WO2005124447A1 - 分極反転部の製造方法 - Google Patents

分極反転部の製造方法 Download PDF

Info

Publication number
WO2005124447A1
WO2005124447A1 PCT/JP2005/006981 JP2005006981W WO2005124447A1 WO 2005124447 A1 WO2005124447 A1 WO 2005124447A1 JP 2005006981 W JP2005006981 W JP 2005006981W WO 2005124447 A1 WO2005124447 A1 WO 2005124447A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
polarization inversion
conductive
base
length
Prior art date
Application number
PCT/JP2005/006981
Other languages
English (en)
French (fr)
Inventor
Shoichiro Yamaguchi
Yuichi Iwata
Kengo Suzuki
Original Assignee
Ngk Insulators, Ltd.
Ngk Optoceramics Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ngk Insulators, Ltd., Ngk Optoceramics Co., Ltd. filed Critical Ngk Insulators, Ltd.
Priority to DE112005001394.4T priority Critical patent/DE112005001394B4/de
Priority to KR1020067027316A priority patent/KR101135827B1/ko
Publication of WO2005124447A1 publication Critical patent/WO2005124447A1/ja
Priority to US11/636,232 priority patent/US7668410B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/3558Poled materials, e.g. with periodic poling; Fabrication of domain inverted structures, e.g. for quasi-phase-matching [QPM]

Definitions

  • the present invention relates to a method of manufacturing a polarization inversion unit.
  • the present invention relates to a method of manufacturing a polarization inversion part by a voltage application method.
  • Second harmonic of quasi phase matching (Q uasi -P hase-matching) method in which a periodically poled structure is formed in a ferroelectric single crystal such as lithium niobate single crystal or lithium tantalate single crystal Generation (Se econd-H armo nic -G en- eration) devices can generate light of a relatively arbitrary wavelength, from ultraviolet to infrared. This device is applicable to a wide range of applications such as optical disk memory, medicine, photochemistry, and various light measurements.
  • Patent Document 1 In order to obtain high conversion efficiency in the second harmonic generation device, it is necessary to form a deep polarization inversion structure in the ferroelectric single crystal.
  • the substrate surface is inclined by 3 ° with respect to the polarization axis of the ferroelectric crystal, and a comb electrode and a rod electrode are formed on the surface of the substrate.
  • Several low electric resistance portions are formed between the tip of each electrode piece and the rod-like electrode.
  • a polarization inversion portion is formed corresponding to the electrode piece of the comb-like electrode, and polarization inversion is correspondingly made to each low electric resistance portion. It is assumed that a part is formed (Fig. 2 8).
  • the length of the low resistance portion is preferably 10 to 30 ⁇ ⁇ ⁇ m, for example, 20 ⁇ m. Disclosure of the invention
  • a polarization inversion portion is surely formed corresponding to the electrode piece of the comb electrode, and polarization corresponding to each low electric resistance portion is also polarized together with this. It is not impossible to form an inversion. However, since there is a predetermined gap between the tip of the electrode piece of the comb electrode and each low electrical resistance portion, and there is also a gap between adjacent low electrical resistance portions, they correspond to each other. A gap also occurs between the polarization inversion parts. That is, the respective polarization inversions are formed at positions separated from each other.
  • the polarization reversed portion overlapping with the fundamental wave is only an arbitrary force corresponding to the waveguide position.
  • one polarization inversion unit is set to the waveguide center, adjacent polarization inversion units are often located outside the waveguide. Therefore, it is considered that the second harmonic generation efficiency is not particularly improved.
  • the period is wider than 4 ⁇ 1, a deep inversion structure is easily obtained, but in a region where the period is 4 ⁇ or less, when attempting to obtain a deep inversion structure, adjacent inversion portions are likely to be continuous, The periodicity is easily disturbed. As a result, the wavelength conversion efficiency may be degraded.
  • An object of the present invention is to provide a novel method of forming a domain inversion part extending to a deep position from the surface of a substrate when manufacturing the domain inversion part by a so-called voltage application method.
  • a voltage application method is provided by using a comb-shaped electrode having a plurality of electrode parts and a feeding part provided on one surface of a ferroelectric single crystal substrate which is divided into single domains.
  • each electrode unit includes a base extending from the power supply unit and a plurality of conductive parts separated from the base, and the length of the conductive part closest to the base is longer than that of the base. It is characterized in that the length of the conductive portion at the tip of the electrode portion is short.
  • a method of applying a voltage application method using a comb-shaped electrode having a plurality of electrode parts and a feeding part provided on one surface of a single-divided ferroelectric single crystal substrate A method of manufacturing a polarization inversion unit, wherein each electrode unit includes a base extending from the power supply unit and a plurality of conductive units separated from the base, and a gap between the conductive units is 0.5 m.
  • the feature is that it is 5.0 5m or less.
  • the present inventor has found that the configuration of the conductive film has a great influence on the state of the polarization inversion portion to be formed, when a plurality of mutually separated conductive films are provided in the electrode portion constituting the interdigital transducer.
  • the present invention has been reached based on this finding.
  • the polarization inversion parts extending from the respective conductive parts become easy to connect with each other, and it becomes easy to form a periodic polarization inversion part with a short period.
  • the average length of the conductive part is less than 4 ⁇ m, there will be parts where polarization inversion is not likely to occur, causing variations, so the average length of the conductive part should be 4 ⁇ m or more.
  • the inventors of the present invention provide a plurality of conductive films separated from one another in the electrode part constituting the comb-like electrode, ⁇ ⁇ ⁇ Conductivity at the tip of the electrode part rather than the length da of the conductive part closest to the base It has been found that by reducing the length db of the part, the polarization inversion parts extending from the respective conductive parts become easy to connect with each other, and it becomes easy to form a periodic polarization inversion part having a short period.
  • the difference between d a and d b is preferably l O ⁇ m or more, and more preferably 5 / m or more. Further, d a is preferably 5 m or less, and d b is preferably 2 ° m or less. Moreover, it is preferable that d a and d b be 4 / m or more.
  • the size of the gap between the conductive parts is set to 0.5 m or more and 5 xm or less.
  • the size of the gap between the conductive parts is preferably 4 ⁇ m or less, and more preferably 2 ⁇ m or less.
  • the gap between the conductive parts should be 0.5 ⁇ m or more, and more preferably 1 ⁇ m or more.
  • FIG. 1 is a plan view schematically showing a comb-shaped electrode 3 and a counter electrode 1 according to the invention of the first and third aspects.
  • FIG. 2 is a plan view showing the shape of the electrode portion 5.
  • FIG. 3 schematically shows a state in which the comb-shaped electrode 3, the counter electrode 1 and the uniform electrode 9 are formed on the substrate, and the periodically poled structure is formed by the voltage application method. It is a perspective view.
  • FIG. 4 is a plan view schematically showing a comb-shaped electrode 3 and a counter electrode 1 according to the invention of the second and third aspects.
  • FIG. 5 is a plan view showing the shape of the electrode portion 5A.
  • FIG. 6 is a graph showing the experimental results in Experiment A.
  • FIG. 7 is a photograph showing the polarization inversion shape obtained when the length d of the conductive part is 3 ⁇ m in Experiment A.
  • FIG. 8 is a photograph showing the polarization inversion shape (direction of depth) obtained in Experiment A1 of Experiment A.
  • FIG. 9 is a graph showing the experimental results in Experiment B.
  • FIG. 10 is a photograph showing the polarization inversion shape (planar direction) obtained in Experiment B1 of Experiment B. BEST MODE FOR CARRYING OUT THE INVENTION
  • the type of ferroelectric single crystal constituting the substrate is not limited. However, lithium niobate (L i N b ⁇ 3 ), lithium tantalate (L i T a 0 3 ), lithium diborate-lithium tantalate solid solution, K 3 L i 2 N b 5 0 5 Each single crystal is particularly preferred.
  • magnesium M g
  • zinc Z n
  • scandium S c
  • zinc In
  • the ferroelectric single crystal can contain a rare earth element as a doping component.
  • This rare earth element acts as an additive element for laser oscillation.
  • the rare earth element particularly, N d, E r, T m, H o, D y and P r are preferable.
  • the off-cut substrate By using a so-called off-cut substrate, it is possible to obtain a deep inverted structure as compared to a non-off-cut X-cut or y-substrate. If the off-cut angle is a slight inclination of about 5 degrees, the optical axis adjustment with the semiconductor laser that normally emits in TE mode does not require any angle correction for the off-cut, either. There is little efficiency degradation due to matching, and highly efficient wavelength conversion characteristics can be obtained. However, if the offset angle becomes large, the efficiency degradation due to polarization mismatch will increase. In such a case, it is necessary to correct the angle so that the plane of polarization matches.
  • the off force angle is not particularly limited. Particularly preferably, the offcut angle is greater than or equal to 1 °, or less than or equal to 20 °.
  • a so-called X-cut substrate, a Y-cut substrate, and a Z-cut substrate can be used as a substrate.
  • a so-called X-cut substrate, a Y-cut substrate, and a Z-cut substrate can be used as a substrate.
  • an X cut substrate or a Y force substrate apply uniform voltage between the comb-like electrode and uniform electrode, not on the back of the substrate but on one surface.
  • the counter electrode may be omitted, but may be left as a floating electrode.
  • a uniform electrode can be provided on the back surface, and a voltage can be applied between the comb-shaped electrode and the uniform electrode.
  • the counter electrode is not necessarily required, but may be left as a floating electrode.
  • FIG. 1 is a plan view showing a pattern of electrodes provided on a substrate.
  • FIG. 2 is an enlarged view showing a planar pattern of the electrode portion of the interdigital transducer shown in FIG.
  • FIG. 3 is a perspective view schematically showing a substrate 8 on which an electrode is formed.
  • an off force substrate made of a ferroelectric single crystal is used as the substrate 8. Since the polarization direction A of the ferroelectric single crystal is inclined at a predetermined angle, for example 5 °, with respect to the front surface 8 a and the back surface 8 b, this The substrate 8 is called an off-cut substrate.
  • the comb electrode 3 and the counter electrode 1 are formed on the surface 8 a of the substrate 8, and the uniform electrode 9 is formed on the back surface 8 b.
  • the comb-shaped electrode 3 is composed of a large number of elongated electrode parts 5 periodically arranged, and an elongated feeding part 2 connecting the roots of the multiple electrode parts 5.
  • the counter electrode 1 is formed of an elongated electrode piece, and the counter electrode 1 is provided to face the tip of the electrode unit 5.
  • the entire substrate 8 is polarized in the non-polarization reversal direction A. Then, a voltage of V 1 is applied between the comb electrode 3 and the counter electrode 1, and a voltage of V 2 is applied between the comb electrode 3 and the uniform electrode 9. Progress gradually parallel to direction B from 5 The polarization inversion direction B is directly opposite to the non-polarization inversion direction A. A non-polarization-inverted portion which is not polarization-inversion remains at a position which does not correspond to the electrode portion, that is, between adjacent polarization-inversion portions. In this way, a periodically poled structure is formed in which the poled portions and the non-poled portions are alternately arranged. The optical waveguide can be formed at the position where the periodically poled structure is formed.
  • FIG. 2 in particular, it comprises a base 6 extending from each electrode 5 power feeding part 2 and a plurality of conductive parts 5 a, 5 b, 5 c separated from the base 6.
  • the average length of the conductive portions 5a, 5b, 5c is 4 m or more and 9 / m or less. That is, 5a is the conductive portion closest to the base 6, 5b is the conductive portion at the tip, and 5c is the conductive portion between 5a and 5b.
  • the average of the lengths d of the conductive portions is calculated by summing the lengths of these conductive portions and dividing by the number of conductive portions.
  • the dimension e of the gap 10 between the adjacent conductive portions is set to not less than 0.5 and not more than 5.0 // m.
  • FIG. 4 is a plan view showing a pattern of electrodes provided on a substrate.
  • FIG. 5 is an enlarged view showing a planar pattern of the electrode portion of the interdigital transducer shown in FIG.
  • the comb-shaped electrode 3 A and the counter electrode 1 are formed on the front surface 8 a of the substrate 8, and the uniform electrode 9 is formed on the back surface 8 b.
  • the comb-shaped electrode 3A comprises a plurality of elongated electrode portions 5A periodically arranged, and an elongated power feeding portion 2 connecting the roots of the plurality of electrode portions 5A.
  • the counter electrode 1 is made of an elongated counter electrode piece, and the facing electrode is provided to face the tip of the electrode portion 5A.
  • the entire substrate 8 is polarized in the non-polarization reversal direction A. Then, a voltage of V 1 is applied between the comb electrode 3 A and the counter electrode 1, and a voltage of V 2 is applied between the comb electrode 3 A and the uniform electrode 9.
  • the electrode part 5 A gradually develops parallel to the direction B.
  • the polarization inversion direction B is opposite to the non-polarization inversion direction A.
  • each electrode portion 5 A includes a base 6 extending from the feeding portion 2 and a plurality of conductive portions 5 a, 5 b, 5 c, 5 d separated from the base 6.
  • the length d a of the conductive portion 5 a closest to the base 6 is made larger than the length d b of the most distal conductive portion 5 b.
  • the dimension e of the gap 10 between the adjacent conductive parts is set to be at least 0. 0 and at most 5.0 ⁇ m.
  • the difference between the length da of the conductive part 5a closest to the base 6 and the length db of the conductive part 5b at the foremost end is 10 ⁇ m or more. Is more preferable, and it is more preferable to set 5 .mu.m or more.
  • the length of the conductive part between the conductive part closest to the base 6 and the conductive part at the leading end is not limited to dc and dd, but (1 & more than 5 ⁇ 1 ⁇ 1, db is 2 0 // In this case, dc, dd may be equal to da, may be equal to db, and may be a value between da and db.
  • the length of the conductive portion gradually decreases from the base 6 to the leading edge.
  • the period of the periodically poled structure is not particularly limited, but it is particularly suitable, for example, to a period of 4 m or less, as an example.
  • the number of gaps between the conductive portions is not particularly limited, but may be, for example, 3 to 15.
  • the periodic polarization reversal structure was formed by the voltage application method.
  • the size e of the gap 10 of the conductive part is 1 / m
  • the length of each conductive part 5a, 5b, 5c is 8 ⁇ m each.
  • the base portion of the electrode portion 5 is provided with a base 6 longer than the conductive portion in order to improve the power supply to the electrode piece.
  • the distance a between the centers of the counter electrode 1 and the feeding electrode 2 is set to 40.
  • the length b of the base 6 is 33 m.
  • the depth of polarization inversion is described. To actually measure depth, It is necessary to cut the wafer, which is a destructive inspection. In order to avoid this destructive inspection, a 5-degree off-y-cut substrate is used, which is converted from the length of the polarization inversion portion of the wafer surface observed after the etching of fluoro-nitric acid.
  • the voltage application conditions were all the same. Specifically, no voltage was applied to VI in Fig. 2 and no wiring was performed, and only V2 applied a pulsed voltage of about 4 kV.
  • the substrate used is a Li Nb 03 substrate (0.5 mm thick) to which MgO is added, and an electric field higher than the coercive electric field is applied.
  • the electrode material Ta was used on both the upper and lower surfaces of the substrate, and when applying a voltage, it was carried out in an insulating foil in order to prevent discharge.
  • the size of the gap portion is 1 ⁇ m in the above experiment, 1 ⁇ m is preferable for a period less than 4 ⁇ m, and 2 ⁇ m for a period more than 4 ⁇ m. It was confirmed that polarization inversion becomes deep even if it is present. It should be noted that if a gap is provided in the electrode as shown in FIG. 1, there is concern that a gap will also be formed in the polarization inversion part, but the cross section was actually cut and observed after polishing processing, as shown in FIG. There was no gap corresponding to the gap between the electrodes, and a continuous polarization inversion was formed in the depth direction.
  • the periodically poled structure was fabricated according to the method described with reference to FIGS. However, assuming that the size e of the gap 10 of the conductive part is l ⁇ m, the lengths of the conductive parts 5a, 5c, 5d, 5b are from the base side to the tip 8, 10 , 1 2, 1 and 4 ⁇ m. The distance a between the centers of the counter electrode 1 and the feed electrode 2 was set to 400 / m. The length b of the base 6 is 9 3 / m.
  • FIG. 9 shows the depth of polarization inversion produced by the electrode structure of FIGS. 2, 4 and 5 and the result of an electrode designed without a gap for comparison. Since the voltage application condition is shorter than that of Experiment A, the voltage of V 2 was lowered and a pulse voltage of about 2 kV was applied.
  • FIG. 10 shows an example of cross-sectional observation of polarization inversion obtained by Experiment B1. Also in this case, it can be confirmed that there is no gap portion of the electrode, and continuous polarization inversion is formed in the cross-sectional direction.
  • experiment B 3 we designed and made a conductive part with a length of 14, 12, 10, and 8 ⁇ m from the tip to the base.
  • experiment B 3 we designed and made a conductive part with a length of 14, 12, 10, and 8 ⁇ m from the tip to the base.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

 電圧印加法によって分極反転部を製造するのに際して、基板の表面から深い位置にまで伸びるような分極反転部を形成する新規な方法を提供する。複数の電極部5と給電部1を有する櫛型電極を用いて、電圧印加法により分極反転部を製造する。各電極部5が、給電部1から延びる基部6と、基部6から分離された複数の導電部5a、5b、5cとを備えており、導電部の平均長さdが4μm以上、9μm以下である。あるいは、各電極部5が、給電部1から延びる基部6と、基部6から分離された複数の導電部5a、5b、5cとを備えており、基部に最も近い導電部5aの長さdaよりも電極部の最先端にある導電部5bの長さdbが小さい。

Description

明細書
分極反転部の製造方法 発明の属する技術分野
本発明は、 電圧印加法により分極反転部を製造する方法に関するもの である。
背景技術 ニオブ酸リチウム単結晶やタンタル酸リチウム単結晶などの強誘電体 単結晶に、 周期的な分極反転構造を形成した擬似位相整合 (Q u a s i -P h a s e -ma t c h i n g) 方式の第 2高調波発生 ( S e c o n d -H a rmo n i c一 G e n e r a t i o n) デバイスは、 紫外から 赤 外まで、 比較的任意な波長の光を発生させることができる。 このデバ イスは、 光ディスクメモリ用、 医学用、 光化学用、 及び各種光計測用な どの幅広い応用が可能である。
第 2高調波発生デバィスにおいて高い変換効率を得るためには、 強誘 電体単結晶内に深い分極反転構造を形成する必要がある。 特開平 1 1 一
7 2 8 0 9号公報に記載された方法では、 基板表面を強誘電体結晶の分 極軸に対して 3 ° 傾斜させ、 かつ基板の表面に櫛形電極と棒状電極とを 形成し、 櫛形電極の各電極片の先端と棒状電極との間に幾つかの低電気 抵抗部分を形成している。 そして、 櫛形電極と棒状電極との間に直流電 圧を印加すると、 櫛形電極の電極片に対応して分極反転部が形成される のと共に、 各低電気抵抗部分にもそれそれ対応して分極反転部が形成さ れるとしている (図 2 8 )。
具体的には、 低抵抗部分の長さは 1 0〜 3 0〃mが好ましく、 例えば 2 0〃mとすることが記載されている。 発明の開示
特開平 1 1一 7 2 8 0 9号公報記載の方法では、 確かに櫛形電極の電 極片に対応して分極反転部が形成され、 これと共に各低電気抵抗部分に 対応してそれそれ分極反転部を形成することは不可能ではない。しかし、 櫛形電極の電極片の先端と各低電気抵抗部分との間には所定の隙間があ り、 また隣接する低電気抵抗部分の間にも隙間があることから、 それぞ れに対応する各分極反転部の間にも隙間が発生する。 つま り、 各分極反 転部は互いに離れた位置に形成される。 このため、 こう した構造を持つ 周期分極反転構造を疑似位相整合方式の第二高調波発生素子に適用する と、 基本波と重なる分極反転部は、 導波路位置に対応する任意の一力所 のみとなる (つま り、 ある分極反転部を導波路中心に設定しょう とする と、 隣り合う分極反転部は導波路外に位置してしまう) 場合が多い。 こ のため、 第二高調波発生効率は特に向上しないものと考えられる。
更に、 周期が 4μΠ1よりも広い場合においては、 深い反転構造が得られ 易いが、 周期が 4μΐη以下になる領域では、 深い反転構造を得ようとする と、 隣接する反転部分が連続しやすくなり、 周期性が乱れやすい。 その 結果、 波長変換効率がかえって劣化するどいう可能性がある。
本発明の課題は、 いわゆる電圧印加法によって分極反転部を製造する のに際して、 基板の表面から深い位置にまで伸びるような分極反転部を 形成する新規な方法を提供することである。
第一の態様に係る発明は、 単分域化している強誘電体単結晶基板の一 表面上に設けられた、複数の電極部と給電部を有する櫛型電極を用いて、 電圧印加法により分極反転部を製造する方法であって、 各電極部が、 給 電部から延びる基部と、 基部から分離された複数の導電部とを備えてお り、 導電部の平均長さが 4 ^ m以上、 9〃m以下であることを特徴とす る。
第二の態様に係る発明は、 単分域化している強誘電体単結晶基板の一 表面上に設けられた、複数の電極部と給電部を有する櫛型電極を用いて、 電圧印加法により分極反転部を製造する方法であって、 各電極部が、 給 電部から延びる基部と、 基部から分離された複数の導電部とを備えてお り、 基部に最も近い導電部の長さよりも電極部の最先端にある導電部の 長さが小さいことを特徴とする。
第三の態様に係る発明は、 単分域化している強誘電体単結晶基板の一 表面上に設けられた、複数の電極部と給電部を有する櫛型電極を用いて、 電圧印加法により分極反転部を製造する方法であって、 各電極部が、 給 電部から延びる基部と、 基部から分離された複数の導電部とを備えてお り、 導電部間の隙間が 0 . 5 m以上、 5 . 0〃m以下であることを特 徴とする。
本発明者は、 櫛形電極を構成する電極部に複数の互いに切り離された 導電膜を設ける場合に、 この導電膜の構成が、 形成される分極反転部の 状態にたいして多大な影響をもたらすことを見いだし、 この発見に基づ いて本発明に到達した。
具体的には、 導電部の平均長さを 9〃m以下とすることによって、 各 導電部から延びる分極反転部が互いにつながり易くなり、 また短周期の 周期分極反転部を形成しやすくなる。 例えば、 周期 1 . 8μηιや 1 .3μπι とい つた従来方法では得られない短い周期で、 深い周期状分極反転構造を得 ることができた。 この観点からは、 導電部の平均長さを 5〃m以下とす ることが特に好ましい。
ただし、 導電部の平均長さが 4〃m未満になると、 分極反転部が生じ にくい部分があり、 バラツキが生ずるので、 導電部の平均長さを 4〃 m 以上とする。 また、 本発明者は、 櫛形電極を構成する電極部に複数の互いに切り離 された導電膜を設ける場合に、 ·基部に最も近い導電部の長さ d aよりも 電極部の最先端にある導電部の長さ d bを小さくすることによって、 各 導電部から延びる分極反転部が互いにつながり易くなり、 また短周期の 周期分極反転部を形成しやすくなることを見いだした。
本発明の観点からは、 d aと d bとの差は、 l O ^ m以上とすること が好ましく、 5 / m以上とすることが更に好ましい。 また、 d aは、 5 m以下とすることが好ましく、 d bは 2 ◦ m以下とすることが好ま しい。 また、 d a、 d bは 4 / m以上とすることが好ましい。
また、 本発明者は、 櫛形電極を構成する電極部に複数の互いに切り離 された導電膜を設ける場合に、 導電部間の隙間の大きさを 0 . 5 m以 上、 5 x m以下とすることによって、 各導電部から延びる分極反転部が 互いにつながり易くなり、 また短周期の周期分極反転部を形成しやすく なることを見いだした。
この観点からは、 導電部間の隙間の大きさを 4〃m以下とすることが 好ま しく、 2〃m以下とすることが更に好ま しい。 しかし、 導電部間の 隙間が小さくなると、かえって深い分極反転部を形成しにく くなるので、 導電部間の隙間は 0 . 5〃m以上とし、 1〃m以上とすることが更に好 ましい。 図面の簡単な説明
図 1は、 第一および第三の態様の発明に係る櫛形電極 3および対向電 極 1 を概略的に示す平面図である。
図 2は、 電極部 5の形状を示す平面図である。
図 3は、 基板に櫛型電極 3、 対向電極 1および一様電極 9を形成し、 電圧印加法によって周期分極反転構造を形成している状態を模式的に示 す斜視図である。
図 4は、 第二および第三の態様の発明に係る櫛形電極 3および対向電 極 1 を概略的に示す平面図である。
図 5は、 電極部 5 Aの形状を示す平面図である。
図 6は、 実験 Aにおける実験結果を示すグラフである。
図 7は、 実験 Aにおいて、 導電部の長さ dを 3〃mとしたときに得ら れた分極反転形状を示す写真である。
図 8は、 実験 Aの実験 A 1において、 得られた分極反転形状 (深さ方 向) を示す写真である。
図 9は、 実験 Bにおける実験結果を示すグラフである。
図 1 0は、 実験 Bの実験 B 1において得られた分極反転形状 (平面方 向) を示す写真である。 発明を実施するための最良の形態
基板を構成する強誘電体単結晶の種類は限定されない。 しかし、 ニォ ブ酸リチウム ( L i N b〇 3)、 タンタル酸リチウム ( L i T a 03)、 二 ォブ酸リチウム—タンタル酸リチウム固溶体、 K3 L i 2N b 501 5の各 単結晶が特に好ま しい。
強誘電体単結晶中には、 三次元光導波路の耐光損傷性を更に向上させ るために、 マグネシウム ( M g )、 亜鉛 ( Z n )、 スカンジウム ( S c ) 及びィ ンジゥム ( I n) からなる群より選ばれる 1種以上の金属元素を 含有させることができ、 マグネシウムが特に好ま しい。
強誘電体単結晶中には、 ド一プ成分として、 希土類元素を含有させる ことができる。 この希土類元素は、 レーザ発振用の添加元素として作用 する。 この希土類元素としては、 特に N d、 E r、 Tm、 H o、 D y、 P rが好ましい。 いわゆるオフカツ ト基板を用いることで、 オフカッ トではない Xカツ トや y基板に比べて、 深い反転構造を得ることができる。 オフカツ ト角 度が 5度程度の僅かな傾きであれば、 通常、 TEモードで出射する半導体 レ一ザとの光軸調整も、 オフカッ ト分の角度補正をしなくても、 偏波面 の不整合による効率劣化が少なく、 高効率な波長変換特性を得ることが できる。 但し、 オフカッ ト角が大きくなれば偏波不整合による効率劣化 分が大きくなるので、 そのような場合は、 偏波面が合うように角度補正 をする必要がある。
このオフ力ッ ト角度は特に限定されない。 特に好ましくは、 オフカツ ト角度は 1 ° 以上であり、 あるいは、 2 0 ° 以下である。
また、 基板として、 いわゆる Xカツ 卜基板、 Yカツ 卜基板、 Zカツ 卜 基板を使用可能である。 Xカツ ト基板や Y力ッ 卜基板を使用する場合に は、 一様電極を基板裏面に設けず、 一表面上に設け、 櫛型電極と一様電 極との間に電圧を印加することができる。 この場合には、 対向電極はな く ともよいが、 浮動電極として残しておいても良い。 また、 Zカッ ト基 板を使用する場合には、 一様電極を裏面上に設け、 櫛型の電極と一様電 極との間に電圧を印加することができる。 この場合には、 対向電極は必 ずしも必要ないが、 浮動電極として残しておいても良い。
図 1から図 3を参照しつつ、 第一および第三の態様に係る発明の実施 '形態を述べる。
図 1は、 基板上に設けられた電極のパターンを示す平面図である。 図 2は、 図 1で示した櫛型電極の電極部の平面的パターンを示す拡大図で ある。 図 3は、 電極を形成した基板 8を模式的に示す斜視図である。 分極反転部を製造する際には、 強誘電体単結晶からなるオフ力ッ ト基 板を基板 8と して使用する。 強誘電体単結晶の分極方向 Aは、 表面 8 a および裏面 8 bに対して所定角度、 例えば 5 ° 傾斜しているので、 この 基板 8はオフカツ 卜基板と呼ばれている。
基板 8の表面 8 aに櫛型電極 3および対向電極 1 を形成し、 裏面 8 b に一様電極 9を形成する。 櫛型電極 3は、 周期的に配列された多数の細 長い電極部 5 と、 多数の電極部 5の付け根を接続する細長い給電部 2 と からなる。 対向電極 1は細長い電極片からなつており、 対向電極 1は、 電極部 5の先端に対向するように設けられている。
最初に基板 8の全体を非分極反転方向 Aに分極させておく。 そして、 櫛型電極 3と対向電極 1 との間に V 1の電圧を印加し、 櫛型電極 3 と一 様電極 9 との間に V 2の電圧を印加すると、 分極反転部が各電極部 5か ら方向 Bと平行に徐々に進展する。 分極反転方向 Bは、 非分極反転方向 Aとは正反対になる。 なお、 電極部に対応しない位置、 すなわち隣接す る分極反転部の間には、 分極反転していない非分極反転部が残留する。 このようにして、 分極反転部と非分極反転部とが交互に配列された周期 分極反転構造が形成される。 周期分極反転構造が形成された位置に光導 波路を形成することができる。
本例においては、 特に図 2に示すように、 各電極部 5力 給電部 2か ら延びる基部 6 と、 基部 6から分離された複数の導電部 5 a、 5 b、 5 c を備えており、 導電部 5 a、 5 b、 5 cの平均長さが 4 m以上、 9 / m以下である。 即ち、 5 aは基部 6に最も近い導電部であり、 5 bは最 先端の導電部であり、 5 cは、 5 aと 5 bとの間の導電部である。 これ らの導電部の長さを合計し、 導電部の個数で割ることによって、 導電部 の長さ dの平均値が算出される。
また、 本例においては、 隣接する導電部間の隙間 1 0の寸法 eを 0 . 5 以上、 5 . 0 // m以下とする。
図 2、 図 4および図 5を参照しつつ、 第二および第三の態様に係る発 明の実施形態を述べる。 図 4は、 基板上に設けられた電極のパターンを示す平面図である。 図 5は、 図 4で示した櫛型電極の電極部の平面的パターンを示す拡大図で ある。
基板 8の表面 8 aに櫛型電極 3 Aおよび対向電極 1を形成し、 裏面 8 bに一様電極 9を形成する。 櫛型電極 3 Aは、 周期的に配列された多数 の細長い電極部 5 Aと、 多数の電極部 5 Aの付け根を接続する細長い給 電部 2とからなる。 対向電極 1は細長い対向電極片からなつており、 対 向電極は、 電極部 5 Aの先端に対向するように設けられている。
最初に基板 8の全体を非分極反転方向 Aに分極させておく。 そして、 櫛型電極 3 Aと対向電極 1 との間に V 1の電圧を印加し、 櫛型電極 3 A と一様電極 9 との間に V 2の電圧を印加すると、 分極反転部が各電極部 5 Aから方向 Bと平行に徐々に進展する。 分極反転方向 Bは、 非分極反 転方向 Aとは正反対になる。
本例においては、 特に図 5に示すように、 各電極部 5 Aが、 給電部 2 から延びる基部 6と、 基部 6から分離された複数の導電部 5a、 5b、 5 c、 5 dとを備えている。 そして、 第二の態様に従い、 基部 6に最も近 い導電部 5 aの長さ d aを、 最先端の導電部 5 bの長さ d bよりも大き くする。 これと共に、 第三の態様に従い、 隣接する導電部間の隙間 1 0 の寸法 eを 0. 以上、 5. 0〃m以下とする。
第二の態様に係る発明においては、 基部 6に最も近い導電部 5 aの長 さ d aとを、 最先端の導電部 5 bの長さ d bとの差を 1 0〃m以上とす ることが好ましく、 5〃m以上とすることが更に好ましい。 また、 基部 6に最も近い導電部と最先端の導電部との間にある導電部の長さ d c、 d dは限定されないが、 (1 &は 5〃1^1以上、 d bは 2 0 //m以下である ことが好ましい。 この場合には、 d c、 d dは、 d aと等しくてよく、 d bと等しくてよく、 d aと d bとの間の値であってよい。 特に好ま し くは、 基部 6から最先端へと向かって、 導電部の長さが段階的に減少す る。
本発明において、 周期分極反転構造の周期は特に限定されないが、 一 例を挙げると、 例えば 4 m以下の周期のものに特に適している。
導電部の間の隙間の個数は特に限定されないが、 例えば 3〜 1 5個と することができる。 実施例 '
(実験 A : 第一および第三の態様の発明に係る)
図 1〜図 3を参照しつつ説明した方法に従い、 電圧印加法によって周 期分極反転構造を形成した。 ただし、 導電部の隙間 1 0の大きさ eを 1 / mとし、 各導電部 5 a、 5 b、 5 cの長さをそれそれ 8〃 mとした。 電極部 5の根元の部分は電極片への給電をよくすることを目的に、 導電 部よりも長めの基部 6を設けた。 対向電極 1 と給電電極 2の中心間距離 aを 4 0 とした。 基部 6の長さ bは 3 3 mである。
実験 A 1では、 周期分極反転の周期を 1 . 8 mとした。 長さ d = 8 mの導電部 5 a、 5 b、 5 cを 1 3個配列した。 前述のようにして周 期状分極反転の試作実験を行った。電極部の全長 cは 1 5 0 である。 また、 実験 A 2 として、 導電部の長さ d = 1 2〃m、 隙間 e = l〃m、 導電部の数を 9個とした。 ここで、 基部 6の長さ bは前述の導電部の長 さが 8 / mのものと同様 3 3 mになるように、 導電部の長さと数を調 整した。 電極部の全長 cは 1 5 0〃mである。
図 6に、 導電部の長さ d = 8 / mかつ隙間二 1〃m (実験 A 1 ) およ び 1 2〃mかつ隙間 = l〃m (実験 A 2 ) で設計した電極、 および隙間 1 0を設けない電極 (実験 A 3 ) による分極反転の深さを示す。
ここで、 分極反転の深さについて述べる。実際に深さを測定するには、 ウェハを切断しなければならず破壊検査となる。 この破壊検査を避ける ために、 5度のオフ yカッ ト基板を用いて、 弗硝酸のエッチング後に観 察されるウェハ表面の分極反転部の長さから換算したものを示している。 電圧印加条件は、 全て同一とした。 具体的には、 図 2中の V I には電圧 をかけず、 配線も行わず、 V 2のみ約 4 k Vのパルス状の電圧を印加し た。 基板には、 MgOが添加された L i Nb03基板 (厚さ 0. 5mm) のものを使 用しており、 抗電界以上の電界を印加している。 電極材には基板の上下 面とも Taを使用し、 電圧を印加する際には放電を防止するため、 絶縁ォ ィル中で行った。
図 6の結果から、 隙間なしの電極 (実験 A 3 ) に比べ、 隙間を設ける ことで約 2倍の反転深さが得られ(実験 A 2 )、 さらに電極片の長さ 8 u mのもの (実験 A 1 ) の方が深い反転が形成されていることが分かる。 更に、 導電部の長さ dを 7 m以下、 更には 5〃m以下とすることで、 更に深い反転が得られることが分かった。 ただし、 導電部の長さが 3 mのものを試作してみたが、 図 7に示すように反転部分ができない部分 があり、 安定的に形成されなかった。導電部の長さ dが 4〃m以上では、 このようなバラツキが生じなかったので、 電極片の長さとして 4 // m以 上が好ましい長さとなる。
また、 上記の実験では、 電極長さ 8 / mの場合で 13個に分割したもの、 すなわち、 隙間が 13個あるものの結果を示したが、 幾つか実験を行った ところ、隙間部分の数としては 10個の方がより深い反転が形成された。 但し、 好適な隙間の個数は、 電極片の長さや、 周期に依存するものと思 われる。
また、 隙間部分の大きさについても、 上記の実験では 1〃mとしたが、 4〃 m未満の周期に対しては 1〃 mぐらいが好ましく、 それ以上の周期 の場合は 2〃mぐらいであっても、分極反転が深くなることを確認した。 なお、 図 1 に示すように電極に隙間部分を設けると、 分極反転部分に も隙間が生じると懸念したが、 実際に断面を切断し、 研磨処理して観察 したところ、図 8に示すように電極の隙間に対応するような隙間がなく、 深さ方向に連続する分極反転が形成されていた。
(実験 B : 第二および第三の態様の発明に係る)
図 2、 4、 5を参照しつつ説明した方法に従って、 周期的分極反転構 造を製造した。 ただし、 導電部の隙間 1 0の大きさ eを l〃mと し、 導 電部 5 a、 5 c、 5 d、 5 bの長さを、 基部側から先端へと向かって 8、 1 0、 1 2、 1 4〃mとした。 対向電極 1 と給電電極 2の中心間距離 a を 4 0 0 / mとした。 基部 6の長さ bは 9 3 / mである。
実験 B 1では、 周期分極反転の周期を 1 . 3 / mとした。 前述のよう にして周期状分極反転の試作実験を行った。 実験 B 2では、 隙間を設け なかった。
図 9に、 図 2、 4、 5の電極構造により作製した分極反転の深さと、 比較のため隙間無しで設計した電極による結果とを示す。 電圧印加条件 は、 実験 Aよりも短周期であるため、 V 2の電圧を低く して約 2 k Vの パルス状電圧を印加した。
図 9の結果より、 この場合も隙間を設けたものの方が、 深さが 2倍拡 大しており、 深い分極反転構造が得られていることが分かる。図 1 0に、 実験 B 1によって得られた分極反転の断面観察例を示す。 この場合も電 極の隙間部分がなく、 断面方向に連続する分極反転が形成されているこ とが確認できる。
また、 実験 B 3 として、 導電部の長さを先端から基部へと向かって 1 4、 1 2、 1 0、 8〃mとしたものを設計し、 試作した。 この結果、 前 記と同一の印加条件では、 隣り合う分極反転部分とつながってしまい、 周期性が乱れてしまったものしか得られなかった。 特に、 短周期の分極反転構造を得ようとする場合には、 図 5のように、 導電部の長さを先端から根元に向けて、 徐々に長く していく構造が好ま しいといえる。
本発明の特定の実施形態を説明してきたけれども、 本発明はこれら特 定の実施形態に限定されるものではなく、 請求の範囲の範囲から離れる ことなく、 種々の変更や改変を行いながら実施できる。

Claims

請求の範囲
1 . 単分域化している強誘電体単結晶基板の一表面上に設けられた、 複数の電極部と給電部とを有する櫛型電極を用いて、 電圧印加法により ' 5 分極反転部を製造する方法であって、
前記各電極部が、 前記給電部から延びる基部と、 前記基部から分離さ れた複数の導電部とを備えており、前記導電部の平均長さが 4 m以上、 以下であることを特徴とする、 分極反転部の製造方法。
10 2 . 単分域化している強誘電体単結晶基板の一表面上に設けられた、 複数の電極部と給電部とを有する櫛型電極を用いて、 電圧印加法により 分極反転部を製造する方法であって、
前記各電極部が、 前記給電部から延びる基部と、 前記基部から分離さ れた複数の導電部とを備えており、 前記基部に最も近い導電部の長さよ 15 りも前記電極部の最先端にある導電部の長さが小さいことを特徴とす ¾、 分極反転部の製造方法。
3 . 単分域化している強誘電体単結晶基板の一表面上に設けられた、 複数の電極部と給電部とを有する櫛型電極を用いて、 電圧印加法により 20 分極反転部を製造する方法であって、
前記各電極部が、 前記給電部から延びる基部と、 前記基部から分離さ れた複数の導電部とを備えており、 前記導電部間の隙間が 0 . 5 m以 上、 5 . 0〃m以下であることを特徴とする、 分極反転部の製造方法。
PCT/JP2005/006981 2004-06-16 2005-04-04 分極反転部の製造方法 WO2005124447A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112005001394.4T DE112005001394B4 (de) 2004-06-16 2005-04-04 Herstellungsverfahren für eine Polarisationsinversionseinheit
KR1020067027316A KR101135827B1 (ko) 2004-06-16 2005-04-04 분극 반전부의 제조 방법
US11/636,232 US7668410B2 (en) 2004-06-16 2006-12-08 Production method for polarization inversion unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-177843 2004-06-16
JP2004177843A JP4854187B2 (ja) 2004-06-16 2004-06-16 分極反転部の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/636,232 Continuation US7668410B2 (en) 2004-06-16 2006-12-08 Production method for polarization inversion unit

Publications (1)

Publication Number Publication Date
WO2005124447A1 true WO2005124447A1 (ja) 2005-12-29

Family

ID=35509853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006981 WO2005124447A1 (ja) 2004-06-16 2005-04-04 分極反転部の製造方法

Country Status (6)

Country Link
US (1) US7668410B2 (ja)
JP (1) JP4854187B2 (ja)
KR (1) KR101135827B1 (ja)
CN (1) CN100454126C (ja)
DE (1) DE112005001394B4 (ja)
WO (1) WO2005124447A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008009065A (ja) * 2006-06-28 2008-01-17 Nippon Telegr & Teleph Corp <Ntt> 波長変換光源
JP2016024423A (ja) * 2014-07-24 2016-02-08 日本碍子株式会社 波長変換素子の製造方法および波長変換素子
CN112987447A (zh) * 2019-12-02 2021-06-18 济南量子技术研究院 一种用于铁电晶体材料周期极化的电极结构及极化方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1172809A (ja) * 1997-01-14 1999-03-16 Matsushita Electric Ind Co Ltd 光波長変換素子とその製造方法、この素子を用いた光発生装置および光ピックアップ、回折素子、ならびに分極反転部の製造方法
JP2003057700A (ja) * 2001-08-15 2003-02-26 Ngk Insulators Ltd 周期状分極反転構造の形成方法
JP2003307757A (ja) * 2002-04-16 2003-10-31 Ngk Insulators Ltd 分極反転部の製造方法
JP2003307758A (ja) * 2002-03-19 2003-10-31 Hc Photonics Corp 分極反転誘電体微小構造を誘電体材料内にパターン化し製造する方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8531816D0 (en) * 1985-12-24 1986-02-05 British Aerospace Phase shifters
US6002515A (en) * 1997-01-14 1999-12-14 Matsushita Electric Industrial Co., Ltd. Method for producing polarization inversion part, optical wavelength conversion element using the same, and optical waveguide
KR100261230B1 (ko) * 1997-07-14 2000-07-01 윤종용 집적광학 광 강도 변조기 및 그 제조방법
JP4257716B2 (ja) * 2000-07-14 2009-04-22 日本碍子株式会社 分極反転部の製造方法
JP2002277915A (ja) * 2001-03-22 2002-09-25 Matsushita Electric Ind Co Ltd 分極反転形成方法および光波長変換素子
CN1183402C (zh) * 2003-01-28 2005-01-05 南开大学 周期极化掺镁铌酸锂全光开关及其制备工艺
DE10309250B4 (de) * 2003-03-03 2015-10-22 Epcos Ag Elektroakustischer Wandler für mit Oberflächenwellen arbeitendes Bauelement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1172809A (ja) * 1997-01-14 1999-03-16 Matsushita Electric Ind Co Ltd 光波長変換素子とその製造方法、この素子を用いた光発生装置および光ピックアップ、回折素子、ならびに分極反転部の製造方法
JP2003057700A (ja) * 2001-08-15 2003-02-26 Ngk Insulators Ltd 周期状分極反転構造の形成方法
JP2003307758A (ja) * 2002-03-19 2003-10-31 Hc Photonics Corp 分極反転誘電体微小構造を誘電体材料内にパターン化し製造する方法
JP2003307757A (ja) * 2002-04-16 2003-10-31 Ngk Insulators Ltd 分極反転部の製造方法

Also Published As

Publication number Publication date
KR20070034522A (ko) 2007-03-28
CN100454126C (zh) 2009-01-21
CN1969228A (zh) 2007-05-23
JP2006003488A (ja) 2006-01-05
KR101135827B1 (ko) 2012-04-16
JP4854187B2 (ja) 2012-01-18
DE112005001394B4 (de) 2015-10-22
US20070092979A1 (en) 2007-04-26
US7668410B2 (en) 2010-02-23
DE112005001394T5 (de) 2007-05-16

Similar Documents

Publication Publication Date Title
US7230753B2 (en) Method for forming domain-inverted structure and optical element with domain-inverted structure
JP4926700B2 (ja) 光学素子ならびに分極反転領域の形成方法
JP4243995B2 (ja) 分極反転部の製造方法および光デバイス
WO2005124447A1 (ja) 分極反転部の製造方法
JP4756706B2 (ja) 分極反転構造の製造方法
JP2010156787A (ja) 光機能素子の製造方法
JP4400816B2 (ja) 周期分極反転構造の製造方法および光デバイス
JP2003060251A (ja) 強誘電体アクチュエータ素子およびその製造方法
JP4372489B2 (ja) 周期分極反転構造の製造方法
JPH06186603A (ja) 分極反転層形成方法
JP4974872B2 (ja) 周期分極反転構造の製造方法
JP4646150B2 (ja) 周期分極反転構造の製造方法
JP2003307757A (ja) 分極反転部の製造方法
JPH08271941A (ja) 光デバイスの製造方法
JP2003195377A (ja) 強誘電体の分極反転方法および光波長変換素子の作製方法
JP4642065B2 (ja) 周期分極反転部の製造方法
US6762874B2 (en) Polarization inversion method of ferroelectrics and fabrication method of optical wavelength conversion device
JP2002214655A (ja) 強誘電体の分極反転方法および光波長変換素子の作製方法
CN111226167B (zh) 周期极化反转结构的制造方法
JP2000284335A (ja) 強誘電体の周期分極反転構造形成方法および光波長変換素子
JP2008309828A (ja) 光波長変換素子の製造方法および光波長変換素子
JP2001330866A (ja) 光波長変換素子の製造方法
JPH11282036A (ja) 光波長変換素子の作製方法
JP2020145530A (ja) 弾性波装置
JP2009092843A (ja) 周期分極反転構造の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11636232

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580019767.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1120050013944

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 1020067027316

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 11636232

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 112005001394

Country of ref document: DE

Date of ref document: 20070516

Kind code of ref document: P

122 Ep: pct application non-entry in european phase