CN107308933A - 一种高分散贵金属催化剂在电化学析氢反应中的应用 - Google Patents

一种高分散贵金属催化剂在电化学析氢反应中的应用 Download PDF

Info

Publication number
CN107308933A
CN107308933A CN201710697346.5A CN201710697346A CN107308933A CN 107308933 A CN107308933 A CN 107308933A CN 201710697346 A CN201710697346 A CN 201710697346A CN 107308933 A CN107308933 A CN 107308933A
Authority
CN
China
Prior art keywords
catalyst
noble metal
high dispersive
metal catalyst
application
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710697346.5A
Other languages
English (en)
Inventor
王勇
王静
魏忠哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201710697346.5A priority Critical patent/CN107308933A/zh
Publication of CN107308933A publication Critical patent/CN107308933A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种高分散贵金属催化剂在电化学析氢反应中的应用,其特征在于,所述高分散贵金属催化剂的制备过程为:以碳水化合物为原料,在过渡贵金属盐存在下,与软模板剂物理混合均匀,然后,在惰性气氛中,先在400~650℃下保温0.5~2h,再升温至700~1200℃煅烧2~12h,得到高分散贵金属催化剂;所述的软模板剂为三聚氰胺、二氰二胺、尿素或单氰。该催化剂在广泛的pH范围内均能表现出优越的催化活性和稳定性,特别是即使在低温条件下,催化剂仍能表现出优良的产氢性能。

Description

一种高分散贵金属催化剂在电化学析氢反应中的应用
技术领域
本发明属于炭材料的制备领域,具体涉及一种高分散贵金属催化剂在电化学析氢反应中的应用。
背景技术
能源是经济发展和社会进步的重要物质基础。近年来,严峻的能源压力和环境污染问题威胁生态平衡,制约社会经济的可持续发展,成为各国关注的焦点问题。氢气是一种理想的绿色能源载体,具有无可比拟的潜在开发价值。电解水产氢是一种高效的产氢技术,具有原料来源广泛,绿色环境友好的优点。目前,Pt基催化剂仍然是电解水反应的理想催化剂。但是金属Pt在自然界中相对匮乏,成本昂贵,限制了其广泛应用。
炭材料由于其高的化学稳定性,高的比表面积,卓越的机械性能以及良好的电学性质而被广泛地应用于多相催化,分离科学,能源转化等方面。为了降低生产成本,将活性金属与炭纳米材料杂化是降低金属用量,提高催化剂活性和稳定性的有效方法。复合材料一方面降低了贵金属前驱体的用量,另一方面在炭基底的牟定作用下部分地改善了催化剂的稳定性。然而,复合材料的制备过程复杂,步骤繁多,金属前驱体的还原通常需要使用过量的强还原剂。此外,热解法制备复合材料时,贵金属颗粒的尺寸难以控制,极易发生团聚。简单地、低成本地制备均一分散的贵金属基复合材料用于高效的电解水析氢反应是一个巨大的挑战。
发明内容
鉴于上述,本发明提供了涉及一种高分散贵金属催化剂在电化学析氢反应中的应用,该催化剂在广泛的pH范围内均能表现出优越的催化活性和稳定性,特别是优选的Ru基复合催化剂在碱性条件下,其质量活性约为商业Pt/C(20wt%)的10倍。由于金属Ru低的成本,达到相同催化活性时,其催化剂成本约为商业Pt/C(20wt%)的1%。此外,即使在低温条件下,Ru基催化剂仍能表现出优良的产氢性能。
本发明的技术方案为:
一种高分散贵金属催化剂在电化学析氢反应中的应用,所述高分散贵金属催化剂的制备过程为:
以碳水化合物为原料,在过渡贵金属盐存在下,与软模板剂物理混合均匀,然后,在惰性气氛中,先在400~650℃下保温0.5~2h,再升温至700~1200℃煅烧2~12h,得到高分散贵金属催化剂;
所述的软模板剂为三聚氰胺、二氰二胺、尿素或单氰。
该高分散贵金属催化剂在PH=0、7、14范围内均表现出优越的电解水析氢活性以及稳定性,即使在低温0℃也能表现出优良的催化活性。
经物理混合后的各原料先在400~650℃下保温0.5~2h,在这个阶段聚合形成片层结构的模板剂g-C3N4,碳源会在模板剂的片层间聚合,由于夹层的限域效应,极大地限制贵金属在片层上的过渡生长和团聚,进而避免贵金属团聚,提高其分散程度;然后,进入第二个煅烧阶段,在700~1200℃煅烧2~12h,随着温度的升高,模板剂g-C3N4分解,释放出片层结构的高分散贵金属催化剂。
作为优选,所述碳水化合物为糖类,进一步优选,所述碳水化合物为果糖、葡萄糖或氨基葡萄糖盐酸盐,再进一步优选为氨基葡萄糖盐酸盐。以氨基葡萄糖盐酸盐为前驱体制备得到的催化剂中贵金属颗粒的分散更均匀,且催化剂的催化活性最高。
作为优选,所述软模板剂选为三聚氰胺,该三聚氰胺价格低廉,原料广泛。
作为优选,所述过渡贵金属盐为Pt盐、Pd盐、Au盐或Ru盐。进一步优选,所述过渡贵金属盐为Ru盐。
作为优选,所述碳水化合物、过渡贵金属盐与软模板剂的质量比为40~100:0.5~5:2000~4000。进一步优选,所述碳水化合物、过渡贵金属盐与软模板剂的质量比为75~100:1~3.5:3000。
进一步优选,在惰性气氛中,将物理混合的各原料先在550~650℃下保温0.5~1.5h,再升温至700~950℃煅烧4~10h,得到高分散贵金属催化剂。
碳水化合物、过渡贵金属盐与软模板剂的物理混合过程为:
将碳水化合物、过渡贵金属盐与软模板剂经物理研磨混合;
或者为,将碳水化合物、过渡贵金属盐与软模板剂与溶剂混合得到混合液,加热搅拌均匀后蒸干溶剂,研磨混合。
先经溶剂溶解,再将溶剂蒸干后研磨混合,可以更好地实现各原料的均匀混合,更有利于贵金属颗粒的分散。
基于以上说明,最优选:
将氨基葡萄糖盐酸盐、三聚氰胺、氯化钌按照100:3.5:3000比例物理混合,然后将混合物先于600℃下保温1h,再于950℃下煅烧4.5h,形成高分散贵金属催化剂,该催化剂在电化学析氢反应中的催化活性最优,且能在10mA cm-2电流密度下,连续测试10h活性基本无损失,具有超高的稳定性。此外,在低温0℃下,该高分散贵金属催化剂达到10mA cm-2电流密度仅需要120mV过电势,保持优良的催化活性。
与现有的催化剂相比,本发明提供的催化剂在电化学析氢反应中催化活性更优、稳定性更强,且能在低温0℃下保持很好的催化活性,为严寒地区的电解水产氢工业的发展提供了可能性。
附图说明
图1为对比例1制备的纳米炭材料的透射电镜图;
图2为对比例2制备的纳米炭材料的透射电镜图;
图3为实施例1制备的催化剂的透射电镜图;
图4为实施例2制备的催化剂的透射电镜图;
图5为实施例3制备的催化剂的透射电镜图;
图6为实施例4制备的催化剂的透射电镜图;
图7为实施例5制备的催化剂的透射电镜图;
图8为实施例6制备的催化剂的透射电镜图;
图9为实施例7制备的催化剂的透射电镜图;
图10为实施例对比例2和实施例2制备的催化剂的电化学线性扫描曲线;
图11为实施例1-3制备的催化剂的电化学线性扫描曲线;
图12为实施例2制备的催化剂与商业Pt/C(20wt%)的催化活性对比图;
图13为不同热解温度制备的催化剂的电化学线性扫描曲线;
图14为实施例2制备的催化剂在0.5M H2SO4电化学线性扫描曲线;
图15为实施例2制备的催化剂在1M PBS溶液中的电化学线性扫描曲线;
图16为实施例2制备的催化剂在1M KOH中的析氢稳定性测试;
图17为实施例2制备的催化剂在低温条件下的电化学线性扫描曲线。
具体实施方式
为了更为具体地描述本发明,下面结合附图及具体实施方式对本发明的技术方案进行详细说明。
对比例1
在250ml烧杯中加入1g氨基葡萄糖盐酸盐,一定量的去离子水,搅拌至均一溶液;然后,加入30g三聚氰胺,溶解在上述氨基葡萄糖盐酸盐溶液中,加热搅拌至去离子水挥发完全,得到固体混合物,最后,将此混合物在氮气炉中经两段升温程序(600℃维持1h,900℃维持4.5h)煅烧后得到纳米炭材料。
本实施例制备得到的纳米炭材料透射电镜图见图1,由电镜图可知,该条件下制备的材料是片状结构。
对比例2
在250ml烧杯中加入1g氨基葡萄糖盐酸盐,一定量的去离子水,搅拌至均一溶液;然后,加入2ml RuCl3溶液至上述氨基葡萄糖盐酸盐溶液中,加热搅拌至去离子水挥发完全,得到固体混合物;最后,将此混合物在氮气炉中经两段升温程序(600℃维持1h,900℃维持4.5h)煅烧后得到纳米炭材料。
本实施例制备得到的纳米炭材料透射电镜图见图2,由电镜图可知,该条件下制备的Ru纳米颗粒发生严重的团聚。
实施例1
在250ml烧杯中加入1g氨基葡萄糖盐酸盐,一定量的去离子水,搅拌溶解随后加入2ml RuCl3溶液,搅拌至均一溶液;然后,加入10g三聚氰胺,溶解在上述氨基葡萄糖盐酸盐溶液中,加热搅拌至去离子水挥发完全,得到固体混合物;最后,将此混合物在氮气炉中经两段升温程序(600℃维持1h,900℃维持4.5h)煅烧后得到催化剂。
本实施例制备得到的催化剂的透射电镜图见3,表明该催化剂是薄层结构。与对比例2相比,由于本实施例中加入了三聚氰胺,使得Ru纳米颗粒均匀分布在炭层上,且Ru纳米颗粒的粒径较小,约为2.31nm。
实施例2
在250ml烧杯中加入1g氨基葡萄糖盐酸盐,一定量的去离子水,搅拌溶解随后加入2ml RuCl3溶液,搅拌至均一溶液;然后,加入30g三聚氰胺,溶解在上述氨基葡萄糖盐酸盐溶液中。加热搅拌至去离子水挥发完全,得到固体混合物;最后,将此混合物在氮气炉中经两段升温程序(600℃维持1h,900℃维持4.5h)煅烧后得到催化剂。
本实施例制备得到的催化剂扫描电镜图如图4(a)和如4(b)所示,由图4(a)可知,本实施例制备得到的催化剂为片状结构。由图4(b)可知,该催化剂为薄层结构,且Ru纳米颗粒的粒径分布与实施例1接近,平均粒径约为2.37nm。
实施例3
在250ml烧杯中加入1g氨基葡萄糖盐酸盐,一定量的去离子水,搅拌溶解随后加入2ml RuCl3溶液,搅拌至均一溶液;然后,加入60g三聚氰胺,溶解在上述氨基葡萄糖盐酸盐溶液中,加热搅拌至去离子水挥发完全,得到固体混合物;最后,将此混合物在氮气炉中经两段升温程序(600℃维持1h,900℃维持4.5h)煅烧得到催化剂。
本实施例制备得到的催化剂的透射电镜图见图5,从电镜结果分析制备的催化剂仍然是薄层结构,然而与实施例1和2相比,金属粒径稍有增加,甚至出现部分的团聚。
实施例4
本实施例将实施例2中的RuCl3溶液替换为H2PtCl6溶液,其余加料和工艺条件同实施例2,得到催化剂。
本实施例制备得到的催化剂透射电镜图见图6,从电镜结果分析得到的材料仍然保持片层结构且Pt纳米颗粒分布均匀,粒径较小。
实施例5
本实施例将实施例2中的RuCl3溶液替换为HAuCl4溶液,其余加料和工艺条件同实施例2,得到催化剂。
本实施例制备得到的催化剂透射电镜图见图7,从电镜结果分析得到的材料仍然保持片层结构且Au纳米颗粒分布均匀,粒径较小。
实施例6
本实施例将实施例2中氨基葡萄糖盐酸盐替换为蔗糖,其余加料和工艺条件同实施例2,得到片层催化剂。
本实施例制备得到的催化剂透射电镜图见图8,从电镜结果分析得到的材料仍然保持片层结构且Ru纳米颗粒分布均匀,粒径较小。
实施例7
本实施例将实施例2中氨基葡萄糖盐酸盐替换为葡萄糖,其余加料和工艺条件同实施例2,得到片层催化剂。
透射电镜图如图9所示,由电镜图可知,本实施例制备得到的催化剂为片状结构且Ru纳米颗粒分布均匀,粒径较小。
总结实施例2以及实施例4~7,无论碳源和过渡贵金属盐如何改变,在相似的制备工艺下,制备的催化剂中的贵金属颗粒均是高度分散,表明该制备方法具有普适性。
实施例8
对比实施例2制备的催化剂和对比例2中制备的纳米炭材料在电解水析氢反应中的催化活性。反应条件为1M KOH溶液,室温下采用三电极体系测试该催化剂的电化学线性扫描曲线。通过比较10mA cm-2电流密度下各个材料对应的电位值来判断催化活性。达到相同电流密度所需要的电位值越小,则该材料的催化活性越高。如图10所示,在反应体系中加入软模板剂后,催化剂在10mA cm-2电流密度下所对应的电位急剧变小,表明其催化活性显著提升。由图2和图4可知,三聚氰胺的添加有利于提高贵金属颗粒的分散性,并限制贵金属颗粒的过渡生长。金属纳米粒的高分散性以及较小的粒径有力于催化活性的提升。总之,碳水化合物,三聚氰胺和RuCl3三者对于优越的析氢活性是缺一不可的。
实施例9
将实施例1~3中制备的催化剂用于电解水析氢反应,系统地研究了软模板用量对于析氢活性的影响。分析图11可知,随着软模板剂用量的增加,所得材料的催化活性先变好后变差,当碳水化合物,RuCl3和三聚氰胺的质量比为100:3.5:3000时,所得催化剂的催化活性达到最优,其质量活性约为商业Pt/C(20wt%)的10倍(图12)。由于金属Ru低的成本,达到相同催化活性时,其催化剂成本约为商业Pt/C(20wt%)的1%。由此可知,调控原料间的质量比,可以实现催化活性的最优化。
实施例10
热解工艺对于材料催化活性的提升具有极大地影响。参照实施例2中的制备过程,各个原料的质量比例与实施例2相同,改变热解的终点温度(700℃,800℃,900℃,1200℃)。分析比较各热解温度下各样品的催化活性(图13)可知,随着热解温度的升高,催化活性先变好后稍有下降,在900℃时,催化活性可达到最优。由此可知通过调控制备工艺,可以制备出高性能的析氢催化剂。
实施例11
室温下采用三电极体系测试实施例2得到的催化剂在0.5M H2SO4和1M PBS溶液中的析氢活性。分析图11,图14,图15,该催化剂在1M KOH中表现出最优的催化活性,且测试其稳定性可知(图16),在10mA cm-2电流密度下,该复合材料可连续测试10h活性基本无损失,表明最优催化剂优越的析氢稳定性。
实施例12
一系列低温下采用三电极体系测试实施例2得到的催化剂在1M KOH溶液中的析氢活性,得到的催化剂的电化学线性扫描曲线如图17所示。分析图17可知,即使在0℃下,该催化剂仍能保持优良的催化活性,达到10mA cm-2电流密度所需要的过电势仅需120mV,为严寒地区的电解水产氢工业的发展提供了可能性。

Claims (7)

1.一种高分散贵金属催化剂在电化学析氢反应中的应用,其特征在于,所述高分散贵金属催化剂的制备过程为:
以碳水化合物为原料,在过渡贵金属盐存在下,与软模板剂物理混合均匀,然后,在惰性气氛中,先在400~650℃下保温0.5~2h,再升温至700~1200℃煅烧2~12h,得到高分散贵金属催化剂;
所述的软模板剂为三聚氰胺、二氰二胺、尿素或单氰。
2.如权利要求1所述的高分散贵金属催化剂在电化学析氢反应中的应用,其特征在于,所述碳水化合物为糖类。
3.如权利要求2所述的高分散贵金属催化剂在电化学析氢反应中的应用,其特征在于,所述碳水化合物为果糖、葡萄糖或氨基葡萄糖盐酸盐。
4.如权利要求1任一所述的高分散贵金属催化剂在电化学析氢反应中的应用,其特征在于,过渡贵金属盐为Pt盐、Pd盐、Au盐或Ru盐。
5.如权利要求1~4所述的高分散贵金属催化剂在电化学析氢反应中的应用,其特征在于,所述碳水化合物、过渡贵金属盐与软模板剂的质量比为40~100:0.5~5:2000~4000。
6.如权利要求5所述的高分散贵金属催化剂在电化学析氢反应中的应用,其特征在于,所述碳水化合物、过渡贵金属盐与软模板剂的质量比为75~100:1~3.5:3000。
7.如权利要求6所述的高分散贵金属催化剂在电化学析氢反应中的应用,其特征在于,在惰性气氛中,将物理混合的各原料先在550~650℃下保温0.5~1.5h,再升温至700~950℃煅烧4~10h,得到高分散贵金属催化剂。
CN201710697346.5A 2017-08-15 2017-08-15 一种高分散贵金属催化剂在电化学析氢反应中的应用 Pending CN107308933A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710697346.5A CN107308933A (zh) 2017-08-15 2017-08-15 一种高分散贵金属催化剂在电化学析氢反应中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710697346.5A CN107308933A (zh) 2017-08-15 2017-08-15 一种高分散贵金属催化剂在电化学析氢反应中的应用

Publications (1)

Publication Number Publication Date
CN107308933A true CN107308933A (zh) 2017-11-03

Family

ID=60175907

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710697346.5A Pending CN107308933A (zh) 2017-08-15 2017-08-15 一种高分散贵金属催化剂在电化学析氢反应中的应用

Country Status (1)

Country Link
CN (1) CN107308933A (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109225211A (zh) * 2018-10-24 2019-01-18 常州大学 一种碳载超细钌纳米晶复合材料的制备方法
CN109622010A (zh) * 2018-12-06 2019-04-16 浙江大学 用Pd@CNx镶嵌型催化剂催化甲醛脱氢的方法
CN110280298A (zh) * 2019-07-31 2019-09-27 南通龙翔新材料科技股份有限公司 一种负载型加氢催化剂及其制备方法和应用
CN110833846A (zh) * 2019-11-07 2020-02-25 台州学院 一种负载型金属钌催化剂、制备方法及其应用
CN111068738A (zh) * 2020-01-17 2020-04-28 重庆工商大学 一种钌基析氢电催化材料的制备方法和应用
CN111514919A (zh) * 2020-05-22 2020-08-11 重庆工商大学 一种构建碳基多孔过渡金属催化剂的制备方法
CN111682223A (zh) * 2020-06-12 2020-09-18 山东理工大学 一种原位合成氮掺杂碳片担载(Co,Ni,Fe)纳米颗粒电催化剂的制备
CN113897638A (zh) * 2021-08-26 2022-01-07 浙江众氢科技有限公司 一种高分散性金属催化材料的制备方法
CN114045506A (zh) * 2021-12-07 2022-02-15 陕西科技大学 一种Ru-C/C电催化剂及其制备方法
CN115044927A (zh) * 2022-06-18 2022-09-13 福州大学 一种碳化物负载金属催化剂的制备方法及应用
CN115608399A (zh) * 2022-09-30 2023-01-17 杭州电子科技大学 一种多孔碳载RuCuOx复合催化剂的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103203232A (zh) * 2013-04-16 2013-07-17 北京化工大学 一种高分散负载型纳米贵金属催化剂及其制备方法和应用
CN103611575A (zh) * 2013-12-02 2014-03-05 浙江大学 含咪唑及其衍生物的催化剂的制备方法
CN103785859A (zh) * 2014-02-11 2014-05-14 常州大学 一种纳米介孔材料的制备方法
CN105413730A (zh) * 2015-11-25 2016-03-23 青岛大学 一种氮掺杂碳纳米管包裹钴电催化氧还原材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103203232A (zh) * 2013-04-16 2013-07-17 北京化工大学 一种高分散负载型纳米贵金属催化剂及其制备方法和应用
CN103611575A (zh) * 2013-12-02 2014-03-05 浙江大学 含咪唑及其衍生物的催化剂的制备方法
CN103785859A (zh) * 2014-02-11 2014-05-14 常州大学 一种纳米介孔材料的制备方法
CN105413730A (zh) * 2015-11-25 2016-03-23 青岛大学 一种氮掺杂碳纳米管包裹钴电催化氧还原材料的制备方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109225211A (zh) * 2018-10-24 2019-01-18 常州大学 一种碳载超细钌纳米晶复合材料的制备方法
CN109622010A (zh) * 2018-12-06 2019-04-16 浙江大学 用Pd@CNx镶嵌型催化剂催化甲醛脱氢的方法
CN110280298A (zh) * 2019-07-31 2019-09-27 南通龙翔新材料科技股份有限公司 一种负载型加氢催化剂及其制备方法和应用
CN110833846A (zh) * 2019-11-07 2020-02-25 台州学院 一种负载型金属钌催化剂、制备方法及其应用
CN110833846B (zh) * 2019-11-07 2023-04-18 台州学院 一种负载型金属钌催化剂、制备方法及其应用
CN111068738A (zh) * 2020-01-17 2020-04-28 重庆工商大学 一种钌基析氢电催化材料的制备方法和应用
CN111514919B (zh) * 2020-05-22 2022-07-08 重庆工商大学 一种构建碳基多孔过渡金属催化剂的制备方法
CN111514919A (zh) * 2020-05-22 2020-08-11 重庆工商大学 一种构建碳基多孔过渡金属催化剂的制备方法
CN111682223A (zh) * 2020-06-12 2020-09-18 山东理工大学 一种原位合成氮掺杂碳片担载(Co,Ni,Fe)纳米颗粒电催化剂的制备
CN113897638A (zh) * 2021-08-26 2022-01-07 浙江众氢科技有限公司 一种高分散性金属催化材料的制备方法
CN114045506A (zh) * 2021-12-07 2022-02-15 陕西科技大学 一种Ru-C/C电催化剂及其制备方法
CN115044927A (zh) * 2022-06-18 2022-09-13 福州大学 一种碳化物负载金属催化剂的制备方法及应用
CN115044927B (zh) * 2022-06-18 2024-04-05 福州大学 一种碳化物负载金属催化剂的制备方法及应用
CN115608399A (zh) * 2022-09-30 2023-01-17 杭州电子科技大学 一种多孔碳载RuCuOx复合催化剂的制备方法
CN115608399B (zh) * 2022-09-30 2023-11-14 杭州电子科技大学 一种多孔碳载RuCuOx复合催化剂的制备方法

Similar Documents

Publication Publication Date Title
CN107308933A (zh) 一种高分散贵金属催化剂在电化学析氢反应中的应用
CN107999108B (zh) 一种氮磷共掺杂碳负载的碳化钼或碳化钨催化剂及其制备方法和应用
CN108660473B (zh) 一种基于MXene与过渡金属碳化物复合纳米结构的电解海水制氢催化剂及其合成方法
CN110201696B (zh) 一种多孔碳纤维担载高分散贵金属纳米颗粒的制备方法
CN110882725B (zh) 金属有机骨架负载二氧化钛光催化材料及其制备方法
CN105431230A (zh) 在载体上形成贵金属纳米粒子的方法
CN105536835A (zh) 一种杂原子掺杂的碳负载碳化铁/碳化钼或钨催化剂及其制备方法和应用
CN101322947B (zh) 一种活性炭负载的钌基氨合成催化剂及其制备方法
CN111672521A (zh) 一种过渡金属单原子材料及其制备方法和应用
CN107983353B (zh) 一种TiO2-Fe2O3复合粉体的制备方法及其应用
CN106207196B (zh) 一种花状氮化钛/氮化碳/石墨烯复合纳米材料的制备方法
CN101417243B (zh) 高比表面积碳化钨微球与负载型催化剂及它们的制备方法
CN113151856B (zh) 一种高熵合金磷化物纳米粒子催化剂的制备及其在电解水制氢中的应用
CN114522706A (zh) 一种碳化物负载贵金属单原子催化剂及制备和应用
CN110327962A (zh) 镍钴双金属氧化物@氮氧共掺杂碳材料/CdS光催化材料、制备方法及其应用
CN113881965A (zh) 一种以生物质碳源为模板负载金属纳米颗粒催化剂及其制备方法和应用
CN109546166A (zh) 一种Pt/金属碳化物/碳纳米材料催化剂及其制备方法
CN110961101B (zh) 一种铂基催化剂、其制备方法及应用
Li et al. A study on novel pulse preparation and electrocatalytic activities of Pt/C-Nafion electrodes for proton exchange membrane fuel cell
Tian et al. Preparation and study of tungsten carbide catalyst synergistically codoped with Fe and nitrogen for oxygen reduction reaction
Sun et al. Sulfonation of ordered mesoporous carbon supported Pd catalysts for formic acid electrooxidation
CN101966458B (zh) 高分散性、高负载量Ir及Ir-Pt合金纳米催化剂的制备方法
CN111715256B (zh) 一种丝素蛋白基氮掺杂/多孔碳气凝胶/铜纳米粒子的制备方法
Qian et al. Development of a novel ternary FeWO4/CoP/Mn0. 5Cd0. 5S composite photocatalyst for photocatalytic hydrogen evolution in watersplitting
CN107195911A (zh) 氧化钌‑细菌纤维素复合负载钯基燃料电池催化剂的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20171103