CN108258253A - 一种Co-N-C复合催化剂及其制备方法和应用 - Google Patents

一种Co-N-C复合催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN108258253A
CN108258253A CN201810035575.5A CN201810035575A CN108258253A CN 108258253 A CN108258253 A CN 108258253A CN 201810035575 A CN201810035575 A CN 201810035575A CN 108258253 A CN108258253 A CN 108258253A
Authority
CN
China
Prior art keywords
composite catalysts
cnts
preparation
composite
chitosan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810035575.5A
Other languages
English (en)
Other versions
CN108258253B (zh
Inventor
史诗伟
唐有根
蒋金枝
李静莎
刘德培
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN201810035575.5A priority Critical patent/CN108258253B/zh
Publication of CN108258253A publication Critical patent/CN108258253A/zh
Application granted granted Critical
Publication of CN108258253B publication Critical patent/CN108258253B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Hybrid Cells (AREA)

Abstract

本发明公开了一种Co‑N‑C复合催化剂,由Co和N共掺杂的碳纳米颗粒和CNTs组成,所述Co和N共掺杂的碳纳米颗粒生长在CNTs表面,构成三维网状结构,本发明以壳聚糖为碳源,壳聚糖、尿素为氮源,添加CNTs,通过原位转化法合成Co‑N‑C/CNTs复合催化剂,Co‑N‑C和CNTs之间的协同作用,显著增强了Co‑N‑C的ORR动力学,将其应用于铝‑空气电池阴极材料,极限电流密度高达5.3mA cm‑2,与商用的Pt/C电极(5.2mA cm‑2)相当;Co‑N‑C纳米颗粒生长在CNTs表面,构成三维网状结构,使得复合催化剂具有更好的导电性和大比表面积,从而具有更多的电化学反应活性位点,促进吸附分子氧并进一步催化使其还原,使得ORR催化活性得到显著提高;本发明工艺方法简单,成本低廉,对设备要求不高,能够适用于大规模生产。

Description

一种Co-N-C复合催化剂及其制备方法和应用
技术领域
本发明属于电催化技术领域,具体涉及一种Co-N-C复合催化剂及其制备方法和应用。
背景技术
随着化石能源的不断消耗、能源需求的不断增加以及环保意识的增强,世界各国均将目光转向了新能源,开发一种低成本、高性能的能量转换与储存装置成为了关键。可充式的金属-空气电池由于其制备简单,成本低廉、安全性能优异以及环境友好引起了人们的广泛关注,在金属-空气电池领域中,最大的瓶颈是阴极材料-氧还原(ORR)催化剂,目前金属-空气电池的阴极材料大多是使用铂碳、钌、铱等贵重金属,其价格十分昂贵,同时地球储量稀缺,无法大量生产普遍使用。因此,开发一种成本低、高催化活性的ORR催化剂就显得尤为迫切。
到目前为止,可开发的非贵金属催化剂种类和方法众多,其中,Co-N-C类催化剂具有高的电催化活性和优良的抗毒性能,是一种非常有潜力的低成本的ORR催化剂,Co和N共掺杂的碳材料催化剂已经证明具有优良的ORR催化活性,但是随着反应的进行,催化剂活性降低很快,难以维持催化电流的稳定性,其中一个重要的原因在于Co的损失导致石墨化C结构不稳定,催化活性降低。因此,设计一种能够保护Co基纳米颗粒结构的Co-N-C复合催化剂,不但可以大幅度降低成本,而且对推进金属-空气电池的大规模应用具有重要意义。
发明内容
本发明的目的在于提供一种电催化活性高、抗毒性强、工艺流程短和成本低廉的Co-N-C复合催化剂及其制备方法和应用。
本发明提供一种Co-N-C复合催化剂,由Co和N共掺杂的碳纳米颗粒(Co-N-C)和碳纳米管(CNTs)组成,所述Co和N共掺杂的碳纳米颗粒生长在碳纳米管表面,构成三维网状结构。
所述Co-N-C复合催化剂由以下组分按质量百分比组成:
Co和N共掺杂的碳纳米颗粒90%~92%;
碳纳米管8%~10%。
优选的,所述Co和N共掺杂的碳纳米颗粒的粒径为5~100nm,碳纳米管的直径为10~30nm,长度为10~100nm。
本发明还提供了上述Co-N-C复合催化剂的制备方法,包括以下步骤:
(1)将壳聚糖与水混合,加入冰醋酸调节溶液PH,使壳聚糖完全溶解;
(2)加入钴盐和尿素,使其完全溶解,将混合溶液移入带磁力搅拌装置的水热釜,经水热反应得到前驱体溶液;
(3)向前驱体溶液中加入碳纳米管,再进行水热反应,将得到的产物冷冻干燥后放入惰性气氛中煅热,研磨后得到Co-N-C复合催化剂。
优选的,所述步骤(1)中调节溶液PH至0~6。
优选的,所述步骤(2)中钴盐为醋酸钴,硝酸钴中的一种或两种。
优选的,所述步骤(2)中水热温度为150~200℃,反应时间为8~12h。
优选的,所述步骤(2)中搅拌速率为100~600rpm。
优选的,所述步骤(3)中水热温度为260~300℃,反应时间为10~14h。
优选的,所述步骤(3)中煅热在管式炉中进行,煅烧温度为600~900℃,烧结时间为0.5~3h,升温速率为3~10℃/min。
优选的,所述步骤(3)中惰性气氛为纯氩气或氮气。
本发明还提供了一种所述的Co-N-C复合催化剂的应用,将所述Co-N-C复合催化剂应用于铝-空气电池。
本发明的原理:本发明设计了一种原位转化的方法,以壳聚糖为载体,通过简单的水热搅拌处理得到了Co-N-C前驱体溶液,添加碳纳米管,再经过水热反应得到Co-N-C/CNTs复合催化剂,具有sp2杂化结构的石墨化C具有良好的π电子传输能力,是吸附分子氧并进一步催化使其还原的活性中心,N原子部分取代C原子会增加整个石墨C基体的电正性,使其对氧的吸附更加高效,Co基粒子作为石墨化C还原分子氧的催化剂和稳定剂,添加了高导电性、大比表面积的碳纳米管,一方面可以促进吸附分子氧并进一步催化使其还原,另一方面可以防止Co基粒子被氧化或溶于电解液,增强了石墨化C结构的稳定性,从而提高Co-N-C纳米颗粒的ORR的催化活性和抗中毒能力。
载体材料的表面化学结构很大程度上决定了制得催化剂的活性,壳聚糖是天然长链分子糖类,由于壳聚糖具有大量的氨基,对过渡金属有很好的螯合作用,并且来源广泛,资源丰富,价格低廉,可以作为制备高ORR催化活性的碳源。
与现有技术相比,本发明的有益技术效果为:
(1)本发明以壳聚糖为碳源,壳聚糖、尿素为氮源,添加CNTs,通过原位转化法合成Co-N-C/CNTs复合催化剂,Co-N-C和CNTs之间的协同作用,显著增强了Co-N-C的ORR动力学,将其应用于铝-空气电池阴极材料,极限电流密度高达5.3mA cm-2,与商用的Pt/C电极(5.2mA cm-2)相当,稳定性更好。
(2)本发明Co-N-C复合催化剂中,Co-N-C纳米颗粒生长在碳纳米管表面,构成三维网状结构,使得复合催化剂具有更好的导电性和大比表面积,从而具有更多的电化学反应活性位点,促进吸附分子氧并进一步催化使其还原,Co-N-C复合催化剂的ORR催化活性得到显著提高。
(3)本发明工艺方法简单,成本低廉,对设备要求不高,能够适用于大规模生产。
附图说明
图1为实施例1、实施例2和实施例3所得样品的XRD图谱。
图2为实施例1所得Co-N-C复合催化剂的SEM和TEM图。
图3为实施例1所得Co-N-C复合催化剂的线性扫描伏安(LSV)图。
图4为实施例1-7所得样品以10mV s-1的扫速进行阴极测试的LSV图。
图5实施例1所得Co-N-C复合催化剂和Pt/C的CV曲线。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部实施例,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
(1)将1g壳聚糖加入50ml蒸馏水中搅拌1h,加入10滴冰醋酸,使壳聚糖完全溶解;
(2)加入0.25g醋酸钴和1g尿素,搅拌3h,使钴离子充分与壳聚糖进行螯合反应,并使尿素完全溶解,将混合溶液移入带磁力搅拌装置的水热釜,转速为300rpm,水热温度为180℃,反应时间为8h,得到前驱体溶液;
(3)向前驱体溶液中加入0.2g碳纳米管,搅拌1h,将所得溶液全部加入反应釜内胆中,放入干燥箱中进行水热反应,水热温度为300℃,反应时间为12h,将得到的产物放置于冷冻干燥箱,干燥72h,然后放入管式炉中(Ar气)煅热,升温速率为5℃/min,升至900℃后持续2h,冷却后将产物研磨得到样品1,将所得样品作为铝-空气电池阴极材料,ORR催化剂的电化学性能见表1。
采用X射线衍射仪(XRD,Rigaku-D/Max 2550,Cu-Kα,40kV,300mA)对产品进行物相分析。通过扫描电子显微镜(SEM,FEI Quanta-200,20kV)和透射电子显微镜(TEM,JEOL-2010,200kV)观察产品的形貌;通过旋转圆盘电极(RDE)经电化学工作站在三电极系统中测试样品的极限电流密度评价其ORR活性。工作电极的制备:称量6mg待测样品,分散于乙醇、水及5%nafion溶液(体积比为16:8:1)的1mL混合液中,超声1h,得到4mg/mL分散液,移液枪汲取10μL悬浮液滴加到直径5.61mm的玻碳电极上,60℃干燥后待测。在测试过程中,对电极为铂电极,参比电极为Hg/HgO电极。ORR测试均在饱和氧气的0.1M KOH溶液中进行,所有电位均转换为相对可逆氢电极(RHE)。
实施例2
(1)将1g壳聚糖加入50ml蒸馏水中搅拌1h,加入10滴冰醋酸,使壳聚糖完全溶解;
(2)加入0.25g醋酸钴和1g尿素,搅拌3h,使钴离子充分与壳聚糖进行螯合反应,并使尿素完全溶解,将混合溶液移入带磁力搅拌装置的水热釜,转速为300rpm,水热温度为180℃,反应时间为8h,得到前驱体溶液;
(3)将前驱体溶液放置于冷冻干燥箱,干燥72h,然后放入管式炉中(Ar气)煅热,升温速率为5℃/min,升至900℃后持续2h,冷却后将产物研磨得到样品2,将所得样品作为铝-空气电池阴极材料,测试方法如实施例1,ORR催化剂的电化学性能见表1。
实施例3
(1)将1g壳聚糖加入50ml蒸馏水中搅拌1h,加入10滴冰醋酸,使壳聚糖完全溶解;
(2)加入1g尿素,搅拌3h,使尿素完全溶解,将混合溶液移入带磁力搅拌装置的水热釜,转速为300rpm,水热温度为180℃,反应时间为8h,得到前驱体溶液;
(3)向前驱体溶液中加入0.2g碳纳米管,搅拌1h,将所得溶液全部加入反应釜内胆中,放入干燥箱中进行水热反应,水热温度为300℃,反应时间为12h,将得到的产物放置于冷冻干燥箱,干燥72h,然后放入管式炉中(Ar气)煅热,升温速率为5℃/min,升至900℃后持续2h,冷却后将产物研磨得到样品3,将所得样品作为铝-空气电池阴极材料,测试方法如实施例1,ORR催化剂的电化学性能见表1。
实施例4
(1)将1g壳聚糖加入50ml蒸馏水中搅拌1h,加入10滴冰醋酸,使壳聚糖完全溶解;
(2)加入0.25g醋酸钴,搅拌3h,使钴离子充分与壳聚糖进行螯合反应,将混合溶液移入带磁力搅拌装置的水热釜,转速为300rpm,水热温度为180℃,反应时间为8h,得到前驱体溶液;
(3)向前驱体溶液中加入0.2g碳纳米管,搅拌1h,将所得溶液全部加入反应釜内胆中,放入干燥箱中进行水热反应,水热温度为300℃,反应时间为12h,将得到的产物放置于冷冻干燥箱,干燥72h,然后放入管式炉中(Ar气)煅热,升温速率为5℃/min,升至900℃后持续2h,冷却后将产物研磨得到样品4,将所得样品作为铝-空气电池阴极材料,测试方法如实施例1,ORR催化剂的电化学性能见表1。
实施例5
(1)将1g壳聚糖加入50ml蒸馏水中搅拌1h,加入10滴冰醋酸,使壳聚糖完全溶解;
(2)加入0.25g醋酸钴,搅拌3h,使钴离子充分与壳聚糖进行螯合反应,将混合溶液移入带磁力搅拌装置的水热釜,转速为300rpm,水热温度为180℃,反应时间为8h,得到前驱体溶液;
(3)将前驱体溶液放置于冷冻干燥箱,干燥72h,然后放入管式炉中(Ar气)煅热,升温速率为5℃/min,升温至900℃后持续2h,冷却后将产物研磨得到样品5,将所得样品作为铝-空气电池阴极材料,测试方法如实施例1,ORR催化剂的电化学性能见表1。
实施例6
(1)将1g壳聚糖加入50ml蒸馏水中搅拌1h,加入10滴冰醋酸,使壳聚糖完全溶解;
(2)加入0.2g碳纳米管,搅拌1h,将所得溶液全部加入反应釜内胆中,放入干燥箱中进行水热反应,水热温度为300℃,反应时间为12h,将得到的产物放置于冷冻干燥箱,干燥72h,然后放入管式炉中(Ar气)煅热,升温速率为5℃/min,升至900℃后持续2h,冷却后将产物研磨得到样品6,将所得样品作为铝-空气电池阴极材料,测试方法如实施例1,ORR催化剂的电化学性能见表1。
实施例7
(1)将1g壳聚糖加入50ml蒸馏水中搅拌1h,加入10滴冰醋酸,使壳聚糖完全溶解;
(2)将溶液放置于冷冻干燥箱,干燥72h,然后放入管式炉中(Ar气)煅热,升温速率为5℃/min,升温至900℃后持续2h,冷却后将产物研磨得到样品7,将所得样品作为铝-空气电池阴极材料,测试方法如实施例1,ORR催化剂的电化学性能见表1。
表1实施例1-7所得样品作为ORR催化剂的电化学性能
图1为实施例1、实施例2和实施例3所得样品的XRD图谱,从图可以看出,3个样品都在2θ=26°左右对应着石墨化碳(002)峰,其中样品1在2θ=42.8°对应单质Co峰;样品2中可以观测到3个主峰,其中2θ=41.8°、42.8°、57.1°、68.4°附近均检测到明显的晶型衍射峰,经过与标准卡片[JCPDS:48-1719]对照发现,说明复合材料中含有CoO,除此之外,发现图谱中还与标准卡片[JCPDS:53-0671]比对发现,存在部分主峰,然而这些峰的强度不够明显,主要是由于CNTs的峰强度过弱;样品3和样品1的峰比较接近,可以看到石墨化碳峰以及CoC峰,从图1可以得到未加入尿素的样品中,钴元素主要是以金属钴单质与少量氧化亚钴形式存在,而当加入尿素作为氮源后,目标产物中的Co元素主要是以氧化亚钴和少量的单质钴形式存在。
图2为实施例1所得Co-N-C复合催化剂的SEM和TEM图,从图2可以看出,Co-N-C复合催化剂由Co-N-C纳米颗粒与CNTs组成,其中Co-N-C纳米颗粒的粒径为50~100nm,碳纳米管的直径为10~30nm,长度为10~100nm,而且Co-N-C纳米颗粒主要分散在碳纳米管的表面,构成三维网状结构,Co-N-C和CNTs有着良好的接触,可以增强复合电极的导电性并将促进更快的氧还原电子转移,这与金属-空气电池的性能密切相关。从TEM图可以看到竹节状的碳纳米管,上面附着Co-N-C纳米颗粒,可以增强对氧还原的催化活性,显然,Co-N-C和碳纳米管之间的紧密接触将对催化反应有更好的协同效应。
图3为实施例1所得Co-N-C复合催化剂的线性扫描伏安(LSV)图,为了测试所制备催化剂的ORR性能,将实施例1所得的样品1负载到玻碳电极上,在0.1M含饱和O2的KOH中进行400rpm、625rpm、900rpm、1225rpm、1600rpm的线性扫描伏安(LSV),从图3可以看出,随着转速增大,极限电流密度也在变大,不同转速的LSV曲线线性相关性好很好,说明Co-N-C/CNTs复合材料的动力学稳定性高。
图4为实施例1-7所得样品以10mV s-1的扫速进行阴极测试的LSV图,将所有样品以10mV s-1的扫速进行阴极测试,如图4所示,样品7(壳聚糖)和样品6(壳聚糖+碳纳米管)表现出非常差的起始电位,与样品7相比,样品6显示出更正的起始电位和更高的极限电流密度,充分证明在样品中N掺杂可促进氧的化学吸附,导致对ORR具有相对高的催化活性,从图可以看出,添加CNTs和钴氧化物的催化剂(样品1和样品4),变现出了较为优异的电化学性能,说明负载在碳纳米管上的钴氧化物,在提高ORR的性能中起着重要的作用,而且实施例1中所得目标样品的起始电位高达0.85V,极限电流密度达到了5.3mA cm-2,性能与商业Pt/C相当。
同时可观察到两个平台(0.8~0.5V和0.5~0V),表明反应通过两电子途径,在氧还原过程中会产生过氧化氢阴离子(HO2-)中间体,在0.3至0.85V的电位区域中(vs.RHE),样品的H2O2产生率显著很高(接近100%),Co-N-C/CNTs复合催化剂(样品1)拥有更正的半波电位(E1/2,0.79V),因此导致更好的ORR活性,其高于其他样品,与商业化Pt/C催化剂相比仅负移40mV。
图5实施例1所得Co-N-C复合催化剂和Pt/C的CV曲线,CV测试在0.1M饱和O2的KOH溶液中以10mV s-1的扫描速率进行电化学测试,测试电压范围为1.2至0V(相对于RHE)。在饱和Ar的KOH溶液中,所有样品的CV曲线没有明显的还原峰,然而,当处于饱和O2的KOH溶液时,清晰地观察到有个明显的还原峰,证实了ORR的电催化活性,Co-N-C复合催化剂在O2中的CV曲线显示出还原峰电位为~0.77V(相对于RHE),接近于商业化Pt/C(~0.82V相对于RHE),表明本发明所得Co-N-C复合催化剂具有优异的电化学性能,在金属-空气电池阴极材料上具有广泛的应用前景。

Claims (10)

1.一种Co-N-C复合催化剂,由Co和N共掺杂的碳纳米颗粒和碳纳米管组成,所述Co-N-C纳米颗粒生长在碳纳米管表面,构成三维网状结构。
2.根据权利要求1所述的Co-N-C复合催化剂,其特征在于,所述Co-N-C复合催化剂由以下组分按质量百分比组成:
Co和N共掺杂的碳纳米颗粒90%~92%;
碳纳米管8%~10%。
3.根据权利要求1或2所述的Co-N-C复合催化剂,其特征在于,所述Co和N共掺杂的碳纳米颗粒的粒径为5~100nm,碳纳米管的直径为10~30nm,长度为10~100nm。
4.根据权利要求1-3任一项所述的Co-N-C复合催化剂的制备方法,包括以下步骤:
(1)将壳聚糖与水混合,加入冰醋酸调节溶液PH,使壳聚糖完全溶解;
(2)加入钴盐和尿素,使其完全溶解,将混合溶液移入带磁力搅拌装置的水热釜,经水热反应得到前驱体溶液;
(3)向前驱体溶液中加入碳纳米管,再进行水热反应,将得到的产物冷冻干燥后放入惰性气氛中煅热,研磨后得到Co-N-C复合催化剂。
5.根据权利要求4所述的Co-N-C复合催化剂的制备方法,其特征在于,所述步骤(2)中钴盐为醋酸钴,硝酸钴中的一种或两种。
6.根据权利要求4所述的Co-N-C复合催化剂的制备方法,其特征在于,所述步骤(2)中水热温度为150~200℃,反应时间为8~12h。
7.根据权利要求4所述的Co-N-C复合催化剂的制备方法,其特征在于,所述步骤(2)中搅拌速率为100~600rpm。
8.根据权利要求4所述的Co-N-C复合催化剂的制备方法,其特征在于,所述步骤(3)中水热温度为260~300℃,反应时间为10~14h。
9.根据权利要求4所述的Co-N-C复合催化剂的制备方法,其特征在于,所述步骤(3)中煅热在管式炉中进行,煅烧温度为600~900℃,烧结时间为0.5~3h,升温速率为3~10℃/min。
10.根据权利要求1-3任一项所述的Co-N-C复合催化剂的应用,其特征在于,将所述Co-N-C复合催化剂应用于铝-空气电池。
CN201810035575.5A 2018-01-15 2018-01-15 一种Co-N-C复合催化剂及其制备方法和应用 Expired - Fee Related CN108258253B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810035575.5A CN108258253B (zh) 2018-01-15 2018-01-15 一种Co-N-C复合催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810035575.5A CN108258253B (zh) 2018-01-15 2018-01-15 一种Co-N-C复合催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN108258253A true CN108258253A (zh) 2018-07-06
CN108258253B CN108258253B (zh) 2020-12-22

Family

ID=62727087

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810035575.5A Expired - Fee Related CN108258253B (zh) 2018-01-15 2018-01-15 一种Co-N-C复合催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN108258253B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109174157A (zh) * 2018-09-27 2019-01-11 合肥工业大学 一种钴氮共掺杂生物质碳氧化还原催化剂的制备方法
CN110833846A (zh) * 2019-11-07 2020-02-25 台州学院 一种负载型金属钌催化剂、制备方法及其应用
CN110975913A (zh) * 2019-10-22 2020-04-10 上海电力大学 一种用于电催化制氢的电催化剂及其制备方法
CN112018398A (zh) * 2019-05-29 2020-12-01 中南大学 一种Cu2O/N-C氧还原催化剂及其制备和应用
CN113122872A (zh) * 2021-04-09 2021-07-16 合肥工业大学 一种钴、氮掺杂碳纳米管/碳电催化剂及其制备方法与应用
CN113336220A (zh) * 2021-06-28 2021-09-03 西南石油大学 一种高吸附性能的碳量子点-碳纳米管复合材料的制备方法
CN114774971A (zh) * 2022-03-30 2022-07-22 电子科技大学长三角研究院(湖州) 一种用于氧还原反应合成过氧化氢的碳基电催化剂的制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220126275A1 (en) * 2019-02-15 2022-04-28 Nanyang Technological University Low-cost and low-platinum composite catalyst for low-temperature proton exchange membrane fuel cells

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101728545A (zh) * 2009-11-13 2010-06-09 上海理工大学 一种直接甲醇燃料电池阳极纳米合金催化剂及其制备方法
CN101814604A (zh) * 2010-01-08 2010-08-25 北京化工大学 一种贵金属/复合金属氧化物/碳纳米管型电催化剂及其制备方法和应用
CN101820066A (zh) * 2010-03-26 2010-09-01 北京化工大学 一种金属单质/多壁碳纳米管型复合材料及其制备方法和应用
CN104953135A (zh) * 2015-04-30 2015-09-30 北京化工大学 一种氮掺杂碳纳米管负载钴基电催化材料及其制备方法
CN105854918A (zh) * 2016-03-30 2016-08-17 南京工业大学 纳米级钴基粒子与氮掺杂碳的复合材料、合成方法及用途
CN106450357A (zh) * 2016-11-14 2017-02-22 中南大学 一种石墨烯负载Co‑N‑C超分子杂合气凝胶复合材料及其制备方法和应用
CN106669762A (zh) * 2016-12-30 2017-05-17 华南理工大学 一种氮掺杂碳纳米管/Co复合催化剂及其制备与应用
CN106669758A (zh) * 2016-12-26 2017-05-17 华东理工大学 一种氮掺杂多孔碳层包覆非贵金属纳米颗粒氧电极双功能催化剂及其制备方法
CN107093748A (zh) * 2017-04-12 2017-08-25 苏州大学 一种钴和氮共掺杂碳纳米管催化剂、制备方法及应用
CN107293761A (zh) * 2017-08-02 2017-10-24 中南大学 一种Co@N‑C 复合正极材料、制备方法及在锂空气电池中的应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101728545A (zh) * 2009-11-13 2010-06-09 上海理工大学 一种直接甲醇燃料电池阳极纳米合金催化剂及其制备方法
CN101814604A (zh) * 2010-01-08 2010-08-25 北京化工大学 一种贵金属/复合金属氧化物/碳纳米管型电催化剂及其制备方法和应用
CN101820066A (zh) * 2010-03-26 2010-09-01 北京化工大学 一种金属单质/多壁碳纳米管型复合材料及其制备方法和应用
CN104953135A (zh) * 2015-04-30 2015-09-30 北京化工大学 一种氮掺杂碳纳米管负载钴基电催化材料及其制备方法
CN105854918A (zh) * 2016-03-30 2016-08-17 南京工业大学 纳米级钴基粒子与氮掺杂碳的复合材料、合成方法及用途
CN106450357A (zh) * 2016-11-14 2017-02-22 中南大学 一种石墨烯负载Co‑N‑C超分子杂合气凝胶复合材料及其制备方法和应用
CN106669758A (zh) * 2016-12-26 2017-05-17 华东理工大学 一种氮掺杂多孔碳层包覆非贵金属纳米颗粒氧电极双功能催化剂及其制备方法
CN106669762A (zh) * 2016-12-30 2017-05-17 华南理工大学 一种氮掺杂碳纳米管/Co复合催化剂及其制备与应用
CN107093748A (zh) * 2017-04-12 2017-08-25 苏州大学 一种钴和氮共掺杂碳纳米管催化剂、制备方法及应用
CN107293761A (zh) * 2017-08-02 2017-10-24 中南大学 一种Co@N‑C 复合正极材料、制备方法及在锂空气电池中的应用

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109174157A (zh) * 2018-09-27 2019-01-11 合肥工业大学 一种钴氮共掺杂生物质碳氧化还原催化剂的制备方法
CN109174157B (zh) * 2018-09-27 2022-02-01 合肥工业大学 一种钴氮共掺杂生物质碳氧化还原催化剂的制备方法
CN112018398A (zh) * 2019-05-29 2020-12-01 中南大学 一种Cu2O/N-C氧还原催化剂及其制备和应用
CN110975913A (zh) * 2019-10-22 2020-04-10 上海电力大学 一种用于电催化制氢的电催化剂及其制备方法
CN110833846A (zh) * 2019-11-07 2020-02-25 台州学院 一种负载型金属钌催化剂、制备方法及其应用
CN110833846B (zh) * 2019-11-07 2023-04-18 台州学院 一种负载型金属钌催化剂、制备方法及其应用
CN113122872A (zh) * 2021-04-09 2021-07-16 合肥工业大学 一种钴、氮掺杂碳纳米管/碳电催化剂及其制备方法与应用
CN113336220A (zh) * 2021-06-28 2021-09-03 西南石油大学 一种高吸附性能的碳量子点-碳纳米管复合材料的制备方法
CN113336220B (zh) * 2021-06-28 2022-03-22 西南石油大学 一种高吸附性能的碳量子点-碳纳米管复合材料的制备方法
CN114774971A (zh) * 2022-03-30 2022-07-22 电子科技大学长三角研究院(湖州) 一种用于氧还原反应合成过氧化氢的碳基电催化剂的制备方法

Also Published As

Publication number Publication date
CN108258253B (zh) 2020-12-22

Similar Documents

Publication Publication Date Title
CN108258253A (zh) 一种Co-N-C复合催化剂及其制备方法和应用
Chen et al. Flower-like platinum-cobalt-ruthenium alloy nanoassemblies as robust and highly efficient electrocatalyst for hydrogen evolution reaction
Li et al. An extremely facile route to Co2P encased in N, P-codoped carbon layers: Highly efficient bifunctional electrocatalysts for ORR and OER
Song et al. Metal-organic framework derived Fe/Fe3C@ N-doped-carbon porous hierarchical polyhedrons as bifunctional electrocatalysts for hydrogen evolution and oxygen-reduction reactions
Liu et al. Facile hydrothermal synthesis of urchin-like NiCo2O4 spheres as efficient electrocatalysts for oxygen reduction reaction
Xu et al. Dual-active-sites design of CoNx anchored on zinc-coordinated nitrogen-codoped porous carbon with efficient oxygen catalysis for high-stable rechargeable zinc-air batteries
Wang et al. Low-loading Pt nanoparticles combined with the atomically dispersed FeN4 sites supported by FeSA-NC for improved activity and stability towards oxygen reduction reaction/hydrogen evolution reaction in acid and alkaline media
CN107051559A (zh) 一种氧还原和析氧磷化钴@npc双功能复合催化剂及其制备方法和应用
CN103537299B (zh) 一种碳载Co核-Pt壳纳米粒子催化剂及其制备方法
CN107829107A (zh) 一种石墨烯/碳纳米管负载单分散金属原子复合催化剂及其制备方法和应用
Wang et al. Metal-organic gel-derived Fe-Fe2O3@ nitrogen-doped-carbon nanoparticles anchored on nitrogen-doped carbon nanotubes as a highly effective catalyst for oxygen reduction reaction
CN107746051A (zh) 一种氮掺杂石墨烯纳米带‑纳米四氧化三钴杂化材料及其制备方法
Gao et al. Co/NC-Gr composite derived from ZIF-67: effects of preparation method on the structure and electrocatalytic performance for oxygen reduction reaction
Yu et al. In situ selenylation of molybdate ion intercalated Co-Al layered double hydrotalcite for high-performance electrocatalytic oxygen evolution reaction
Huang et al. Spinel CoFe2O4/carbon nanotube composites as efficient bifunctional electrocatalysts for oxygen reduction and oxygen evolution reaction
He et al. In-situ synthesis of hybrid nickel cobalt sulfide/carbon nitrogen nanosheet composites as highly efficient bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries
CN109119648B (zh) 一种LaCoO3-δ/CNTs双功能复合催化剂及其制备方法和应用
He et al. Ion‐exchange‐assisted synthesis of Pt‐VC nanoparticles loaded on graphitized carbon: a high‐performance nanocomposite electrocatalyst for oxygen‐reduction reactions
Jiang et al. Highly efficient hydrogen evolution reaction of Co 3 O 4 supports on N-doped carbon nanotubes in an alkaline solution
Li et al. Porous biomass-derived carbon modified by Cu, N co-doping and Cu nanoparticles as high-efficient electrocatalyst for oxygen reduction reaction and zinc-air battery
Hu et al. Conductivity-enhanced porous N/P co-doped metal-free carbon significantly enhances oxygen reduction kinetics for aqueous/flexible zinc-air batteries
Yang et al. Electrochemical deposition of CeO2 nanocrystals on Co3O4 nanoneedle arrays for efficient oxygen evolution
CN106391088A (zh) 一种三维石墨烯双功能氧电极催化剂及其制备方法
Meng et al. A novel cobalt and nitrogen co-doped mesoporous hollow carbon hemisphere as high-efficient electrocatalysts for oxygen reduction reaction
Wang et al. Fe/N-doped hollow porous carbon spheres for oxygen reduction reaction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201222

Termination date: 20220115