WO2005119019A1 - 多気筒内燃機関用の動弁装置 - Google Patents

多気筒内燃機関用の動弁装置 Download PDF

Info

Publication number
WO2005119019A1
WO2005119019A1 PCT/JP2005/010525 JP2005010525W WO2005119019A1 WO 2005119019 A1 WO2005119019 A1 WO 2005119019A1 JP 2005010525 W JP2005010525 W JP 2005010525W WO 2005119019 A1 WO2005119019 A1 WO 2005119019A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
cylinder
electric motor
cam
cylinders
Prior art date
Application number
PCT/JP2005/010525
Other languages
English (en)
French (fr)
Inventor
Yasushi Kusaka
Shuichi Ezaki
Toshiaki Asada
Kimitoshi Tsuji
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to JP2006514155A priority Critical patent/JP4353244B2/ja
Priority to CN200580018086XA priority patent/CN1965150B/zh
Priority to EP05748504A priority patent/EP1760277B1/en
Priority to US11/597,563 priority patent/US7568457B2/en
Publication of WO2005119019A1 publication Critical patent/WO2005119019A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/34413Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using composite camshafts, e.g. with cams being able to move relative to the camshaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/46Component parts, details, or accessories, not provided for in preceding subgroups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • F01L9/22Valve-gear or valve arrangements actuated non-mechanically by electric means actuated by rotary motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L2001/0478Torque pulse compensated camshafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L1/053Camshafts overhead type
    • F01L2001/0537Double overhead camshafts [DOHC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2800/00Methods of operation using a variable valve timing mechanism
    • F01L2800/08Timing or lift different for valves of different cylinders

Definitions

  • the present invention relates to a valve gear applied to a multi-cylinder internal combustion engine to drive a valve provided in each cylinder of the internal combustion engine to open and close.
  • a valve gear that drives at least one of an intake valve and an intake valve of an internal combustion engine by a stepping motor is known (for example, see Japanese Patent Publication No. 1-166964). Further, a valve gear provided with an electric motor for each valve and a cam mechanism for converting the rotational movement of the valve into a linear movement of the valve is also known (for example, see Japanese Utility Model Laid-Open No. 2-271123). In addition, there is Japanese Patent Publication No. 2002-5003111 as a prior art document related to the present invention. Disclosure of the invention
  • a valve train for a multi-cylinder internal combustion engine is configured to convert rotational motion output from a valve drive source into motion of each cylinder provided in each of a plurality of cylinders.
  • a valve operating device that converts the linear motion into linear motion by a device and uses the linear motion to open and close the valves of each cylinder, wherein the valve driving sources do not have overlapping valve opening periods.
  • An electric motor shared by a plurality of cylinder groups is provided.
  • valve gear the electric motor as the valve drive source is shared between the plurality of cylinders, so that the valve gear is smaller than when the electric motor is provided separately for each cylinder. And restrictions on mounting on vehicles are eased.
  • valve opening periods do not overlap between the cylinders of the cylinder group sharing the electric motor, and there is a period in which all valves are closed between the valve opening periods. Therefore, by changing the rotation speed and the rotation direction of the electric motor, the operating characteristics of the valve (intake valve or exhaust valve) of any one of the cylinders included in the same cylinder group are changed.
  • the change made earlier in the rotation of the electric motor should be canceled using the period from the closing of the valve to the opening of the valve of the next cylinder (the period during which all valves are closed).
  • the electric motor By giving a further change to the electric motor, it is possible to eliminate the influence of the change in the operating characteristics of the valve that has been opened earlier on the operating characteristics of the valve that should be opened next. For example, if the operating angle of an electric motor is reduced by accelerating the motor during the opening period of one of the valves, the motor will be driven by the amount corresponding to the acceleration before the next valve is opened.
  • the change in the operating angle is a concept including controlling the rotation speed to zero, that is, stopping the rotation of the electric motor.
  • the valve train may further include a transmission mechanism for transmitting the rotation of the electric motor to a rotating body of each motion conversion device of the cylinder group.
  • a torque reduction mechanism for reducing a driving torque generated when each valve of the cylinder group is driven is provided so as to be shared with the cylinder group. May be.
  • the valve of each cylinder The driving torque generated as the rotational resistance of the electric motor when driving the motor can be reduced collectively by the common torque reduction mechanism.
  • the transmission mechanism may include a transmission shaft that interconnects rotating bodies of the respective motion conversion devices of the cylinder group, and the electric motor may be connected to the transmission shaft so that rotation can be transmitted.
  • the rotational motion can be equally transmitted to the motion conversion devices of the plurality of cylinders simply by connecting the electric motor and the transmission shaft.
  • the internal combustion engine is an equispaced explosion type in-line 4-cylinder 4-cycle internal combustion engine in which the explosion order is set so that the explosion interval between a pair of outer cylinders is shifted by 360 ° in crank angle. It may be configured.
  • the electric motor a first electric motor shared by each of the motion conversion devices of the first cylinder group constituted by the pair of outer cylinders, and a pair of inner cylinders
  • a second electric motor shared by each of the motion conversion devices of the second cylinder group is provided, and the transmission mechanism transmits the rotational motion of the first electric motor to the second motor group.
  • the valve train according to one embodiment of the present invention can be realized.
  • the four-cycle type is only required to realize an operation state in which the suction, compression, expansion, and exhaust strokes are sequentially performed during two rotations of the crank angle. Can be switched to the so-called two-cycle operation that performs the four strokes described above during one revolution of the crankshaft, but as long as there is a case where four-cycle operation is realized in some It is included in the category.
  • the first transmission mechanism includes a first transmission shaft that interconnects rotating bodies of respective motion conversion devices of the first cylinder group with the second transmission shaft.
  • the transmission mechanism is provided with a second transmission shaft that interconnects rotating bodies of the respective motion conversion devices of the second cylinder group, and the second transmission shaft is located on an outer peripheral side of the first transmission shaft.
  • the first electric motor is capable of transmitting rotation to the first transmission shaft.
  • the second electric motor may be connected to the second transmission shaft so as to be able to transmit rotation.
  • the outer peripheral side of the second cylinder group can be connected to the second electric motor to transmit the rotational motion thereto.
  • the internal combustion engine may be configured as a six-cylinder, four-cycle internal combustion engine of an equal interval explosion type.
  • a cylinder group may be formed for each cylinder whose explosion interval is shifted by 360 ° in crank angle, and the electric motor and the transmission mechanism may be provided for each cylinder.
  • the present invention can be realized by sufficiently securing a period in which all the valves are closed during the valve opening period of each valve in the same cylinder group.
  • two or more cylinders may be included in the same cylinder group with an explosion interval separated by a crank angle smaller than 360 °. The significance of the four cycles is the same as above.
  • a cam mechanism may be provided as the motion conversion device, and the cam of the cam mechanism may correspond to a rotating body of the motion conversion device.
  • the valve gear further includes a control device that controls operating characteristics of each valve of the cylinder group by changing at least one of a rotation speed and a rotation direction of the electric motor.
  • a control device that controls operating characteristics of each valve of the cylinder group by changing at least one of a rotation speed and a rotation direction of the electric motor.
  • the valve gear has a cam mechanism for converting a rotational motion output from each electric motor into a linear motion of the valve
  • the control device is configured such that a cam of the cam mechanism controls a rotational speed. While rotating continuously in the same direction while changing the position, and when the lift of any valve is maximized, the rotation speed of the cam that drives that valve is at the maximum or
  • the electric motor may be controlled to be a minimum.
  • the valve operating angle can be changed by changing the rotation speed.
  • the change in the rotational speed is controlled so that the rotational speed is maximized or minimized when the lift is maximized.
  • the adjustment range can be maximized.
  • the control device may control at least one electric motor as described above.
  • the valve train has a force mechanism for converting rotational movement output from the electric motor into linear movement of the valve, and the cylinder group is constituted by two cylinders;
  • the control device may include a position where the lift amount that the force of the cam mechanism can give to the valve in one cylinder of the cylinder group is maximum, and a force that can be given to the valve in the other cylinder of the same cylinder group.
  • the electric motor may swing within a range between the position where the lift amount is maximum, and the electric motor may be controlled such that the swing amount changes. According to this aspect, by swinging the cam, the maximum value of the lift amount of the valve in each cylinder can be controlled to the maximum lift amount that can be given by the cam or a range smaller than that.
  • the maximum value of the lift amount can be continuously changed by changing the amount of movement of the electric motor.
  • the control device may control each electric motor as described above.
  • the control device may further change the rotation speed of the electric motor during the swing.
  • the operating angle of the valve can be changed continuously.
  • the intake valve is given the operating characteristic of reducing the intake amount by changing both the lift amount and the operating angle so that the opening degree of the intake throttle valve such as a throttle valve is increased. Can be opened to reduce bombing loss.
  • the control device may further change the rotational speed of each electric motor during swing.
  • the control device may be configured so that both sides of the cam of the cylinder group across the apex of the nose portion are alternately used for driving the valve. You can control the electric motor.
  • the valve of each cylinder can be opened and closed on only one side of the nose of the cam, but in that case, lubrication and wear of the drum are used to drive the valve. Side.
  • both sides with respect to the apex of the nose are alternately used to drive the valve, uneven lubrication and wear can be suppressed.
  • alternate means that one side and the other side of the tip may be used alternately to drive the valve at an appropriate cycle, and the valve is opened and closed once.
  • the present invention is not limited to the case where both sides of the cam are used alternately every time.
  • the replacement cycle may be determined based on appropriate parameters such as the number of swings and time.
  • the control device may control each electric motor such that the cams of each cylinder group are used as described above.
  • the control device is configured such that when a reduced cylinder operation of the internal combustion engine is requested, a valve of one cylinder of the cylinder group opens and closes, and the other cylinder of the same cylinder group opens and closes.
  • the electric motor may be swung within a range in which the valve is kept closed. By oscillating the electric motor in such a range, the reduced cylinder operation can be realized by performing the combustion in one cylinder and stopping the combustion in the other cylinder. In this case, there is no need to provide a mechanical valve stop mechanism, and the configuration of the valve gear can be simplified.
  • the control device requires the reduced cylinder operation of the internal combustion engine.
  • the valve of one cylinder of one cylinder group opens and closes, and at least one electric motor oscillates within a range where the valve of the other cylinder of the same cylinder group is kept closed. You may let it.
  • the control device may be configured such that when a reduced cylinder operation of the internal combustion engine is required, all of the motors driven by the same electric motor are used. Some electric motors may be stopped at the position where the valve is closed. In the same cylinder group, the valve opening periods of the cylinders do not overlap, so there is a range where the valves of all cylinders are closed, and by stopping the electric motor at an appropriate position within that range, the cylinder group The combustion can be stopped in any of the cylinders. If such control is performed for some electric motors and the operation of other electric motors is controlled so as to open and close valves, reduced cylinder operation is realized.
  • control device is configured such that, when the reduced cylinder operation of the internal combustion engine is requested, the number of cylinders in which the valve is kept closed is changed within a range smaller than the total number of cylinders.
  • the swinging or stopping of the electric motor can stop combustion of only one cylinder or a plurality of cylinders in the same cylinder group.
  • the number of cylinders at which combustion is stopped is appropriately changed within a range smaller than the total number of cylinders to flexibly control the operating state of the internal combustion engine during reduced cylinder operation. Can be.
  • control device may be configured such that, when a reduced cylinder operation of the internal combustion engine is requested, the number of cylinders in which the valve is kept closed is changed in a range smaller than the total number of cylinders.
  • Each electric motor may be controlled such that at least one of the lift amount and the operating angle of the valve changes in a cylinder in which the valve opens and closes.
  • the number of cylinders at which combustion is stopped is appropriately changed within a range smaller than the total number of cylinders, and the valve lift / operating angle of the cylinder performing combustion is changed to change the operating angle of the cylinder.
  • the operating state of the internal combustion engine can be more flexibly controlled by changing the intake efficiency and exhaust efficiency. For example, it is possible to finely control the bombing loss and the engine braking force by changing the operating angle and lift of the intake valve.
  • FIG. 1 is a perspective view showing one embodiment of the valve train of the present invention. '
  • FIG. 2A is a diagram showing a relationship between a valve opening period and a crank angle of each cylinder of an internal combustion engine to which the present invention is applied.
  • FIG. 2B is a diagram showing the relationship between the valve opening period and the crank angle in the first cylinder group in which the valve opening periods do not overlap.
  • FIG. 2C is a diagram showing the relationship between the valve opening period and the crank angle in the second cylinder group in which the valve opening periods do not overlap.
  • FIG. 3 is an exploded perspective view of the valve gear of FIG.
  • FIG. 4 is a cross-sectional view of the valve train of FIG.
  • FIG. 5 is a diagram showing cams of the same cylinder group superimposed.
  • FIG. 6 shows a torque reduction mechanism.
  • FIG. 7 is a view showing an anti-phase cam provided in the torque reduction mechanism.
  • FIG. 8 is a diagram showing changes in valve operating characteristics which can be realized by the valve train of FIG. 1.
  • FIG. 9 is a diagram illustrating a relationship between a valve spring torque applied by a valve spring, an anti-phase torque applied by a torque reduction mechanism, and a crank angle.
  • FIG. 10 is a diagram showing an example in which an engine control unit is provided as a control device of the electric motor in one embodiment of the valve train of FIG. 1;
  • FIG. 11 is a diagram showing an example of a relationship between a power speed, a lift amount of an intake valve, and a crank angle when an electric motor is controlled so that a working angle of an intake valve is reduced.
  • FIG. 12 is a diagram showing an example in which the phase of the speed change is changed so that the cam speed becomes maximum at the position where the lift amount of the intake valve is maximum.
  • FIG. 13 is a diagram showing an example in which the force speed is changed in a phase opposite to that of FIG.
  • FIGS. 14A to 14C are diagrams showing how the cams are swung to open and close the intake valves of the two cylinders.
  • FIG. 15 is a diagram showing a relationship between a cam angle, a cam speed, a lift amount of an intake valve, and a crank angle when a cam is swung to open and close intake valves of two cylinders.
  • Figure 16 shows the cam angle, cam speed, lift amount and crank angle of the intake valve when the intake valve of one cylinder is closed and stopped while the intake valve of one cylinder is opened and closed by swinging the cam.
  • FIGS. 17A to 17C are diagrams showing examples of combinations of a stopped cylinder and an operating cylinder when opening and closing the intake valves of the remaining cylinders while stopping the intake valves of some of the cylinders.
  • FIG. 18 is a diagram showing an example in which the valve train of the present invention is applied to a V-type six-cylinder internal combustion engine.
  • FIG. 19A is a diagram showing the correspondence between the lift amount of each valve and the crank angle when the basic operating angle is 240 ° C. A in the internal combustion engine of FIG. 18;
  • FIG. 19B is a diagram showing the correspondence between the lift amount of each valve and the crank angle when the basic operating angle is 180 ° C. A in the internal combustion engine of FIG. 18;
  • FIG. 20 is a view showing another example in which the valve train of the present invention is applied to a V-type six-cylinder internal combustion engine.
  • FIG. 21 is a diagram showing an example of cylinder arrangement and cylinder numbers of an in-line six-cylinder internal combustion engine.
  • FIG. 22A is a diagram showing the correspondence between the lift amount of each valve and the crank angle when the basic operating angle is 240 ° CA in the internal combustion engine of FIG.
  • FIG. 22B is a diagram showing the correspondence between the lift amount of each valve and the crank angle when the basic operating angle is 180 ° C.A in the internal combustion engine of FIG. 20; BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows an embodiment in which the present invention is applied to a reciprocating four-cycle internal combustion engine.
  • the internal combustion engine 1A is an in-line four-cylinder type in which four cylinders 2 are arranged in a row.
  • the cylinders 2 are distinguished from each other by numbers # 1 to # 4 from one end to the other end in the arrangement direction.
  • the explosion interval of the pair of outer cylinders (# 1, # 4) 2 is shifted by 360 ° CA (meaning crank angle; the same applies hereinafter).
  • the explosion timing of the pair of inner cylinders (# 2, # 3) is shifted by 180 ° CA and 540 ° CA with respect to the explosion timing of cylinder 2 of # 1 by 180 ° CA. Equally spaced explosions have been realized.
  • the expiration time of cylinders # 2 and # 2 may be determined before and after the explosion time of cylinder # 2, but here the explosion time of cylinder # 2 of # 3 is earlier than the explosion time of cylinder # 2 of # 2. It will be described as. Therefore, the order of explosion in the internal combustion engine 1A is # 1 ⁇ # 3 ⁇ # 4 ⁇ # 2.
  • Each cylinder 2 is provided with two intake valves 3. Illustration of the exhaust valve is omitted.
  • the intake valve 3 is driven to open and close by a valve train 10.
  • the intake valve 3 is provided so that the stem 3a can reciprocate in the axial direction of the stem 3a by passing the stem 3a through a stem guide of a cylinder head (not shown).
  • a valley lid 14 is attached to the upper end of the intake valve 3 so as to be able to reciprocate integrally with the intake valve 3.
  • a valve spring 5 is mounted between the pulsar lifter 14 and the cylinder head.
  • the intake valve 3 is urged in a direction in which the pulp face 3b comes into close contact with the pulp sheet of the intake port (valve closing direction) by a repulsive force against the compression of the valve spring 5.
  • the valve gear 10 drives the intake valve 3 in the valve opening direction against the force of the valve spring.
  • FIG. 2A shows the correspondence between the lift amount of the intake valve 3 of each cylinder 2 (the amount of displacement in the valve opening direction based on the closed state) and the crank angle.
  • Working angle of each intake valve 3 (The value of the period during which the valve is open expressed by the crank angle) is appropriately adjusted according to the specifications of the internal combustion engine 1 A, and in a valve train with a variable valve operating mechanism, it also depends on the operating state of the internal combustion engine 1 A. Although the operating angle changes, the operating angle of the intake valve 3 is generally set to about 240 ° CA. According to such a setting of the operating angle, the opening periods of the intake valves do not overlap each other between the pair of outer cylinders (# 1, # 4) as shown in FIG. As shown in the inner pair of cylinders (# 2, # 3)
  • the pair of outer cylinders 2 is distinguished as a first cylinder group, and the pair of inner cylinders 2 is distinguished as a second cylinder group.
  • a first electric motor 11 and a second electric motor 12 are provided as valve drive sources for each cylinder group.
  • a valve train 10 includes a cam mechanism 13 as a motion conversion device provided for each intake valve 3, and an electric motor 1.
  • the cam mechanisms 13 have the same configuration.
  • the cam mechanism 13 has a cam 16 as a rotating body. The cam 16 pushes the valve lifter 14 at the upper end of the intake valve 3 to drive the intake valve 3 in the valve opening direction.
  • the valve pre-lifter 4 functions as a follower to the cam 16.
  • the profile of the outer periphery of the cam 16 is set to a known shape in which a nose portion 16b obtained by expanding a part of a base circle 16a is provided as shown in FIG.
  • the pallet lifter 14 is pushed in by the nose 16 b.
  • the first transmission mechanism 14 includes a camshaft (first transmission shaft) 17 that interconnects the respective cams 16 of the outer cylinders (# 1 and # 4) and a camshaft 17 with respect thereto. And a speed reduction mechanism 18 for transmitting the rotation of the electric motor 11.
  • the reduction mechanism 18 includes a motor gear 19 combined with the output shaft 11 a of the electric motor 11, and a driven gear 20 attached to one end of the cam shaft 17 so as to be integrally rotatable and engaged with the motor gear 19.
  • the camshaft 17 has a connection structure in which a first shaft 21 that drives a cam 16 of a # 1 cylinder and a second shaft 22 that drives a cam 16 of a # 4 cylinder. are doing.
  • the first shaft section 2 1 is above the # 2 and # 3 cylinders And a connecting shaft portion 23 extending to # 4 cylinder is formed coaxially and integrally.
  • the joint portion 24 at the end of the connecting shaft portion 23 is coaxially fitted into the joint hole 25 of the second shaft portion 22, so that the two shaft portions 21 and 22 are coaxially connected.
  • a detent means such as a spline is provided between the shaft joint 24 and the shaft joint hole 25, whereby the first shaft 21 and the second shaft 22 are integrally rotatably connected.
  • the connecting shaft 23 has a smaller diameter than the first shaft 21 and the second shaft 22.
  • the cam 16 is formed integrally with the first shaft portion 21 and the second shaft portion 22, but the cam 16 is formed as a separate part from these shaft portions 21 and 22.
  • the shafts 21 and 22 may be fixed using press-fitting, shrink fit, or other fixing means.
  • the second transmission mechanism 15 is composed of a camshaft (second transmission shaft) 30 that interconnects the respective forces 16 of the inner cylinders (# 2 and # 3), and a camshaft 3 thereof. And a speed reduction mechanism 31 for transmitting the rotation of the electric motor 12 to the motor 0.
  • the deceleration mechanism 3 1 can rotate integrally with the motor gear 3 2 combined with the output shaft 1 2 a of the electric motor 1 2, the intermediate gear 3 3 meshing with the motor gear 3 2, and the intermediate portion of the cam shaft 3 ⁇ And a driven gear 34 engaged with the intermediate gear 33.
  • the camshaft 30 is formed in a hollow shaft shape having a through hole 30a extending in the axial direction, and a cam 16 is formed on the outer periphery of the camshaft.
  • the connecting shaft portion 23 of the camshaft 17 is rotatably inserted into the through hole 30a of the camshaft 30.
  • the camshaft 30 is coaxially arranged on the outer periphery of the camshaft 17 in a rotatable state.
  • the outer diameter of the camshaft 30 is the same as the outer diameter of the first shaft portion 21 and the second shaft portion 22 of the camshaft 17.
  • the cam 16 may be formed as a separate component from the camshaft 30 and fixed to the camshaft 30 by using a fixing means such as press fitting or shrink fitting. The same applies to driven gears 3 and 4.
  • the cam 16 of one cylinder (# 1 or # 3) and the cam 16 of another cylinder (# 4 or # 2) in the same cylinder group are each a point 16 of the nose portion 16 b. c are connected to the camshaft 17 or 30 so that they are shifted from each other by 180 ° in the circumferential direction. This is because the opening timing of the intake valve 3 is shifted by 360 ° CA between these two cylinders. As a result, a range X in which the nose portions 16b of the cam 16 do not overlap with each other in the circumferential direction of each of the camshafts 17 and 30, as is apparent from FIG. In addition, The diameter of the circle 16a is set such that an appropriate gap (valve clearance) is generated between the circle 16a and the pulp lifter 14.
  • the cam mechanism 13 may be provided on the crankcase side, and the linear motion obtained therefrom may be transmitted to the intake valve 3 by a motion transmitting member such as a push port. That is, the internal combustion engine 1A is not limited to the OHC type but may be the OHV type.
  • the transmission mechanisms 14 and 15 are provided with torque reduction mechanisms 40, respectively.
  • the torque reducing mechanism 40 includes an anti-phase force 41 and a torque load device 42 for applying a frictional load to the outer periphery of the anti-phase cam 41.
  • FIG. 6 shows the torque reduction mechanism 40 for # 2 cylinder and # 3 cylinder, but the torque reduction mechanism 40 for # 1 cylinder and # 4 cylinder also has the same configuration.
  • the anti-phase cam 41 is provided at the end of the second shaft portion 22 of the power shaft 17 and the end of the camshaft 30 so as to be integrally rotatable.
  • the anti-phase cam 41 may be formed integrally with the shafts 17 and 30, or may be formed as a separate part with respect to the shafts 17 and 30, and may be fixed by press-fitting, shrink fitting, or the like. May be fixed to the shafts 17, 30.
  • the outer peripheral surface of the anti-phase cam 41 is configured as a cam surface.
  • the opening file on the cam surface is set to have a shape in which a pair of recesses 41b are provided in a part of the base circle 41a as shown in FIG.
  • the recesses 41b are provided such that their bottoms 41c are 180 ° apart in the circumferential direction.
  • the torque load device 42 includes a lifter 43 disposed opposite the outer peripheral surface of the antiphase cam 41, a spring receiver 44 disposed outside the lifter 43, A coil spring 45 is provided between the lid 43 and the spring receiver 44 to urge the lifter 43 toward the anti-phase cam 41.
  • a roller 46 is rotatably attached to the tip of the lifter 43, and the roller 46 is pressed against the outer peripheral surface of the anti-phase cam 41 by the repulsive force of the coil spring 45.
  • the lifter 43 corresponding to the anti-phase cam 41 of the camshaft 17 moves when the roller 46 comes into contact with the bottom 41 c of one of the recesses 41 b provided on the anti-phase force 41.
  • the cam shaft 17 is positioned in the circumferential direction such that the apex 16 of the nose 16 b of the cylinder 6 contacts the bottom 41 c of the recess 41 b of the valve lifter 14 for the # 3 cylinder.
  • the lifter 43 corresponding to the anti-phase cam 41 of the camshaft 30 is provided when the roller 46 comes into contact with the bottom 41 c of one of the recesses 41 b provided on the anti-phase cam 41.
  • the apex 16 c of the nose 16 b of the # 16 cylinder cam 16 provided on the camshaft 30 contacts the # 3 cylinder palbur lifter 14 and the other recess 4 1b the bottom 4 b
  • the apex 16 of the nose 16 b of the cam 16 for the # 2 cylinder provided on the camshaft 30 when the roller 46 comes in contact with 1 c. Are positioned in the circumferential direction of the camshaft 30 so as to be in contact with the bottom 41 c of the concave portion 41 b of the valve pre-fat 14 for the # 2 cylinder.
  • the electric motors 11 and 12 cause the respective camshafts 17 and 30 to rotate at a speed half the rotational speed of the crankshaft of the internal combustion engine 1A ( In the following, this is referred to as the basic speed.)
  • the crankshaft is driven in the same way as a general mechanical valve train that drives the valve with power from the crankshaft.
  • the intake valve 3 can be opened and closed in synchronization with the rotation.
  • the relative speed between the crank angle and the phase of the cam 16 is changed by changing the rotation speed of the camshafts 17 and 30 by the electric motors 11 and 12 from the basic speed.
  • the operating characteristics of the intake valve 3 can be variously changed as shown by A to G in FIG.
  • the solid line of the “lift shape” in FIG. 8 indicates the operating characteristics of the intake valve 3 when the camshafts 17 and 30 are continuously rotated at the basic speed, and the phantom line indicates the speed of the electric motors 11 and 12.
  • the operating characteristics of the intake valve 3 after the change realized by the control are respectively shown.
  • the horizontal axis of the lift shape indicates the crank angle, and the vertical axis indicates the lift amount.
  • the change in the operating characteristics of A in Fig. 8 shows that the camshafts 17 and 30 are accelerated or decelerated with respect to the basic speed while the intake valve 3 is closed, and the crank angle and the phase of the cam 16 are Can be realized by changing the relative relationship of. If the camshafts 17 and 30 are accelerated or decelerated with respect to the basic speed while the intake valve 3 is opened, the operating angle can be changed as shown in C of FIG.
  • the lift amount of the intake valve 3 is the maximum lift amount, that is, the nose.
  • Such a change in the lift amount is realized by stopping the electric motors 11 and 12 while the cam 16 is opening the intake valve 3, and then rotating the motors 11 and 12 in the opposite directions. In this case, the intake valve 3 is pushed open by the forward rotation of the cam 16, and the cam 16 is rotated in the reverse direction before the apex 16 c of the nose 16 b reaches the valve lifter 4 to drive the intake valve 3. In the valve closing direction.
  • the operating angle of the intake valve 3 can be changed as appropriate by the forward and reverse rotation speeds of the motors 11 and 12, so that the operating angle does not change as shown in FIG. 8D. It is also possible to change only the lift amount.
  • FIG. 8 shows that the camshafts 17 and 30 rotate continuously in one direction while accelerating the rotation speed while the intake valve 3 is open, and the crank angle and cam 1
  • the crank angle and cam 1 By reducing the rotational speed of the shafts 17 and 30 while the intake valve 3 is closed so as to cancel the phase shift with 6, the lift speed is maintained while maintaining the same operating angle of the intake valve 3. Is an example in which is changed.
  • the intake valve 3 is quickly opened to improve the suction efficiency, and when the intake valve 3 is closed, the speed is reduced when the intake valve 3 is seated. Impact) can be mitigated.
  • F in Fig. 8 indicates the intake valve during the period when the intake valve 3 should be opened and closed once by driving the camshafts 17 and 30 at twice the basic speed, that is, at the same rotational speed as the crankshaft. This is an example in which the operation cycle of the internal combustion engine 1A is switched from 4 cycles to 2 cycles by opening and closing 3 twice. Further, G in FIG. 8 is an example in which, when stratified combustion is performed in the internal combustion engine 1A, the intake valve 3 is opened earlier correspondingly. However, the lift amount is kept small for a while after opening the intake valve 3.
  • Such operating characteristics are as follows: while the intake valve 3 is closed, the speed of the camshafts 17 and 30 is made higher than the basic speed to advance the opening timing of the intake valve 3, and then the shaft 17 and 3 Force to reduce the rotation speed of 0 to a very low speed or temporarily stop the camshafts 17 and 30 to suppress the increase in the lift amount.After continuing this state for a predetermined period, increase the speed of the camshafts 17 and 30. This is realized by increasing the lift amount. Furthermore, H in the table indicates that the camshafts 17 and 30 are stopped and the intake valve 3 is closed. This is an example of maintaining. The intake valve 3 can be kept open by stopping the camshafts 17 and 30 while the nose 16b is pushing the pulp pre-fat 14.
  • various operating characteristics are given to the intake valve 3 by controlling the driving speeds of the power shafts 17 and 30 by the electric motors 11 and 12. be able to.
  • the opening periods of the intake valves 3 do not overlap, and the opening periods of the intake valves 3 do not overlap between the # 2 cylinder driven by the electric motor 12 and the # 3 cylinder. Therefore, for example, by controlling the speed of the electric motor 11, the # 1 cylinder or # 4 cylinder!
  • the relative relationship between the crank angle and the phase of the cam 16 is determined when the camshafts 17 and 30 are continuously driven at the basic speed. Even if the relationship deviates, while the range X of the camshaft 17 is directed to the valve lifter 14 side, that is, all the cams 16 of the shafts 17 of the # 1 and # 4 cylinders If the speed of the electric motor 11 is adjusted so as to cancel the above-described deviation of the relative relationship while the base circle 16 a passes over the vanole pre-flipper 14, the operating characteristics of the intake valve 3 in one cylinder can be improved. The influence of the change on the operating characteristics of the intake valve 3 in the other cylinder is eliminated, and the operating characteristics of the intake valve 3 in the other cylinder can be arbitrarily controlled. The same applies to between # 2 and # 3 cylinders.
  • valve train 10 can be reduced in size, and the number of parts can be reduced, which is advantageous in terms of cost.
  • the torque reduction mechanism 40 is provided in each of the transmission mechanisms 14 and 15, the drive torque applied to the electric motors 11 and 12 is reduced.
  • the rated torque required for the electric motors 11 and 12 can be reduced, whereby the electric motors 11 and 12 can be reduced in size to make the valve gear 10 more compact.
  • FIG. 9 shows the valve spring torque (solid line) applied to the camshaft 17 or 30 by the pulp spring 5, the anti-phase torque (dashed line) applied to the camshaft 17 or 30 by the torque reduction mechanism 40, and the clamp force. It shows the relationship with the angle.
  • FIG. 9 shows an example in which the camshafts 17 and 30 are continuously driven in the forward direction at the basic speed.
  • the valve spring torque is almost 0 at the position where the cam 16 gives the maximum lift to the intake valve 3, and it is before the position where the maximum lift is given, that is, the intake air While the valve 3 is open, the repulsive force of the valve spring 5 acts to push the cam 16 back in the reverse direction, so it is a positive value, after the position that gives the maximum lift, that is, when the intake valve 3 is closed. During this time, the repulsion force of the valve spring 5 acts to push the cam 16 in the forward rotation direction, so that the value becomes a negative value.
  • the anti-phase torque is almost 0 at the maximum lift position, a negative value at a position before that, and a negative value at a position after the position giving the maximum lift amount. It has a positive value.
  • the intake valve 3 is open, the lifter 4 3 advances in the recess 4 1 b toward the bottom 4 1 c, and the repulsive force of the coil spring 4 5 rotates the anti-phase cam 4 1 forward via the lifter 4 3
  • the intake valve 3 is closed, the lifter 43 moves inside the recess 41 b away from the bottom 41 c, and the repulsive force of the coil spring 45 increases the lifter 43 This is to act to push the anti-phase cam 41 back in the reverse rotation direction via.
  • valve spring torque applied to the camshafts 17 and 30 from the cam 16 side that is, the valve spring 5 is applied to the camshafts 17 and 30 via the valve lifter 4 and the cam 16.
  • Torque and anti-phase cam 4 Anti-phase torque applied to camshafts 17 and 30 from 1 side, that is, torque load device 4
  • the torque applied to the camshafts 17 and 30 from the second coil spring 45 via the lifter 43 and the anti-phase cam 41 acts in directions opposite to each other and cancels each other.
  • the combined torque of the valve spring torque and the anti-phase torque is applied to the electric motors 11 and 12 as drive torque, so that the drive torque applied to the electric motors 11 and 12 is reduced. Result, electric motor 1
  • the anti-phase cam 41 is provided for each of the camshafts 17 and 30.Since one anti-phase cam 41 is shared by the two cylinders 2, the anti-phase cam 41 is provided for each cylinder 2. As compared with the case where a cam is provided, the torque reduction mechanism is also reduced in size, so that the valve train 10 can be made more compact.
  • the relationship between the valve spring torque and the anti-phase torque is opposite to each other even when the speed and the rotation direction are changed. Thus, the effect of reducing the driving torque is similarly exhibited.
  • the anti-phase torque may be set by further considering the torque generated by the inertia of the cam 16 or the like.
  • the electronic control unit 6 is a computer unit including a microphone unit processor and peripheral parts such as a memory required for its operation.
  • the electronic control unit 6 may be provided as a dedicated unit for controlling the electric motors 11 and 12, or may be provided as a unit (for example, an engine control unit) that is also used for other purposes. Good.
  • the configuration other than the ECU 6 in FIG. 10 is the same as that in FIG.
  • the control of the electric motor 11 corresponding to the first cylinder group (# 1 cylinder and # 4 cylinder) will be described, but unless otherwise specified, the second cylinder group (# 2, # 3) will be described. Similar control can be executed for the corresponding electric motors 12.
  • the intake valves 3 of the # 1 cylinder and the # 4 cylinder are set to the second B As shown in the figure It is assumed that the valve opens and closes at intervals of 360 ° CA and that the operating angle of each intake valve 3 becomes 240 ° CA (hereinafter referred to as the basic operating angle). The change in the lift amount and the operating angle will be described.
  • the profile of the cam 16 is designed so that the working angle of the intake valve 3 is 240 ° CA.
  • the waveforms of the lift amounts indicated by broken lines in FIGS. 11, 12, 15, and 16 are all obtained when the cam speed is fixed to the above-described basic speed. In the figure, the notation of CA for the crank angle is omitted.
  • the ECU 6 controls the rotation of the electric motor 11 so that the camshaft 17 rotates continuously in the same direction and the rotational speed of the camshaft 17 changes as appropriate, thereby controlling the operating angle of the intake valve 3 and the lift amount.
  • An example is shown in FIG. Fig. 11 shows that the rotation speed of the output shaft 11a of the electric motor 11 is changed to 360 ° CA cycle while the camshaft 17 is continuously rotated in a fixed direction to open and close the intake valve 3.
  • 4 shows the relationship between the cam speed (rotational speed of the cam 16) and the lift amount of the intake valve 3 and the crank angle when the operating angle of the intake valve 3 is changed by changing the operating angle.
  • the cam speed is changed at a cycle of 360 ° C A so that the cam speed becomes maximum while the intake valve 3 is open.
  • the area of the range S 1 where the cam speed is higher than the basic speed is from the time t 1 when the intake valve 3 starts to open to the time t 2 when the intake valve 3 is closed, and the area of the range S 2 where the cam speed is lower than the basic speed.
  • the cam speed is varied so as to be larger than the above.
  • the operating angle of the intake valve 3 becomes smaller than the basic operating angle.
  • the position where the force speed is maximum is set to the position where the lift amount of the intake valve 3 becomes maximum when the force speed is fixed at the basic speed.
  • the waveform of one cycle of the cam speed is symmetrical about the position where the cam speed is the maximum.
  • FIG. 12 shows that the cam speed is maximized at the position (maximum lift position) where the nose apex 16c of the cam 16 rides on the pulp lifter 14 and the lift amount of the intake valve 3 becomes the maximum lift amount.
  • FIG. 11 shows an example in which the phase of the cam speed change in FIG. 11 is changed. By giving such a phase change, the range S2 in FIG. 11 becomes smaller or disappears. Therefore, the amount of decrease in the operating angle with respect to the basic operating angle is increased. If the range S2 is controlled to disappear, the amount of reduction can be maximized.
  • the power speed is changed at a cycle of 360 ° CA so that the cam speed is minimized while the intake valve 3 is open.
  • the cam speed is changed symmetrically in the vertical direction about the basic speed with respect to the change in the cam speed shown in FIG. Therefore, between the time t1 when the intake valve 3 starts to open and the time t2 when the intake valve 3 closes, the area of the range S1 where the cam speed is higher than the basic speed is the area of the range S2 where the cam speed is lower than the basic speed. Smaller than.
  • the operating angle of the intake valve 3 becomes larger than the basic operating angle.
  • the phase of the cam speed change may be further changed so that the minimum value of the cam speed coincides with the maximum lift position of the intake valve 3. In this way, the amount of increase in the operating angle with respect to the basic operating angle can be increased.
  • the cam angle is accelerated while the lift amount of the intake valve 3 is increasing, and the cam speed is reduced while the lift amount is decreasing.
  • the waveform of the change in the lift amount can be set to be asymmetrical before and after the maximum lift position while making the angle coincide with the angle or suppressing the difference between the two.
  • the ECU 6 swings the output shaft 11a of the electric motor 11 so that the rotation direction of the cam 16 switches while the intake valve 3 is open, that is, the output shaft 11a at every appropriate rotation angle.
  • the maximum value of the lift amount of the intake valve 3 can be changed by alternately switching the rotation direction of the intake valve 3.
  • FIGS. 14A to 14C An example of the operation of the cam 16 in this case is shown in FIGS. 14A to 14C.
  • the cam 16 and the valve lifter 4 of the # 1 cylinder are shown by solid lines
  • the cam 16 and the pulp lifter 4 of # 4 cylinder are shown by broken lines.
  • the cam 16 is rotated in the direction indicated by the arrow A in FIG.
  • FIG. 15 shows an example of the relationship between the crank angle and the cam rotation angle (cam angle), the cam speed, and the lift amount of the intake valve 3 when the above-described swing control is performed.
  • the force angle is determined by using the state in which the intersection of the straight line passing through the center of the base circle 16a and the north 'vertex 16c and the base circle 16a faces the pulp lifter 14 as a reference.
  • the cam 16 is set while the base circle 16a of the cam 16 of the # 1 cylinder faces the valve lifter 14 (when the crank angle is between 0 ° CA and 60 ° CA).
  • the cam 16 is rotated at the basic speed for a while after the nose 16b starts pushing the valve lifter 4, that is, when the intake valve 3 starts lifting (No. 14 A corresponds to the rotation in the direction of arrow A in Fig. A).
  • the cam speed is increased to the basic speed, and the rotation speed is maintained until the intake valve 3 closes (corresponding to the rotation in the direction of the arrow B in Fig. 14A).
  • the cam 16 is operated in a range where the cam angle is smaller than 180 °, and the maximum value of the lift amount of the intake valve 3 of the # 1 cylinder is limited to be smaller than the maximum lift amount.
  • the maximum value of the lift amount of the intake valve 3 during the swing control can be appropriately changed by changing the range in which the cam 16 swings.
  • the swing range is the maximum lift position in each of the # 1 and # 4 cylinders, that is, the range between the positions where the nose apex 16c of the cam 16 of each of the # 1 and # 4 cylinders rides on the valve lifter 14 May be adjusted appropriately.
  • the operating angle of the intake valve 3 at the time of the operation control is appropriately changed to either the large or small side with respect to the basic operation angle by adjusting the rotation speed of the cam 16 during the operation. Can be.
  • the control is made smaller than the basic operating angle.
  • the valve operating area is controlled to be smaller than the basic valve angle in accordance with this, so that the valve opening area of the intake valve 3 (waveform indicating lift amount and crank angle The area of the area surrounded by the horizontal axis shown in the figure can be reduced to limit the amount of intake air. If such control is performed when the internal combustion engine 1A is running at a low load and at a low speed, the opening of the throttle valve provided in the intake system of the internal combustion engine 1A can be increased to reduce the bombing opening.
  • the intake valve 3 is controlled to open and close using only one side of the nose apex 16c of the cam 16 provided in each cylinder.
  • both sides of the nose apex 16 c of the cam 16 (C 1 in FIG. 14A) , C 2) may be used to switch the swing range of the cam 16 at appropriate intervals so as to be used for driving the intake valve 3.
  • the switching cycle is determined by parameters such as time and the number of swings. However, switching In order to perform this operation, it is necessary for the nose apex 16c of the cam 16 to climb over the valve lifter 14.
  • the electric motor 1 1 is used at low load and low rotation.
  • the cam 16 is rotated continuously in a fixed direction by the electric motor 11 during high load and high rotation, the working range of the force 16 before and after the continuous rotation Can be switched.
  • a reduced-cylinder operation for stopping combustion in a certain cylinder may be required by stopping the intake valves of some cylinders in a closed state.
  • a special valve stop mechanism is required to realize such reduced cylinder operation in a mechanical valve train that transmits the rotation of the crankshaft to the valve.
  • the valve gear 10 of the present embodiment since the above-described range X exists in the set of the cams 16 driven by the same electric motors 11 and 12, the ECU 6 The reduced-cylinder operation can be easily realized by swinging or stopping the electric motors 11 and 12.
  • FIG. 16 shows an example in which the oscillation of the # 4 cylinder is stopped by using the swing of the electric motor 11.
  • the force speed and the cam angle are controlled in the same manner as in FIG. 15 until the lift of the intake valve 3 of the # 1 cylinder is completed.
  • the cam 16 is decelerated, and the cam 16 is stopped at the end point (360 ° C A) of the control cycle of the electric motor 11 for the # 1 cylinder.
  • the cam angle is 0, and the cams 16 of the # 1 cylinder and the # 4 cylinder are both located at positions facing the base circle 16a and the force valve lifter 14.
  • the cam 16 is stopped until the end of the control cycle of the electric motor 11 for the # 4 cylinder (720 ° CA), and then the intake valve 3 of the # 1 cylinder is turned on again as shown in Fig. 16 Let it lift.
  • the # 1 cylinder intake valve 3 can be opened and closed, while the # 4 cylinder intake valve 3 can be stopped in a closed state. It is also possible to operate the intake valve 3 of the # 4 cylinder and stop the intake valve 3 of the # 1 cylinder in the closed state.
  • a state where the above-described range X faces the valley pre-fitter 14 from 0 ° CA to 720 ° CA that is, a state where all the intake valves of the same cylinder group are closed.
  • the intake valves 3 of the cylinders of the same cylinder group for example, # 1 cylinder and # 4 cylinder
  • FIG. 17A the intake valves 3 of the cylinders of the same cylinder group
  • the two cylinders are burned by driving the cams 16 of the other cylinder groups (# 2 cylinder and # 3 cylinder) with the electric motors 12 to open and close the intake valves 3 of those cylinders.
  • the remaining two cylinders can burn at 360 ° CA intervals.
  • the electric motor 12 is stopped at the position where both the intake valves 3 of the # 2 cylinder and # 3 cylinder are closed, while the cam 16 of the # 1 cylinder and # 4 cylinder is driven by the electric motor 11
  • the intake valves 3 of those cylinders may be opened and closed.
  • the number of stopped cylinders when reduced cylinder operation is requested can be kept within a range (1 to 3) smaller than the number of all cylinders. It can be changed as appropriate.
  • FIG. 17B shows an example in which combustion is stopped only in # 1 cylinder
  • FIG. 17B shows an example in which combustion is stopped in # 1 cylinder and # 3 cylinder, respectively.
  • the number of cylinders and the cylinder number for stopping the combustion may be appropriately selected according to the operating state of the internal combustion engine 1A.
  • the bombing loss during reduced cylinder operation can be reduced, and the internal combustion engine 1A can be operated at an operating point at which high efficiency is obtained. As a result, improved fuel efficiency can be expected. Further, in a state where combustion of some cylinders is stopped, the operating angle / lift amount of the intake valve 3 of the cylinder performing combustion may be appropriately changed by the above control. In this case, the bombing loss of the internal combustion engine 1A can be controlled more finely than when the cam 16 of the cylinder performing combustion is continuously rotated at the basic speed, and the engine braking force can be finely adjusted. The effect of is obtained.
  • the operating characteristics of the intake valve 3 have been described in relation to the rotation speed and the rotation direction of the cam 16, but the reduction ratio and the rotation direction between the electric motors 11 and 12 and the cam 16 have been dealt with.
  • the rotation speed and rotation direction of the cam 16 shown in each figure should be set to the rotation speed and rotation direction of the output shafts 11a and 12a of the electric motors 11 and 12, respectively.
  • the ECU 6 controls the operation of the electric motors 11 and 12 in accordance with the speed and the rotation direction of the replaced output shafts 11a and 12a, thereby changing the above-described operating characteristics of the various intake valves 3 described above. Can be realized.
  • information specifying the operating state of the internal combustion engine 1 A and the operation of the cam 16, that is, the rotational speed of the cam 16 Degree, rotation direction, operation control mode of cam 16 (control mode for continuous rotation in one direction and motion control mode), swing range in swing control mode (cam angle, A map that is associated with (i.e., specified by the swing angle) is prepared in the ROM of the ECU 6 in advance, and the operating state is determined based on information from various sensors provided in the internal combustion engine 1A.
  • the drive conditions of the force 16 according to the discrimination result are specified, and the drive conditions of the output shafts 11a and 12a are replaced with the operation conditions of the output shafts 11a and 12a to control the electric motors 11 and 12, thereby obtaining the above-described working angle and lift.
  • Variations in various operating characteristics such as characteristics, the maximum value of the lift amount, and the number of combustion stop cylinders can be realized.
  • the operation of the electric motors 11 and 12 may be feedback-controlled by detecting the crank angles and the rotational positions of the camshafts 17 and 30 using a crank angle sensor or a cam angle sensor.
  • FIG. 18 shows an example in which the valve train 50 of the present invention is applied to a V-type six-cylinder internal combustion engine 1B.
  • # 1, # 3, and # 5 cylinders 2 are arranged in series on one puncture 51, and # 2, # 4, and # 6 cylinders 2 are arranged in series on the other bank 52.
  • the order of their explosions is in order of cylinder number, that is, # 1 ⁇ # 2 ⁇ # 3 ⁇ # 4 ⁇ # 5 ⁇ # 6.
  • the puncture angle is 60 °, which results in equally spaced explosions every 120 ° CA.
  • valve gear 50 applied to such an internal combustion engine 1B, cylinders having explosion intervals of 360 ° CA are grouped into the same cylinder group, so that the three electric motors 53, 54, 55 The cylinder valve can be driven.
  • the basic operating angle is 240 ° CA
  • the lift amount of each intake valve is associated with the crank angle as shown in FIG. 19A. Therefore, in Fig. 18, cylinders # 1 and # 4 are in the first cylinder group, cylinders # 2 and # 5 are in the second cylinder group, and cylinders # 3 and # 6 are in the third cylinder group.
  • First to third electric motors 53, 54, 55 are provided corresponding to the respective cylinder groups.
  • the rotational movement of the first electric motor 53 is composed of a gear train 56 and a camshaft 57.
  • the transmission is transmitted to the # 1 cylinder and # 4 cylinder cams 16 via the transmission mechanism 58, and the rotation of the second electric motor 54 is transmitted to the transmission mechanism 61 composed of the gear train 59 and the camshaft 60.
  • the rotational motion of the third electric motor 55 is transmitted to the cams 16 of the # 2 and # 5 cylinders via the transmission mechanism 64 composed of the gear train 62 and the camshaft 63. ⁇ ⁇
  • the power is transmitted to cam # 6 of # 6 cylinder.
  • the camshafts 60 for the # 2 and # 5 cylinders have the same coupling structure as the camshafts 17 in FIGS. 3 and 4, and the camshafts 57 and 63 are located on the outer circumference of the camshaft 60. It has a hollow shaft structure that is coaxially and rotatably combined. Camshafts 5, 7, 60, 6 3 are punctures 5 1,
  • the rotation of the cam 16 on the camshafts 57, 60, and 63 is converted into linear motion of the follower (not shown), and the reciprocating motion of the follower is The reciprocating motion is transmitted to a valve such as an intake valve via a motion transmitting member such as a fuel rod. That is, the internal combustion engine 1B in FIG. 18 is of the OHV type.
  • valve opening periods of the valves in each cylinder group do not overlap each other as in the example of Fig. 2A, so the number of electric motors is reduced while increasing the degree of freedom of the operating characteristics of each valve. Can be achieved.
  • the cams 16 in the same cylinder group can be controlled as described above. In the example of FIG. 18, the camshafts 57,
  • a torque reduction mechanism 40 can be provided for each of 60 and 63.
  • the cylinder group is composed of two cylinders in Fig. 18, when the basic operating angle is set to 180 ° CA, as shown in Fig. 19B, # 1 cylinder, # 3 cylinder
  • the valve opening periods do not overlap between # 5 and # 5 cylinders, and do not overlap between # 2, # 4 and # 6 cylinders.
  • the first cylinder group is constituted by # 1 cylinder, # 3 cylinder and # 5 cylinder
  • the second cylinder group is constituted by # 2 cylinder, # 4 cylinder and # 6 cylinder.
  • the present invention can be applied by configuring a cylinder group for each puncture.
  • FIG. 20 shows another example in which the present invention is applied to a V-type six-cylinder internal combustion engine.
  • One camshaft 75 for driving the motor is rotatably mounted.
  • the camshafts 73 and 74 are arranged coaxially with each other.
  • bank 51 Although the shaft 7 4 is shown detached from the cam carrier 7 1, the cam shafts 7 3 and 7 are also formed on the cam carrier 7 1 in the same way as the cam shaft 7 4 of the opposite cam carrier 7 2. 4 are arranged coaxially.
  • One camshaft 73 is provided with a cam 16 for driving intake valves 3 corresponding to two adjacent cylinders 2 in the same puncture so as to be able to rotate, and the other camshaft 74 is provided with a cam 16.
  • the cam 16 for driving the intake valve 3 corresponding to the remaining one cylinder 2 in the same puncture is provided rotatably.
  • One force shaft 74 is driven to rotate by a first electric motor 11 via a first transmission mechanism 14, and the other camshaft 75 is driven by a second transmission mechanism 15 via a second transmission mechanism 15. It is rotationally driven by the electric motor 12.
  • the exhaust camshaft 75 is provided with a cam 76 for driving the exhaust valves of all the cylinders in the same bank so as to be rotatable.
  • the camshaft 75 includes a transmission mechanism 77. And is rotationally driven by a single electric motor 78. Since the phases of the cams 16 of the cylinders 2 in the same bank are shifted by 120 °, the oscillating movement of the first electric motor 11 causes the intake valves 3 of the two cylinders 2 to operate. The characteristics of the intake valves 3 of the remaining one cylinder 2 are independently controlled by the second electric motor 12 with respect to those of the intake valves 3 of the other two cylinders 2. Can be controlled.
  • the present invention can be applied to an in-line six-cylinder, V-type eight-cylinder, or V-type twelve-cylinder internal combustion engine.
  • the cylinders 2 are numbered from # 1 to # 6 in order from one end to the other end, and the explosion order between the cylinders is # 1 ⁇ # 5 ⁇ # 3 ⁇ # 6 ⁇ # 2 ⁇ # 4, assuming that the basic operating angle of each intake valve is 240 ° CA, the relationship between the lift amount of each intake valve and crank angle is 2nd 2A As shown in the figure.
  • the first cylinder group is composed of # 1 cylinder and # 6 cylinder
  • the second cylinder group is composed of # 2 cylinder and # 5 cylinder
  • the second cylinder group is composed of # 3 cylinder and # 4 cylinder.
  • the present invention can be applied to each of the three cylinder groups.
  • the basic operating angle of each intake valve is set to 180 ° CA in the in-line six-cylinder internal combustion engine 1C
  • the relationship between the lift amount of each intake valve and the crank angle is shown in Fig. 22B.
  • the # 1 cylinder, # 2 cylinder and # 3 cylinder will be used for the first cylinder group
  • the # 4 cylinder, # 5 cylinder and # 6 cylinder will be used for the second cylinder group.
  • the present invention can be applied to each configuration. The same applies when the explosion order is # 1 ⁇ # 4 ⁇ # 2 ⁇ # 6 ⁇ # 3 ⁇ # 5.
  • each bank may be identified with an in-line four-cylinder internal combustion engine to apply the above embodiment.
  • a V-type 12-cylinder internal combustion engine six cylinders are arranged in each bank, so that the present invention may be applied by equating each bank with an in-line six-cylinder internal combustion engine.
  • the number of cylinders to be stopped can be selected from 1 to 5
  • variable cylinder control in an eight-cylinder internal combustion engine combustion is stopped.
  • the number of target cylinders can be selected from 1 to 7.
  • the number of cylinders to be stopped can be selected from 1 to 1: 1.
  • the number of cylinders that are controlled to be opened by one electric motor, the combination thereof, and the number of electric motors are set so that the valve opening periods do not overlap due to the relationship between the operating angle and the adjustable angle.
  • the valve opening periods may be determined so as not to overlap each other within the same cylinder group, and the number of electric motors, the number of cylinders, and their rates,
  • the combination of cylinders controlled by the two electric motors is not limited to the embodiment disclosed above.
  • the present invention can be similarly applied to an exhaust valve.
  • the exhaust valve By controlling the exhaust valve according to the present invention, it becomes possible to change the exhaust efficiency of each cylinder and flexibly control the operating state of the internal combustion engine.
  • both the intake valve and the exhaust valve may be controlled according to the present invention.
  • the reduction mechanisms 18 and 31 need not always be employed in the embodiment of the present invention, and are directly connected to the output shafts 11 a and 12 a of the electric motors 11 and 12 and the camshafts 17 and 30. You can. In order to facilitate the speed control of the electric motors 11 and 12, it is desirable to set the reduction ratios of the reduction mechanisms 18 and 31 to be equal to each other.
  • the torque reduction mechanism 40 need not always be provided in the embodiment of the present invention.
  • the reversal phase cam 41 does not necessarily need to be provided on the camshafts 17 and 30, but may be provided on an intermediate shaft of the reduction mechanisms 18 and 31 or the like.
  • the rotation speed of the anti-phase cam 41 must be set to an integral multiple of the rotation speed of the camshafts 17 and 30.
  • the drive conversion device is not limited to the cam mechanism 13 but may be a link mechanism such as a slider crank mechanism. In this case, the rotating body provided at the rotation input portion of the link mechanism may be driven by the electric motor.
  • the degree of freedom in controlling the valve operating characteristics of each cylinder can be enhanced.
  • the valve train can be made smaller and the restrictions when mounted on the vehicle can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

弁駆動源から出力される回転運動を複数の気筒(2)のそれぞれに設けられた気筒毎のカム機構(13)により直線運動に変換し、その直線運動を利用して各気筒の弁(3)を開閉駆動する動弁装置(10)において、開弁期間が重ならない少なくとも2つの気筒によって構成される気筒群に対して共用される弁駆動源としての電動モータ(11、12)と、電動モータ(11、12)の回転を気筒群のそれぞれのカム機構(13)のカム(16)に伝達する伝達機構(14、15)とを設ける。

Description

明 細 書 多気筒内燃機関用の動弁装置 技術分野
本発明は、 多気筒内燃機関に適用されて該内燃機関の各気筒に設けられた弁を 開閉駆動する動弁装置に関する。 背景技術
内燃機関の吸気弁又は吸気弁のうち少なくともいずれか一方の弁をステッピン グモータにて回転駆動する動弁装置が知られている (例えば特公平 1 _ 1 6 9 6 4号公報参照)。また、弁毎に電動モータ及びその回転運動を弁の直線運動に変換 するカム機構を設けた動弁装置も知られている (例えば実開平 2— 2 7 1 2 3号 公報参照)。その他に、本発明に関連する先行技術文献として特表 2 0 0 2 - 5 0 0 3 1 1号公報が存在する。 発明の開示
多気筒内燃機関において複数の気筒間で弁駆動源としての電動モータを共用し た場合、電動モータの制御によっていずれか一つの弁の動作特性を変化させると、 その弁と開弁期間が重なる他の弁の動作特性が影響を受けることがあり、 動作特 性の制御の自由度が低くなる。 一方、 弁毎に電動モータを設けた場合には動作特 性を弁毎に柔軟に変化させることができる力 電動モータの個数が増加して動弁 装置が大型化し、 車両への搭載時の制約が大きくなる。
そこで、 本発明は弁の動作特性の制御の自由度が高くかつ小型ィ匕が可能な動弁 装置を提供することを目的とする。
上述した目的を達成するため、 本発明の一態様に係る多気筒内燃機関用の動弁 装置は、 弁駆動源から出力される回転運動を複数の気筒のそれぞれに設けられた 気筒毎の運動変換装置により直線運動に変換し、 該直線運動を利用して各気筒の 弁を開閉駆動する動弁装置であって、 前記弁駆動源として、 開弁期間が重ならな い複数の気筒によって構成される気筒群に対して共用される電動モータを備えて レヽる。
上記の動弁装置によれば、 複数の気筒間で弁駆動源としての電動モータが共用 されているので、 各気筒毎に電動モータを分けて設けた場合と比較すれば動弁装 置が小型化され、 車両搭載時の制約が緩和される。 また、 電動モータが共用され る気筒群の気筒間では開弁期間が重ならず、 各弁の開弁期間の間に全ての弁が閉 じている期間が存在する。 従って、 電動モータの回転速度や回転方向に変ィ匕を与 えることにより、同一気筒群に含まれる全ての気筒のうちいずれかの気筒の弁(吸 気弁又は排気弁) の動作特性を変化させた場合、 その弁が閉じてから次の気筒の 弁が開くまでの期間 (全ての弁が閉じている期間) を利用して、 電動モータの回 転に関し、 先に与えた変化を打ち消すようなさらなる変化を電動モータに与える ことにより、 先に開力れた弁の動作特性の変化が次に開力、れるべき弁の動作特性 に与える影響をなくすことができる。 例えば、 いずれかの弁の開弁期間に電動モ ータを加速してその弁の作用角を減少させた場合には、 次の弁が開かれるまでの 間にその加速に見合った分だけ電動モータを減速することにより、 次の弁が開き 始める位置のずれをなくし、その次の弁に対しても、先の弁と同様な、あるいは、 その次の弁に固有の作用角の変化を電動モータの制御によって与えることができ る。 その他にも電動モータの停止、 逆転等を組み合わせていずれかの弁の動作特 性を変化させた場合でも、 次の弁が開くまでの間にその変化を打ち消すように電 '動モータの回転を制御することにより、 各弁の動作特性が他の弁の動作特性に影 響を与えないように各弁の動作を制御することができる。 これにより、 各気筒に 関する動作特性の制御の自由度を高く維持できる。 なお、 ここでいう回転速度の 変化は、 回転速度を零に制御すること、 つまり電動モータの回転を停止させるこ とも含む概念である。
本発明の動弁装置の一形態において、 前記電動モータの回転を前記気筒群のそ れぞれの運動変換装置の回転体に伝達する伝達機構をさらに備えてもよレヽ。また、 本発明の動弁装置の一形態においては、 前記気筒群のそれぞれの弁を駆動する際 に発生する駆動トルクを低減するトルク低減機構が前記気筒群に対して共用され るように設けられてもよい。 気筒群間で電動モータを共用した場合、 各気筒の弁 を駆動する際に電動モータの回転抵抗として発生する駆動トルクも共通のトルク 低減機構によって一括的に弱めることができる。 そして、 トルク低減機構を共用 化することにより、 動弁装置の大型化を防止して車両搭載時の制約をさらに緩和 することができる。
前記伝達機構には、 前記気筒群のそれぞれの運動変換装置の回転体を相互に連 結する伝達軸が設けられ、 前記電動モータが前記伝達軸に対して回転伝達可能に 接続されてもよい。 これにより、 電動モータと伝達軸とを接続するだけで複数の 気筒のそれぞれの運動変換装置へ回転運動を等しく伝達することができる。
本発明において、 前記内燃機関は、 外側の一対の気筒間の爆発間隔がクランク 角にして 3 6 0 ° ずれるように爆発順序が設定された等間隔爆発式の直列 4気 筒 4サイクル内燃機関として構成されてもよい。 この場合、 前記電動モータとし て、 前記外側の一対の気筒によって構成される第 1の気筒群のそれぞれの運動変 換装置に対して共用される第 1の電動モータと、 内側の一対の気筒によって構成 される第 2の気筒群のそれぞれの運動変換装置に対して共用される第 2の電動モ ータとが設けられ、 前記伝達機構として、 前記第 1の電動モータの回転運動を前 記第 1の気筒群のそれぞれの運動変換装置の回転体に伝達する第 1の伝達機構と、 前記第 2の電動モータの回転運動を前記第 2の気筒群のそれぞれの運動変換装置 の回転体に伝達する第 2の伝達機構とが設けられることにより、 本発明の一形態 に係る動弁装置を実現することができる。 なお、 この形態において、 4サイクル 式の意義はクランク角が二回転する間に吸入、 圧縮、 膨張、 排気の各行程を順次 実施する運転状態が実現されるものであればよく、 弁の動作特性の制御によりク ランク軸の一回転の間に上述した四行程を実施するいわゆる 2サイクル動作へ切 り替え可能であっても、 4サイクル動作が実現される場合が一部にでも存在する 限りその範疇に含まれるものである。
さらに、 上記の形態において、 前記第 1の伝達機構には前記第 1の気筒群のそ れぞれの運動変換装置の回転体を相互に連結する第 1の伝達軸が、 前記第 2の伝 達機構には前記第 2の気筒群のそれぞれの運動変換装置の回転体を相互に連結す る第 2の伝達軸が設けられ、 前記第 2の伝達軸が前記第 1の伝達軸の外周側に同 軸的に配置され、 前記第 1の電動モータが前記第 1の伝達軸に対して回転伝達可 能に接続され、 前記第 2の電動モータが前記第 2の伝達軸に対して回転伝達可能 に接続されてもよい。 これにより、 第 1の気筒群の気筒が第 2の気筒群によって 相互に離された構成であっても、 第 1の電動モータの回転運動を第 1の気筒群の それぞれの気筒の運動変換装置へ伝達できる。 また、 第 2の気筒群に関してはそ の外周側を第 2の電動モータと接続してこれに回転運動を伝達することができる。 本発明の一形態において、 前記内燃機関は等間隔爆発式の 6気筒 4サイクル内 燃機関として構成されてもよい。 この場合、 爆発間隔がクランク角にして 3 6 0 ° ずれる気筒毎に気筒群が構成され、 各気筒毎に前記電動モータ及び前記伝達 機構が設けられてもよい。 このような形態によれば同一気筒群の各弁の開弁期間 の間に、 いずれも弁も閉じてる期間を十分に確保して本発明を実現することがで きる。 但し、 各弁の作用角によっては、 爆発間隔が 3 6 0 ° よりも小さいクラン ク角だけ離れてレ、る 2以上の気筒同士を同一気筒群に含めてもよい。 4サイクル の意義は上記と同様である。
本発明の動弁装置の一形態においては、 運動変換装置として例えばカム機構を 設け、そのカム機構のカムが運動変換装置の回転体に相当するものとしてもよい。 つまり、 開弁期間が重ならない気筒のそれぞれに設けられた弁駆動用のカムを共 通の電動モータにて駆動することにより、 本発明の一形態に係る動弁装置を実現 することができる。
本発明の一形態において、 動弁装置は、 前記電動モータの回転速度及び回転方 向の少なくともいずれか一方を変化させることにより前記気筒群のそれぞれの弁 の動作特性を制御する制御装置をさらに備えてもよい。 開弁期間が重ならない複 数の気筒によってそれぞれ構成される複数の気筒群の各々に弁駆動源として電動 モータが設けられる場合は、 前記制御装置は各電動モータの回転速度及び回転方 向の少なくともレ、ずれか一方を変化させることにより前記気筒群のそれぞれの弁 の動作特性を制御してもよい。
さらに、 上記の形態において、 動弁装置は、 各電動モータから出力される回転 運動を前記弁の直線運動に変換するカム機構を有し、 前記制御装置は、 前記カム 機構のカムが回転速度を変ィヒさせつつ同一方向に連続的に回転し、 かついずれか の弁のリフト量が最大となるときに当該弁を駆動するカムの回転速度が最大又は 最小となるように前記電動モータを制御してもよい。 この場合、 回転速度の変化 によって弁の作用角を変化させることができる。 しかも、 作用角の変更によって 得られる弁のリフト量の変化に対して、 そのリフト量が最大となるときに回転速 度も最大又は最小となるよう回転速度の変化を制御することにより、 作用角の調 整範囲を最大限に拡大することができる。 なお、 複数の気筒群にそれぞれ対応し て複数の電動モータが設けられる場合に、 制御装置は少なくとも一つの電動モー タを上記のように制御すればよい。
また、 上記の形態において、 動弁装置は前記電動モータから出力される回転運 動を前記弁の直線運動に変換する力ム機構を有し、 前記気筒群は 2つの気筒によ つて構成され、 前記制御装置は、 前記気筒群の一方の気筒にて前記カム機構の力 ムが弁に与え得るリフト量が最大となる位置と、 同一気筒群の他方の気筒にて力 ムが弁に与え得るリフト量が最大となる位置とに挟まれた範囲内で前記電動モー タが揺動し、かつその揺動量が変化するように前記電動モータを制御してもよレ、。 この形態によれば、 カムを揺動させることにより、 各気筒における弁のリフト量 の最大値をカムによって与え得る最大のリフト量又はそれよりも小さい範囲に制 御することができる。 また、 電動モータの摇動量を変ィ匕させることによりリフト 量の最大値を連続的に変化させることができる。 なお、 複数の気筒群にそれぞれ 対応して複数の電動モータが設けられ、 それぞれの気筒群が 2つの気筒によって 構成される場合、 制御装置は各電動モータを上記のように制御してもよい。
上記の形態において、 前記制御装置は、 前記電動モータの揺動中の回転速度を さらに変化させてもよい。 揺動中の回転速度を変化させることにより、 弁の作用 角を連続的に変化させることができる。 これにより、 吸気弁を制御する場合には リフト量及び作用角をいずれも小さく変化させて吸気量を絞るような動作特性を 吸気弁に与え、 それによりスロットル弁のような吸気絞り弁の開度を開けてボン ビングロスを低減させることができる。 なお、 複数の気筒群に対応して複数の電 動モータが設けられる場合、 制御装置は各電動モータの揺動中の回転速度をさら に変化させてもよい。
また、 揺動制御を実施する場合において、 前記制御装置は、 前記気筒群のカム のノーズ部の頂点を挟んだ両側が前記弁の駆動に交替的に使用されるように前記 電動モータを制御してもよレ、。 揺動制御を行う場合にはカムのノーズ部の頂点に 対する一方の側のみで各気筒の弁を開閉させることができるが、 その場合には力 ムの潤滑や摩耗が弁の駆動に利用される側に偏る。 これに対してノーズ部の頂点 に対する両側を交替的に弁の駆動に使用すれば、 潤滑や摩耗の偏りを抑えること ができる。 なお、 ここでいう交替的の意味は、 適宜の周期でノ一ズ部の一方の側 と他方の側とが交互に弁の駆動に使用されればよい趣旨であり、 弁を一回開閉す る毎にカムの両側を交互に使用する場合に限らない。 交替の周期は揺動回数、 時 間等の適宜のパラメータに基づいて定めてよい。 複数の気筒群に対応して複数の 電動モータが設けられる場合、 制御装置は各気筒群のカムが上記のように使用さ れるように各電動モータを制御してもよい。
本発明の動弁装置の一形態において、 前記制御装置は、 内燃機関の減筒運転が 要求された場合、 前記気筒群の一方の気筒の弁が開閉し、 同一気筒群の他方の気 筒の弁が閉状態に保持される範囲内で前記電動モータを揺動させてもよい。 この ような範囲で電動モータを揺動させることにより、 一方の気筒で燃焼を実施しつ つ他方の気筒の燃焼を停止させて減筒運転を実現することができる。 この場合、 機械的な弁停止機構を設ける必要がなく、 動弁装置の構成を簡素化することがで きる。 なお、 開弁期間が重ならない複数の気筒によってそれぞれ構成される複数 の気筒群の各々に前記弁駆動源として電動モータが設けられる形態において、 前 記制御装置は、 内燃機関の減筒運転が要求された場合、 一つの気筒群の一方の気 筒の弁が開閉し、 同一気筒群の他方の気筒の弁が閉状態に保持される範囲内で少 なくとも一^ 3の電動モータを揺動させてもよい。
また、 複数の気筒群の各々に弁駆動源として電動モータが設けられる形態にお いて、 前記制御装置は、 内燃機関の減筒運転が要求された場合、 同一の電動モー タで駆動される全ての弁が閉じる位置にて一部の電動モータを停止させてもよい。 同一気筒群においては各気筒の弁の開弁期間が重ならないので、 いずれの気筒の 弁も閉じている範囲があり、 その範囲内の適当な位置で電動モータを停止させる ことにより当該気筒群のいずれの気筒においても燃焼を停止させることができる。 このような制御を一部の電動モータに対して実施し、 他の電動モータについては 弁を開閉するようにその動作を制御すれば減筒運転が実現される。 また、 上記の形態において、 前記制御装置は、 内燃機関の減筒運転が要求され た場合、 前記弁が閉じた状態に保持される気筒数が全気筒数よりも少ない範囲で 変化するように各電動モータを制御してもよレ、。 上述した形態に関して説明した ように、 電動モータを揺動させ、 あるいは停止させることにより同一気筒群の一 つの気筒のみ、 又は複数の気筒の燃焼を停止させることができる。 このような燃 焼停止制御を適宜に組み合わせることにより、 燃焼停止となる気筒数を全気筒数 よりも少ない範囲で適宜に変化させて内燃機関の減筒運転時の運転状態を柔軟に 制御することができる。
さらに、 上記の形態において、 前記制御装置は、 内燃機関の減筒運転が要求さ れた場合、 前記弁が閉じた状態に保持される気筒数が全気筒数よりも少ない範囲 で変化するように、 かつ前記弁が開閉する気筒にて当該弁のリフト量及ぴ作用角 の少なくともいずれ力一方が変化するように各電動モータを制御してもよい。 こ の場合には、 燃焼停止となる気筒数を全気筒数よりも少ない範囲で適宜に変化さ せるとともに、 燃焼を実施する気筒における弁のリフト量ゃ作用角を変化させる ことにより、 その気筒における吸気効率や排気効率を変化させて内燃機関の運転 状態をさらに柔軟に制御することができる。 例えば吸気弁の作用角やリフト量を 変化させてボンビングロスやエンジンブレーキ力を細かく制御することができる。 図面の簡単な説明
第 1図は本発明の動弁装置の一形態を示す斜視図。 '
第 2 A図は本発明が適用される内燃機関の気筒毎の開弁期間とクランク角との 関係を示す図。
第 2 B図は開弁期間が重ならない第 1の気筒群における開弁期間とクランク角 との関係を示す図。
第 2 C図は開弁期間が重ならない第 2の気筒群における開弁期間とクランク角 との関係を示す図。
第 3図は第 1図の動弁装置の分解斜視図。
第 4図は第 1図の動弁装置の断面図。
第 5図は同一気筒群のカムを重ねて示す図。 第 6図はトルク低減機構を示す図。
第 7図はトルク低減機構に設けられた反位相カムを示す図。
第 8図は第 1図の動弁装置によって実現可能な弁の動作特性の変化を示す図。 第 9図はバルブスプリングによって加えられるパルブスプリングトルクとトル ク低減機構によって加えられる反位相トルクとクランク角との関係を示す図。 第 1 0図は、 第 1図の動弁装置の一形態において、 電動モータの制御装置とし てエンジンコントロールュニットが設けられた例を示す図。
第 1 1図は、 吸気弁の作用角が減少するように電動モータを制御したときの力 ム速度と吸気弁のリフト量とクランク角との関係の一例を示す図。
第 1 2図は吸気弁のリフト量が最大となる位置でカム速度が最大となるように 速度変化の位相を変化させた例を示す図。
第 1 3図はと逆位相で力ム速度を変化させた例を示す図。
第 1 4 A図〜第 1 4 C図はカムを揺動させて 2つの気筒の吸気弁を開閉させる 様子を示す図。
第 1 5図はカムを揺動させて 2つの気筒の吸気弁を開閉させるときのカム角、 カム速度、 及び吸気弁のリフト量とクランク角との関係を示す図。
第 1 6図はカムを揺動させて一方の気筒の吸気弁を開閉させつつ他方の気筒の 吸気弁を閉状態で停止させるときのカム角、 カム速度、 及び吸気弁のリフト量と クランク角との関係を示す図。
第 1 7 A図〜第 1 7 C図は一部の気筒の吸気弁を停止させつつ残りの気筒の吸 気弁を開閉させる場合の停止気筒と動作気筒との組み合わせの例を示す図。 第 1 8図は V型 6気筒の内燃機関に本発明の動弁装置を適用した例を示す図。 第 1 9 A図は第 1 8図の内燃機関において基本作用角が 2 4 0 ° C Aの場合 の各弁のリフト量とクランク角との対応関係を示す図。
第 1 9 B図は第 1 8図の内燃機関において基本作用角が 1 8 0 ° C Aの場合 の各弁のリフト量とクランク角との対応関係を示す図。
第 2 0図は V型 6気筒の内燃機関に本発明の動弁装置を適用した他の例を示す 図。
第 2 1図は直列 6気筒の内燃機関の気筒配置と気筒番号の一例を示す図。 第 2 2 A図は第 2 0図の内燃機関において基本作用角が 2 4 0 ° C Aの場合 の各弁のリフト量とクランク角との対応関係を示す図。
第 2 2 B図は第 2 0図の内燃機関において基本作用角が 1 8 0 ° C Aの場合 の各弁のリフト量とクランク角との対応関係を示す図。 発明を実施するための最良の形態
第 1図は本発明をレシプロ型の 4サイクル内燃機関に適用した一形態を示して いる。 内燃機関 1 Aは 4つの気筒 2がー列に配置された直列 4気筒型である。 第 1図では各気筒 2をそれらの並び方向一端から他端側に向かって # 1〜# 4の番 号を付して区別している。 一般に直列 4気筒の 4サイクル内燃機関 1 Aでは、 外 側の一対の気筒 (# 1、 # 4 ) 2の爆発間隔が 3 6 0 ° C A (クランク角を意味 する。 以下同じ。) ずらされ、 内側の一対の気筒 (# 2、 # 3 ) の爆発時期が # 1 の気筒 2の爆発時期を基準として 1 8 0° C A、 5 4 0 ° C Aずらされることに より 1 8 0 ° C A毎の等間隔爆発が実現されている。 なお、 # 2の気筒 2と # 3 の気筒 2との爆発時期の前後は適宜に定めてよいが、 ここでは # 3の気筒 2の爆 発時期が # 2の気筒 2の爆発時期よりも先として説明する。 従って、 内燃機関 1 Aにおける爆発順序は # 1→# 3→# 4→# 2となる。
各気筒 2には 2本の吸気弁 3が設けられている。 排気弁については図示を省略 している。 吸気弁 3は動弁装置 1 0によって開閉駆動される。 周知のように、 吸 気弁 3はそのステム 3 aが不図示のシリンダへッドのステムガイドに通されるこ とによりステム 3 aの軸線方向に往復運動可能に設けられている。 第 4図に示し たように吸気弁 3の上端にはバルプリフタ一 4が吸気弁 3と一体的に往復運動可 能に取り付けられている。 そのパルブリフタ一 4とシリンダへッドとの間にはバ ルブスプリング 5が装着される。 吸気弁 3はバルブスプリング 5の圧縮に対する 反発力によってパルプフェース 3 bが吸気ポートのパルプシートに密着する方向 (閉弁方向) に付勢されている。 動弁装置 1 0はそのバルブスプリングの力に抗 して吸気弁 3を開弁方向に駆動する。
第 2 A図は各気筒 2の吸気弁 3のリフト量 (閉弁状態を基準としたときの開弁 方向への変位量) とクランク角との対応関係を示している。 各吸気弁 3の作用角 (開弁している期間をクランク角で表わした値) は内燃機関 1 Aの仕様によって 適宜に調整され、 また可変動弁機構を備えた動弁装置では内燃機関 1 Aの運転状 態によっても作用角は変化するが、 一般的には吸気弁 3の作用角は 2 4 0 ° C A 程度に設定される。 このような作用角の設定によれば、 第 2 B図に示したように 外側の一対の気筒 (# 1、 # 4 ) 間では吸気弁の開弁期間が互いに重ならず、 第 2 C図に示したように内側の一対の気筒 (# 2、 # 3 )
間では吸気弁の開弁期間が互いに重ならない。 そこで、 第 1図に示すように、 本 形態の動弁装置 1 0では、 外側の一対の気筒 2を第 1の気筒群、 内側の一対の気 筒 2を第 2の気筒群としてそれぞれ区別し、 気筒群毎に弁駆動源として第 1の電 動モータ 1 1及ぴ第 2の電動モータ 1 2を設けている。
第 3図及ぴ第 4図は動弁装置 1 0の詳細を示している。 これらの図に示すよう に、 動弁装置 1 0は、 上述した電動モータ 1 1、 1 2の他に、 吸気弁 3毎に設け られた運動変換装置としてのカム機構 1 3と、 電動モータ 1 1、 1 2の回転運動 を対応する気筒群の力ム機構 1 3にそれぞれ伝達する第 1及び第 2の伝達機構 1 4、 1 5とを備えている。 カム機構 1 3は全て同一構成である。 カム機構 1 3は 回転体としてのカム 1 6を有し、 そのカム 1 6により吸気弁 3の上端のバルブリ フタ一 4を押し込んで吸気弁 3を開弁方向に駆動する。 つまり、 バルプリフタ一 4はカム 1 6に対する従動節として機能する。カム 1 6の外周のプロファイルは、 第 5図に示したようにベース円 1 6 aの一部にこれを膨らませたノーズ部 1 6 b が設けられた周知の形状に設定される。 ノーズ部 1 6 bによりパルブリフタ一 4 が押し込まれる。
第 1の伝達機構 1 4は、 外側の気筒 (# 1及び # 4 ) のそれぞれのカム 1 6を 相互に連結するカムシャフト (第 1の伝達軸) 1 7と、 そのカムシャフト 1 7に 対して電動モータ 1 1の回転を伝達する減速機構 1 8とを有している。 減速機構 1 8は電動モータ 1 1の出力軸 1 1 aに組み合わされるモータギア 1 9と、 カム シャフト 1 7の一端に一体回転可能に取り付けられてモータギア 1 9と嚙み合う ドリブンギア 2 0とを有している。 カムシャフト 1 7は # 1気筒のカム 1 6を駆 動する第 1軸部 2 1と、 # 4気筒のカム 1 6を駆動する第 2軸部 2 2とを組み合 わせた連結構造を有している。 第 1軸部 2 1には # 2気筒、 及び # 3気筒の上方 を通過して # 4気筒まで延びる連結軸部 2 3が同軸かつ一体に形成されている。 その連結軸部 2 3の先端の軸継部 2 4が第 2軸部 2 2の軸継穴 2 5に同軸的に嵌 ることにより両軸部 2 1、 2 2が同軸的に連結される。 軸継部 2 4と軸継穴 2 5 との間にはスプライン等の回り止め手段が施され、 それにより第 1軸部 2 1と第 2軸部 2 2とは一体回転可能に連結される。 なお、 連結軸部 2 3は第 1軸部 2 1 及ぴ第 2軸部 2 2よりも小径である。 カム 1 6は第 1軸部 2 1及び第 2軸部 2 2 に対して一体に形成されているが、 カム 1 6をこれらの軸部 2 1、 2 2とは別部 品として形成して軸部 2 1、 2 2に圧入、 焼きばめ等の固定手段を利用して固定 してもよい。
一方、 第 2の伝達機構 1 5は、 内側の気筒 ( # 2及び # 3 ) のそれぞれの力ム 1 6を相互に連結するカムシャフト (第 2の伝達軸) 3 0と、 そのカムシャフト 3 0に対して電動モータ 1 2の回転を伝達する減速機構 3 1とを有している。 減 速機構 3 1は電動モータ 1 2の出力軸 1 2 aに組み合わされるモータギア 3 2と、 そのモータギア 3 2と嚙み合う中間ギア 3 3と、 カムシャフト 3◦の中間部に一 体回転可能に設けられて中間ギア 3 3と嚙み合うドリブンギア 3 4とを有してい る。 カムシャフト 3 0は軸方向に延びる貫通孔 3 0 aを備えた中空軸状に形成さ れ、 その外周にカム 1 6がー体に形成されている。 カムシャフト 3 0の貫通孔 3 0 aにはカムシャフト 1 7の連結軸部 2 3が回転自在に揷入される。 これにより カムシャフト 3 0はカムシャフト 1 7の外周に回転自在な状態で同軸的に配置さ れる。 なお、 カムシャフト 3 0の外径はカムシャフト 1 7の第 1軸部 2 1及ぴ第 2軸部 2 2の外径と同じである。 カム 1 6はカムシャフト 3 0とは別部品として 形成してカムシャフト 3 0に圧入、 焼きばめ等の固定手段を利用して固定しても よい。 ドリブンギア 3 4についても同様である。
同一気筒群における一の気筒(# 1又は # 3 )のカム 1 6と、他の一の気筒(# 4又は # 2 ) のカム 1 6とはそれぞれのノーズ部 1 6 bの項点 1 6 cが周方向に 互いに 1 8 0 ° ずれるようにしてカムシャフト 1 7又は 3 0に連結されている。 これらの 2気筒間では吸気弁 3の開弁時期が 3 6 0 ° C Aずれるためである。 こ の結果、 第 5図から明らかなようにカムシャフト 1 7、 3 0のそれぞれの周方向 に関して、 カム 1 6のノーズ部 1 6 bが重複しない範囲 Xが生じる。 なお、 ベー ス円 1 6 aの直径はパルプリフタ一 4との間に適当な隙間(バルブクリアランス) が生じるように設定される。 なお、 カム機構 1 3をクランクケース側に設けてそ こで得られた直線運動をプッシュ口ッド等の運動伝達部材により吸気弁 3に伝達 するようにしてもよい。 つまり、 内燃機関 1 Aは OH C形式に限らず、 OHV形 式でもよい。
伝達機構 1 4、 1 5にはそれぞれトルク低減機構 4 0が設けられている。 第 6 図に詳しく示したように、 トルク低減機構 4 0は、 反位相力ム 4 1と、 その反位 相カム 4 1の外周に摩擦による負荷を加えるトルク負荷装置 4 2とを備えている。 なお、 第 6図は # 2気筒及び # 3気筒用のトルク低減機構 4 0を示すが、 # 1気 筒及ぴ# 4気筒用のトルク低減機構 4 0も同一構成である。 反位相カム 4 1は力 ムシャフト 1 7の第 2軸部 2 2の端部、 及ぴカムシャフト 3 0の端部にそれぞれ 一体回転可能に設けられている。 反位相カム 4 1はこれらのシャフト 1 7、 3 0 に対して一体成形されてもよいし、 シャフト 1 7、 3 0に対して別部品として形 成されて圧入、 焼きばめ等の固定手段によりシャフト 1 7、 3 0に固定されても よい。 反位相カム 4 1の外周面はカム面として構成されている。 そのカム面のプ 口ファイルは第 7図に示すようにベース円 4 1 aの一部に一対の凹部 4 1 bを設 けた形状に設定される。 凹部 4 1 bはそれらの底 4 1 cが周方向に 1 8 0 ° 離れ るように設けられている。
第 6図に戻って、 トルク負荷装置 4 2は反位相カム 4 1の外周面と対向して配 置されたリフタ 4 3と、 そのリフタ 4 3の外側に配置されたばね受け 4 4と、 リ フタ 4 3とばね受け 4 4との間に装着されてリフタ 4 3を反位相カム 4 1に向か つて付勢するコイルスプリング 4 5とを備えている。 リフタ 4 3の先端にはロー ラ 4 6が回転自在に取り付けられ、 このローラ 4 6がコイルスプリング 4 5の反 発力で反位相カム 4 1の外周面に押し付けられている。
カムシャフト 1 7の反位相カム 4 1に対応するリフタ 4 3は、 その反位相力ム 4 1に設けられた一方の凹部 4 1 bの底 4 1 cにローラ 4 6が接したときにその カムシャフト 1 7に設けられた # 1気筒用のカム 1 6のノーズ部 1 6 bの頂点 1 6。が# 1気筒用のパルプリフタ一 4に接し、 他方の凹部 4 1 bの底 4 1 cに口 ーラ 4 6が接したときにそのカムシャフト 1 7に設けられた # 4気筒用のカム 1 6のノーズ部 1 6 bの頂点 1 6 じが# 3気筒用のバルブリフタ一 4の凹部 4 1 b の底 4 1 cに接するようにカムシャフト 1 7の周方向に関して位置決めされてい る。 また、 カムシャフト 3 0の反位相カム 4 1に対応するリフタ 4 3は、 その反 位相カム 4 1に設けられた一方の凹部 4 1 bの底 4 1 cにローラ 4 6が接したと きにそのカムシャフト 3 0に設けられた # 3気筒用のカム 1 6のノーズ部 1 6 b の頂点 1 6 cが # 3気筒用のパルブリフタ一 4に接し、 他方の凹部 4 1 bの底 4 1 cにローラ 4 6が接したときにそのカムシャフト 3 0に設けられた # 2気筒用 のカム 1 6のノーズ部 1 6 bの頂点 1 6。が# 2気筒用のバルプリフタ一 4の凹 部 4 1 bの底 4 1 cに接するようにカムシャフト 3 0の周方向に関して位置決め されている。
以上のように構成された動弁装置 1 0によれば、 電動モータ 1 1、 1 2により それぞれのカムシャフト 1 7、 3 0を内燃機関 1 Aのクランク軸の回転速度の半 分の速度(以下、 これを基本速度と呼ぶ。)で一方向に連続的に駆動することによ り、 クランク軸からの動力で弁を駆動する一般的な機械式の動弁装置と同様にク ランク軸の回転に同期して吸気弁 3を開閉駆動することができる。
また、動弁装置 1 0によれば、電動モータ 1 1、 1 2によるカムシャフト 1 7、 3 0の回転速度を基本速度から変化させることにより、 クランク角とカム 1 6の 位相との相対関係を変化させて吸気弁 3の動作特性を第 8図の A〜Gに示すよう に様々に変化させることができる。 なお、 第 8図の 「リフト形状」 の実線はカム シャフト 1 7、 3 0を基本速度で連続回転させた場合の吸気弁 3の動作特性を、 仮想線は電動モータ 1 1、 1 2の速度制御によって実現される変更後の吸気弁 3 の動作特性をそれぞれ示している。 リフト形状の横軸はクランク角、 縦軸はリフ ト量をそれぞれ示している。
まず、 第 8図の Aの動作特性の変化は、 吸気弁 3が閉じている間にカムシャフ ト 1 7、 3 0を基本速度に対して加速又は減速してクランク角とカム 1 6の位相 との相対関係を変化させることにより実現することができる。 吸気弁 3が開弁し ている間にカムシャフト 1 7、 3 0を基本速度に対して加速又は減速すれば第 8 図の Cのように作用角を変化させることができる。
また、 第 8図の Bは、 吸気弁 3のリフト量を最大リフト量、 すなわち、 ノーズ 部 1 6 bの頂点 1 6 cがバルブリフタ一 4と接する位置で得られる吸気弁 3のリ フト量よりも小さく制限した例である。 このようなリフト量の変化はカム 1 6が 吸気弁 3を開く途中で電動モータ 1 1、 1 2を停止させ、 その後にモータ 1 1、 1 2を逆方向に回転させることにより実現される。 この場合はカム 1 6の正転駆 動によつて吸気弁 3を押し開き、 ノーズ部 1 6 bの頂点 1 6 cがバルブリフター 4に達する前にカム 1 6を逆転駆動して吸気弁 3を閉弁方向に戻すことになる。 吸気弁 3の作用角はモータ 1 1、 1 2の正転速度及び逆転速度によつて適宜に変 化させることができるので、 第 8図の Dに示すように作用角を変化させることな くリフト量のみを変化させることもできる。
第 8図の Eは、 カムシャフト 1 7、 3 0を一方向に連続回転させつつその回転 速度を吸気弁 3が開いている途中で加速し、 その加速に伴って生じたクランク角 とカム 1 6との位相のずれを打ち消すように吸気弁 3が閉じている途中の力ムシ ャフト 1 7、 3 0の回転速度を減速することにより、 吸気弁 3の作用角を同一に 維持しつつリフト速度を変化させた例である。 第 8図 Eの動作特性を与えること により、 吸気弁 3を素早く開いて吸入効率を向上させ、 力つ、 吸気弁 3を閉じる ときにはその速度を遅くして着座時 (吸気弁 3がバルブシートに接する時) の衝 撃を和らげることができる。
第 8図の Fは、 カムシャフト 1 7、 3 0を基本速度に対して 2倍、 つまりクラ ンク軸と等しい回転速度で駆動することにより吸気弁 3を一回開閉させるべき期 間に吸気弁 3を 2回に分けて開閉させて内燃機関 1 Aの動作サイクルを 4サイク ルから 2サイクルへと切り替えた例である。 さらに、 第 8図の Gは内燃機関 1 A にて成層燃焼が実施されている場合に、 これに対応して吸気弁 3を早期に開くよ うにした例である。 伹し、 吸気弁 3を開け始めてから暫くの間はリフト量を小さ く維持している。 このような動作特性は、 吸気弁 3が閉じている間にカムシャフ ト 1 7、 3 0の速度を基本速度よりも高めて吸気弁 3の開弁時期を早めた後、 力 ムシャフト 1 7、 3 0の回転速度を微速まで低下させる力又はカムシャフト 1 7、 3 0を一時停止させてリフト量の増加を抑え、 この状態を所定期間継続した後に カムシャフト 1 7、 3 0を増速してリフト量を増加させることにより実現される。 さらに、 表の Hはカムシャフト 1 7、 3 0を停止させて吸気弁 3を閉じた状態に 維持する例である。 なお、 ノーズ部 1 6 bがパルプリフタ一 4を押している状態 でカムシャフト 1 7、 3 0を停止することにより吸気弁 3を開放状態に維持する こともできる。
このように、 本形態の動弁装置 1 0によれば、 電動モータ 1 1、 1 2による力 ムシャフト 1 7、 3 0の駆動速度の制御によつて吸気弁 3に様々な動作特性を与 えることができる。 しかも、 カムシャフト 1 7、 3 0の周囲には上述したように ノーズ部 1 6 bが重ならない範囲 Xが生じているので電動モータ 1 1によって駆 動される # 1気筒及び # 4気筒間において吸気弁 3の開弁期間が重ならず、 電動 モータ 1 2によって駆動される # 2気筒及び # 3気筒間においても吸気弁 3の開 弁期間が重ならない。 このため、 例えば電動モータ 1 1の速度制御によって # 1 気筒又は # 4気筒の!/、ずれか一方の気筒の吸気弁 3の動作特性を変化させた結果 として、 クランク角とカム 1 6の位相との相対関係がカムシャフト 1 7、 3 0を 基本速度で連続駆動した場合の当該関係からずれたとしても、 そのカムシャフト 1 7の範囲 Xがバルブリフタ一 4側に向けられている間、 つまり # 1気筒及び # 4気筒のそれぞれの力ムシャフト 1 7の全てのカム 1 6のベース円 1 6 aがバノレ プリフタ一 4上を通過している間に上記の相対関係のずれを打ち消すように電動 モータ 1 1の速度を調整すれば、 一方の気筒における吸気弁 3の動作特性の変化 が他方の気筒における吸気弁 3の動作特性に与える影響をなくし、 他方の気筒の 吸気弁 3の動作特性を任意に制御できるようになる。 # 2気筒及び # 3気筒の間 についても同様である。
ちなみに、全ての気筒 2のカム 1 6を共通の電動モータにて駆動した場合には、 上述した範囲 Xが存在せず、 各吸気弁 3の開弁期間が他の吸気弁 3の開弁期間と 必ず重複するために、 各吸気弁 3の作用角を変化させることができないし、 カム シャフト 1 7、 3 0の逆転駆動も不可能である。 従って、 第 8図の A及び E以外 についてはこれらを実現することができなレ、。 従って、 動弁装置 1 0によれば、 全ての気筒 2の吸気弁 3を同一の電動モータで駆動する構成と比して吸気弁 3の 動作特性の自由度を高めることができる。 しかも、 気筒毎に電動モータを設ける 場合と比べてモータ数が減少するので動弁装置 1 0を小型ィ匕でき、 部品点数も減 るのでコスト面でも有利である。 さらに、 本形態の動弁装置 1 0においては、 伝達機構 1 4、 1 5のそれぞれに トルク低減機構 4 0が設けられているので、 電動モータ 1 1、 1 2に加わる駆動 トルクを低減して電動モータ 1 1、 1 2に要求される定格トルクを小さくでき、 これにより電動モータ 1 1、 1 2を小型ィ匕して動弁装置 1 0をよりコンパクトに 構成することができる。 第 9図はパルプスプリング 5によってカムシャフト 1 7 又は 3 0に与えられるバルブスプリングトルク (実線) と、 トルク低減機構 4 0 によってカムシャフト 1 7又は 3 0に与えられる反位相トルク (破線) とクラン ク角との関係を示している。 伹し、 横軸はトルク = 0を示し、 カム 1 6の正転方 向と反対方向に負荷されるトルクを正 (+) に、 カム 1 6の正転方向に負荷され るトルクを負 (一) でそれぞれ表している。 また、 第 9図はカムシャフト 1 7、 3 0を基本速度で正転方向に連続的に駆動している場合の例である。
まず、 第 9図に実線で示すように、 パルブスプリングトルクはカム 1 6が吸気 弁 3に対して最大リフト量を与える位置でほぼ 0であり、 最大リフト量を与える 位置よりも前、 つまり吸気弁 3が開いている途中はバルブスプリング 5の反発力 がカム 1 6を逆転方向に押し戻すように作用するために正の値、 最大リフト量を 与える位置よりも後、 つまり吸気弁 3が閉じている途中はパルブスプリング 5の 反発力がカム 1 6を正転方向に押し進めるように作用するために負の値となる。 一方、 第 9図に破線で示すように、 反位相トルクについては最大リフト位置でほ ぼ 0であり、 それよりも前の位置では負の値、 最大リフト量を与える位置よりも 後の位置では正の値となる。 吸気弁 3が開いている途中ではリフタ 4 3が凹部 4 1 b内を底 4 1 cに向かって進み、 コイルスプリング 4 5の反発力がリフタ 4 3 を介して反位相カム 4 1を正転方向に進めるように作用し、 吸気弁 3が閉じてい る途中ではリフタ 4 3が凹部 4 1 b内を底 4 1 cから離れるように移動し、 コィ ルスプリング 4 5の反発力がリフタ 4 3を介して反位相カム 4 1を逆転方向に押 し戻すように作用するためである。
このように、 カム 1 6側からカムシャフト 1 7、 3 0に負荷されるバルブスプ リングトルク、 すなわちバルブスプリング 5からバルブリフター 4及びカム 1 6 を介してカムシャフト 1 7、 3 0に負荷されるトルクと、 反位相カム 4 1側から カムシャフト 1 7、 3 0に負荷される反位相トルク、 すなわちトルク負荷装置 4 2のコイルスプリング 4 5からリフタ 4 3及び反位相カム 4 1を介してカムシャ フト 1 7、 3 0に負荷されるトルクとは互いに逆向きに作用して互いに打ち消し 合うようになる。 これらのパルブスプリングトルクと反位相トルクとを合成した トルクが電動モータ 1 1、 1 2に駆動トルクとして負荷されることにより、 電動 モータ 1 1、 1 2に負荷される駆動トルクが低減され、 その結果、 電動モータ 1
1、 1 2に要求される定格トルクを減少させてそれらの小型ィ匕を図ることができ る。 し力も、 反位相カム 4 1はカムシャフト 1 7、 3 0毎に設けられており、 一 つの反位相カム 4 1が二つの気筒 2に対して共用されているので、 気筒 2毎に反 位相カムを設ける場合と比べてトルク低減機構も小型ィ匕され、 それにより動弁装 置 1 0をさらにコンパクトに構成することができる。 なお、 上記ではカムシャフ ト 1 7、 3 0を基本速度で連続回転させる場合について説明したが、 速度や回転 方向を変化させた場合でもパルブスプリングトルクと反位相トルクとの関係は互 いに逆位相となり、 駆動トルクの低減効果が同様に発揮される。 なお、 上記では 反位相トルクにて打ち消すべき対象としてパルブスプリングトルクのみを考慮し たが、 カム 1 6等の慣性によって生じるトルクをさらに考慮して反位相トルクを 設定してもよい。
次に、 第 1 0図〜第 1 7 C図を参照して電動モータ 1 1、 1 2の制御をより詳 細に説明する。 なお、 以下では、 第 1 0図に示すように電動モータ 1 1、 1 2の 動作が電子制御ユニット (E C U) 6によって制御されるものとして説明する。 電子制御ュ-ット 6はマイク口プロセッサ及びその動作に必要なメモリ等の周辺 部品を備えたコンピュータュニットである。 電子制御ュ-ット 6は電動モータ 1 1、 1 2の制御のための専用ユニットとして設けられてもよいし、 他の用途と兼 用されるユエット (例えばエンジンコントロールユニット) として設けられても よい。 第 1 0図において E C U 6以外の構成は第 1図と同じである。
また、 以下では第 1の気筒群 (# 1気筒及び # 4気筒) に対応する電動モータ 1 1の制御について説明するが、特に断りのない限り第 2の気筒群(# 2、 # 3 ) に対応する電動モータ 1 2についても同様の制御が実行可能である。 さらに、 以 下の説明では、 カム 1 6及びカムシャフト 1 7を上述した基本速度で一方向に連 続的に駆動したときに、 # 1気筒及ぴ# 4気筒の吸気弁 3が第 2 B図に示したよ うに 3 6 0 ° C A間隔で開閉し、 かつそれぞれの吸気弁 3の作用角が 2 4 0 ° C A (以下、 これを基本作用角と呼ぶ。) になるものと仮定し、 この状態を基準とし てリフト量や作用角の変化を説明する。 つまり、 吸気弁 3の作用角が 2 4 0 ° C Aとなるようにカム 1 6のプロファイルが設計されているものとする。第 1 1図、 第 1 2図、 第 1 5図及び第 1 6図に破線で示すリフト量の波形はいずれもカム速 度を上述した基本速度に固定したときのものである。 図中においてクランク角の C Aの表記は省略している。
[可変作用角制御等]
E C U 6は、 カムシャフト 1 7が同一方向に連続的に回転し力つその回転速度 が適宜に変化するように電動モータ 1 1の回転を制御して、 吸気弁 3の作用角や リフト量の変ィヒ特 1·生を変更することができる。 その一例を第 1 1図に示す。 第 1 1図はカムシャフト 1 7を一定方向に連続的に回転させて吸気弁 3を開閉駆動す る間に、 電動モータ 1 1の出力軸 1 1 aの回転速度を 3 6 0 ° C A周期で変ィ匕さ せて吸気弁 3の作用角を変化させたときのカム速度 (カム 1 6の回転速度) 及び 吸気弁 3のリフト量とクランク角との関係を示している。 この例では、 吸気弁 3 が開いている間にカム速度が最大となるようにカム速度を 3 6 0 ° C A周期で 変化させている。 しかも、 吸気弁 3が開き始める時期 t 1から閉じる時期 t 2ま での間において、 カム速度が基本速度よりも高い範囲 S 1の面積が、 カム速度が 基本速度よりも小さい範囲 S 2の面積よりも大きくなるようにカム速度を変ィ匕さ せている。 これにより、 吸気弁 3の作用角が基本作用角よりも減少する。 なお、 力ム速度が最大となる位置は力ム速度を基本速度に固定したときに吸気弁 3のリ フト量が最大となる位置に合わせてある。 また、 カム速度の一周期の波形はカム 速度が最大となる位置を軸として左右対称である。
第 1 2図は、 カム 1 6のノーズ頂点 1 6 cがパルプリフタ一 4に乗り上げて吸 気弁 3のリフト量が最大リフト量となる位置 (最大リフト位置) でカム速度が最 大となるように第 1 1図のカム速度変ィ匕の位相を変化させた例を示している。 こ のような位相変化を与えることにより、 第 1 1図の範囲 S 2がより小さくなるか 又は消滅する。 このため、 基本作用角に対する作用角の減少量が拡大する。 範囲 S 2が消滅するように制御すれば減少量を最も大きくとることができる。 第 1 3図の例では、 吸気弁 3が開いている間にカム速度が最小となるように力 ム速度を 3 6 0 ° C A周期で変化させている。 つまり、 第 1 1図のカム速度の変 化に対して基本速度を軸として上下方向に対称的にカム速度を変化させている。 従って、 吸気弁 3が開き始める時期 t 1から閉じる時期 t 2までの間において、 カム速度が基本速度よりも高い範囲 S 1の面積が、 カム速度が基本速度よりも小 さい範囲 S 2の面積よりも小さくなる。 これにより、 吸気弁 3の作用角が基本作 用角よりも増加する。 なお、 第 1 3図の例においてさらにカム速度の最小値が吸 気弁 3の最大リフト位置と一致するようにカム速度変ィヒの位相を変化させてもよ い。 このようにすれば、 基本作用角に対する作用角の増加量を拡大することがで きる。
以上の他にも、 例えば吸気弁 3のリフト量が増カ卩している間にカム速度を加速 し、 リフト量が減少している間にカム速度を減速することにより、 作用角を基本 作用角に一致させるか、 又は両者の差を抑えつつリフト量変化の波形を最大リフ ト位置の前後で非対称に設定することができる。 以上の動作制御を 3 6 0 ° C A 周期で行うことにより、 # 1気筒及び # 4気筒のそれぞれに設けられた吸気弁 3 の作用角又はリフト特性を変化させることができる。 カム速度の変化が 3 6 0 ° C A周期であるため、 一方の気筒における吸気弁 3の動作特性の変化が他方の気 筒における吸気弁 3の動作特性の変化に影響を与えることもなレ、。
[可変リフト制御]
E C U 6は吸気弁 3が開いている間にカム 1 6の回転方向が切り替わるように 電動モータ 1 1の出力軸 1 1 aを揺動させること、 つまり適当な回転角毎に出力 軸 1 1 aの回転方向を交互に切り替えることにより、 吸気弁 3のリフト量の最大 値を変化させることができる。 この場合のカム 1 6の動作の一例を第 1 4 A図〜 第 1 4 C図に示す。 なお、 第 1 4 A図〜第 1 4 C図では # 1気筒のカム 1 6及び バルブリフター 4を実線で、 # 4のカム 1 6及ぴパルプリフター 4を破線でそれ ぞれ示している。 揺動制御時には、 例えば第 1 4 A図に矢印 Aで示す方向にカム 1 6を回転させて # 1気筒のカム 1 6のノーズ部 1 6 bでバルプリフタ一 4を押 し下げ、 そのカム 1 6のノーズ頂点 1 6 cがパルプリフタ一 4に達する前にカム 1 6の回転方向を矢印 B方向に反転させる。 その後、 第 1 4 B図に示すようにバ ルブリフタ一 4上を図 5の範囲 Xが通過するようにカム 1 6の回転方向を維持す る。 この後もカム 1 6の回転方向を維持して第 1 4 C図に示すように # 4気筒の カム 1 6のノーズ部 1 6 bで # 4気筒のパルブリフタ一 4を押し下げる。そして、 # 4気筒のカム 1 6のノーズ頂点 1 6 cがバルブリフタ一 4に達する前にカム 1 6の回転方向を矢印 A方向に再度反転させる。 このような揺動運動を繰り返すこ とにより、 # 1及ぴ # 4気筒のそれぞれの吸気弁 3のリフト量の最大値を最大リ フト量よりも小さく制限しつつ各気筒の吸気弁 3を順次開閉駆動させることがで さる。
第 1 5図は上述した揺動制御を実施した場合のカムの回転角(カム角)、カム速 度、 及び吸気弁 3のリフト量とクランク角との対応関係の一例を示す。 なお、 力 ム角はベース円 1 6 aの中心及びノース'頂点 1 6 cを通過する直線とベース円 1 6 aとの交点がパルプリフタ一 4と向かい合つている状態を基準として、 # 1気 筒のカム 1 6のノーズ部 1 6 bがバルブリフタ一 4を押し下げる方向に回転する 場合、 つまり第 1 4図の矢印 A方向を正にとつている。 カム速度の正負について も同様である。
第 1 5図の例では、 # 1気筒のカム 1 6のベース円 1 6 aがバルブリフタ一 4 と対向している間 (クランク角が 0 ° C A〜6 0 ° C Aの間) にカム 1 6を加速 し、 そのノーズ部 1 6 bがバルブリフター 4を押し始めた時点、 つまり吸気弁 3 がリフトを開始した時点から暫くの間は基本速度でカム 1 6を回転させている (第 1 4 A図の矢印 A方向の回転に対応)。その後、吸気弁 3がリフトしている途 中でカム 1 6の減速を開始し、 その後にカムを一旦停止させ (第 1 5図において カム速度 = 0となり、 # 1気筒のリフト量が最大となる位置)、 さらにカム 1 6の 回転方向を逆転させている。 逆転開始後は基本速度までカム速度を増速し、 吸気 弁 3が閉じるまでその回転速度を維持している (第 1 4 A図の矢印 B方向の回転 に対応)。 このような制御によりカム角が 1 8 0 ° よりも小さい範囲でカム 1 6 が摇動し、 # 1気筒の吸気弁 3のリフト量の最大値が最大リフト量よりも小さく 制限される。
摇動制御時における吸気弁 3のリフト量の最大値は、 カム 1 6を揺動させる範 囲を変えることによって適宜に変化させることができる。 第 1 5図において吸気 弁 3のリフト開始時から力ム速度 = 0となるまでのカム 1 6の回転角度 (揺動量) が大きいほどリフト量の最大値が増加し、 反対に揺動量が小さいほどリフト量の 最大値が減少する。 揺動範囲は # 1及び # 4気筒のそれぞれにおける最大リフト 位置、 つまり # 1気筒及び # 4気筒のそれぞれのカム 1 6のノーズ頂点 1 6 cが バルブリフタ一 4に乗り上げる位置に挟まれた範囲内で適宜に調整してよい。 一方、 摇動制御時の吸気弁 3の作用角は、 摇動中のカム 1 6の回転速度を調整 することにより、 基本作用角に対して大小いずれの側にも適宜に変ィ匕させること ができる。 第 1 5図の例では基本作用角よりも小さく制御している。 リフト量を 最大リフト量よりも小さく制限した場合には、 これに併せて作用角を基本作用角 よりも小さく制御することにより、 吸気弁 3のバルブ開口面積 (リフト量を示す 波形とクランク角を示す横軸とで囲まれた部分の面積) を小さくして吸気量を制 限することができる。内燃機関 1 Aの低負荷低回転時にこのような制御を行えば、 内燃機関 1 Aの吸気系に設けられるスロットル弁の開度を増加させてボンビング 口スを低減することができる。
# 1気筒の吸気弁 3の作用角を基本作用角に対して変化させた場合、 # 4気筒 の吸気弁 3のリフト開始までカム速度を基本速度に保持すると、 作用角が変化し た影響で # 4気筒の吸気弁 3のリフト開始時期が本来予定していた時期、 つまり # 1気筒の吸気弁 3のリフト開始位置から 3 6 0 ° C A離れた時期からずれる。 そのため、 第 1 5図では # 1気筒の吸気弁 3のリフト終了後、 # 4気筒の吸気弁 3のリフト開始までの間にカム速度を基本速度に対してー且減速して # 4気筒の 吸気弁 3のリフト開始位置を 4 2 0 ° C Aに一致させている。 # 4気筒の吸気弁 3のリフト開始後におけるカム 1 6の速度制御は、 # 1気筒のときと回転方向が 異なるのみで速度の値は同じである。
第 1 5図の例では各気筒に設けられたカム 1 6のノーズ頂点 1 6 cに対する一 方の側のみを利用して吸気弁 3を開閉制御している。 カム 1 6とバルプリフタ一 4との間の潤滑の偏りやカム 1 6の摩耗を均等に進行させるためにはカム 1 6の ノーズ頂点 1 6 cを挟んだ両側 (第 1 4 A図の C 1、 C 2 ) が吸気弁 3の駆動に 利用されるように適当な期間毎にカム 1 6の揺動範囲を切り替えてもよい。 切り 替えの周期は時間、 揺動回数等のパラメータによって定めてよレ、。 但し、 切り替 えを行う際にはカム 1 6のノーズ頂点 1 6 cがバルブリフタ一 4を乗り越える必 要がある。 電動モータ 1 1の揺動制御と、 電動モータ 1 1を一方向に連続回転さ せる制御とを内燃機関 1 Aの運転状態に応じて使い分けるような場合、 例えば低 負荷低回転時には電動モータ 1 1によりカム 1 6を揺動させ、 高負荷高回転時に は電動モータ 1 1によりカム 1 6を一定方向に連続回転させる場合には、 その連 続回転を挟んだ前後で力ム 1 6の使用範囲を切り替えることができる。
[減筒運転制御]
内燃機関の減速運転時や低負荷運転時等には、 一部の気筒の吸気弁を閉状態で 停止させることにより、 当該気筒における燃焼を停止させる減筒運転が要求され ることがある。 クランク軸の回転を弁に伝える機械式の動弁装置においてそのよ うな減筒運転を実現するためには特殊な弁停止機構が必要とされる。 しかしなが ら、 本形態の動弁装置 1 0によれば、 同一の電動モータ 1 1、 1 2にてそれぞれ 駆動されるカム 1 6の組に上述した範囲 Xが存在するため、 E C U 6によって電 動モータ 1 1、 1 2の揺動又は停止させることにより容易に減筒運転を実現する ことができる。 以下、 幾つかの例を説明する。
第 1 6図は電動モータ 1 1の揺動を利用して # 4気筒の燃焼を停止させる例で ある。 この例では、 # 1気筒の吸気弁 3のリフト終了までは第 1 5図と同様に力 ム速度及びカム角が制御される。 # 1気筒の吸気弁 3のリフト終了後はカム 1 6 を減速し、 # 1気筒に関する電動モータ 1 1の制御周期の終点 (3 6 0 ° C A) でカム 1 6を停止させる。 この時点ではカム角 = 0であり、 # 1気筒及び # 4気 筒のカム 1 6はいずれもベース円 1 6 a力バルブリフタ一 4と対向した位置にあ る。 この状態から # 4気筒に関する電動モータ 1 1の制御周期の終点 (7 2 0 ° C A) までカム 1 6を停止させ、 その後は再び第 1 6図に示す通りに # 1気筒の 吸気弁 3をリフトさせる。 以上の制御により、 # 1気筒の吸気弁 3を開閉動作さ せる一方で # 4気筒の吸気弁 3を閉状態で停止させることができる。 # 4気筒の 吸気弁 3を動作させ、 # 1気筒の吸気弁 3を閉状態で停止させることも可能であ る。
また、 0 ° C A〜7 2 0 ° C Aの間に亘つて、 上述した範囲 Xがバルプリフタ 一 4と対向している状態、 つまり同一気筒群の吸気弁がいずれも閉じている状態 で電動モータ 1 1を停止させることにより、 第 1 7 A図に示したように同一気筒 群の気筒 (例えば # 1気筒及び # 4気筒) の吸気弁 3をいずれも停止させること ができる。 この場合、 他の気筒群 (# 2気筒及ぴ # 3気筒) のそれぞれのカム 1 6を電動モータ 1 2で駆動してそれらの気筒の吸気弁 3を開閉させることにより、 2気筒のみを燃焼停止状態に保持し、 残る 2気筒で 3 6 0 ° C A間隔で燃焼を行 わせることができる。 勿論、 # 2気筒及び # 3気筒の吸気弁 3が何れも閉じる位 置で電動モータ 1 2を停止させる一方、 # 1気筒及ぴ # 4気筒のカム 1 6を電動 モータ 1 1で駆動してそれらの気筒の吸気弁 3を開閉させてもよい。
その他にも、 電動モータ 1 1又は 1 2の揺動と、 停止とを組み合わせることに より、 減筒運転が要求された場合の停止気筒数を全気筒数よりも小さい範囲 (1 〜3 ) で適宜に変更することができる。 例えば第 1 7 B図は # 1気筒のみ燃焼を 停止させた例、 第 1 7 B図は # 1気筒及び # 3気筒の燃焼をそれぞれ停止させた 例である。 燃焼を停止させる気筒数及び気筒番号は内燃機関 1 Aの運転状態に応 じて適宜に選択してよい。 このように燃焼停止の対象となる気筒を比較的自由に 選べることから減筒運転中におけるボンビングロスを低減し、 高効率が得られる 動作点で内燃機関 1 Aを運転させることが可能となる。 その結果として燃費向上 が期待できる。 さらに、 一部の気筒の燃焼が停止している状態で、 燃焼を行って いる気筒の吸気弁 3の作用角ゃリフト量を上記の制御によって適宜に変ィ匕させて もよい。 この場合には、 燃焼実施中の気筒のカム 1 6を基本速度で連続回転させ た場合と比較して内燃機関 1 Aのボンビングロスをより細かく制御できるように なり、 エンジンブレーキ力を細かく調整できる等の効果が得られる。
以上においては、 吸気弁 3の動作特性をカム 1 6の回転速度や回転方向と関連 付けて説明したが、 電動モータ 1 1、 1 2とカム 1 6との間の減速比や回転方向 の対応関係を考慮すれば、 各図に示したカム 1 6の回転速度や回転方向を電動モ ータ 1 1、 1 2の出力軸 1 1 a、 1 2 aの回転速度及ぴ回転方向にそれぞれ置き 換えることができる。 その置き換えられた出力軸 1 1 a、 1 2 aの速度、 回転方 向に従って E C U 6が電動モータ 1 1、 1 2の動作を制御することにより、 上述 した各種の吸気弁 3の動作特性の変化を実現することができる。 例えば、 内燃機 関 1 Aの運転状態とカム 1 6の動作を特定する情報、 つまりはカム 1 6の回転速 度、 回転方向、 カム 16の動作制御モード (一方向へ連続回転させる制御モード 及ぴ摇動制御モード) の区別、 揺動制御モード時における揺動範囲 (回転方向の 切り替え位置となるカム角や揺動角度によって特定される) とを対応付けたマツ プを E CU 6の ROMに予め用意しておき、 内燃機関 1 Aに設けられている各種 のセンサの情報から運転状態を判別し、 その判別結果に応じた力ム 16の駆動条 件を特定し、 これを出力軸 1 1 a、 12 aの動作条件に置き換えて電動モータ 1 1、 12を制御することにより、 上述した作用角、 リフト特性、 リフト量の最大 値、 燃焼停止気筒数といった各種の動作特性の変ィ匕を実現することができる。 こ の場合、 クランク角センサやカム角センサを利用してクランク角やカムシャフト 17、 30の回転位置を検出して電動モータ 11、 12の動作をフィードバック 制御してもよい。
本発明は上述した形態に限らず、 種々の形態にて実施することができる。 例え ば、 本発明は直列 4気筒の内燃機関に限らず、 複数の気筒を弁の開弁期間が重な らない気筒毎に気筒群として区別できる限りは適用することができる。 第 18図 は V型 6気筒の内燃機関 1 Bに本発明の動弁装置 50を適用した例を示す。 この 例の内燃機関 1 Bにおいては一方のパンク 51に # 1、 #3、 # 5の気筒 2が、 他方のバンク 52に # 2、#4、# 6の気筒 2がそれぞれ直列に配置されており、 それらの爆発順序は気筒番号順、 すなわち # 1→# 2→#3→#4→# 5→# 6 である。 しかも、 パンク角は 60° であり、 それにより 120° CA毎の等間隔 爆発が実現されている。
このような内燃機関 1 Bに適用される動弁装置 50においては、 爆発間隔が 3 60° C A離れている気筒同士を同一気筒群にまとめることにより、 三つの電動 モータ 53、 54、 55によって各気筒の弁を駆動することができる。この場合、 基本作用角が 240° CAであれば、 第 19 A図に示すように各吸気弁のリフト 量とクランク角とが対応付けられる。 従って、 第 18図では、 # 1気筒及び #4 気筒が第 1の気筒群に、 #2気筒及び # 5気筒が第 2の気筒群に、 # 3気筒及び # 6気筒が第 3の気筒群にそれぞれ区別されてそれぞれの気筒群に対応して第 1 〜第 3の電動モータ 53、 54、 55が設けられている。
第 1の電動モータ 53の回転運動はギア列 56及ぴカムシャフト 57からなる 伝達機構 5 8を介して # 1気筒及び # 4気筒のカム 1 6に伝達され、 第 2の電動 モータ 5 4の回転運動はギア列 5 9及ぴカムシャフト 6 0からなる伝達機構 6 1 を介して # 2気筒及び # 5気筒のカム 1 6に伝達され、 第 3の電動モータ 5 5の 回転運動はギア列 6 2及びカムシャフト 6 3からなる伝達機構 6 4を介して # 3 気筒及ぴ # 6気筒のカム 1 6に伝達される。 # 2気筒及び # 5気筒用のカムシャ フト 6 0は第 3図及び第 4図のカムシャフト 1 7と同様の連結構造とされ、 カム シャフト 5 7及ぴ 6 3はカムシャフト 6 0の外周に同軸かつ回転自在に組み合わ される中空軸構造とされている。 カムシャフト 5 7、 6 0、 6 3はパンク 5 1、
5 2の間に配置され、 それらのカムシャフト 5 7、 6 0、 6 3上のカム 1 6の回 転が不図示の従動節の直線運動に変換され、 それらの従動節の往復運動がプッシ ュロッド等の運動伝達部材を介して吸気弁等の弁に往復運動として伝達される。 つまり、 第 1 8図の内燃機関 1 Bは OHV形式である。
以上の場合でも、 各気筒群の弁の開弁期間が第 2 A図の例と同様に互いに重複 しないので、 各弁の動作特性の自由度を高めつつ電動モータの個数を減らして動 弁装置の小型ィ匕を図ることができる。 また、 同一気筒群のカム 1 6は上記の通り に制御することができる。 なお、 第 1 8図の例においても、 カムシャフト 5 7、
6 0、 6 3毎にトルク低減機構 4 0を設けることができる。
なお、 第 1 8図では 2気筒ずつ気筒群を構成しているが、 基本作用角を 1 8 0 ° C Aに設定した場合には第 1 9 B図に示すように # 1気筒、 # 3気筒及び # 5気筒間において開弁期間が重ならず、 # 2気筒、 # 4気筒及び # 6気筒間にお いて開弁期間が重ならない。 この場合には、 # 1気筒、 # 3気筒及び # 5気筒に よって第 1の気筒群を、 # 2気筒、 # 4気筒及ぴ # 6気筒によって第 2の気筒群 をそれぞれ構成して本発明を適用すればよい。 すなわち、 パンク毎に気筒群を構 成して本発明を適用することができる。
第 2 0図は V型 6気筒の内燃機関に本発明を適用した他の例を示す。 この例で は、 一対のパンク 5 1、 5 2のそれぞれのカムキャリア 7 1、 7 2に吸気弁 3を 駆動するための 2本のカムシャフト 7 3、 7 4と、 排気弁 (不図示) を駆動する ための 1本のカムシャフト 7 5とが回転自在に取り付けられている。 カムシャフ ト 7 3、 7 4は互いに同軸に配置されている。 なお、 図ではバンク 5 1の力ムシ ャフト 7 4をカムキャリア 7 1から取り外した状態で示しているが、 実際には反 対側のカムキャリア 7 2のカムシャフト 7 4と同様に、 カムキャリア 7 1上でも カムシャフト 7 3、 7 4は同軸的に配置される。
一方のカムシャフト 7 3には、 同一パンク内において隣接する二つの気筒 2に 対応する吸気弁 3をそれぞれ駆動するためのカム 1 6がー体回転可能に設けられ、 他方のカムシャフト 7 4には同一パンク内の残りの一つの気筒 2に対応する吸気 弁 3を駆動するためのカム 1 6がー体回転可能に設けられている。 一方の力ムシ ャフト 7 4は第 1の伝達機構 1 4を介して第 1の電動モータ 1 1により回転駆動 され、 他方のカムシャフト 7 5は第 2の伝達機構 1 5を介して第 2の電動モータ 1 2により回転駆動される。 なお、 排気用のカムシャフト 7 5には同一バンク内 の全ての気筒の排気弁を駆動するためのカム 7 6がー体回転可能に設けられ、 そ のカムシャフト 7 5は伝達機構 7 7を介して単一の電動モータ 7 8により回転駆 動される。 同一バンク内における各気筒 2のカム 1 6の位相は 1 2 0 ° ずつずれ ているので、 第 1の電動モータ 1 1を揺動運動させることにより、 二つの気筒 2 の吸気弁 3の動弁特性をそれぞれ独立して制御し、 第 2の電動モータ 1 2により 残りの一つの気筒 2の吸気弁 3の動弁特性を他の二つの気筒 2の吸気弁 3のそれ に対して独立して制御することができる。
さらに、 本発明は直列 6気筒、 あるいは V型 8気筒、 V型 1 2気筒の内燃機関 にもこれを適用することができる。 第 2 1図に示したように、 直列 6気筒の内燃 機関 1 Cにおいて、 気筒 2の番号を一端から他端まで順に # 1〜6と定め、 それ らの気筒間における爆発順序が # 1→# 5→# 3→# 6→# 2→# 4、 各吸気弁 の基本作用角が 2 4 0 ° C Aとすれば、 各吸気弁のリフト量とクランク角との関 係は第 2 2 A図に示すようになる。 この場合には、 # 1気筒と # 6気筒とによつ て第 1の気筒群を、 # 2気筒と # 5気筒とによって第 2の気筒群を、 # 3気筒と # 4気筒とによって第 3の気筒群をそれぞれ構成して本発明を適用することがで きる。 直列 6気筒の内燃機関 1 Cにおいて各吸気弁の基本作用角が 1 8 0 ° C A に設定されている場合には、 各吸気弁のリフト量とクランク角との関係が第 2 2 B図に示すようになる。 この場合には # 1気筒、 # 2気筒及び # 3気筒によって 第 1の気筒群を、 # 4気筒、 # 5気筒及び # 6気筒によって第 2の気筒群をそれ ぞれ構成して本発明を適用することができる。 爆発順序が # 1→# 4→# 2→# 6→# 3→# 5の場合も同様である。
V型 8気筒の内燃機関への適用においては、 それぞれのバンクに 4つずつ気筒 が並ぶので、 各バンクをそれぞれ直列 4気筒の内燃機関と同一視して上記の形態 を適用すればよい。 V型 1 2気筒の内燃機関においては、 それぞれのバンクに 6 つずつ気筒が並ぶので、 各バンクをそれぞれ直列 6気筒の内燃機関と同一視して 本発明を適用すればよい。 なお、 6気筒の内燃機関において可変気筒制御を実施 する場合には燃焼停止対象の気筒数を 1〜 5の間で選択でき、 8気筒の内燃機関 において可変気筒制御を実施する場合には燃焼停止対象の気筒数を 1〜 7の間で 選択できる。 1 2気筒の内燃機関において可変気筒制御を実施する場合には燃焼 停止対象の気筒数を 1〜: 1 1の間で選択できる。
以上のように、 本発明では、 一つの電動モータで開弁制御する気筒数とその組 み合わせ方及び電動モータの個数は作用角の調整可能な角度との関係で開弁期間 が重ならないように、 言い換えれば作用角に変化を与えたとしても同一気筒群内 で開弁期間が相互に重なることがないように定めればよく、 電動モータの数、 気 筒の数及びそれらのレイァゥト、 一つの電動モータにて制御される気筒の組み合 わせは上記に開示した実施の形態に限定されるものではない。
以上の形態では吸気弁 3を例に挙げたが、 排気弁についても同様に本発明を適 用できる。 排気弁を本発明に従って制御することにより、 各気筒の排気効率を変 化させて内燃機関の運転状態を柔軟に制御できるようになる。 勿論、 吸気弁及び 排気弁の双方を本発明に従って制御してもよレ、。 減速機構 1 8、 3 1は本発明の 実施形態において必ずしも採用しなくてもよく、 電動モータ 1 1、 1 2の出力軸 1 1 a、 1 2 aとカムシャフト 1 7、 3 0と直結してもよレヽ。 電動モータ 1 1、 1 2の速度制御を容易にするためには減速機構 1 8 , 3 1の減速比を互いに等し く設定することが望ましい。 'トルク低減機構 4 0は本発明の実施の形態において 必ずしもこれを設けなくてもよい。 トルク低減機構 4 0を設ける場合、 その反位 相カム 4 1は必ずしもカムシャフト 1 7、 3 0に設ける必要はなく、 減速機構 1 8、 3 1等の中間軸に設けてもよい。 但し、 その場合、 反位相カム 4 1の回転速 度はカムシャフト 1 7、 3 0の回転速度に対して整数倍に設定する必要がある。 ¾動変換装置はカム機構 1 3に限らず、 スライダクランク機構等のリンク機構で もよレ、。 この場合にはリンク機構の回転入力部分に設けられる回転体を電動モー タにて駆動すればよい。
以上説明したように、 本発明の動弁装置によれば、 各気筒の弁の動作特性につ レ、てその制御の自由度を高めることができる。 しかも、 各気筒毎に電動モータを 分けて設けた場合と比較して動弁装置を小型ィヒし、 車両搭載時の制約を緩和でき る。

Claims

請求の範囲
1 . 弁駆動源から出力される回転運動を複数の気筒のそれぞれに設けられた気 筒毎の運動変換装置により直線運動に変換し、 該直線運動を利用して各気筒の弁 を駆動する動弁装置にお!/、て、
前記弁駆動源として、 開弁期間が重ならない複数の気筒によって構成される気 筒群に対して共用される電動モータを備えている多気筒内燃機関用の動弁装置。
2 . 前記電動モータの回転を前記気筒群のそれぞれの運動変換装置の回転体に 伝達する伝達機構を備えた請求の範囲 1の多気筒内燃機関用の動弁装置。
3 . 前記気筒群のそれぞれの弁を駆動する際に発生する駆動トルクを低減する トルク低減機構が前記気筒群に対して共用されるように設けられている請求の範 囲 1又は 2の動弁機構。
4 . 前記伝達機構には、 前記気筒群のそれぞれの運動変換装置の回転体を相互 に連結する伝達軸が設けられ、 前記電動モータが前記伝達軸に対して回転伝達可 能に接続されている請求の範囲 2の動弁装置。
5 . 前記内燃機関は、 外側の一対の気筒間の爆発間隔がクランク角にして 3 6 0 ° ずれるように爆発順序が設定された等間隔爆発式の直列 4気筒 4サイクル 内燃機関として構成され、 前記電動モータとして、 前記外側の一対の気筒によつ て構成される第 1の気筒群のそれぞれの運動変換装置に対して共用される第 1の 電動モータと、 内側の一対の気筒によつて構成される第 2の気筒群のそれぞれの 運動変換装置に対して共用される第 2の電動モータとが設けられ、 前記伝達機構 として、 前記第 1の電動モータの回転運動を前記第 1の気筒群のそれぞれの運動 変換装置の回転体に伝達する第 1の伝達機構と、 前記第 2の電動モータの回転運 動を前記第 2の気筒群のそれぞれの運動変換装置の回転体に伝達する第 2の伝達 機構と、 が設けられている請求の範囲 2の動弁装置。
6 . 前記第 1の伝達機構には前記第 1の気筒群のそれぞれの運動変換装置の回 転体を相互に連結する第 1の伝達軸が、 前記第 2の伝達機構には前記第 2の気筒 群のそれぞれの運動変換装置の回転体を相互に連結する第 2の伝達軸が設けられ、 前記第 2の伝達軸が前記第 1の伝達軸の外周側に同軸的に配置され、 前記第 1の 電動モータが前記第 1の伝達軸に対して回転伝達可能に接続され、 前記第 2の電 動モータが前記第 2の伝達軸に対して回転伝達可能に接続されている請求の範囲 5の動弁装置。
7 . 前記内燃機関が等間隔爆発式の 6気筒 4サイクル内燃機関として構成され、 爆発間隔がクランク角にして 3 6 0 ° ずれる気筒毎に気筒群が構成され、 各気筒 毎に前記電動モータ及び前記伝達機構が設けられている請求の範囲 2の動弁装置。
8 . 前記運動変換装置として力ム機構が設けられ、 前記回転体が前記力ム機構 のカムである請求の範囲 2〜 6のいずれか一項の動弁装置。
9 . 前記電動モータの回転速度及ぴ回転方向の少なくともいずれか一方を変化 させることにより前記気筒群のそれぞれの弁の動作特性を制御する制御装置をさ らに備えている請求の範囲 1の多気筒内燃機関用の動弁装置。
1 0 . 前記電動モータから出力される回転運動を前記弁の直線運動に変換する カム機構を有し、 前記制御装置は、 前記カム機構のカムが回転速度を変化させつ つ同一方向に連続的に回転し、 かついずれかの弁のリフト量が最大となるときに 当該弁を駆動するカムの回転速度が最大又は最小となるように前記電動モータを 制御する請求の範囲 9の動弁装置。
1 1 . 前記電動モータから出力される回転運動を前記弁の.直線運動に変換する カム機構を有し、 前記気筒群は 2つの気筒によって構成され、 前記制御装置は、 前記気筒群の一方の気筒にて前記カム機構のカムが弁に与え得るリフト量が最大 となる位置と、 同一気筒群の他方の気筒にてカムが弁に与え得るリフト量が最大 となる位置とに挟まれた範囲内で前記電動モータが揺動し、 かつその摇動量が変 化するように前記電動モータを制御する請求の範囲 9の動弁装置。
1 2. 前記制御装置は、 前記電動モータの揺動中の回転速度をさらに変化させ る請求の範囲 1 1の動弁装置。
1 3 . 前記制御装置は、 前記気筒群のカムのノーズ部の頂点を挟んだ両側が前 記弁の駆動に交替的に使用されるように前記電動モータを制御する請求の範囲 1 1又は 1 2の動弁装置。
1 4 . 前記制御装置は、 内燃機関の減筒運転が要求された場合、 前記気筒群の 一方の気筒の弁が開閉し、 同一気筒群の他方の気筒の弁が閉状態に保持される範 囲内で前記電動モータを揺動させる請求の範囲 9の動弁装置。
1 5 . 開弁期間が重ならない複数の気筒によってそれぞれ構成される複数の気 筒群の各々に前記弁駆動源として前記電動モータが設けられ、 前記制御装置は、 内燃機関の減筒運転が要求された場合、一つの気筒群の一方の気筒の弁が開閉し、 同一気筒群の他方の気筒の弁が閉状態に保持される範囲内で少なくとも一つの電 動モータを摇動させる請求の範囲 9の動弁装置。
1 6 . 開弁期間が重ならない複数の気筒によってそれぞれ構成される複数の気 筒群の各々に前記弁駆動源として前記電動モータが設けられ、 前記制御装置は、 内燃機関の減筒運転が要求された場合、 同一の電動モータで駆動される全ての弁 が閉じる位置にて一部の電動モータを停止させる請求の範囲 9に記載の動弁装置。
1 7 . 前記制御装置は、 内燃機関の減筒運転が要求された場合、 前記弁が閉じ た状態に保持される気筒数が全気筒数よりも少ない範囲で変化するように各電動 モータを制御する請求の範囲 1 5又は 1 6の動弁装置。
1 8 . 前記制御装置は、 内燃機関の減筒運転が要求された場合、 前記弁が閉じ た状態に保持される気筒数が全気筒数よりも少ない範囲で変化するように、 かつ 前記弁が開閉する気筒にて当該弁のリフト量及び作用角の少なくともいずれか一 方が変化するように各電動モータを制御する請求の範囲 1 5又は 1 6の動弁装置。
PCT/JP2005/010525 2004-06-03 2005-06-02 多気筒内燃機関用の動弁装置 WO2005119019A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006514155A JP4353244B2 (ja) 2004-06-03 2005-06-02 多気筒内燃機関用の動弁装置
CN200580018086XA CN1965150B (zh) 2004-06-03 2005-06-02 多缸内燃机气门驱动装置
EP05748504A EP1760277B1 (en) 2004-06-03 2005-06-02 Valve gear for multi-cylinder internal combustion engine
US11/597,563 US7568457B2 (en) 2004-06-03 2005-06-02 Valve driving device for multi-cylinder internal combustion engine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-165716 2004-06-03
JP2004165716 2004-06-03
JP2004-165704 2004-06-03
JP2004165704 2004-06-03

Publications (1)

Publication Number Publication Date
WO2005119019A1 true WO2005119019A1 (ja) 2005-12-15

Family

ID=35462960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/010525 WO2005119019A1 (ja) 2004-06-03 2005-06-02 多気筒内燃機関用の動弁装置

Country Status (5)

Country Link
US (1) US7568457B2 (ja)
EP (1) EP1760277B1 (ja)
JP (1) JP4353244B2 (ja)
CN (1) CN1965150B (ja)
WO (1) WO2005119019A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007007168A1 (en) * 2005-07-13 2007-01-18 Toyota Jidosha Kabushiki Kaisha Variable valve system for internal combustion engine
WO2007134574A1 (de) * 2006-05-18 2007-11-29 Institut Für Automatisierung Und Informatik Gmbh Elektromotorische einrichtung zur betätigung von gaswechselventilen
US8160801B2 (en) 2006-03-20 2012-04-17 Toyota Jidosha Kabushiki Kaisha Valve drive system and valve driving method
WO2014207847A1 (ja) * 2013-06-26 2014-12-31 トヨタ自動車 株式会社 可変動弁機構の制御装置
CN103061900B (zh) * 2012-12-24 2015-10-14 绵阳新晨动力机械有限公司 发动机可变时长配气驱动机构
CN105464737A (zh) * 2014-09-26 2016-04-06 铃木株式会社 内燃机的可变气门装置
JP2019167895A (ja) * 2018-03-23 2019-10-03 いすゞ自動車株式会社 内燃機関の動弁装置
KR20220025010A (ko) * 2019-07-24 2022-03-03 자콥스 비히클 시스템즈, 인코포레이티드. 적어도 2개의 실린더를 위한 비활성화기들에 작동 가능하게 연결된 비활성화기 제어기를 구비한 시스템 및 실린더 비활성화를 위한 방법

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101189229B1 (ko) * 2009-11-12 2012-10-09 현대자동차주식회사 압축 착화 가솔린 엔진
JP5515772B2 (ja) * 2010-01-21 2014-06-11 トヨタ自動車株式会社 可変動弁機構の制御装置
DE102011009417A1 (de) 2011-01-25 2012-07-26 Kolbenschmidt Pierburg Innovations Gmbh Mechanisch steuerbare Ventiltriebanordnung
DE102012004420A1 (de) * 2012-03-08 2013-09-12 Daimler Ag Kraftfahrzeugventiltriebverstellvorrichtung
DE102012204396A1 (de) * 2012-03-20 2013-09-26 Man Diesel & Turbo Se Ventiltrieb für Gaswechselventile einer Brennkraftmaschine
JP5900417B2 (ja) * 2013-06-03 2016-04-06 株式会社デンソー 電子制御装置
CN103470326B (zh) * 2013-09-18 2015-10-28 杰锋汽车动力系统股份有限公司 一种发动机配气机构
JP6168947B2 (ja) * 2013-09-25 2017-07-26 本田技研工業株式会社 電動式スロットル弁を備えるエンジン
US9650924B2 (en) * 2014-03-07 2017-05-16 Electro-Motive Diesel, Inc. Engine control system having quick-open valve timing
US9677479B2 (en) * 2014-07-29 2017-06-13 Ford Global Technologies, Llc Variable displacement engine control
US9874166B2 (en) * 2014-10-13 2018-01-23 Ford Global Technologies, Llc Method for controlling vibrations during transitions in a variable displacement engine
GB201616956D0 (en) * 2016-10-06 2016-11-23 Jaguar Land Rover Limited Method of controlling a valve train
SE541865C2 (en) * 2017-03-22 2020-01-02 Scania Cv Ab Four-stroke internal combustion engine and thereto related vehicle and method
KR102540886B1 (ko) * 2018-09-03 2023-06-08 현대자동차주식회사 Cvvd 위치학습결과 검증방법 및 cvvd 시스템
GB2592336A (en) * 2019-02-06 2021-09-01 Oniel Scott Kurt Opulent. Intelligently-activated hydrogen-algea independent regenerative hybrid internal combustion engine
CN113047920A (zh) * 2021-03-26 2021-06-29 深圳臻宇新能源动力科技有限公司 气门组件、内燃机、汽车及内燃机循环控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06193415A (ja) * 1992-12-24 1994-07-12 Unisia Jecs Corp 内燃機関の吸気弁制御装置
JP2003170764A (ja) * 2001-12-04 2003-06-17 Toyota Motor Corp 車両のエンジン制御装置
JP2004137942A (ja) * 2002-10-16 2004-05-13 Toyota Motor Corp 車両の制御装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4771742A (en) * 1986-02-19 1988-09-20 Clemson University Method for continuous camlobe phasing
JPS6416964A (en) 1987-07-11 1989-01-20 Yamasa Shoyu Kk Method for immunoassay of specific saccharogenic protein
JPH0646010B2 (ja) 1988-07-14 1994-06-15 本田技研工業株式会社 スロットル制御装置
US5873335A (en) 1998-01-09 1999-02-23 Siemens Automotive Corporation Engine valve actuation control system
DE19825964A1 (de) * 1998-06-10 1999-12-16 Schaeffler Waelzlager Ohg Ventiltrieb einer Brennkraftmaschine
DE10392698B4 (de) 2002-10-25 2021-05-12 Denso Corporation Variable Ventilzeitabstimmungssteuerungsvorrichtung einer Brennkraftmaschine
JP4158507B2 (ja) * 2002-12-05 2008-10-01 トヨタ自動車株式会社 内燃機関の弁駆動システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06193415A (ja) * 1992-12-24 1994-07-12 Unisia Jecs Corp 内燃機関の吸気弁制御装置
JP2003170764A (ja) * 2001-12-04 2003-06-17 Toyota Motor Corp 車両のエンジン制御装置
JP2004137942A (ja) * 2002-10-16 2004-05-13 Toyota Motor Corp 車両の制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1760277A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007007168A1 (en) * 2005-07-13 2007-01-18 Toyota Jidosha Kabushiki Kaisha Variable valve system for internal combustion engine
US8160801B2 (en) 2006-03-20 2012-04-17 Toyota Jidosha Kabushiki Kaisha Valve drive system and valve driving method
WO2007134574A1 (de) * 2006-05-18 2007-11-29 Institut Für Automatisierung Und Informatik Gmbh Elektromotorische einrichtung zur betätigung von gaswechselventilen
CN103061900B (zh) * 2012-12-24 2015-10-14 绵阳新晨动力机械有限公司 发动机可变时长配气驱动机构
JP5987985B2 (ja) * 2013-06-26 2016-09-07 トヨタ自動車株式会社 可変動弁機構の制御装置
WO2014207847A1 (ja) * 2013-06-26 2014-12-31 トヨタ自動車 株式会社 可変動弁機構の制御装置
CN105464737A (zh) * 2014-09-26 2016-04-06 铃木株式会社 内燃机的可变气门装置
JP2019167895A (ja) * 2018-03-23 2019-10-03 いすゞ自動車株式会社 内燃機関の動弁装置
JP7028010B2 (ja) 2018-03-23 2022-03-02 いすゞ自動車株式会社 内燃機関の動弁装置
KR20220025010A (ko) * 2019-07-24 2022-03-03 자콥스 비히클 시스템즈, 인코포레이티드. 적어도 2개의 실린더를 위한 비활성화기들에 작동 가능하게 연결된 비활성화기 제어기를 구비한 시스템 및 실린더 비활성화를 위한 방법
JP2022541616A (ja) * 2019-07-24 2022-09-26 ジェイコブス ビークル システムズ、インコーポレイテッド 少なくとも2つのシリンダーの休止装置に動作可能に接続された休止装置コントローラを有するシステムおよびシリンダーを休止する方法
JP7314396B2 (ja) 2019-07-24 2023-07-25 ジェイコブス ビークル システムズ、インコーポレイテッド 少なくとも2つのシリンダーの休止装置に動作可能に接続された休止装置コントローラを有するシステムおよびシリンダーを休止する方法
KR102604964B1 (ko) * 2019-07-24 2023-11-21 자콥스 비히클 시스템즈, 인코포레이티드. 적어도 2개의 실린더를 위한 비활성화기들에 작동 가능하게 연결된 비활성화기 제어기를 구비한 시스템 및 실린더 비활성화를 위한 방법

Also Published As

Publication number Publication date
CN1965150B (zh) 2011-04-20
JP4353244B2 (ja) 2009-10-28
EP1760277A4 (en) 2010-04-07
US20080017151A1 (en) 2008-01-24
EP1760277A1 (en) 2007-03-07
EP1760277B1 (en) 2011-10-12
CN1965150A (zh) 2007-05-16
US7568457B2 (en) 2009-08-04
JPWO2005119019A1 (ja) 2008-04-03

Similar Documents

Publication Publication Date Title
WO2005119019A1 (ja) 多気筒内燃機関用の動弁装置
EP0234853B1 (en) Apparatus for variable valve timing for an internal combustion engine.
US5491977A (en) Engine using compressed air
JP4293273B2 (ja) 内燃機関の動弁装置
JP2008180214A (ja) 内燃機関のカム軸トルク低減機構
JP4046077B2 (ja) 内燃機関の動弁装置
JP2007023814A (ja) 内燃機関の可変動弁装置
WO2006118063A1 (ja) 内燃機関の動弁装置
JP4049092B2 (ja) 動弁装置
KR100807129B1 (ko) 다기통 내연기관용 밸브 구동 장치
JP4085886B2 (ja) 内燃機関の可変動弁装置
JPH0355644B2 (ja)
JP2007146688A (ja) 内燃機関の動弁装置
JP2011074873A (ja) 可変サイクルエンジン
JP2008019876A (ja) 内燃機関の動弁装置
JPH0220406Y2 (ja)
JP2007113400A (ja) 可変動弁機構
JP2004225542A (ja) 連続可変バルブタイミング機構
JP2008115810A (ja) 内燃機関の動弁装置
JPS59188013A (ja) エンジンのバルブタイミング制御装置
JPH02286807A (ja) 4サイクルエンジンのバルブタイミング可変装置
JP2007303422A (ja) カム駆動ギヤの回転変動低減装置
JPH08326515A (ja) 4サイクルエンジンの動弁機構
JPH0359244B2 (ja)
JPS61218723A (ja) エンジンの慣性過給制御装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006514155

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580018086.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2005748504

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067027884

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11597563

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005748504

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11597563

Country of ref document: US