CN104617313B - 石墨烯担载的二维分枝状铂纳米电催化剂及其制备和应用 - Google Patents

石墨烯担载的二维分枝状铂纳米电催化剂及其制备和应用 Download PDF

Info

Publication number
CN104617313B
CN104617313B CN201310539248.0A CN201310539248A CN104617313B CN 104617313 B CN104617313 B CN 104617313B CN 201310539248 A CN201310539248 A CN 201310539248A CN 104617313 B CN104617313 B CN 104617313B
Authority
CN
China
Prior art keywords
graphene
platinum
dimentional
branched
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310539248.0A
Other languages
English (en)
Other versions
CN104617313A (zh
Inventor
宋玉江
李佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhangjiagang Institute Of Industrial Technology Dalian Institute Of Chemical Physics China Academy Of Sciences
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201310539248.0A priority Critical patent/CN104617313B/zh
Publication of CN104617313A publication Critical patent/CN104617313A/zh
Application granted granted Critical
Publication of CN104617313B publication Critical patent/CN104617313B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Abstract

本发明提供了石墨烯担载的二维分枝状铂纳米电催化剂及其制备和应用,具体步骤包括:将石墨烯分散于含有磷脂双分子层和还原剂的水溶液中,加入铂盐,反应至少30分钟后获得石墨烯担载的二维分枝状铂纳米电催化剂,二维分枝状铂纳米电催化剂的厚度为2‑3nm。本发明操作简单、易于控制、条件温和、环境友好。石墨烯担载的二维分枝状铂纳米电催化剂可用于质子交换膜燃料电池。

Description

石墨烯担载的二维分枝状铂纳米电催化剂及其制备和应用
技术领域
本发明属于质子交换膜燃料电池催化剂领域,具体涉及石墨烯担载的二维分枝状铂纳米电催化剂及其制备和应用。
背景技术
燃料电池是一种不经过燃烧直接以化学反应的方式将燃料的化学能转化为电能的装置,具有能量密度高、污染小、燃料多样化、可靠性高、噪音低及便于维护等优点,已受到世界各国的高度重视。实现质子交换膜燃料电池技术商业化急需解决的问题之一是铂基电催化剂的活性和耐久性的提高。目前最常用的商业铂碳电催化剂是碳黑担载的纳米铂,铂的形貌为2-5nm的近球形铂颗粒。商业铂碳电催化剂的铂颗粒易于团聚、烧结,尤其当燃料电池长时间运行后,碳载体会受到腐蚀,铂与碳载体的结合力减小从而造成铂颗粒的脱落、迁移、团聚,使得铂碳电催化剂的活性和耐久性不能满足燃料电池商业化的要求。
铂碳电催化剂的活性和耐久性常受其形貌影响,通过控制铂的形貌可以提高催化剂的活性和耐久性。目前,制备特殊形貌的担载型铂纳米电催化剂的方法主要有分步法和原位生长法。
Hong Yang等制备了碳黑担载的铂二十面体纳米电催化剂。首先将铂盐溶于非水溶剂中,在210℃下,氩气气氛中以一氧化碳气体为还原剂制备了铂二十面体,再通过物理吸附的方法将铂二十面体担载在商业碳黑上,最终得到碳黑担载的铂二十面体纳米电催化剂。该电催化剂具有较高的活性,但耐久性未进行考察,并且所采用的制备方法复杂,条件苛刻,温度高,耗时长,不适于放大合成。(Nano Lett.2013,13,2870)
Chengming Wang等报道了担载于石墨烯上铂纳米凹面立方体电催化剂。在116℃下,利用乙二醇法合成了聚乙烯基吡咯烷酮(PVP)修饰的铂纳米凹面立方体,同时利用水合肼还原氧化石墨烯得到PVP修饰的石墨烯,然后将两种材料混合得到石墨烯担载的铂纳米凹面立方体电催化剂。该电催化剂具有较好的电催化活性和耐久性,但其制备过程步骤多,温度较高,耗能高,周期长,PVP难以有效去除,不适于放大合成。(Sci.Rep.2013,3,2580)
Shushuang Li等以碳黑为载体,将泡沫状的铂原位生长于载体表面,得到担载型的泡沫状铂纳米电催化剂。该制备方法简单,易控制,合成条件温和,耗能少,易于放大合成。泡沫状铂优势暴露高活性(1,1,0)晶面,该电催化剂显示出了较高的电催化活性。同时,泡沫状铂的特殊结构使得该电催化剂的耐久性也得到了提高。但泡沫状铂为三维结构,使部分包裹于泡沫内部的铂晶面无法被有效利用。(J.Mater.Chem.A,2013,DOI:10.1039/c3ta10406k)
综上所述,担载型铂纳米电催化剂的制备还需要如下改进:取代炭黑,提高载体的耐腐蚀性;优化对铂纳米材料的形貌控制。
发明内容
本发明的目的在于提供石墨烯担载的二维分枝状铂纳米电催化剂及其制备和应用,该方法简单,易于控制,制备周期短,适于大规模生产。
本发明提供了石墨烯担载的二维分枝状铂纳米电催化剂的制备方法,具体步骤如下:(1)将磷脂和胆固醇溶解于氯仿中,旋转蒸发此溶液制得多层脂质体膜,加入还原剂水溶液,40℃-80℃下加热至少10min,通过多孔滤膜挤压得到分散在还原剂水溶液中的单层脂质体;
所述磷脂与胆固醇的摩尔比为1/5-50/1;
(2)向上述步骤(1)所得的混合物中加入石墨烯,分散均匀后加入水溶性铂盐或其水溶液,0-100℃下搅拌反应至少30min,获得固体产物;
所述还原剂与水溶性铂盐的摩尔比为1/1-50/1;
(3)将上述步骤(2)中所得的固体产物,依次用水和有机溶剂洗涤,干燥后得到石墨烯担载的分枝状铂纳米电催化剂。
本发明提供的石墨烯担载的二维分枝状铂纳米电催化剂的制备方法,所述磷脂为天然磷脂衍生物、磷脂酸、磷脂酰胆胺、磷脂酰胆碱、磷脂酰丝氨酸、磷脂酰甘油、磷脂酰肌醇和它们的衍生物中的一种或二种以上混合物;
所述天然磷脂包括卵磷脂、大豆磷脂、脑磷脂、心磷脂中的一种或二种以上混合物;所述磷脂酰胆胺包括二油酰基L-α-磷脂酰乙醇胺、二棕榈酰-L-A-磷脂酰乙醇胺、二硬脂酰基磷脂酰乙醇胺中的一种或二种以上混合物;所述磷脂酰胆碱包括二硬脂酰磷脂酰胆碱、二棕榈酰磷脂酰胆碱、二肉豆蔻酰磷脂酰胆碱中的一种或二种以上混合物;所述磷脂酰丝氨酸包括1,2-二、二十六烷酰-rac-甘油-3-磷酸-L-丝氨酸、二油酰基磷脂酰丝氨酸、L-α-磷脂酰-L-丝氨酸中的一种或二种以上混合物;所述磷脂酰甘油包括L-α-磷酯酪DL-甘油、二硬脂酰磷脂酰甘油、二油酰磷脂酰甘油、二肉豆蔻酰磷脂酰甘油中的一种或二种以上混合物;所述磷脂酰肌醇包括3,5-二磷酸磷脂酰肌醇、L-α-磷脂酰肌醇、1,2-棕榈酰磷酯酰肌醇、1,2-十八酰磷酯酰肌醇-三-3,4,5-磷酸中的一种或二种以上混合物;所述磷脂的摩尔浓度为0.1mmol/L-1000mmol/L。
本发明提供的石墨烯担载的二维分枝状铂纳米电催化剂的制备方法,所述胆固醇的摩尔浓度为0.1mmol/L-1000mmol/L。
本发明提供的石墨烯担载的二维分枝状铂纳米电催化剂的制备方法,所述还原剂为甲醛、甲酸、硼氢化锂、硼氢化钠、硼氢化钾、甲醇、乙醇、多元醇、水合肼、柠檬酸、苹果酸、抗坏血酸和它们的衍生物中的一种或二种以上的混合物;
所述还原剂水溶液的浓度为0.5mmol/L-5000mmol/L。
本发明提供的石墨烯担载的二维分枝状铂纳米电催化剂的制备方法,所述水溶性铂盐为氯铂酸、氯亚铂酸、氯铂酸盐、氯亚铂酸盐中的一种或二种以上的混合物;体系中水溶性铂盐的浓度为0.1mmol/L-500mmol/L。
本发明提供的石墨烯担载的二维分枝状铂纳米电催化剂的制备方法,所述洗涤用有机溶剂为甲醇、乙醇、丙酮、乙酸、己烷、环己烷、二氯甲烷、氯仿、四氯化碳、苯、甲苯和以上有机溶剂衍生物中的一种或二种以上的混合物。
本发明提供的方法制备的石墨烯担载的二维分枝状铂纳米电催化剂,该电催化剂中铂的载量为10-90wt%;所述电催化剂的形貌为分枝状纳米铂担载于石墨烯上,分枝状铂为厚度为2-3nm的铂薄片。
本发明提供的方法制备的石墨烯担载的二维分枝状铂纳米电催化剂应用于质子交换膜燃料电池。
与现有报道的担载型铂纳米电催化剂相比,本发明具有以下优点:
a)以石墨烯为载体,提高电催化剂载体的耐腐蚀性。
b)该电催化剂形貌为分枝状纳米铂担载于石墨烯上,分枝状铂为厚度为2-3nm的铂薄片,主要暴露铂的高活性(1,1,0)晶面,二维结构提高了高活性晶面的利用率。
c)该制备方法使二维铂纳米片一步原位生长于石墨烯表面,该制备方法步骤简单,易于控制,适合大规模合成。
d)该石墨烯担载的二维分枝状铂纳米电催化剂用作质子交换膜燃料电池阴极催化剂,具有较高的电化学活性比表面积和氧还原活性。
附图说明
图1是本发明实施例1制备产物的透射电子显微镜(TEM)照片;
图2是本发明实施例1制备产物的透射电子显微镜(TEM)照片;
图3是本发明实施例1制备产物的热重分析(TG)曲线;
图4是本发明实施例1制备产物的循环伏安扫描曲线;
图5是本发明实施例1制备产物的氧气还原反应极化曲线;
图6是本发明实施例1制备产物的X-射线粉末衍射(XRD)谱图;
图7是本发明实施例2制备产物的透射电子显微镜(TEM)照片;
图8是本发明实施例2制备产物的热重分析(TG)曲线;
图9是本发明实施例2制备产物的循环伏安扫描曲线;
图10是本发明实施例2制备产物的氧气还原反应极化曲线。
具体实施方式
下面的实施例将对本发明予以进一步的说明,但并不因此而限制本发明。
实施例1:
将15.80mg的二硬脂酰磷脂酰胆碱(1,2-dioctadecanoyl-sn-glycero-3-phosphocholine)与7.73mg胆固醇溶解到20mL氯仿中,在30℃旋转蒸发此溶液制得多层脂质体膜,干燥后,加入20mL水和527.1mg抗坏血酸,65℃水化1小时后转移混合物到脂质体挤压器中,选择200nm孔径的多孔有机滤膜,以氮气为加压气体,在65℃下挤压混合物通过多孔有机滤膜10次,获得20mL的含有还原剂的单层脂质体水溶液(1mM)。将12.6mg商业石墨烯中加入上述的16mL含有还原剂的单层脂质体水溶液中,超声分散均匀,再依次加入4.62mL的20mmol/L的K2PtCl4水溶液和11.38mL H2O,在25℃搅拌反应3小时。将反应后的混合物转移到离心试管中,离心分离得到固体产物,分别用水和氯仿洗涤,干燥后得到该石墨烯担载的分枝状铂纳米电催化剂。
如图1,得到的石墨烯担载的分枝状铂纳米电催化剂,形貌为分枝状纳米铂担载于石墨烯上;
如图2,分枝状铂为厚度为2-3nm的铂薄片。
如图3,热重分析确定实施例1所得产物中铂的金属载量为46.7wt%。
如图4,循环伏安扫描采用标准三电极法测定电化学性能,催化剂制成薄膜工作电极,测试条件:25℃下氮气饱和的0.1mol/L的HClO4水溶液中,在0-1.2V(vs RHE)的电压下进行电位扫描测试,计算催化剂的电化学活性比表面积。循环伏安扫描曲线计算得到实施例1所得产物中催化剂的电化学活性比表面积为33.6m2/g。
如图5,氧气还原反应测试采用标准三电极法测定电化学性能,催化剂制成薄膜工作电极,测试条件:25℃下氧气饱和的0.1mol/L的HClO4水溶液中,在0-1.2V(vs RHE)的电压下进行电位扫描测试,电极旋转速度为1600rpm,计算催化剂的质量活性。极化曲线计算得到实施例1所得产物中催化剂的质量活性为127mA/mgPt
如图6,XRD谱图显示所得产物由石墨烯和面心立方结构的金属铂组成。
实施例2:单层脂质体的浓度
将39.51mg的二硬脂酰磷脂酰胆碱与19.34mg胆固醇溶解到10mL氯仿中,在30℃旋转蒸发此溶液制得多层脂质体膜,干燥后,加入10mL水和263.5mg抗坏血酸,65℃水化1小时后转移混合物到脂质体挤压器中,选择200nm孔径的多孔有机滤膜,以氮气为加压气体,在65℃下挤压混合物通过多孔有机滤膜10次,获得10mL的含有还原剂的单层脂质体水溶液(5mM)。将12.4mg商业石墨烯中加入上述的8mL含有还原剂的单层脂质体水溶液中,超声分散均匀,再依次加入4.62mL的20mmol/L的K2PtCl4水溶液和3.38mL H2O,在25℃搅拌反应3小时。将反应后的混合物转移到离心试管中,离心分离得到固体产物,分别用水和氯仿洗涤,干燥后得到石墨烯担载的分枝状铂纳米电催化剂。
如图7,得到的石墨烯担载的分枝状铂纳米电催化剂,形貌为分枝状纳米铂担载于石墨烯上。
如图8,热重分析确定实施例1所得产物中铂的金属载量为49.6wt%。
如图9,循环伏安扫描曲线计算得到实施例1所得产物中催化剂的电化学活性比表面积为32.7m2/g。
如图10,极化曲线计算得到实施例1所得产物中催化剂的质量活性为118mA/mgPt
实施例3:磷脂的浓度不同,胆固醇与磷脂的比例不同
将1976mg的二硬脂酰磷脂酰胆碱与19.34mg胆固醇溶解到10mL氯仿中,在30℃旋转蒸发此溶液制得多层脂质体膜,干燥后,加入10mL水和263.5mg抗坏血酸,65℃水化1小时后转移混合物到脂质体挤压器中,选择200nm孔径的多孔有机滤膜,以氮气为加压气体,在65℃下挤压混合物通过多孔有机滤膜10次,获得10mL的含有还原剂的单层脂质体水溶液。将12.4mg商业石墨烯中加入上述的8mL含有还原剂的单层脂质体水溶液中,超声分散均匀,再依次加入4.62mL的20mmol/L的K2PtCl4水溶液和3.38mL H2O,在25℃搅拌反应3小时。将反应后的混合物转移到离心试管中,离心分离得到固体产物,分别用水和氯仿洗涤,干燥后得到石墨烯担载的分枝状铂纳米电催化剂。
实施例4:胆固醇的浓度不同,胆固醇与磷脂的比例不同
将39.51mg的二硬脂酰磷脂酰胆碱与96.6mg胆固醇溶解到10mL氯仿中,在30℃旋转蒸发此溶液制得多层脂质体膜,干燥后,加入10mL水和263.5mg抗坏血酸,65℃水化1小时后转移混合物到脂质体挤压器中,选择200nm孔径的多孔有机滤膜,以氮气为加压气体,在65℃下挤压混合物通过多孔有机滤膜10次,获得10mL的含有还原剂的单层脂质体水溶液。将12.4mg商业石墨烯中加入上述的8mL含有还原剂的单层脂质体水溶液中,超声分散均匀,再依次加入4.62mL的20mmol/L的K2PtCl4水溶液和3.38mL H2O,在25℃搅拌反应3小时。将反应后的混合物转移到离心试管中,离心分离得到固体产物,分别用水和氯仿洗涤,干燥后得到石墨烯担载的分枝状铂纳米电催化剂。
实施例5:磷脂种类不同
将14.80mg的L-α-磷酯酪DL-甘油与7.73mg胆固醇溶解到20mL氯仿中,在30℃旋转蒸发此溶液制得多层脂质体膜,干燥后,加入20mL水和527.1mg抗坏血酸,65℃水化1小时后转移混合物到脂质体挤压器中,选择200nm孔径的多孔有机滤膜,以氮气为加压气体,在65℃下挤压混合物通过多孔有机滤膜10次,获得20mL的含有还原剂的单层脂质体水溶液(1mM)。将12.6mg商业石墨烯中加入上述的16mL含有还原剂的单层脂质体水溶液中,超声分散均匀,再依次加入4.62mL的20mmol/L的K2PtCl4水溶液和11.38mL H2O,在25℃搅拌反应3小时。将反应后的混合物转移到离心试管中,离心分离得到固体产物,分别用水和氯仿洗涤,干燥后得到石墨烯担载的分枝状铂纳米电催化剂。
实施例6:磷脂种类不同
将6.72mg的1,2-二、二十六烷酰-rac-甘油-3-磷酸-L-丝氨酸与7.73mg胆固醇溶解到20mL氯仿中,在30℃旋转蒸发此溶液制得多层脂质体膜,干燥后,加入20mL水和527.1mg抗坏血酸,65℃水化1小时后转移混合物到脂质体挤压器中,选择200nm孔径的多孔有机滤膜,以氮气为加压气体,在65℃下挤压混合物通过多孔有机滤膜10次,获得20mL的含有还原剂的单层脂质体水溶液(1mM)。将12.6mg商业石墨烯中加入上述的16mL含有还原剂的单层脂质体水溶液中,超声分散均匀,再依次加入4.62mL的20mmol/L的K2PtCl4水溶液和11.38mL H2O,在25℃搅拌反应3小时。将反应后的混合物转移到离心试管中,离心分离得到固体产物,分别用水和氯仿洗涤,干燥后得到石墨烯担载的分枝状铂纳米电催化剂。
实施例7:载量10wt%
将15.80mg的二硬脂酰磷脂酰胆碱与7.73mg胆固醇溶解到20mL氯仿中,在30℃旋转蒸发此溶液制得多层脂质体膜,干燥后,加入20mL水和527.1mg抗坏血酸,65℃水化1小时后转移混合物到脂质体挤压器中,选择200nm孔径的多孔有机滤膜,以氮气为加压气体,在65℃下挤压混合物通过多孔有机滤膜10次,获得20mL的含有还原剂的单层脂质体水溶液(1mM)。将12.6mg商业石墨烯中加入上述的16mL含有还原剂的单层脂质体水溶液中,超声分散均匀,再依次加入0.40mL的20mmol/L的K2PtCl4水溶液和19.60mL H2O,在25℃搅拌反应3小时。将反应后的混合物转移到离心试管中,离心分离得到固体产物,分别用水和氯仿洗涤,干燥后得到石墨烯担载的分枝状铂纳米电催化剂。
实施例8:铂盐种类
将15.80mg的二硬脂酰磷脂酰胆碱与7.73mg胆固醇溶解到20mL氯仿中,在30℃旋转蒸发此溶液制得多层脂质体膜,干燥后,加入20mL水和527.1mg抗坏血酸,65℃水化1小时后转移混合物到脂质体挤压器中,选择200nm孔径的多孔有机滤膜,以氮气为加压气体,在65℃下挤压混合物通过多孔有机滤膜10次,获得20mL的含有还原剂的单层脂质体水溶液(1mM)。将12.6mg商业石墨烯中加入上述的16mL含有还原剂的单层脂质体水溶液中,超声分散均匀,再依次加入4.62mL的20mmol/L的H2PtCl6水溶液和11.38mL H2O,在25℃搅拌反应3小时。将反应后的混合物转移到离心试管中,离心分离得到固体产物,分别用水和氯仿洗涤,干燥后得到石墨烯担载的分枝状铂纳米电催化剂。
实施例9:铂盐浓度
将15.80mg的二硬脂酰磷脂酰胆碱与7.73mg胆固醇溶解到20mL氯仿中,在30℃旋转蒸发此溶液制得多层脂质体膜,干燥后,加入20mL水和527.1mg抗坏血酸,65℃水化1小时后转移混合物到脂质体挤压器中,选择200nm孔径的多孔有机滤膜,以氮气为加压气体,在65℃下挤压混合物通过多孔有机滤膜10次,获得20mL的含有还原剂的单层脂质体水溶液(1mM)。将12.6mg商业石墨烯中加入上述的16mL含有还原剂的单层脂质体水溶液中,超声分散均匀,再依次加入0.46mL的200mmol/L的K2PtCl4水溶液和19.54mL H2O,在25℃搅拌反应3小时。将反应后的混合物转移到离心试管中,离心分离得到固体产物,分别用水和氯仿洗涤,干燥后得到石墨烯担载的分枝状铂纳米电催化剂。
实施例10:还原剂不同,反应时间不同
将15.80mg的二硬脂酰磷脂酰胆碱与7.73mg胆固醇溶解到20mL氯仿中,在30℃旋转蒸发此溶液制得多层脂质体膜,干燥后,加入20mL水和137.8mg甲酸,65℃水化1小时后转移混合物到脂质体挤压器中,选择200nm孔径的多孔有机滤膜,以氮气为加压气体,在65℃下挤压混合物通过多孔有机滤膜10次,获得20mL的含有还原剂的单层脂质体水溶液(1mM)。将12.6mg商业石墨烯中加入上述的16mL含有还原剂的单层脂质体水溶液中,超声分散均匀,再依次加入4.62mL的20mmol/L的K2PtCl4水溶液和11.38mL H2O,在25℃搅拌反应30分钟。将反应后的混合物转移到离心试管中,离心分离得到固体产物,分别用水和氯仿洗涤,干燥后得到石墨烯担载的分枝状铂纳米电催化剂。
实施例11:还原剂不同
将15.80mg的二硬脂酰磷脂酰胆碱与7.73mg胆固醇溶解到20mL氯仿中,在30℃旋转蒸发此溶液制得多层脂质体膜,干燥后,加入20mL水和575.0mg柠檬酸,65℃水化1小时后转移混合物到脂质体挤压器中,选择200nm孔径的多孔有机滤膜,以氮气为加压气体,在65℃下挤压混合物通过多孔有机滤膜10次,获得20mL的含有还原剂的单层脂质体水溶液(1mM)。将12.6mg商业石墨烯中加入上述的16mL含有还原剂的单层脂质体水溶液中,超声分散均匀,再依次加入4.62mL的20mmol/L的K2PtCl4水溶液和11.38mL H2O,在25℃搅拌反应3小时。将反应后的混合物转移到离心试管中,离心分离得到固体产物,分别用水和氯仿洗涤,干燥后得到石墨烯担载的分枝状铂纳米电催化剂。

Claims (9)

1.石墨烯担载的二维分枝状铂纳米电催化剂的制备方法,其特征在于:
(1)将磷脂和胆固醇溶解于氯仿中,旋转蒸发此溶液制得多层脂质体膜,加入还原剂水溶液,40℃-80℃下加热至少10min,通过多孔滤膜挤压得到分散在还原剂水溶液中的单层脂质体;
所述磷脂与胆固醇的摩尔比为1/5-50/1;
(2)向上述步骤(1)所得的混合物中加入石墨烯,分散均匀后加入水溶性铂盐或其水溶液,0-100℃下搅拌反应至少30min,获得固体产物;
所述还原剂与水溶性铂盐的摩尔比为1/1-50/1;
(3)将上述步骤(2)中所得的固体产物,依次用水和有机溶剂洗涤,干燥后得到石墨烯担载的分枝状铂纳米电催化剂。
2.按照权利要求1所述石墨烯担载的二维分枝状铂纳米电催化剂的制备方法,其特征在于:所述磷脂为天然磷脂、磷脂酸、磷脂酰胆胺、磷脂酰胆碱、磷脂酰丝氨酸、磷脂酰甘油、磷脂酰肌醇和它们的衍生物中的一种或二种以上混合物;
所述天然磷脂为卵磷脂、大豆磷脂、脑磷脂、心磷脂中的一种或二种以上混合物;
所述磷脂酰胆胺为二油酰基L-α-磷脂酰乙醇胺、二棕榈酰-L-A-磷脂酰乙醇胺、二硬脂酰基磷脂酰乙醇胺中的一种或二种以上混合物;
所述磷脂酰胆碱为二硬脂酰磷脂酰胆碱、二棕榈酰磷脂酰胆碱、二肉豆蔻酰磷脂酰胆碱中的一种或二种以上混合物;
所述磷脂酰丝氨酸为1,2-二、二十六烷酰-rac-甘油-3-磷酸-L-丝氨酸、二油酰基磷脂酰丝氨酸、L-α-磷脂酰-L-丝氨酸中的一种或二种以上混合物;
所述磷脂酰甘油为L-α-磷酯酪DL-甘油、二硬脂酰磷脂酰甘油、二油酰磷脂酰甘油、二肉豆蔻酰磷脂酰甘油中的一种或二种以上混合物;
所述磷脂酰肌醇为3,5-二磷酸磷脂酰肌醇、L-α-磷脂酰肌醇、1,2-棕榈酰磷酯酰肌醇、1,2-十八酰磷酯酰肌醇-三-3,4,5-磷酸中的一种或二种以上混合物;
所述磷脂的摩尔浓度为0.1mmol/L-1000mmol/L。
3.按照权利要求1所述石墨烯担载的二维分枝状铂纳米电催化剂的制备方法,其特征在于:所述胆固醇的摩尔浓度为0.1mmol/L-1000mmol/L。
4.按照权利要求1所述石墨烯担载的二维分枝状铂纳米电催化剂的制备方法,其特征在于:所述还原剂为甲醛、甲酸、硼氢化锂、硼氢化钠、硼氢化钾、甲醇、乙醇、多元醇、水合肼、柠檬酸、苹果酸、抗坏血酸和它们的衍生物中的一种或二种以上的混合物;
所述还原剂水溶液的浓度为0.5mmol/L-5000mmol/L。
5.按照权利要求1所述石墨烯担载的二维分枝状铂纳米电催化剂的制备方法,其特征在于:所述水溶性铂盐为氯铂酸、氯亚铂酸、氯铂酸盐、氯亚铂酸盐中的一种或二种以上的混合物;
体系中水溶性铂盐的浓度为0.1mmol/L-500mmol/L。
6.按照权利要求1所述石墨烯担载的二维分枝状铂纳米电催化剂的制备方法,其特征在于:所述洗涤用有机溶剂为甲醇、乙醇、丙酮、乙酸、己烷、环己烷、二氯甲烷、氯仿、四氯化碳、苯、甲苯和以上有机溶剂衍生物中的一种或二种以上的混合物。
7.权利要求1所述方法制备的石墨烯担载的二维分枝状铂纳米电催化剂,其特征在于:该电催化剂中铂的载量为10-90wt%。
8.按照权利要求7所述的石墨烯担载的二维分枝状铂纳米电催化剂,其特征在于:所述电催化剂的形貌为分枝状纳米铂担载于石墨烯上,分枝状铂为厚度为2-3nm的铂薄片。
9.权利要求7所述的石墨烯担载的二维分枝状铂纳米电催化剂应用于质子交换膜燃料电池。
CN201310539248.0A 2013-11-04 2013-11-04 石墨烯担载的二维分枝状铂纳米电催化剂及其制备和应用 Active CN104617313B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310539248.0A CN104617313B (zh) 2013-11-04 2013-11-04 石墨烯担载的二维分枝状铂纳米电催化剂及其制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310539248.0A CN104617313B (zh) 2013-11-04 2013-11-04 石墨烯担载的二维分枝状铂纳米电催化剂及其制备和应用

Publications (2)

Publication Number Publication Date
CN104617313A CN104617313A (zh) 2015-05-13
CN104617313B true CN104617313B (zh) 2017-03-29

Family

ID=53151665

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310539248.0A Active CN104617313B (zh) 2013-11-04 2013-11-04 石墨烯担载的二维分枝状铂纳米电催化剂及其制备和应用

Country Status (1)

Country Link
CN (1) CN104617313B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111500284B (zh) * 2020-05-13 2021-04-02 暨南大学 一种包封石墨烯量子点的纳米脂质体及制备以及其在生物酶活性检测中的应用
CN111604049B (zh) * 2020-06-05 2022-07-08 黑龙江省科学院石油化学研究院 一种还原氧化石墨烯负载的二维珊瑚片状钯纳米催化剂及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1742283A1 (en) * 2004-04-28 2007-01-10 Nissan Motor Company, Limited Method for producing catalyst for fuel cell
CN101814607A (zh) * 2010-04-17 2010-08-25 上海交通大学 一种质子交换膜燃料电池用铂/石墨烯催化剂的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1742283A1 (en) * 2004-04-28 2007-01-10 Nissan Motor Company, Limited Method for producing catalyst for fuel cell
CN101814607A (zh) * 2010-04-17 2010-08-25 上海交通大学 一种质子交换膜燃料电池用铂/石墨烯催化剂的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"石墨烯负载Pt催化剂的制备及催化氧还原性能";李云霞 等;《物理化学学报》;20110303;第27 卷;第858–862页 *
"贵金属纳米材料的可控合成与表征";刘洋;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;20120515(第5期);摘要、正文第1-2、4章 *
"铂/石墨烯氧还原电催化剂的工还原法制备及表征";王万丽 等;<物理化学学报>;20120925;第28卷;第2879–2884页 *

Also Published As

Publication number Publication date
CN104617313A (zh) 2015-05-13

Similar Documents

Publication Publication Date Title
Du et al. Highly porous nanostructures: Rational fabrication and promising application in energy electrocatalysis
CN102989450B (zh) 一种担载型纳米电催化剂的制备方法、结构特征及应用
Wang et al. Holey platinum nanotubes for ethanol electrochemical reforming in aqueous solution
Weng et al. Dendrite-like PtAg alloyed nanocrystals: Highly active and durable advanced electrocatalysts for oxygen reduction and ethylene glycol oxidation reactions
CN111682224B (zh) 用于金属空气电池的单原子钴负载氮掺杂类石墨碳阴极催化剂
Kakaei et al. Fabrication of Pt–CeO2 nanoparticles supported sulfonated reduced graphene oxide as an efficient electrocatalyst for ethanol oxidation
CN102350372B (zh) 一种聚苯胺/石墨烯可控负载铂纳米粒子的制备方法
Hua et al. Pt nanoparticles supported on submicrometer-sized TiO2 spheres for effective methanol and ethanol oxidation
CN102386421B (zh) 易于规模化制备的微生物燃料电池空气阴极及制备方法
Zhang et al. Hierarchically porous Co@ N-doped carbon fiber assembled by MOF-derived hollow polyhedrons enables effective electronic/mass transport: An advanced 1D oxygen reduction catalyst for Zn-air battery
CN105161742A (zh) 用于燃料电池和其它应用的树枝状金属纳米结构
Rooke et al. Synthesis and properties of platinum nanocatalyst supported on cellulose-based carbon aerogel for applications in PEMFCs
Xue et al. Metal-organic frameworks derived cobalt encapsulated in porous nitrogen-doped carbon nanostructure towards highly efficient and durable oxygen reduction reaction electrocatalysis
Zheng et al. Modulation of pore-size in N, S-codoped carbon/Co9S8 hybrid for a stronger O2 affinity toward rechargable zinc-air battery
CN108630948B (zh) 一种八面体钯铂核壳结构催化剂的制备方法
Zhang et al. Direct electrodeposition of Pt nanotube arrays and their enhanced electrocatalytic activities
Zhang et al. Porous PdZn bimetallene for oxygen reduction electrolysis
CN109935840A (zh) 一种燃料电池用Pt基催化剂的制备方法
Wang et al. An ordered structured cathode based on vertically aligned Pt nanotubes for ultra-low Pt loading passive direct methanol fuel cells
KR20170053490A (ko) 백금 중공체, 이를 포함하는 고분자 전해질막 연료전지 및 이의 제조방법
CN104617313B (zh) 石墨烯担载的二维分枝状铂纳米电催化剂及其制备和应用
Li et al. One-pot construction of N-doped graphene supported 3D PdAg nanoflower as efficient catalysts for ethylene glycol electrooxidation
CN112421063A (zh) 一种一维多孔中空低铂纳米链催化剂的制备方法
Song et al. Highly ordered mesoporous carbons as the support for Pt catalysts towards alcohol electrooxidation: the combined effect of pore size and electrical conductivity
Fan et al. Freestanding Pt nanosheets with high porosity and improved electrocatalytic performance toward the oxygen reduction reaction

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20191106

Address after: 215600 A 207 room A building center of Zhangjiagang Free Trade Zone, Suzhou Free Trade Zone, Jiangsu

Co-patentee after: Dalian Institute of Chemical Physics, Chinese Academy of Sciences

Patentee after: Zhangjiagang Institute of industrial technology, Dalian Institute of Chemical Physics, China Academy of Sciences

Address before: 116023 No. 457, Zhongshan Road, Liaoning, Dalian

Patentee before: Dalian Institute of Chemical Physics, Chinese Academy of Sciences