CN111359613B - 一种双功能氧化石墨烯负载核-壳结构钴纳米粒子复合材料 - Google Patents

一种双功能氧化石墨烯负载核-壳结构钴纳米粒子复合材料 Download PDF

Info

Publication number
CN111359613B
CN111359613B CN202010269928.5A CN202010269928A CN111359613B CN 111359613 B CN111359613 B CN 111359613B CN 202010269928 A CN202010269928 A CN 202010269928A CN 111359613 B CN111359613 B CN 111359613B
Authority
CN
China
Prior art keywords
cobalt
graphene oxide
composite material
core
surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010269928.5A
Other languages
English (en)
Other versions
CN111359613A (zh
Inventor
陈铭
韩悦
贺薇
许诺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou University
Original Assignee
Yangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou University filed Critical Yangzhou University
Priority to CN202010269928.5A priority Critical patent/CN111359613B/zh
Publication of CN111359613A publication Critical patent/CN111359613A/zh
Application granted granted Critical
Publication of CN111359613B publication Critical patent/CN111359613B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/397Egg shell like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种双功能氧化石墨烯负载核‑壳结构钴纳米粒子复合材料。该材料由核‑壳结构的单质钴纳米颗粒均匀分布在氧化石墨烯上形成;以氧化石墨烯为生长基质,在表面活性剂的辅助下二维纳米片状甘油钴自组装形成花状结构附着于氧化石墨烯上,所得前驱体在高温下还原,形成所述材料。本发明采用水热法和高温煅烧,该方法简单,可得到形貌均一的纳米粒子,钴纳米颗粒在石墨烯表面的锚定作用有效改善了该材料的稳定性,不易被碱性溶液腐蚀;钴纳米颗粒和碳基材料之间的协同作用,以及单分散的核‑壳结构纳米粒子暴露出更多的活性位点,有效提升了催化的性能,有利于该材料在碱性溶液中催化水解。

Description

一种双功能氧化石墨烯负载核-壳结构钴纳米粒子复合材料
技术领域
本发明属于碱性电解水双功能电催化剂技术领域,具体涉及一种双功能氧化石墨烯负载核-壳结构钴纳米粒子及其制备方法和应用。
背景技术
氢(H2)由于其具有可再生和环保的特性,在不久的将来被认为是最有希望的清洁能源载体。电化学水分解成氢和氧作为一种有吸引力的可持续能源转换和储存方式已经得到了广泛的应用。然而,大多数电催化剂的整体水分解效率通常受到析氢(HER)和析氧(OER)反应中不可避免的动态过电位的影响。其中HER和OER的最低热力学势约为1.23V。阳极反应OER与四电子的转移以及四个质子去除过程中O-O键的产生有关,严重制约了水电解的效率。此外,作为最有效的HER/OER催化剂,贵金属铂/钌/铱基材料的大规模开发总是受到其昂贵的价格和稀缺的资源的阻碍。鉴于大多数电极材料在酸性条件下容易腐蚀,碱性电解水在工业中被广泛采用。
过渡金属钴基材料由于其地球丰度和低成本引起了全世界的关注,例如金属氧化物、氢氧化物、磷化物和硫族化合物。然而,这些报道的双功能电催化剂中的大多数由于其较小的比表面积和低电导率而具有有限的催化活性。在导电碳载体上负载过渡金属有助于克服这些限制,提高双功能催化活性。因此,研究由碳材料和过渡金属组成的杂化复合材料的双功能催化活性具有十分重要的意义。然而,尽管对钴氧化物或硫化物进行了大量的研究,钴纳米粒子(Co NP)基双功能电催化剂用于HER和OER的报道较少,可能是由于Co NP易团聚以及它们的化学和热稳定性差。
发明内容
本发明的目的在于提供一种双功能氧化石墨烯负载核-壳结构钴纳米粒子及其制备方法,并将该纳米粒子用作碱性电解水催化剂。
实现本发明目的的技术解决方案是:
一种氧化石墨烯负载核-壳结构钴纳米粒子(Co-Co/GO)复合材料,由核-壳结构的单质钴纳米颗粒均匀分布在氧化石墨烯上形成所述复合材料。
较佳的,核-壳结构的单质钴纳米颗粒上掺杂了少量碳。
上述复合材料的制备方法,以氧化石墨烯(GO)为生长基质,在表面活性剂的辅助下二维纳米片状甘油钴(CoG@表面活性剂)附着于氧化石墨烯上且自组装形成花状结构CoG@表面活性剂/GO前驱体。该前驱体在高温下还原成核-壳结构的单质钴纳米颗粒均匀分布在氧化石墨烯上形成钴-钴/氧化石墨烯纳米复合材料(Co-Co/GO),其中,核-壳结构的单质钴纳米颗粒上因有机物高温碳化而掺杂了少量碳。具体步骤如下:
将硝酸钴和表面活性剂分散在水和异丙醇的混合溶液中,加入氧化石墨烯(GO)和丙三醇搅拌均匀,于反应釜中进行水热反应,反应结束后冷却至室温,乙醇洗涤离心、干燥,形成CoG@表面活性剂/GO前驱体,对所得前驱体进行高温煅烧,即可得钴-钴/氧化石墨烯纳米复合材料(Co-Co/GO)。
上述步骤中,硝酸钴、表面活性剂和氧化石墨烯的质量比为1:0.03~0.5:0.1~1,通过比例可以调节甘油钴在氧化石墨烯上原位生长的量。
上述步骤中,表面活性剂为聚醚F127(F127)和十六烷基三甲基溴化铵(CTAB)中任意一种。
上述步骤中,异丙醇,水和丙三醇的体积比为1:0.1~0.4:0.25~0.45。
上述步骤中,水热反应温度为170~210℃,反应时间为1h~12h。
上述步骤中,在氢气含量5vol%的氩氢混合气或者氩气气氛下进行阶段式煅烧,第一阶段为200~400℃下煅烧1~2h,第二阶段为500~850℃下煅烧1~3h,两阶段的升温速率为1~10℃/min。
本发明还提供了将上述Co-Co/GO复合材料作为碱性电解水催化剂的应用,具体的应用步骤如下:
将5mg Co-Co/GO纳米材料分散在含20μL 5wt%nafion溶液和1000μL水/乙醇(v/v=3:1)的混合溶液中。混合溶液经超声处理5分钟,制得均匀的催化剂油墨,将10μL所得油墨滴在玻碳电极上。干燥后与铂电极(对电极)和Ag/AgCl电极(参比电极)组成三电极体系测定HER和OER性能。
与现有技术相比,本发明获得形貌良好,分散均匀的钴-钴/氧化石墨烯纳米复合材料(Co-Co/GO),将其应用于碱性电解水的双功能催化剂。独特的核壳结构且较小的尺寸,使材料在电催化过程能暴露更多的活性位点且不易剥落,而单质钴在碱性环境中能稳定存在。钴单质长在氧化石墨烯上,增加了活性材料的导电性,使材料具有较高的催化性能和稳定性。此外,表面催化剂的存在改变了样品形貌的且在核壳钴球中掺入了少量的碳,提高了其耐腐蚀性和导电性。因此,该Co-Co/GO纳米材料可以作为一种具有科学应用前景的碱性电解水的双功能催化剂。
附图说明
图1为实施例2制备的花状结构CoG@F127/GO的扫描和透射电镜图。
图2为实施例2制备的核壳结构Co-Co/GO的扫描和透射电镜图。
图3为实施例2制备的核壳结构Co-Co/GO的高倍透射电镜图。
图4为实施例4制备的前驱体CoG@F127的透射电镜图
图5为实施例4制备的Co-C的透射电镜图。
图6为实施例5制备的前驱体CoG的透射电镜图。
图7为实施例5制备的Co的透射电镜图。
图8为实施例6制备的Co/GO的透射电镜图。
图9为实施例2,实施例4,实施例5和实施例6制备的Co-Co/GO,Co-C,Co和Co/GO的XRD图。
图10为实施例4制备的Co-C的Raman图。
图11为实施例2,实施例4,实施例5和实施例6制备的Co-Co/GO,Co-C,Co和Co/GO在1M KOH溶液中的HER性能图。
图12为实施例2,实施例4,实施例5和实施例6制备的Co-Co/GO,Co-C,Co和Co/GO在1M KOH溶液中的OER性能图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例对本发明进行详细地说明。
本发明所述的核壳结构Co-Co/GO的制备方法,包括:硝酸钴和表面活性剂分散在水和异丙醇的混合溶液中,加入氧化石墨烯(GO)和丙三醇搅拌均匀,于反应釜中进行水热反应,反应结束后冷却至室温,乙醇洗涤离心、干燥,得到CoG@表面活性剂/GO前驱体(花状结构的甘油钴(CoG@表面活性剂)纳米片长在氧化石墨烯上);将CoG@表面活性剂/GO前驱体在氢氩混合气或者氩气气氛下进行煅烧,即可得核-壳Co-Co/GO。
在表面活性剂的辅助下,甘油钴形成二维片层结构,并进一步负载在氧化石墨烯表面自组装形成花状结构,甘油钴纳米片沿着氧化石墨烯边缘和中心生长与组装。煅烧后甘油钴转变为核壳结构的单质钴,核、壳部分均为单质钴,核壳结构单质钴均匀分散在氧化石墨烯表面,且钴-钴颗粒的直径为20nm-25nm。前驱体在氢气或者氩气气体下煅烧,煅烧之后,材料的形貌发生了改变,由有原先的花状结构变为钴核壳纳米颗粒均匀分布在氧化石墨烯。过渡金属与石墨烯复合增加了材料的导电性和稳定性。
实施例1:核-壳Co-Co/GO的制备
称取100mg硝酸钴和5mg CTAB溶解在10ml水和30ml异丙醇的混合溶剂中,搅拌均匀后,加入30mg氧化石墨烯和8ml丙三醇,超声20分钟,将其置于水热反应釜中,180℃反应6小时,反应结束后冷却至室温,用乙醇离心洗涤后干燥,获得花状结构的CoG@CTAB/GO。将CoG@CTAB/GO在氢气气体下先200℃煅烧2h,再800℃煅烧2h,升温速率2℃/min,即可得核壳结构Co-Co/GO。
实施例2:核-壳Co-Co/GO的制备
称取110mg硝酸钴和5mg F127溶解在10ml水和30ml异丙醇的混合溶剂中,搅拌均匀后,加入20mg氧化石墨烯和8ml丙三醇,超声20分钟,将其置于水热反应釜中,200℃反应1小时,反应结束后冷却至室温,用乙醇离心洗涤后干燥,获得花状结构的CoG@F127/GO。将CoG@F127/GO在氢气气体下350℃下煅烧2h后再750℃下煅烧2h,升温速率2℃/min,即可得核壳结构Co-Co/GO。
实施例3:核-壳Co-Co/GO的制备
称取110mg硝酸钴和10mg F127溶解在5ml水和35ml异丙醇的混合溶剂中,搅拌均匀后,加入40mg氧化石墨烯和12ml丙三醇,超声20分钟,将其置于水热反应釜中,200℃反应6小时,反应结束后冷却至室温,用乙醇离心洗涤后干燥,获得花状结构的CoG@F127/GO。将CoG@F127/GO在氮气气体下先300℃煅烧1h,再700℃煅烧3h,升温速率5℃/min,即可得核壳结构Co-Co/GO。
实施例4:Co-C的制备(无氧化石墨烯作为生长基底)
称取110mg硝酸钴和5mg F127溶解在10ml水和30ml异丙醇的混合溶剂中,搅拌均匀后,加入8ml丙三醇,超声20分钟,将其置于水热反应釜中,200℃反应1小时,反应结束后冷却至室温,用乙醇离心洗涤后干燥,获得花状结构的CoG@F127。将CoG@F127在氢气气体下350℃下煅烧2h后再750℃下煅烧2h,升温速率2℃/min,即可得Co-C。
实施例5:Co的制备(既无表面活性剂辅助,也无氧化石墨烯作为生长基底)
称取110mg硝酸钴溶解在10ml水和30ml异丙醇的混合溶剂中,搅拌均匀后,加入8ml丙三醇,超声20分钟,将其置于水热反应釜中,200℃反应1小时,反应结束后冷却至室温,用乙醇离心洗涤后干燥,获得实心甘油球CoG。将CoG在氢气气体下350℃下煅烧2h后再750℃下煅烧2h,升温速率2℃/min,即可得Co。
实施例6:Co/GO的制备(无表面活性剂辅助)
称取110mg硝酸钴溶解在10ml水和30ml异丙醇的混合溶剂中,搅拌均匀后,加入20mg氧化石墨烯和8ml丙三醇,超声20分钟,将其置于水热反应釜中,200℃反应1小时,反应结束后冷却至室温,用乙醇离心洗涤后干燥,获得前驱体CoG/GO。将CoG/GO在氢气气体下350℃下煅烧2h后再750℃下煅烧2h,升温速率2℃/min,即可得Co/GO。
将上述实施例中不同条件下制备得到的纳米粉末,分别称取5mg作为活性物质分散在含20μL 5wt%nafion溶液和1000μL水/乙醇(v/v=3:1)的混合溶液中。混合溶液经超声处理5分钟,制得均匀的催化剂油墨,将10μL油墨滴在玻碳电极上。干燥后与铂电极(对电极)和Ag/AgCl电极(参比电极)组成三电极体系测定HER和OER性能。
在实施例2的条件下,可以获得最优的催化剂的HER和OER性能,在实施例4,实施例5和实施例6的条件下,可以获得实施例2的对比材料,以下是选取的实施例2,实施例4,实施例5和实施例6的材料表征:
图1为实施例2制备的花状结构CoG@F127/GO的扫描和透射电镜图。从图1可见:甘油钴片一部分沿着氧化石墨烯的壁生长,一部分在氧化石墨烯中心生长,形成花状结构。
图2为实施例2制备的核壳结构Co-Co/GO的扫描和透射电镜图。从图2可见:Co-Co/GO均匀分布在氧化石墨烯表面,该钴单质的直径为20nm-25nm。
图3为实施例2制备的核壳结构Co-Co/GO的高倍透射电镜图。从图3可见:核壳结构的钴单质分布在氧化石墨烯表面,且具有很好的晶型结构。
图4为实施例4所述无氧化石墨烯作为生长基底,制备的前驱体CoG@F127的透射电镜图,从图4可见,前驱体CoG@F127为片层结构,自组装成花球,直径为1μm左右。
图5为实施例4所述CoG@F127煅烧后得到的Co-C纳米材料的透射电镜图。从图5可见,高温还原后,由于没有氧化石墨烯作为生长基底,粒子团聚严重,钴纳米粒子粒径约为100nm。
图6为实施例5所述的既无表面活性剂辅助,也无氧化石墨烯作为生长基底,制备的前驱体甘油钴球CoG的透射电镜图,从图6可见甘油钴为直径300nm实心球结构,没有形成二维片层结构。
图7实施例5所述的前驱体CoG煅烧后单质钴Co纳米颗粒的透射电镜图。高温还原为无规则的实心单质钴颗粒,粒径大小在300nm左右,与前驱体直径相似。
图8为实施例6所述的无表面活性剂辅助,以氧化石墨烯作为生长基底,高温煅烧后单质钴Co与氧化石墨烯复合的Co/GO的透射电镜图,从图8可见甘油钴直径300nm,且因球体过大,基本看不到石墨烯的存在。
图9为实施例2,实施例4,实施例5和实施例6制备的Co-Co/GO,Co-C,Co和Co/GO的XRD图。从图9可知:XRD峰与单质钴的卡片匹配,说明成功合成的纳米材料均为钴单质,且Co-Co/GO和Co/GO中能观察到明显的GO特征峰。
图10为实施例4制备的Co-C的Raman图。从图10可见明显的D和G带峰(1500和1600cm-1左右),说明该样品具有石墨碳,但因为量少,在XRD中无明显特征峰。
图11为实施例2,实施例4,实施例5和实施例6制备的Co-Co/GO,Co-C,Co和Co/GO的HER性能图。在10mA cm-2时,Co-Co/GO的过电位为η10=-187mV,Tafel斜率为101mV·dec-1;Co-C的过电位为η10=-360mV,Tafel斜率为110mV·dec-1;Co的电流密度未达到10mA cm-2,Tafel斜率为134mV·dec-1,Co/GO的过电位为η10=-396mV,Tafel斜率为188mV·dec-1,表明Co-Co/GO在碱性溶液中具有较高的电催化析氢性能。
图12为实施例2,实施例4,实施例5和实施例6制备的Co-Co/GO,Co-C,Co和Co/GO的OER性能图。在10mA cm-2时,Co-Co/GO的过电位为η10=308mV,Tafel斜率为117mV·dec-1;Co-C的过电位为η10=312mV,Tafel斜率为124mV·dec-1;Co的的过电位为η10=409mV,Tafel斜率为177mV·dec-1,Co/GO的过电位为η10=372mV,Tafel斜率为165mV·dec-1,表明Co-Co/GO在碱性溶液中具有较高的电催化析氧性能。
本发明采用水热法和气体煅烧,所用的方法简单,仪器设备简易,可得到形貌均一的Co-Co/GO纳米材料。表面活性剂改变甘油钴的形貌,原来大的实心球状变成二维层状结构并组装成花状结构,且高温煅烧后形成少量碳掺杂在核壳钴中,增加了稳定性和导电性。氧化石墨烯基底,有助于粒子的分散。高温煅烧后形成核壳状的钴颗粒均匀分布于石墨烯表面,钴纳米颗粒在石墨烯表面的锚定作用有效改善了催化剂的稳定性,不易被碱性溶液腐蚀;钴纳米颗粒和碳基材料之间的协同作用,以及单分散的核-壳结构纳米粒子暴露出更多的活性位点,有效提升了催化的性能,有利于材料在碱性溶液中进行催化水解。因此,这种材料作为双功能电催化剂在未来有望接近甚至替代传统贵金属,促进钴基催化剂在析氢(HER)和析氧反应(OER)催化过程中的实际应用。

Claims (6)

1.一种氧化石墨烯负载核-壳结构钴纳米粒子复合材料,其特征在于,由核-壳结构的单质钴纳米颗粒均匀分布在氧化石墨烯上形成所述复合材料;
具体步骤如下:将硝酸钴和表面活性剂分散在水和异丙醇的混合溶液中,加入氧化石墨烯和丙三醇搅拌均匀,于反应釜中进行水热反应,反应结束后冷却至室温,乙醇洗涤离心、干燥,对所得前驱体进行高温煅烧,即得所述的复合材料;
其中,表面活性剂为聚醚F127和十六烷基三甲基溴化铵中任意一种;
水热反应温度为170 ~210 ℃,反应时间为1 h~12 h;
对所得前驱体进行阶段式煅烧,第一阶段为200~400 ℃下煅烧1~2 h,第二阶段为500~850 ℃下煅烧1~3 h,两阶段的升温速率为1~10 ℃/min。
2.如权利要求1所述的复合材料,其特征在于,核-壳结构的单质钴纳米颗粒上掺杂少量碳。
3.一种氧化石墨烯负载核-壳结构钴纳米粒子复合材料的制备方法,其特征在于,以氧化石墨烯为生长基质,在表面活性剂的辅助下二维纳米片状甘油钴自组装形成花状结构附着于氧化石墨烯上,形成CoG@表面活性剂/GO前驱体,该前驱体在高温下还原,形成所述复合材料,具体步骤如下:
将硝酸钴和表面活性剂分散在水和异丙醇的混合溶液中,加入氧化石墨烯和丙三醇搅拌均匀,于反应釜中进行水热反应,反应结束后冷却至室温,乙醇洗涤离心、干燥,对所得前驱体进行高温煅烧,即得所述的复合材料;
其中,表面活性剂为聚醚F127和十六烷基三甲基溴化铵中任意一种;
水热反应温度为170 ~210 ℃,反应时间为1 h~12 h;
对所得前驱体进行阶段式煅烧,第一阶段为200~400 ℃下煅烧1~2 h,第二阶段为500~850 ℃下煅烧1~3 h,两阶段的升温速率为1~10 ℃/min。
4.如权利要求3所述的方法,其特征在于,硝酸钴、表面活性剂和氧化石墨烯的质量比为1:0.03~0.5:0.1~1。
5.如权利要求3所述的方法,其特征在于,异丙醇,水和丙三醇的体积比为1:0.1~0.4:0.25~0.45。
6.如权利要求1或2所述的复合材料作为碱性电解水催化剂的应用。
CN202010269928.5A 2020-04-08 2020-04-08 一种双功能氧化石墨烯负载核-壳结构钴纳米粒子复合材料 Active CN111359613B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010269928.5A CN111359613B (zh) 2020-04-08 2020-04-08 一种双功能氧化石墨烯负载核-壳结构钴纳米粒子复合材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010269928.5A CN111359613B (zh) 2020-04-08 2020-04-08 一种双功能氧化石墨烯负载核-壳结构钴纳米粒子复合材料

Publications (2)

Publication Number Publication Date
CN111359613A CN111359613A (zh) 2020-07-03
CN111359613B true CN111359613B (zh) 2023-04-28

Family

ID=71201319

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010269928.5A Active CN111359613B (zh) 2020-04-08 2020-04-08 一种双功能氧化石墨烯负载核-壳结构钴纳米粒子复合材料

Country Status (1)

Country Link
CN (1) CN111359613B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112853370B (zh) * 2020-12-10 2022-04-19 杭州师范大学 一种Ni/C核壳结构纳米材料电催化剂及其制备方法
CN113122877B (zh) * 2021-04-16 2022-04-08 陕西科技大学 一种氮掺杂碳复合石墨烯包覆钴纳米阵列催化剂及其制备方法和应用
CN113122878B (zh) * 2021-04-16 2022-04-12 陕西科技大学 一种氮掺杂碳复合石墨烯包覆金属钴催化剂、制备方法及应用
PL444241A1 (pl) * 2023-03-29 2023-12-04 Uniwersytet Mikołaja Kopernika W Toruniu Sposób otrzymywania materiału elektrodowego do zastosowania w reakcjach HER/OER

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108325528A (zh) * 2017-01-19 2018-07-27 南京理工大学 一种钴/石墨烯催化剂
CN108736028A (zh) * 2018-05-31 2018-11-02 深圳大学 一种多孔氮掺杂碳负载钴纳米材料、制备方法及其应用
CN110492108A (zh) * 2019-07-30 2019-11-22 武汉理工大学 氮硫共掺杂石墨烯基负载核壳纳米粒子复合材料及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108325528A (zh) * 2017-01-19 2018-07-27 南京理工大学 一种钴/石墨烯催化剂
CN108736028A (zh) * 2018-05-31 2018-11-02 深圳大学 一种多孔氮掺杂碳负载钴纳米材料、制备方法及其应用
CN110492108A (zh) * 2019-07-30 2019-11-22 武汉理工大学 氮硫共掺杂石墨烯基负载核壳纳米粒子复合材料及其制备方法和应用

Also Published As

Publication number Publication date
CN111359613A (zh) 2020-07-03

Similar Documents

Publication Publication Date Title
CN111359613B (zh) 一种双功能氧化石墨烯负载核-壳结构钴纳米粒子复合材料
CN108385124B (zh) 一种用于析氢反应的过渡族金属/碳管/石墨烯电催化剂的制备方法
Zhong et al. Deep eutectic solvent-assisted synthesis of highly efficient PtCu alloy nanoclusters on carbon nanotubes for methanol oxidation reaction
Zheng et al. Electrocatalyst of two-dimensional CoP nanosheets embedded by carbon nanoparticles for hydrogen generation and urea oxidation in alkaline solution
Xue et al. Heterostructured Ni–Mo–N nanoparticles decorated on reduced graphene oxide as efficient and robust electrocatalyst for hydrogen evolution reaction
Xia et al. Hierarchical 0D− 2D Co/Mo selenides as superior bifunctional electrocatalysts for overall water splitting
CN109023417B (zh) 碳化铁-钴/氮掺杂碳纳米复合材料的制备方法及应用
Wang et al. Electrocatalytic hydrogen evolution on iron-cobalt nanoparticles encapsulated in nitrogenated carbon nanotube
Zhang et al. Cu3P/RGO promoted Pd catalysts for alcohol electro-oxidation
Huang et al. Well-dispersive Pt nanoparticles grown on 3D nitrogen-and sulfur-codoped graphene nanoribbon architectures: highly active electrocatalysts for methanol oxidation
CN112103520B (zh) 一种醇类燃料电池的阳极催化剂
CN111686758B (zh) RuFeCoNiCu高熵合金纳米粒子催化剂及其制备方法和应用
Xin et al. Visualization of the electrocatalytic activity of three-dimensional MoSe 2@ reduced graphene oxide hybrid nanostructures for oxygen reduction reaction
Xue et al. 0D/2D heterojunction of graphene quantum dots/MXene nanosheets for boosted hydrogen evolution reaction
Zhao et al. Pyrolysis derived helically nitrogen-doped carbon nanotubes with uniform cobalt for high performance oxygen reduction
Shi et al. Three dimensional nitrogen, phosphorus and sulfur doped porous graphene as efficient bifunctional electrocatalysts for direct methanol fuel cell
CN113549935A (zh) 杂原子掺杂过渡金属单原子催化剂及其制备方法与应用
Qin et al. MXene supported rhodium nanocrystals for efficient electrocatalysts towards methanol oxidation
Sravani et al. Bimetallic PtCu-decorated reduced graphene oxide (RGO)-TiO2 nanocomposite for efficient oxygen reduction reaction
Li et al. Dentritic platinum-palladium/palladium core-shell nanocrystals/reduced graphene oxide: One-pot synthesis and excellent electrocatalytic performances
Liu et al. Bifunctional nanoporous ruthenium-nickel alloy nanowire electrocatalysts towards oxygen/hydrogen evolution reaction
CN114164455B (zh) 一种通过电化学刻蚀提高贵金属基材料电催化性能的方法
Liu et al. In situ engineering of hollow porous Mo 2 C@ C nanoballs derived from giant Mo-polydopamine clusters as highly efficient electrocatalysts for hydrogen evolution
Hu et al. One step synthesis of Co-Ni bimetallic organic frameworks as a highly active and durable electrocatalyst for efficient water oxidation
Salarizadeh et al. Comparison of methanol oxidation reaction process for NiCo2O4/X (X= rGO, MWCNTs, HCNs) nanocatalyst

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant