WO2005122310A1 - 高分子電解質型燃料電池スタックの保存方法及び高分子電解質型燃料電池スタックの保存処理体 - Google Patents

高分子電解質型燃料電池スタックの保存方法及び高分子電解質型燃料電池スタックの保存処理体 Download PDF

Info

Publication number
WO2005122310A1
WO2005122310A1 PCT/JP2005/010826 JP2005010826W WO2005122310A1 WO 2005122310 A1 WO2005122310 A1 WO 2005122310A1 JP 2005010826 W JP2005010826 W JP 2005010826W WO 2005122310 A1 WO2005122310 A1 WO 2005122310A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer electrolyte
fuel cell
electrolyte fuel
cell stack
reducing agent
Prior art date
Application number
PCT/JP2005/010826
Other languages
English (en)
French (fr)
Inventor
Shinichi Arisaka
Yoichiro Tsuji
Eiichi Yasumoto
Kazuhito Hatoh
Shinsuke Takeguchi
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US11/629,496 priority Critical patent/US7976972B2/en
Priority to JP2006514601A priority patent/JP3977862B2/ja
Publication of WO2005122310A1 publication Critical patent/WO2005122310A1/ja
Priority to US13/099,863 priority patent/US8137829B2/en
Priority to US13/361,496 priority patent/US8435657B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/70Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by fuel cells
    • B60L50/72Constructional details of fuel cells specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • B60L58/33Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/242Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes comprising framed electrodes or intermediary frame-like gaskets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a method for storing a polymer electrolyte fuel cell stack and a storage processing body for a polymer electrolyte fuel cell stack.
  • BACKGROUND ART the related art relates to a method for storing a polymer electrolyte fuel cell stack in a non-installed state and a storage processing body for a polymer electrolyte fuel cell stack.
  • the electrode catalyst layer is prepared, for example, by preparing a paint for forming a catalyst layer, and applying the paint to the polymer electrolyte. It is formed by coating on the film surface.
  • the paint for forming the catalyst layer contains an alcohol component as a solvent.
  • platinum-ruthenium alloy particles or carbon powder carrying platinum particles is used as a catalyst powder, and this catalyst powder is mixed with an ethyl alcohol dispersion containing a perfluorocarbon sulfonic acid polymer to form a paste.
  • the electrode catalyst layer is formed by applying this paste on the surface of the polymer electrolyte membrane.
  • the solvent which also has the alcoholic power, enters a part of the porous electrode catalyst layer and remains after the MEA is manufactured.
  • Patent Document 5 a method has been proposed in which a polymer electrolyte membrane and a Z or electrode catalyst layer containing a solvent in advance are used, and heating and pressurization are performed substantially without being immersed in the solvent (for example, Patent Document 5). reference).
  • this method since the solvent in the MEA evaporates during the integration process, swelling of the polymer electrolyte membrane due to the solvent is suppressed, and the bonding state at the interface between the polymer electrolyte membrane and the catalyst layer is improved. The effect that it is maintained as is is described.
  • Patent Document 1 JP-A-6-251788
  • Patent Document 2 JP-A-7-272738
  • Patent Document 3 Japanese Patent Application Laid-Open No. 5-258762
  • Patent Document 4 JP-A-3-208262
  • Patent Document 5 JP-A-2002-93424
  • Patent Documents 1 to 3 when an oxide such as air comes in contact with the electrode catalyst layer at a temperature of the catalyst activation temperature after the start of power generation, the electrode catalyst layer is oxidized and the performance is deteriorated. Was known to decrease.
  • the method for preventing performance degradation of PEFC is a method for preventing the performance degradation of PEFC as a PEFC system. Specifically, since it is a mechanism to supply inert gas and the like from external peripheral devices through piping etc. connected to the oxidizing agent flow path and the reducing agent flow path of the PEFC stack, especially before being incorporated into the PEFC system, It could not be applied to PEFC stacks in a single state, such as when stocked or transported.
  • the present invention has been made to solve the above-described problems, and in particular, a polymer electrolyte fuel cell in a period from an uninstalled state to an installed place and used.
  • An object of the present invention is to provide a method for preserving a polymer electrolyte fuel cell stack that suppresses deterioration of the performance of the stack.
  • the present invention particularly relates to a preservation process for a polymer electrolyte fuel cell stack that can sufficiently prevent the deterioration of the performance of the polymer electrolyte fuel cell stack during a period from a non-installed state to an installation place and used. The purpose is to provide the body.
  • the first method for storing a polymer electrolyte fuel cell stack of the present invention provides an oxidizing agent flow path having an inlet and an outlet and passing through a force sword, and an inlet and an outlet. Having an reducing agent flow path via an anode, an oxidizing agent substance is supplied from an inlet of the oxidizing agent flow path, and a reducing agent substance is supplied from an inlet of the reducing agent flow path, A method for preserving a polymer electrolyte fuel cell stack, wherein an oxidizing agent substance and the reducing agent substance cause an electrochemical reaction at the anode and the power source to generate electric power, and the non-installed state.
  • the inside of the oxidant channel and the inside of the reducing agent channel of the polymer electrolyte fuel cell stack are stored in a reduced pressure state.
  • the solvent remaining in the oxidizing agent-side electrode catalyst layer and the reducing agent-side electrode catalyst layer becomes volatile when the pressure is reduced. This can sufficiently suppress the deterioration of the performance of the polymer electrolyte fuel cell stack until the completion.
  • the oxygen concentration in the oxidizing agent channel and the reducing agent channel can be easily maintained below the oxygen concentration in the atmosphere, and the partial oxidation reaction of the organic solvent component remaining in the electrode catalyst layer can be performed.
  • Dehydration-condensation reactions including reactions between organic solvent components, reactions between partial oxides, and reactions between organic solvent components and partial oxides
  • the deterioration of the performance of the polymer electrolyte fuel cell stack during the period from when the fuel cell is installed at the installation place to when it is used can be sufficiently suppressed.
  • the non-installed state refers to a state after assembling and manufacturing of the polymer electrolyte fuel cell stack and before being incorporated into the fuel cell system.
  • the state before the oxidizing agent supply device is connected to the oxidizing agent flow channel of the polymer electrolyte fuel cell stack, or the state before the reducing agent material supplying device is connected to the reducing agent flow channel.
  • the above-mentioned state means, for example, a state where the polymer electrolyte fuel cell stack is stored or transported.
  • the polymer electrolyte fuel cell stack after a short-term electrochemical reaction after the production of the polymer electrolyte fuel cell stack is also included in the polymer electrolyte fuel cell stack in the non-installed state.
  • the polymer electrolyte fuel cell stack after the performance confirmation test and the polymer electrolyte fuel cell stack after the power generation treatment described later are included in the polymer electrolyte fuel cell stack in a non-installed state.
  • the case where the storage method of the present invention is incorporated in the manufacturing process of the polymer electrolyte fuel cell stack is also included in the polymer electrolyte fuel cell stack in a non-installed state.
  • MEAs are stacked and stored in a temporarily fastened state, and at the time of or immediately before being assembled into a polymer electrolyte fuel cell system, current collectors, end plates, etc. are provided at both ends and polymer electrolyte fuel The battery stack is finally assembled In this manufacturing method, the provisionally fastened state substantially corresponds to a state where the polymer electrolyte fuel cell stack is not installed.
  • the storage method of the second polymer electrolyte fuel cells stack of the present invention the reduced pressure condition, the degree of vacuum in the range below 10 _5 Pa over 10 _1 Pa It is good.
  • the inside of the oxidizing agent flow path and the inside of the reducing agent flow path of the non-installed polymer electrolyte fuel cell stack are brought into a reduced pressure state.
  • the method may include a volatilization removing step and a maintaining step of maintaining the reduced pressure state.
  • the volatilization removing step includes the step of storing the polymer electrolyte fuel cell stack in an airtight container having an exhaust port formed therein.
  • the airtight container is housed, and an exhaust device is connected to the exhaust port to evacuate the inside of the hermetic container.
  • the maintaining step includes the step of attaching an exhaust device to the exhaust port in an airtight manner, or It is arranged so that the mouth is opened and closed.
  • the depressurized state of the oxidizing agent flow path and the reducing agent flow path may be continued for a long time due to the intermittent operation of the exhaust device.
  • performance degradation of the polymer electrolyte fuel cell stack can be suppressed over a long period of time.
  • the volatilization removing step includes the steps of: entering and exiting the oxidizing agent channel; And an exhaust device is hermetically attached to one of the inlet and outlet of the reducing agent flow path, and a sealing stopper or an airtight on-off valve is hermetically attached to the other of them.
  • the exhaust device exhausts the inside of the oxidizing agent flow path and the reducing agent flow path, and the maintaining step includes sealing the exhaust device, the sealing plug, and the airtight on-off valve. If there is a special mounting, it should be closed.
  • the sixth method of storing a polymer electrolyte fuel cell stack according to the present invention preferably includes a power generation processing step of causing the polymer electrolyte fuel cell stack to generate power.
  • a power generation processing step of causing the polymer electrolyte fuel cell stack to generate power.
  • the current density in the power generation step is 0. LAZcm 2 or more, may is 0. 4AZcm 2 below.
  • the eighth method of storing a polymer electrolyte fuel cell stack according to the present invention is characterized in that the power generation continuation time in the power generation processing step is 3 hours or more. Good.
  • the ninth present invention provides a method for storing a polymer electrolyte fuel cell stack, wherein the power generation continuation time in the power generation processing step is such that the voltage fluctuation is 2 mVZh or less. It's time to become! / ,.
  • the tenth method for storing a polymer electrolyte fuel cell stack according to the present invention is characterized in that the power generation step is performed after the production of the polymer electrolyte fuel cell stack. It should be done within hours.
  • An eleventh aspect of the present invention provides a polymer electrolyte fuel cell stack preserving body, which has an inlet and an outlet, has an oxidizing agent flow path via a force source, and has an inlet and an outlet and has a reducing agent flow through an anode. And an oxidizing agent substance is supplied from an inlet of the oxidizing agent flow path, a reducing agent substance is supplied from an inlet of the reducing agent flow path, and the oxidizing substance and the reducing agent substance are supplied to the anode and the anode. Maintaining the polymer electrolyte fuel cell stack configured to generate an electric power by performing an electrochemical reaction on the force sword and the oxidizing agent channel and the reducing agent channel in a reduced pressure state And a maintenance unit.
  • the solvent remaining in the oxidizing agent-side electrode catalyst layer and the reducing agent-side electrode catalyst layer is in a volatile state.
  • Molecular electrolyte type The deterioration of the performance of the fuel cell stack can be sufficiently suppressed.
  • the oxygen concentration in the oxidizing agent channel and the reducing agent channel can be easily kept below the oxygen concentration in the atmosphere, and partial oxidation of the organic solvent component remaining in the electrode catalyst layer can be achieved. Reaction, dehydration-condensation reaction (including reaction between organic solvent components, reaction between partial oxides, reaction between organic solvent component and partially oxidized product) and the like can be sufficiently prevented.
  • the preservation assembly of the 12 polymer electrolyte fuel cell stack of the present invention, the reduced pressure condition, the degree of vacuum, 10 _5 Pa over 10 _1 Pa or less under It may be a range.
  • the storage processing body of the thirteenth invention of the polymer electrolyte fuel cell stack according to the present invention is characterized in that the maintenance unit accommodates the polymer electrolyte fuel cell stack and an exhaust port.
  • a gas-tight container formed with a gas outlet, an exhaust device hermetically attached to the exhaust port, a sealing plug that hermetically seals the exhaust port, or an airtight container that opens and closes the exhaust port. And an airtight on-off valve.
  • the provision of the exhaust unit in the maintenance unit makes it possible to maintain the reduced pressure state of the oxidizing agent passage and the reducing agent passage for a long period of time by intermittent operation of the exhausting unit.
  • performance degradation of the polymer electrolyte fuel cell stack can be suppressed over a long period of time.
  • the maintenance unit may include any one of an inlet and an outlet of the oxidant flow path.
  • An exhaust device hermetically mounted on one side, a sealing stopper or an airtight on-off valve hermetically mounted on the other side, and airtightness on one of an inlet and an outlet of the reducing agent flow path.
  • the airtight exhaust valve is mounted on the other side, and the other end is hermetically sealed! There is an airtight on-off valve.
  • the polymer electrolyte fuel cell stack may be a polymer electrolyte fuel cell stack that has been subjected to power generation processing.
  • the solvent or gold in the polymer electrolyte fuel cell stack Since foreign substances such as metals are removed together with the water generated by the electrochemical reaction in the power generation process, the deterioration of the performance of the polymer electrolyte fuel cell stack can be further suppressed.
  • the "power generation process” refers to a process of causing the polymer electrolyte fuel cell stack to generate power.
  • the deterioration of the performance of the polymer electrolyte fuel cell stack particularly during the period from the non-installation state to the installation place and use is suppressed.
  • a method for storing a fuel cell stack can be provided.
  • the polymer electrolyte fuel which can sufficiently prevent the deterioration of the performance of the polymer electrolyte fuel cell stack during the period in which the force in the non-installed state is also installed in the installation place and used is used is used.
  • a storage body for a battery stack can be provided.
  • FIG. 1 is a schematic view of a PEFC stack storage body according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing PEs included in a preservation body of the PEFC stack according to the first embodiment of the present invention.
  • FIG. 2 is an exploded perspective view showing the structure of the FC stack.
  • FIG. 3 is a schematic diagram showing a basic configuration of a cell.
  • FIG. 4 is a flowchart showing a method of storing a PEFC stack according to the first embodiment of the present invention.
  • FIG. 5 is a diagram showing a change over time in an average cell voltage of the PEFC stack of Examples 1-1 to 1-4 in rated operation.
  • FIG. 6 is a schematic view of a PEFC stack storage processing body according to Modification 1 of the first embodiment of the present invention.
  • FIG. 7 is a schematic view of a PEFC stack storage processing body according to a second embodiment of the present invention.
  • FIG. 8 is a diagram showing a change over time of an average cell voltage of the PEFC stack of Example 2-1 and Example 2-2 in rated operation.
  • FIG. 9 is a flowchart showing a method for storing a PEFC stack according to a third embodiment of the present invention. It is.
  • FIG. 1 is a schematic diagram of a PEFC stack storage processing body according to the first embodiment of the present invention.
  • FIG. 2 is an exploded perspective view showing the structure of the PEFC stack included in the storage body of the PEFC stack according to the first embodiment of the present invention.
  • the PEFC stack 200 included in the PEFC stack storage body 300 of the first embodiment is configured by stacking unit cells (cells) 100 that generate power by an electrochemical reaction.
  • the unit cell (cell) 100 includes a rectangular plate-shaped MEA 100 having substantially the same plane, a force sword separator 15, and an anode separator 20.
  • the MEA 10 is sandwiched so that one side is in contact with the force sword separator 15 and the other side is in contact with the anode separator 20.
  • the end of the cell 100 in the stacking direction is sandwiched between end plates 43, 43 via current collector plates 41, 41 and insulating plates 42, 42, and a fastening bolt (not shown) is provided between the end plates 43, 43.
  • the PEFC stack 200 is used for portable electric devices such as home cogeneration systems, motorcycles, electric vehicles, hybrid electric vehicles, home appliances, portable computer devices, mobile phones, portable audio devices, and portable information terminals. Used for PEFC systems. [0026]
  • the electric terminals 41a, 41a of the current collector plates 41, 41 are connected to an external load such as an electric device to output electricity.
  • An oxidizing agent channel 30 and a reducing agent channel 40 are formed in the PEFC stack 200.
  • the oxidizing agent channel 30 is supplied with the oxidizing agent from the oxidizing agent channel inlet portion 30a, branches into each cell 100, and after flowing through each cell 100, merges again to form an oxidizing agent channel outlet.
  • the part 30b is configured to be discharged out of the PEFC stack 200.
  • the oxidizing agent channel 30 is configured to be closed when the oxidizing agent channel inlet portion 30a and the oxidizing agent channel outlet portion 30b, which communicate with the other channels, are sealed. ing.
  • the reducing agent channel 40 is similarly configured.
  • oxygen or air is used as the oxidant substance.
  • hydrogen or a substance containing hydrogen is used as the reducing agent substance.
  • the end plate 43 on one side of the PEFC stack 200 is provided with an oxidizing agent channel inlet 30a and a reducing agent channel inlet 40a.
  • the reducing agent channel 40 is similarly configured! Puru.
  • the PEFC stack 200 is also provided with a coolant channel 45 through which a coolant such as water flows in order to adjust the temperature of the PEFC stack 200.
  • the coolant channel 45 is configured separately from the oxidant channel 30 and the reducing agent channel 40, and the coolant is supplied into the PEFC stack 200 from the coolant channel inlet 45a, and the PEFC stack 200 It is configured such that it flows between the cells 100 that are branched and stacked in the inside, and is discharged to the outside from the coolant flow path outlet 45b.
  • the senor 100 is configured by laminating the MEA 10, the force sword separator 15, and the anode separator 20. As shown in FIG. 2, an oxidizing agent channel 30 is formed between the MEA 10 and the force separator 15, and a reducing agent channel 40 is formed between the MEA 10 and the anode separator 20. .
  • FIG. 3 is a schematic diagram showing the basic structure of the MEA.
  • the MEA 10 comprises a polymer electrolyte membrane 1 composed of an ion exchange membrane that selectively permeates hydrogen ions, and a carbon powder supporting a platinum group metal catalyst formed so as to sandwich the polymer electrolyte membrane 1.
  • a pair of electrode catalyst layers (oxidant-side electrode catalyst layer 2 and reducing agent-side electrode catalyst layer 3) as main components, and a pair of diffusion electrode layers (oxidizer-side A diffusion electrode layer 4 and a reducing agent-side diffusion electrode layer 5).
  • the diffusion electrode layers 4 and 5 are configured to have both air permeability and electron conductivity. For example
  • the oxidizing agent-side electrode catalyst layer 2, the oxidizing agent-side diffusion electrode layer 4, and the force sword separator 15 constitute a force sword.
  • the reducing agent-side electrode catalyst layer 3, the reducing agent-side diffusion electrode layer 5, and the anode separator 20 constitute an anode.
  • the oxidant substance is branched and supplied to each cell 100 via the oxidant flow path 30.
  • an oxidizing agent material is supplied to a force sword.
  • it is exposed to the oxidant-side diffusion electrode layer 4.
  • hydrogen or a reducing agent substance containing hydrogen is supplied to the anode in the same manner.
  • it is exposed to the reducing agent side diffusion electrode layer 5 via the reducing agent channel 40.
  • the oxidant substance permeates the oxidant-side diffusion electrode layer 4 and reaches the oxidant-side electrode catalyst layer 2.
  • the reducing agent substance permeates through the reducing agent side diffusion electrode layer 5 and reaches the reducing agent side electrode catalyst layer 3.
  • the oxidant-side electrode catalyst layer 2 and the reducing agent-side electrode catalyst are passed through the power source separator 15, the anode separator 20, the current collectors 41 and 41 (see Fig. 1) and an external electric circuit (not shown).
  • an electric connection circuit with the layer 3 is formed, hydrogen is ionized in the reducing agent-side electrode catalyst layer 3.
  • Hydrogen ions permeate the polymer electrolyte membrane 1 and combine with oxygen ions in the oxidant-side electrode catalyst layer 2 to generate water. Also, the electrons generated in the reducing agent-side electrode catalyst layer 3 due to the ionization of hydrogen flow through an external electric circuit (not shown) via the reducing agent-side diffusion electrode layer 5 to generate an electric output.
  • the oxidant-side electrode catalyst layer 2 and the reducing agent-side electrode catalyst layer 3 are exposed to the substance filling the oxidant channel 30 and the reducing agent channel 40. Is performed. Therefore, in the fuel cell immediately after production, the oxidant-side electrode catalyst layer 2 and the reducing agent-side electrode catalyst layer 3 are exposed to the air filling the oxidant channel 30 and the reducing agent channel 40.
  • the oxidizing agent-side electrode catalyst layer 2 and the reducing agent-side electrode catalyst layer 3 are exposed to air, residual solvent remaining in the oxidizing agent-side electrode catalyst layer 2 and the reducing agent-side electrode catalyst layer 3 is removed. An oxidation reaction may occur, and poison the catalysts of the oxidant-side electrode catalyst layer 2 and the reducing agent-side electrode catalyst layer 3.
  • the storage body 300 of the PEFC stack according to the first embodiment of the present invention is configured as follows.
  • the PEFC stack storage body 300 includes a PEFC stack 200, and an airtight container 50 that maintains the oxidizing agent channel 30 and the reducing agent channel 40 in a reduced pressure state.
  • the airtight container 50 is formed of a bag or box capable of withstanding a high vacuum, and has an exhaust port 50b.
  • An exhaust device 61 is hermetically attached to the exhaust port 50b.
  • the airtight container 50 is made of, for example, a bag made of a resin such as nylon or polyethylene, or a metal box.
  • the airtight container 50 is formed of multiple polyethylene bags.
  • the airtight container 50 and the exhaust device 61 constitute a maintenance unit.
  • the intermittent operation of the exhaust unit 61 makes it possible to maintain the depressurized state of the oxidizing agent passage 30 and the reducing agent passage 40 for a long period of time.
  • the performance degradation of the stack 200 can be suppressed over a long period of time.
  • a check valve (not shown) may be configured in the exhaust port 50b so that a reduced pressure state inside the airtight container 50 is maintained without gas flowing in from the outside. With this check valve, the collapse of the reduced pressure state in the airtight container 50 can be suppressed even when the exhaust device 61 falls off or the airtight attachment is damaged.
  • the PEFC stack 200 is a PEFC stack in a non-installed state.
  • the non-installed state is a state before the PEFC stack is assembled and manufactured and before it is incorporated into the fuel cell system.
  • the state before the oxidizing substance supply device is connected to the oxidizing agent flow path of the PEFC stack, or the state before the reducing agent substance supplying device is connected to the reducing agent flow path,
  • the state in which a PEFC stack is stored or transported For example, the state in which a PEFC stack is stored or transported.
  • the PEFC stack that has been subjected to a short-term electrochemical reaction after the production of the PEFC stack is also included in the PEFC stack that has not been installed.
  • the PEFC stack after the performance confirmation test and the PEFC stack after the specified power generation processing are included in the PEFC stack in the non-installed state.
  • the storage method of the present invention is applied in the manufacturing process of the PEFC stack, Included in the PEFC stack.
  • MEAs are stacked and stored in a temporarily fastened state, and at or immediately before assembly into the PEFC system, current collectors, end plates, etc. are arranged at both ends and the PEFC stack is finally assembled In the manufacturing method, this temporary fastening state substantially corresponds to the state where the PEFC stack is not installed.
  • FIG. 4 is a flowchart showing a method for storing a PEFC stack according to the first embodiment of the present invention.
  • step (volatilization removing step) S 1 the pressure in the oxidizing agent channel 30 and the reducing agent channel 40 of the PEFC stack 200 in a non-installed state is reduced to a reduced pressure state.
  • an exhaust device 61 is hermetically attached to the exhaust port 50b, and the exhaust device 61 exhausts the inside of the airtight container 50, that is, the oxidizing agent channel 30 and the reducing agent channel 40. Then the pressure is reduced.
  • vacuum is carried out to reach a range of vacuum of 10 _5 Pa ⁇ 10 _1 Pa.
  • G-100D manufactured by ULVAC can be used as the exhaust device 61.
  • a higher degree of vacuum is preferable because volatilization of a solvent such as alcohol is promoted.
  • the degree of vacuum is preferably up to 10-5 Pa.
  • the multiple airtight containers 50 made of polyethylene are completed as follows.
  • the cylindrical body 50 which also has multiple polyethylene film strengths, is closed so as to form the lug 50c by one-end welding, and the other end is opened to form the opening 50a.
  • a small resin-made cylinder is fixed to the outer peripheral surface of the cylinder 50 'so as to communicate with the inside of the cylinder 50', thereby forming an exhaust port 50b.
  • the PEFC stack 200 is housed inside from the opening 50a, and the opening 50a is welded and closed so that the opening 50a forms the ear 50a.
  • step (maintenance step) S2 the exhaust device 61 attached to the exhaust port 50b is operated intermittently. This makes it possible to maintain the depressurized state of the oxidizing agent flow path 30 and the reducing agent flow path 40 for a long period of time, so that performance deterioration of the PEFC stack 200 can be suppressed for a long period of time.
  • the exhaust device 61 can be replaced in step SI and step S2. That is, in step S1, a relatively large vacuum pump (for example, G-100D manufactured by ULVAC) is connected to the exhaust port 50b via a pipe as the exhaust device 61, and in step S2, the pipe is connected to the exhaust port 50b.
  • a relatively large vacuum pump for example, G-100D manufactured by ULVAC
  • a small vacuum pump for example, GHD-030 manufactured by ULVAC
  • the switching can be performed while maintaining the depressurized state in the airtight container 50 by switching the three-way valve disposed in the exhaust port 50b. That is, a pipe for performing Step S1 is connected to the first port of the three-way valve, an exhaust device for performing Step S2 is mounted on the second port, and the airtight container 50 is connected to the third port. . Then, in step S1, switching is performed so that the third port is connected to the first port. In step S2, switching is performed so that the third port is connected to the second port.
  • a large exhaust device can be used in step S1, so that the time required for step S1 can be reduced.
  • the preservation body 300 of the PEFC stack of Example 1-1 was produced as follows.
  • the number of stacked cells 100 was 50, and a 3 mm-thick isotropic graphite plate was used for the force sword separator 15 and the anode separator 20.
  • a plurality of manifold holes are formed around the main surfaces of the force source separator 15 and the anode separator 20.
  • the large manifold holes communicate with each other, and the oxidant flow path 30, the reducing agent flow
  • the passage 40 and the coolant passage 45 are configured.
  • the oxidant-side electrode catalyst layer 2 contains a catalyst powder in which acetylene black-based carbon powder (DENKA BLACK FX-35 manufactured by Denki Kagaku Kogyo Co., Ltd.) carries 25 wt% of platinum particles having an average particle size of about 30 A by weight.
  • the reducing agent-side electrode catalyst layer 3 includes acetylene black-based powder (Denka Black FX-35 manufactured by Denka Kagaku Kogyo Co., Ltd.) and platinum-lutetium alloy particles having an average particle size of about 30 A (weight ratio).
  • These catalyst powders are dispersed in isopropanol, and the perfluorocarbon sulfonic acid powder is dispersed.
  • the mixture was mixed with an ethyl alcohol dispersion (Flemion FSS-1 manufactured by Asahi Glass Co., Ltd.) to form a paste.
  • ethyl alcohol dispersion Femion FSS-1 manufactured by Asahi Glass Co., Ltd.
  • Each of these pastes was applied to one main surface of a 250- ⁇ m-thick carbon nonwoven fabric (TGP-H-090, manufactured by Toray Industries, Inc.) using a screen printing method.
  • the reducing agent side electrode catalyst layer 3 was produced.
  • the amount of catalytic metal contained in these electrode catalyst layers is 0.3 mgZcm 2 , and the perfluorocarbon sulfonic acid miil. 2 mg / cm (?
  • polymer electrolyte membrane 1 As the polymer electrolyte membrane 1, a 50 ⁇ m-thick perfluorocarbon sulfonic acid membrane (Nafionl 12 manufactured by D-upont, USA) was used.
  • the oxidant-side electrode catalyst layer 2 and the reducing agent-side electrode catalyst layer 3 were joined to the main surfaces on both sides of the center of the polymer electrolyte membrane 1 by hot pressing, respectively. Then, a 250 m-thick fluorine-based rubber sheet was cut out to form a pair of gaskets, which were exposed so that the oxidizing agent-side electrode catalyst layer 2 and the reducing agent-side electrode catalyst layer 3 were exposed.
  • the polymer electrolyte membrane 1 was sandwiched, and these were bonded and integrated with the polymer electrolyte membrane 1 by hot pressing (135 ° C, 1 MPa, 10 minutes).
  • Step S1 For the exhaust device 61, G-100D manufactured by ULVAC was used in Step S1, and GHD-030 manufactured by UL VAC was used in Step S2.
  • step S1 the inlet and outlet 30a, 40a and outlets 30b, 40b of the oxidizing agent channel and the reducing agent channel were hermetically sealed by the sealing plug 70 and the exhaust device 61. Then, the degree of vacuum in the oxidizing agent channel 30 and the reducing agent channel 40 was reduced to 10 ⁇ 3 Pa by the exhaust device 61.
  • step 2 the PEFC stack storage process is performed while maintaining the degree of vacuum in the oxidizing agent channel 30 and the reducing agent channel 40 at 10 _2 Pa by intermittently operating the exhaust device 61.
  • Body 300 was stored at a temperature of 25 ° C for 5000 hours.
  • the PEFC stack 200 after storage is kept at 70 ° C, and a reducing agent substance (80% hydrogen gas Z20% diacid carbon ZlOppm—acid chloride) humidified to a dew point of 65 ° C is added to 65 ° C.
  • a reducing agent substance 80% hydrogen gas Z20% diacid carbon ZlOppm—acid chloride
  • the air was supplied to the reducing agent channel 40, and the air humidified to a dew point of 70 ° C was heated to 70 ° C and supplied to the oxidizing agent channel 30, and the rated operation of the PEFC stack 200 was performed.
  • the rated operation of the PEFC stack 200 is as follows: fuel utilization 80%, oxygen utilization 40%, current density
  • a PEFC stack storage body 300 was manufactured, and step S1 was performed. Then, in step S2, the data was stored as in the example. However, the temperature during storage was 60 ° C instead of 25 ° C.
  • Example 1-1 Then, the rated operation was performed under the same conditions as in Example 1-1.
  • Example 1-1 As Comparative Example 1-1, a PEFC stack 200 of the same type as that of Example 1-1 was used without performing Step S1 and Step S2, that is, without exhausting the inside of the oxidizing agent passage 30 and the inside of the reducing agent passage 40. Saved with. Then, it was stored at a temperature of 25 ° C for 5000 hours as in Example 1-1.
  • Example 1-1 Then, rated operation was performed under the same conditions as in Example 1-1.
  • Example 1-2 the PEFC stack 200 of the same type as that of Example 1-1 was not exhausted from the oxidizing agent channel 30 and the reducing agent channel 40 without performing Steps S1 and S2. Saved in state. Then, similarly to Example 1-2, it was stored at a temperature of 60 ° C for 5000 hours.
  • Example 1-1 Then, the rated operation was performed under the same conditions as in Example 1-1.
  • FIG. 5 is a diagram showing the change over time in the average cell voltage of the PEFC stack 200 of the example 11 and the example 12 and the comparative example 11 and the comparative example 12 in the rated operation.
  • the difference between the average cell voltages V of Examples 11 and 12 was small, and the decrease of the average cell voltage V was small.
  • the average cell voltage V of Comparative Example 11 and Comparative Example 12 was lower than those of Example 1-1 and Example 1-2 in both the rated starting initial force. With the continuation of the rated operation, the average cell voltage V of Comparative Examples 1-1 and 1-2 was significantly lower than those of Examples 11 and 12 in both cases.
  • FIG. 6 is a schematic view of a PEFC stack storage body according to the first embodiment of the present invention.
  • an airtight opening / closing valve 62 is provided at the exhaust port 50b of the airtight container 50 so as to open and close the exhaust port 50b in an airtight manner.
  • the airtight on-off valve 62 and the airtight container 50 constitute a maintenance unit. Further, it is preferable that the airtight on-off valve be manually operated, which does not require driving power during storage. Alternatively, it may be a so-called normally closed type conductive on-off valve which is closed when the drive power is lost.
  • the exhaust device 61 or a pipe connected to the exhaust device 61 is connected to the exhaust port 50b, and the exhaust device 61 is opened when the airtight on-off valve 62 is opened.
  • the inside of the airtight container 50 that is, the oxidizing agent channel 30 and the reducing agent channel 40 are evacuated and reduced in pressure.
  • the airtight on-off valve 62 is closed, and the exhaust device 61 or a pipe connected to the exhaust device 61 is removed from the exhaust port 50b.
  • the maintenance unit is configured to be integrated with the airtight container 50, and the management and disposal of another member such as a sealing plug can be eliminated.
  • FIG. 7 is a schematic diagram of a PEFC stack storage body according to the second embodiment of the present invention. 7, components that are the same as the components shown in FIG. 1 are given the same reference numerals, and descriptions thereof will be omitted.
  • the oxidant flow path inlet 30a or the outlet 30b and the reducing agent flow path inlet 40a or the outlet 40b have This is an embodiment having an exhaust device 61 hermetically attached to one of the outlets 30a, 40a and outlets 30b, 40b, and a sealing plug 70 hermetically attached to the other. That is, in the preservation processing body 310 of the PEFC stack of the present embodiment, the sealing plug 70 and the exhaust device 61 constitute a maintenance unit.
  • the exhaust device 61 is hermetically attached to the oxidizing agent channel inlet 30a and the reducing agent channel inlet 40a.
  • a vacuum pump of the same type as in the first embodiment is used for the exhaust device 61.
  • the sealing plug 70 is hermetically mounted at the oxidizing agent channel outlet 30b and the reducing agent channel outlet 40b.
  • a squeezed packing 80 such as an O-ring is provided on the sealing plug 70, and the squeezed packing 80 is connected to the oxidizing agent passage outlet 30b, the reducing agent passage outlet 40b, the oxidizing agent passage inlet 30a, and the reducing agent. It is hermetically mounted by sealing the gap between the flow path inlet 40a and the junction between the exhaust device 61 and the sealing plug 70.
  • step S1 the oxidizing agent channel outlet 30b and the reducing agent channel outlet 40b of the PEFC stack 200 are hermetically sealed with a stopper 70. Then, the oxidizing agent channel inlet 30a and the reducing agent channel inlet 40a are hermetically sealed by the exhaust device 61. Then, the inside of the oxidizing agent channel 30 and the inside of the reducing agent channel 40 are depressurized by the exhaust device 61.
  • step S2 the exhaust device 61 is operated intermittently. This makes it possible to maintain the decompressed state of the oxidizing agent flow path 30 and the reducing agent flow path 40 for a long period of time, so that performance degradation of the PEFC stack 200 can be suppressed for a long period of time. .
  • the exhaust device 61 may be replaced with a small exhaust device in step S2. This facilitates the transport of the storage body 310 of the PE FC stack with the exhaust device 61 mounted.
  • a pair of exhaust devices 61 are hermetically mounted at the oxidizing agent channel inlet 30a and the reducing agent channel inlet 40a.
  • a forked pipe that also extends the suction rocker of the exhaust device 61 is provided.
  • the oxidizing agent channel outlet 30b and the reducing agent channel outlet 40b may be configured to be air-tightly connected. Accordingly, a large-sized exhaust device can be used in step S1, so that the time required for step S1 can be reduced.
  • the exhaust device 61 can be replaced with a sealing stopper. That is, the maintenance unit can be configured with four sealing plugs attached to the inlet and outlet 30a, 40a, 30b, 40b of the oxidizing agent channel and the reducing agent channel. As a result, the maintenance unit is configured to be integrated with the PEFC stack 200, and management and disposal of another member such as a sealing plug can be eliminated.
  • the PEFC stack 200 force The inlets and outlets 30a, 40a, 30b, and 40 of the oxidizing agent channel and the reducing agent channel. It is also possible to configure so that b has an airtight on-off valve. Accordingly, the sealing plug 70 can be omitted, and even after the PEFC stack 200 is incorporated into the PEFC system, these airtight on-off valves can be used as isolation valves of the PEFC stack 200.
  • step 2 after closing the airtight on-off valve, the exhaust device 61 may be removed. That is, the maintenance unit is only the airtight on-off valve. This allows the maintenance unit to be integrally formed with the PEFC stack 200, thereby eliminating the need for management and disposal of another member such as a sealing plug.
  • the preservation body 310 of the PEFC stack of Example 2-1 was prepared and stored as follows.
  • As the PEFC stack 200 the same type as in Example 1-1 was used.
  • Step S1 For the exhaust device 61, G-100D manufactured by ULVAC was used in Step S1, and GHD-030 manufactured by UL VAC was used in Step S2.
  • step S1 the inlets and outlets 30a, 40a, 30b, 40b of the oxidizing agent channel and the reducing agent channel were hermetically sealed by the sealing plug 70 and the exhaust device 61. Then, the degree of vacuum in the oxidizing agent channel 30 and the reducing agent channel 40 was reduced to 10 _2 Pa by the exhaust device 61.
  • step 2 while the degree of vacuum in the oxidizing agent passage 30 and the reducing agent passage 40 is maintained at 10 _2 Pa by intermittently operating the exhaust device 61, the PEFC stack storage processing is performed. Body 300 was stored at a temperature of 25 ° C for 5000 hours.
  • Example 2-2 the same type as in Example 2-1 was used as the PEFC stack 200, the exhaust device 61, and the airtight container 50 of the PEFC stack storage body 310. Then, in step SI, the pressure was reduced as in Example 2-1.
  • step S2 the exhaust device 61 was replaced with a sealing plug 70, and stored as in Example 2-1. That is, the maintenance unit is constituted by four sealing plugs 70, and the inlet and outlet 30a, 40a, 30b, 40b of the oxidizing agent channel and the reducing agent channel are all hermetically sealed by the sealing plug 70. saved.
  • the vacuum degree of the oxidizing agent passage 30 and the reducing agent passage 40 at the step S2 at the beginning was the 10_ 2 Pa, vacuum degree of the oxidizing agent passage 30 and the reducing agent passage 40 during storage period end Had dropped to 10 4 Pa.
  • FIG. 8 is a diagram showing the change over time of the average cell voltage of the PEFC stack 200 of Example 2-1 and Example 2-2 in the rated operation.
  • Example 2-2 As shown in the figure, the decrease in the average cell voltage V in Example 2-2 was suppressed. Further, the average cell voltage V in Example 2-1 was further suppressed.
  • the third embodiment of the present invention is an embodiment in which Steps S1 and S2 are performed after the PEFC stack 200 has been subjected to the power generation processing, in the same manner as in the first and second embodiments. That is, the configuration of the storage processing body 320 of the PEFC stack of the present embodiment is the same as that of the first to sixth embodiments. Therefore, description of the configuration of the PEFC stack storage processing body 320 of the present embodiment is omitted, and a method of storing the PEFC stack of the present embodiment will be described.
  • FIG. 9 is a flowchart illustrating a method for storing a PEFC stack according to the third embodiment of the present invention.
  • the non-installed PEFC stack 200 is continuously maintained at a predetermined current density for a predetermined power generation continuation time. Generate electricity. Then, steps S1 to S2 are performed in the same manner as in the first embodiment or the second embodiment.
  • step SO specifically, the PEFC stack 200 is maintained at the operating temperature, an electric load is electrically connected between the current collectors 41, 41, and the reducing agent is connected to the anode side.
  • the material is supplied to the PEFC stack 200 by supplying the oxidant material to the power source side, respectively.
  • cause an electrochemical reaction in The electrochemical reaction is continued for a predetermined power generation duration T at a predetermined current density I.
  • the current density I in the power generation process is preferably not less than 0.1 A Zcm 2 and not more than 0.4 AZcm 2 per area of the catalyst layers 2 and 3 of MEA10. At such a current density, it is considered that the generation of water by the electrochemical reaction in MEA10 becomes uniform.
  • the power generation continuation time T of the power generation process is at least 3 hours. This is because it takes some time for the solvent and foreign substances to be discharged from the PEFC stack 200 together with the generated water.
  • the power generation continuation time T during the power generation process is set to a time until the voltage change (dVZdt) per cell at the end of the power generation process decreases to 2 mVZh or less. Since it is considered that the voltage is stabilized by the removal of the solvent and the foreign matter, the removal of the solvent and the foreign matter from the PEFC stack 200 can be determined based on the decrease in the voltage change.
  • the time of the power generation process is preferably within 300 hours after the PEFC stack 200 is manufactured.
  • the power generation process is preferably performed early after the PEFC stack is manufactured. Specifically, within 300 hours after the production of the PEFC stack, the performance deterioration of the PEFC stack 200 can be prevented from progressing.
  • the dew point of the oxidizing agent substance and the reducing agent substance in the power generation processing is preferably in the range of -10 ° C to + 10 ° C of the temperature of MEA 10 in the power generation processing.
  • the MEA 10 is supplied with a sufficient amount of water, and the water prevents the oxidizing agent flow path 30 and the reducing agent flow path 40 from being clogged and loosely flooded.
  • step SO of the third embodiment of the present invention will be specifically described based on examples.
  • Step SO of the present invention is not limited to the following examples.
  • the PEFC stack 200 manufactured at the same time as Example 3-1 was kept stored at normal temperature and normal humidity. That is, the period from the production of the PEFC stack 200 of Example 3-1 to the end of the storage period after the power generation process was stored at normal temperature and normal humidity.
  • the PEFC stack 200 After manufacturing the PEFC stack 200, the PEFC stack 200 was stored at normal temperature and normal humidity for one week. Then, hydrogen gas and air humidified to a dew point of 70 ° C were heated to 70 ° C and supplied for 3 hours. After the supply was completed, the mixture was stored at normal temperature and normal humidity for 8 weeks. During this time, no power generation was performed.
  • Example 3-1 As is clear from Table 1, the voltage drop AV of Example 3-1 is smaller than that of Comparative Examples 3-1 and 3-2. From these results, it was confirmed that the deterioration of the performance of the PEFC stack can be suppressed more reliably by the power generation process.
  • step S1 After passing through step S1, it was stored at normal temperature and normal humidity for 8 weeks.
  • Example 3-1 the temperature of the PEFC stack was maintained at 70 ° C, and the hydrogen gas and air humidified to a dew point of 70 ° C were heated to 70 ° C, and the reducing agent flow was increased.
  • the gas was supplied to the passage 40 and the oxidizing agent passage 30, and the fuel gas utilization rate was 70%, the oxidizing gas utilization rate was 40%, and the current density was 0.2 AZcm 2 .
  • Table 2 shows the current density I and the power generation continuation time T during the power generation process of Example 3-1, Example 3-2, Comparative example 3-3, Comparative example 3-4, and Comparative example 3-5. Voltage change at the end of power generation processing (dV
  • Example 3-1 and Comparative Example 3-4 As is clear from the comparison between Example 3-1 and Comparative Example 3-4, and the comparison between Example 3-2 and Comparative Example 3-3, Example 3-1 and Example 3-2. Has a smaller voltage drop ⁇ as compared with Comparative Examples 3-3 and 3-4. Therefore, the current density range of the power generation process is suitably 0. lAZcm 2 ⁇ 0. 4AZcm 2. This is presumed that the electrochemical reaction at this current density would produce uniform water by the electrochemical reaction in MEA10.
  • Example 3-1 and Example 3-2 correspond to Comparative Example 3-3, Comparative Example 3-4 and Comparative Example Compared to 3-5, the voltage change (dVZdt) at the end of the power generation process has dropped to 1.5 mVZh or less. This is because the change in voltage (dVZdt) causes the solvent and foreign substances in the pores in the PEFC stack 200, particularly in the electrode catalyst layers 2 and 3, to move out of the PEFC stack 200 together with the water generated by the electrochemical reaction. If the voltage change (dVZdt) drops to about 1.5 mVZh or less, it is considered that the solvent and foreign matter in the PEFC stack 200 can be sufficiently discharged because the discharge occurs when discharging.
  • Example 3-1 has a smaller voltage drop ⁇ as compared with Comparative Example 3-5. Therefore, the duration of power generation ⁇ during the power generation process is preferably 3 hours or more. This is probably because it takes at least 3 hours for the solvent and foreign matter to be discharged from the FC stack 200 together with the generated water.
  • the PEFC stack 200 of Example 3-3 and Comparative Example 3-6 was humidified to a dew point of 70 ° C while maintaining the temperature of the PEFC stack at 70 ° C in the same manner as in Example 3-1.
  • the heated hydrogen gas and air are heated to 70 ° C and supplied to the reducing agent channel 40 and the oxidizing agent channel 30, respectively.
  • the fuel gas utilization rate is 70%
  • the oxidizing gas utilization rate is 40%
  • the current density is 0.2 AZcm 2 ⁇ ⁇ Rated operation was continued for 1000 hours.
  • Table 3 shows that the period W before the power generation process and the power generation process of the examples 3-1 and 3-3 and the comparative examples 3-6 are shown in Table 3. It shows the current density I during processing, the power generation continuation time T, the voltage change (dVZdt) at the end of the power generation process, and the voltage drop ⁇ during rated operation.
  • the PEFC stack 200 was stored at normal temperature and normal humidity for about one week, more precisely 150 hours.
  • Example 3 As is clear from the comparison between Example 3-1 and Example 3-3 and Comparative Example 3-6, Example 3
  • the temperature of the PEFC stack was maintained at 70 ° C, and the dew point was 70 ° C.
  • the humidified hydrogen gas and air are heated to 70 ° C and supplied to the reducing agent passage 40 and the oxidizing agent passage 30, respectively, so that the fuel gas utilization rate is 70% and the oxidizing gas utilization rate is 40%.
  • the current density was 0.2 A / cm 2 ⁇ , and the rated operation was continued for 1000 hours.
  • Table 4 shows the current density I, power generation continuation time T, and temperature difference ⁇ S during power generation processing of Examples 3-4, 3-5, Comparative Examples 3-7, and 3-8 at the end of power generation processing. Voltage change (dVZdt) and the voltage drop ⁇ V in rated operation.
  • Example 3-4 and 3-5 were compared with Comparative Examples 3-7 and It can be seen that the voltage drop ⁇ is small as compared with Example 3-8. Therefore, at the time of power generation processing, it is preferable that the temperature difference AS is in the range of + 10 ° C to 110 ° C. This is because if the temperature difference AS is larger than the range of + 10 ° C to 110 ° C, the amount of water in the PEFC stack 200 will be excessive and insufficient, and the electrochemical reaction in MEA10 will be uneven. It is considered that the solvent and foreign matter in the pores in the PEFC stack 200, particularly in the electrode catalyst layers 2 and 3, could not be sufficiently discharged out of the PEFC stack 200.
  • the inside of the oxidizing agent channel 30 and the reducing agent channel 40 of the PEFC stack in the non-installed state are used. Since the inside is stored in a reduced pressure state, the solvent remaining in the oxidant-side electrode catalyst layer and the reducing agent-side electrode catalyst layer in a reduced pressure state becomes a volatile state.
  • the PEFC stack 200 in the method of storing the PEFC stack 200 of the first embodiment and the second embodiment, in step S1, the PEFC stack 200 remains in the oxidizing agent-side electrode catalyst layer 2 and the reducing agent-side electrode catalyst layer 3.
  • step (maintenance step) S2 As a result, in particular, it is possible to sufficiently suppress the deterioration of the performance of the polymer electrolyte fuel cell stack during the period from when the non-installed state force is installed at the installation place to when it is used.
  • the oxygen concentration in the oxidizing agent channel and the reducing agent channel can be easily kept below the oxygen concentration in the atmosphere, and the partial oxidation reaction and dehydration of the organic solvent component remaining in the electrode catalyst layer can be performed.
  • Condensation reaction reaction between organic solvent components, reaction between partial oxides, organic solvent component And the like, including the reaction between the polymer electrolyte fuel cell stack and the partially oxidized product.
  • the polymer electrolyte fuel cell stack in the period from the non-installed state to the installed place and used. Can be sufficiently suppressed from deteriorating.
  • the step (volatilization elimination step) S1 can be unnecessary. That is, the storage processing bodies 300 and 310 of the PEFC stack can be manufactured under reduced pressure, for example, by manufacturing in a vacuum chamber.
  • the present invention is useful as a method of preserving a polymer electrolyte fuel cell stack that suppresses deterioration of the performance of the polymer electrolyte fuel cell stack during a period from when the force in the non-installed state is also installed in the installation place to when used. Further, the present invention provides a polymer electrolyte fuel cell stack preservation body which can sufficiently prevent the performance of the polymer electrolyte fuel cell stack from deteriorating during a period from a non-installed state to an installation place and used. It is useful.

Landscapes

  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Fuel Cell (AREA)

Abstract

 未設置状態から設置場所に設置され使用されるまでの期間におけるPEFCスタックの性能の劣化を抑制するPEFCスタックの保存方法を提供する。また、未設置状態から設置場所に設置され使用されるまでの期間におけるPEFCスタックの性能の劣化を十分に防止できるPEFCスタックの保存処理体を提供する。本発明のPEFCスタック(200)の保存方法は、入口及び出口を有しカソードを経由する酸化剤流路(30)と入口及び出口を有しアノードを経由する還元剤流路(40)とを有するPEFCスタック(200)の保存方法であって、未設置状態のPEFCスタック(200)の酸化剤流路(30)内及び還元剤流路(40)内を減圧状態として保存する。

Description

明 細 書
高分子電解質型燃料電池スタックの保存方法及び高分子電解質型燃料 電池スタックの保存処理体
技術分野
[0001] 本発明は、高分子電解質型燃料電池スタックの保存方法及び高分子電解質型燃 料電池スタックの保存処理体に関する。特に未設置状態の高分子電解質型燃料電 池スタックの保存方法及び高分子電解質型燃料電池スタックの保存処理体に関する 背景技術
[0002] 従来の高分子電解質型燃料電池(以下 PEFCと略称する)の停止方法にお ヽては 、酸化剤物質及び還元剤物質の供給を遮断すると共に、 PEFCスタック内に残存す るこれら物質を窒素等の不活性ガス等によってパージを行っている (特許文献 1参照 ) oまた、その後の PEFCの停止中においても、一般的には、空気が PEFCスタック内 に侵入しな 、ように酸化剤流路及び還元剤流路に不活性ガス等を充填して 、る(特 許文献 2参照)。これによつて、 PEFCスタック内の電極触媒層の酸ィ匕が防止され、 P EFCの性能の劣化を防止することができる。また、 PEFCの発電停止中に、セパレー タの電位を所定の値に保って保管する方法も提案されて ヽる (特許文献 3参照)。
[0003] 他方で、高分子電解質膜一電極接合体(MEA; Membrane— Electrode— Asse mbly)の作製において、電極触媒層は、例えば、触媒層形成用塗料を調製し、当該 塗料を高分子電解質膜表面に塗布することにより形成される。触媒層形成用塗料に は溶媒としてアルコール成分が含有されている。例えば、白金—ルテニウム合金粒 子、あるいは白金粒子を担持したカーボン粉末が触媒粉末とされ、この触媒粉末が パーフルォロカーボンスルホン酸高分子を含有するエチルアルコール分散液と混合 されてペーストとされる。このペーストが、高分子電解質膜表面に塗工されることによ つて、電極触媒層が形成される。このアルコール成分力もなる溶媒は MEA製造後も 多孔質の電極触媒層の一部に入り込んで残存する。
[0004] ここで、高分子電解質膜と電極触媒層との界面のイオン抵抗が高くなるという欠点、 さらには、電極触媒層と拡散電極層とが十分に接合されず、電極触媒層と拡散電極 層との界面の電子抵抗が高くなるという欠点を改善する方法として、 2枚の電極で高 分子電解質膜を挟んだ挟持体を溶媒中で加熱、加圧し、一体化する方法が提案さ れている (例えば、特許文献 4参照)。また、予め溶媒を含んだ高分子電解質膜およ び Zまたは電極触媒層を用い、実質上溶媒には浸漬しな ヽ状態で加熱および加圧 する方法が提案されている(例えば、特許文献 5参照)。この方法〖こよると、一体化工 程中に MEA内の溶媒が蒸発する為、溶媒による高分子電解質膜の膨潤が抑制さ れ、高分子電解質膜と触媒層との界面の接合状態が良好なまま維持されるという効 果が記載されている。
特許文献 1 :特開平 6— 251788号公報
特許文献 2:特開平 7— 272738号公報
特許文献 3:特開平 5 - 258762号公報
特許文献 4:特開平 3— 208262号公報
特許文献 5:特開 2002— 93424号公報
発明の開示
発明が解決しょうとする課題
[0005] 特許文献 1乃至 3に例示されるように、発電開始後において電極触媒層が触媒活 性温度に達している状況において空気など酸化物が接触すると電極触媒層が酸ィ匕 し、性能が低下することは知られていた。
[0006] しかし、 PEFCは、発電開始前であっても、 PEFCスタックの組立製造後発電開始 までの期間が長くなると、出力電圧の低下などの性能の劣化、特に出力電圧の電圧 降下率の上昇が顕著に発現することを本発明者は見出した。本発明者の検証の結 果、力かる性能の劣化は電極触媒上に残存する残留溶媒の酸ィ匕物がひとつの要因 であることが分力つた。
[0007] 従来、このような PEFCの発電開始前における性能の劣化については、当業者の 間でもさほど関心が払われていな力つた。このため、従来の PEFCの停止方法等は、 供用開始後の対応であり、 PEFCスタックの製造後から PEFCシステムに組み込まれ る前までの電極触媒層の劣化の防止を図るものではな力つた。つまり、従来の PEFC の性能劣化の防止方法は、 PEFCシステムとして PEFCの性能劣化の防止を図る方 法となっている。具体的には、 PEFCスタックの酸化剤流路及び還元剤流路に接続さ れた配管等を通じて外部の周辺機器より不活性ガス等を供給する仕組みであるので 、 PEFCシステムに組み込まれる前、特に在庫時、運搬時のように単体状態の PEFC スタックには適用できないものであった。
[0008] そこで、本発明は、上記のような課題を解決するためになされたもので、特に、未設 置状態から設置場所に設置され使用されるまでの期間における高分子電解質型燃 料電池スタックの性能の劣化を抑制する高分子電解質型燃料電池スタックの保存方 法を提供することを目的とする。また、本発明は、特に、未設置状態から設置場所に 設置され使用されるまでの期間における高分子電解質型燃料電池スタックの性能の 劣化を十分に防止できる高分子電解質型燃料電池スタックの保存処理体を提供す ることを目的とする。
課題を解決するための手段
[0009] 本発明者らは、上記目的を達成するべく鋭意研究を重ねた結果、未設置状態の P EFCスタックの性能劣化の原因は、 MEAの電極触媒層にお!/、てアルコール等の残 留溶媒と酸素とが反応して酢酸等の酸化物が生成され、この酸化物によって触媒は 被毒され、力かる被毒が長期に及ぶと電極触媒層の変質が進展して、電極触媒の性 能が劣化しているものと推測した。また、特許文献 4及び 5においては、溶媒の蒸発 によって MEA製造時における高分子電解質膜の膨潤を抑制することができるとして いる。しかし、発明者らが検証した結果では未設置状態の PEFCスタックの性能劣化 にはほとんど効果がな力つた。これは、触媒電極層は多孔質体であることから、触媒 電極層内部に入り込んで 、る溶媒が蒸発せずに残留して 、るものと推測された。
[0010] 発明者らは、これら推測に基づ!/、て本発明に想到して、その効果を検証したところ 、その効果があることを見出した。
[0011] すなわち、上記課題を解決するために、第 1の本発明の高分子電解質型燃料電池 スタックの保存方法は、入口及び出口を有し力ソードを経由する酸化剤流路と入口 及び出口を有しアノードを経由する還元剤流路とを有し、前記酸化剤流路の入口より 酸化剤物質が供給され、前記還元剤流路の入口より還元剤物質が供給され、前記 酸化剤物質及び前記還元剤物質が前記アノード及び前記力ソードにおいて電気化 学反応をして、発電を行うように構成された高分子電解質型燃料電池スタックの保存 方法であって、未設置状態の前記高分子電解質型燃料電池スタックの前記酸化剤 流路内及び前記還元剤流路内を減圧状態として保存する。このような構成とすると、 減圧状態にお!ヽて酸化剤側電極触媒層及び還元剤側電極触媒層に残留する溶媒 が揮発状態となるので、特に、未設置状態から設置場所に設置され使用されるまで の期間における高分子電解質型燃料電池スタックの性能の劣化を十分に抑制するこ とができる。また、減圧状態においては、酸化剤流路及び還元剤流路中の酸素濃度 を大気中の酸素濃度未満に容易に保つことができ、電極触媒層に残存する有機溶 媒成分の部分酸化反応、脱水縮合反応 (有機溶媒成分同士の反応、部分酸化物同 士の反応、有機溶媒成分と部分酸化物との反応を含む)等を十分に防止できるので 、この観点からも、特に、未設置状態から設置場所に設置され使用されるまでの期間 における高分子電解質型燃料電池スタックの性能の劣化を十分に抑制することがで きる。
ここで、未設置状態とは、高分子電解質型燃料電池スタックの組立製造後燃料電 池システムに組み込まれる前までの状態をいう。具体的には、高分子電解質型燃料 電池スタックの酸化剤流路に酸化剤物質供給装置が接続される前までの状態、ある いは還元剤流路に還元剤物質供給装置が接続される前までの状態を 、、例えば 、高分子電解質型燃料電池スタックが保存あるいは運搬される状態を言う。なお、高 分子電解質型燃料電池スタック製造後の短期間の電気化学反応を行った後の高分 子電解質型燃料電池スタックも未設置状態の高分子電解質型燃料電池スタックに含 まれる。例えば、性能確認試験後の高分子電解質型燃料電池スタック、後述する発 電処理後の高分子電解質型燃料電池スタックが未設置状態の高分子電解質型燃料 電池スタックに含まれる。また、高分子電解質型燃料電池スタックの製造工程におい て本発明の保存方法を組み込むような場合も未設置状態の高分子電解質型燃料電 池スタックに含まれる。例えば、 MEAが積層されて仮締結状態で保存され、高分子 電解質型燃料電池システムへの組込時あるいはその直前において、集電板、端板 等が両端に配設されて高分子電解質型燃料電池スタックが最終的に組み上げられ るという製造方法においては、この仮締結状態が実質的に高分子電解質型燃料電 池スタックの未設置状態に該当する。
本発明の効果をより確実に得る観点から、第 2の本発明の高分子電解質型燃料電 池スタックの保存方法は、前記減圧状態は、真空度が、 10_5Pa以上 10_1Pa以下の 範囲であるとよい。
第 3の本発明の高分子電解質型燃料電池スタックの保存方法においては、未設置 状態の前記高分子電解質型燃料電池スタックの前記酸化剤流路内及び前記還元 剤流路内を減圧状態とする揮発除去ステップと、前記減圧状態を維持する維持ステ ップとを、有するとよい。このような構成とすると、揮発除去ステップにおいて酸化剤側 電極触媒層及び還元剤側電極触媒層に残留する溶媒の揮発が促進されるとともに、 揮発した溶媒が高分子電解質型燃料電池スタック外に除去され、かつ維持ステップ にお!/ヽて溶媒の揮発状態が維持されるので、未設置状態の高分子電解質型燃料電 池スタックの性能の劣化を抑制することができる。
[0013] 第 4の本発明の高分子電解質型燃料電池スタックの保存方法は、前記揮発除去ス テツプは、排気口が形成されて ヽる気密性容器に前記高分子電解質型燃料電池ス タックを収容して、該排気口に排気装置を接続して前記気密性容器の内部を排気し て行い、前記維持ステップは、前記排気口に排気装置を気密的に装着して、あるい は前記排気口を開閉するように配置されて 、る気密型の開閉弁を閉止して行うとよ 、 。特に、維持ステップにおいて気密性容器の排気口に排気装置が装着されると、排 気装置の断続的な作動によって酸化剤流路及び還元剤流路の減圧状態を長期に 亘つて継続することが可能となるので、高分子電解質型燃料電池スタックの性能劣化 を長期に亘つて抑制することができる。
[0014] 本発明の効果をより確実に得る観点から、第 5の本発明の高分子電解質型燃料電 池スタックの保存方法は、前記揮発除去ステップは、前記酸化剤流路の入口及び出 口のいずれか一方と、並びに前記還元剤流路の入口及び出口の何れか一方とに排 気装置を気密的に装着し、それらの他方に封止栓あるいは気密型開閉弁を気密的 に装着して、該排気装置によって前記酸化剤流路及び前記還元剤流路内を排気し 、前記維持ステップは、前記排気装置、前記封止栓及び前記気密型開閉弁を気密 的に装着ある 、は閉止した状態とするとよ 、。
第 6の本発明の高分子電解質型燃料電池スタックの保存方法は、前記高分子電解 質型燃料電池スタックを発電させる発電処理ステップを有するとよ ヽ。このように高分 子電解質型燃料電池スタックを発電させることにより、高分子電解質型燃料電池スタ ック内に残留している溶媒や金属等の異物を、電気化学反応による生成水とともに除 去することができるので、高分子電解質型燃料電池スタックの性能の劣化をさらに抑 ff¾することができる。
本発明の効果をより確実に得る観点から、第 7の本発明の高分子電解質型燃料電 池スタックの保存方法においては、前記発電処理ステップにおける電流密度は、前 記触媒層の面積あたり 0. lAZcm2以上、 0. 4AZcm2以下であるとよい。
[0015] 本発明の効果をより確実に得る観点から、第 8の本発明の高分子電解質型燃料電 池スタックの保存方法は、前記発電処理ステップにおける発電継続時間は、 3時間 以上であるとよい。
[0016] 本発明の効果をより確実に得る観点から、第 9の本発明の高分子電解質型燃料電 池スタックの保存方法は、前記発電処理ステップにおける発電継続時間は、電圧変 動が 2mVZh以下になるまでの時間であるとよ!/、。
[0017] 本発明の効果をより確実に得る観点から、第 10の本発明の高分子電解質型燃料 電池スタックの保存方法は、前記発電処理ステップが前記高分子電解質型燃料電 池スタック製造後 300時間以内に行われるとよい。
第 11の本発明の高分子電解質型燃料電池スタックの保存処理体は、入口及び出 口を有し力ソードを経由する酸化剤流路と入口及び出口を有しアノードを経由する還 元剤流路とを有し、前記酸化剤流路の入口より酸化剤物質が供給され、前記還元剤 流路の入口より還元剤物質が供給され、前記酸化剤物質及び前記還元剤物質が前 記アノード及び前記力ソードにぉ ヽて電気化学反応をして、発電を行うように構成さ れた高分子電解質型燃料電池スタックと、減圧状態の前記酸化剤流路及び前記還 元剤流路を維持する維持ユニットとを有する。このような構成とすると、酸化剤側電極 触媒層及び還元剤側電極触媒層に残留する溶媒が揮発状態となるので、特に、未 設置状態から設置場所に設置され使用されるまでの期間における高分子電解質型 燃料電池スタックの性能の劣化を十分に抑制することができる。また、減圧状態にお いては、酸化剤流路及び還元剤流路中の酸素濃度を大気中の酸素濃度未満に容 易に保つことができ、電極触媒層に残存する有機溶媒成分の部分酸化反応、脱水 縮合反応 (有機溶媒成分同士の反応、部分酸化物同士の反応、有機溶媒成分と部 分酸ィ匕物との反応を含む)等を十分に防止できるので、この観点からも、特に、未設 置状態から設置場所に設置され使用されるまでの期間における高分子電解質型燃 料電池スタックの性能の劣化を十分に抑制することができる。
本発明の効果をより確実に得る観点から、第 12の本発明の高分子電解質型燃料 電池スタックの保存処理体は、前記減圧状態は、真空度が、 10_5Pa以上 10_1Pa以 下の範囲であるとよい。
本発明の効果をより確実に得る観点から、第 13の本発明の高分子電解質型燃料 電池スタックの保存処理体は、前記維持ユニットが、前記高分子電解質型燃料電池 スタックを収容するとともに排気口が形成されている気密性容器と、該排気口に気密 的に装着された排気装置、前記排気口を気密的に封止する封止栓、あるいは前記 排気口を気密的に開閉するように配置されている気密型開閉弁とを有するとよい。特 に、維持ユニットに排気装置を有することによって、排気装置の断続的な作動によつ て酸化剤流路及び還元剤流路の減圧状態を長期に亘つて継続することが可能とな るので、高分子電解質型燃料電池スタックの性能劣化を長期に亘つて抑制すること ができる。
本発明の効果をより確実に得る観点から、第 14の本発明の高分子電解質型燃料 電池スタックの保存処理体においては、前記維持ユニットが、前記酸化剤流路の入 口及び出口の何れか一方に気密的に装着されている排気装置と、その他方に気密 的に装着されて 、る封止栓あるいは気密型開閉弁と、前記還元剤流路の入口及び 出口の何れか一方に気密的に装着されている排気装置と、その他方に気密的に装 着されて!、る封止栓ある!/、は気密型開閉弁とを有して構成されて 、るとょ 、。
第 15の本発明の高分子電解質型燃料電池スタックの保存処理体は、前記高分子 電解質型燃料電池スタックは、発電処理された高分子電解質型燃料電池スタックで あるとよい。このように構成すると、高分子電解質型燃料電池スタック内の溶媒や金 属等の異物が、発電処理における電気化学反応による生成水とともに除去されてい るので、高分子電解質型燃料電池スタックの性能の劣化をさらに抑制することができ る。ここで、「発電処理」とは、高分子電解質型燃料電池スタックを発電させる処理を いう。
発明の効果
[0019] 以上のように、本発明によれば、特に、未設置状態から設置場所に設置され使用さ れるまでの期間における高分子電解質型燃料電池スタックの性能の劣化を抑制する 高分子電解質型燃料電池スタックの保存方法を提供することができる。また、本発明 によれば、特に、未設置状態力も設置場所に設置され使用されるまでの期間におけ る高分子電解質型燃料電池スタックの性能の劣化を十分に防止できる高分子電解 質型燃料電池スタックの保存処理体を提供することができる。
図面の簡単な説明
[0020] [図 1]図 1は、本発明の第 1実施形態の PEFCスタックの保存処理体の模式図である
[図 2]図 2は、本発明の第 1実施形態の PEFCスタックの保存処理体にふくまれる PE
FCスタックの構造を示す分解斜視図である。
[図 3]図 3は、セルの基本構成を示す模式図である。
[図 4]図 4は、本発明の第 1実施形態の PEFCスタックの保存方法を示すフローチヤ ートである。
[図 5]図 5は、定格運転における実施例 1—1乃至実施例 1—4の PEFCスタックの平 均セル電圧の経時的変化を示す図である。
[図 6]図 6は、本発明の第 1実施形態の変形例 1の PEFCスタックの保存処理体の模 式図である。
[図 7]図 7は、本発明の第 2実施形態の PEFCスタックの保存処理体の模式図である
[図 8]図 8は、定格運転における実施例 2— 1及び実施例 2— 2の PEFCスタックの平 均セル電圧の経時的変化を示す図である。
[図 9]図 9は、本発明の第 3実施形態の PEFCスタックの保存方法を示すフローチヤ ートである。
符号の説明
1 高分子電解質膜
2 酸化剤側電極触媒層 3 還元剤側電極触媒層 4 酸化剤側拡散電極層 5 還元剤側拡散電極層 10 ME A
15 力ソードセパレータ
20 アノードセパレータ
30 酸化剤流路
30a 酸化剤流路入口部
30b 酸化剤流路出口部
40 還元剤流路
40a 還元剤流路入口部
40b 還元剤流路出口部
41 集電板
42 絶縁板
43 端板
45 冷却剤流路
45a 冷却剤流路入口
45b 冷却剤流路出口
50 気密性容器
50' 筒体
50a 開口部(耳部)
50b 排気口
50c 耳部
61 排気装置 70 封止栓
80 スクイーズドパッキン
100 セル
200 PEFCスタック
300、 310, 320 PEFCスタックの保存処理体
SO, SI, S2 ステップ
V 平均セノレ電圧
H 運転時間
発明を実施するための最良の形態
[0022] 以下、本発明を実施するための最良の形態について図面を参照しながら説明する 。本発明の上記効果、他の効果、特徴及び利点は、添付図面参照の下、以下の好 適な実施態様の詳細な説明から明らかにされる。
[0023] (第 1実施形態)
本発明の第 1実施形態の PEFCスタックの保存方法について説明する。
[0024] 図 1は、本発明の第 1実施形態の PEFCスタックの保存処理体の模式図である。図 2は、本発明の第 1実施形態の PEFCスタックの保存処理体にふくまれる PEFCスタ ックの構造を示す分解斜視図である。
[0025] 第 1実施形態の PEFCスタックの保存処理体 300にふくまれる PEFCスタック 200は 、電気化学反応により発電する単電池 (セル) 100を積層して構成されている。図 2に 示すように、単電池(セル) 100は、互いにほぼ同型の平面を有する、矩形板状の M EA100、力ソードセパレータ 15及びアノードセパレータ 20を有して構成されている。 そして、 MEA10は、一方の面を力ソードセパレータ 15、他方の面をアノードセパレ ータ 20が接するようにして挟まれている。セル 100の積層方向端部は、集電板 41, 4 1、及び絶縁板 42, 42を介して端板 43, 43で挟まれ、端板 43, 43間が締結ボルト( 図示せず)で両側から締結されて構成されている。 PEFCスタック 200は、家庭用コ 一ジェネレーションシステム、自動二輪車、電気自動車、ハイブリッド電気自動車、家 電製品、携帯用コンピュータ装置、携帯電話、携帯用音響機器、携帯用情報端末な どの携帯電気装置等の PEFCシステムに用いられる。 [0026] 集電板 41, 41の電気端子 41a, 41aは、電気機器等の外部負荷と接続されて電気 を出力する。 PEFCスタック 200には、酸化剤流路 30及び還元剤流路 40が形成され ている。
[0027] 酸化剤流路 30は、酸化剤物質が、酸化剤流路入口部 30aから供給され、各セル 1 00に分岐し、各セル 100流通後は、再び合流して酸化剤流路出口部 30bより PEFC スタック 200外に排出されるように構成されている。また、一般的に、酸化剤流路 30 は、他の流路との交流はなぐ酸化剤流路入口部 30a及び酸化剤流路出口部 30bが 封止されると閉塞されるように構成されている。還元剤流路 40も同様にして構成され ている。本実施の形態では、酸化剤物質として、酸素あるいは空気が用いられる。ま た、還元剤物質として水素あるいは水素を含む物質が用いられる。
[0028] ここでは、 PEFCスタック 200片側の端板 43に酸化剤流路入口部 30a及び還元剤 流路入口部 40aが形成されて ヽる。還元剤流路 40も同様にして構成されて!ヽる。
[0029] なお、 PEFCスタック 200には、 PEFCスタック 200の温度を調整するために、水な どの冷却剤が流通する冷却剤流路 45も構成されている。冷却剤流路 45は、酸化剤 流路 30及び還元剤流路 40とは別個に構成されていて、冷却剤が、冷却剤流路入口 部 45aから PEFCスタック 200内に供給され、 PEFCスタック 200内で分岐して積層さ れた各セル 100の間を流通して冷却剤流路出口部 45bから外部に排出されるように 構成されている。
[0030] ここで、セノレ 100は、 MEA10と、力ソードセパレータ 15と、アノードセパレータ 20と を積層して構成されている。そして、図 2に示すように MEA10と力ソードセパレータ 1 5との間には酸化剤流路 30が形成され、 MEA10とアノードセパレータ 20との間には 還元剤流路 40が形成されて ヽる。
[0031] 図 3は、 MEAの基本構造を示す模式図である。
[0032] MEA10は、水素イオンを選択的に透過するイオン交換膜からなる高分子電解質 膜 1と、高分子電解質膜 1を挟むように形成された、白金族金属触媒を担持したカー ボン粉末を主成分とする一対の電極触媒層 (酸化剤側電極触媒層 2及び還元剤側 電極触媒層 3)と、この一対の電極触媒層の外面に配設された一対の拡散電極層 ( 酸化剤側拡散電極層 4及び還元剤側拡散電極層 5)とを備えて構成されている。この 拡散電極層 4, 5は、通気性と電子伝導性を併せ持つように構成されている。例えば
、多孔性構造を有している。
[0033] そして、酸化剤側電極触媒層 2,酸化剤側拡散電極層 4及び力ソードセパレータ 15 力 S力ソードを構成している。
[0034] また、還元剤側電極触媒層 3,還元剤側拡散電極層 5及びアノードセパレータ 20 がアノードを構成している。
[0035] 次に以上のように構成された PEFCスタック 200の動作を説明する。酸化剤物質が 酸化剤流路 30を経由して各セル 100に分岐して供給される。各セル 100では、酸ィ匕 剤物質が力ソードに供給される。ここでは、酸化剤側拡散電極層 4に曝露される。ま た、水素、あるいは水素を含む還元剤物質も同様にして、アノードに供給される。ここ では、還元剤流路 40を経由して還元剤側拡散電極層 5に曝露される。
[0036] そして、酸化剤物質は、酸化剤側拡散電極層 4を透過し、酸化剤側電極触媒層 2 に到達する。同様にして、還元剤物質も、還元剤側拡散電極層 5を透過し、還元剤 側電極触媒層 3に到達する。
[0037] 力ソードセパレータ 15、アノードセパレータ 20、集電板 41、 41 (図 1参照)及び外部 の電気回路(図示せず)を経由して酸化剤側電極触媒層 2と還元剤側電極触媒層 3 との電気的な接続回路が構成されると、還元剤側電極触媒層 3において、水素がィ オン化する。
[0038] 水素イオンは高分子電解質膜 1を透過して酸化剤側電極触媒層 2において、酸素 イオンと結合し、水を生成する。また、水素のイオンィ匕に伴い還元剤側電極触媒層 3 において発生した電子は、還元剤側拡散電極層 5を経由して外部の電気回路(図示 せず)を流れ、電気出力を生じさせる。
[0039] ところで、酸化剤側電極触媒層 2及び還元剤側電極触媒層 3は、以上の動作から 明らかなように、酸化剤流路 30内及び還元剤流路 40内に充満する物質に暴露され る。従って、製造直後の燃料電池においては、酸化剤側電極触媒層 2及び還元剤側 電極触媒層 3は酸化剤流路 30内及び還元剤流路 40内に充満する空気に暴露され る。そして、酸化剤側電極触媒層 2及び還元剤側電極触媒層 3が空気に暴露される と、酸化剤側電極触媒層 2及び還元剤側電極触媒層 3中に残存して ヽる残留溶媒が 酸化反応を起こし、酸化剤側電極触媒層 2及び還元剤側電極触媒層 3の触媒を被 毒させる可能性がある。
そこで、本発明の第 1実施形態の PEFCスタックの保存処理体 300は次のように構 成されている。
[0040] PEFCスタックの保存処理体 300は、 PEFCスタック 200と、酸化剤流路 30及び還 元剤流路 40を減圧状態に維持する気密性容器 50と、を有する。
気密性容器 50は、高真空に耐えることが可能な袋又は箱で構成され、排気口 50b が形成されている。排気口 50bには、排気装置 61が気密的に装着されている。
[0041] 気密性容器 50は、例えば、ナイロン、ポリエチレン等の榭脂製の袋、金属製の箱で 構成されている。ここでは、気密性容器 50は、多重のポリエチレン製の袋で構成され ている。
[0042] ここで、気密性容器 50と排気装置 61とが維持ユニットを構成している。維持ユニット に排気装置 61を有することによって、排気装置 61の断続的な作動によって酸化剤 流路 30及び還元剤流路 40の減圧状態を長期に亘つて継続することが可能となるの で、 PEFCスタック 200の性能劣化が長期に亘つて抑制することができる。
また、排気口 50bには、外部から気体が流入せずに気密性容器 50内部の減圧状 態が維持されるように逆止弁(図示せず)が構成されてもょ 、。この逆止弁によって、 排気装置 61の脱落あるいは気密的装着の損壊によっても、気密性容器 50内の減圧 状態の崩壊を抑制することができる。
また、 PEFCスタック 200は、未設置状態の PEFCスタックである。未設置状態とは 、 PEFCスタックの組立製造後燃料電池システムに組み込まれる前までの状態を 、う 。具体的には、 PEFCスタックの酸化剤流路に酸化剤物質供給装置が接続される前 までの状態、あるいは還元剤流路に還元剤物質供給装置が接続される前までの状 態をいい、例えば、 PEFCスタックが保存あるいは運搬される状態を言う。なお、 PEF Cスタック製造後の短期間の電気化学反応を行った後の PEFCスタックも未設置状 態の PEFCスタックに含まれる。例えば、性能確認試験後の PEFCスタック、所定の 発電処理後の PEFCスタックが未設置状態の PEFCスタックに含まれる。また、 PEF Cスタックの製造工程において本発明の保存方法を施すような場合も未設置状態の PEFCスタックに含まれる。例えば、 MEAが積層されて仮締結状態で保存され、 PE FCシステムへの組込時あるいはその直前において、集電板、端板等が両端に配設 されて PEFCスタックが最終的に組み上げられるという製造方法においては、この仮 締結状態が実質的に PEFCスタックの未設置状態に該当する。
次に、本発明の第 1実施形態の PEFCスタックの保存方法を説明する。
[0043] 図 4は、本発明の第 1実施形態の PEFCスタックの保存方法を示すフローチャート である。
[0044] まず、ステップ (揮発除去ステップ) S 1にお 、ては、未設置状態の PEFCスタック 20 0の酸化剤流路 30内及び還元剤流路 40内を減圧して、減圧状態にする。ここでは、 図 1に示すように排気口 50bに排気装置 61が気密的に装着されて、排気装置 61に よって、気密性容器 50内部、すなわち酸化剤流路 30及び還元剤流路 40が排気さ れて減圧される。
ここで、減圧は、真空度 10_5Pa〜10_1Paの範囲内に到達するように行う。このよう な減圧には、例えば、排気装置 61として ULVAC社製 G— 100Dを用いることができ る。なお、真空度は高い方がアルコール等溶媒の揮発が促進されるので好ましい。し かし、真空度を高め過ぎると PEFCスタック 200の内部構造が損壊するおそれがある ので、真空度は 10_5Paまでが好ましい。
なお、多重のポリエチレン製の気密性容器 50は以下のようにして完成される。すな わち、多重のポリエチレン製フィルム力もなる筒体 50,の一端力 溶着により、耳部 50 cを形成するようにして閉鎖され、他端が開放されて開口部 50aを構成している。そし て、筒体 50'の外周面に榭脂製の小さい筒体が筒体 50'の内部に連通するように固 着されて排気口 50bを形成している。そして、開口部 50aから PEFCスタック 200が内 部に収容されて、開口部 50aが耳部 50aを形成するようにして、開口部 50aが溶着し て閉鎖される。
次に、ステップ (維持ステップ) S2においては、排気口 50bに装着された排気装置 6 1を断続的に作動させる。これによつて、酸化剤流路 30及び還元剤流路 40の減圧状 態を長期に亘つて継続することが可能となるので、 PEFCスタック 200の性能劣化を 長期に亘つて抑制することができる。 [0045] なお、排気装置 61はステップ SI及びステップ S2において付け替えることもできる。 すなわち、ステップ S1においては、排気装置 61として比較的大型の真空ポンプ (例 えば、 ULVAC社製 G— 100D)を配管を介して排気口 50bに接続し、ステップ S2に おいては、該配管を排気口 50から取り外して小型の真空ポンプ (例えば、 ULVAC 社製 GHD— 030)を排気口 50bに気密的に装着することができる。この付け替えに おいては、排気口 50bに配置された 3方弁の切り替え操作によって、気密性容器 50 内の減圧状態を維持したまま、切り替えることができる。つまり、 3方弁の第 1ポートに ステップ S 1遂行用の配管を接続し、第 2ポートにステップ S2遂行用の排気装置を装 着し、第 3ポートに気密性容器 50を接続しておく。そして、ステップ S1においては第 3ポートが第 1ポートに接続するように切り替える。ステップ S2においては第 3ポートが 第 2ポートに接続するように切り替える。これによつて、ステップ S1において大型の排 気装置を用いることができるのでステップ S1にかかる時間を短縮することができる。 以下、本発明の第 1実施形態を実施例に基づいて具体的に説明するが、本発明は 以下の実施例に限定されるものではない。
[0046] [実施例 1一 1]
実施例 1—1の PEFCスタックの保存処理体 300は、以下のように作製した。 PEFC スタック 200において、セル 100の積層数を 50とし、力ソードセパレータ 15及びァノ ードセパレータ 20には、厚さ 3mmの等方性黒鉛板を用いた。力ソードセパレータ 15 及びアノードセパレータ 20の主面周囲には複数のマ-フォルド孔を形成し、セル 10 0積層時には、カゝかるマ-フォルド孔が連通し、酸化剤流路 30、還元剤流路 40及び 冷却剤流路 45を構成するようにした。
[0047] セル 100に用いられた MEA10は以下のように作製した。まず、酸化剤側電極触媒 層 2には、アセチレンブラック系カーボン粉末 (電気化学工業株式会社製デンカブラ ック FX— 35)に、平均粒径約 30 Aの白金粒子を 25wt%担持した触媒粉末を用い た。また、還元剤側電極触媒層 3には、アセチレンブラック系力—ボン粉末 (電気化 学工業株式会社製デンカブラック FX— 35)に、平均粒径約 30Aの白金—ルテユウ ム合金粒子 (重量比で Pt: Ru = 1: 1)を 25wt%担持した触媒粉末を用 、た。これら の触媒粉末をイソプロパノールに分散させ、パーフルォロカーボンスルホン酸粉末の エチルアルコール分散液 (旭硝子株式会社製フレミオン FSS— 1)と混合してペース ト状にした。これらのペーストをスクリーン印刷法をもちいてそれぞれ厚み 250 μ mの カーボン不織布 (東レ株式会社製 TGP— H— 090)の一方の主面に塗工して、それ ぞれ酸化剤側電極触媒層 2及び還元剤側電極触媒層 3を製作した。これらの電極触 媒層に含まれる触媒金属量は 0. 3mgZcm2、パーフルォロカーボンスルホン酸の miil. 2mg/ cm (?あつ 7こ。
[0048] 高分子電解質膜 1には、厚さ 50 μ mのパーフルォロカーボンスルホン酸膜(米国 D upont社製 Nafionl 12)を用いた。
[0049] 高分子電解質膜 1の中心部の両側の主面には、それぞれ酸化剤側電極触媒層 2 及び還元剤側電極触媒層 3をホットプレスによって接合した。さら〖こ、厚さ 250 mの フッ素系ゴムシートを切り抜いて、一対のガスケットを作製し、これを酸化剤側電極触 媒層 2及び還元剤側電極触媒層 3が露出するようにして、高分子電解質膜 1を挟み、 これらをホットプレス(135°C、 lMPa、 10分の条件)によって高分子電解質膜 1に接 合一体化させた。
排気装置 61には、ステップ S1においては、 ULVAC社製 G— 100Dを用い、ステツ プ S2においては、小型の真空ポンプ UL VAC社製 GHD— 030を用いた。
気密性容器 50には、多重のポリエチレンの袋を用いた。
[0050] ステップ S1においては、酸化剤流路及び還元剤流路の入口及び出口 30a, 40a、 出口 30b、 40bを封止栓 70及び排気装置 61によって気密的に封止した。そして、排 気装置 61によって、酸化剤流路 30内及び還元剤流路 40内の真空度を 10_3Paにま で減圧した。
[0051] ステップ 2においては、排気装置 61を断続的に作動させることによって酸化剤流路 30内及び還元剤流路 40内の真空度を 10_2Paに維持しながら、 PEFCスタックの保 存処理体 300を 25°Cの温度で 5000時間保存した。
保存後の PEFCスタック 200を 70°Cに保持し、露点 65°Cに加湿された還元剤物質 (80%水素ガス Z20%二酸ィ匕炭素 ZlOppm—酸ィ匕炭素)を 65°Cに加温して還元 剤流路 40に供給し、露点 70°Cに加湿された空気を 70°Cに加温して酸化剤流路 30 に供給し、 PEFCスタック 200の定格運転を行った。 [0052] PEFCスタック 200の定格運転は、燃料利用率 80%、酸素利用率 40%、電流密度
0. 3AZcm2とした。
[0053] [実施例 1 2]
実施例 1—1と同様にして、 PEFCスタックの保存処理体 300を製作し、ステップ S1 を行った。そして、ステップ S2においては、実施例と同様に保存した。ただし、保存 時の温度は 25°Cではなぐ 60°Cとした。
[0054] そして、実施例 1— 1と同様の条件で定格運転を行った。
[0055] [比較例 1 1]
比較例 1—1として、実施例 1—1と同型の PEFCスタック 200を、ステップ S1及びス テツプ S2を行わずに、つまり、酸化剤流路 30内及び還元剤流路 40内を排気しない 状態で保存した。そして、実施例 1—1と同様に、 25°Cの温度で 5000時間保存した
[0056] そして、実施例 1— 1と同様の条件で定格運転を行った。
[0057] [比較例 1 2]
比較例 1—2として、実施例 1—1と同型の PEFCスタック 200を、ステップ S1及び ステップ S2を行わずに、つまり、酸化剤流路 30内及び還元剤流路 40内を排気しな い状態で保存した。そして、実施例 1—2と同様に、 60°Cの温度で 5000時間保存し た。
そして、実施例 1—1と同様の条件で定格運転を行った。
[0058] 図 5は、定格運転における実施例 1 1及び実施例 1 2ならびに比較例 1 1及び 比較例 1 2の PEFCスタック 200の平均セル電圧の経時的変化を示す図である。 図に示すように、実施例 1 1及び実施例 1 2の平均セル電圧 Vの差は小さぐ平 均セル電圧 Vの低下は小さかった。比較例 1 1及び比較例 1 2の平均セル電圧 V は定格運転開始当初力も双方とも実施例 1—1及び実施例 1—2よりも低力つた。そし て定格運転の継続とともに、比較例 1—1及び比較例 1—2の平均セル電圧 Vは、双 方とも実施例 1 1及び実施例 1 2よりも大きく低下した。
[変形例 1]
図 6は、本発明の第 1実施形態の PEFCスタックの保存処理体の模式図である。 [0059] 本変形例では排気装置 61の代わりに、気密性容器 50の排気口 50bに排気口 50b を気密的に開閉するように配置されている気密型開閉弁 62が配設されている。
[0060] つまり、気密型開閉弁 62と気密性容器 50とが維持ユニットを構成する。また、気密 型開閉弁は、開閉弁は保存時に駆動動力の不要な手動が好ましい。あるいは、駆動 動力喪失時には閉止状態となる、いわゆるノーマルクローズドタイプの電導開閉弁で あってもよい。
[0061] つまり、揮発除去ステップ S1においては、排気口 50bに排気装置 61、あるいは排 気装置 61に接続された配管が接続され、気密型開閉弁 62が開放された状態におい て、排気装置 61によって気密性容器 50内部、すなわち酸化剤流路 30及び還元剤 流路 40が排気されて減圧される。
[0062] そして、維持ステップ S2において気密型開閉弁 62が閉止されて、排気装置 61、あ るいは排気装置 61に接続された配管が排気口 50bから取り外される。
[0063] これによつて、維持ユニットは気密性容器 50に一体ィ匕されて構成されることになり、 封止栓等別部材の管理及び処分を不要とすることができる。
(第 2実施形態)
図 7は、本発明の第 2実施形態の PEFCスタックの保存処理体の模式図である。図 7において図 1に示した構成要素と同一の構成要素には各々同一の符号を付してそ の説明を省略する。
図に示すように、本発明の第 2実施形態は、酸化剤流路入口 30aあるいは出口 30 b及び還元剤流路入口 40aあるいは出口 40bに、酸化剤流路 30及び還元剤流路 40 の入口 30a, 40a及び出口 30b、 40bの何れか一方に気密的に装着されている排気 装置 61と、その他方に気密的に装着されている封止栓 70とを有する実施形態であ る。すなわち、本実施形態の PEFCスタックの保存処理体 310においては、封止栓 7 0と排気装置 61とが維持ユニットを構成している。
[0064] 排気装置 61は、ここでは酸化剤流路入口 30a及び還元剤流路入口 40aに気密的 に装着されている。排気装置 61には第 1実施形態と同型の真空ポンプを用いる。
[0065] 封止栓 70は、ここでは酸化剤流路出口 30b及び還元剤流路出口 40bに封止栓 70 が気密的に装着されている。ここでは、図 7に示すように排気装置 61の接合部及び 封止栓 70に Oリング等のスクイーズドパッキン 80が配設されて、スクイーズドパッキン 80が酸化剤流路出口部 30b、還元剤流路出口部 40b、酸化剤流路入口部 30a及び 還元剤流路入口部 40aと排気装置 61の接合部及び封止栓 70との間隙をシールす ることによって気密的に装着されている。
本実施形態の PEFCスタック 200の保存方法は、図 4に示すように、ステップ S1に おいて、 PEFCスタック 200の酸化剤流路出口 30b及び還元剤流路出口 40bを封止 栓 70で気密的に封止し、酸化剤流路入口 30a及び還元剤流路入口 40aを排気装 置 61で気密的に封止する。そして、排気装置 61によって酸化剤流路 30内及び還元 剤流路 40内を減圧する。
[0066] ステップ S2においては、排気装置 61を断続的に作動させる。これによつて、酸化剤 流路 30及び還元剤流路 40の減圧状態を長期に亘つて継続することが可能となるの で、 PEFCスタック 200の性能劣化を長期に亘つて抑制することができる。
[0067] 以上、本発明によって、第 1実施形態と同様にして、未設置状態の高分子電解質 型燃料電池スタックの性能の劣化を抑制することができる。
なお、第 1実施形態と同様にして、排気装置 61は、ステップ S2において、小型の排 気装置に交換するようにしてもよい。これによつて、排気装置 61を装着した状態で PE FCスタックの保存処理体 310の運搬が容易となる。
また、図 7においては、酸化剤流路入口 30a及び還元剤流路入口 40aに一対の排 気装置 61が気密的に装着されているが、排気装置 61の吸引ロカも延びる二股の配 管が、酸化剤流路出口 30b及び還元剤流路出口 40bに気密的に接続するように構 成することもできる。これによつて、ステップ S1において大型の排気装置を用いること ができるのでステップ S1にかかる時間を短縮することができる。
[0068] さらに、ステップ 2において、排気装置 61を封止栓に付け替えることもできる。つまり 、維持ユニットは酸化剤流路及び還元剤流路の入口及び出口 30a, 40a、 30b、 40b に装着された 4つの封止栓力 構成することができる。これによつて、維持ユニットが P EFCスタック 200に一体ィ匕されて構成されることになり、封止栓等別部材の管理及び 処分を不要とすることができる。
[変形例 2] 図示しないが、第 1実施形態の変形例 1と同様にして、封止栓 70の代わりに、 PEF Cスタック 200力 酸化剤流路及び還元剤流路の入口及び出口 30a, 40a、 30b、 40 bに気密型開閉弁を有するように構成することもできる。これによつて、封止栓 70を省 略することができるとともに、 PEFCスタック 200が PEFCシステムに組み込まれた後 も、これら気密型開閉弁を PEFCスタック 200の隔離弁として利用することもできる。
[0069] また、ステップ 2において、気密型開閉弁を閉止した後、排気装置 61を取り外すこと もできる。つまり、維持ユニットは気密型開閉弁のみとなる。これによつて、維持ュニッ トが PEFCスタック 200に一体ィ匕されて構成されることになり、封止栓等別部材の管 理及び処分を不要とすることができる。
以下、本発明の第 2実施形態を実施例に基づいて具体的に説明するが、本発明は 以下の実施例に限定されるものではない。
[実施例 2 - 1]
実施例 2— 1の PEFCスタックの保存処理体 310を以下のように作製し、保存した。 PEFCスタック 200は実施例 1—1と同型のものを用いた。
排気装置 61には、ステップ S1においては、 ULVAC社製 G— 100Dを用い、ステツ プ S2においては、小型の真空ポンプ UL VAC社製 GHD— 030を用いた。
[0070] 気密性容器 50には、多重のポリエチレンの袋を用いた。
[0071] ステップ S1においては、酸化剤流路及び還元剤流路の入口及び出口 30a, 40a、 30b、 40bを封止栓 70及び排気装置 61によって気密的に封止した。そして、排気装 置 61によって、酸化剤流路 30内及び還元剤流路 40内の真空度を 10_2Paにまで減 圧した。
[0072] ステップ 2においては、排気装置 61を断続的に作動させることによって酸化剤流路 30内及び還元剤流路 40内の真空度を 10_2Paに維持しながら、 PEFCスタックの保 存処理体 300を 25°Cの温度で 5000時間保存した。
保存後の PEFCスタック 200を、実施例 1— 1と同様の条件で定格運転を行った。
[実施例 2 - 2]
実施例 2— 2の PEFCスタックの保存処理体 310の PEFCスタック 200、排気装置 6 1、気密性容器 50は、実施例 2—1と同型のものを用いた。 [0073] そして、ステップ SIにおいては、実施例 2—1と同様に減圧した。
[0074] ステップ S2においては、排気装置 61を封止栓 70に取り替えて、実施例 2—1と同 様に保存した。つまり、維持ユニットは 4つの封止栓 70によって構成され、酸化剤流 路及び還元剤流路の入口及び出口 30a, 40a、 30b、 40b全てを封止栓 70よって気 密的に封止して保存した。
[0075] 保存後の PEFCスタック 200を、実施例 1— 1と同様の条件で定格運転を行った。
ステップ S2開始時における酸化剤流路 30及び還元剤流路 40内の真空度は 10_2 Paであったが、保存期間終了時における酸化剤流路 30及び還元剤流路 40内の真 空度は 104Paに低下していた。
図 8は、定格運転における実施例 2— 1及び実施例 2— 2の PEFCスタック 200の平 均セル電圧の経時的変化を示す図である。
図に示すように、実施例 2— 2の平均セル電圧 Vの低下は抑制されている。また、実 施例 2— 1の平均セル電圧 Vのさらに抑制されている。
(第 3実施形態)
本発明の第 3実施形態は、 PEFCスタック 200が発電処理された後に第 1実施形態 乃至第 2実施形態と同様にして、ステップ S1及びステップ S2を行う実施の形態であ る。すなわち、本実施形態の PEFCスタックの保存処理体 320の構成は、第 1実施形 態乃至第 6実施形態と同様である。そこで、本実施形態の PEFCスタックの保存処理 体 320の構成の説明を省略し、本実施形態の PEFCスタックの保存方法を説明する
[0076] 図 9は、本発明の第 3実施形態の PEFCスタックの保存方法を示すフローチャート である。図に示すように、本実施形態の PEFCスタックの保存方法では、ステップ (発 電処理ステップ) SOにおいて、未設置状態の PEFCスタック 200を所定の電流密度 において所定の発電継続時間の間継続して発電させる。そして、第 1実施形態ある いは第 2実施形態と同様にして、ステップ S1乃至ステップ S2を行う。
[0077] ここで、ステップ SOにおいては、具体的には、 PEFCスタック 200を作動温度に維 持し、集電板 41, 41間に電力負荷を電気的に接続し、かつアノード側に還元剤物 質を、力ソード側に酸化剤物質をそれぞれ供給することによって、 PEFCスタック 200 における電気化学反応を引き起こす。電気化学反応は所定の電流密度 Iにおいて所 定の発電継続時間 T継続させる。
[0078] 本実施形態の PEFCスタック 200の保存方法によって、 MEAの触媒細孔中等 PE FCスタック内に残留している溶媒や金属等の異物を、発電処理における電気化学 反応による生成水とともに PEFCスタック 200外へ排出させることができるので、 PEF Cスタック 200の性能の劣化をより確実に抑制することができる。
[0079] また、発電処理における電流密度 Iは、 MEA10の触媒層 2, 3の面積あたり 0. 1A Zcm2以上、 0. 4AZcm2以下が好適である。この程度の電流密度であると、 MEA1 0における電気化学反応による水の生成が均一になるものと思われる。
[0080] また、発電処理の発電継続時間 Tは少なくとも 3時間あると好適である。これは、溶 媒及び異物が生成水とともに PEFCスタック 200から排出するにはある程度の時間を 要するからである。
[0081] また、発電処理時における発電継続時間 Tは、発電処理終了時における 1セルあ たりの電圧変化 (dVZdt)が 2mVZh以下に低下するまでの時間に設定すると好適 である。溶媒及び異物の除去によって電圧が安定するものと考えられるので、電圧変 化の低下によって PEFCスタック 200からの溶媒及び異物の除去を判断することがで さるカゝらである。
[0082] また、発電処理の時期は、 PEFCスタック 200製造後 300時間以内が好適である。
溶媒及び異物による触媒の劣化進行、および Zあるいは高分子電解質膜 1と電極触 媒層 2, 3との接合状態の劣化進行を考慮すると、発電処理の時期は PEFCスタック 製造後早い時期が好ましい。具体的には、 PEFCスタック製造後 300時間以内であ れば、 PEFCスタック 200の性能劣化の進行を未然に抑制することができるからであ る。
[0083] また、発電処理における酸化剤物質及び還元剤物質の露点は、発電処理時にお ける MEA10の温度の— 10°C以上、 + 10°C以下の範囲内が好適である。このような 露点とすることにより、 MEA10には過不足のない水分が供給され、かつ水による酸 ィ匕剤流路 30及び還元剤流路 40の閉塞、 ヽゎゆるフラッデイング現象を抑制すること ができるので、全ての MEA10にお!/、て均一な電気化学反応を確保することができる 。つまり、全ての MEA10において溶媒及び異物の排出を円滑に行うことが可能とな るので、 PEFCスタックの性能の劣化をより確実に抑制することができる。
[0084] 以下、本発明の第 3実施形態のステップ SOを実施例に基づいて具体的に説明する 力 本発明のステップ SOは以下の実施例に限定されるものではない。
[0085] なお、以下の実施例及び比較例においては、発電処理において、還元剤物質に は水素ガス、酸化剤物質には空気を用いた。また、発電処理は、 PEFCスタック 200 を 70°Cに保持し、加温及び加湿された水素ガスおよび空気をそれぞれ酸化剤流路 30及び還元剤流路 40に供給し、還元剤物質利用率が 70%、酸化剤物質利用率が 40%となるように酸化剤流路 30及び還元剤流路 40の供給を調節した。さらに、発電 処理後に、ステップ S1を経て 8週間常温常湿で保存している。この保存期間(8週間 )は、本発明の、溶媒及び異物の影響により高分子電解質膜 1の性能が劣化する期 間としての一例である。
[0086] [実施例 3— 1]
PEFCスタック 200製造後、常温常湿にて PEFCスタック 200を 1週間保存した。そ して、露点 70°Cに加湿された水素ガスおよび空気を、 70°Cに加温して供給し、電流 密度 1 = 0. 4AZcm2で発電継続時間 T= 3hとした。発電処理後、ステップ S1を経て 常温常湿で 8週間保存した。
[0087] [比較例 3— 1]
実施例 3— 1と同時期に製造された PEFCスタック 200を、常温常湿にて保存し続 けた。すなわち、実施例 3—1の PEFCスタック 200の製造後から発電処理後の保存 期間満了までの期間を常温常湿で保存した。
[0088] [比較例 3— 2]
PEFCスタック 200製造後、常温常湿にて PEFCスタック 200を 1週間保存した。そ して、露点 70°Cに加湿された水素ガスおよび空気を、 70°Cに加温して 3時間供給し た。供給終了後、常温常湿で 8週間保存した。この間発電処理は行わな力 た。
[0089] 実施例 3— 1、比較例 3— 1及び比較例 3— 2の PEFCスタック 200について、 PEF Cスタックの温度を 70°Cに保持して、露点 70°Cに加湿された水素ガスおよび空気を 、 70°Cに加温してそれぞれ還元剤流路 40及び酸化剤流路 30に供給し、燃料ガス 利用率を 70%、酸化ガス利用率を 40%、電流密度を 0. 2AZcm2にして 1000時間 定格運転を継続した。表 1に、定格運転における実施例 3— 1、比較例 3— 1及び比 較例 3— 2の電圧低下量 Δ Vを示す。
[0090] [表 1]
Figure imgf000026_0001
[0091] 表 1から明らかなように、実施例 3— 1は、比較例 3— 1及び比較例 3— 2と比較する と、電圧低下量 AVが小さいことがわかる。この結果から、発電処理により、 PEFCス タックの性能の劣化をより確実に抑制することができることを確認できた。
[0092] [実施例 3— 2]
PEFCスタック 200製造後、常温常湿にて PEFCスタック 200を 1週間保存した。そ して、露点 70°Cに加湿された水素ガスおよび空気を、 70°Cに加温して供給し、電流 密度 1 = 0. lAZcm2で発電継続時間 T= 12hとして発電処理を行った。発電処理 後、ステップ S1を経て常温常湿で 8週間保存した。
[0093] [比較例 3— 3]
PEFCスタック 200製造後、常温常湿にて PEFCスタック 200を 1週間保存した。そ して、露点 70°Cに加湿された水素ガスおよび空気を、 70°Cに加温して供給し、電流 密度 1 = 0. 5AZcm2で発電継続時間 T= 12hとして発電処理を行った。発電処理 後、ステップ S1を経て常温常湿で 8週間保存した。
[0094] [比較例 3— 4]
PEFCスタック 200製造後、常温常湿にて PEFCスタック 200を 1週間保存した。そ して、露点 70°Cに加湿された水素ガスおよび空気を、 70°Cに加温して供給し、電流 密度 1 = 0. 5AZcm2で発電継続時間 T= 3hとして発電処理を行った。発電処理後 、ステップ SIを経て常温常湿で 8週間保存した。
[0095] [比較例 3— 5]
PEFCスタック 200製造後、常温常湿にて PEFCスタック 200を 1週間保存した。そ して、露点 70°Cに加湿された水素ガスおよび空気を、 70°Cに加温して供給し、電流 密度 1 = 0. 4AZcm2で発電継続時間 T=2hとして発電処理を行った。発電処理後
、ステップ S1を経て常温常湿で 8週間保存した。
[0096] 実施例 3— 2ならびに比較例 3— 3、 7—4及び 7— 5の PEFCスタック 200について
、実施例 3—1と同様にして、 PEFCスタックの温度を 70°Cに保持して、露点 70°Cに 加湿された水素ガスおよび空気を、 70°Cに加温してそれぞれ還元剤流路 40及び酸 化剤流路 30に供給し、燃料ガス利用率を 70%、酸化ガス利用率を 40%、電流密度 を 0. 2AZcm2〖こして 1000時間定格運転を継続した。
[0097] 表 2に、実施例 3— 1、実施例 3— 2,比較例 3— 3、比較例 3— 4及び比較例 3— 5 の発電処理時の電流密度 I及び発電継続時間 T、発電処理終了時の電圧変化 (dV
/dt)、ならびに定格運転における電圧低下量 Δνを示す。
[0098] [表 2]
Figure imgf000027_0001
[0099] 実施例 3— 1と比較例 3— 4との比較、及び実施例 3— 2と比較例 3— 3との比較から 明らかなように、実施例 3— 1および実施例 3— 2は、比較例 3— 3および比較例 3— 4 と比較すると、電圧低下量 Δνが小さい。したがって、発電処理時の電流密度範囲は 0. lAZcm2〜0. 4AZcm2が好適である。これは、この電流密度の電気化学反応 であれば、 MEA10における電気化学反応による水の生成が均一になるものと思わ れる。
[0100] また、実施例 3— 1および実施例 3— 2は、比較例 3— 3、比較例 3— 4および比較例 3— 5と比較すると、発電処理終了時の電圧変化 (dVZdt)が 1. 5mVZh以下にま で低下している。これは、この電圧変化(dVZdt)は、 PEFCスタック 200内、特に電 極触媒層 2, 3内の細孔中にある溶媒及び異物を、電気化学反応による生成水ととも に PEFCスタック 200外へ排出する際に発生するので、電圧変化(dVZdt)が 1. 5m VZh程度以下にまで低下した場合には、 PEFCスタック 200内の溶媒及び異物の 排出が十分にできて 、るものと考えられる
また、実施例 3—1と比較例 3— 5との比較から明らかなように、実施例 3—1は、比 較例 3— 5と比較すると、電圧低下量 Δνが小さい。したがって、発電処理時の発電 継続時間 Τは 3時間以上が好適である。これは、溶媒及び異物が生成水とともに ΡΕ FCスタック 200から排出するには少なくとも 3時間は要することが原因と思われる。
[0101] [実施例 3— 3]
PEFCスタック 200製造後、常温常湿にて PEFCスタック 200を 300時間、すなわち 2週間程度保存した。ここでは、発電処理前期間 W (week) = 2と表記した。そして、 露点 70°Cに加湿された水素ガスおよび空気を、 70°Cに加温して供給し、電流密度 I =0. 4AZcm2で発電継続時間 T= 3hとして発電処理を行った。発電処理後、ステ ップ S 1を経て常温常湿で 8週間保存した。
[0102] [比較例 3— 6]
PEFCスタック 200製造後、常温常湿にて PEFCスタック 200を 500時間、すなわち 約 3週間保存した。ここでは、発電処理前期間 W (week) = 3と表記した。そして、露 点 70°Cに加湿された水素ガスおよび空気を、 70°Cに加温して供給し、電流密度 1 = 0. 4AZcm2で発電継続時間 T= 3hとして発電処理を行った。発電処理後、ステツ プ S 1を経て常温常湿で 8週間保存した。
[0103] 実施例 3— 3及び比較例 3— 6の PEFCスタック 200について、実施例 3— 1と同様 にして、 PEFCスタックの温度を 70°Cに保持して、露点 70°Cに加湿された水素ガス および空気を、 70°Cに加温してそれぞれ還元剤流路 40及び酸化剤流路 30に供給 し、燃料ガス利用率を 70%、酸化ガス利用率を 40%、電流密度を 0. 2AZcm2〖こし て 1000時間定格運転を継続した。
[0104] 表 3に、実施例 3— 1、実施例 3— 3及び比較例 3— 6の発電処理前期間 W、発電処 理時の電流密度 I及び発電継続時間 T、発電処理終了時の電圧変化 (dVZdt)、な らびに定格運転における電圧低下量 Δνを示す。なお、前述したように、実施例 1で は、常温常湿にて PEFCスタック 200を約 1週間、正確には 150時間保存した。実施 例 1の発電処理前期間 W (week)は、 W= 1と表記した。
[0105] [表 3]
Figure imgf000029_0001
[0106] 実施例 3— 1及び実施例 3— 3と比較例 3— 6との比較から明らかなように、実施例 3
1および実施例 3— 3は、比較例 3— 6と比較すると、電圧低下量 Δνが小さい。し たがって、発電処理前期間 W= 2以内が好適である。つまり、発電処理は PEFCスタ ック 200製造後 300時間以内に実施することが望ましい。
[0107] [実施例 3— 4]
PEFCスタック 200製造後、常温常湿にて PEFCスタック 200を 1週間保存した。そ して、発電処理時には、 PEFCスタック 200を 70°Cに維持しながら、露点 60°Cに加 湿された水素ガスおよび空気を 60°Cに加温して供給し、電流密度 1 = 0. 4A/cm2 で発電継続時間 T= 3hとして発電処理を行った。つまり、発電処理時の PEFCスタツ ク 200を基準とした PEFCスタック 200と酸化剤物質および還元剤物質との温度差 Δ Sを— 10°Cとした。発電処理後、ステップ S1を経て常温常湿で 8週間保存した。
[0108] [実施例 3— 5]
PEFCスタック 200製造後、常温常湿にて PEFCスタック 200を 1週間保存した。そ して、発電処理時には、 PEFCスタック 200を 70°Cに維持しながら、露点 80°Cに加 湿された水素ガスおよび空気を 80°Cに加温して供給し、電流密度 1 = 0. 4A/cm2 で発電継続時間 T= 3hとして発電処理を行った。つまり、発電処理時の PEFCスタツ ク 200を基準とした PEFCスタック 200と酸化剤物質および還元剤物質との温度差 Δ Sを + 10°Cとした。発電処理後、ステップ S1を経て常温常湿で 8週間保存した。
[0109] [比較例 3— 7] PEFCスタック 200製造後、常温常湿にて PEFCスタック 200を 1週間保存した。そ して、発電処理時には、 PEFCスタック 200を 70°Cに維持しながら、露点 50°Cにカロ 湿された水素ガスおよび空気を 50°Cに加温して供給し、電流密度 1 = 0. 4A/cm2 で発電継続時間 T= 3hとして発電処理を行った。つまり、発電処理時の PEFCスタツ ク 200を基準とした PEFCスタック 200と酸化剤物質および還元剤物質との温度差 Δ Sを— 20°Cとした。発電処理後、ステップ S1を経て常温常湿で 8週間保存した。
[0110] [比較例 3— 8]
PEFCスタック 200製造後、常温常湿にて PEFCスタック 200を 1週間保存した。そ して、発電処理時には、 PEFCスタック 200を 70°Cに維持しながら、露点 85°Cに加 湿された水素ガスおよび空気を 85°Cに加温して供給し、電流密度 1 = 0. 4A/cm2 で発電継続時間 T= 3hとして発電処理を行った。つまり、発電処理時の PEFCスタツ ク 200を基準とした PEFCスタック 200と酸化剤物質および還元剤物質との温度差 Δ Sを + 15°Cとした。発電処理後、ステップ S1を経て常温常湿で 8週間保存した。
[0111] 実施例 3— 4、実施例 3— 5、比較例 3— 7及び比較例 3— 8の PEFCスタック 200に ついて、 PEFCスタックの温度を 70°Cに保持して、露点 70°Cに加湿された水素ガス および空気を、 70°Cに加温してそれぞれ還元剤流路 40及び酸ィ匕剤流路 30に供給 し、燃料ガス利用率を 70%、酸化ガス利用率を 40%、電流密度を 0. 2A/cm2〖こし て 1000時間定格運転を継続した。表 4に、実施例 3— 4、実施例 3— 5、比較例 3— 7 及び比較例 3— 8の発電処理時の電流密度 I、発電継続時間 Tおよび温度差 Δ S、 発電処理終了時の電圧変化 (dVZdt)、ならびに定格運転における電圧低下量 Δ Vを示す。
[0112] [表 4]
Figure imgf000030_0001
[0113] 表 4から明らかなように、実施例 3— 4および実施例 3— 5は、比較例 3— 7及び比較 例 3— 8と比較すると、電圧低下量 Δνが小さいことがわかる。したがって、発電処理 時においては、温度差 A Sが + 10°C乃至一 10°Cの範囲内であると好適である。これ は、温度差 A Sが + 10°C乃至一 10°Cの範囲より拡大している場合には、 PEFCスタ ック 200内において水分の過不足が生じて、 MEA10における電気化学反応が不均 一になり、 PEFCスタック 200内、特に電極触媒層 2, 3内の細孔中にある溶媒および 異物を PEFCスタック 200外へ十分には排出させることができなかったものと考えられ る。
[0114] なお、表 4から明らかなように、実施例 3— 4および実施例 3— 5の電圧変化 (dVZd t)は 2. OmVZh以下であり、比較例 3— 7および比較例 3— 8の電圧変化 (dVZdt) は 2. OmVZhを上回る。前述の表 2の結果及びこの結果から、電圧変化(dVZdt) が 2. OmVZh程度以下にまで低下した場合には、 PEFCスタック 200内の溶媒及び 異物の排出が十分にできているものと考えられる。したがって、発電処理は、電圧変 ィ匕(dVZdt)が 2. OmVZh以下となるまで継続することが望まし 、ことがわかる。
[0115] 以上、第 1乃至第 3実施形態によって、本発明の PEFCスタック 200の保存方法及 び PEFCスタックの保存処理体を説明した。
[0116] なお、以上に説明したように、本発明の PEFCスタックの保存方法及び PEFCスタツ クの保存処理体においては、未設置状態の PEFCスタックの酸化剤流路 30内及び 還元剤流路 40内が減圧状態として保存されるので、減圧状態において酸化剤側電 極触媒層及び還元剤側電極触媒層に残留する溶媒が揮発状態となる。例示として、 第 1実施形態及び第 2実施形態の PEFCスタック 200の保存方法にぉ 、ては、ステツ プ S 1にお ヽて酸化剤側電極触媒層 2及び還元剤側電極触媒層 3に残留する溶媒 の揮発が促進されるとともに、揮発した溶媒力 SPEFCスタック 200外に除去され、かつ ステップ (維持ステップ) S2において溶媒の揮発状態が維持される。これによつて、特 に、未設置状態力 設置場所に設置され使用されるまでの期間における高分子電解 質型燃料電池スタックの性能の劣化を十分に抑制することができる。また、減圧状態 においては、酸化剤流路及び還元剤流路中の酸素濃度を大気中の酸素濃度未満 に容易に保つことができ、電極触媒層に残存する有機溶媒成分の部分酸化反応、 脱水縮合反応 (有機溶媒成分同士の反応、部分酸化物同士の反応、有機溶媒成分 と部分酸ィ匕物との反応を含む)等を十分に防止できるので、この観点からも、特に、 未設置状態から設置場所に設置され使用されるまでの期間における高分子電解質 型燃料電池スタックの性能の劣化を十分に抑制することができる。
上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らか である。したがって、上記説明は、例示としてのみ解釈されるべきであり、本発明を実 行する最良の形態を当業者に教示する目的で提供されたものである。本発明の精神 を逸脱することなぐその構造及び Z又は機能の詳細を実質的に変更できる。例え ば、第 1実施形態及び第 2実施形態においては、ステップ (揮発排除ステップ) S1を 不要とすることができる。つまり、真空チャンバ内で製造する等により、 PEFCスタック の保存処理体 300、 310を減圧状態下で製造することもできる。
産業上の利用可能性
本発明は、未設置状態力も設置場所に設置され使用されるまでの期間における高 分子電解質型燃料電池スタックの性能の劣化を抑制する高分子電解質型燃料電池 スタックの保存方法として有用である。また、本発明は、未設置状態から設置場所に 設置され使用されるまでの期間における高分子電解質型燃料電池スタックの性能の 劣化を十分に防止できる高分子電解質型燃料電池スタックの保存処理体として有用 である。

Claims

請求の範囲
[1] 入口及び出口を有し力ソードを経由する酸化剤流路と入口及び出口を有しアノード を経由する還元剤流路とを有し、前記酸化剤流路の入口より酸化剤物質が供給され 、前記還元剤流路の入口より還元剤物質が供給され、前記酸化剤物質及び前記還 元剤物質が前記アノード及び前記力ソードにぉ ヽて電気化学反応をして、発電を行 うように構成された高分子電解質型燃料電池スタックの保存方法であって、
未設置状態の前記高分子電解質型燃料電池スタックの前記酸化剤流路内及び前 記還元剤流路内を減圧状態として保存する、高分子電解質型燃料電池スタックの保 存方法。
[2] 前記減圧状態は、真空度が、 10_5Pa以上 10_1Pa以下の範囲である、請求項 1に 記載の高分子電解質型燃料電池スタックの保存方法。
[3] 未設置状態の前記高分子電解質型燃料電池スタックの前記酸化剤流路内及び前 記還元剤流路内を減圧状態とする揮発除去ステップと、
前記減圧状態を維持する維持ステップと、を有する、請求項 1に記載の高分子電解 質型燃料電池スタックの保存方法。
[4] 前記揮発除去ステップは、排気口が形成されて!ヽる気密性容器に前記高分子電 解質型燃料電池スタックを収容して、該排気口に排気装置を接続して前記気密性容 器の内部を排気して行い、
前記維持ステップは、前記排気口に排気装置を気密的に装着して、あるいは前記 排気口を開閉するように配置されている気密型の開閉弁を閉止して行う、請求項 3に 記載の高分子電解質型燃料電池スタックの保存方法。
[5] 前記揮発除去ステップは、前記酸化剤流路の入口及び出口のいずれか一方と、並 びに前記還元剤流路の入口及び出口の何れか一方とに排気装置を気密的に装着 し、それらの他方に封止栓あるいは気密型開閉弁を気密的に装着して、該排気装置 によって前記酸化剤流路及び前記還元剤流路内を排気し、
前記維持ステップは、前記排気装置、前記封止栓及び前記気密型開閉弁を気密 的に装着あるいは閉止した状態とする、請求項 3に記載の高分子電解質型燃料電池 スタックの保存方法。
[6] 前記高分子電解質型燃料電池スタックを発電させる発電処理ステップを有する、請 求項 3に記載の高分子電解質型燃料電池スタックの保存方法。
[7] 前記発電処理ステップにおける電流密度は、前記触媒層の面積あたり 0. lA/cm 2以上、 0. 4AZcm2以下である、請求項 6に記載の高分子電解質型燃料電池スタツ クの保存方法。
[8] 前記発電処理ステップにおける発電継続時間は、 3時間以上である、請求項 6に記 載の高分子電解質型燃料電池スタックの保存方法。
[9] 前記発電処理ステップにおける発電継続時間は、電圧変動が 2mVZh以下になる までの時間である、請求項 6に記載の高分子電解質型燃料電池スタックの保存方法
[10] 前記発電処理ステップが前記高分子電解質型燃料電池スタック製造後 300時間 以内に行われる、請求項 6に記載の高分子電解質型燃料電池スタックの保存方法。
[11] 入口及び出口を有し力ソードを経由する酸化剤流路と入口及び出口を有しアノード を経由する還元剤流路とを有し、前記酸化剤流路の入口より酸化剤物質が供給され 、前記還元剤流路の入口より還元剤物質が供給され、前記酸化剤物質及び前記還 元剤物質が前記アノード及び前記力ソードにぉ ヽて電気化学反応をして、発電を行 うように構成された高分子電解質型燃料電池スタックと、
減圧状態の前記酸化剤流路及び前記還元剤流路を維持する維持ユニットと、を有 する、高分子電解質型燃料電池スタックの保存処理体。
[12] 前記減圧状態は、真空度が、 10_5Pa以上 10_1Pa以下の範囲である、請求項 11 に記載の高分子電解質型燃料電池スタックの保存処理体。
[13] 前記維持ユニットが、前記高分子電解質型燃料電池スタックを収容するとともに排 気口が形成されている気密性容器と、該排気口に気密的に装着された排気装置、前 記排気口を気密的に封止する封止栓、あるいは前記排気口を気密的に開閉するよう に配置されている気密型開閉弁と、を有する、請求項 11に記載の高分子電解質型 燃料電池スタックの保存処理体。
[14] 前記維持ユニットが、前記酸化剤流路の入口及び出口の何れか一方に気密的に 装着されている排気装置と、その他方に気密的に装着されている封止栓あるいは気 密型開閉弁と、前記還元剤流路の入口及び出口の何れか一方に気密的に装着され ている排気装置と、その他方に気密的に装着されている封止栓あるいは気密型開閉 弁とを有して構成されて ヽる、請求項 11に記載の高分子電解質型燃料電池スタック の保存処理体。
前記高分子電解質型燃料電池スタックは、発電処理された高分子電解質型燃料 電池スタックである、請求項 11に記載の高分子電解質型燃料電池スタックの保存処 理体。
PCT/JP2005/010826 2004-06-14 2005-06-14 高分子電解質型燃料電池スタックの保存方法及び高分子電解質型燃料電池スタックの保存処理体 WO2005122310A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/629,496 US7976972B2 (en) 2004-06-14 2005-06-14 Method of preserving polymer electrolyte fuel cell stack and preservation assembly of polymer electrolyte fuel cell stack
JP2006514601A JP3977862B2 (ja) 2004-06-14 2005-06-14 高分子電解質型燃料電池スタックの保存方法及び高分子電解質型燃料電池スタックの保存処理体
US13/099,863 US8137829B2 (en) 2004-06-14 2011-05-03 Method of preserving polymer electrolyte fuel cell stack and preservation assembly of polymer electrolyte fuel cell stack
US13/361,496 US8435657B2 (en) 2004-06-14 2012-01-30 Method of preserving polymer electrolyte fuel cell stack and preservation assembly of polymer electrolyte fuel cell stack

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004175047 2004-06-14
JP2004-175047 2004-06-14

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/629,496 A-371-Of-International US7976972B2 (en) 2004-06-14 2005-06-14 Method of preserving polymer electrolyte fuel cell stack and preservation assembly of polymer electrolyte fuel cell stack
US13/099,863 Continuation US8137829B2 (en) 2004-06-14 2011-05-03 Method of preserving polymer electrolyte fuel cell stack and preservation assembly of polymer electrolyte fuel cell stack

Publications (1)

Publication Number Publication Date
WO2005122310A1 true WO2005122310A1 (ja) 2005-12-22

Family

ID=35503399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/010826 WO2005122310A1 (ja) 2004-06-14 2005-06-14 高分子電解質型燃料電池スタックの保存方法及び高分子電解質型燃料電池スタックの保存処理体

Country Status (4)

Country Link
US (3) US7976972B2 (ja)
JP (1) JP3977862B2 (ja)
CN (1) CN100456546C (ja)
WO (1) WO2005122310A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008021450A (ja) * 2006-07-11 2008-01-31 Mitsubishi Heavy Ind Ltd 燃料電池スタック輸送保管容器
JP2012209268A (ja) * 2004-07-06 2012-10-25 Panasonic Corp ガス拡散電極および高分子電解質型燃料電池の製造方法、ならびにガス拡散電極および高分子電解質型燃料電池

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8003239B2 (en) * 2004-06-14 2011-08-23 Panasonic Corporation Method of preserving polymer electrolyte fuel cell stack and preservation assembly of polymer electrolyte fuel cell stack
US8865359B2 (en) * 2010-07-27 2014-10-21 GM Global Technology Operations LLC Fuel cell having improved thermal characteristics
US10121997B1 (en) * 2014-07-30 2018-11-06 Google Llc Battery module
WO2018029859A1 (ja) * 2016-08-12 2018-02-15 日産自動車株式会社 触媒劣化回復装置及び触媒劣化回復方法
JP6284662B1 (ja) * 2017-02-02 2018-02-28 日本特殊陶業株式会社 電気化学反応単位および電気化学反応セルスタック

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05190196A (ja) * 1991-10-24 1993-07-30 Sanyo Electric Co Ltd ポータブル電源
JPH06251788A (ja) * 1993-02-25 1994-09-09 Mitsubishi Heavy Ind Ltd 固体高分子電解質燃料電池の停止保管方法
JPH0845528A (ja) * 1994-07-29 1996-02-16 Sanyo Electric Co Ltd 燃料電池装置
JPH08124588A (ja) * 1994-10-21 1996-05-17 Toyota Motor Corp 燃料電池の運転制御装置
JPH09180747A (ja) * 1995-12-27 1997-07-11 Matsushita Electric Ind Co Ltd 電源装置
JPH09213358A (ja) * 1996-01-31 1997-08-15 Matsushita Electric Ind Co Ltd 電源装置
JPH09223511A (ja) * 1996-02-19 1997-08-26 Matsushita Electric Ind Co Ltd 電源装置
JPH1050328A (ja) * 1996-08-01 1998-02-20 Showa Denko Kk 高分子固体電解質フィルムの電極への固定方法並びにそれを用いた電池及びその製造方法
JPH10507572A (ja) * 1994-10-18 1998-07-21 ユニバーシティ オブ サザン カリフォルニア 有機燃料電池並びにその作動方法およびその電極の製造方法
JP2001185179A (ja) * 1999-12-13 2001-07-06 General Motors Corp <Gm> 減圧乾燥による燃料電池の凍結−保護
JP2002093424A (ja) * 2000-07-10 2002-03-29 Toray Ind Inc 膜−電極接合体の製造方法
JP2002093448A (ja) * 2000-09-11 2002-03-29 Osaka Gas Co Ltd 燃料電池の停止方法及び停止保管方法
JP2003317771A (ja) * 2002-04-19 2003-11-07 Matsushita Electric Ind Co Ltd 燃料電池発電システムおよびその運転方法
JP2005071949A (ja) * 2003-08-28 2005-03-17 Matsushita Electric Ind Co Ltd 燃料電池発電装置とその運転方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03208262A (ja) 1990-01-09 1991-09-11 Mitsubishi Heavy Ind Ltd 固体高分子電解質膜と電極との接合体の製造方法
JPH05258762A (ja) 1992-03-16 1993-10-08 Toshiba Corp 燃料電池の停止保管方法
US5314762A (en) 1992-05-12 1994-05-24 Sanyo Electric Co., Ltd. Portable power source
US6040838A (en) 1993-11-05 2000-03-21 Obejct Technology Licensing Corporation Graphic state processing
JPH07272738A (ja) 1994-03-31 1995-10-20 Toyota Motor Corp 燃料電池システム
US6210513B1 (en) 1997-08-29 2001-04-03 Showa Denko K.K. Method for manufacturing solid polymer electrolyte/electrode composites, battery produced using the method and method for producing the same
US6114058A (en) * 1998-05-26 2000-09-05 Siemens Westinghouse Power Corporation Iron aluminide alloy container for solid oxide fuel cells
CN2388714Y (zh) * 1999-09-01 2000-07-19 钟家轮 整体封装型质子交换膜燃料电池
US6403247B1 (en) * 1999-12-03 2002-06-11 International Fuel Cells, Llc Fuel cell power plant having an integrated manifold system

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05190196A (ja) * 1991-10-24 1993-07-30 Sanyo Electric Co Ltd ポータブル電源
JPH06251788A (ja) * 1993-02-25 1994-09-09 Mitsubishi Heavy Ind Ltd 固体高分子電解質燃料電池の停止保管方法
JPH0845528A (ja) * 1994-07-29 1996-02-16 Sanyo Electric Co Ltd 燃料電池装置
JPH10507572A (ja) * 1994-10-18 1998-07-21 ユニバーシティ オブ サザン カリフォルニア 有機燃料電池並びにその作動方法およびその電極の製造方法
JPH08124588A (ja) * 1994-10-21 1996-05-17 Toyota Motor Corp 燃料電池の運転制御装置
JPH09180747A (ja) * 1995-12-27 1997-07-11 Matsushita Electric Ind Co Ltd 電源装置
JPH09213358A (ja) * 1996-01-31 1997-08-15 Matsushita Electric Ind Co Ltd 電源装置
JPH09223511A (ja) * 1996-02-19 1997-08-26 Matsushita Electric Ind Co Ltd 電源装置
JPH1050328A (ja) * 1996-08-01 1998-02-20 Showa Denko Kk 高分子固体電解質フィルムの電極への固定方法並びにそれを用いた電池及びその製造方法
JP2001185179A (ja) * 1999-12-13 2001-07-06 General Motors Corp <Gm> 減圧乾燥による燃料電池の凍結−保護
JP2002093424A (ja) * 2000-07-10 2002-03-29 Toray Ind Inc 膜−電極接合体の製造方法
JP2002093448A (ja) * 2000-09-11 2002-03-29 Osaka Gas Co Ltd 燃料電池の停止方法及び停止保管方法
JP2003317771A (ja) * 2002-04-19 2003-11-07 Matsushita Electric Ind Co Ltd 燃料電池発電システムおよびその運転方法
JP2005071949A (ja) * 2003-08-28 2005-03-17 Matsushita Electric Ind Co Ltd 燃料電池発電装置とその運転方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012209268A (ja) * 2004-07-06 2012-10-25 Panasonic Corp ガス拡散電極および高分子電解質型燃料電池の製造方法、ならびにガス拡散電極および高分子電解質型燃料電池
JP2008021450A (ja) * 2006-07-11 2008-01-31 Mitsubishi Heavy Ind Ltd 燃料電池スタック輸送保管容器

Also Published As

Publication number Publication date
CN1906793A (zh) 2007-01-31
US20120214080A1 (en) 2012-08-23
CN100456546C (zh) 2009-01-28
US7976972B2 (en) 2011-07-12
US20110207009A1 (en) 2011-08-25
JP3977862B2 (ja) 2007-09-19
US8435657B2 (en) 2013-05-07
JPWO2005122310A1 (ja) 2008-04-10
US8137829B2 (en) 2012-03-20
US20070243430A1 (en) 2007-10-18

Similar Documents

Publication Publication Date Title
EP1758191B1 (en) Storing method and storably treated body of high polymer electrolyte fuel cell stack
US8435657B2 (en) Method of preserving polymer electrolyte fuel cell stack and preservation assembly of polymer electrolyte fuel cell stack
US20080292921A1 (en) Recovery of inert gas from a fuel cell exhaust stream
US9299998B2 (en) Fuel cell management method
JP2012209268A (ja) ガス拡散電極および高分子電解質型燃料電池の製造方法、ならびにガス拡散電極および高分子電解質型燃料電池
JP4742444B2 (ja) 燃料電池装置
JP2006338943A (ja) 電解質膜−電極接合体
JP2006338939A (ja) 電解質膜−電極接合体
JP3141619B2 (ja) 固体高分子電解質型燃料電池発電装置
JP2007200726A (ja) 活性化装置、および燃料電池の製造方法
JP2007018858A (ja) 燃料電池システム
JP3766911B2 (ja) 高分子電解質型燃料電池スタックの保存方法及び高分子電解質型燃料電池スタックの保存処理体
JP2008181768A (ja) 燃料電池システム
JP5252812B2 (ja) 高分子電解質型燃料電池スタックの保存方法
CA2911538C (en) Method of manufacturing fuel cell and removal of organic matter thereof
JP2007180050A5 (ja)
JP2001351666A (ja) リン酸型燃料電池システムおよびその停止方法
CN100440600C (zh) 高分子电解质型燃料电池组的保存方法和高分子电解质型燃料电池组的保存处理体
JP2009151972A (ja) 燃料電池の発電停止方法、その発電起動方法及び燃料電池システム
JP4543825B2 (ja) 燃料電池用膜電極接合体の保管方法
JP2022111406A (ja) 燃料電池の活性化方法と燃料電池活性化システム
JP2005216628A (ja) 燃料電池

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006514601

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580001909.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11629496

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 11629496

Country of ref document: US