WO2005114193A1 - アフィニティー粒子及びアフィニティー分離方法 - Google Patents

アフィニティー粒子及びアフィニティー分離方法 Download PDF

Info

Publication number
WO2005114193A1
WO2005114193A1 PCT/JP2005/009085 JP2005009085W WO2005114193A1 WO 2005114193 A1 WO2005114193 A1 WO 2005114193A1 JP 2005009085 W JP2005009085 W JP 2005009085W WO 2005114193 A1 WO2005114193 A1 WO 2005114193A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
affinity
particle
group
ligand
Prior art date
Application number
PCT/JP2005/009085
Other languages
English (en)
French (fr)
Inventor
Kazuyuki Miyazawa
Katsuyuki Maeno
Original Assignee
Shiseido Company, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shiseido Company, Ltd. filed Critical Shiseido Company, Ltd.
Priority to EP05741159A priority Critical patent/EP1750127B1/en
Priority to KR1020067015861A priority patent/KR101176905B1/ko
Priority to US11/587,423 priority patent/US20070241054A1/en
Priority to CN2005800165821A priority patent/CN1956780B/zh
Publication of WO2005114193A1 publication Critical patent/WO2005114193A1/ja
Priority to US12/552,322 priority patent/US20090321358A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54393Improving reaction conditions or stability, e.g. by coating or irradiation of surface, by reduction of non-specific binding, by promotion of specific binding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/38Selective adsorption, e.g. chromatography characterised by the separation mechanism involving specific interaction not covered by one or more of groups B01D15/265 - B01D15/36
    • B01D15/3804Affinity chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/286Phases chemically bonded to a substrate, e.g. to silica or to polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3206Organic carriers, supports or substrates
    • B01J20/3208Polymeric carriers, supports or substrates
    • B01J20/321Polymeric carriers, supports or substrates consisting of a polymer obtained by reactions involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3206Organic carriers, supports or substrates
    • B01J20/3208Polymeric carriers, supports or substrates
    • B01J20/3212Polymeric carriers, supports or substrates consisting of a polymer obtained by reactions otherwise than involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3214Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating
    • B01J20/3217Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond
    • B01J20/3219Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond involving a particular spacer or linking group, e.g. for attaching an active group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3236Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3248Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such
    • B01J20/3251Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such comprising at least two different types of heteroatoms selected from nitrogen, oxygen or sulphur
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/3272Polymers obtained by reactions otherwise than involving only carbon to carbon unsaturated bonds
    • B01J20/3274Proteins, nucleic acids, polysaccharides, antibodies or antigens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3285Coating or impregnation layers comprising different type of functional groups or interactions, e.g. different ligands in various parts of the sorbent, mixed mode, dual zone, bimodal, multimodal, ionic or hydrophobic, cationic or anionic, hydrophilic or hydrophobic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • C07F9/091Esters of phosphoric acids with hydroxyalkyl compounds with further substituents on alkyl
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated

Definitions

  • the present invention relates to an affinity particle and an affinity separation method.
  • the present invention relates to an affinity separation method capable of easily and accurately separating an affinity particle and a target substance using organic particles.
  • the affinity particles of the present invention are extremely usefully used in various separation, purification, and inspection methods including an immunoprecipitation method, a latex agglutination method, and the like, which can detect a target substance with high sensitivity and ease.
  • affinity column particles carrying a ligand are used for separation and purification of a target substance (Patent Documents 1 and 2).
  • the desired target substance is not selectively separated. That is, in addition to the target substance captured by the ligand, undesired substances are also adsorbed on the column.
  • agarose or the like is used as an affinity separation method for dispersing and separating affinity particles in a liquid sample (Non-Patent Document 1), but there is a problem that a desired target substance is not selectively separated. There was a point. That is, in addition to the target substance captured by the ligand, an undesired substance is also adsorbed to the affinity particles.
  • the affinity particles that also have an organic particle power have a problem that aggregation of organic particles is likely to occur in a sample having a high salt concentration. for that reason, It was necessary to dilute the sample and perform the measurement.
  • Patent Document 1 Japanese Patent Publication No. Hei 8-26076
  • Patent Document 2 Japanese Patent Publication No. 2002-511141
  • Non-patent document l Bioconjugate Chem .; 2002; 13 (2); 163-166
  • An object of the present invention is to solve the above-mentioned problems, and it is an object of the present invention to provide affinity particles having high organic particle strength used for various separation, purification, inspection methods and the like.
  • the present invention provides an affinity particle having a phosphorylcholine group represented by the following formula (1) on the surface of an organic particle by a covalent bond.
  • the present invention provides a reactive group having a phosphorylcholine group represented by the following formula (1) in a covalent bond on the surface of an organic particle and capable of binding to a ligand having a specific affinity for a target substance.
  • Another object of the present invention is to provide an affinity particle having an adsorptive group on the surface of an organic particle by covalent bond or adsorption.
  • the present invention provides a ligand having a phosphorylcholine group represented by the following formula (1) covalently bonded to the surface of an organic particle and having a specific affinity for a target substance on the surface of the organic particle.
  • An object of the present invention is to provide an affinity particle having a covalent bond or an adsorption.
  • the organic particles may comprise one or more monomer units of styrene, glycidyl methacrylate, (meth) acrylic acid, N-alkylacrylamide, and alkyl (meth) acrylate.
  • the present invention provides the above-mentioned affinity particles, which are synthetic particles contained in the coalescence or polysaccharides having agarose or sepharose power and having an average particle diameter of 20 nm to 500 ⁇ m.
  • the present invention provides a method for preparing the above-described ligand, wherein the antibody is an antibody, an antigen, an enzyme, a substrate, a receptor, a peptide, a DNA, an RNA, an aptamer, a protein A, a protein G, an avidin, a biotin, a chelate conjugate
  • the present invention also provides the above-mentioned affinity particle, wherein the affinity particle is one or more selected ligands.
  • the present invention provides (1) a first step in which an arbitrary ligand is bound to the affinity particle according to claim 1 or 2, and (2) a method in which the affinity particle produced in the first step is converted into an arbitrary ligand.
  • Organic particles comprising a second step of dispersing in a liquid sample containing the target substance selectively captured by the method, and (3) a third step of recovering the target substance captured by the affinity particle carrier.
  • the present invention provides (1) a first step of dispersing the affinity particles according to claim 3 in a liquid sample containing a target substance selectively captured by an arbitrary ligand, (2) an affinity It is an object of the present invention to provide a method for separating an objective substance by means of organic particles, which comprises a second step of recovering the target substance captured by the particles.
  • the recovery step (2) is unnecessary, and they can be easily visually observed due to changes in the dispersion state. You can check.
  • the affinity particle of the present invention has a very high selectivity for separation because it captures only a certain target substance (a target substance desired to be separated) with a ligand and suppresses the adsorption of other substances to the particles. .
  • the excellent dispersibility, and even in a sample containing various salts such as serum, the target substance can be easily and accurately separated without aggregation.
  • the method for separating a target substance of the present invention can efficiently and simply separate a target substance to be separated in a short time.
  • substances since substances have the property of adsorbing to foreign substances, it is difficult to efficiently separate only the target substance with conventional affinity particles.
  • phosphorylcholine groups By modifying the particle surface with phosphorylcholine groups, Non-specific adsorption of a substance to affinity particles can be prevented extremely efficiently, and purification efficiency can be increased.
  • the phosphorylcholine group has extremely high hydrophilicity, and also has a function of improving the dispersibility of the affinity particles in a liquid sample containing water.
  • FIG. 1 is a schematic diagram showing the difference in selectivity of protein capture between affinity particles of the present invention and conventional affinity particles.
  • FIG. 2 is a structural formula and an NMR spectrum of the compound obtained in Synthesis Example 1.
  • FIG. 3 is a structural formula and an NMR spectrum of the compound prepared in Synthesis Example 2.
  • FIG. 4 is a graph showing the particle size distribution of conventional affinity particles in water and saline.
  • FIG. 5 is a graph showing the particle size distribution of the affinity particles of the present invention in water and saline.
  • FIG. 6 The styrene-glycidyl methacrylate particles and PC particles (A) produced in Reference Example 1 were compared.
  • 4 is a graph for comparing the amount of protein adsorption to be performed.
  • FIG. 7 is a graph comparing the protein adsorption amounts of the styrene-glycidyl methacrylate particles prepared in Reference Example 2 and PC particles (B) and (C).
  • FIG. 8 is a graph comparing the amount of protein adsorbed on the agarose beads prepared in Reference Example 3 and the PC particles (D).
  • FIG. 9 is a graph comparing antibody selectivity of the affinity particles of Example 1.
  • FIG. 10 is a graph comparing the antibody selectivity of the affinity particles of Comparative Example 1.
  • the organic particles constituting the affinity particles are not particularly limited.
  • Organic particles generally mean 20 ⁇ ! It means an organic object of about 500 m.
  • Specific particles include styrene, glycidyl methacrylate, (meth) acrylic acid, N-alkyl acrylamide, alkyl (meth) acrylate, aminoalkyl (meth) acrylate, and hydroxyalkyl (meth) acrylate.
  • Examples include synthetic particles containing a kind or two or more kinds of monomer units in a polymer, or organic particles such as agarose and sepharose.
  • hybrid particles having a core-shell structure containing an organic substance in the outer layer and inorganic particles in the inner layer.
  • Particularly preferred particles are styrene dibutyl benzene copolymer, styrene-glycidyl methacrylate dibutyl benzene copolymer, N-isopropyl acrylamide methacrylate methylene bis acrylamide copolymer, and 2-hydroxymethacrylate styrene.
  • These are particles that can be easily synthesized by emulsion polymerization, suspension polymerization, and the like, such as vinyl benzene copolymer and 2-aminoethyl methacrylate N-isopropylacrylamide-methylenebisacrylamide copolymer.
  • the phosphorylcholine group of the above formula (1) and a reactive group or an adsorptive group to which a ligand can be bonded are introduced into the particle surface by a covalent bond, an amino group, a carboxyl group, a hydroxyl group, a thiol group, etc. are preferred.
  • the average particle diameter of the organic particles is 20 ⁇ ! affiliate particles of ⁇ 500 ⁇ m are preferred That's right.
  • styrene dibutyl benzene copolymer styrene-glycidyl methacrylate dibutyl benzene copolymer, acrylate N-isopropylacrylamide-methylene bisacrylamide copolymer, 2-hydroxymethacrylate-styrene dibutylbenzene And 2-aminoethyl methacrylate-N-isopropylacrylamide-methylenebisacrylamide copolymer.
  • the ligand can bind.
  • amide, ester, urethane, ether, secondary amamine, urea bond, disulfide bond and the like are preferable. Therefore, an amino group, a hydroxyl group, a carboxyl group, a thiol group, or the like, which is preferred by a reactive group capable of forming a ligand in such a covalent bond form, is preferable.
  • the preferred form of adsorption is avidin-pyotin, metal-chelate conjugate, and the like. Accordingly, avidin, biotin, chelating conjugates, and the like, in which an adsorbing group capable of forming a ligand in these adsorbing forms is preferred, are preferred.
  • a ligand is a substance that specifically binds to a target substance, and includes various antibodies, antigens, enzymes, substrates, receptors, ligands, peptides, abtamers, protein A, protein G, avidin, biotin, and chelatein. Daggers, various metal ions, and the like.
  • various antibodies are IgG, IgM, IgA, IgD, IgE, IgY, polysaccharide
  • enzyme is daltathione-S transferase
  • substrate is glutathione
  • receptor is hormone receptor
  • cytokinin receptor ligand is lectin, chelating conjugate.
  • Is tri-triacetate, and various metal ions are Ni 2+ , Co 2+ , Cu 2+ , Zn 2+ , and Fe 3+ .
  • the phosphorylcholine group represented by the formula (1) has a covalent bond on the surface of the organic particle, and a reactive group or an adsorptive group capable of binding to a ligand having a specific affinity for a target substance is provided on the surface of the organic particle. Since it is the essence of the present invention that the covalent bond or the adsorption is present directly on the surface of the organic particles, the production method is not limited, and the particles may be bonded by any method.
  • a reactive group or an absorbing group to which a phosphorylcholine group and a ligand can bind does not include an embodiment in which a polymer having an attaching group in advance is used and the particle surface is simply covered without chemical bonding. This is because the coated polymer may peel off or may be affected by the coated polymer.
  • the affinity particles of the present invention can be produced by the following method and the like.
  • Step 1 A reactive group or an adsorptive group capable of binding a phosphorylcholine group represented by the following formula (1) and a ligand is introduced into the particles.
  • the reactive group or the adsorptive group is not limited, but includes an amino group, a hydroxyl group, a carboxyl group, and a thiol group.
  • Step 2 The phosphorylcholine group represented by the formula (1) and the ligand are bound to the reactive group or the adsorptive group introduced into the particles.
  • the chemical structure (spacer) existing between the phosphorylcholine group or the ligand and the reactive group or the adsorptive group is arbitrary.
  • an arbitrary spacer may be an methylene chain, an oxyethylene chain, or an alkylene chain containing one or more amino groups.
  • Step 1 Introduce an amino group to any particle by a known method or a method developed in the future. Amino groups are introduced directly on the particle surface.
  • the amino group is a primary amine or a secondary amine.
  • Step 2 The aldehyde or hydrate obtained by the oxidative cleavage reaction of glycerol phosphorylcholine is applied to the amino group-containing particles to form phosphorylcholine groups directly on the particle surface by reductive amination reaction. To be added.
  • a carboxyl compound obtained by oxidative cleavage of glycerol phosphorylcholine is added directly to the particle surface of the particles having amino groups by an amidation reaction. Without binding the phosphorylcholine group to all the amino groups (adjusting the reaction amount), the remaining amino group becomes a substituent capable of binding the ligand.
  • Known methods for introducing an amino group into the particles include the following. 1. Introduction of amino group by surface reaction in plasma treatment Amino groups are introduced into the particle surface by low-temperature plasma in a nitrogen gas atmosphere. Specifically, the particles are housed in a plasma reactor, the inside of the reactor is evacuated by a vacuum pump, and nitrogen gas and hydrogen gas are introduced. Subsequently, amino groups can be introduced into the particle surface by glow discharge. It is also possible to mechanically pulverize the plasma-processed organic material. The literature on plasma processing is shown below.
  • Plasma aminofunctionalisation of PVDr microfiltration membranes comparison of the in plasma modifications with a grafting method using ESCA and an
  • the surface of an organic particle such as an alkoxysilyl group-containing particle is treated with a surface modifier such as an alkoxysilane, chlorosilane, or silazane having an amino group.
  • an alkoxysilyl group-containing particle is treated with 3-aminopropyltrimethoxysilane having a primary amino group to introduce an amino group.
  • 3-trimethoxysilylpropyl 1-methacrylate-methyldibutylbenzene methacrylate copolymer particles are immersed in a water-2-propanol mixture, and 3-aminopropyltrimethoxysilane is added. Heat to ° C and react for 6 hours. After cooling to room temperature, the polymer is washed with methanol and dried to obtain particles in which amino groups are directly introduced to the surface of the copolymer particles.
  • the obtained particles are dispersed in ethanol, and arylamine is added. Then, an ethanol solution of salted platinum acid is added, and the mixture is stirred at 60 ° C. for 2 hours. After completion of the reaction, filtration, washing with ethanol and drying under reduced pressure are performed to obtain aminated organic particles.
  • an amine-based monomer can be used as the monomer used in this method.
  • the amine-based monomer is not limited to arylamine, but may be any as long as it has an amino group and a polymerizable reactive site such as butyl or acrylic.
  • the amino group may be protected with a butoxycarbol group, a benzyloxycarbol group, or the like.
  • a monomer having a functional group capable of easily introducing an amino group by reaction with diamine, such as an epoxy group may be used.
  • Step 2 a method for introducing a phosphorylcholine group on the surface of the aminated particles will be described below.
  • the particles are immersed in methanol, phosphatidyl glyceraldehyde is added, and left at room temperature for 6 hours. Then, sodium cyanoboronate is added at 0 ° C, and the mixture is heated and stirred overnight to add a phosphorylcholine group to the amino group. The particles are washed with methanol and dried to obtain particles having phosphorylcholine groups directly on the surface.
  • a protic solvent such as water, ethanol, or 2-propanol other than methanol can be used, and the introduction rate when using methanol is high.
  • the particles are dispersed in a dimethyl sulfoxide-water mixed solution, and dimethyl sulfoxide monohydrate in which N-hydroxysuccinimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride and carboxymethylphosphorylcholine are dissolved. Add the mixed solution. After stirring at room temperature for 6 hours, the particles are sufficiently washed with water and then dried to obtain particles having phosphorylcholine groups directly on the surface.
  • N, N'-dimethylformamide , Tetrahydrofuran, acetonitrile and the like are preferably used.
  • carboxymethyl phosphorylcholine is reacted with thiol chloride to form an acid chloride, which is reacted with the particles under anhydrous conditions using N, N'-dimethylformamide, acetonitrile, etc., and the particles are sufficiently washed with water. After drying, particles having phosphorylcholine groups directly on the surface are obtained.
  • This method can efficiently react with hydroxyl groups on the surface, and is effective when the particles are polysaccharides such as agarose and sepharose or when 2-hydroxyethyl (meth) acrylate is used.
  • a particle having an amino group is prepared, and a phosphorylcholine group is formed on the particle surface by a reductive aminoidation reaction with an aldehyde compound or a hydrate obtained by an oxidative cleavage reaction of glycerol phosphorylcholine.
  • a phosphorylcholine group is formed on the particle surface by a reductive aminoidation reaction with an aldehyde compound or a hydrate obtained by an oxidative cleavage reaction of glycerol phosphorylcholine.
  • This method has a great advantage in that the introduction rate of phosphorylcholine groups is high and that the surface of various organic particles can be modified.
  • the above-mentioned method is a method in which a compound containing an aldehyde obtained by an oxidative cleavage reaction of glycerol phosphorylcholine causes an oxidative cleavage of a known glycerol phosphorylcholine group by a known method.
  • This is a very simple step.
  • 1,2-diol is oxidized with periodic acid or periodate to cleave the bond to obtain two aldehydes.
  • a phosphorylcholine aldehyde and formaldehyde are produced.
  • the reaction is usually performed in water or an organic solvent containing water.
  • the reaction temperature is from 0 degree to room temperature.
  • the aldehyde may undergo hydration through an equilibrium reaction in water, but does not affect the subsequent reaction with amine.
  • the scheme for preparing a monofunctional aldehyde containing a phosphorylcholine group is shown below.
  • the reductive amination reaction in which an aldehyde compound (or a hydrate compound) obtained by an oxidative cleavage reaction of glycerol phosphorylcholine is bonded to an amino group of particles is easily performed by stirring both components in a solvent. Can be performed. In this reaction, both are dissolved or dispersed in water or alcohol (the organic solvent of the third component may be mixed) to form an imine, which is then reduced with a reducing agent to obtain a secondary amine. It is.
  • a mild reducing agent such as sodium cyanoboronate is preferable, but other reducing agents can be used as long as phosphorylcholine is stable.
  • the reaction is usually carried out at 0 ° C to room temperature.
  • amino group may be reacted with an arbitrary amount of the compound represented by the formula (2) by a conventional method, and the remaining amino group may be used as a reactive group to which a ligand can be bound or an adsorptive group.
  • n integer from l to 12
  • the phosphorylcholine group is not bonded to all amino groups (the amount of reaction is adjusted), and the remaining amino group becomes a reactive group or an adsorbable group to which a ligand can be bonded.
  • These particles are the affinity particles according to claim 2, and are particles in which a phosphorylcholine group represented by the formula (1) and a reactive group or an adsorptive group capable of binding a ligand are present directly on the surface of the organic particles. Then, the remaining amino group is bonded to a ligand to form an affinity particle according to claim 3, wherein the phosphorylcholine group represented by formula (1) and the ligand are directly present on the surface of the organic particle. Become.
  • the affinity particle according to claim 2 is a product form in which a user can bind an arbitrary ligand according to a substance (target substance) to be captured.
  • the affinity particle according to claim 3 is a product embodiment in which a ligand is bound in advance.
  • the affinity particle according to claim 1 is an affinity particle in which at least the phosphorylcholine group of the formula (1) is present on the particle surface, and is not limited to the presence or absence of a ligand—a reactive group or an adsorptive group capable of binding the ligand. This is a product mode in which a user can bind an arbitrary ligand according to a substance (target substance) to be captured. Further, as long as at least the phosphorylcholine group of the formula (1) is present on the particle surface, it includes any aspect of the affinity particle, for example, the aspects of claims 2 and 3.
  • reaction in order to leave an amino group as a reactive group or an adsorptive group to which a ligand can bind, 3-aminopropyltrimethoxysilane and 3-aminopropyltrimethoxysilane into which phosphorylcholine group has been introduced.
  • the reaction can be carried out by a method of competing with methoxysilane or by adjusting the reaction amount.
  • the amino group is reacted with a compound having an arbitrary functional group, and the functional group is removed. It may be a reactive group or an adsorbing group to which gand can be bonded.
  • a compound having an arbitrary functional group may be a reactive group or an adsorbing group to which gand can be bonded.
  • daltaraldehyde, alkyl diimidate, acyl azides, isocyanates and the like can be considered.
  • the reaction amount of the surface modifier was adjusted to adjust the hydroxyl groups (OH) existing on the particle surface.
  • OH hydroxyl groups
  • the ligand is a protein
  • an amino group on the organic particles is reacted with one aldehyde group of dartartaldehyde, and the other aldehyde group is reacted with an amino group in the protein to bind the protein.
  • the hydroxyl group (OH) present on the particle surface without introducing a reactive group or an adsorbing group to which a ligand such as the above-mentioned amino group can be newly added is used as it is to obtain phosphorylcholine.
  • a group and a ligand or a reactive or adsorptive group to which the ligand can bind are introduced.
  • the affinity particles of the present invention are preferably produced by this method.
  • a chemical bond is formed by dehydration from the hydroxyl group on the particle surface and Si—OMe of the compound of the following formula (3) or (4).
  • This chemical reaction proceeds quantitatively very easily in most organic solvents by heating and refluxing.
  • This dehydration reaction is preferable because a chemically and physically extremely stable phosphorylcholine group can be introduced.
  • the phosphorylcholine group-containing compound represented by the following formula (3) or (4) is a novel compound.
  • OMe may be OEt, CI.
  • OEt CI bonded to Si, up to two may be a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, or an isobutyl group.
  • a phosphorylcholine derivative represented by the following formula (5) is dissolved in distilled water.
  • the phosphorylcholine derivative of the following formula (5) is a known compound and can be obtained as a commercial product.
  • the above procedure can be carried out in exactly the same manner even if m and n in the compound shown in the formula (3) are changed. it can.
  • the reaction solvent is not particularly limited, and water, an alcohol such as ethanol, propanol or butanol, or an aprotic solvent such as DMF or DMSO can be used in addition to the above-mentioned methanol.
  • a dehydrated solvent is preferred, and dehydrated methanol is particularly preferred.
  • OMe methoxy group
  • OEt ethoxy group
  • methanol is replaced with ethanol.
  • aqueous solution of the compound of formula (5) is cooled in an ice water bath, sodium periodate and a catalytic amount of ruthenium trichloride are added and stirred for 3 hours.
  • the reaction solution is concentrated under reduced pressure and dried under reduced pressure, and a phosphorylcholine derivative (7) having a carboxyl group represented by the following formula is extracted with methanol.
  • the reagent used in the above condensation reaction generally produces carboxylic acid halides such as phosphorus pentachloride, phosphorus oxychloride, phosphorus tribromide, and oxalyl chloride, in addition to salt chloride. Can be used without any problems.
  • the compound of the formula (7) can be directly reacted with a hydroxyl group.
  • sepharose beads are dispersed in anhydrous acetonitrile, an acetonitrile solution obtained by mixing the compound of the formula (7) and 1.2 equivalents of salted thiol and stirring overnight is added, and the mixture is stirred for 3 hours. Particles having phosphorylcholine conjugates introduced on the surface are obtained.
  • the remaining hydroxyl group becomes a reactive group or an adsorbable group to which a ligand can be bound without binding a phosphorylcholine group to all hydroxyl groups (adjusting the reaction amount).
  • These particles are the affinity particles according to claim 2, and are particles in which a phosphorylcholine group represented by the formula (1) and a reactive group or an adsorptive group capable of binding a ligand are present directly on the surface of the organic particles.
  • the remaining hydroxyl groups bonded with a ligand become the affinity particles according to claim 3, wherein the phosphorylcholine groups represented by the formula (1) and the ligands are directly present on the surface of the organic particles. Become.
  • the affinity particle according to claim 2 is a product form in which a user can bind an arbitrary ligand according to a substance (target substance) to be captured.
  • the affinity particle according to claim 3 is a product embodiment in which a ligand is bound in advance.
  • the affinity particle according to claim 1 is an affinity particle in which at least the phosphorylcholine group of the formula (1) is present on the particle surface, and the presence or absence of a ligand-ligand-binding reactive group or an adsorption group. Not limited to this, it is a product form that allows the user to bind any ligand according to the substance (target substance) to be captured. Further, at least the phosphorylcholine of the formula (1) As long as the group is present on the particle surface, it includes the affinity particle of such an embodiment, and includes, for example, the embodiments of claims 2 and 3.
  • the hydroxyl groups on the particles are activated using cyanogen bromide.
  • the amino group in the protein is reacted to bind the protein.
  • the hydroxyl group may be reacted with a compound having an arbitrary functional group, and the functional group may be a reactive group or an adsorptive group to which a protein can bind.
  • Step 1 Carboxyl groups are introduced into any particle by a known method or a method developed in the future. Carboxyl groups are introduced directly on the particle surface.
  • Step 2 A phosphorylcholine-containing compound represented by the following formula (9) is reacted with a carboxyl group-containing particle by a conventional method to form an acid amide bond between the phosphorylcholine group and the remaining carboxyl group to allow a ligand to bind thereto. It may be a group or an adsorptive group.
  • Step 1 Known methods (Step 1) for introducing a carboxyl group into particles include the following.
  • the surface of organic particles such as alkoxysilyl-containing particles is treated with a surface modifier such as alkoxysilane, chlorosilane, and silazane having a carboxyl group.
  • the organic particles having an alkoxysilyl group are immersed in a mixed solution of water and propanol with a silane coupling agent having a carboxylic acid, and after adding the silane coupling agent having a carboxylic acid, the mixture is heated to 50 ° C for 6 hours. Let react. After cooling to room temperature, the organic particles are washed with methanol and dried to obtain particles having carboxyl groups introduced directly to the surface of the organic particles.
  • the particle surface is first treated with 1.3.5.7-tetramethylcyclotetrasiloxane, and the carboxylated surface is obtained by reacting the carboxyl group-containing monomer with the Si—H group introduced on the surface.
  • a carboxyl-based monomer can be used as the monomer used in the present method.
  • the carboxyl-based monomer only needs to have a carboxyl group and a reactive site such as polymerizable butyl or acrylic.
  • Step 2 a method for introducing a phosphorylcholine group onto the surface of the carboxylated particles (Step 2) will be described below.
  • This particle is an affinity particle according to claim 2, wherein the phosphorylcholine group represented by the formula (1) and a reactive group or an adsorbable group capable of binding a ligand are present directly on the surface of the organic particle. Become. Then, the ligand bound to a reactive group or an adsorptive group capable of binding to the ligand becomes the affinity particle according to claim 3, wherein the phosphorylcholine group represented by the formula (1) and the ligand are directly attached to the surface of the organic particle. It becomes particles that exist.
  • the affinity particle according to claim 2 is a product form in which a user can bind an arbitrary ligand according to a substance (target substance) to be captured.
  • the affinity particle according to claim 3 is a product embodiment in which a ligand is bound in advance.
  • the affinity particle according to claim 1 is an affinity particle in which at least the phosphorylcholine group of the formula (1) is present on the particle surface, and the presence or absence of a ligand-ligand-binding reactive group or an adsorption group. Not limited to this, it is a product form that allows the user to bind any ligand according to the substance (target substance) to be captured. Further, as long as at least the phosphorylcholine group of the formula (1) is present on the particle surface, it also includes the affinity particles of such an embodiment, and for example, also includes the embodiments of claims 2 and 3.
  • the carboxyl group can be left as a reactive group or an adsorbing group to which a ligand can be bound by adjusting the reaction amount of a silane coupling agent having a carboxylic acid having a phosphorylcholine group introduced thereto. You can do it.
  • the carboxyl group may be reacted with a compound having an arbitrary functional group, and the functional group may be a reactive group or an adsorptive group to which a ligand can bind.
  • the carboxyl groups on the organic particles are immersed in a solution of N-hydroxysuccinimide (NHS) and 1-ethyl-3- (3-dimethylaminopropyl) -carbodiimide to activate the particle surface Esterify.
  • NHS N-hydroxysuccinimide
  • 1-ethyl-3- (3-dimethylaminopropyl) -carbodiimide to activate the particle surface Esterify.
  • the amino group in the protein is reacted to bind the protein.
  • the hydroxyl group may be reacted with a compound having an arbitrary functional group, and the functional group may be a reactive group or an adsorptive group to which a protein can bind.
  • the affinity particles of the present invention obtained above, the affinity of the target substance of the present invention is obtained. A two-tee separation method is performed.
  • the method of the present invention is an epoch-making method for separating a target substance in that high-precision separation is easily performed using organic particles.
  • the method of the present invention includes the following three steps.
  • the first step has already been performed, and thus is omitted.
  • An affinity particle having a phosphorylcholine group represented by the formula (1) on the surface of an organic particle by a covalent bond or a phosphorylcholine group represented by the formula (1) having a covalent bond on the surface of an organic particle A first step of binding an arbitrary ligand to an affinity particle having a ligand having a specific affinity on the surface of the organic particle by covalent bonding or adsorption.
  • an affinity particle having a phosphorylcholine group represented by the formula (1) and a reactive group or an adsorbing group capable of binding to a ligand on the surface of an organic particle, the former having a covalent bond and the latter having a covalent bond or adsorption, and an arbitrary particle having an arbitrary ligand Put 1 ml of PBS solution into a 2 ml eppen tube and shake gently at 4 ° C for 30 minutes. Centrifuge at 15000 rpm for 30 minutes and discard the supernatant. For washing, add 1 ml of PBS solution, shake gently, centrifuge at 15000 rpm for 30 minutes, and discard the supernatant. This washing operation is repeated three times.
  • the affinity particles produced in the first step are dispersed in a liquid sample containing a target substance selectively captured by an arbitrary ligand, and gently shaken at 4 ° C for 30 minutes. Centrifuge at 1500 rpm for 30 minutes and discard the supernatant. For washing, mix 1 ml of PBS solution, shake gently, centrifuge at 15000 rpm for 30 minutes, and discard the supernatant. Repeat this washing operation three times.
  • FIG. 1 is a schematic diagram showing the difference in selectivity of capturing the target substance between the affinity particles of the present invention and the conventional affinity particles.
  • the phosphorylcholine group introduced on the particle surface can be confirmed and quantified by the following method.
  • the particles obtained were immersed in perchloric acid and heated to 180 ° C. to decompose.
  • the resulting solution was diluted with water, and hexamolybdate hexaammonium tetrahydrate and L-ascorbic acid were added thereto.
  • the color was developed at 95 ° C for 5 minutes, and the absorbance was measured at 710 ° C. , The amount introduced.
  • an aqueous solution of sodium dihydrogen phosphate was used for the calibration curve.
  • 1-a-Glyceline phosphorylcholine (6.29 g) was dissolved in 210 ml of distilled water and cooled in an ice-water bath. Sodium periodate (10.23 g) was added and stirred for 5 hours. The reaction solution was concentrated under reduced pressure and dried under reduced pressure, and the desired product was extracted with methanol. The structure of compound (6) is shown below.
  • FIG. 2 shows the 1H NMR spectrum of the compound of the formula (6) in heavy water. Since the compound of formula (6) is in equilibrium with formula (10) in water, the actual spectrum reflects both formula (6) and formula (10).
  • FIG. 3 shows the 1H NMR spectrum of the compound of the formula (7) in heavy water.
  • Styrene-glycidyl methallylate particles (lg) were dispersed in 80 ml of purified water, 20 ml of a 25% aqueous solution of ammonia was added, and the mixture was heated and stirred at 70 ° C. overnight. Cool to room temperature and centrifuge (lg)
  • PC particles (A) 0.5 g of styrene-glycidyl methallylate particles having an amino group introduced therein was dispersed in 10 ml of methanol, and 0.5 g of the aldehyde compound of Synthesis Example 1 was added thereto, followed by stirring overnight. 140 mg of sodium cyanoboronate was added in an ice water bath, stirred for 6 hours, and then purified by centrifugation (17000 rpm ⁇ 60 minutes three times) to obtain PC particles (A).
  • 4 and 5 show the particle size distributions of the styrene-glycidyl methacrylate particles and PC particles (A) prepared in Reference Example 1 in water and a saline solution (0.1 M aqueous solution).
  • FIG. 4 shows that the styrene-glycidyl methallylate particles generally used in the latex agglomeration method using affinity particles have a particle size distribution in an aqueous NaC1 solution that is smaller than that in water. Is significantly larger, indicating that aggregation is occurring.
  • FIG. 5 shows that the change in the particle size distribution of the PC particles (A) in the saline solution is smaller than that in the case of FIG. 4, indicating that aggregation by salt is less likely to occur. From the above, by modifying the PC particles (A) with the phosphorylcholine of the formula (1), the effects of interfering substances such as salts can be reduced and the measurement accuracy can be increased.
  • PC particles (B) Phosphorylcholine-modified particles
  • PC particles (C) Phosphorylcholine-modified particles
  • PC particles (D) Phosphorylcholine-modified particles
  • FIG. 10 shows the results obtained when the same operation as in the example was performed without modifying phosphorylcholine on 0.1 g of the 2-aminoethyl methacrylate N-isopropylacrylamide-methylenebisacrylamide particles obtained in Reference Example 2. It was a component of the fact that the selectivity was low when either ligand was used as compared with Example 1.
  • the affinity particles of the present invention have very high selectivity because they capture only the target substance desired to be separated. And its excellent dispersibility and separation from a liquid sample are extremely easy. In addition, since the aggregation due to salt is small, the target substance can be easily and accurately separated. In addition, since reagents such as immunoprecipitation and latex agglutination can be detected with high sensitivity without being affected by salts, bio-related industries that require high-precision separation and detection of target substances are required. Useful for

Description

明 細 書
ァフィ二ティー粒子及びァフィ二ティー分離方法
技術分野
[0001] 本発明はァフィユティー粒子及びァフィユティー分離方法に関する。さらに詳しくは
、有機粒子を利用したァフィユティー粒子及び目的物質を高精度にかつ容易に分離 することが可能なァフィユティー分離方法に関する。本発明のァフィユティー粒子は、 目的物質を高感度かつ容易に検出可能な免疫沈降法、ラテックス凝集法等を始めと する各種の分離、精製、検査方法に対して極めて有用に活用される。
背景技術
[0002] 従来、生体物質の分離精製にはカラムクロマトグラフィーが用いられてきた。しかし ながら、カラム分離には、下記(1)〜(3)に示す致命的な問題点があった。
(1)目的物質を得るまでに多種のカラムを用いなければならず、精製効率が悪い。
(2)分画成分中に目的物質が含まれているかどうかの確認試験を行う必要があること から、精製に多大な時間を要する。
(3)精製時のロスも大き 、ため多量のサンプルが必要となる。
[0003] これに対して、目的物質の分離精製には、リガンドが担持されたァフィユティーカラ ムゃァフィ-ティー粒子が使用されている(特許文献 1、特許文献 2)。
[0004] し力しながら、ァフィユティーカラムによる分離精製には下記の問題点があった。
(1)所望の目的物質が選択的に分離されない。すなわち、リガンドに捕捉される目的 物質の他に、希望しな 、物質もカラムに吸着されてしまう。
(2)捕捉効率が低ぐ多量の液体試料が必要となる。
[0005] また、ァフィユティー粒子を液体試料中に分散させて分離するァフィユティー分離 方法には、ァガロースなどが使用されているが (非特許文献 1)、所望の目的物質が 選択的に分離されないという問題点があった。すなわち、リガンドに捕捉される目的 物質の他に、希望しな 、物質もァフィユティー粒子に吸着されてしまう。
[0006] 有機粒子力もなるァフィユティー粒子は、上記の致命的な問題点の他にも、高い塩 濃度の試料中では、有機粒子の凝集が起こりやすくなる問題点があった。そのため、 試料を希釈して測定を行う必要があった。
[0007] 特許文献 1:特公平 8 - 26076号公報
特許文献 2:特表平 2002— 511141号公報
非特許文献 l : Bioconjugate Chem.; 2002; 13(2); 163-166
発明の開示
発明が解決しょうとする課題
[0008] 本発明は上述の課題の解決を目的とするもので、各種の分離、精製、検査方法等 に使用される有機粒子力もなるァフィ二ティー粒子を提供するものである。
課題を解決するための手段
[0009] すなわち、本発明は、下記式(1)で示されるホスホリルコリン基を有機粒子の表面 に共有結合で有することを特徴とするァフィユティー粒子を提供するものである。
[化 4]
Figure imgf000004_0001
(1)
[0010] また、本発明は、下記式(1)で示されるホスホリルコリン基を有機粒子の表面に共 有結合で有し、ある目的物質に特異的に親和性を持つリガンドと結合可能な反応基 又は吸着基を有機粒子の表面に共有結合又は吸着で有することを特徴とするァフィ 二ティー粒子を提供するものである。
[化 5] o
O-P-O 画
o"
(1)
[0011] さらに、本発明は、下記式(1)で示されるホスホリルコリン基を有機粒子の表面に共 有結合で有し、ある目的物質に特異的に親和性を持つリガンドを有機粒子の表面に 共有結合又は吸着で有することを特徴とするァフィユティー粒子を提供するものであ る。
[化 6]
Figure imgf000005_0001
(1)
[0012] また、本発明は、前記有機粒子が、スチレン、メタクリル酸グリシジル、(メタ)アクリル 酸、 N—アルキルアクリルアミド、(メタ)アクリル酸アルキルのうち 1種または 2種以上 のモノマー単位を重合体中に含む合成粒子、又は、ァガロース若しくはセファロース 力もなる多糖類であって、その平均粒子径が 20nm〜500 μ mであることを特徴とす る上記のァフィユティー粒子を提供するものである。
[0013] さらに、本発明は、前記リガンドが、各種抗体、抗原、酵素、基質、レセプター、ぺプ チド、 DNA、 RNA、ァプタマ一、プロテイン A、プロテイン G、アビジン、ピオチン、キ レートイ匕合物、各種金属イオン力 なる群力 選ばれた一種又は二種以上のリガンド であることを特徴とする上記のァフィユティー粒子を提供するものである。
[0014] また、本発明は、(1)請求項 1又は 2に記載のァフィユティー粒子に任意のリガンド を結合させる第 1工程、(2)第 1工程で製造したァフィユティー粒子を、任意のリガン ドにより選択的に捕捉される目的物質を含む液体試料に分散させる第 2工程、(3)ァ フィ-ティー粒子カゝら捕捉した目的物質を回収する第 3工程を含むことを特徴とする 有機粒子による目的物質のァフィユティー分離方法を提供するものである。
[0015] さらに、本発明は、(1)請求項 3記載のァフィユティー粒子を、任意のリガンドにより 選択的に捕捉される目的物質を含む液体試料に分散させる第 1工程、 (2)ァフィ-テ ィー粒子カゝら捕捉した目的物質を回収する第 2工程を含むことを特徴とする有機粒 子による目的物質のァフィユティー分離方法を提供するものである。
なお、本発明のァフィユティー粒子を、免疫沈降法やラテックス凝集法等の抗体や 蛋白の検出に用いる場合には、(2)の回収工程は不要であり、その分散状態の変化 により目視で容易に確認できる。 発明の効果
[0016] 本発明のァフィユティー粒子は、ある目的物質 (分離を希望する目的の物質)のみ をリガンドにより捕捉し、その他の物質が粒子に吸着するのを抑制するため、分離選 択性が極めて高い。そして、その優れた分散性と、血清中のよう各種の塩が存在する 試料中でも、凝集が起こらずに、簡便かつ高精度に目的物質を分離することが可能 となる。
[0017] すなわち、本発明の目的物質の分離方法は、分離を目的とする目的物質を短時間 に効率良ぐかつ簡便に分離することが出来る。通常、物質は異物に対して吸着する 性質を有しているため、従来のァフィユティー粒子では目的物質のみを効率良く単 離するのは困難である力 粒子表面をホスホリルコリン基で修飾することにより、目的 物質のァフィ二ティー粒子に対する非特異的吸着を極めて効率良く防止でき、精製 効率を高めることが可能である。
[0018] また、ホスホリルコリン基は極めて高い親水性を有しており、水を含む液体試料中に て、ァフィユティー粒子の分散性を向上させる機能も有する。
[0019] さらに、通常の粒子は塩により凝集する傾向があるため、例えば、血清から目的物 を単離したい場合、血清中の各種の塩により凝集し精製効率が低下するが、本発明 のァフィユティー粒子は塩の存在下でも凝集が少なぐ効率的に目的物を回収できる
図面の簡単な説明
[0020] [図 1]本発明のァフィ二ティー粒子と従来のァフィ二ティー粒子による蛋白質捕捉の 選択性の違!、を示す模式図である。
[図 2]合成例 1で製造したィ匕合物の構造式及び NMRスペクトルである。
[図 3]合成例 2で製造したィ匕合物の構造式及び NMRスペクトルである。
[図 4]従来のァフィユティー粒子の水中及び食塩水での粒度分布を示すグラフである
[図 5]本発明のァフィユティー粒子の水中及び食塩水での粒度分布を示すグラフで ある。
[図 6]参考例 1で作製したスチレンーグリシジルメタタリレート粒子と PC粒子 (A)に対 する蛋白質吸着量を比較するグラフである。
[図 7]参考例 2で作製したスチレン一グリシジルメタタリレート粒子と PC粒子 (B)、 (C) に対する蛋白質吸着量を比較するグラフである。
[図 8]参考例 3で作製したァガロースビーズと PC粒子 (D)に対する蛋白質吸着量を 比較するグラフである。
[図 9]実施例 1のァフィユティー粒子の抗体選択性を比較するグラフである。
[図 10]比較例 1のァフィユティー粒子の抗体選択性を比較するグラフである。
発明を実施するための最良の形態
[0021] 以下に本発明を詳細に説明する。
[0022] 「有機粒子」
本発明において、ァフィユティー粒子を構成する有機粒子は特に限定されない。有 機粒子とは一般に平均粒径 20ηπ!〜 500 m程度の有機の物体を意味する。具体 的な粒子としては、スチレン、メタクリル酸グリシジル、(メタ)アクリル酸、 N アルキル アクリルアミド、 (メタ)アクリル酸アルキル、 (メタ)アクリル酸アミノアルキル、 (メタ)ァク リル酸ヒドロキシアルキルのうち 1種または 2種以上のモノマー単位を重合体の中に含 むような合成粒子、或いはァガロース、セファロース等の有機粒子が挙げられる。また 外層に有機の物体、内側に無機粒子を含むコア シェル構造のハイブリッド粒子も 含まれる。
[0023] 特に好ましい粒子は、スチレンージビュルベンゼン共重合体、スチレンーメタクリル 酸グリシジル ジビュルベンゼン共重合体、アクリル酸 N—イソプロピルアクリルァ ミドーメチレンビスアクリルアミド共重合体、 2—ヒドロキシメタクリレートースチレンージ ビュルベンゼン共重合体、 2—アミノエチルメタタリレート N—イソプロピルアクリル アミドーメチレンビスアクリルアミド共重合体など、乳化重合、懸濁重合などにより容易 に合成可能な粒子である。
[0024] 上記(1)式のホスホリルコリン基と、リガンドが結合可能な反応基又は吸着基とが、 粒子表面に共有結合によって導入させるため、その表面にアミノ基、カルボキシル基 、水酸基、チオール基などの反応基を有する粒子が好ましい。
[0025] また、有機粒子の平均粒子径が 20ηπ!〜 500 μ mであるァフィユティー粒子が好ま しい。
例えば、スチレンージビュルベンゼン共重合体、スチレンーメタクリル酸グリシジル ージビュルベンゼン共重合体、アクリル酸 N—イソプロピルアクリルアミドーメチレン ビスアクリルアミド共重合体、 2—ヒドロキシメタクリレートースチレンージビュルべンゼ ン共重合体、 2 アミノエチルメタクリレートー N—イソプロピルアクリルアミドーメチレ ンビスアクリルアミド共重合体などである。
[0026] 「リガンドが結合可能な反応基又は吸着基」
リガンドが結合できる限り限定されない。例えば、共有結合形態では、アミド、エステ ル、ウレタン、エーテル、 2級ァミン、尿素結合、ジスルフイド結合などが好ましい。従 つて、リガンドがこれらの共有結合形態となり得る反応基が好ましぐアミノ基、水酸基 、カルボキシル基、チオール基等が好ましい。また吸着形態は、アビジン—ピオチン 、金属—キレートイ匕合物などが好ましい。従って、リガンドがこれらの吸着形態となり 得る吸着基が好ましぐアビジン、ピオチン、キレートイ匕合物等が好ましい。
[0027] 「リガンド」
本発明において、リガンドとは、ある目的物質と特異的に結合する物質であり、各種 抗体、抗原、酵素、基質、レセプター、リガンド、ペプチド、アブタマ一、プロテイン A、 プロテイン G、アビジン、ピオチン、キレートイ匕合物、各種金属イオンなどである。例え ば、各種抗体は IgG、 IgM、 IgA、 IgD、 IgE、 IgY、多糖類、酵素はダルタチオン— S トランスフェラーゼ、基質はグルタチオン、レセプターはホルモンレセプター、サイト 力インレセプター、リガンドはレクチン、キレートイ匕合物は-トリ口三酢酸、各種金属ィ オンは Ni2+、 Co2+、 Cu2+、 Zn2+、 Fe3+である。
[0028] 「本発明のァフィユティー粒子の製造方法」
式(1)で示されるホスホリルコリン基を有機粒子の表面に共有結合で有し、ある目 的物質に特異的に親和性を持つリガンドと結合可能な反応基又は吸着基を有機粒 子の表面に共有結合又は吸着とを有機粒子の表面に直接的に存在していることが 本発明の本質であるので、その製造方法は限定されず、いかなる方法により結合さ せてもよい。
但し、上述したように、ホスホリルコリン基及びリガンドが結合可能な反応基又は吸 着基をあらかじめ有する重合体を用い、化学結合することなく粒子表面を単に被覆 する態様は含まない。被覆された重合体が剥れてしまったり、被覆重合体による影響 が生じたりするからである。
[0029] 本発明のァフィユティー粒子は下記方法等によって製造できる。
ステップ 1 :粒子に下記式(1)で示されるホスホリルコリン基とリガンドが結合可能な 反応基又は吸着基を導入する。反応基又は吸着基は限定されないが、アミノ基ゃ水 酸基、カルボキシル基、チオール基などである。
ステップ 2 :粒子に導入した反応基又は吸着基に対して、式(1)で示されるホスホリ ルコリン基とリガンドとを結合させる。なお、ホスホリルコリン基又はリガンドと反応基又 は吸着基の間に存在する化学構造 (スぺーサ一)は任意である。例えば、任意なス ぺーサ一として、メチレン鎖、ォキシエチレン鎖などの他、アミノ基を 1つまたは複数 含むアルキレン鎖でも良 、。
[0030] 「粒子表面に存在して 、る反応基又は吸着基がアミノ基の場合」
ステップ 1:任意の粒子に、公知の方法若しくは今後開発される方法にてアミノ基を 導入する。アミノ基は粒子表面に直接的に導入される。アミノ基は一級アミン若しくは 二級ァミンである。
ステップ 2:アミノ基を有する粒子に対し、グリセ口ホスホリルコリンの酸ィ匕的開裂反 応により得られたアルデヒド体又はハイドレート体を、還元的ァミノ化反応によって、ホ スホリルコリン基を粒子表面に直接的に付加させる。
すべてのアミノ基に対してホスホリルコリン基を結合させずに (反応量を調節する)、 残存するァミノ基が、リガンドが結合可能な置換基となる。
または、アミノ基を有する粒子に対し、グリセ口ホスホリルコリンの酸ィ匕的開裂により 得られたカルボキシル体を、アミドィ匕反応によってホスホリルコリン基を粒子表面に直 接的に付加させる。全てのアミノ基に対してホスホリルコリン基を結合させずに (反応 量を調節する)、残存するァミノ基が、リガンドが結合可能な置換基となる。
[0031] 「粒子表面へのァミノ基の導入方法」
粒子にアミノ基を導入する公知の方法 (ステップ 1)としては、下記が挙げられる。 1.プラズマ処理の表面反応によるアミノ基の導入 窒素ガス雰囲気下で低温プラズマにより粒子表面にアミノ基を導入する。具体的に は粒子をプラズマ反応容器内に収容し、反応容器内を真空ポンプで真空にした後、 窒素ガスと水素ガスを導入する。続いてグロ一放電により、粒子表面にアミノ基を導 入できる。プラズマ処理した有機材料を機械的に粒子化することも可能である。ブラ ズマ処理に関する文献を下記に示す。
1. M. Muller, C. oehr
Plasma aminofunctionalisation of PVDr microfiltration membranes: comparison of the in plasma modifications with a grafting method using ESCA and an
amino— selective fluorescent probe
Surface and Coatings Technology 116—119 (1999) 802—807
2. Lidija Tusek, Mirko Nitschke, Carsten Werner, Karin Stana— Kleinschek, Volker Ribitsch
Surface characterization of NH3 plasma treated polyamide 6 foils
Colloids and Surfaces A: Physicochem. Eng. Aspects 195 (2001) 81-95
3. Fabienne Poncin— Epaillard, Jean-Claude Brosse, Thierry Falher
Reactivity of surface groups formed onto a plasma treated poly (propylene) film Macromol. Chem. Phys. 200. 989-996 (1999)
[0032] 2.表面改質剤によるァミノ基の導入
アミノ基を有するアルコキシシラン、クロロシラン、シラザンなどの表面改質剤を用い て、アルコキシシリル基含有粒子等の有機粒子表面を処理する。
例えば、 1級アミノ基を有する 3—ァミノプロピルトリメトキシシランにより、アルコキシ シリル基含有粒子を処理してアミノ基を導入する。具体的には、 3—トリメトキシシリル プロピル 1ーメタクリレートーメタクリル酸メチルージビュルベンゼン共重合粒子を水 —2—プロパノール混合液中に浸し、 3—ァミノプロピルトリメトキシシランを添加後、 5 0°Cに加熱し 6時間反応させる。室温に冷却後、上記重合体をメタノールで洗浄し、 乾燥してァミノ基が上記共重合粒子表面に直接導入された粒子が得られる。
[0033] 3.シリコーン気相処理によるアミノ基の導入 (特公平 1— 54379号公報、特公平 1— 54380号公報、特公平 1— 54381号公報参照) 粒子表面をまず 1. 3. 5. 7—テトラメチルシクロテトラシロキサンにより処理し、表面 に導入された Si— H基と、アミノ基を有するモノマーを反応させてァミノ化された表面 を得る。例えば、スチレン—ジビュルベンゼン共重合粒子と 1. 3. 5. 7—テトラメチル シクロテトラシロキサンをデシケーター中に入れ、ァスピレーターで脱気する。 80°Cで 16時間反応させた後、上記粒子を取り出し、 50°Cで乾燥させる。得られた粒子をェ タノール中に分散し、ァリルアミンを添加、続いて塩ィ匕白金酸のエタノール溶液を添 加し、 60°Cで 2時間攪拌する。反応終了後、濾過、エタノール洗浄、減圧乾燥してァ ミノ化有機粒子を得る。
本法に用いるモノマーは、アミン系モノマーを用いることが出来る。アミン系モノマー とは、ァリルァミンに限られず、アミノ基及び重合可能なビュル、アクリル等の反応性 部位を有していれば良い。アミノ基は、ブトキシカルボ-ル基、ベンジルォキシカルボ -ル基などにより保護されて ヽても良!、。
また、アミン系モノマーでなくても、エポキシ基のように、例えばジァミンとの反応に より簡単にアミノ基を導入可能な官能基を有するモノマーでも良い。
「アミノ基を有する粒子にホスホリルコリン基を導入する方法」
次に、ァミノ化された粒子表面にホスホリルコリン基を導入する方法 (ステップ 2)を 以下に示す。
粒子をメタノール中に漬し、ホスファチジルグリセ口アルデヒドを添カ卩し、室温で 6時 間放置する。そして、シァノホウ素酸ナトリウムを 0°Cで添加、一晩加熱攪拌し、ァミノ 基にホスホリルコリン基を付加させる。粒子をメタノールで洗浄後、乾燥し、ホスホリル コリン基を表面に直接有する粒子が得られる。反応溶媒はメタノール以外にも水、ェ タノール、 2—プロパノール等プロトン性溶媒であれば使用可能である力 メタノール を用いた場合の導入率が高 、傾向にある。
または、粒子をジメチルスルホキシド—水混合溶液に分散し、 N—ヒドロキシスクシ ンイミド、 1-ェチル -3-(3-ジメチルァミノプロピル)カルボジイミド塩酸塩およびカルボ キシメチルホスホリルコリンを溶解したジメチルスルホキシド一水混合溶液を添加する 。室温で 6時間攪拌し、粒子を水で充分洗浄後、乾燥し、ホスホリルコリン基を表面に 直接有する粒子が得られる。反応溶媒は上記以外にも N, N'—ジメチルホルムアミド 、テトラヒドロフラン、ァセトニトリルなど非プロトン性溶媒が好ましく用いられる。或いは 、カルボキシメチルホスホリルコリンと塩化チォ -ルを反応させて酸塩化物とし、 N, N 'ージメチルホルムアミド、ァセトニトリルなどを溶媒とした無水条件下で粒子と反応さ せて粒子を水で充分洗浄後、乾燥し、ホスホリルコリン基を表面に直接有する粒子が 得られる。この方法は表面の水酸基とも効率良く反応を行わせることができ、粒子が ァガロース、セファロースなど多糖類の場合や 2—ヒドロキシェチル (メタ)アタリレート の場合に有効である。
表面改質剤に 3—ァミノプロピルトリメトキシシランを用いてアミノ基を、アルコキシシ リル基を有する有機粒子に導入し、次にホスホリルコリン基 (PCと略す)を導入する方 法のスキームを下記に示す。
[化 7]
Figure imgf000012_0001
Figure imgf000012_0002
上記で説明したように、アミノ基を有する粒子を調製し、グリセ口ホスホリルコリンの 酸ィ匕的開裂反応により得られたアルデヒド体又はハイドレート体との還元的アミノィ匕 反応によりホスホリルコリン基が粒子表面に直接付加した粒子を製造することができ る。
この方法は、ホスホリルコリン基の導入率が高ぐまた、様々な有機粒子の表面を修 飾できるという大きな利点がある。
[0037] 上記の方法は、グリセ口ホスホリルコリンの酸ィ匕的開裂反応により得られるアルデヒ ド体を含有する化合物が、公知のグリセ口ホスホリルコリン基を、公知の方法により酸 化的開裂を行わせるもので、極めて簡単なステップである。この反応は、 1, 2—ジォ 一ルを過ヨウ素酸、或 、は過ヨウ素酸塩を用いて酸ィ匕することにより結合を開裂させ 、 2つのアルデヒド体を得るものであり、本法の場合、ホスホリルコリンアルデヒド体とホ ルムアルデヒドを生成する。反応は通常水中または水を含む有機溶媒中で行われる 。反応温度は 0度から室温である。アルデヒド体は水中で平衡反応を経てハイドレー トとなることもあるが、続くァミンとの反応には影響しない。下記にホスホリルコリン基を 含有する一官能のアルデヒド体を調製するスキームを示す。
[化 8]
HOT 0一ト。〜
OH Ο" N—
I
Figure imgf000013_0001
[0038] グリセ口ホスホリルコリンの酸ィ匕的開裂反応により得られるアルデヒド体 (若しくはハイ ドレート体)を粒子のァミノ基に結合させる還元的ァミノ化反応は、両者を溶媒中にて 攪拌することにより容易に行うことが出来る。この反応は両者を水或いはアルコール 中に溶解または分散し (第三成分の有機溶媒を混合しても良い)、イミンを形成させ た後、これを還元剤により還元して 2級ァミンを得るものである。還元剤としてはシァノ ホウ素酸ナトリウム等マイルドな還元剤が好ましいが、ホスホリルコリンが安定な限り、 他の還元剤を用いることも可能である。反応は通常 0度から室温で行われる力 場合 によりカロ熱することもある。
[0039] また、上記アミノ基には、式(2)で示される化合物を任意の量だけ常法により反応さ せて、残存するアミノ基をリガンドが結合可能な反応基又は吸着基としても良い。 [化 9]
Figure imgf000014_0001
(2)
n= l〜12までの整数
[0040] 「リガンドが結合可能な反応基又は吸着基にっ 、て」
上記反応にぉ 、ては、すべてのアミノ基に対してホスホリルコリン基を結合させずに (反応量を調節する)、残存するァミノ基が、リガンドが結合可能な反応基又は吸着基 となる。この粒子が請求項 2記載のァフィユティー粒子であり、式(1)で示されるホス ホリルコリン基とリガンドが結合可能な反応基又は吸着基とが有機粒子の表面に直接 的に存在する粒子となる。そして、この残存するァミノ基にリガンドを結合させたもの 力 請求項 3記載のァフィユティー粒子となり、式(1)で示されるホスホリルコリン基とリ ガンドとが有機粒子の表面に直接的に存在する粒子となる。
請求項 2記載のァフィ二ティー粒子は、捕捉したい物質(目的物質)に応じて使用 者が任意のリガンドを結合させることが可能となる製品態様である。請求項 3記載のァ フィ-ティー粒子はあらかじめリガンドを結合させた製品態様である。なお、請求項 1 記載のァフィユティー粒子は、少なくとも式(1)のホスホリルコリン基が粒子表面に存 在して 、るァフィユティー粒子であり、リガンドゃこれを結合できる反応基又は吸着基 の有無に限らず、捕捉したい物質(目的物質)に応じて使用者が任意のリガンドを結 合させることが出来る製品態様である。また、少なくとも式(1)のホスホリルコリン基が 粒子表面に存在している限り、いかなる態様のァフィユティー粒子を含むものであり、 例えば請求項 2及び請求項 3の態様も含むものである。
[0041] 上記の反応において、リガンドが結合可能な反応基又は吸着基としてアミノ基を残 存させておくには、 3—ァミノプロピルトリメトキシシランとホスホリルコリン基を導入した 3—ァミノプロピルトリメトキシシランとを競合反応させる方法又は反応量を調節するな どにより行うことが出来る。
なお、このアミノ基に任意の官能基を有する化合物を反応させて、その官能基をリ ガンドが結合可能な反応基又は吸着基としても良い。例えば、ダルタルアルデヒド、 アルキルジイミデート、ァシルアジド類、イソシァネート類などが考えられる。
[0042] なお、上記の表面改質剤に 3—ァミノプロピルトリメトキシシランを使用した場合のス キームにおいて、表面改質剤の反応量を調整して、粒子表面に存在する水酸基 (O H)を残しておき、残存する OH基を、リガンドが結合可能な反応基又は吸着基として 利用することも出来る。
[0043] 「アミノ基を持つ粒子へのリガンドの結合方法にっ 、て」
リガンドが蛋白質の場合、有機粒子上のアミノ基にダルタルアルデヒドの片方のァ ルデヒド基を反応させ、もう一方のアルデヒド基に蛋白質中のアミノ基を反応させ、蛋 白質を結合させる。
[0044] 「粒子表面に存在して!/、る反応基又は吸着基が水酸基の場合」
有機粒子に水酸基が存在する場合は、上記のァミノ基のようなリガンドが結合可能 な反応基又は吸着基を新たに導入することなぐ粒子表面に存在する水酸基 (OH) をそのまま利用して、ホスホリルコリン基及びリガンド又はリガンドが結合可能な反応 基又は吸着基を導入する。本発明のァフィユティー粒子はこの方法により製造するこ とが好ましい。
[0045] 「水酸基を有する粒子にホスホリルコリン基を導入する方法」
粒子表面の水酸基と、下記式(3)または (4)の化合物の Si— OMeから脱水によつ て化学結合を形成させる。この化学反応はほとんどの有機溶媒中で、加熱'還流を 行うことで極めて容易に定量的に進行する。この脱水反応によって化学的、物理的 に極めて安定なホスホリルコリン基を導入することが出来るので好ましい。なお、下記 式(3)または (4)で示されるホスホリルコリン基含有化合物は新規化合物である。
[化 10]
Figure imgf000015_0001
(3)
[化 11]
Figure imgf000016_0001
(4)
式中、 mは 2〜6、 nは 1〜4である。 OMeは、 OEt、 CIであってもよい。また Siと結 合する OMeまたは OEtまたは CIの内、 2つまではメチル基、ェチル基、プロピル基、 イソプロピル基、ブチル基、イソブチル基でも良い。
[0046] 「式(3)のホスホリルコリン基含有化合物の製造方法」
下記式(5)に示したホスホリルコリン誘導体を蒸留水に溶解させる。下記式(5)のホ スホリルコリン誘導体は公知の化合物であり市販品を入手できる。
[化 12] o 1 +
OH o一
(5)
[0047] 式(5)の化合物の水溶液を氷水浴中で冷却し、過ヨウ素酸ナトリウムを添加し、 5時 間攪拌した。反応液を減圧濃縮、減圧乾燥し、メタノールにより下記式 (6)に示すァ ルデヒド基を有するホスホリルコリン誘導体を抽出する。
[化 13]
Figure imgf000016_0002
(6)
[0048] 次に、式(6)のメタノール溶液に 3—ァミノプロピルトリメトキシシランを 0. 5当量添加 する。この混合溶液を室温で所定時間撹拌したのち、氷冷し、シァノヒドロホウ素化ナ トリウムを適量添加し、室温に戻して 16時間撹拌する。この間も反応容器には乾燥窒 素を流し続ける。沈殿をろ過した後、式(3)のメタノール溶液を得る。
[0049] 上記の手順は、式(3)に示したィ匕合物中の m、 nが変わっても全く同様に行うことが できる。ここで示した手順は m= 3、 n= 2の場合である。反応溶媒は特に限定されず 、上述したメタノール以外にも水や、エタノール、プロパノール、ブタノールなどのアル コール、 DMFや DMSOなどの非プロトン性溶媒を用いることができる。ただし、反応 中の重合を防ぐためには脱水溶媒が好ましく、なかでも脱水メタノールが好適である また、(3)中のメトキシ基 (OMe)がエトキシ基 (OEt)の場合はメタノールをエタノー ルに変えて反応を行 、、 C1の場合はジメチルホルムアミドゃジメチルスルホキシドに 変更するだけでよい。
さらには、 Siと結合する OMeまたは OEtまたは C1の内、 2つまたは 1つがメチル基、 ェチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基のいずれかで置換 されて 、る場合も上記の手法と全く同様に製造することができる。
「式 (4)のホスホリルコリン基含有化合物の製造方法」
式(5)の化合物の水溶液を氷水浴中で冷却し、過ヨウ素酸ナトリウム及び触媒量の 三塩化ルテニウムを添加し、 3時間攪拌する。反応液を減圧濃縮、減圧乾燥し、メタノ ールにより下記式に示すカルボキシル基を有するホスホリルコリン誘導体(7)を抽出 する。
[化 14] o
へ ■ v^ N+
HOO ^ -P-O ゾ I一
O一
(7)
次に、式(7)のァセトニトリル或いは N, N—ジメチルホルムアミド分散液に塩化チォ -ル 1. 2当量を添加し、 30分間攪拌した溶液に 3—ァミノプロピルトリメトキシシラン を 0. 9当量添加する。この混合溶液を室温で 4時間撹拌し、式 (8)の化合物が得ら れる。 I
MeO- 。〜
Figure imgf000018_0001
(8)
また、上記縮合反応に用いる試薬は、塩ィ匕チォ-ル以外にも、五塩化リン、ォキシ 塩化リン、三臭化リン、ォキザリルクロライドなど、一般的にカルボン酸ハロゲンィ匕物を 生成するものであれば問題なく使用できる。
また、式 (8)のシランカップラーを用いる以外にも、式 (7)の化合物を直接水酸基と 反応させることが可能である。例えば、セファロースビーズを無水ァセトニトリル中に 分散し、式 (7)の化合物及び 1. 2当量の塩ィ匕チォ-ルを混合して一晩攪拌したァセ トニトリル溶液を添加、 3時間攪拌して表面にホスホリルコリンィ匕合物が導入された粒 子を得る。
「リガンドが結合可能な反応基又は吸着基にっ 、て」
上記反応にぉ 、ては、すべての水酸基に対してホスホリルコリン基を結合させずに (反応量を調節する)、残存する水酸基が、リガンドが結合可能な反応基又は吸着基 となる。この粒子が請求項 2記載のァフィユティー粒子であり、式(1)で示されるホス ホリルコリン基とリガンドが結合可能な反応基又は吸着基とが有機粒子の表面に直接 的に存在する粒子となる。そして、この残存する水酸基にリガンドを結合させたものが 、請求項 3記載のァフィユティー粒子となり、式(1)で示されるホスホリルコリン基とリガ ンドとが有機粒子の表面に直接的に存在する粒子となる。
請求項 2記載のァフィ二ティー粒子は、捕捉したい物質(目的物質)に応じて使用 者が任意のリガンドを結合させることが可能となる製品態様である。請求項 3記載のァ フィ-ティー粒子はあらかじめリガンドを結合させた製品態様である。なお、請求項 1 記載のァフィユティー粒子は、少なくとも式(1)のホスホリルコリン基が粒子表面に存 在して 、るァフィユティー粒子であり、リガンドゃリガンドが結合可能な反応基又は吸 着基の有無に限らず、捕捉したい物質(目的物質)に応じて使用者が任意のリガンド を結合させることが出来る製品態様である。また、少なくとも式(1)のホスホリルコリン 基が粒子表面に存在して 、る限り、 、かなる態様のァフィユティー粒子を含むもので あり、例えば請求項 2及び請求項 3の態様も含むものである。
[0051] 「水酸基を持つ粒子へのリガンドの結合方法につ!、て」
リガンドが蛋白質の場合、粒子上の水酸基を臭化シアンを用いて活性化する。ここ に蛋白質中のアミノ基を反応させ、蛋白質を結合させる。
なお、この水酸基に、任意の官能基を有する化合物を反応させて、その官能基を 蛋白質が結合可能な反応基又は吸着基としても良い。
[0052] 「粒子に導入した反応基又は吸着基がカルボキシル基の場合」
ステップ 1:任意の粒子に、公知の方法若しくは今後開発される方法にてカルボキ シル基を導入する。カルボキシル基は粒子表面に直接的に導入される。
ステップ 2:カルボキシル基を有する粒子に対し、下記式(9)で示されるホスホリルコ リン含有化合物を常法により反応させて、ホスホリルコリン基を酸アミド結合させ、残存 するカルボキシル基をリガンドが結合可能な反応基又は吸着基としても良い。
すべてのカルボキシル基に対してホスホリルコリン基を結合させずに (反応量を調 節する)、残存するカルボキシル基が、リガンドが結合可能な反応基又は吸着基とな る。
[化 16]
Figure imgf000019_0001
(9)
[0053] 「粒子表面へのカルボキシル基の導入方法」
粒子にカルボキシル基を導入する公知の方法 (ステップ 1)としては、下記が挙げら れる。
1.表面改質剤によるカルボキシル基の導入
カルボキシル基を有するアルコキシシラン、クロロシラン、シラザンなどの表面改質 剤を用いて、アルコキシシリル含有粒子等の有機粒子表面を処理する。
例えば、トリエトキシシリルプロピル無水コハク酸により、アルコキシシリル基を有する 有機粒子を処理してカルボキシル基を導入する。具体的には、トリエトキシシリルプロ ピル無水コハク酸を N, N—ジメチルホルムアミドに溶解させ、蒸留水と 4ージメチル アミノビリジンを添カ卩し、 16時間室温で撹拌し、カルボン酸を有するシランカップリン グ剤を得る。本反応は無水コハク酸の 4—ジメチルァミノピリジンによる加水分解反応 である。
カルボン酸を有するシランカップリング剤により、アルコキシシリル基を有する有機 粒子を水一 2—プロパノール混合液中に浸し、カルボン酸を有するシランカップリン グ剤を添加後、 50°Cに加熱し 6時間反応させる。室温に冷却後、有機粒子をメタノー ルで洗浄し、乾燥してカルボキシル基が有機粒子表面に直接導入された粒子が得ら れる。
[0054] 2.シリコーン気相処理によるカルボキシル基の導入 (特公平 1— 54379号公報、特 公平 1— 54380号公報、特公平 1— 54381号公報参照)
粒子表面をまず 1. 3. 5. 7—テトラメチルシクロテトラシロキサンにより処理し、表面 に導入された Si— H基と、カルボキシル基を有するモノマーを反応させてカルボキシ ル化された表面を得る。
本法に用いるモノマーは、カルボキシル系モノマーを用いることが出来る。カルボキ シル系モノマーとは、カルボキシル基及び重合可能なビュル、アクリル等の反応性部 位を有していれば良い。
[0055] 「カルボキシル基を有する粒子にホスホリルコリン基を導入する方法」
次に、カルボキシルイ匕された粒子表面にホスホリルコリン基を導入する方法 (ステツ プ 2)を以下に示す。
カルボキシル基が表面にある粒子を N-ヒドロキシスクシンイミド(NHS)、 1—ェチル - 3- (3—ジメチルァミノプロピル)—カルポジイミドの溶液に浸すと、粒子の表面が 活性エステル基で覆われる。ここに式(9)に示すアミノ基を有するホスホリルコリン誘 導体溶液を入れ、ホスホリルコリン基を導入する。
[0056] 「リガンドが結合可能な反応基又は吸着基にっ 、て」
上記反応にぉ 、ては、すべてのカルボキシル基に対してホスホリルコリン基を結合 させずに (反応量を調節する)、残存するカルボキシル基が、リガンドが結合可能な反 応基又は吸着基となる。この粒子が請求項 2記載のァフィ二ティー粒子であり、式(1) で示されるホスホリルコリン基とリガンドが結合可能な反応基又は吸着基とが有機粒 子の表面に直接的に存在する粒子となる。そして、このリガンドが結合可能な反応基 又は吸着基にリガンドを結合させたものが、請求項 3記載のァフィユティー粒子となり 、式(1)で示されるホスホリルコリン基とリガンドとが有機粒子の表面に直接的に存在 する粒子となる。
請求項 2記載のァフィ二ティー粒子は、捕捉したい物質(目的物質)に応じて使用 者が任意のリガンドを結合させることが可能となる製品態様である。請求項 3記載のァ フィ-ティー粒子はあらかじめリガンドを結合させた製品態様である。なお、請求項 1 記載のァフィユティー粒子は、少なくとも式(1)のホスホリルコリン基が粒子表面に存 在して 、るァフィユティー粒子であり、リガンドゃリガンドが結合可能な反応基又は吸 着基の有無に限らず、捕捉したい物質(目的物質)に応じて使用者が任意のリガンド を結合させることが出来る製品態様である。また、少なくとも式(1)のホスホリルコリン 基が粒子表面に存在して 、る限り、 、かなる態様のァフィユティー粒子をも含むもの であり、例えば請求項 2及び請求項 3の態様も含むものである。
[0057] 上記の反応において、カルボキシル基をリガンドが結合可能な反応基又は吸着基 として残存させておくには、ホスホリルコリン基を導入したカルボン酸を有するシラン力 ップリング剤の反応量を調節するなどにより行うことが出来る。
なお、このカルボキシル基に、任意の官能基を有する化合物を反応させて、その官 能基をリガンドが結合可能な反応基又は吸着基としても良い。
[0058] 「カルボキシル基を持つ粒子へのリガンドの結合方法につ!、て」
リガンドが蛋白質の場合、有機粒子上のカルボキシル基に N-ヒドロキシスクシンイミ ド(NHS)、 1—ェチル— 3— (3—ジメチルァミノプロピル)—カルボジイミドの溶液に 浸し、粒子の表面を活性エステル化する。ここに蛋白質中のアミノ基を反応させ、蛋 白質を結合させる。なお、この水酸基に、任意の官能基を有する化合物を反応させ て、その官能基を蛋白質が結合可能な反応基又は吸着基としても良い。
[0059] 「目的物質のァフィ二ティー分離方法」
上記で得られる本発明のァフィユティー粒子を用いて、本発明の目的物質のァフィ 二ティー分離方法が行われる。
本発明の方法は、有機粒子を利用して、高精度な分離が簡便に行われるという点 で画期的な目的物質の分離方法である。
本発明の方法は、下記の 3つの工程を含むものである。なお、あら力じめリガンドが 結合されているァフィユティー粒子の場合は(請求項 2)、第 1工程はすでに行われて いるので省略される。
1.式(1)で示されるホスホリルコリン基を有機粒子の表面に共有結合で有するァフィ ユティー粒子又は式(1)で示されるホスホリルコリン基を有機粒子の表面に共有結合 で有し、ある目的物質に特異的に親和性を持つリガンドを有機粒子の表面に共有結 合又は吸着で有することを特徴とするァフィユティー粒子に、任意のリガンドをィ匕学結 合させる第 1工程。
例えば、式(1)で示されるホスホリルコリン基とリガンドが結合可能な反応基又は吸 着基とを有機粒子の表面に、前者は共有結合で後者は共有結合又は吸着で有する ァフィユティー粒子と任意のリガンドの PBS溶液 lmlを 2mlエツペンチューブに入れ て、 30分間 4°Cで緩やかに振る。 15000rpm、 30分間遠心し、上清を捨てる。洗浄 のため、 PBS溶液 lmlを加えて、緩やかに振り、 15000rpm、 30分間遠心して、上 清を捨てる。この洗浄操作を 3回繰り返す。
2.第 1工程で製造したァフィユティー粒子を、任意のリガンドにより選択的に捕捉さ れる目的物質を含む液体試料に分散させる第 2工程。
例えば、第 1工程で製造したァフィユティー粒子を、任意のリガンドにより選択的に 捕捉される目的物質を含む液体試料に分散させ、 30分間 4°Cで緩やかに振る。 150 00rpm、 30分間遠心し、上清を捨てる。洗浄のため、 PBS溶液 lmlをカ卩えて、緩や かに振り、 15000rpm、 30分間遠心して、上清を捨てる。この洗浄操作を 3回繰り返 す。
3.分離したァフィユティー粒子力 捕捉した目的物質を回収する第 3工程。
例えば、ァフィユティー粒子力も捕捉した目的物質を回収するため、溶出ノ ッファ 一 lmlを加え、 30分間 4°Cで緩やかに振り、粒子から目的物質を溶出させ、上清を 回収する。溶出バッファー lmlをカ卩えて、緩やかに振り、 15000rpm、 30分間遠心し て、上清を回収する。この操作を 2回繰り返す。
図 1は、本発明のァフィユティー粒子と従来のァフィユティー粒子による目的物質捕 捉の選択性の違!、を示す模式図である。
実施例
[0060] 次に、本発明を実施例に基づきさらに詳しく説明する。なお、本発明はこれらの実 施例に限定されるものではない。粒子表面に導入されたホスホリルコリン基は以下の 方法により確認されて定量出来る。
<定量方法 >
得られた粒子を、過塩素酸に浸し、 180°Cに加熱して分解した。得られた溶液を水 で希釈し、そこに七モリブデン酸六アンモ-ゥム四水和物と Lァスコルビン酸を入れ、 95°Cにて 5分間発色させた後、 710應の吸光度測定して、導入量を求めた。検量線 にはリン酸二水素ナトリゥム水溶液を用 、た。
[0061] 「合成例 1」
「ホスホリルコリン基を含有するアルデヒド化合物」
1 - a—グリセ口ホスホリルコリン(6. 29g)を蒸留水 210mlに溶解し、氷水浴中で 冷却した。過ヨウ素酸ナトリウム(10. 23g)を添加し、 5時間攪拌した。反応液を減圧 濃縮、減圧乾燥し、メタノールにより目的物を抽出した。下記に化合物(6)に構造を 示す。
式(6)の化合物の重水中での 1H NMRスペクトルを図 2に示す。式(6)の化合物 は水中にお ヽて式(10)と平衡状態なので、実際のスペクトルは式 (6)と式( 10)の双 方を反映したものとなる。
[化 17]
H
Figure imgf000023_0001
(6)
[化 18]
Figure imgf000024_0001
( 10)
[0062] 「合成例 2」
「ホスホリルコリン基を含有するカルボン酸ィ匕合物」
1 - a—グリセ口ホスホリルコリン 5gを水 70ml—ァセトニトリル 30mlに溶解した。氷 冷下、過ヨウ素酸ナトリウム 17gと三塩化ルテニウム 80mgを添加し、一晩攪拌した。 沈殿物をろ過し、減圧濃縮、メタノール抽出により化学式 (7)に示す目的とするカル ボキシメチルホスホリルコリンを得た。
式(7)の化合物の重水中での 1H NMRスペクトルを図 3に示す。
[化 19]
HOO
Figure imgf000024_0002
(7)
[0063] 「参考例 1」
「スチレンーグリシジルメタタリレート粒子」
グリシジルメタタリレート 3. 6g、スチレン 2. 4g、ジビュルベンゼン 0. 08gを窒素置 換により充分に脱気した精製水 220mlに添加した。重合開始剤 V-60 0. 12gを添 加し、 70°Cで 1時間攪拌した。更にグリシジルメタタリレート 0. 6gを添加し、 70°Cで 一晩攪拌した。室温まで冷却し、遠心分離(15000rpm x 30分 3回)により精製し、 目 的とする粒子を得た。
[0064] 「ァミノ基導入スチレン一グリシジルメタタリレート粒子」
スチレン—グリシジルメタタリレート粒子 lgを精製水 80mlに分散し、 25%アンモ- ァ水溶液 20mlを添加し、 70°Cで一晩過熱攪拌した。室温に冷却し、遠心分離(
17000rpm x 60分 3回)により精製した。
[0065] 「ホスホリルコリン修飾粒子(PC粒子 (A) )」 アミノ基を導入したスチレン一グリシジルメタタリレート粒子 0. 5gをメタノール 10ml に分散し、合成例 1のアルデヒド体 0. 5gを添加し、一晩攪拌した。シァノホウ素酸ナト リウム 140mgを氷水浴中で添カ卩し、 6時間攪拌後、遠心分離(17000rpm x 60分 3回 )により精製して、 PC粒子 (A)を得た。
[0066] 「塩による凝集」
図 4、 5に参考例 1で作製したスチレンーグリシジルメタタリレート粒子と PC粒子 (A) の水中及び食塩水(0. 1M水溶液)における粒度分布を示す。
図 4から、ァフィユティー粒子を使用したラテックス凝集法に一般的に用いられるス チレン—グリシジルメタタリレート粒子は、水中での粒度分布のサイズに比較して、 Na C1水溶液中での粒度分布のサイズは大幅に大きくなつており、凝集が起こっているこ とを示している。一方、図 5から、 PC粒子 (A)の食塩水溶液中での粒度分布の変化 は、図 4の場合と比較して小さくなつており、塩による凝集が起こりにくいことを示して いる。以上から、 PC粒子 (A)は式(1)のホスホリルコリンによる修飾により、塩などの 妨害物質の影響を低減し、測定制度を高めることができる。
[0067] 「蛋白質非特異吸着抑制評価」
参考例 1で作製したスチレンーグリシジルメタタリレート粒子と PC粒子 (A)をそれぞ れ 25mgずっとり、蒸留水 lml加えて超音波処理を 1分間行った。遠心で蒸留水を取 り除き、アルブミン(100 μ gZmL)或いはリゾチーム(100 μ gZmL)を lmL加えて 室温で 1時間反応させ、遠心(5000g)後の上清を MICRO BCA法で定量した。そ の結果を図 6に示す。スチレンーグリシジルメタタリレート粒子に比べホスホリルコリン 基で処理されている PC粒子 (A)はアルブミン、リゾチームともに吸着がかなり抑制さ れていることが分かった。これから、式(1)のホスホリルコリンによる修飾により、蛋白 質の吸着量は大幅に減少していることがわかる。粒子同士の凝集と同時に、粒子に 対する各種蛋白質の非特異的吸着も測定精度低下の大きな要因となるので、本発 明のァフィユティー粒子は、リガンドにより選択的に目的蛋白質のみを捕捉する精度 に優れている。
[0068] 「参考例 2」
「2—アミノエチルメタクリレートー N—イソプロピルアクリルアミドーメチレンビスアタリ ルアミド粒子」
N—イソプロピルアクリルアミド 1. 35gとメチレンビスアクリルアミド 58mgを窒素置換 により充分に脱気した精製水 200ml中に添加した。重合開始剤 V— 50 7mgを添加 し、 70°Cで 30分攪拌した。 2—アミノエチルメタタリレート lOOmgを添加し、更に 4時 間 70°Cで攪拌し、室温まで冷却した後、水中で透析、凍結乾燥により目的とする粒 子を得た。
[0069] 「ホスホリルコリン修飾粒子(PC粒子(B) )」
得られた 2—アミノエチルメタクリレートー N—イソプロピルアクリルアミドーメチレンビ スアクリルアミド粒子 0. lgをメタノール 20mlに分散し、合成例 1のアルデヒド体 25m gを添加し、一晩攪拌した。シァノホウ素酸ナトリウム 6mgを氷水浴中で添加し、 6時 間攪拌後、水中で透析により精製して、 PC粒子 (B)を得た。
[0070] 「ホスホリルコリン修飾粒子(PC粒子(C) )」
得られた 2—アミノエチルメタクリレートー N—イソプロピルアクリルアミドーメチレンビ スアクリルアミド粒子 0. lgをジメチルスルホキシド 8ml—水 2mlに分散し、合成例 2の カルボキシル体 25mg、 N—ヒドロキシスクシンイミド 20mg、 1-ェチル -3-(3-ジメチル ァミノプロピル)カルポジイミド塩酸塩 23mgを溶解した水 lmlを添加、一晩攪拌した。 水中で透析により精製して、 PC粒子 (C)を得た。
[0071] 「蛋白質非特異吸着抑制評価」
参考例 1で作製したスチレンーグリシジルメタタリレート粒子と参考例 2で作製した P C粒子(B)、 (C)をそれぞれ 25mgずっとり、蒸留水 lml加えて超音波処理を 1分間 行った。遠心で蒸留水を取り除き、アルブミン(100 gZmL)或いはリゾチーム(10 0 μ g/mL)を lmLカ卩えて室温で 1時間反応させ、遠心(5000g)後の上清を MICR O BCA法で定量した。その結果を図 7に示す。スチレンーグリシジルメタタリレート粒 子に比べホスホリルコリン基で処理されている PC粒子(B)、 (C)はアルブミン、リゾチ ームともに吸着がかなり抑制されていることが分力つた。これから、式(1)のホスホリル コリンによる修飾により、蛋白質の吸着量は大幅に減少していることがわかる。粒子同 士の凝集と同時に、粒子に対する各種蛋白質の非特異的吸着も測定精度低下の大 きな要因となるので、本発明のァフィ二ティー粒子は、リガンドにより選択的に目的蛋 白質のみを捕捉する精度に優れている。
[0072] 「参考例 3」
「ホスホリルコリン修飾粒子(PC粒子(D) )」
ァガローズビーズ(架橋率 6%) lOOmgを無水 N, N,ージメチルホルムアミド 10ml に分散、合成例 2のカルボキシル体 50mgと塩化チォ -ル 25mgを無水 N, N'—ジメ チルホルムアミド lmlに溶解、反応させた溶液を添加し、室温で 3時間攪拌した。 N, N,—ジメチルホルムアミド、ァセトニトリルで順次遠心分離により精製して、 PC粒子( D)を得た。
[0073] 「蛋白質非特異吸着抑制評価」
参考例 1で作製したスチレンーグリシジルメタタリレート粒子と参考例 3で作製した P C粒子(D)をそれぞれ 25mgずっとり、蒸留水 lml加えて超音波処理を 1分間行った 。遠心で蒸留水を取り除き、アルブミン(100 gZmL)或いはリゾチーム(100 gZ mL)を lmLカ卩えて室温で 1時間反応させ、遠心(5000g)後の上清を MICRO BC A法で定量した。その結果を図 8に示す。ァガロースビーズに比べホスホリルコリン基 で処理されている PC粒子(D)はアルブミン、リゾチームともに吸着がかなり抑制され ていることが分力つた。これから、式(1)のホスホリルコリンによる修飾により、蛋白質 の吸着量は大幅に減少していることがわかる。粒子同士の凝集と同時に、粒子に対 する各種蛋白質の非特異的吸着も測定精度低下の大きな要因となるので、本発明 のァフィユティー粒子は、リガンドにより選択的に目的蛋白質のみを捕捉する精度に 優れている。
[0074] 「実施例 1」
「ァフィ-ティー粒子」
次に、請求項 6で示すァフィユティー分離法を示す。参考例 2で得られた 2—ァミノ ェチルメタクリレートー N—イソプロピルアクリルアミドーメチレンビスアクリルアミド粒子 0. lgに合成例 1のアルデヒド体 lOmgを添加し、一晩攪拌した後、シァノホウ素酸ナ トリウム 3mgを氷水浴中で添加し、 6時間攪拌後、水中で透析により精製して製造し た。このァフィ二ティー粒子 25mgにグルタルアルデヒド溶液(8%) lmLとシッフ塩基 の安定ィ匕のためシァノトリヒドロホウ酸ナトリウム lOmgをカ卩えて室温で 5時間反応させ 、 PBSで遠心'精製(5000g) 5回で洗浄した。ダルタルアルデヒドがリガンドが結合 可能な反応基又は吸着基である請求項 2のァフィユティー粒子を得た。次にゥシアル ブミン( lmgZmL)或!ヽはヒトヘモグロビン( lmgZmL) lmLとトリヒドロホウ酸ナトリ ゥム lOmgをカ卩えて室温で 1日反応させ、 PBSで遠心'精製(5000g)を 4回行った。 このゥシアルブミン或いはヒトヘモグロビンがリガンドである。ここから、請求項 7で示す ァフィユティー分離法である。残って 、るダルタルアルデヒド基を不活性ィ匕するため ェタノ一ルァミン塩酸塩(0. 5M、pH7. l) lmLとトリヒドロホウ酸ナトリウム lOmgをカロ えて室温で 1時間反応させ、 PBSで遠心'精製(5000g)を 4回行い、請求項 3のァフ ィ-ティー粒子を得た。次に HRP標識抗ゥシアルブミン抗体(10 μ g/mL)或いは H RP標識抗ヒトヘモグロビン抗体(10 /z gZmL)を lmLカ卩えて、室温で 1時間反応さ せ、 PBSで遠心 ·精製(5000g)を 5回行った。さらに PBSを lmL加えて攪拌し、 10 μ 1を 96穴ゥエルプレートに移して基質 ΤΜΒΖを用いて発色試験を行い、 450nmで 測定を行った。その結果を図 9に示す。どちらのリガンドを用いた場合でも、高選択的 に目的抗体を捕捉していることが分力つた。
[0075] 「比較例 1」
参考例 2で得られた 2—アミノエチルメタタリレート N—イソプロピルアクリルアミド —メチレンビスアクリルアミド粒子 0. lgにホスホリルコリンによる修飾をしないで実施 例と同じ操作を行った場合の結果を図 10に示す。実施例 1に比べどちらのリガンドを 用いた場合でも、選択性が低いことが分力つた。
産業上の利用可能性
[0076] 本発明のァフィユティー粒子は、分離を希望する目的物質のみを捕捉するため、選 択性が極めて高い。そして、その優れた分散性と、液体試料からの分離が極めて容 易である。また、塩による凝集も少ないので、簡便かつ高精度に目的物質を分離する ことが可能である。また、免疫沈降法、ラテックス凝集法などの試薬としても、塩の影 響を受けることなぐ感度良く検出が可能であることから、目的物質の高精度分離、検 出が要求される生体関連の産業に有用である。

Claims

請求の範囲 [1] 下記式(1)で示されるホスホリルコリン基を有機粒子の表面に共有結合で有する とを特徴とするァフィユティー粒子。 [化 1]
( 1)
[2] 下記式(1)で示されるホスホリルコリン基を有機粒子の表面に共有結合で有し、あ る目的物質に特異的に親和性を持つリガンドと結合可能な反応基又は吸着基を有 機粒子の表面に共有結合又は吸着で有することを特徴とするァフィユティー粒子。
[化 2]
Figure imgf000029_0002
( 1)
[3] 下記式(1)で示されるホスホリルコリン基を有機粒子の表面に共有結合で有し、あ る目的物質に特異的に親和性を持つリガンドを有機粒子の表面に共有結合又は吸 着で有することを特徴とするァフィユティー粒子。
[化 3]
Figure imgf000029_0003
( 1)
[4] 前記有機粒子が、スチレン、メタクリル酸グリシジル、(メタ)アクリル酸、 N—アルキ ルアクリルアミド、(メタ)アクリル酸アルキルのうち 1種または 2種以上のモノマー単位 を重合体中に含む合成粒子、又は、ァガロース若しくはセファロースカもなる多糖類 であって、その平均粒子径が 20nm〜500 μ mであることを特徴とする請求項 1〜3 記載のァフィユティー粒子。
[5] 前記リガンドカ 各種抗体、抗原、酵素、基質、レセプター、ペプチド、 DNA、 RNA 、ァプタマ一、プロテイン A、プロテイン G、アビジン、ピオチン、キレート化合物、各種 金属イオン力 なる群力 選ばれた一種又は二種以上のリガンドであることを特徴と する請求項 1〜4記載のァフィユティー粒子。
[6] (1)請求項 1又は 2記載のァフィユティー粒子に任意のリガンドを結合させる第 1ェ 程、(2)第 1工程で製造したァフィユティー粒子を、任意のリガンドにより選択的に捕 捉される目的物質を含む液体試料に分散させる第 2工程、(3)ァフィユティー粒子か ら捕捉した目的物質を回収する第 3工程を含むことを特徴とする、有機粒子による目 的物質のァフィ二ティー分離方法。
[7] (1)請求項 3記載のァフィユティー粒子を、任意のリガンドにより選択的に捕捉され る目的物質を含む液体試料に分散させる第 1工程、(2)ァフィユティー粒子カゝら捕捉 した目的物質を回収する第 2工程を含むことを特徴とする、有機粒子による目的物質 のァフィユティー分離方法。
PCT/JP2005/009085 2004-05-24 2005-05-18 アフィニティー粒子及びアフィニティー分離方法 WO2005114193A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP05741159A EP1750127B1 (en) 2004-05-24 2005-05-18 Method of affinity separation.
KR1020067015861A KR101176905B1 (ko) 2004-05-24 2005-05-18 어피니티 입자 및 어피니티 분리 방법
US11/587,423 US20070241054A1 (en) 2004-05-24 2005-05-18 Affinity Particle And Method Of Affinity Separation
CN2005800165821A CN1956780B (zh) 2004-05-24 2005-05-18 亲和颗粒和亲和分离方法
US12/552,322 US20090321358A1 (en) 2004-05-24 2009-09-02 Affinity Particle And Method Of Affinity Separation

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004153244 2004-05-24
JP2004-153244 2004-05-24
JP2005-138551 2005-05-11
JP2005138551A JP3809177B2 (ja) 2004-05-24 2005-05-11 アフィニティー粒子及びアフィニティー分離方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/552,322 Division US20090321358A1 (en) 2004-05-24 2009-09-02 Affinity Particle And Method Of Affinity Separation

Publications (1)

Publication Number Publication Date
WO2005114193A1 true WO2005114193A1 (ja) 2005-12-01

Family

ID=35428490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/009085 WO2005114193A1 (ja) 2004-05-24 2005-05-18 アフィニティー粒子及びアフィニティー分離方法

Country Status (5)

Country Link
US (2) US20070241054A1 (ja)
EP (1) EP1750127B1 (ja)
JP (1) JP3809177B2 (ja)
CN (1) CN1956780B (ja)
WO (1) WO2005114193A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100480351C (zh) * 2002-11-25 2009-04-22 株式会社资生堂 原材料的表面改性方法
CN101065387B (zh) * 2004-11-29 2012-05-30 株式会社资生堂 含磷酰胆碱基的化合物及其制备方法
US20100036106A1 (en) * 2005-03-30 2010-02-11 Nec Soft, Ltd. High-Affinity RNA Aptamer Molecule Against Glutathione-S-Transferase Protein
JP4821168B2 (ja) * 2005-04-26 2011-11-24 日油株式会社 気相浄化体、気相浄化ユニット及び気相浄化方法
SE0502485L (sv) * 2005-11-09 2007-05-10 Peter Viberg Partiklar
JP5001015B2 (ja) * 2006-09-28 2012-08-15 富士フイルム株式会社 非特異吸着を抑制した表面を有する生化学用器具
JP4191225B2 (ja) 2007-01-18 2008-12-03 株式会社資生堂 表面改質方法及び表面改質材料
KR101248231B1 (ko) 2007-02-08 2013-03-27 부산대학교 산학협력단 단백질의 분리 또는 정제를 위한 금속 이온-고분자하이드로겔
EP2151688B1 (en) * 2007-05-30 2018-07-11 JSR Corporation Non-specific adsorption inhibitor
US20110021756A1 (en) * 2008-03-19 2011-01-27 Katsuyuki Maeno Method of manufacturing an affinity particle, affinity particle, and separation method
JP5173691B2 (ja) * 2008-09-17 2013-04-03 株式会社 資生堂 親水性相互作用クロマトグラフィー用充填剤
JP5391265B2 (ja) * 2009-03-02 2014-01-15 株式会社 資生堂 バイオチップの製造方法
JP4719824B2 (ja) 2009-06-15 2011-07-06 株式会社 資生堂 細胞凝集塊形成用容器及び細胞凝集塊の形成方法
JP5095855B2 (ja) * 2010-12-13 2012-12-12 株式会社 資生堂 細胞凝集塊の形成方法
JP5853855B2 (ja) * 2012-05-10 2016-02-09 日油株式会社 カルボキシル基含有ホスホリルコリン化合物及びその製造方法
EP3260862B1 (en) * 2015-02-19 2019-10-23 National University Corporation Kyoto Institute of Technology Method for suppressing protein adsorption
JP6729041B2 (ja) * 2016-06-17 2020-07-22 日立化成株式会社 分離材及びカラム
WO2019088167A1 (ja) * 2017-10-31 2019-05-09 住友ベークライト株式会社 糖鎖又は糖ペプチドの精製剤及びその使用
EP3769083A1 (en) 2018-03-21 2021-01-27 Waters Technologies Corporation Non-antibody high-affinity-based sample preparation, sorbents, devices and methods
US20220048010A1 (en) * 2018-12-17 2022-02-17 Chreto Aps Ligand linker substrate
JP7393896B6 (ja) 2019-08-23 2024-04-01 キヤノン株式会社 粒子およびその製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08333421A (ja) * 1995-04-03 1996-12-17 Nippon Oil & Fats Co Ltd ホスホリルコリン基含有重合体水性溶液および製造方法
JPH10114800A (ja) 1996-10-14 1998-05-06 Nof Corp 重合体吸着免疫学的活性物質固定化固相及びその用途
JP2001228149A (ja) * 2000-02-14 2001-08-24 Nof Corp 臨床検査用微粒子分散剤、検査用試薬、試薬の製造方法、検査方法および用途
WO2002018953A1 (fr) * 2000-08-29 2002-03-07 Kyowa Medex Co.,Ltd Reactifs et methode d'immunoessai d'agglutination fortement reproductible

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5045190A (en) * 1988-11-08 1991-09-03 Carbonell Ruben G Chromatography apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08333421A (ja) * 1995-04-03 1996-12-17 Nippon Oil & Fats Co Ltd ホスホリルコリン基含有重合体水性溶液および製造方法
JPH10114800A (ja) 1996-10-14 1998-05-06 Nof Corp 重合体吸着免疫学的活性物質固定化固相及びその用途
JP2001228149A (ja) * 2000-02-14 2001-08-24 Nof Corp 臨床検査用微粒子分散剤、検査用試薬、試薬の製造方法、検査方法および用途
WO2002018953A1 (fr) * 2000-08-29 2002-03-07 Kyowa Medex Co.,Ltd Reactifs et methode d'immunoessai d'agglutination fortement reproductible

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MARTIN LENORE M: "Facile reduction in the synthesis of phosphorylcholine affinity columns", TETRAHEDRON LETTERS, vol. 37, no. 44, 1996, pages 7921 - 7928, XP002492562, DOI: doi:10.1016/0040-4039(96)01797-2
SAKAKI S ET AL.: "Water-soluble 2-methacryloyloxyethyl phosphorylcholine copolymer as a novel synthetic blocking reagent in immunoassay system", SOCIETY OF POLYMER SCIENCE, vol. 32, no. 8, 1 January 2000 (2000-01-01), XP009055804, DOI: doi:10.1295/polymj.32.637
See also references of EP1750127A4

Also Published As

Publication number Publication date
US20090321358A1 (en) 2009-12-31
CN1956780A (zh) 2007-05-02
US20070241054A1 (en) 2007-10-18
EP1750127B1 (en) 2011-07-20
JP2006007203A (ja) 2006-01-12
JP3809177B2 (ja) 2006-08-16
EP1750127A4 (en) 2008-10-01
EP1750127A1 (en) 2007-02-07
CN1956780B (zh) 2011-03-23

Similar Documents

Publication Publication Date Title
JP3809177B2 (ja) アフィニティー粒子及びアフィニティー分離方法
JP3922648B2 (ja) アフィニティー粒子及びアフィニティー分離方法
Aguilar-Arteaga et al. Magnetic solids in analytical chemistry: a review
JP5421900B2 (ja) アフィニティー粒子の製造方法
Pichon Aptamer-based and immunosorbents
JP2012181181A (ja) 生理活性物質固定化用粒子、生理活性物質固定粒子及び糖親和性物質捕捉粒子
Roque et al. Antibody immobilization on magnetic particles
Peng et al. Magnetic quantitative analysis for multiplex glycoprotein with polymer-based elemental tags
KR101176905B1 (ko) 어피니티 입자 및 어피니티 분리 방법
WO2015119288A1 (ja) 標的物質捕獲方法、標的物質捕獲用の固相担体及び当該固相担体の製造方法
JP2003507695A (ja) 生体分子を担荷させた酸化金属支持体の製造
JP6223347B2 (ja) 親水性コポリマーコーティングを有するタンパク質クロマトグラフィーマトリックス
JP2007101520A (ja) 生体物質複合体、並びに、生体物質複合体担持体、対象物質の精製方法、アフィニティークロマトグラフィー用容器、分離用チップ、対象物質の解析方法、対象物質の解析用分離装置及びセンサーチップ
JP6781154B2 (ja) リガンドの固定化方法
JP7016089B2 (ja) 糖タンパク質から糖鎖を調製する方法、キット、及び、装置
WO2006036003A1 (ja) 生体特異的親和性を有する物質を結合した微粒子及びその使用
US7175767B2 (en) Preparation of a metal chelating separation medium
JP2009229209A (ja) 表面改質方法、表面改質材料及び分析方法
Du et al. Aptamer‐based Sample Preparation in LC‐MS Bioanalysis
US20230001329A1 (en) Material and method for performing a separation based on halogen bonding
Pichon 1Department of Analytical, Bioanalytical Sciences and Miniaturization, UMR CBI, ESPCI Paris, PSL Research University, Paris, France; 2Sorbonne University, Paris, France
Fuchiwaki et al. Improvement of Accuracy in Flow Immunosensor System by Introduction of Poly-2-[3-(methacryloylamino) propylammonio] ethyl 3-aminopropyl Phosphate
TW201527317A (zh) 以拓印螺旋胜肽方式組成白蛋白之人工抗體的方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067015861

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11587423

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005741159

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580016582.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005741159

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067015861

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 11587423

Country of ref document: US