WO2005106995A1 - 燃料電池用触媒の製造方法 - Google Patents

燃料電池用触媒の製造方法 Download PDF

Info

Publication number
WO2005106995A1
WO2005106995A1 PCT/JP2005/007394 JP2005007394W WO2005106995A1 WO 2005106995 A1 WO2005106995 A1 WO 2005106995A1 JP 2005007394 W JP2005007394 W JP 2005007394W WO 2005106995 A1 WO2005106995 A1 WO 2005106995A1
Authority
WO
WIPO (PCT)
Prior art keywords
iridium
platinum
fuel cell
compound
fine particle
Prior art date
Application number
PCT/JP2005/007394
Other languages
English (en)
French (fr)
Inventor
Tsuguhiro Oonuma
Original Assignee
Nissan Motor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co., Ltd. filed Critical Nissan Motor Co., Ltd.
Priority to EP05730563.3A priority Critical patent/EP1742283B1/en
Priority to US11/587,803 priority patent/US7569509B2/en
Publication of WO2005106995A1 publication Critical patent/WO2005106995A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/468Iridium
    • B01J35/30
    • B01J35/33
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6522Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/656Manganese, technetium or rhenium
    • B01J23/6562Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J35/393
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a method for producing a fuel cell catalyst, and more particularly, to a fuel cell catalyst in which an alloy containing platinum and iridium is highly dispersed and supported.
  • a fuel cell is a clean power generation system in which the product of the electrode reaction is water in principle and has almost no adverse effect on the global environment.
  • Various types of fuel cells have been proposed, such as a polymer electrolyte fuel cell, a solid oxide fuel cell, a molten carbonate fuel cell, and a phosphoric acid fuel cell.
  • a polymer electrolyte fuel cell (PEFC) is expected to be used as a power source for a mobile body such as an automobile because it can operate at a relatively low temperature, and is being developed.
  • the polymer electrolyte fuel cell generally has a configuration in which a catalyst layer, a gas diffusion layer, and a separator are stacked in this order on both sides of a polymer electrolyte membrane.
  • a current collector for extracting generated electrons to the outside is arranged on the separator.
  • the separator has a gas flow path formed on a surface in contact with the gas diffusion layer.
  • An oxidant such as air or oxygen gas is supplied to the gas flow path on the oxygen electrode side, and a fuel gas such as hydrogen gas is supplied to the gas flow path on the fuel electrode side.
  • the reaction gas supplied to the gas flow path reaches the catalyst layer through the porous gas diffusion layer, and generates electrons by the following electrode reaction. The generated electrons move to the current collector through the gas diffusion layer and the separator, and are taken out to an external circuit.
  • the catalyst layer contains a catalyst for accelerating the electrode reaction.
  • a catalyst for promoting an electrode reaction in a fuel cell a catalyst in which platinum is supported on a carrier has been studied.
  • platinum metal is used as the catalyst component, platinum elutes when power is applied, There is a problem that performance deteriorates.
  • a method for improving the stability of the catalyst there is a method in which an alloy comprising platinum and iridium supported on a carrier is used as a catalyst (Japanese Patent Application Laid-Open No. 2004-22503, paragraph 0018).
  • a platinum raw material and an iridium raw material are separately supplied to a carrier, and thereafter, by firing, platinum and iridium mix with each other to form a platinum-iridium alloy.
  • platinum is supported on a carrier using a platinum-containing solution, and then iridium is supported on the carrier using an iridium-containing solution.
  • a platinum-iridium alloy by such a method, since platinum and iridium are separately present on the conductive carrier, it is necessary to perform high-temperature sintering where the alloying of platinum and iridium by sintering is difficult to proceed. Occurs. Then, as a result of firing at a high temperature, it was difficult to obtain a platinum-iridium alloy having a uniform composition, not only because the platinum-iridium alloy was coarsened and the catalytic performance was reduced.
  • an object of the present invention is to provide a method for producing a catalyst for a fuel cell having improved catalytic activity and a platinum-iridium catalytic power.
  • Impregnating the iridium microparticle aggregate with an aqueous solution containing a platinum compound reducing the platinum compound to precipitate platinum metal in the iridium microparticle aggregate, and enclosing the platinum-containing iridium microparticle aggregate.
  • FIG. 1 is a process drawing showing one embodiment of the present invention.
  • FIG. 2 is a conceptual diagram of a reverse micelle.
  • FIG. 3 is an X-ray diffraction spectrum of the fuel cell catalyst prepared in Example 1 and the fuel cell catalyst prepared in Comparative Example 1.
  • an organic solvent containing a surfactant and an aqueous solution containing an iridium compound are mixed to form reverse micelles in which an aqueous solution containing an iridium compound is included by a surfactant.
  • the iridium compound present inside the reverse micelle is insoluble by adding a precipitant or the like, and an aggregate of fine iridium particles such as Ir (OH) (HO) is generated in the reverse micelle.
  • an aqueous solution containing a platinum compound is supplied to the inside of the reverse micelle to impregnate the iridium fine particle aggregate with the aqueous solution containing the platinum compound. Thereafter, the platinum compound impregnated inside the iridium fine particle aggregate is reduced by adding a reducing agent or the like to precipitate platinum metal, thereby obtaining a platinum-containing iridium fine particle aggregate. Since the thus obtained aggregate of platinum-containing iridium fine particles is present in the reverse micelles, the particles can be uniformly dispersed in the solution while suppressing the aggregation of the particles.
  • the conductive carrier is dispersed in a solution containing the iridium fine particle aggregate containing platinum, the iridium fine particle aggregate containing platinum can be highly dispersed and supported on the conductive carrier.
  • the present invention by preparing the iridium fine particle aggregate containing platinum in advance and supporting it on a conductive carrier, compared with a case where platinum and iridium are separately supported, an alloy is obtained.
  • the sintering of platinum-iridium alloy can be greatly reduced by the thermal energy of firing.
  • An advantage of producing particles using the reverse micelle method is that the particle size can be easily controlled. Reverse micelle If the method is used, the size of the particles can be controlled on the order of nanometers.
  • iridium is first deposited inside the reverse micelle, and then platinum is deposited.
  • platinum is preceded by iridium, or when platinum and iridium are simultaneously precipitated, a large amount of platinum may be precipitated, and iridium may be hardly precipitated. Therefore, it is difficult to deposit platinum and iridium with a uniform composition in the reverse micelles, and the ratio of platinum and iridium supported on the carrier is not stable, and the composition cannot be made uniform.
  • the present invention shows that by precipitating iridium, alloy particles having a uniform composition of platinum and iridium can be supported on a conductive carrier. I found it.
  • FIG. 2 shows a conceptual diagram of the reverse micelle.
  • the aqueous solution containing the iridium compound By mixing the aqueous solution containing the iridium compound with the organic solvent containing the surfactant, reverse micelles in which the aqueous solution 30 containing the iridium compound is included by the surfactant 20 are formed in the organic solvent. Note that the conceptual diagram of the reverse micelle shown in FIG. 2 is simplified for convenience of explanation, and the technical scope of the present invention is not limited to the illustrated embodiment.
  • the surfactant used for forming reverse micelles is not particularly limited! For example, polyethylene glycol mono 4-nonyl phenyl ether, polyoxyethylene nonyl phenyl ether, magnesium laurate, zinc phosphinate, zinc myristate, sodium dimethyl phenyl stearate, aluminum dicaprylate, tetraisoamyl ammonium-dimethyl ocyanate N-octadecyltri-n-butylammonium-formate, n-amyltri-n-butylammonium-formiodide, sodium bis (2-ethylhexyl) succinate, sodium mudino-lunanaphthalenesulfonate, calcium cetyl sulfate, dodecylamine oleate Salt, dodecylamine propionate, cetyltrimethylammonium-bromobromide, stearyltrimethylammonium bromide, cetyl
  • the organic solvent is not particularly limited.
  • organic solvents such as cyclohexane, methylcyclohexane, cycloheptane, heptanol, octanol, dodecyl alcohol, cetyl alcohol, isooctane, n-heptane, n-hexane, n-decane, benzene, toluene and xylene are used. .
  • the organic solvent and the surfactant are stirred before being mixed with the aqueous solution containing the iridium compound.
  • the amounts of the surfactant and the organic solvent used are not particularly limited, but the concentration of the surfactant is preferably 0.01 to: LmolZL, more preferably 0.1 to 0.3 molZL.
  • the iridium compound is a raw material of iridium constituting the platinum iridium alloy particles.
  • the iridium compound preferably has a certain degree of water solubility.
  • the type of the iridium compound is not particularly limited as long as it can be supplied as an aqueous solution into the inside of the reverse micelle.
  • the iridium compound is an iridium complex, specific examples, Mizusani ⁇ ions are 6 coordinated to I Rijiumu [Ir (OH)] 3_ can be mentioned.
  • the method for preparing the aqueous solution containing the iridium compound is not particularly limited as long as it is appropriately selected according to the iridium compound to be used.
  • a method for preparing an aqueous solution containing an iridium compound after mixing iridium chloride and a hydroxyl group-containing base conjugate of 5 to 10 times the number of moles of iridium atoms contained in iridium chloride, 30 to 50 It is prepared by reacting at a temperature of ° C for 1-5 hours.
  • the hydroxyl group-containing basic conjugate is a compound having a hydroxyl group in a compound, and this hydroxyl group is released into water to act as a base.
  • Examples include hydroxides of alkali metals such as sodium hydroxide and potassium hydroxide; hydroxides of alkaline earth metals such as calcium hydroxide and magnesium hydroxide. Tetramethylammonium hydroxide or the like may be used. Tetramethylammonium hydroxide is preferred from the viewpoint of reducing the amount of metal impurities such as sodium and potassium.
  • the concentration of the iridium compound in the aqueous solution containing the iridium compound is preferably 0.1%.
  • the concentration of the iridium compound is less than 0.1% by mass, the amount of iridium that can be introduced into the reverse micelle solution becomes relatively small. In order to keep the micelle diameter small, it is preferable to reduce the amount of water to be supplied to a certain amount or less.If the amount of water to be supplied increases, the particle size of the platinum-iridium alloy particles finally obtained tends to increase. is there. If the concentration of the iridium compound exceeds 30% by mass, the amount of water is reduced, so that a metal salt may be precipitated to form reverse micelles. In addition, there is a tendency that the particle diameter of the metal fine particles increases. However, if the technical range of the present invention is not limited to these ranges, the concentration may be outside the above range.
  • the iridium compound present in the reverse micelles is insolubilized to generate an aggregate of iridium fine particles. Aggregates of iridium fine particles generated by insolubility of the iridium compound are present in reverse micelles formed by the surfactant.
  • the reverse micelle formed in the organic solvent contains an aqueous solution in addition to the iridium fine particle aggregate.
  • a method of adding a precipitant to an aqueous solution containing the iridium compound to generate an iridium fine particle aggregate is exemplified.
  • the precipitant used at this time is preferably selected according to the type of the iridium compound.
  • Specific examples of the precipitant include one or more acids selected from the group consisting of hydrochloric acid, nitric acid, sulfuric acid, and acetic acid.
  • the acid When adding the acid, it is preferable to supply the acid so that the pH of the aqueous solution containing the iridium compound becomes about 7 to 8.5. When the pH exceeds 8.5, iridium fine particles are sufficiently precipitated. May not occur. When an acid is added to a pH lower than 7, the iridium fine particles may be reduced.
  • composition of the iridium fine particles generated inside the reverse micelle is not particularly limited, but is preferably a hydroxide hydrate such as Ir (OH) (H 2 O).
  • the generated fine particles are
  • the iridium fine particle aggregate is impregnated with an aqueous solution containing a platinum compound.
  • the aqueous solution containing the platinum compound is supplied into the solution containing the reverse micelles, and the mixture is stirred. An aqueous solution may be permeated.
  • the aqueous solution containing the platinum compound that has penetrated into the reverse micelles is impregnated inside the iridium fine particle aggregate.
  • the iridium fine particles are a hydroxide hydrate such as Ir (OH) (H 2 O), water is absorbed by the sponge.
  • the aqueous solution containing the platinum compound is easily impregnated inside the iridium fine particle aggregate.
  • the platinum compound is a raw material of platinum constituting the platinum-iridium alloy particles.
  • the platinum compound preferably has a certain degree of water solubility.
  • Types of platinum compounds There is no particular limitation as long as it can be supplied as an aqueous solution into the inside of the reverse micelle.
  • Specific examples of the platinum compound include dinitrodiamine platinum (Pt (NO) (NH)), H PtCl and the like.
  • dinitrodiamine platinum crystals are basically insoluble in water, when dinitrodiamine platinum is used, it is better to dissolve it in nitric acid, dilute the aqueous solution, and add it as an aqueous solution of dinitrodiamine platinum nitrate.
  • the concentration of platinum in the aqueous solution containing the platinum compound is preferably 0.01% by mass to 10% by mass, and more preferably 0.5% by mass to 3% by mass. However, if the technical range of the present invention is not limited to these ranges, the concentration may be outside the above range.
  • platinum compound After impregnating the iridium fine particle aggregate with an aqueous solution containing a platinum compound, the platinum compound The substance is reduced, and platinum metal is precipitated in the iridium fine particle aggregate to obtain a platinum-containing iridium fine particle aggregate. Thereby, platinum can be highly dispersed and precipitated in the iridium fine particle aggregate.
  • the method of depositing platinum metal in the iridium fine particle aggregate may be appropriately selected depending on the type of the platinum compound.
  • a platinum compound is reduced using a reducing agent to precipitate platinum metal in the aggregate of the fine particles of iridium.
  • the reducing agent used at this time include one or more selected from the group consisting of NH, NaBH, and H gas. reduction
  • the agent it is preferable to consider the smoothness of the reduction treatment and the type of iridium fine particles. For example, it is relatively difficult to deposit platinum metal with NH,
  • H IrCl is used as the iridium raw material, NaBH or H gas is used.
  • transition metal may be further mixed into the iridium fine particle aggregate containing platinum.
  • an aqueous solution containing a transition metal may be further impregnated inside the iridium fine particle aggregate containing platinum to precipitate the transition metal in the iridium fine particle aggregate containing platinum.
  • the transition metal can be contained in the iridium fine particle aggregate containing platinum, and the resulting fuel cell catalyst is obtained.
  • alloy particles having a composition in which the ratio of platinum, iridium, and transition metal is uniform can be obtained.
  • the transition metal can be dissolved in water using a water-soluble compound containing the transition metal as a raw material, supplied to the particles containing platinum and iridium, and subjected to a precipitation treatment.
  • the method of depositing a transition metal other than platinum may be selected depending on the characteristics of the compound containing the transition metal.
  • a compound that precipitates by reduction is used as a raw material, if a compound that precipitates with a specific precipitant is used, it can be reduced by adding a reducing agent. You just need to add the agent.
  • both platinum and the transition metal may be precipitated by a single deposition treatment.
  • the type of transition metal is not particularly limited, but considering the catalytic performance of the obtained platinum-iridium alloy particles, the transition metal is selected from the group consisting of chromium, manganese, iron, cobalt, nickel, rhodium, and palladium. It is preferable that one or more types be selected.
  • the compound containing the transition metal is not particularly limited, but may be a nitrate, a sulfate, an ammonium salt, an amine, a carbonate, a bicarbonate, a halogen salt, a nitrite, an oxalic acid, etc. containing a transition metal element.
  • Examples thereof include inorganic salts, carboxylate salts such as formate salts, hydroxides, alkoxides, acid halides, and the like.
  • the reducing agent and the precipitating agent for the compound containing the transition metal the same as those described above may be used as long as they are selected according to the type of the compound used.
  • the platinum-containing iridium fine particle aggregate obtained as described above is enclosed by reverse micelles formed in an organic solvent.
  • a solution containing reverse micelles that includes the iridium fine particle aggregate containing platinum is mixed with a conductive carrier, and the platinum-containing iridium fine particle aggregate is mixed with the conductive carrier. To be carried.
  • the conductive carrier is not particularly limited, but those containing carbon as a main component are preferably used. Specifically, Ketjen Black, Black Pearl, Graphitized Carbon, Graphite Toyoda Black Pearl, and those subjected to graphitization at high temperature Etc. Deposits on the surface of the carrier may be washed using an alkaline solution such as sodium hydroxide, potassium hydroxide and calcium hydroxide.
  • the BET specific surface area of the conductive carrier is preferably 50 m 2 / g or more, more preferably 250 to 1,600 m 2 Zg.
  • the conductive carrier is preferably mixed in a state of being dispersed in an organic solvent.
  • the organic solvent the same organic solvent as that used for forming the reverse micelle is used. In order to enhance the dispersibility of the conductive carrier and the platinum-iridium alloy particles, it is preferable to use the same organic solvent. Since the conductive carrier is as described in the first embodiment of the present invention, the description is omitted here.
  • a stirrer may be used, or a technique such as ultrasonic dispersion may be used.
  • the platinum-containing iridium fine-particle aggregates are mixed with the conductive carrier. Carried on top.
  • the mixing means a known stirring device such as an ultrasonic wave or a homogenizer is used. After mixing the conductive carrier with the reverse micelle solution, the solution is mixed and stirred, and the solution is mixed at 70 to 100 ° C and 3 to 100 ° C. It is preferable to carry out the reaction for 12 hours so that the aggregate is supported on the conductive carrier. According to this condition, the aggregate can be reliably carried on the carrier surface.
  • the reverse micelle disintegration treatment may be selected according to the type of surfactant used. For example, reverse micelles are disrupted by adding an alcohol such as methanol to a solution obtained by mixing a conductive carrier with the reverse micelle solution.
  • the size of the reverse micelles is controlled by controlling the supply amount of the aqueous solution and the type of the surfactant, so that the obtained iridium fine particle aggregate containing platinum, that is, platinum-iridium
  • the particle size of the alloy particles can be controlled relatively easily.
  • the composition of platinum and iridium in the iridium fine particle aggregate containing platinum is not particularly limited. When an aqueous solution containing a platinum compound is added and the reverse micelles become large due to the aqueous solution, it is considered that a site having a relatively large amount of platinum component is generated on the surface of the platinum iridium fine particle aggregate.
  • Platinum iridium fine particles with non-uniform components Even when the body is fired to produce platinum-iridium alloy particles, the uniformity of platinum and iridium progresses remarkably compared to the case where it is manufactured by the conventional method. It is possible to suppress coarsening and the like.
  • a solid content is separated by filtration, and the obtained solid content is dried.
  • the separation method and the drying method are not particularly limited. For example, drying is performed by raising the ambient temperature around the solid content under reduced pressure. In some cases, drying may be performed in the firing step without performing the drying step!
  • the solid content is calcined to alloy the iridium fine particle aggregates containing platinum to obtain a catalyst for a fuel cell in which platinum-iridium alloy particles are supported on a conductive carrier.
  • the firing conditions are not particularly limited. For example, firing is performed at 200-950 ° C for 1-4 hours. The firing is preferably performed in an atmosphere of an inert gas such as argon or helium.
  • the particles are greatly shrunk by the heat treatment, and the particle diameter is further reduced. For this reason, there is a merit that it is easily fixed in the platinum and other transition metal force iridium.
  • a eutectic alloy which is a mixture in which the component elements are separate crystals, a component in which the component elements are completely melted to form a solid solution, and a component element is an intermetallic compound
  • any of them such as those forming a compound of a metal and a nonmetal, may be used.
  • the component elements in the platinum-iridium alloy particles completely dissolve and become a solid solution! / ,.
  • the platinum-iridium alloy particles supported on the conductive carrier preferably have a uniform composition.
  • an alloy is used as a catalyst.
  • the peak derived from Pt and the peak derived from Ir are substantially absent, and the peak derived from Pt and the peak derived from Ir are substantially absent. It is preferable that only the peak derived from the Pt—Ir alloy substantially exists between the peaks.
  • the particle size of the platinum-iridium alloy particles supported on the conductive carrier can be reduced.
  • the average particle size of the platinum-iridium alloy particles supported on the conductive carrier can be preferably 5 nm or less.
  • the average particle size of the alloy particles can be measured from an observation image of a transmission electron microscope.
  • the loading amount of the platinum-iridium alloy particles is preferably 1 to 50% by mass, and more preferably 1 to 30% by mass, based on the total mass of the fuel cell catalyst. If the supported amount is less than 1% by mass, the catalyst may have a desired catalytic activity. On the other hand, if the supported amount exceeds 50% by mass, the supported amount is too large, and the alloy particles may overlap with each other, and a catalytic effect corresponding to the supported amount may not be obtained.
  • the content of the transition metal is not particularly limited, but is preferably 30% by mass or less, more preferably 10% by mass, based on the total mass of the fuel cell catalyst. It is as follows.
  • the lower limit is also not particularly limited, but is preferably 1% by mass or more in order to sufficiently bring out the effects of including other components.
  • an aggregate of fine particles in which platinum and iridium are high, dispersible, and mixed in advance is prepared using a reverse micelle method, and the aggregate is supported on a carrier.
  • a catalyst for a fuel cell in which platinum-iridium alloy particles having a uniform composition are highly dispersed and supported on a conductive support can be obtained.
  • the firing temperature can be lowered, and the coarsening of platinum-iridium alloy particles due to firing is suppressed.
  • the catalyst activity can be increased.
  • the platinum-iridium alloy supported on the conductive carrier is used.
  • the particle size of the gold particles can be reduced. This makes it possible to provide a fuel cell catalyst having excellent catalytic activity and having a uniform composition of alloy particles. By using the catalyst for a fuel cell, it is possible to provide a fuel cell capable of stably exhibiting excellent power generation performance.
  • the fuel cell catalyst produced by the method of the present invention is preferably used as an electrode catalyst in an electrode catalyst layer responsible for the power generation reaction of the fuel cell. Further, the electrode catalyst layer on which the fuel cell catalyst can be used may be at least one of the anode side and the force side.
  • the fuel cell using the above-described catalyst for a fuel cell of the present invention has high power generation performance, the technical performance of the vehicle is improved by using the fuel cell as a power source of a vehicle such as an automobile. Can be improved.
  • 1.OL was prepared as solution A having a surfactant concentration of 0.15 mol ZL using 66 g of polyethylene glycol mono 4-norfle ether as a surfactant and cyclohexane as an organic solvent.
  • an aqueous solution B containing an iridium compound was prepared by the following procedure. First, 10 g of 1.2% by mass hexachloroiridic acid (H IrCl), which is an iridium compound raw material, and 0.4% by mass of water
  • a solution D containing an iridium fine particle aggregate was added to an aqueous solution containing a platinum compound as dinitro- gen.
  • An aqueous solution containing a platinum compound was impregnated into the iridium fine particle aggregate by adding 8. lg of diamine platinum nitric acid aqueous solution and stirring for 30 minutes.
  • the platinum concentration in the aqueous solution containing the platinum compound was 1% by mass.
  • the carbon black dispersion solution G was gradually added into the solution F several times, and then stirred for 1 hour to prepare a solution H. Thereafter, 50 ml of methanol was added to the solution H to disintegrate the reverse micelles, left overnight, and filtered to separate a solid content. The solid content was dried at 85 ° C under reduced pressure for 12 hours, and calcined in a helium stream at 630 ° C for 1 hour to obtain carbon black as a conductive carrier and platinum-iridium alloy particles supported on carbon black. Thus, a powdery fuel cell catalyst A was obtained. The supported amount of the platinum-iridium alloy particles in the fuel cell catalyst was 20% by mass. The average particle size of the platinum-iridium alloy particles was 4.5 nm.
  • Conductive support carbon black (Ketjen 'Black' Ketjen Black EC600JD manufactured by International Co., Ltd .: BET specific surface area 1270m 2 / g) 0.43g, 50ml of ethanol as a reducing agent, platinum concentration of 0. 50 g of a 5% by mass aqueous solution of dinitrodiamine platinum nitrate was added thereto, followed by stirring and mixing.
  • the mixed solution was further kept at 85 ° C for 6 hours while stirring and mixing, and the reduction reaction was allowed to proceed until the liquid color became colorless and transparent. Thereafter, filtration was performed to separate the solid content, and washing was performed several times with pure water. The solid content was further dried at 80 ° C. for 8 hours to obtain platinum-supporting carbon powder B.
  • a platinum-supported car was placed in a hexachloroiridic acid (H IrCl) solution having an iridium concentration of 1% by mass.
  • Bon powder B was charged, stirred for 1 hour, and dried under reduced pressure at 90 ° C using a rotary evaporator to obtain powder C.
  • the powder C was further dried under reduced pressure at 85 ° C for 12 hours, and calcined in a helium stream at 630 ° C for 1 hour, and carbon black as a conductive carrier and platinum-iridium supported on carbon black were used.
  • a powdered fuel cell catalyst C comprising alloy particles was obtained.
  • the supported amount of the platinum-iridium alloy particles in the fuel cell catalyst was 20% by mass.
  • FIG. 3 is an X-ray diffraction spectrum of the fuel cell catalyst prepared in Example 1 and the fuel cell catalyst prepared in Comparative Example 1.
  • the X-ray diffraction spectrum of the catalyst of Comparative Example 1 showed a broad peak shape. I have. This suggests that the supported platinum-iridium alloy particles are dispersed and supported in a non-uniform composition. On the other hand, the X-ray diffraction spectrum of the catalyst of Example 1 has a sharp peak shape. This suggests that the supported platinum-iridium alloy particles are dispersed and supported in a uniform composition.
  • the catalyst of Comparative Example 1 has a heterogeneous alloy particle composition as compared with the catalyst of the present invention.
  • the composition of the alloy particles is uniform, and the properties as an alloy can be exhibited effectively.
  • a treatment such as baking at a higher temperature.
  • firing at high temperatures may lead to lower production costs and lower energy efficiency.
  • the present invention provides a platinum iridium catalyst having a small particle size, excellent catalytic activity, a uniform composition of alloy particles, and sufficient expression of alloy properties. Further, the firing temperature can be relatively low.

Abstract

 界面活性剤を含む有機溶媒と、イリジウム化合物を含む水溶液とを混合して、前記イリジウム化合物を含む水溶液が前記界面活性剤によって包接された逆ミセルを形成する段階と、前記イリジウム化合物を不溶化処理して、イリジウム微粒子凝集体を生成させる段階と、前記イリジウム微粒子凝集体内に、白金化合物を含む水溶液を含浸させる段階と、前記白金化合物を還元して、前記イリジウム微粒子凝集体内に白金金属を析出させて、金を含有するイリジウム微粒子凝集体を包接する逆ミセルを含む溶液を得る段階と、前記溶液に導電性担体を分散させて、前記白金を含有するイリジウム微粒子凝集体を前記導電性担体に担持させる段階と、前記白金を含有するイリジウム微粒子凝集体が担持された導電性担体を焼成する段階と、を含む、燃料電池用触媒の製造方法である。

Description

燃料電池用触媒の製造方法
技術分野
[0001] 本発明は、燃料電池用触媒の製造方法に関し、詳細には、白金およびイリジウムを 含む合金が高分散担持された燃料電池用触媒に関する。
背景技術
[0002] 燃料電池は、電極反応による生成物が原理的に水であり、地球環境への悪影響が ほとんど無いクリーンな発電システムである。燃料電池としては、固体高分子型燃料 電池、固体酸化物型燃料電池、溶融炭酸塩型燃料電池、リン酸型燃料電池など、各 種燃料電池が提案されて ヽる。
[0003] 燃料電池の中では、固体高分子型燃料電池 (PEFC)が、比較的低温で作動可能 であることから、自動車等の移動体用動力源として期待され、開発が進められている 。固体高分子型燃料電池は、通常、固体高分子電解質膜の両側に、触媒層、ガス拡 散層、およびセパレータがこの順序で積層した構成を有する。セパレータには、発生 した電子を外部に取り出すための集電体が配置される。
[0004] セパレータには、ガス拡散層と接する面にガス流路が形成されている。酸素極側の ガス流路には、空気や酸素ガスなどの酸化剤が供給され、燃料極側のガス流路には 、水素ガスなどの燃料ガスが供給される。ガス流路に供給された反応ガスは、多孔性 のガス拡散層を通じて触媒層に到達し、以下に示す電極反応により電子が発生する 。発生した電子は、ガス拡散層およびセパレータを通じて集電体に移動し、外部回路 に取り出される。
[0005] [化 1] 力ソー ド反応 (酸素極) : 2 H + + 2 e +丄 0 2→H 2 0 アノー ド反応 (燃料極) : H 2→2 H + + 2 e
[0006] 触媒層には、電極反応を促進するための触媒が含有される。燃料電池における電 極反応を促進する触媒としては、白金を担体に担持させたものが検討されている。し 力 ながら、触媒成分として白金金属を用いると、電力印加時に白金が溶出し、電池 性能が低下する問題がある。触媒の安定性を向上させる手法としては、白金とイリジ ゥムとからなる合金を担体に担持させたものを触媒として用いる手法がある(特開 200 4— 22503号公報、段落 0018)。
発明の開示
[0007] 従来の製法においては、白金原料およびイリジウム原料を別々に担体に供給し、そ の後の焼成によって白金およびイリジウムが交じり合って白金 イリジウム合金を形 成する。例えば、白金含有溶液を用いて担体に白金を担持させ、その後、イリジウム 含有溶液を用いて前記担体にイリジウムを担持させる。しかしながら、このような手法 で白金 イリジウム合金を調製する場合、導電性担体上に白金およびイリジウムが別 々に存在するため、焼成による白金およびイリジウムの合金化が進行しづらぐ高温 の焼成を行う必要が生じる。そして、高温で焼成した結果、白金—イリジウム合金が 粗大化して触媒性能が低下するだけでなぐ均一な組成の白金 イリジウム合金を 得るのが困難であった。
[0008] そこで、本発明の目的は、触媒活性が向上された白金一イリジウム触媒力もなる燃 料電池用触媒の製造方法を提供することである。
[0009] 本発明は、界面活性剤を含む有機溶媒と、イリジウム化合物を含む水溶液とを混合 して、前記イリジウム化合物を含む水溶液が前記界面活性剤によって包接された逆ミ セルを形成する段階と、
前記イリジウム化合物を不溶ィ匕処理して、イリジウム微粒子凝集体を生成させる段 階と、
前記イリジウム微粒子凝集体内に、白金化合物を含む水溶液を含浸させる段階と、 前記白金化合物を還元して、前記イリジウム微粒子凝集体内に白金金属を析出さ せて、白金を含有するイリジウム微粒子凝集体を包接する逆ミセルを含む溶液を得る 段階と、
前記溶液に導電性担体を分散させて、前記白金を含有するイリジウム微粒子凝集 体を前記導電性担体に担持させる段階と、
前記白金を含有するイリジウム微粒子凝集体が担持された導電性担体を焼成する 段階と、 を含む、燃料電池用触媒の製造方法である。
[0010] 本発明のさらに他の目的、特徴および特質は、以後の説明および添付図面に例示 される好ましい実施の形態を参酌することによって、明らかになるであろう。
図面の簡単な説明
[0011] [図 1]本発明の一実施形態を示す工程図である。
[図 2]逆ミセルの概念図である。
[図 3]実施例 1で作製された燃料電池用触媒および比較例 1で作製された燃料電池 用触媒についての、 X線回折スペクトルである。
発明を実施するための最良の形態
[0012] 本発明の製造方法の概要について、図 1を用いて簡単に説明する。まず、界面活 性剤を含む有機溶媒とイリジウム化合物を含む水溶液とを混合して、イリジウム化合 物を含む水溶液が界面活性剤によって包接された逆ミセルを形成する。そして、沈 殿剤の添加などにより逆ミセル内部に存在するイリジウム化合物を不溶ィ匕処理して、 I r (OH) (H O) など力もなるイリジウム微粒子の集合体を逆ミセル内に生成させる。
3 2 3
次に、逆ミセル内部に、白金化合物を含む水溶液を供給することで、白金化合物を 含む水溶液をイリジウム微粒子集合体に含浸させる。その後、還元剤の添加などによ りイリジウム微粒子集合体内部に含浸させた白金化合物を還元して、白金金属を析 出させ、これにより白金を含有するイリジウム微粒子集合体を得る。このようにして得ら れた白金を含有するイリジウム微粒子集合体は逆ミセル内に存在するため、溶液中 で前記粒子の凝集を抑制して均一に分散させることができる。次に、前記白金を含 有するイリジウム微粒子集合体を含む溶液中に導電性担体を分散させると、導電性 担体上に前記白金を含有するイリジウム微粒子集合体を高分散担持させることがで きる。
[0013] このように、本発明では、前記白金を含有するイリジウム微粒子集合体を予め調製 して導電性担体上に担持させることで、白金とイリジウムとを別々に担持させた場合と 比べて合金化が容易となり、焼成による熱的エネルギーによって白金 イリジウム合 金のシンタリングを大幅に低減させることが可能となる。また、逆ミセル法を用いて粒 子を製造する利点としては、粒子サイズを制御しやすいことが挙げられる。逆ミセル 法を用いれば、粒子のサイズをナノメートルオーダーで制御可能である。
[0014] さらに、本発明の方法では、逆ミセル内部に先にイリジウムを析出させた後に、白金 を析出させる。イリジウムよりも白金を先に、または、白金およびイリジウムを同時に析 出させた場合、白金が多く析出し、イリジウムはほとんど析出しない傾向を示す場合 がある。従って、逆ミセル内で白金およびイリジウムを均一な組成で析出するのが困 難であり、担体上に担持される白金およびイリジウムの比率が安定せず、組成を均一 にすることができな力つた。力 うな点に着目し、本発明では、イリジウムを先に析出さ せることで、白金とイリジウムとの比率が均一な組成を有する合金粒子を導電性担体 上に担持させることが可能となることを見出した。
[0015] 以下、本発明の方法について順を追ってより詳細に説明する。
[0016] まず、界面活性剤を含む有機溶媒と、イリジウム化合物を含む水溶液とを混合して 、イリジウム化合物を含む水溶液が界面活性剤によって包接された逆ミセルを形成す る。図 2に、前記逆ミセルの概念図を示す。イリジウム化合物を含む水溶液を、界面 活性剤を含む有機溶媒と混合することによって、イリジウム化合物を含む水溶液 30が 界面活性剤 20によって包接された逆ミセルが有機溶媒中に形成される。なお、図 2 に示す逆ミセルの概念図は、説明の都合上、簡略化されており、図示する態様に本 発明の技術的範囲が限定されることはない。
[0017] 逆ミセルを形成するために用いられる界面活性剤は、特に限定されな!、。例えば、 ポリエチレングリコールモノ 4 ノニルフエニルエーテル、ポリオキシエチレンノニル フエ-ルエーテル、ラウリン酸マグネシウム、力プリン酸亜鉛、ミリスチン酸亜鉛、ナトリ ゥムフエ-ルステアレート、アルミニウムジカプリレート、テトライソアミルアンモ-ゥムチ オシァネート、 n—ォクタデシルトリ n—ブチルアンモ -ゥム蟻酸塩、 n—ァミルトリ n— ブチルアンモ -ゥムヨウ化物、ナトリウムビス(2—ェチルへキシル)琥珀酸塩、ナトリウ ムジノ-ルナフタレンスルホネート、カルシウムセチルサルフェート、ドデシルァミンォ レイン酸塩、ドデシルァミンプロピオン酸塩、セチルトリメチルアンモ -ゥムブロマイド、 ステアリルトリメチルアンムニゥムブロマイド、セチルトリメチルアンモ -ゥムクロライド、 ステアリルトリメチルアンモ -ゥムクロライド、ドデシルトリメチルアンモ -ゥムブロマイド 、ォクタデシルトリメチルアンモ -ゥムブロマイド、ドデシルトリメチルアンモ -ゥムクロラ イド、ォクタデシルトリメチルアンモ -ゥムクロライド、ジドデシルジメチルアンモ -ゥム ブロマイド、ジテトラデシルジメチルアンモ -ゥムブロマイド、ジドデシルジメチルアン モ -ゥムクロライド、ジテトラデシルジメチルアンモ -ゥムクロライド、(2—ォクチルォキ シー 1ーォクチルォキシメチル)ポリオキシエチレンェチルエーテルなどの界面活性 剤が用いられる。
[0018] 有機溶媒も特に限定されな ヽ。例えば、シクロへキサン、メチルシクロへキサン、シ クロヘプタン、ヘプタノール、ォクタノール、ドデシルアルコール、セチルアルコール、 イソオクタン、 n—ヘプタン、 n—へキサン、 n—デカン、ベンゼン、トルエン、キシレン などの有機溶媒が用いられる。
[0019] 有機溶媒および界面活性剤は、イリジウム化合物を含む水溶液と混合する前に、 撹拌しておくことが好ましい。界面活性剤および有機溶媒の使用量については、特 に限定されないが、界面活性剤の濃度が、好ましくは 0. 01〜: LmolZLであり、より 好ましくは 0. 1〜0. 3molZLである。
[0020] イリジウム化合物とは、白金 イリジウム合金粒子を構成するイリジウムの原料であ る。イリジウム化合物はある程度の水溶性を有していることが好ましい。イリジウム化合 物の種類については、水溶液として逆ミセルの内部に供給可能であれば、特に限定 されない。好ましくは、イリジウム化合物は、イリジウム錯体であり、具体例としては、ィ リジゥムに水酸ィ匕物イオンが 6配位した〔Ir (OH) 〕3_が挙げられる。
6
[0021] イリジウム化合物を含む水溶液の調製方法は、用いるイリジウム化合物に応じて適 宜選択すればよぐ特に限定されない。イリジウム化合物を含む水溶液の調製方法 の一例としては、塩化イリジウムと、塩化イリジウムに含まれるイリジウム原子のモル数 の 5〜10倍のヒドロキシル基含有塩基ィ匕合物とを混合した後、 30〜50°Cの温度で 1 〜5時間反応させることによって調製される。
[0022] 塩化イリジウムとしては、水溶液中において OH—と反応して、〔Ir (OH) 〕3_のような
6 錯体を形成可能な化合物が好ましい。例えば、六塩化イリジウム酸 (H 〔IrCl〕、H 〔
2 6 3
IrCl〕)、六塩化イリジウムカリウム (K〔IrCl〕、 K [IrCl〕)、六塩化イリジウムナトリウ
6 2 6 3 6
ム(Na 〔IrCl〕)、六塩化イリジウム二アンモニゥム((NH ) 〔IrCl〕)、六塩化イリジ
2 6 4 2 6
ゥム三アンモ-ゥム((NH ) [IrCl〕)等が挙げられる。 [0023] ヒドロキシル基含有塩基性ィ匕合物とは、化合物中にヒドロキシル基を有し、このヒドロ キシル基が水中に遊離して塩基として作用する化合物である。例えば、水酸化ナトリ ゥム、水酸化カリウムなどのアルカリ金属の水酸化物;水酸化カルシウム、水酸化マグ ネシゥムなどのアルカリ土類金属の水酸化物などが挙げられる。テトラメチルアンモ- ゥムヒドロキシドなどが用いられてもよい。ナトリウムやカリウム等の金属不純物の混入 量を減らす観点からは、テトラメチルアンモ-ゥムヒドロキシドが好ま 、。
[0024] イリジウム化合物を含む水溶液における、イリジウム化合物の濃度は、好ましくは 0.
1質量%〜30質量%、より好ましくは 0. 5質量%〜3質量%である。イリジウム化合物 の濃度が 0. 1質量%未満であると、逆ミセル溶液中に投入できるイリジウム量が相対 的に少なくなる。ミセル径を小さく保っためには、投入する水分量を一定量以下にす ることが好ましぐ投入する水分量が多くなると、最終的に得られる白金 イリジウム 合金粒子の粒径が大きくなる傾向がある。イリジウム化合物の濃度が 30質量%を超 えると、水分量が少なくなるため、金属塩が析出し、逆ミセルを形成しに《なる虞が ある。また、金属微粒子の粒子径が大きくなる傾向が見られる。ただし、本発明の技 術的範囲がこれらの範囲に限定されるわけではなぐ場合によっては、上記範囲から 外れる濃度としてもよい。
[0025] 次に、上述の通りにして逆ミセルを形成した後、逆ミセル中に存在するイリジウム化 合物を不溶化処理して、イリジウム微粒子の凝集体を生成させる。イリジウム化合物 の不溶ィ匕によって生成したイリジウム微粒子凝集体は、界面活性剤によって形成され た逆ミセル中に存在する。また、有機溶媒中に形成された前記逆ミセルには、イリジ ゥム微粒子凝集体の他に水溶液が含まれる。
[0026] イリジウム化合物の不溶ィ匕処理の一実施形態としては、沈殿剤を前記イリジウム化 合物を含む水溶液に添加して、イリジウム微粒子凝集体を生成させる方式が挙げら れる。このとき用いられる沈殿剤は、イリジウム化合物の種類によって選択されること が好ましい。沈殿剤の具体例としては、塩酸、硝酸、硫酸、および酢酸からなる群より 選択される 1種以上の酸が挙げられる。
[0027] 酸を加えるときには、イリジウム化合物を含む水溶液中の pHが 7〜8. 5程度となる ように酸を供給するとよい。 pHが 8. 5を超える場合、十分にイリジウム微粒子の析出 が生じない虞がある。 pHが 7より小さくなるほどにまで酸を加えると、生成したイリジゥ ム微粒子が減少する虞がある。
[0028] 逆ミセル内部に生成するイリジウム微粒子の組成については、特に限定されないが 、好ましくは、 Ir(OH) (H O) のような水酸化物水和物である。生成した微粒子がィ
3 2 3
リジゥム水酸ィ匕物水和物であると、粒径が小さいイリジウム微粒子の凝集体が生成し 、後工程において白金化合物を含む水溶液を供給した場合に、イリジウム微粒子凝 集体内部に水溶液が充分に含有され、イリジウム微粒子凝集体内部に、白金を高分 散させて析出させることが可能である。
[0029] 次に、イリジウム微粒子凝集体内に、白金化合物を含む水溶液を含浸させる。逆ミ セル内部に存在するイリジウム微粒子凝集体に白金化合物を含む水溶液を含浸さ せるには、逆ミセルを含む溶液中に白金化合物を含む水溶液を供給し、撹拌するこ とによって、逆ミセル内部に水溶液を浸透させるとよい。逆ミセル中に浸透した白金 化合物を含む水溶液は、イリジウム微粒子凝集体内部に含浸される。このとき、イリジ ゥム微粒子が Ir (OH) (H O) のような水酸化物水和物であると、スポンジに水が吸
3 2 3
収されるように、イリジウム微粒子凝集体内部に白金化合物を含む水溶液が含浸さ れやすい。
[0030] 白金化合物とは、白金 イリジウム合金粒子を構成する白金の原料である。白金化 合物はある程度の水溶性を有して 、ることが好ま 、。白金化合物の種類につ!ヽて は、水溶液として逆ミセルの内部に供給可能であれば、特に限定されない。白金化 合物の具体例としては、ジニトロジァミン白金(Pt (NO ) (NH ) )、 H PtClなどが
2 2 3 2 2 6 挙げられる。ジニトロジァミン白金の結晶は基本的に水に不溶であるため、ジニトロジ ァミン白金を用いる際には、硝酸に溶解して力も水溶液ィ匕し、ジニトロジァミン白金硝 酸水溶液として添加するとよ ヽ。
[0031] 白金化合物を含む水溶液における、白金の濃度は、好ましくは 0. 01質量%〜10 質量%であり、より好ましくは 0. 5質量%〜3質量%である。ただし、本発明の技術的 範囲がこれらの範囲に限定されるわけではなぐ場合によっては、上記範囲から外れ る濃度としてちよい。
[0032] 白金化合物を含む水溶液を、イリジウム微粒子凝集体に含浸させた後、白金化合 物を還元して、イリジウム微粒子凝集体内に白金金属を析出させて、白金を含有する イリジウム微粒子凝集体を得る。これにより、イリジウム微粒子凝集体内に白金を高分 散させて析出させることができる。
[0033] イリジウム微粒子凝集体内に白金金属を析出させる手法は、白金化合物の種類に よって適宜選択すればよい。例えば、還元剤を用いて白金化合物を還元して、イリジ ゥム微粒子凝集体内に白金金属を析出させる。このとき用いられる還元剤としては、 N H、 NaBH、および Hガスからなる群より選択される 1種以上が挙げられる。還元
2 4 4 2
剤の選択に際しては、還元処理のしゃすさや、イリジウム微粒子の種類を考慮される ことが好ましい。例えば、 N Hによる白金金属の析出は比較的困難であり、還元速
2 4
度を慎重に制御することが好まし 、。還元速度が速すぎると白金粒子が凝集しやすく 、白金原子の局在化が生じる虞がある。制御の容易さを考慮すると、 NaBHや Hが
4 2 好ましい。また、イリジウム原料として H IrClを用いた場合には、 NaBHや Hガスよ
2 6 4 2 る還元が有効である。
[0034] 得られる燃料電池用触媒の触媒活性、耐久性、 COなどに対する安定性などを向 上させることを目的として、白金を含有するイリジウム微粒子凝集体中に、さらに遷移 金属を混入させてもよい。カゝような場合には、遷移金属を含む水溶液を白金を含有 するイリジウム微粒子凝集体内部にさらに含浸させ、白金を含有するイリジウム微粒 子凝集体内に前記遷移金属を析出させるとよい。白金を含む水溶液を含浸させた場 合と同様に、所望の遷移金属を含む水溶液を含浸させることによって、白金、イリジゥ ム、および所望の遷移金属力もなる多元系の合金粒子を製造可能である。多元系の 合金粒子を製造する場合、白金および遷移金属の 、ずれカゝを先にイリジウム微粒子 凝集体内に含浸させるかは、特に限定されない。可能であれば、白金および所望の 遷移金属の双方を含む水溶液を用いて、合金粒子の調製を試みてもよい。望ましく は、白金をまず含浸させた後、所望の遷移金属を含浸させるのがよい。すなわち、本 発明の方法では、白金を含有するイリジウム微粒子凝集体に、遷移金属を含む水溶 液を含浸させる段階と、前記白金を含有するイリジウム微粒子凝集体内に前記遷移 金属を析出させる段階とを、さらに有するのが望ましい。これにより、白金を含有する イリジウム微粒子凝集体に遷移金属を含有させることができ、得られる燃料電池用触 媒において、白金、イリジウム、および遷移金属の比率が均一な組成を有する合金 粒子が得られる。
[0035] 遷移金属は、白金を含浸させる場合と同様に、遷移金属を含む水溶性の化合物を 原料として水中に溶解させ、白金およびイリジウムを含有する粒子内に供給し、析出 処理をすることが好ましい。白金以外の遷移金属を析出させる方法は、その遷移金 属を含む化合物の特性によって選択するとよい。還元することによって析出する化合 物を原料として用いている場合には、還元剤を添加するなどして還元処理をすれば よぐ特定の沈殿剤によって析出する化合物を用いている場合には、沈殿剤を添カロ すればよい。白金化合物および遷移金属を含む化合物の双方の析出に有効な手法 が存在する場合には、一度の析出処理によって、白金および遷移金属の双方を析 出させてもよい。
[0036] 遷移金属の種類は特に限定されないが、得られる白金 イリジウム合金粒子の触 媒性能を考慮すると、遷移金属は、クロム、マンガン、鉄、コバルト、ニッケル、ロジゥ ム、およびパラジウム力もなる群より選択される 1種以上であることが好ましい。前記遷 移金属を含む化合物としては、特に制限されないが、遷移金属の元素を含む硝酸塩 、硫酸塩、アンモ-ゥム塩、ァミン、炭酸塩、重炭酸塩、ハロゲン塩、亜硝酸塩、蓚酸 などの無機塩類、ギ酸塩などのカルボン酸塩および水酸ィ匕物、アルコキサイド、酸ィ匕 物などが例示できる。前記遷移金属を含む化合物の還元剤および沈殿剤なども、用 いる前記化合物の種類に応じて選択すればよぐ上記したのと同様のものを用いても よい。
[0037] 上述の通りにして得られた白金を含有するイリジウム微粒子凝集体は、有機溶媒中 に形成された逆ミセルによって包接されている。本発明の方法では、次に、白金を含 有するイリジウム微粒子凝集体を包接する逆ミセルを含む溶液と導電性担体とを混 合させて、前記白金を含有するイリジウム微粒子凝集体を前記導電性担体に担持さ せる。
[0038] 導電性担体としては、特に限定されないが、カーボンを主成分とするものが好ましく 用いられる。具体的には、ケッチェンブラック、ブラックパール、グラフアイト化カーボン 、グラフアイトイ匕ブラックパール、および、これらを高温にて黒鉛化処理を施したもの 等が挙げられる。水酸化ナトリウム、水酸ィ匕カリウム、水酸ィ匕カルシウムなどのアルカリ 溶液を用いて、担体表面の付着物を洗浄してもよい。また、導電性担体の BET比表 面積は、好ましくは 50m2/g以上、より好ましくは 250〜1, 600m2Zgである。
[0039] 導電性担体は、有機溶媒中に分散した状態で混合されることが好ま ヽ。有機溶 媒としては、逆ミセルの形成に用いられた有機溶媒と同様の有機溶媒が用いられる。 導電性担体と白金 イリジウム合金粒子との分散性を高めるためには、同一の有機 溶媒が用いられることが好ましい。導電性担体については、本発明の第 1において説 明した通りであるため、ここでは説明を省略する。導電性担体の有機溶媒中への分 散に際しては、撹拌器をもちいてもよいし、超音波分散などの手法を用いてもよい。
[0040] 導電性担体を含む有機溶媒と、白金を含有するイリジウム微粒子凝集体を包接す る逆ミセルを含む溶液とを混合することにより、前記白金を含有するイリジウム微粒子 凝集体が導電性担体上に担持される。
[0041] 前記混合手段としては、超音波、ホモジナイザーなどの公知の攪拌装置を用い、逆 ミセル溶液に導電性担体を混合した後に、該溶液を混合'撹拌し、 70〜100°C、 3〜 12時間反応させて前記凝集体を導電性担体に担持させることが好ましい。この条件 によれば、担体表面への前記凝集体の担持が確実に行える。
[0042] また、前記混合を行った後に逆ミセルの崩壊処理を行うのが望ましぐこれにより導 電性担体上への前記白金を含有するイリジウム微粒子凝集体の担持を促進させるこ とができる。逆ミセルの崩壊処理は、使用した界面活性剤の種類に応じて選択される とよい。例えば、逆ミセル溶液に導電性担体を混合した溶液に、メタノールなどのァ ルコールを添加することによって、逆ミセルを崩壊させる。
[0043] 本発明においては、水溶液の供給量や界面活性剤の種類を制御することによって 、逆ミセルの大きさを制御し、得られる白金を含有するイリジウム微粒子凝集体、ひい ては白金—イリジウム合金粒子の粒径を、比較的容易に制御できる。白金を含有す るイリジウム微粒子凝集体における白金およびイリジウムの組成については、特に限 定されない。白金化合物を含む水溶液を加えた際に、この水溶液によって逆ミセル が大きくなると、白金 イリジウム微粒子凝集体の表面には、比較的白金成分が多い 部位が生じると考えられる。このように成分が不均一な白金 イリジウム微粒子凝集 体を焼成して白金 イリジウム合金粒子を製造する場合であっても、従来の手法で 製造された場合に比べると、格段に白金とイリジウムとの均一化が進行しているため、 焼成による粒子の粗大化などを抑制することが可能である。
[0044] 前記白金を含有するイリジウム微粒子凝集体を導電性担体に担持させた後は、濾 過により固形分を分離し、得られた固形分を乾燥する。分離方法や乾燥方法につい ては、特に限定されない。例えば、乾燥は、減圧下で固形分周辺の雰囲気温度を上 昇させること〖こよって、行われる。場合によっては、乾燥工程を行わずに、焼成工程 にお 、て乾燥させてもよ!、。
[0045] その後、固形分を焼成して、白金を含有するイリジウム微粒子凝集体を合金化する ことにより、導電性担体上に白金 イリジウム合金粒子が担持されてなる燃料電池用 触媒を得る。
[0046] 焼成条件については、特に限定されない。例えば、焼成は、 200〜950°Cで 1〜4 時間行われる。また、焼成は、アルゴン、ヘリウムなどの不活性ガス雰囲気下におい て行うのが好ましい。
[0047] 乾燥および焼成されるイリジウム成分力 Ir(OH) (H O) のような水酸化物水和
3 2 3
物であると、熱処理によって粒子が大きく収縮し、粒子径は一層小さくなる。このため 、白金および他の遷移金属力 イリジウム内に固定ィ匕されやすいメリットがある。
[0048] 上述した方法により、均一な組成を有する白金 イリジウム合金粒子が導電性担体 上に高分散担持された燃料電池用触媒が得られる。
[0049] なお、前記白金 イリジウム合金粒子において、成分元素が別個の結晶となるいわ ば混合物である共晶合金、成分元素が完全にとけ合い固溶体となっているもの、成 分元素が金属間化合物または金属と非金属との化合物を形成しているものなど、い ずれであってもよい。し力しながら、得られる燃料電池用触媒の触媒活性、耐久性な どを考慮すると白金 イリジウム合金粒子において成分元素が完全にとけ合い固溶 体となって!/、るものが望まし!/、。
[0050] また、導電性担体上に担持される白金—イリジウム合金粒子は、組成が均一である ことが好ましい。白金成分が過剰に存在する部位や、イリジウム成分が過剰に存在す る部位がなぐ白金およびイリジウムが均一に分散していると、触媒として合金を用い るメリットを充分に活力せる。具体的には、燃料電池用触媒の粉末についての X線回 折スペクトルにおいて、 Ptに由来するピークおよび Irに由来するピークが実質的に存 在せず、 Ptに由来するピークおよび Irに由来するピークの間に、 Pt—Ir合金に由来 するピークのみが実質的に存在するとよい。例えば、後述する実施例において得ら れた X線回折スペクトル(図 3)のように、 2 Θ =81〜82° に単一のピークが存在し、 そのピークの半値幅が好ましくは 1° 以内、より好ましくは 0. 8° 以内である。
[0051] 本発明の方法によれば、導電性担体上に担持される白金 イリジウム合金粒子の 粒子径を小さくすることができる。具体的には、導電性担体上に担持される白金ーィ リジゥム合金粒子の平均粒径を、好ましくは 5nm以下とすることが可能である。前記 合金粒子の平均粒径は、透過型電子顕微鏡の観察像より計測することが可能である
[0052] 白金 イリジウム合金粒子の担持量は、燃料電池用触媒の全質量に対して、好ま しくは 1〜50質量%であり、より好ましくは 1〜30質量%とするのがよい。担持量が 1 質量%未満であると、所望する触媒活性を有する触媒とならなる虞がある。また、担 持量が 50質量%を超えると担持量が多すぎて合金粒子が重なりあって、担持量に見 合った触媒効果が得られなくなる虞がある。
[0053] 合金粒子に遷移金属が含まれる場合、遷移金属の含有量は、特に制限されないが 、燃料電池用触媒の全質量に対して、好ましくは 30質量%以下、より好ましくは 10質 量%以下である。下限についても特に限定されないが、他成分を含有させることによ る効果を充分に引き出すには、 1質量%以上含有されることが好ましい。
[0054] 本発明の燃料電池用触媒の製造方法は、逆ミセル法を用いて予め白金とイリジゥ ムが高 、分散性で混じりあった微粒子の凝集体を調製し、この凝集体を担体に担持 させる手法で製造される。このため、組成が均一である白金 イリジウム合金粒子が 導電性担体上に高分散担持された燃料電池用触媒が得られる。さらに、予め白金と イリジウムが高 、分散性で混じりあった微粒子の凝集体を用いて 、るため、焼成温度 を低くすることも可能であり、焼成による白金 イリジウム合金粒子の粗大化を抑制し 、触媒活性を高めることができる。
[0055] このように本発明の方法によれば、導電性担体上に担持させる白金 イリジウム合 金粒子の粒径を小さくすることができる。これにより触媒活性に優れ、さらに、合金粒 子の組成が均一である燃料電池用触媒を提供することが可能となる。前記燃料電池 用触媒を用いることにより、優れた発電性能を安定して発揮することができる燃料電 池を提供することが可能となる。
[0056] 本発明の方法により製造された燃料電池用触媒は、燃料電池の発電反応を担う電 極触媒層における電極触媒として用いられるのが好ましい。また、前記燃料電池用 触媒が用いられ得る電極触媒層は、アノード側および力ソード側の少なくとも一方で あればよい。
[0057] さらに、上述した本発明の燃料電池用触媒を用いた燃料電池は高い発電性能を有 することから、前記燃料電池を自動車などの車両の動力源として用いることによって、 車両の技術的性能を向上させることができる。
[0058] (実施例 1)
界面活性剤としてポリエチレングリコールモノ 4—ノ-ルフエ-ルエーテル 66g、 有機溶媒としてシクロへキサンを用いて、界面活性剤濃度が 0. 15molZLである溶 液 Aを 1. OL調製した。
[0059] 別途、イリジウム化合物を含む水溶液 Bを、以下の手順で調製した。まず、イリジゥ ム化合物原料である 1. 2質量%六塩化イリジウム酸 (H IrCl ) 10gと、 0. 4質量%水
2 6
酸ィ匕ナトリウム水溶液 26gとを混合した。このとき、塩化イリジウムのモル数に対する 水酸ィ匕ナトリウムのモル数の比は 6. 1であった。その後、混合溶液を、 40°Cで 2時間 、ホットスターラー上で混合撹拌し、溶液 Bを調製した。溶液 Bにおける塩化イリジウム の濃度は、 0. 33質量%であった。
[0060] 調製した溶液 B6. 4gを溶液 Aに投入し、 30分間撹拌することによって、イリジウム 化合物が界面活性剤によって包接された逆ミセルを含む溶液 Cを調製した。
[0061] 次に、沈殿剤として 0. 5質量%塩酸水溶液を溶液 Cに投入し、 30分間撹拌するこ とによって、イリジウム化合物を不溶ィ匕処理して、水酸化イリジウム水和物 (Ir(OH) (
3
H O) )からなるイリジウム微粒子凝集体を析出させた。塩酸水溶液の投入量は、溶
2 3
液 Bの pHを約 7にするのに必要な量とした。
[0062] イリジウム微粒子凝集体を含む溶液 Dに、白金化合物を含む水溶液としてジニトロ ジァミン白金硝酸水溶液 8. lgを投入し、 30分間撹拌することによって、イリジウム微 粒子凝集体内に、白金化合物を含む水溶液を含浸させた。白金化合物を含む水溶 液における白金濃度は 1質量%とした。
[0063] 白金化合物を含む水溶液を加えた溶液 Eに、還元剤としてホウ素化水素ナトリウム( NaBH ) 0. 2gを、溶液 Eを撹拌しながら数回に分けて徐々に加え、さらに 2時間撹
4
拌することによって、イリジウム微粒子凝集体内に、白金金属を析出させた。これによ り、白金金属が高分散したイリジウム微粒子凝集体を含む溶液 Fを得た。
[0064] 別途、シクロへキサン 200mLに導電性担体であるカーボンブラック(ケッチェン 'ブ ラック'インターナショナル社製ケッチェンブラック EC600JD: BET比表面積 1270m2 /g) 0. 43gを投入し、 3分間超音波分散することで、カーボンブラック分散溶液 Gを 調製した。
[0065] 溶液 F中に、カーボンブラック分散溶液 Gに数回に分けて徐々に投入した後、 1時 間撹拌し溶液 Hを調製した。その後、溶液 Hに、メタノールを 50ml投入して逆ミセル を崩壊させ、 1昼夜放置し、濾過して固形分を分離した。固形分を減圧下 85°Cにお いて 12時間乾燥し、ヘリウム気流中において 630°Cで 1時間焼成し、導電性担体で あるカーボンブラックと、カーボンブラックに担持された白金 イリジウム合金粒子とか らなる粉末状の燃料電池用触媒 Aを得た。燃料電池用触媒における白金 イリジゥ ム合金粒子の担持量は、 20質量%であった。白金—イリジウム合金粒子の平均粒径 は 4. 5nmであった。
[0066] (比較例 1)
導電性担体であるカーボンブラック (ケッチェン'ブラック 'インターナショナル社製ケ ッチェンブラック EC600JD: BET比表面積 1270m2/g) 0. 43gに、還元剤としてェ タノール 50ml、触媒金属粒子原料として白金濃度 0. 5質量%のジニトロジァミン白 金硝酸塩水溶液を 50g投入し、撹拌混合した。混合溶液を、さらに 85°Cにて 6時間、 撹拌混合しながら保持し、液色が無色透明になるまで還元反応を進行させた。その 後、ろ過を実施し、固形分を分離し、純水にて数回、洗浄を実施した。固形分を、さら に 80°Cにお 、て 8時間乾燥し、白金担持カーボン粉末 Bを得た。
[0067] イリジウム濃度が 1質量%の六塩化イリジウム酸 (H IrCl )溶液中に白金担持カー ボン粉末 Bを投入し、 1時間撹拌後、ローターリーエバポレーターを用いて 90°Cで減 圧乾燥し、粉末 Cを得た。さらに粉末 Cを減圧下 85°Cにおいて 12時間乾燥し、へリウ ム気流中において 630°Cで 1時間焼成し、導電性担体であるカーボンブラックと、力 一ボンブラックに担持された白金—イリジウム合金粒子とからなる粉末状の燃料電池 用触媒 Cを得た。燃料電池用触媒における白金 イリジウム合金粒子の担持量は、 20質量%であった。
[0068] (粉末 X線回折法による評価)
実施例 1及び比較例 1に従 、作製した白金—イリジウム合金粒子を担持して ヽる燃 料電池用触媒について、粉末 X線回折を測定した。図 3は、実施例 1で作製された燃 料電池用触媒および比較例 1で作製された燃料電池用触媒についての、 X線回折ス ベクトルである。
[0069] 2 0 =80° 〜84° 付近に見られる Pt、 Ir及びそれらの合金に起因するピークで比 較した場合、比較例 1の触媒の X線回折スペクトルはブロードなピーク形状を示して いる。このことから、担持された白金—イリジウム合金粒子は、組成が不均一な状態で 分散担持されていることが示唆される。一方、実施例 1の触媒の X線回折スペクトル はピーク形状が鋭い。このことから、担持された白金 イリジウム合金粒子は、組成が 均一な状態で分散担持されて 、ることが示唆される。
[0070] 以上のように、比較例 1の触媒は、本発明の触媒に比べて、合金粒子の組成が不 均一である。これに対し、本発明の触媒は、合金粒子の組成が均一であり、合金とし ての特性が効果的に発揮されうる。比較例 1の触媒における合金粒子の組成を均一 な状態に近づけるためには、より高い温度で焼成するなどの処理が必要となる力 高 温で焼成すると粒子サイズが増大し、触媒活性が低下する虞がある。また、高温での 焼成は、製造コストやエネルギー効率の悪化を招来する虡もある。
[0071] まとめると、本発明によって、粒径が小さく触媒活性に優れ、また、合金粒子の組成 が均一であり合金としての特性が充分に発現可能な白金 イリジウム触媒が提供さ れる。また、焼成温度を、比較的低温とすることも可能である。
[0072] 上記した実施例は、本発明をより具体的に説明するためのものであり、本発明が上 記実施例に限定されることはない。 本出願は、 2004年 4月 28日に出願された日本特許出願番号 2004— 134207号 に基づいており、その開示内容は、参照され、全体として、組み入れられている。

Claims

請求の範囲
[1] 界面活性剤を含む有機溶媒と、イリジウム化合物を含む水溶液とを混合して、前記 イリジウム化合物を含む水溶液が前記界面活性剤によって包接された逆ミセルを形 成する段階と、
前記イリジウム化合物を不溶ィ匕処理して、イリジウム微粒子凝集体を生成させる段 階と、
前記イリジウム微粒子凝集体内に、白金化合物を含む水溶液を含浸させる段階と、 前記白金化合物を還元して、前記イリジウム微粒子凝集体内に白金金属を析出さ せて、白金を含有するイリジウム微粒子凝集体を包接する逆ミセルを含む溶液を得る 段階と、
前記溶液に導電性担体を分散させて、前記白金を含有するイリジウム微粒子凝集 体を前記導電性担体に担持させる段階と、
前記白金を含有するイリジウム微粒子凝集体が担持された導電性担体を焼成する 段階と、
を含む、燃料電池用触媒の製造方法。
[2] 前記イリジウム化合物は、イリジウム錯体である、請求項 1に記載の燃料電池用触 媒の製造方法。
[3] 前記イリジウム化合物を含む水溶液における前記イリジウム化合物の濃度は、 0. 1 質量%〜30質量%である、請求項 1または 2に記載の燃料電池用触媒の製造方法
[4] 前記イリジウム化合物を含む水溶液は、塩化イリジウムと、前記塩化イリジウムに含 まれるイリジウム原子のモル数の 5〜10倍のヒドロキシル基含有塩基化合物とを混合 した後、 30〜50°Cの温度で 1〜5時間反応させることによって調製される、請求項 1 〜3のいずれか 1項に記載の燃料電池用触媒の製造方法。
[5] 前記イリジウム微粒子凝集体を生成させる段階は、沈殿剤を前記イリジウム化合物 を含む水溶液に添加して、イリジウム微粒子凝集体を生成させる段階である、請求項 1〜4のいずれか 1項に記載の燃料電池用触媒の製造方法。
[6] 前記沈殿剤は、塩酸、硝酸、硫酸、および酢酸からなる群より選択される 1種以上 の酸である、請求項 5に記載の燃料電池用触媒の製造方法。
[7] 前記白金化合物は、 Pt (NO ) (NH ) 、または H PtClである、請求項 1〜6のい
2 2 3 2 2 6
ずれか 1項に記載の燃料電池用触媒の製造方法。
[8] 前記イリジウム微粒子凝集体内に白金金属を析出させる段階は、還元剤を用いて 前記白金化合物を還元して、前記イリジウム微粒子凝集体内に白金金属を析出させ る段階である、請求項 1〜7のいずれ力 1項に記載の燃料電池用触媒の製造方法。
[9] 前記還元剤は、 N H、 NaBH、および Hガス力 なる群より選択される 1種以上
2 4 4 2
である、請求項 8に記載の燃料電池用触媒の製造方法。
[10] 前記白金を含有するイリジウム微粒子凝集体を前記導電性担体に担持させる段階 の前に、
前記白金を含有するイリジウム微粒子凝集体内に、遷移金属を含む水溶液を含浸 させる段階と、
前記白金を含有するイリジウム微粒子凝集体内に、前記遷移金属を析出させる段 階と、
をさらに含む、請求項 1〜9のいずれか 1項に記載の燃料電池用触媒の製造方法。
[11] 前記遷移金属は、クロム、マンガン、鉄、コバルト、ニッケル、ロジウム、およびパラジ ゥムカもなる群より選択される 1種以上である、請求項 10に記載の燃料電池用触媒 の製造方法。
[12] 導電性担体に白金 イリジウム合金粒子が担持されてなる燃料電池用触媒であつ て、
請求項 1〜11のいずれかの方法により製造されてなる燃料電池用触媒。
[13] 前記合金粒子の平均粒径が 5nm以下である、請求項 12に記載の燃料電池用触 媒。
[14] 請求項 12または 13に記載の燃料電池用触媒を有する燃料電池。
[15] 請求項 14の燃料電池を搭載する車両。
PCT/JP2005/007394 2004-04-28 2005-04-18 燃料電池用触媒の製造方法 WO2005106995A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05730563.3A EP1742283B1 (en) 2004-04-28 2005-04-18 Method for producing catalyst for fuel cell
US11/587,803 US7569509B2 (en) 2004-04-28 2005-04-18 Method for producing catalyst for fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-134207 2004-04-28
JP2004134207A JP4715107B2 (ja) 2004-04-28 2004-04-28 燃料電池用触媒、および白金−イリジウム合金粒子の製造方法

Publications (1)

Publication Number Publication Date
WO2005106995A1 true WO2005106995A1 (ja) 2005-11-10

Family

ID=35241962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/007394 WO2005106995A1 (ja) 2004-04-28 2005-04-18 燃料電池用触媒の製造方法

Country Status (4)

Country Link
US (1) US7569509B2 (ja)
EP (1) EP1742283B1 (ja)
JP (1) JP4715107B2 (ja)
WO (1) WO2005106995A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008091101A (ja) * 2006-09-29 2008-04-17 Sanyo Electric Co Ltd 燃料電池及び燃料電池発電システム
WO2015140712A1 (en) * 2014-03-18 2015-09-24 Basf Se A process for the production of a carbon supported catalyst

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4715107B2 (ja) * 2004-04-28 2011-07-06 日産自動車株式会社 燃料電池用触媒、および白金−イリジウム合金粒子の製造方法
WO2007114525A1 (ja) * 2006-03-31 2007-10-11 Toyota Jidosha Kabushiki Kaisha 燃料電池用電極触媒の製造方法
KR100846478B1 (ko) * 2006-05-16 2008-07-17 삼성에스디아이 주식회사 담지 촉매, 그 제조방법 및 이를 이용한 연료전지
KR100738062B1 (ko) * 2006-05-16 2007-07-10 삼성에스디아이 주식회사 막 전극 접합체 및 이를 이용한 연료전지
WO2010025118A1 (en) * 2008-08-25 2010-03-04 3M Innovative Properties Company Fuel cell nanocatalyst with voltage reversal tolerance
EP2342011A1 (en) * 2008-09-18 2011-07-13 NorthEastern University Platinum alloy electrocatalyst with enhanced resistance to anion poisoning for low and medium temperature fuel cells
US20120149545A1 (en) * 2009-06-10 2012-06-14 Hiroaki Takahashi Electrode catalyst for fuel cell
JP5759695B2 (ja) * 2010-09-24 2015-08-05 株式会社キャタラー 燃料電池用担持触媒の製造方法
CN102989450B (zh) * 2012-12-03 2015-03-11 中国科学院大连化学物理研究所 一种担载型纳米电催化剂的制备方法、结构特征及应用
CN104617313B (zh) * 2013-11-04 2017-03-29 中国科学院大连化学物理研究所 石墨烯担载的二维分枝状铂纳米电催化剂及其制备和应用
KR101575463B1 (ko) 2014-03-26 2015-12-07 현대자동차주식회사 연료전지용 합금촉매의 제조방법
CN105798323B (zh) * 2016-03-18 2018-04-06 西北师范大学 球磨辅助界面制备大比表面积过渡金属‑硼合金材料的方法
EP3764443B1 (de) * 2019-07-10 2022-10-19 Heraeus Deutschland GmbH & Co. KG Katalysator für die sauerstoffentwicklungsreaktion bei der wasserelektrolyse
KR20210115529A (ko) 2020-03-13 2021-09-27 현대자동차주식회사 용출된 전이금속이 제거된 연료전지용 촉매 잉크의 제조방법
CN115849469A (zh) * 2022-11-30 2023-03-28 湖南紫潇新材料有限责任公司 纳米氧化铱催化剂、其制备方法及应用
CN116037953B (zh) * 2023-03-30 2023-07-14 中国科学技术大学 一种PtIr合金纳米材料及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07211324A (ja) * 1994-01-19 1995-08-11 Osaka Gas Co Ltd 電極触媒組成物、電極材およびその製造方法
JPH07246343A (ja) * 1994-03-09 1995-09-26 Katsuhiko Wakabayashi 担持触媒の製造方法
JPH10216517A (ja) * 1997-02-05 1998-08-18 Toyota Motor Corp 排ガス浄化触媒およびその製造方法
JP2003142111A (ja) * 2001-11-02 2003-05-16 Honda Motor Co Ltd 固体高分子型燃料電池用電極およびその製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4425261A (en) * 1980-03-24 1984-01-10 Ytkemiska Institutet Liquid suspension of particles of a metal belonging to the platinum group and a method for the manufacture of such a suspension
US4714692A (en) * 1986-04-03 1987-12-22 Uop Inc. Microemulsion impregnated catalyst composite and use thereof in a synthesis gas conversion process
US4714693A (en) * 1986-04-03 1987-12-22 Uop Inc. Method of making a catalyst composition comprising uniform size metal components on carrier
US5147841A (en) * 1990-11-23 1992-09-15 The United States Of America As Represented By The United States Department Of Energy Method for the preparation of metal colloids in inverse micelles and product preferred by the method
DE4443701C1 (de) * 1994-12-08 1996-08-29 Degussa Schalenkatalysator, Verfahren zu seiner Herstellung und seine Verwendung
JP2003226901A (ja) * 2002-02-05 2003-08-15 Hitachi Maxell Ltd 二元系合金微粒子及びその製造方法
JP3621078B2 (ja) 2002-06-20 2005-02-16 田中貴金属工業株式会社 高分子固体電解質形燃料電池の燃料極
JP4590937B2 (ja) * 2003-07-02 2010-12-01 日産自動車株式会社 電極触媒およびその製造方法
JP5082187B2 (ja) * 2003-10-06 2012-11-28 日産自動車株式会社 固体高分子型燃料電池用電極触媒粒子の製造方法
JP3855994B2 (ja) * 2003-12-25 2006-12-13 日産自動車株式会社 触媒及びその製造方法
JP2005193182A (ja) * 2004-01-08 2005-07-21 Nissan Motor Co Ltd 触媒およびその製造方法
JP4715107B2 (ja) * 2004-04-28 2011-07-06 日産自動車株式会社 燃料電池用触媒、および白金−イリジウム合金粒子の製造方法
CA2588134A1 (en) * 2004-11-17 2006-06-22 Hyperion Catalysis International, Inc. Method for preparing catalyst supports and supported catalysts from single walled carbon nanotubes
JP2006297355A (ja) * 2005-04-25 2006-11-02 Nissan Motor Co Ltd 触媒およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07211324A (ja) * 1994-01-19 1995-08-11 Osaka Gas Co Ltd 電極触媒組成物、電極材およびその製造方法
JPH07246343A (ja) * 1994-03-09 1995-09-26 Katsuhiko Wakabayashi 担持触媒の製造方法
JPH10216517A (ja) * 1997-02-05 1998-08-18 Toyota Motor Corp 排ガス浄化触媒およびその製造方法
JP2003142111A (ja) * 2001-11-02 2003-05-16 Honda Motor Co Ltd 固体高分子型燃料電池用電極およびその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008091101A (ja) * 2006-09-29 2008-04-17 Sanyo Electric Co Ltd 燃料電池及び燃料電池発電システム
WO2015140712A1 (en) * 2014-03-18 2015-09-24 Basf Se A process for the production of a carbon supported catalyst
US9873107B2 (en) 2014-03-18 2018-01-23 Basf Se Process for the production of a carbon supported catalyst

Also Published As

Publication number Publication date
EP1742283A1 (en) 2007-01-10
EP1742283B1 (en) 2013-04-17
JP2005317373A (ja) 2005-11-10
US7569509B2 (en) 2009-08-04
EP1742283A4 (en) 2009-12-02
JP4715107B2 (ja) 2011-07-06
US20070231620A1 (en) 2007-10-04

Similar Documents

Publication Publication Date Title
WO2005106995A1 (ja) 燃料電池用触媒の製造方法
JP4590937B2 (ja) 電極触媒およびその製造方法
Wu et al. Synthesis and electrocatalytic oxygen reduction properties of truncated octahedral Pt 3 Ni nanoparticles
JP5348658B2 (ja) 燃料電池電極素材用白金系合金触媒の製造方法
US7875569B2 (en) Supported catalyst, method for preparing the same, cathode electrode comprising the same, and fuel cell comprising the cathode electrode
Tan et al. Pd-around-CeO 2− x hybrid nanostructure catalyst: three-phase-transfer synthesis, electrocatalytic properties and dual promoting mechanism
KR101679809B1 (ko) 질소(N)가 도핑된 탄소에 담지된 백금(Pt)촉매의 제조방법 및 이의 이용하여 제조된 질소(N)가 도핑된 탄소에 담지된 백금(Pt)촉매
US20060177728A1 (en) Palladium-cobalt particles as oxygen-reduction electrocatalysts
EP3379626A1 (en) Carrier-nanoparticle composite, catalyst containing same, and method for producing same
US8409543B2 (en) Method for preparing pyrochlore-type oxide and method for producing electrocatalyst for fuel cell
KR101117066B1 (ko) 백금합금/담체 촉매의 제조방법, 이를 이용하여 제조된 촉매 및 연료전지
JPH01210037A (ja) 担体上における金属の合金化方法
KR102123148B1 (ko) 금속착물을 활용한 탄소껍질을 가진 금속 촉매의 합성방법
JP2007123195A (ja) 触媒の製造方法
Hu et al. Mechanistic insights into the synthesis of platinum–rare earth metal nanoalloys by a solid-state chemical route
Zhang et al. Ultrasmall and uniform Pt3Au clusters strongly suppress Ostwald ripening for efficient ethanol oxidation
CN110741497B (zh) 燃料电池用催化剂的制备方法和由此制备的燃料电池用催化剂
JP5158334B2 (ja) 燃料電池用電極触媒の製造方法
CN107732262B (zh) 一种抗毒化Pt基纳米催化剂及其制备方法和应用
JP2005034779A (ja) 電極触媒およびその製造方法
JP2005149742A (ja) 燃料電池用触媒坦持電極およびその製造方法
Luo et al. Fabricating high-loading ultra-small PtCu3/rGO via a traceless protectant and spray-freeze-drying method
JP2005100713A (ja) 燃料電池用電極触媒およびその製造方法
US20220062864A1 (en) Method of preparing electrocatalysts for converting carbon dioxide to chemicals
JP4539086B2 (ja) 電極触媒、触媒担持電極、燃料電池用meaおよび燃料電池

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005730563

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11587803

Country of ref document: US

Ref document number: 2007231620

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005730563

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11587803

Country of ref document: US