CN110833846A - 一种负载型金属钌催化剂、制备方法及其应用 - Google Patents

一种负载型金属钌催化剂、制备方法及其应用 Download PDF

Info

Publication number
CN110833846A
CN110833846A CN201911083884.0A CN201911083884A CN110833846A CN 110833846 A CN110833846 A CN 110833846A CN 201911083884 A CN201911083884 A CN 201911083884A CN 110833846 A CN110833846 A CN 110833846A
Authority
CN
China
Prior art keywords
ruthenium
nitrogen
catalyst
supported
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911083884.0A
Other languages
English (en)
Other versions
CN110833846B (zh
Inventor
陈先朗
李嵘嵘
韩得满
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taizhou University
Original Assignee
Taizhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taizhou University filed Critical Taizhou University
Priority to CN201911083884.0A priority Critical patent/CN110833846B/zh
Publication of CN110833846A publication Critical patent/CN110833846A/zh
Application granted granted Critical
Publication of CN110833846B publication Critical patent/CN110833846B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/095Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one of the compounds being organic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种负载型金属钌催化剂,包括以钌为活性成分,负载材料为含氮的纳米碳材料,所述纳米碳材料为碳纳米管、石墨或石墨烯,以质量百分含量计,钌的负载量为2.00%~8.00%,含氮量为6.00%~10.00%,比表面积为400m2g‑1~700m2g‑1。本发明还提供了所述负载型金属钌催化剂的制备方法及其应用。本发明提供的负载型金属钌催化剂具有高比表面积和良好的导电性能,析氢反应的催化活性和稳定性明显提高;本发明制备方法简单,易于调控,具有广阔的商业化应用前景。

Description

一种负载型金属钌催化剂、制备方法及其应用
技术领域
本发明涉及电化学析氢催化剂领域,具体涉及一种负载型金属钌催化剂、制备方法及其应用。
背景技术
随着经济社会的发展,人们对于化石能源的消耗越来越大,造成的能源危机和环境问题日益突出,因此研发和开发一种绿色可再生清洁能源来取代传统的化石能源已迫在眉睫。氢能作为一种来源广、能量密度高和清洁高效的能源载体受到了世界各国的广泛关注,它是一种能替代化石能源的理想能源。
在各种制氢方法中,电解水制氢是一种工艺简单和制备的氢气纯度最好的绿色制备方法,具有广泛的应用前景。迄今为止,铂及其复合材料是在工业上用于制氢的最理想催化剂。但其价格昂贵、资源稀少、低动力学以及稳定性差,限制了其大规模的商业化应用。
近年来,碳基材料具有良好的导电导热能力、优良的耐高温的特性和化学稳定性等特征,在电化学研究方面深受研究者重视。即便如此,碳材料与金属基材料的催化活性相比还是相对较差。因此,通过活化的碳基材料和调节活性组分的策略来改善催化活性。例如,非金属元素的掺杂(N,S,P和B)可以调节碳材料的电子结构和改变其电化学性质,但对于析氢活性的增强仍然有限。
氮掺杂碳材料与非贵金属相互结合研究也在进行,公开号为CN107308933A的中国专利文献公开了一种高分散贵金属催化剂在电化学析氢反应中的应用,金属催化剂通过以下方法制备:以碳水化合物、过渡贵金属盐与软模板剂的质量比为40~100:0.5~5:2000~4000为原料,混合后在惰性气氛中,先在400~650℃下保温后再升温至700~1200℃煅烧贵金属催化剂。软模板剂用量为过渡贵金属盐400-8000倍,用量较大。因此亟需开发一种负载型金属钌催化剂及其制备方法,既能在电化学析氢反应中具有较强的催化析氢能力,制备方法又较为简单,易于调控,可替代商业Pt/C的催化剂。
发明内容
本发明提供了一种负载型金属钌催化剂,该催化剂在电化学析氢反应中具有较强的催化能力,能够增强析氢活性。
本发明解决上述技术问题所提供的技术方案为:
一种负载型金属钌催化剂,包括以钌为活性成分,负载材料为含氮的纳米碳材料,所述纳米碳材料为碳纳米管、石墨或石墨烯;以原子数百分含量计,钌的负载量为2.00%~8.00%,含氮量为6.00%~10.00%,比表面积为400m2g-1~700m2g-1
加入纳米碳材料可以提高钌的分散性、催化剂的比表面积,有利于增加催化剂的活性位点,从而提高催化剂的析氢活性;氮掺杂的纳米碳材料改变碳材料的电子结构,有利于其与金属形成良好的配位,增加催化剂活性位点,增加催化剂活性,同时提高了催化剂的导电性,有利于电荷的传递,在进行析氢反应时,可以加速氢原子与催化剂之间的电荷转移,加快氢气的产生。
作为优选,所述纳米碳材料为碳纳米管。不同的纳米碳材料与钌金属的结合程度不同,从而导致它们之间的电荷转移存在差别,钌与碳纳米管结合时,碳纳米管会通过非共价效应使电子偏离钌原子,从而导致它们结合的界面电荷密度会很高,有利于析氢反应的进行。
本发明还提供了上述负载型金属钌催化剂的制备方法,包括如下步骤:
(1)将钌盐、氮化物、葡萄糖类和纳米碳材料混合研磨,得均匀混合的固体粉末;
(2)将步骤(1)得到的固体粉末在氮气的气氛下煅烧1-3h,得负载型金属钌催化剂。
作为优选,所述的钌盐、氮化物、葡萄糖类和纳米碳材料的质量比为1-2:25-50:4-8:1.6。使钌负载量保持在5%左右,若金属钌配比过低,会减少负载型金属钌催化剂的活性位点,不利于催化效果;若金属钌配比过高,在高温下金属钌会进行团聚,从而影响催化剂性能。
所述的钌盐为氯化钌、硝酸钌、乙酰丙酮钌或醋酸钌。
所述的氮化物为尿素、单氰胺、双氰胺或三聚氰胺。
所述的葡萄糖类为葡萄糖酸锌、葡萄糖或葡萄糖酸钙。
作为优选,步骤(1)中,所述的研磨时间为0.5-2h。使钌盐、氮化物、葡萄糖类和纳米碳材混合均匀。
作为优选,步骤(2)中,所述的煅烧的温度为700-900℃。使得氮化物和碳化物深度活化,有利于钌和载体的结合,提高催化剂的催化稳定性。
作为优选,步骤(2)中,所述的煅烧的时间为1-3h。使得氮化物和碳化物充分活化。
本发明还提供所述的负载型金属钌催化剂在电化学析氢反应中的应用。
将所述的负载型钌催化剂溶于Nafion溶液和乙醇的混合溶液中,超声后滴在玻碳电极上,形成工作电极,用于电化学析氢反应。
本发明的有益效果是:
(1)本发明通过以纳米碳材料为载体,该催化剂具有高比表面积,在纳米碳材料中掺杂非金属元素氮,改变碳材料的电子结构,有利于其与金属形成良好的配位,增加催化剂活性位点,增加催化剂活性,同时氮掺杂碳材料可以增加催化剂的导电性,有利于电荷的转移;本发明的负载型金属钌催化剂明显提高了析氢反应的催化活性和稳定性,且析氢性能优于商业Pt/C,有望能成为替代商业Pt/C的催化剂。
(2)本发明通制备方法简单,易于调控,具有广阔的商业化应用前景。
附图说明
图1为实施例1-3制备的负载型金属钌催化剂和Pt/C催化剂的电化学析氢反应的LSV曲线;
图2为实施例1、实施例4、实施例5、对照例1-3制备的负载型金属钌催化剂和Pt/C催化剂的电化学析氢反应的LSV曲线;
图3为实施例1-3制备的负载型金属钌催化剂的Ru3d的XPS曲线图。
具体实施方式
下面结合具体实施例对本发明作进一步说明,但本发明的保护范围并不限于此。
实施例1制备氮掺杂碳纳米管负载钌金属(5%-Ru@NCNT-1)催化剂
(1)称取24mg的氯化钌、600mg的尿素、100mg的葡萄糖酸锌和20mg的碳纳米管混合放入研钵,通过1h研磨,得均匀混合的固体粉末;
(2)将得到的固体粉末放入到坩埚中,坩埚再放置在管式炉中,在管式炉中于氮气的气氛下煅烧2h,煅烧温度为900℃,得氮掺杂碳纳米管负载钌金属(5%Ru@NCNT-1)催化剂,钌的负载量为5.02%,含氮量为8.11%,比表面积为631.40m2g-1
实施例2制备氮掺杂石墨烯负载钌金属(5%Ru@NGO)催化剂
(1)称取24mg的氯化钌、600mg的尿素、100mg的葡萄糖酸锌和20mg的石墨烯混合放入研钵,通过1h研磨,得均匀混合的固体粉末;
(2)将得到的固体粉末放入到坩埚中,坩埚再放置在管式炉中,在管式炉中于氮气的气氛下煅烧2h,煅烧温度为900℃,得氮掺杂石墨烯负载钌金属(5%Ru@NGO)催化剂,钌的负载量是4.98%,含氮量约为8.41%,比表面积为561.38m2g-1
实施例3制备氮掺杂石墨负载钌金属(5%Ru@NC-1)催化剂
(1)称取24mg的氯化钌、600mg的尿素、100mg的葡萄糖酸锌和20mg的石墨混合放入研钵,通过1h研磨,得均匀混合的固体粉末;
(2)将得到的固体粉末放入到坩埚中,坩埚再放置在管式炉中,在管式炉中于氮气的气氛下煅烧2h,煅烧温度为900℃,得氮掺杂石墨负载钌金属(5%Ru@NC-1)催化剂,钌的负载量是5.13%,含氮量约为8.54%,比表面积为436.46m2g-1
实施例1~3得到的催化剂的元素分析和比表面积测试结果如表1所示:
表1
Figure BDA0002264782690000051
实施例4制备氮掺杂碳纳米管负载钌金属(5%Ru@NCNT-2)催化剂
(1)称取24mg的氯化钌、600mg的尿素、80mg的葡萄糖和20mg的碳纳米管混合放入研钵,通过1h研磨,得均匀混合的固体粉末;
(2)将得到的固体粉末放入到坩埚中,坩埚再放置在管式炉中,在管式炉中于氮气的气氛下煅烧2h,煅烧温度为900℃,得氮掺杂碳纳米管负载钌金属(5%Ru@NCNT-2)催化剂。
实施例5制备氮掺杂碳纳米管负载钌金属(3%Ru@NCNT)催化剂
(1)称取18mg的氯化钌、600mg的尿素、100mg的葡萄糖酸锌和20mg的碳纳米管混合放入研钵,通过1h研磨,得均匀混合的固体粉末;
(2)将得到的固体粉末放入到坩埚中,坩埚再放置在管式炉中,在管式炉中于氮气的气氛下煅烧2h,煅烧温度为900℃,得氮掺杂碳纳米管负载钌金属(3%Ru@NCNT)催化剂。
对照例1制备氮掺杂碳纳米管负载钌金属(5%Ru@NCNT-3)催化剂
(1)称取24mg的氯化钌、600mg的尿素和20mg的碳纳米管混合放入研钵,通过1h研磨,得均匀混合的固体粉末;
(2)将得到的固体粉末放入到坩埚中,坩埚再放置在管式炉中,在管式炉中于氮气的气氛下煅烧2h,煅烧温度为900℃,得氮掺杂碳纳米管负载钌金属(Ru@NCNT)催化剂。
对照例2制备氮掺杂碳纳米管负载钌金属(Ru/NCNT)催化剂
(1)称取600mg的尿素、100mg的葡萄糖酸锌和20mg的碳纳米管混合放入研钵,通过1h研磨,得均匀混合的固体粉末;
(2)将得到的固体粉末放入到坩埚中,坩埚再放置在管式炉中,在管式炉中于氮气的气氛下煅烧2h,煅烧温度为900℃,得到氮掺杂碳纳米管材料;
(3)将20mg的氮掺杂碳纳米管材料加入25ml圆底烧瓶,加入10ml去离子水和5mg的氯化钌,进行6h的常温搅拌,随后缓慢滴加1摩尔每升硼氢化钠进行还原,然后搅拌0.5小时之后进过滤,最后在60℃下干燥12小时,得氮掺杂碳纳米管负载钌金属(Ru/NCNT)催化剂。
对照例3制备氮掺杂碳纳米管负载钌金属(5%Ru@NC-2)催化剂
(1)称取24mg的氯化钌、600mg的尿素和100mg的葡萄糖酸锌混合放入研钵,通过1h研磨,得均匀混合的固体粉末;
(2)将得到的固体粉末放入到坩埚中,坩埚再放置在管式炉中,在管式炉中于氮气的气氛下煅烧2h,煅烧温度为900℃,得氮掺杂碳纳米管负载钌金属(5%Ru@NC-2)催化剂。
实施例1-5对照例1-3制备的负载型金属钌催化剂的性能测试
工作电极的制备方法:分别称取4mg实施例1-5、对照例1-3制得的负载型金属钌催化剂溶于100μL的Nafion溶液(杜邦DuPont,D520)和900μL的乙醇,在室温下进行30分钟超声,随后用移液枪取5μL的超声后的溶液滴在直径为4mm的玻碳电极上得到工作电极。
以20%的Pt/C催化剂作为对比催化剂,根据上述相同方法得到工作电极。
电化学析氢反应的测试过程:采用圆盘电极三电极体系进行电化学测试,分别以玻碳电极为工作电极,饱和氯化银电极为参比电极和铂丝电极为对电极,常温常压,电解液为1mol/L的KOH水溶液,测试电压为标准饱和氯化银电极的0.1-0.4V,圆盘电极转速为1600rmp/min。通过测量的数据如图1,2所示,在电流密度为10mA/cm-2时,可以发现实施例1的电催化析氢活性效果最好,过电压为25mV,且远远的好于20%的Pt/C和其他催化剂。
本发明XPS分析方法:
仪器:UltraD UltraDLD(Kratos KratosKratos)X射线光电子能谱仪;
真空度:3×10-7Pa;光源:Al-Kα。通过XPS分析软件,由电子结合能可得各表面价态,还可以计算各价态元素的比例。
如图3所示,可以得到在碳纳米管上钌的3d峰往正方向偏移,这说明了钌金属向碳纳米管转移的电荷最多,有利于它们之间的相互结合,促进其活性和稳定性,其规律与催化活性一致。

Claims (10)

1.一种负载型金属钌催化剂,包括以钌为活性成分,负载材料为含氮的纳米碳材料,其特征在于,所述纳米碳材料为碳纳米管、石墨或石墨烯,以质量百分含量计,钌的负载量为2.00%~8.00%,含氮量为6.00%~10.00%,比表面积为400m2g-1~700m2 g-1
2.一种根据权利要求1所述的负载型金属钌催化剂的制备方法,包括如下步骤:(1)将钌盐、氮化物、葡萄糖类和纳米碳材料混合研磨,得均匀混合的固体粉末;(2)将步骤(1)得到的固体粉末在氮气的气氛下煅烧。
3.根据权利要求2所述的制备方法,其特征在于,所述的钌盐、氮化物、葡萄糖类和纳米碳材料的质量比为1~2:25~50:4~8:1.6。
4.根据权利要求2或3所述的制备方法,其特征在于,所述的钌盐为氯化钌、硝酸钌、乙酰丙酮钌或醋酸钌。
5.根据权利要求2或3所述的制备方法,其特征在于,所述的氮化物为尿素、单氰胺、双氰胺或三聚氰胺。
6.根据权利要求2或3所述的制备方法,其特征在于,所述的葡萄糖类为葡萄糖酸锌、葡萄糖或葡萄糖酸钙。
7.根据权利要求2所述的制备方法,其特征在于,步骤(1)中,所述的研磨时间为0.5-2h。
8.根据权利要求2所述的制备方法,其特征在于,步骤(2)中,所述的煅烧的温度为700~950℃。
9.根据权利要求2或8所述的制备方法,其特征在于,步骤(2)中,所述的煅烧时间为1-3h。
10.根据权利要求1所述的负载型金属钌催化剂在电化学析氢反应中的应用。
CN201911083884.0A 2019-11-07 2019-11-07 一种负载型金属钌催化剂、制备方法及其应用 Active CN110833846B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911083884.0A CN110833846B (zh) 2019-11-07 2019-11-07 一种负载型金属钌催化剂、制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911083884.0A CN110833846B (zh) 2019-11-07 2019-11-07 一种负载型金属钌催化剂、制备方法及其应用

Publications (2)

Publication Number Publication Date
CN110833846A true CN110833846A (zh) 2020-02-25
CN110833846B CN110833846B (zh) 2023-04-18

Family

ID=69576391

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911083884.0A Active CN110833846B (zh) 2019-11-07 2019-11-07 一种负载型金属钌催化剂、制备方法及其应用

Country Status (1)

Country Link
CN (1) CN110833846B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111501062A (zh) * 2020-04-28 2020-08-07 南昌航空大学 一种钌掺杂碳纳米管复合材料的制备方法及其在微生物电解池阴极方面的应用
CN112899724A (zh) * 2020-12-07 2021-06-04 中国科学技术大学 一种纳米级二氧化钌包覆钌负载碳微米片、其制备方法及应用
CN114293200A (zh) * 2021-12-15 2022-04-08 湖南大学 一种多孔碳负载非晶态/晶态钌基高效析氢催化剂及其制备与应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107308933A (zh) * 2017-08-15 2017-11-03 浙江大学 一种高分散贵金属催化剂在电化学析氢反应中的应用
CN108258253A (zh) * 2018-01-15 2018-07-06 中南大学 一种Co-N-C复合催化剂及其制备方法和应用
CN108355651A (zh) * 2018-02-08 2018-08-03 电子科技大学 一种钌纳米金属电催化剂及制备方法
WO2018195045A1 (en) * 2017-04-17 2018-10-25 President And Fellows Of Harvard College Metal-doped catalyst, methods for its production and uses thereof
CN109306499A (zh) * 2018-10-31 2019-02-05 浙江工业大学 一种多孔空心的RuP@PNC催化剂及其制备方法和应用
CN109482214A (zh) * 2018-10-23 2019-03-19 深圳市本征方程石墨烯技术股份有限公司 一种石墨烯负载钌金属的催化剂及制备方法与应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018195045A1 (en) * 2017-04-17 2018-10-25 President And Fellows Of Harvard College Metal-doped catalyst, methods for its production and uses thereof
CN107308933A (zh) * 2017-08-15 2017-11-03 浙江大学 一种高分散贵金属催化剂在电化学析氢反应中的应用
CN108258253A (zh) * 2018-01-15 2018-07-06 中南大学 一种Co-N-C复合催化剂及其制备方法和应用
CN108355651A (zh) * 2018-02-08 2018-08-03 电子科技大学 一种钌纳米金属电催化剂及制备方法
CN109482214A (zh) * 2018-10-23 2019-03-19 深圳市本征方程石墨烯技术股份有限公司 一种石墨烯负载钌金属的催化剂及制备方法与应用
CN109306499A (zh) * 2018-10-31 2019-02-05 浙江工业大学 一种多孔空心的RuP@PNC催化剂及其制备方法和应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BARUN KUMAR BARMAN ET AL.: "Facile synthesis of ultrafine Ru nanocrystal supported N-doped graphene as an exceptional hydrogen evolution electrocatalyst in both alkaline and acidic media", 《SUSTAINABLE ENERGY & FUELS》 *
BARUN KUMAR BARMAN ETAL.: "In Situ Decoration of Ultrafine Ru Nanocrystals on N-Doped Graphene Tube and Their Applications as Oxygen Reduction and Hydrogen Evolution Catalyst", 《ACS APPLIED ENERGY MATERIALS》 *
CHEN XIANLANG ET AL.: "Tuning the confinement space of N-carbon shell-coated ruthenium nanoparticles: highly efficient electrocatalysts for hydrogen evolution reaction", 《CATALYSIS SCIENCE & TECHNOLOGY》 *
QIAN SONG ET AL.: "Ruthenium@N-doped graphite carbon derived from carbon foam for efficient hydrogen evolution reaction", 《CHEMICAL COMMUNICATIONS》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111501062A (zh) * 2020-04-28 2020-08-07 南昌航空大学 一种钌掺杂碳纳米管复合材料的制备方法及其在微生物电解池阴极方面的应用
CN112899724A (zh) * 2020-12-07 2021-06-04 中国科学技术大学 一种纳米级二氧化钌包覆钌负载碳微米片、其制备方法及应用
CN114293200A (zh) * 2021-12-15 2022-04-08 湖南大学 一种多孔碳负载非晶态/晶态钌基高效析氢催化剂及其制备与应用

Also Published As

Publication number Publication date
CN110833846B (zh) 2023-04-18

Similar Documents

Publication Publication Date Title
CN109014237B (zh) 一种铂-非贵金属合金纳米线及其水相合成方法和应用
Ojha et al. Composites of graphene-Mo2C rods: highly active and stable electrocatalyst for hydrogen evolution reaction
CN110833846B (zh) 一种负载型金属钌催化剂、制备方法及其应用
CN107904620B (zh) 一种三维石墨烯/碳纳米管基二硫化钼/硫化钴复合材料电催化剂及其制备方法和应用
CN108660473B (zh) 一种基于MXene与过渡金属碳化物复合纳米结构的电解海水制氢催化剂及其合成方法
CN108823596B (zh) 气体扩散电极及其制备方法以及在二氧化碳电化学还原中的应用
Cen et al. Enhanced electrocatalytic overall water splitting over novel one-pot synthesized Ru–MoO3-x and Fe3O4–NiFe layered double hydroxide on Ni foam
Zhang et al. Ni3N nanoparticles on porous nitrogen-doped carbon nanorods for nitrate electroreduction
CN108172849B (zh) 基于钯单原子的二氧化锰-碳纳米管复合催化剂及其制备
CN109675595B (zh) 一种碳化钨/多孔碳复合材料及其制备方法和在电化学产氢中的应用
CN113437314B (zh) 氮掺杂碳负载低含量钌和Co2P纳米粒子的三功能电催化剂及其制备方法和应用
CN110690464B (zh) 一种过渡金属和氮共掺杂多孔碳电催化剂的制备方法
CN110787823B (zh) 三维氮掺杂的花型碳球负载超细氮掺杂碳化钼纳米粒子及制备方法和应用
CN110575839B (zh) M2c/碳纳米片复合材料及其制备方法和应用
CN114522706A (zh) 一种碳化物负载贵金属单原子催化剂及制备和应用
Yang et al. Electrodeposition of palladium on carbon nanotubes modified nickel foam as an efficient electrocatalyst towards hydrogen peroxide reduction
CN111359613B (zh) 一种双功能氧化石墨烯负载核-壳结构钴纳米粒子复合材料
Wang et al. Palygorskite promoted PtSn/carbon catalysts and their intrinsic catalytic activity for ethanol oxidation
Fu et al. Fe2O3 and Co bimetallic decorated nitrogen doped graphene nanomaterial for effective electrochemical water split hydrogen evolution reaction
CN114164455B (zh) 一种通过电化学刻蚀提高贵金属基材料电催化性能的方法
Luo et al. RuP nanoparticles on ordered macroporous hollow nitrogen-doped carbon spheres for efficient hydrogen evolution reaction
Zhang et al. Controllable synthesis of two-dimensional tungsten nitride nanosheets as electrocatalysts for oxygen reduction reaction
Zhang et al. Morphology reconstruction and electronic optimization: Nickel-iron selenide nanospheres with Mo-doping as an efficient bifunctional electrocatalyst for overall water splitting
CN114345324A (zh) 生物质碳基金属单原子复合催化剂、制备方法及其应用
Dahonog et al. Electroless deposition of nickel-cobalt nanoparticles for hydrogen evolution reaction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant