ (浸炭窒化処理せず)。
Y材 (比較例):浸炭窒化処理後にそのまま焼入れ (従来の浸炭窒化焼入れ)。浸炭 窒化処理温度 845°C、保持時間 150分間。浸炭窒化処理の雰囲気は、 RXガス +ァ ンモユアガスとした。
Z材 (本発明例):図 12の熱処理パターンを施した軸受鋼。浸炭窒化処理温度 845 °C、保持時間 150分間。浸炭窒化処理の雰囲気は、 RXガス +アンモニアガスとした 。最終焼入れ温度は 800°Cとした。
[0058] (1)転動疲労寿命
転動疲労寿命の試験条件および試験装置は、上述したように、表 5ならびに図 17A および 17Bに示すとおりである。この転動疲労寿命試験結果を表 6に示す。
[0059] [表 5] 験片 2 X L 2.2円鐘試験泠
弒纖 Ϊ 0
相手鋼球 3/4インチ (19. 05 mm)
接触面圧 5. 88GFa
負荷速度 46 :240 c p m
潤滑油 タービン VGSS 強制循環給迪
[0060] [表 6]
Figure imgf000017_0001
[0061] 表 6によれば、比較例の Y材は、同じく比較例で普通焼入れのみを施した X材の L
10 寿命 (試験片 10個中 1個が破損する寿命)の 3.1倍を示し、浸炭窒化処理による長 寿命化の効果が認められる。これに対して、本発明例の Z材は、 B材の 1.74倍、また X材の 5.4倍の長寿命を示している。この改良の主因はミクロ組織の微細化によるも のと考えられる。
[0062] (2)シャルピー衝撃試験
シャルピー衝撃試験は、 Uノッチ試験片を用いて、上述の JISZ2242に準じた方法に より行なった。試験結果を表 7に示す。 [0063] [表 7]
Figure imgf000018_0001
[0064] 浸炭窒化処理を行なった γ材 (比較例)のシャルピー衝撃値は、普通焼入れの X材
(比較例)より高くな!/、が、 Ζ材は X材と同等の値が得られた。
[0065] (3)静的破壊靭性値の試験
図 18は、静的破壊靭性試験の試験片を示す図である。この試験片のノッチ部に、予 き裂を約 lmm導入した後、 3点曲げによる静的荷重を加え、破壊荷重 Pを求めた。 破壊靭性値 (KiC値)の算出には次に示す )式を用いた。また、試験結果を表 8に示 す。
Klc=(PLvr aXBW2){5. 8— 9. 2(a/W)+43. 6(a/W)2
一 75. 3(a/W)3 + 77. 5 (a/W)4} · · · (I)
[0066] [表 8]
Figure imgf000018_0002
予き裂深さが浸炭窒ィヒ層深さよりも大きくなつたため、比較例の X材と γ材とには違 いはない。しかし、本発明例の Ζ材は比較例に対して約 1. 2倍の値を得ることができ た。
[0068] (4)静圧壊強度試験
静圧壊強度試験片は、上述のように図 16に示す形状のものを用いた。図中、 p方 向に荷重を付加して、静圧壊強度試験を行なった。試験結果を表 9に示す。
[0069] [表 9]
Figure imgf000019_0001
[0070] 浸炭窒化処理を行なってレ、る Υ材は普通焼入れの X材よりもやや低レ、値である。し かしながら、本発明例の Ζ材は、 Υ材よりも静圧壊強度が向上し、 X材と遜色ないレべ ルが得られている。
[0071] (5)経年寸法変化率
保持温度 130°C、保持時間 500時間における経年寸法変化率の測定結果を、表 面硬度、残留オーステナイト量(50 m深さ)と併せて表 10に示す。
[0072] [表 10]
Figure imgf000019_0002
[0073] ^留オーステナイト量の多い Y材の寸法変化率に比べて、本発明例の Z材は 2分の 1以下に抑制されていることがわかる。
実施例 III
[0074] 表 11に、窒素含有量と異物混入条件下の転動寿命との関係について行なった試 験の結果を示す。この試験では、図 8に示す円すいころ軸受を使用し、実施例 1〜5 は図 12に示す熱処理パターンによって、外輪 13、内輪 14、円すレ、ころ 16のすベて を製造している。また、円すいころの表面には表 1、表 2に示す微小凹形状くぼみをラ ンダムに無数に形成してある。なお、比較例 1は標準焼入れ品、比較例 2は標準の浸 炭窒化品である。比較例 3は本発明実施例と同様の処理を施したものの窒素量のみ 過多の場合である。試験条件は次のとおりである。
供試軸受:円すレ、ころ軸受 30206 (内'外輪、ころ共に JISによる高炭素クロム軸受鋼 2種 (SUJ2)製)
ラジアル荷重: 17. 64kN
アキシァノレ荷重: 1. 47kN
回転速度: 2000rpm
硬質の異物混入 lgZL
[0075] [表 11]
Figure imgf000020_0001
[0076」 表 13より、実施例 1〜5に関しては、窒素含有量と異物寿命はほぼ比例関係にある ことがわかる。ただし、窒素含有量が 0. 72の比較例 3では異物混入下の転動寿命が 極端に低下していることに照らし、窒素含有量は 0. 7を上限とするのがよい。
ここに開示された実施の形態はすべての点で例示であって制限的なものではない と考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によつ て示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれること が意図される。

Claims

請求の範囲
[1] 少なくとも転動体の表面に、微小凹形状のくぼみをランダムに無数に設け、前記く ぼみの平均面積が 30〜100 /ζ πι2の範囲内で、かつ、 Rymaxが 0. 4〜1. 0の範囲 内である転がり軸受。
[2] 前記転がり軸受の外方部材、内方部材および転動体のうち少なくともいずれか一 つの部材が、窒素富化層を有し、かつ、前記窒素富化層におけるオーステナイト結 晶粒の粒度番号が 10番を超える範囲にある、請求項 1の転がり軸受。
[3] 前記くぼみを設けた面の面粗さをパラメータ Rqniで表示したとき、軸方向面粗さ Rq ni (L)と円周方向面粗さ Rqni (C)との比の値 Rqni (L) ZRqni (C)が 1. 0以下である、 請求項 1または 2の転がり軸受。
[4] 前記窒素富化層における窒素含有量が 0. 1%〜0. 7%の範囲である、請求項 2ま たは 3の転がり軸受。
[5] 前記少なくともいずれか一つの部材が軌道輪であって、前記窒素含有量が、研削 後の軌道面の表層 50 mにおける値である、請求項 4の転がり軸受。
PCT/JP2005/009449 2004-06-25 2005-05-24 転がり軸受 WO2006001149A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/628,671 US20080193069A1 (en) 2004-06-25 2005-05-24 Rolling Bearing
EP05743781A EP1770292A4 (en) 2004-06-25 2005-05-24 ROLLER BEARING

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-188690 2004-06-25
JP2004188690A JP2006009964A (ja) 2004-06-25 2004-06-25 転がり軸受
JP2004198617A JP2006022819A (ja) 2004-07-05 2004-07-05 転がり軸受
JP2004-198617 2004-07-05

Publications (1)

Publication Number Publication Date
WO2006001149A1 true WO2006001149A1 (ja) 2006-01-05

Family

ID=35781677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/009449 WO2006001149A1 (ja) 2004-06-25 2005-05-24 転がり軸受

Country Status (3)

Country Link
US (1) US20080193069A1 (ja)
EP (1) EP1770292A4 (ja)
WO (1) WO2006001149A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602005027842D1 (de) * 2004-06-25 2011-06-16 Ntn Toyo Bearing Co Ltd Walzlager
JP5920221B2 (ja) 2010-11-12 2016-05-18 日本精工株式会社 作動装置の製造方法
US10781857B2 (en) 2016-11-08 2020-09-22 Carrier Corporation Hybrid bearings

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0130008B2 (ja) * 1984-07-14 1989-06-15 Ntn Toyo Bearing Co Ltd
JPH03117725A (ja) * 1989-09-28 1991-05-20 Ntn Corp 転がり軸受
JPH04266410A (ja) * 1991-02-21 1992-09-22 Ntn Corp 圧延用ローラの軸受
JPH04282018A (ja) * 1991-02-21 1992-10-07 Ntn Corp オートマチックトランスミッション用軸受
JPH0642536A (ja) * 1988-05-30 1994-02-15 Ntn Corp 転動ローラ
JPH06341441A (ja) * 1993-05-31 1994-12-13 Nippon Seiko Kk 転がり軸受
JPH08311603A (ja) * 1994-09-29 1996-11-26 Nippon Seiko Kk 転がり軸受
JP2000205284A (ja) * 1999-01-13 2000-07-25 Koyo Seiko Co Ltd 転がり摺動部品
JP2003226919A (ja) * 2001-11-29 2003-08-15 Ntn Corp 軸受部品および転がり軸受

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2219359B (en) * 1988-05-30 1992-11-04 Ntn Toyo Bearing Co Ltd Roller elements for machine parts such as roller bearings.
JP2548811B2 (ja) * 1989-11-30 1996-10-30 エヌティエヌ株式会社 機械部品
US7438477B2 (en) * 2001-11-29 2008-10-21 Ntn Corporation Bearing part, heat treatment method thereof, and rolling bearing
ES2255651T3 (es) * 2002-10-17 2006-07-01 Ntn Corporation Rodamiento de rodillos de tipo integral y seguidores de levas de rodillos para motor.

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0130008B2 (ja) * 1984-07-14 1989-06-15 Ntn Toyo Bearing Co Ltd
JPH0642536A (ja) * 1988-05-30 1994-02-15 Ntn Corp 転動ローラ
JPH03117725A (ja) * 1989-09-28 1991-05-20 Ntn Corp 転がり軸受
JPH04266410A (ja) * 1991-02-21 1992-09-22 Ntn Corp 圧延用ローラの軸受
JPH04282018A (ja) * 1991-02-21 1992-10-07 Ntn Corp オートマチックトランスミッション用軸受
JPH06341441A (ja) * 1993-05-31 1994-12-13 Nippon Seiko Kk 転がり軸受
JPH08311603A (ja) * 1994-09-29 1996-11-26 Nippon Seiko Kk 転がり軸受
JP2000205284A (ja) * 1999-01-13 2000-07-25 Koyo Seiko Co Ltd 転がり摺動部品
JP2003226919A (ja) * 2001-11-29 2003-08-15 Ntn Corp 軸受部品および転がり軸受

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JAPANESE STANDARDS ASSOCIATION: "JIS B 0601:2001", 31 January 2002, JIS HANDBOOK KIKAI YOS, pages: 177 - 190, XP002997798 *

Also Published As

Publication number Publication date
US20080193069A1 (en) 2008-08-14
EP1770292A1 (en) 2007-04-04
EP1770292A4 (en) 2007-08-01

Similar Documents

Publication Publication Date Title
WO2006001124A1 (ja) 転がり軸受
JP2007046717A (ja) ジョイント用爪付き転動軸
WO2013084864A1 (ja) 機械部品、転がり軸受、円錐ころ軸受および機械部品の製造方法
CN112119169A (zh) 轴承部件
WO2014196428A1 (ja) 軸受部品および転がり軸受
JP5163183B2 (ja) 転がり軸受
JP2008151236A (ja) 転がり軸受
JPWO2008050378A1 (ja) 歯車および歯車駆動装置
WO2006001149A1 (ja) 転がり軸受
JP2007092963A (ja) 油圧ポンプ用転がり軸受
JP4857746B2 (ja) 転がり支持装置
JP2007186760A (ja) 転がり軸受用軌道輪の製造方法及び転がり軸受
JP2005114144A (ja) 転がり軸受
WO2006001144A1 (ja) 転がり軸受
JP2003227518A (ja) 軸受部品および転がり軸受
WO2018159840A1 (ja) 軸受部品及び転がり軸受、ならびに軸受部品の製造方法
JP2006112558A (ja) 円すいころ軸受
JP2006316821A (ja) プラネタリギヤ機構用転がり軸受
JP2005114148A (ja) 転がり軸受
JP4362394B2 (ja) コンプレッサ用軸受
JP4757458B2 (ja) 転がり軸受
JP2006022820A (ja) 転がり軸受
CN1973144A (zh) 滚动轴承
JP2006112557A (ja) 円すいころ軸受
JPH1068419A (ja) 転がり軸受

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005743781

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580021198.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005743781

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11628671

Country of ref document: US