WO2005103794A1 - 光出射信号出力装置 - Google Patents

光出射信号出力装置 Download PDF

Info

Publication number
WO2005103794A1
WO2005103794A1 PCT/JP2005/007222 JP2005007222W WO2005103794A1 WO 2005103794 A1 WO2005103794 A1 WO 2005103794A1 JP 2005007222 W JP2005007222 W JP 2005007222W WO 2005103794 A1 WO2005103794 A1 WO 2005103794A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
delay time
unit
signal output
light emission
Prior art date
Application number
PCT/JP2005/007222
Other languages
English (en)
French (fr)
Inventor
Shoji Yamada
Original Assignee
Brother Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Kogyo Kabushiki Kaisha filed Critical Brother Kogyo Kabushiki Kaisha
Publication of WO2005103794A1 publication Critical patent/WO2005103794A1/ja
Priority to US11/582,431 priority Critical patent/US8310467B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners

Definitions

  • the present invention relates to a light emission signal output device used for an image display device or the like and instructing light emission timing.
  • FIG. 7 shows a block diagram of a conventional image display device.
  • the image display device 100 includes a light emitting unit 102 that outputs a light beam 101, and an optical scanning unit 103 that runs the light beam 101 output from the light emitting unit 102.
  • the image display device 100 is configured so that the light scanning unit 103 causes the light beam 101 to scan on the retina, the screen, or the like of the observer's eye 104, and displays an image on the retina, the screen, or the like of the eye 104.
  • the light emitting section 102 includes a video signal supply circuit 105, a light source drive circuit 106, and a light source 107. Based on the video signal supplied from the video signal supply circuit 105, the light source drive circuit 106 drives the light source 107, and the light beam 101 modulated by the video signal is output from the light source 107.
  • the scanning unit 103 includes a horizontal scanning unit 108 and a vertical scanning unit 109.
  • the horizontal scanning unit 108 is driven by the drive circuit 111 and scans light in the horizontal direction.
  • the vertical scanning unit 109 is driven by the drive circuit 113 to scan light in the vertical direction.
  • the drive circuit 111 drives the micro mirror as the horizontal scanning unit 108 to scan the light beam 101 in the horizontal direction.
  • a drive circuit 113 drives a galvanomirror as a vertical scanning unit 109 based on the vertical synchronization signal V supplied from the video signal supply circuit 105 to scan the light beam 101 in the vertical direction.
  • the horizontal scanning unit 108 a so-called resonance-type horizontal scanning unit may be used as shown in Japanese Patent Application Laid-Open No. 2003-57586 (hereinafter referred to as Document 1).
  • the resonant horizontal scanning unit 108 supports the micromirror 108 with two support members 114, 114.
  • the torsion of the support members 114, 114 causes the micromirror 108 to swing in the directions indicated by arrows ⁇ - ⁇ . That is, the micromirror 108 and the support members 114, 114 form a mechanical resonance system, so that the micromirror 108 continues to swing.
  • the micromirror 108 oscillates, and the light beam 101 is reflected in a direction corresponding to the scanning angle of the micromirror 108, whereby the light beam 101 is scanned.
  • the image is displayed on.
  • the resonance type horizontal scanning unit 108 has an advantage that it can operate at high speed, but the scanning angular velocity of the optical beam 101 is not constant, but the scanning angle changes to a sine wave shape as shown in FIG. . For this reason, when pixel data for forming an image is supplied at regular time intervals and light is modulated, there is a problem that a displayed image is distorted.
  • Japanese Patent Application Laid-Open No. Sho 53-117440 proposes an invention intended to irradiate a light beam at a timing corresponding to a scanning angle of a scanning unit.
  • the light emission timing is determined by variably dividing the master clock having a sufficiently short cycle (high frequency) compared to the pixel display interval.
  • the present invention has been made in view of the above-described problems of the related art, and an object of the present invention is to provide a light emission signal output device that can make image degradation inconspicuous and can be provided at low cost. To offer.
  • light is emitted to a light emitting unit that outputs light to an optical scanning unit that scans incident light by resonance.
  • a light emission signal output device for outputting a light emission signal indicating a timing, a frequency divider for dividing a master clock output at a predetermined period, and a delay for setting one of a plurality of delay times.
  • a time setting unit ; and a signal output unit that outputs a light emission signal based on a frequency division result of the frequency divider and the delay time set by the delay time setting unit.
  • a light emission signal output device having the above-described configuration, a light emission unit that outputs light, an optical scanning unit that scans incident light by resonance, An image display device is provided that includes a projection unit that projects the light scanned by the scanning unit.
  • the timing at which the light emitting section emits light is controlled by the light emitting signal output device having the above-described effects.
  • FIG. 1 is a block diagram of an image display device including a light emission signal output device according to a first embodiment of the present invention.
  • FIGS. 2 (a) and 2 (b) show signal output timings in the first embodiment.
  • FIG. 3 is a diagram showing a scanning angle of a resonance-type scanning unit in the first embodiment.
  • FIG. 4 is a diagram showing an irradiation state of image light in the first embodiment.
  • FIG. 5 is a block diagram of an image display device including a light emission signal output device according to a second embodiment.
  • FIG. 6 is a diagram showing a time change of a scanning angle of a resonance-type scanning unit in the second embodiment.
  • FIG. 7 is a block diagram of a conventional image display device.
  • FIG. 8 is a perspective view of a conventional resonance-type scanning unit.
  • FIG. 9 is a diagram showing a time change of a scanning angle of a conventional resonance scanning unit.
  • FIG. 1 is a block diagram of an image display device 1 according to a first embodiment of the present invention.
  • the image display device 1 is an image display device including a light emission signal output device 2.
  • the image display device 1 includes a light emitting unit 3 that outputs light, a light scanning unit 4 that scans light output from the light emitting unit 3, and a light scanning unit that observes light scanned by the light scanning unit 4. And a projection unit 5 for projecting the image on a retina, a screen, or the like of the eye 104 of the user. Further, the image display device 1 includes a light emission signal output device 2.
  • the optical scanning section 4 includes a horizontal scanning section 6 and a vertical scanning section 7.
  • the horizontal scanning unit 6 is driven by a drive circuit 8 and scans the light output from the light emitting unit 3 in the horizontal direction.
  • the vertical scanning unit 7 is driven by the drive circuit 9 and scans the light output from the light emitting unit 3 in the vertical direction.
  • the drive circuit 8 controls the horizontal scanning unit 6 based on the horizontal synchronization signal H input from the video signal supply circuit 18.
  • the drive circuit 9 controls the vertical scanning unit 7 based on the vertical synchronization signal V input from the video signal supply circuit 18.
  • the horizontal scanning section 6 is configured as a resonance type. Therefore, the scanning angle of the horizontal scanning unit 6 has the characteristic of changing into a sine wave shape, similarly to the resonance type horizontal scanning unit 108 of the related art (see FIG. 8).
  • the horizontal scanning section 6 can be constituted by a oscillating type micro mirror or the like.
  • the vertical scanning unit 7 can be constituted by a swinging type galvanometer mirror or the like.
  • the light emitting unit 3 is an optical device having at least a function of outputting light.
  • the light emitting section 3 may be configured to be able to output the light as image light G by modulating the light with a video signal.
  • the light emitting unit 3 is described as outputting the image light G as light. The specific configuration of the light emitting section 3 will be described later.
  • the light emission signal output device 2 outputs a light emission signal S to the light emission unit 3 at a timing each time the scanning angle increases by a predetermined amount.
  • the light emission signal S is a signal for instructing the light emission unit 3 at a timing at which the light emission unit 3 emits the image light G to the light scanning unit 4.
  • the light emission signal output device 2 controls the irradiation of the image light G by controlling the timing at which the light emission unit 3 emits the image light G, thereby deteriorating the image (mainly, image distortion). Can be made to be less noticeable.
  • the output timing of the light emission signal S emitted from the light emission signal output device 2 will be described with reference to FIGS. 2 (a) and 2 (b).
  • the light output signal output device 2 As shown in FIG. 2 (a), the light output signal output device 2 generates delay times Tl, ⁇ 2, ⁇ 3,, 3 from the reference timings ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4,... ′ Obtained by dividing the master clock C.
  • the light emission signal S is output when one of the delay times in # 4 has elapsed.
  • the reference timings # 1, # 2, # 3, # 4,... are specified by dividing the master clock C output at a constant cycle. As shown in FIG. 2 (b), by changing the dividing ratio to 4, ⁇ , ⁇ , the intervals of the reference timings ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4,... Are set to different values. Due to such a change in the division ratio, the timing at which the light emission signal S is output is , The scanning angle of the horizontal scanning unit 6 is adjusted to be substantially equal.
  • the scanning angle of the resonance type horizontal scanning unit 6 changes in a sine wave shape with respect to the time axis. Accordingly, the scanning angular velocity of the horizontal scanning unit 6 is high in the section al of the sine wave, but is low in the section a2.
  • the vertical axis represents the scanning angle
  • the horizontal axis represents time.
  • the division ratio of master clock C is set to a large value so that it becomes lower.
  • the scanning angles of the horizontal scanning unit 6 corresponding to the reference timing are adjusted so as to be substantially equally spaced.
  • the reference timings # 1, # 2, # 3, # 4,... are set so that the light to be scanned is irradiated to a position not exceeding a desired irradiation position in the scanning direction. That is, the output timing of the light emission signal S, that is, the output timing of the image light G, is set so that the scanning light does not exceed the desired irradiation position in the scanning direction! (In other words, the size of the division ratio of the master clock C is limited, that is).
  • the delay times # 1, # 2, # 3, and # 4 are different from each other by a value obtained by dividing the period t of the master clock by an integer ( ⁇ ), that is, tZn.
  • integer
  • the delay time T1 can be 0, the delay time T2 can be ltZ4, the delay time T3 can be 2tZ4, and the delay time T4 can be 3tZ4.
  • that the delay time T1 is 0 means that the output timing of the light emission signal S is equal to the reference timings K1, K2, K3, and K4 without delay, and matches the reference timings ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4. Means to do.
  • the light emission signal output device 2 includes a reference timing output unit 10, a delay time setting unit 11, and a signal output unit 12.
  • the light emission signal output device 2 outputs a light emission signal S.
  • the reference timing output unit 10 includes a master clock oscillator 13, a frequency divider 14, and a frequency division ratio setting circuit 15.
  • the master clock oscillator 13 generates a master clock C having an arbitrary frequency.
  • the master clock oscillator 13 is composed of, for example, a crystal oscillator.
  • the frequency divider 14 is a device for dividing the frequency of the master clock C generated by the master clock oscillator 13.
  • the dividing ratio setting circuit 15 is a device for arbitrarily setting the dividing ratio of the divider 14.
  • the frequency divider 14 divides the master clock C output from the master clock oscillator 13 by the division ratio set in the division ratio setting circuit 15, and generates reference timings K1, K2, K3, K4,. Occurs.
  • the division ratio setting circuit 15 stores a series of division ratios such that the scanning angles of the horizontal scanning unit 6 are as even as possible. After supplying the leading value of the frequency division ratio sequence in synchronization with the horizontal synchronization signal ⁇ ⁇ from the video signal supply circuit 18, the frequency division ratio setting circuit 15 outputs the next frequency division ratio in the sequence for each reference timing output. Is supplied to the frequency divider 14. By the operation of the dividing ratio setting circuit 15 in this manner, the reference timings K1, # 2, # 3, and # 4 are generated.
  • the signal output unit 12 outputs any one of the delay times Tl, ⁇ 2, ⁇ 3, and ⁇ ⁇ 4 from the reference timings ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4,.
  • the light emission signal S is emitted at the timing when the delay time has elapsed.
  • the signal output unit 12 may include a delay circuit 16 and a delay selection circuit 17.
  • the delay circuit 16 outputs four light emission signals S at timings when the delay times ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4 have elapsed from the reference timings ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4,.
  • the delay selection circuit 17 selects one light emission signal S from the four light emission signals S and outputs it to the light emission unit 3.
  • the delay selection circuit 17 selects one of the four light emission signals S from the four light emission signals S based on the selection signal R input from the delay time setting unit 11 and outputs it to the light emission unit 3.
  • the delay time setting unit 11 can be configured by a pseudo random pulse generator.
  • the delay time setting unit 11 outputs a selection signal R for randomly selecting one light emission signal S from the four light emission signals S.
  • the signal output unit 12 can output the four light emission signals S from the four terminals P1, ⁇ 2, ⁇ 3, ⁇ 4, respectively, and outputs the four terminals P1, ⁇ 2, ⁇ 3, ⁇ 4
  • the internal force may be configured to select any one light output signal S by selecting any one terminal.
  • Fig. 2 (b) In this case, the delay time T1 is set at the reference timing K1, the delay time T2 is set at the reference timing K2, the delay time T4 is set at the reference timing K3, and the delay time T3 is set at the reference timing K4. The set status is indicated.
  • the light emitting section 3 includes a video signal supply circuit 18, a light source drive circuit 19, and a light source 20. Based on the video signal supplied from the video signal supply circuit 18, the light source drive circuit 19 drives the light source 20 to output the image light G modulated by the video signal.
  • the video signal supply circuit 18 of the light emitting unit 3 to which the light emitting signal S has been input outputs the image light G from the light source 20 to the light scanning unit 4 by driving the light source drive circuit 19.
  • the video signal supply circuit 18 drives the drive circuits 8 and 9
  • the image light G is horizontally scanned in the horizontal scanning section 6 of the optical scanning section 4 and vertically scanned in the vertical scanning section 7.
  • the image light G is emitted to the retina and the like of the eye 104 of the observer.
  • the video signal supply circuit 18 of the light emitting unit 3 drives the light source drive circuit 19 and the drive circuits 8 and 9, and outputs a horizontal synchronization signal to the frequency division ratio setting circuit 15.
  • the division ratio setting circuit 15 to which the horizontal synchronization signal has been input sets the leading value of the division ratio series as the division ratio of the divider 14. It is assumed that 4 is set as the division ratio. By setting the frequency division ratio to 4, the reference timing K1 shown in FIG. 2 is determined.
  • terminal P 1 is selected in delay selection circuit 17 based on selection signal R from delay time setting section 11.
  • the signal output unit 12 outputs the light emission signal S to the light emission unit 3 when the delay time T1 has elapsed from the reference timing K1, as shown in FIG.
  • the signal output unit 12 since the delay time T1 is 0, the signal output unit 12 outputs the light emission signal S to the light emission unit 3 in synchronization with the reference timing K1.
  • the light emitting unit 3 outputs the image light G to the light scanning unit 4 at a timing synchronized with the reference timing K1.
  • the light scanning unit 4 irradiates the image light G to the retina or the like of the observer's eye 104 in the same manner as described above.
  • the signal output unit 12 outputs the light emission signal S at the timing when the delay time T2 has elapsed from the reference timing K2.
  • the frequency divider 14 divides the master clock C at the set division ratio.
  • the reference timings K3 and # 4 are generated, and the signal output unit 12 outputs the light emission signal S to the light emission unit 3 when the reference timings # 3 and # 4 have passed the delay times # 4 and # 3.
  • the light emitting unit 3 outputs the image light G to the light scanning unit 4 at the timing when the light emitting signal S is input.
  • the light scanning section 4 scans the image light G toward the retina or the like of the observer's eye 104 to display an image.
  • the frequency division ratio for generating the reference timing signal is set appropriately, and the selection of the delay time T1, ⁇ 2, ⁇ 3, ⁇ 4 is set at random, and the light emission signal S Output timing can be controlled.
  • the scanning angle is sinusoidal, the scanning angles corresponding to the light emission timing are substantially equally spaced, and the periodicity of the timing error is removed, so that image quality deterioration such as distortion is caused. Are difficult to observe, and a good image can be displayed.
  • FIG. 4 shows a state in which the image light output from the emission unit 3 is projected on a screen or the like.
  • the delay time is set at random in the delay time setting unit 11
  • the light emitting unit 3 sets the delay set at random from the reference timings ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4,.
  • the image light G is emitted in synchronization with the light emission signal S emitted at times # 1, # 2, # 3, and # 4. Therefore, in some cases, as shown by the solid line in FIG. 4, the image light G is irradiated to a suitable position.
  • the dotted line in FIG. (Shown). This deviation is at most an amount corresponding to the period of the master clock C.
  • the deviation is repeated for each horizontal scan, so that the image is easily recognized as an image deterioration pattern.
  • a delay time ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4 shorter than the master clock C cycle is added at random, the above-mentioned gap does not appear with a periodicity or regularity, and therefore, the image light G shifts from a suitable position.
  • the irradiated position does not appear to be connected linearly as shown by a dashed line in the figure, and is inconspicuous by the naked eye.
  • FIG. 5 is a block diagram of an image display device 1B according to the second embodiment of the present invention.
  • This image display device 1B is an image display device including a light emission signal output device 2 #.
  • the same reference numerals are given to the same components as those of the image display device 1 shown in FIG. Has been. Description of the same components as those in the first embodiment will be omitted.
  • a feature of the image display device 1B of the second embodiment is that the image display device 1B has a division ratio / delay time setting unit 21.
  • the division ratio / delay time setting unit 21 controls the division ratio setting circuit 15, the delay time setting unit 31, the memory 22, the division ratio setting circuit 15, the delay time setting unit 31, and the memory 22.
  • a control unit 23 The division ratio setting circuit 15 has the same configuration as the division ratio setting circuit 15 of the first embodiment.
  • the light output signal S is stored in the sequence memory 22 of the delay selection signal so as to be closest to the ideal timing.
  • the division ratio setting circuit 15 determines the leading value of the division ratio series by the frequency divider 14.
  • the delay time setting unit 31 sets the leading value of the delay selection signal sequence in the delay selection circuit 17. Thereafter, for each output of the reference timing signal, the value of the frequency division ratio sequence and the value of the delay selection signal sequence are sequentially set in the frequency divider 14 and the delay selection circuit 17, respectively, so that the light emission signal S is sequentially output. Generated.
  • the error of the light emission signal S generated in this manner with respect to the ideal timing (corresponding scanning angles are completely equally spaced) is at most 1Z4 of the master clock cycle in time. That is, the light emission timing accuracy is equivalent to the simple frequency division method in which the master clock frequency is quadrupled.
  • a light output signal is generated by selectively giving a delay to a signal obtained by dividing the master clock.
  • the light emission timing is corrected, so that the image quality can be prevented from deteriorating without extremely increasing the frequency of the master clock.
  • the timing at which the light emitting section emits light is controlled by the light emitting signal output device having the above-described effects.
  • the delay times T1, T2, T3, and T4 may be set to be different from each other by a value obtained by dividing the period t of the master clock C by another integer.
  • a value obtained by dividing the period t of the master clock C by 3 or 5 may be used for setting the delay time.
  • the type of delay time may be increased or decreased according to the value used for dividing the period t of the master clock C.
  • the horizontal scanning unit 6 scans the image light G by resonance.
  • the configuration of the horizontal scanning unit 6, which has been described as being of the formula, is not limited to this.
  • Various types of devices that scan the image light G by swinging can be used as the horizontal scanning unit 6.
  • the light output signal output device may include a frequency division ratio setting circuit that sets a frequency division ratio in the frequency divider.
  • the signal output unit emits light after the delay time set by the delay time setting unit elapses from the timing at which the frequency divider divides the master clock by the division ratio set by the division ratio setting circuit.
  • the timing at which the light emitting unit emits light can be controlled by adjusting the delay time for delaying the signal obtained by dividing the master clock.
  • the frequency division ratio setting circuit corresponds to a timing at which the scanned light is irradiated to a position in the scanning direction that does not exceed a desired irradiation position. It may be configured to set the frequency division ratio to the frequency divider.
  • the delay time setting unit may be configured to randomly set one of a plurality of delay times.
  • the error in the light emission timing does not have regularity or periodicity, and the effect of suppressing the image deterioration becomes more remarkable.
  • the delay time setting unit sets the delay time corresponding to the timing at which the scanned light is irradiated to the position closest to the desired irradiation position in the scanning direction. It is good to be configured to set.
  • the light emitting unit can emit light at the timing closest to the desired irradiation position, and the force is the same as when the frequency of the master clock is increased. Image quality deterioration can be suppressed.
  • the delay time setting unit sets a timing at which the frequency is not delayed from the timing when the frequency divider divides the master clock by the frequency division ratio set in the frequency division ratio setting circuit.
  • the delay time may be settable. According to such a configuration, the emission unit can emit light at the timing of dividing the master clock.
  • the delay time setting unit is configured to be able to set, as the plurality of delay times, times different from each other by a time obtained by dividing the master clock cycle by an integer. Good.
  • the period of the master clock is a fraction of an integer, the set delay time is dispersed, and the effect of suppressing image quality deterioration is increased.
  • any one of 3, 4, and 5 is used to set the frequency of the master clock to 1 / integer.
  • the delay time can be set arbitrarily by selecting an arbitrary integer from integers 3, 4, and 5.
  • the optical scanning unit may be configured to scan the light incident by the swing.

Abstract

 入射した光を共振により走査する光走査部に光を出力する光射出部に対して、光を出射するタイミングを指示する光出射信号を出力する光出射信号出力装置であって、所定周期で出力されるマスタクロックを分周する分周器と、複数の遅延時間の内から1つを設定する遅延時間設定部と、分周器の分周結果と遅延時間設定部により設定された遅延時間とに基づいて、光出射信号を出力する信号出力部とを備える。

Description

明 細 書
光出射信号出力装置
技術分野
[0001] 本発明は、画像表示装置等に用いられて、光を出射するタイミングを指示する光出 射信号出力装置に関する。
背景技術
[0002] 図 7は、従来の画像表示装置のブロック図を示す。該画像表示装置 100は、光ビー ム 101を出力する光出射部 102と、光出射部 102から出力された光ビーム 101を走 查する光走査部 103とを備える。画像表示装置 100は、光走査部 103が観察者の眼 104の網膜やスクリーン等上において光ビーム 101を走査させ、眼 104の網膜ゃスク リーン等に画像を表示するよう構成されて 、る。
[0003] 光出射部 102は、映像信号供給回路 105と、光源ドライブ回路 106と、光源 107と を備えている。映像信号供給回路 105から供給される映像信号に基づき、光源ドライ ブ回路 106が光源 107を駆動して、該映像信号によって変調された光ビーム 101が 光源 107から出力される。
[0004] 走査部 103は、水平走査部 108と垂直走査部 109とを備えている。水平走査部 10 8はドライブ回路 111によって駆動されて、光を水平方向に走査する。垂直走査部 10 9はドライブ回路 113によって駆動されて、光を垂直方向に走査する。映像信号供給 回路 105から供給される水平同期信号 Hに基づき、ドライブ回路 111が水平走査部 108としてのマイクロミラーを駆動して、光ビーム 101を水平方向へ走査する。映像信 号供給回路 105から供給される垂直同期信号 Vに基づき、ドライブ回路 113が垂直 走査部 109としてのガルバノミラーを駆動して、光ビーム 101を垂直方向へ走査する 発明の開示
[0005] ところで、水平走査部 108として、特開 2003— 57586 (以下、文献 1と記す)に示 すように、いわゆる、共振型水平走査部が用いられる場合がある。図 8に示すように、 共振型水平走査部 108は、マイクロミラー 108を二つの支持部材 114, 114で支持し 、この支持部材 114, 114の捩れによりマイクロミラー 108を矢示 α— β方向へ揺動さ せるように構成されている。つまり、マイクロミラー 108と支持部材 114, 114とが機械 共振系を形成することで、マイクロミラー 108の揺動が継続する。
[0006] マイクロミラー 108が前述のように揺動し、マイクロミラー 108の走査角度に応じた方 向へ光ビーム 101が反射されることにより、光ビーム 101が走査され、それによつてス クリーン等に画像が表示される。
[0007] 共振型水平走査部 108は高速動作が可能であるという利点を有する反面、光ビー ム 101の走査角速度は定速度ではなぐ図 9に示すように、走査角度は正弦波形状 に変化する。このため、画像を形成する画素データを一定時間間隔で供給し、光を 変調すると、表示画像が歪んでしまうという問題があった。
[0008] 一方、特開昭 53— 117440号公報(以下、文献 2と記す)には、走査部の走査角度 に応じたタイミングで光ビームを照射することを意図した発明が提案されている。文献 2に記載の発明においては、画素表示間隔と比較して十分短周期(高周波数)のマ スタクロックを可変分周して光出射タイミングが決定される。
[0009] しかし、文献 2に記載の方法で、画質の劣化を無くすためには、マスタクロックの周 波数が極めて高くなり高価な回路部品や実装技術が必要となるという問題があった。
[0010] 本発明は、前記従来技術の問題に鑑みてなされたもので、その目的は、画像劣化 を目立たなくすることができる上に、安価に提供できるようにした光出射信号出力装 置を提供するにある。
[0011] 上記目的を達成する為、本発明の一つの側面によって提供されるのは、入射した 光を共振により走査する光走査部に光を出力する光射出部に対して、光を出射する タイミングを指示する光出射信号を出力する光出射信号出力装置であって、所定周 期で出力されるマスタクロックを分周する分周器と、複数の遅延時間の内から 1つを 設定する遅延時間設定部と、分周器の分周結果と遅延時間設定部により設定された 遅延時間とに基づいて、光出射信号を出力する信号出力部とを備える。
[0012] この構成によれば、マスタクロックを分周した信号に選択的に遅延を与えて光出射 信号が生成されるので、光出射タイミングが補正され、マスタクロックの周波数を極端 に大きくしなくても画質の劣化を抑圧することができる。 [0013] 本発明のもう一つの側面によれば、上記のような構成の光出射信号出力装置と、光 を出力する光出射部と、入射した光を共振により走査する光走査部と、光走査部に 走査された光を投影する投影部とを備えた画像表示装置が提供される。
[0014] 画像表示装置において、上記のような効果を奏する光出射信号出力装置により光 出射部が光を出射するタイミングが制御される。
図面の簡単な説明
[0015] [図 1]図 1は、本発明の第 1実施形態による、光出射信号出力装置を備えた画像表示 装置のブロック図である。
[図 2]図 2 (a)及び図 2 (b)は、第 1実施形態における、信号の出力タイミングである。
[図 3]図 3は、第 1実施形態における、共振型走査部の走査角度を示す図である。
[図 4]図 4は、第 1実施形態における、画像光の照射状態を示す図である。
[図 5]図 5は、第 2実施形態による、光出射信号出力装置を備えた画像表示装置のブ ロック図である。
[図 6]図 6は、第 2実施形態における、共振型走査部の走査角度の時間変化を示す 図である。
[図 7]図 7は、従来の画像表示装置のブロック図である。
[図 8]図 8は、従来の共振型走査部の斜視図である。
[図 9]図 9は、従来の共振型走査部の走査角度の時間変化を示す図である。
発明を実施するための最良の形態
[0016] 第 1実施形態
図 1は、本発明の第 1実施形態による画像表示装置 1のブロック図である。この画像 表示装置 1は、光出射信号出力装置 2を備えた画像表示装置である。
[0017] 画像表示装置 1は、光を出力する光出射部 3と、該光出射部 3から出力された光を 走査する光走査部 4と、該光走査部 4によって走査された光を観察者の眼 104の網 膜やスクリーン等に投影する投影部 5とを備える。更に、画像表示装置 1は、光出射 信号出力装置 2を備えている。
[0018] 光走査部 4は、水平走査部 6と、垂直走査部 7とを備えている。該水平走査部 6はド ライブ回路 8によって駆動されて、光出射部 3から出力された光を水平方向へ走査す る。垂直走査部 7はドライブ回路 9によって駆動されて、光出射部 3から出力された光 を垂直方向へ走査する。ドライブ回路 8は、映像信号供給回路 18から入力する水平 同期信号 Hに基づき、水平走査部 6を制御する。ドライブ回路 9は、映像信号供給回 路 18から入力する垂直同期信号 Vに基づき、垂直走査部 7を制御する。
[0019] 水平走査部 6は共振型として構成されている。したがって、水平走査部 6の走査角 は、従来技術の共振型の水平走査部 108 (図 8参照)と同様に、正弦波形状に変化 する特質を有する。水平走査部 6は揺動するタイプのマイクロミラー等によって構成 することができる。垂直走査部 7は揺動するタイプのガルバノミラー等によって構成す ることがでさる。
[0020] 光出射部 3は少なくとも光を出力する機能を有する光学機器である。光出射部 3は 、光を映像信号によって変調することにより、該光を画像光 Gとして出力することがで きるように構成されていても良い。本実施形態においては、光出射部 3は、光として画 像光 Gを出力するものとして説明する。光出射部 3の具体的構成については後述す る。
[0021] 光出射信号出力装置 2は、光出射部 3に対して走査角が所定量増加する毎のタイ ミングで光出射信号 Sを出力する。光出射信号 Sは、光出射部 3が画像光 Gを光走査 部 4に対して出射するタイミングを光出射部 3に対して指示する信号である。即ち、光 出射信号出力装置 2は、光出射部 3が画像光 Gを出射するタイミングを制御すること により、画像光 Gの照射を制御し、それによつて画像劣化(主に、画像の歪)を目立た なくするよう〖こすることがでさる。
[0022] 図 2 (a)及び図 2 (b)を参照し、光出射信号出力装置 2が出射する光出射信号 Sの 出力タイミングを説明する。図 2 (a)に示すように、光出射信号出力装置 2は、マスタク ロック Cを分周して得た基準タイミング Κ1,Κ2,Κ3,Κ4,· · 'から遅延時間 Tl, Τ2, Τ3 , Τ4の内の 1つの遅延時間を経過した時点で光出射信号 Sを出力する。
[0023] 基準タイミング Κ1,Κ2,Κ3,Κ4, · · ·は、一定の周期で出力されるマスタクロック Cを 分周すること〖こより特定されるものである。図 2 (b)に示すように、分周比を 4, Μ, Νに 変更することにより、基準タイミング Κ1,Κ2,Κ3,Κ4, · · ·の間隔は異なった値に設定さ れる。このような分周比の変更により、光出射信号 Sが出力されるタイミングにおいて 、水平走査部 6の走査角度が略等間隔になるように調整される。
[0024] 図 3に示すように、共振型の水平走査部 6の走査角度は、時間軸に対して正弦波 形状に変化する。したがって、水平走査部 6の走査角速度は、正弦波の区間 alにお いては高速であるが、区間 a2においては低速になる。尚、図 3は縦軸に走査角度を 取り、横軸は時間を取っている。このように、水平走査部 6の走査角速度は、区間 al においては高速のため、光出射信号 Sの出現頻度を高くすることを目的として、図 2 に示す基準タイミング Κ1,Κ2,Κ3,Κ4,· · ·の出現頻度が高くなるよう、マスタクロック C の分周比は小さな値に設定される。一方、図 3に示す区間 a2においては走査角速度 が低速のため、光出射信号 Sの出現頻度を小さくすることを目的として、基準タイミン グ Κ1,Κ2,Κ3,Κ4,· · ·の出現頻度が低くなるよう、マスタクロック Cの分周比は大きな 値に設定される。このように、マスタクロック Cの分周比を変更することにより、基準タイ ミングに対応する水平走査部 6の走査角度が略等間隔になるように調整される。但し 、基準タイミング Κ1,Κ2,Κ3,Κ4,· · ·は、走査される光が走査方向において所望の照 射位置を超えない位置に照射されるように設定されているが好ましい。すなわち、走 查される光が走査方向にお!、て所望の照射位置を超えな!/、よう、光出射信号 Sの出 力タイミング、即ち、画像光 Gの出力タイミングが設定されていること (言い換えると、 マスタクロック Cの分周比の大きさが制限されて 、ること)が好まし 、。
[0025] 遅延時間としては、予め用意されている複数の遅延時間 T1, Τ2, Τ3, Τ4の内から 任意の 1つの遅延時間が設定される。
[0026] 遅延時間 Τ1,Τ2,Τ3,Τ4は互いに、マスタクロックの周期 tを整数 (η)で除算した値 、即ち、 tZnづっ異なっている。整数 (n)として遅延時間の種類数 4を選択した場合 には、遅延時間 T1を 0とし、遅延時間 T2を ltZ4とし、遅延時間 T3を 2tZ4とし、遅 延時間 T4を 3tZ4とすることができる。ここで、遅延時間 T1が 0であるとは、光出射信 号 Sの出力タイミング力 基準タイミング K1,K2,K3,K4力 遅延せずに、該基準タイ ミング Κ1,Κ2,Κ3,Κ4に合致することを意味する。
[0027] 次に、図 1に戻って、光出射信号出力装置 2の構成について説明する。光出射信 号出力装置 2は、基準タイミング出力部 10と、遅延時間設定部 11と、信号出力部 12 とを備える。光出射信号出力装置 2は、光出射信号 Sを出力する。 [0028] 基準タイミング出力部 10は、マスタクロック発振器 13と、分周器 14と、分周比設定 回路 15とを備えている。マスタクロック発振器 13は、任意の周波数のマスタクロック C を発生する。マスタクロック発振器 13は、例えば、水晶振動子で構成される。分周器 14は、マスタクロック発振器 13で発生したマスタクロック Cの周波数を分周する機器 である。分周比設定回路 15は分周器 14の分周比を任意に設定する機器である。
[0029] 分周器 14は、マスタクロック発振器 13から出力されたマスタクロック Cを分周比設定 回路 15に設定された分周比で分周し、基準タイミング K1,K2,K3,K4,…を発生す る。分周比設定回路 15には、前述のように、水平走査部 6の走査角度ができるだけ 等間隔となるような分周比の系列が記憶されている。映像信号供給回路 18からの水 平同期信号 Ηに同期して分周比系列の先頭値を供給した後、分周比設定回路 15は 、基準タイミングの出力毎に系列中の次の分周比を分周器 14に供給する。分周比設 定回路 15がこのように動作することで、基準タイミング K1, Κ2, Κ3, Κ4が生成され る。
[0030] 信号出力部 12は、図 2 (a)に示すように、基準タイミング Κ1,Κ2,Κ3,Κ4,· · 'から遅 延時間 Tl, Τ2, Τ3,Τ4の内の何れ力 1つの遅延時間を経過したタイミングで光出射 信号 Sを出射する。信号出力部 12は、遅延回路 16と遅延選択回路 17とから構成さ れていても良い。遅延回路 16は、基準タイミング Κ1,Κ2,Κ3,Κ4,· · 'から遅延時間 Τ 1, Τ2, Τ3,Τ4をそれぞれ経過したタイミングで 4つの光出射信号 Sを出力する。遅 延選択回路 17は、当該 4つの光出射信号 Sの内から 1つの光出射信号 Sを選択して 光出射部 3に出力する。遅延選択回路 17は、遅延時間設定部 11から入力した選択 信号 Rに基づき、前記 4つの光出射信号 Sの内から 1つの光出射信号 Sを選択して光 出射部 3に出力する。
[0031] 遅延時間設定部 11は、擬似ランダムパルス発生器によって構成することができる。
遅延時間設定部 11は、前記 4つの光出射信号 Sの内から 1つの光出射信号 Sをアト ランダムに選択する選択信号 Rを出力する。この場合、信号出力部 12は、 4つの光 出射信号 Sを 4つの端子 P1, Ρ2, Ρ3, Ρ4からそれぞれ出力可能であり、選択信号 R に基づいて 4つの端子 P1, Ρ2, Ρ3, Ρ4の内力 任意の 1つの端子を選択することに より、任意の 1つの光出射信号 Sを選択するように構成されていても良い。図 2 (b)に おいては、基準タイミング K1において遅延時間 T1が設定され、基準タイミング K2に おいて遅延時間 T2が設定され、基準タイミング K3において遅延時間 T4が設定され 、基準タイミング K4にお ヽて遅延時間 T3が設定された状態が示されて ヽる。
[0032] 図 1に戻って、光出射部 3の具体的構成について説明する。光出射部 3は、映像信 号供給回路 18と、光源ドライブ回路 19と、光源 20とを備えている。映像信号供給回 路 18から供給される映像信号に基づき、光源ドライブ回路 19が光源 20を駆動して、 該映像信号によって変調された画像光 Gが出力される。
[0033] 次に、このように構成された画像表示装置 1の作用について説明する。光出射信号 Sが入力した光出射部 3の映像信号供給回路 18は、光源ドライブ回路 19を駆動する ことにより、光源 20から画像光 Gを光走査部 4に出力する。映像信号供給回路 18が ドライブ回路 8、 9を駆動することにより、画像光 Gは、光走査部 4の水平走査部 6にお いて水平走査され、垂直走査部 7において垂直走査される。このことにより、観察者 の眼 104の網膜等に画像光 Gが照射される。
[0034] 光出射部 3の映像信号供給回路 18は前述のように、光源ドライブ回路 19、及びド ライブ回路 8, 9を駆動する一方、分周比設定回路 15に水平同期信号を出力する。 水平同期信号が入力した分周比設定回路 15は、分周比系列の先頭値を分周器 14 の分周比として設定する。当該分周比として、 4が設定されたとする。このように、分周 比として 4が設定されることにより、図 2に示す基準タイミング K1が決定される。
[0035] 一方、遅延時間設定部 11からの選択信号 Rに基づき、遅延選択回路 17において 端子 P1が選択されたとする。この場合、信号出力部 12は、図 2 (a)に示すように、基 準タイミング K1から遅延時間 T1を経過した時点で、光出射信号 Sを光出射部 3に出 力する。ここで、遅延時間 T1は 0であるため、信号出力部 12は、基準タイミング K1に 同期して光出射信号 Sを光出射部 3に出力することになる。光出射部 3は、基準タイミ ング K1に同期したタイミングで、画像光 Gを光走査部 4に出力する。該光走査部 4は 前述と同様に、観察者の眼 104の網膜等に画像光 Gを照射する。次に、図 2に示す ように、同様にして、基準タイミング K2から遅延時間 T2を経過したタイミングで、信号 出力部 12は光出射信号 Sを出力する。
[0036] 以下同様にして、分周器 14が、設定された分周比でマスタクロック Cを分周すること により基準タイミング K3, Κ4が発生され、該基準タイミング Κ3, Κ4力 遅延時間 Τ4, Τ3が経過した時点で信号出力部 12は光出射部 3に対して光出射信号 Sを出力する 。そして、光出射部 3は光出射信号 Sを入力したタイミングで光走査部 4に対して画像 光 Gを出力する。光走査部 4は、観察者の眼 104の網膜等に向けて画像光 Gを走査 して画像を表示する。
[0037] 以上説明した実施形態においては、基準タイミング信号を生成する分周比を適切 に設定し、且つ、遅延時間 T1, Τ2, Τ3, Τ4の選択をアトランダムに設定して光出射 信号 Sが出力するタイミングを制御することができる。その結果、走査角度が正弦状 であるにも拘わらず、光出射タイミングに対応する走査角度は略等間隔となり、且つ、 タイミング誤差の周期性'規則性が除去されるため、歪等の画質劣化が観察されにく い、良好な画像を表示することができる。
[0038] 図 4は、出射部 3から出力された画像光 G力 スクリーン等に投影された状態を示す 。遅延時間が、遅延時間設定部 11においてアトランダムに設定される場合、光出射 部 3は、前述のように、基準タイミング Κ1,Κ2,Κ3,Κ4,· · 'からアトランダムに設定され た遅延時間 Τ1,Τ2,Τ3,Τ4で出射された光出射信号 Sに同期して画像光 Gを照射す る。そのため、図 4中、実線で示すように、画像光 Gが好適な位置に照射される場合 もある一方、図中、点線で示すように、画像光 Gが好適な位置(図中、実線で示す)か らズレた位置に照射される場合もある。このズレは、最大、マスタクロック Cの周期に対 応する量となる。ここで、もし、遅延を与えないと、図中、一点鎖線で示すように、前記 ズレは各水平走査毎に繰り返しとなり、画像劣化パターンとして視認が容易となる。マ スタクロック Cの周期よりも短い遅延時間 Τ1,Τ2,Τ3,Τ4をアトランダムに加えると、前 記ズレは周期性や規則性をもって出現せず、従って、画像光 Gが好適な位置からズ レて照射される位置は図中一点鎖線で示すように線状に繋がって出現することはなく 、肉眼での目視によっては目立たないものとなる。
[0039] 第 2実施形態
図 5は、本発明の第 2実施形態による画像表示装置 1Bのブロック図である。この画 像表示装置 1Bは、光出射信号出力装置 2Βを備えた画像表示装置である。図 5にお いて、図 1に示される画像表示装置 1の構成要素と同等の要素には同一の符号が付 されている。第 1実施形態と同等の構成要素についての説明は省略する。この第 2実 施形態の画像表示装置 1Bの特徴は、分周比'遅延時間設定部 21を有するという点 にある。分周比 ·遅延時間設定部 21は分周比設定回路 15と、遅延時間設定部 31と 、メモリ 22と、これら分周比設定回路 15と、遅延時間設定部 31と、メモリ 22を制御す る制御部 23とを備えている。分周比設定回路 15は第 1実施形態の分周比設定回路 15と同様の構成である。図 6に示すように、光出射信号 Sが理想タイミングに最も近く なるような遅延選択信号の系列力^モリ 22に記憶されている。
[0040] 分周比 ·遅延時間設定部 21に対して、映像信号供給回路 18から水平同期信号 H が入力すると、分周比設定回路 15は、分周比系列の先頭値を分周器 14に設定する 一方、遅延時間設定部 31は、遅延選択信号系列の先頭値を遅延選択回路 17に設 定する。以後、基準タイミング信号の出力毎に、分周比系列の値、遅延選択信号系 列の値が、分周器 14、遅延選択回路 17にそれぞれ順次設定されることで、光出射 信号 Sが順次生成される。このようにして生成された光出射信号 Sの(対応する走査 角度が完全に等間隔となる)理想タイミングに対する誤差は、時間にして最大でもマ スタクロック周期の 1Z4である。即ち、光出射タイミング精度としては、マスタクロック 周波数を 4倍した単純分周法と同等である。
[0041] 第 1及び第 2の実施形態による光出射信号出力装置(2, 2B)によれば、マスタクロ ックを分周した信号に選択的に遅延を与えて光出射信号が生成されるので、光出射 タイミングが補正され、マスタクロックの周波数を極端に大きくしなくても画質の劣化を 抑圧することができる。画像表示装置(1, 1B)において、上記のような効果を奏する 光出射信号出力装置により光出射部が光を出射するタイミングが制御される。
[0042] 尚、以上説明した第 1及び第 2実施形態においては、遅延時間 T1,T2,T3,T4は 4 種であり、マスタクロック Cの周期 tを 4で除算した値だけ互いに異ならせたが、該遅延 時間 T1,T2,T3,T4は、マスタクロック Cの周期 tを他の整数で除算した値だけ互いに 異なるよう設定されていても良い。例えば、マスタクロック Cの周期 tを 3又は 5で除算 した値が、遅延時間の設定の為に用いられても良い。マスタクロック Cの周期 tの除算 に用いられる値に応じて、遅延時間の種類が増減されても良 、。
[0043] 以上の実施形態においては、水平走査部 6は画像光 Gを共振によって走査する形 式のものであるとして説明がなされてきた力、水平走査部 6の構成はこれに限られな い。揺動によって画像光 Gを走査する様々なタイプの装置を水平走査部 6として用い ることがでさる。
[0044] 本発明の一つの実施形態において、光出射信号出力装置は、分周器に分周比を 設定する分周比設定回路を備えていても良い。この場合、信号出力部は、分周比設 定回路により設定された分周比によって分周器がマスタクロックを分周したタイミング から、遅延時間設定部により設定された遅延時間経過後に、光出射信号を出力する
[0045] このような構成によれば、マスタクロックを分周した信号に遅延を与える遅延時間を 調整することにより、光出射部が光を出射するタイミングを制御することができる。
[0046] 本発明の一つの実施形態において、分周比設定回路は、走査された光が走査方 向にお 、て所望の照射位置を超えな 、位置に照射されるようなタイミングに対応する 分周比を分周器に設定するよう構成されて ヽても良 ヽ。
[0047] このような構成によれば、所望の照射位置よりも遅れた位置で、光を出力させないよ うにすることができる。
[0048] 本発明の一つの実施形態において、遅延時間設定部は、複数の遅延時間の内か らランダムに 1つを設定するよう構成されて 、ても良 、。
[0049] このような構成によれば、光出射タミングの誤差に、規則性や周期性が無くなり、画 質劣化の抑圧効果がより顕著になる。
[0050] 本発明の一つの実施形態において、遅延時間設定部は、走査された光が走査方 向において所望の照射位置に一番近い位置に照射されるようなタイミングに対応す る遅延時間を設定するよう構成されて 、ても良 ヽ。
[0051] このような構成によれば、所望する照射位置に一番近いタイミングにおいて、光出 射部が光を出射することができ、あた力も、マスタクロックの周波数を大きくした場合と 同様に画質劣化を抑圧することができる。
[0052] 本発明の一つの実施形態において、遅延時間設定部は、分周比設定回路に設定 された分周比により分周器がマスタクロックを分周したタイミングカゝら遅延されないタイ ミングを、遅延時間として設定可能に構成されていても良い。 [0053] このような構成によれば、マスタクロックを分周したタイミングにおいて、出射部は光 を出射することができる。
[0054] 本発明の一つの実施形態において、遅延時間設定部は、マスタクロックの周期を 整数分の 1した時間づっ互いに異なっている時間を、前記複数の遅延時間として設 定可能に構成されて 、ても良 ヽ。
[0055] このような構成によれば、マスタクロックの周期を整数分の 1することにより、設定さ れる遅延時間が分散し、画質劣化抑圧効果が増大する。
[0056] 本発明の一つの実施形態において、マスタクロックの周器を整数分の 1にする為の 整数 ίま、 3, 4, 5の何れ力である。
[0057] このような構成によれば、整数 3、 4、 5の内から任意の整数を選択することにより、 遅延時間を任意に設定可能である。
[0058] 本発明の一つの実施形態において、光走査部は、揺動により入射した光を走査す るよう構成されていても良い。

Claims

請求の範囲
[1] 入射した光を共振により走査する光走査部に光を出力する光射出部に対して、光 を出射するタイミングを指示する光出射信号を出力する光出射信号出力装置であつ て、
所定周期で出力されるマスタクロックを分周する分周器と、
複数の遅延時間の内から 1つを設定する遅延時間設定部と、
前記分周器の分周結果と前記遅延時間設定部により設定された遅延時間とに基 づいて、前記光出射信号を出力する信号出力部と、を備えたことを特徴とする光出 射信号出力装置。
[2] 前記分周器に分周比を設定する分周比設定回路を更に備え、
前記信号出力部は、前記分周比設定回路により設定された分周比によって前記分 周器がマスタクロックを分周したタイミングから、前記遅延時間設定部により設定され た遅延時間経過後に、前記光出射信号を出力することを特徴とする請求項 1に記載 の光出射信号出力装置。
[3] 前記分周比設定回路は、走査された光が走査方向において所望の照射位置を超 えない位置に照射されるようなタイミングに対応する分周比を前記分周器に設定する ことを特徴とする請求項 2に記載の光出射信号出力装置。
[4] 前記遅延時間設定部は、複数の遅延時間の内からランダムに 1つを設定することを 特徴とする請求項 1に記載の光出射信号出力装置。
[5] 前記遅延時間設定部は、走査された光が走査方向において所望の照射位置に一 番近い位置に照射されるようなタイミングに対応する遅延時間を設定することを特徴 とする請求項 1に記載の光出射信号出力装置。
[6] 前記遅延時間設定部は、前記分周比設定回路に設定された分周比により前記分 周器がマスタクロックを分周したタイミング力 遅延されな 、タイミングを、前記遅延時 間として設定可能であることを特徴する請求項 2に記載の光出射信号出力装置。
[7] 前記遅延時間設定部は、前記マスタクロックの周期を整数分の 1した時間づっ互い に異なっている時間を前記複数の遅延時間として設定可能であることを特徴とする請 求項 1に記載の光出射信号出力装置。
[8] 前記マスタクロックの周器を整数分の 1にする為の整数は、 3, 4, 5の何れかである ことを特徴とする請求項 7に記載の光出射信号出力装置。
[9] 請求項 1に記載の光出射信号出力装置と、
光を出力する光出射部と、
入射した光を共振により走査する光走査部と、
前記光走査部に走査された光を投影する投影部と、を備えたことを特徴とする画像 表示装置。
[10] 前記光走査部は、揺動により入射した光を走査することを特徴とする請求項 9に記 載の画像表示装置。
PCT/JP2005/007222 2004-04-19 2005-04-14 光出射信号出力装置 WO2005103794A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/582,431 US8310467B2 (en) 2004-04-19 2006-10-18 Optical-emission-signal output apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-122742 2004-04-19
JP2004122742A JP2005308865A (ja) 2004-04-19 2004-04-19 光出射信号出力装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/582,431 Continuation-In-Part US8310467B2 (en) 2004-04-19 2006-10-18 Optical-emission-signal output apparatus

Publications (1)

Publication Number Publication Date
WO2005103794A1 true WO2005103794A1 (ja) 2005-11-03

Family

ID=35197124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/007222 WO2005103794A1 (ja) 2004-04-19 2005-04-14 光出射信号出力装置

Country Status (3)

Country Link
US (1) US8310467B2 (ja)
JP (1) JP2005308865A (ja)
WO (1) WO2005103794A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8497888B2 (en) 2007-02-09 2013-07-30 Brother Kogyo Kabushiki Kaisha Image display device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101911711B (zh) * 2008-01-08 2013-01-09 欧司朗股份有限公司 用于投影至少一个光束的方法和装置
GB201200219D0 (en) * 2012-01-09 2012-02-22 Calder Martin A clock signal generator for a digital circuit
JP7119948B2 (ja) * 2018-11-28 2022-08-17 セイコーエプソン株式会社 回路装置、電気光学装置、電子機器及び移動体
JP7447571B2 (ja) * 2020-03-12 2024-03-12 セイコーエプソン株式会社 物理量検出回路、物理量センサー、電子機器、移動体および物理量検出回路の動作方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5849963A (ja) * 1982-07-21 1983-03-24 Hitachi Ltd レ−ザプリンタ装置
JPS63148275A (ja) * 1986-12-12 1988-06-21 Konica Corp レ−ザ光走査装置
JPH0218065A (ja) * 1988-07-06 1990-01-22 Minolta Camera Co Ltd ビーム走査型記録装置
JPH0263847A (ja) * 1988-08-31 1990-03-05 Tokyo Electric Co Ltd 光走査装置
JPH07191271A (ja) * 1993-12-27 1995-07-28 Tec Corp 光走査装置
JPH08286132A (ja) * 1995-04-14 1996-11-01 Seiko Epson Corp 光走査装置
JP2000246959A (ja) * 1998-12-28 2000-09-12 Konica Corp クロック発生回路および画像形成装置
JP2003057586A (ja) * 2001-08-20 2003-02-26 Brother Ind Ltd 光走査装置、光走査装置に用いられる振動体及び光走査装置を備えた画像形成装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3697955A (en) * 1970-03-13 1972-10-10 Raytheon Co Visual display system
JPS5823606B2 (ja) 1977-03-23 1983-05-16 株式会社写研 画像形成装置
DE3750859T2 (de) 1986-06-07 1995-04-27 Konishiroku Photo Ind Bildaufzeichnungsvorrichtung.
JPS63175817A (ja) 1987-01-16 1988-07-20 Fuji Xerox Co Ltd レ−ザ記録装置
US5115328A (en) * 1988-04-25 1992-05-19 Minolta Camera Kabushiki Kaisha Beam scan type recording apparatus with electrically F theta correcting function
EP0357190B1 (en) * 1988-08-30 1995-04-05 Kabushiki Kaisha TEC Optical scanner
JPH03121037A (ja) 1989-10-05 1991-05-23 Olympus Optical Co Ltd 内視鏡画像データ圧縮装置
US5121138A (en) * 1990-05-22 1992-06-09 General Scanning, Inc. Resonant scanner control system
JPH1069251A (ja) * 1996-08-29 1998-03-10 Canon Inc 表示装置、表示システム及び画像処理装置
US6477656B1 (en) * 1998-09-29 2002-11-05 Konica Corporation System for generating clock pulse which the number of pulses outputted within a predetermined time period is based on the number of calculated delay stages

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5849963A (ja) * 1982-07-21 1983-03-24 Hitachi Ltd レ−ザプリンタ装置
JPS63148275A (ja) * 1986-12-12 1988-06-21 Konica Corp レ−ザ光走査装置
JPH0218065A (ja) * 1988-07-06 1990-01-22 Minolta Camera Co Ltd ビーム走査型記録装置
JPH0263847A (ja) * 1988-08-31 1990-03-05 Tokyo Electric Co Ltd 光走査装置
JPH07191271A (ja) * 1993-12-27 1995-07-28 Tec Corp 光走査装置
JPH08286132A (ja) * 1995-04-14 1996-11-01 Seiko Epson Corp 光走査装置
JP2000246959A (ja) * 1998-12-28 2000-09-12 Konica Corp クロック発生回路および画像形成装置
JP2003057586A (ja) * 2001-08-20 2003-02-26 Brother Ind Ltd 光走査装置、光走査装置に用いられる振動体及び光走査装置を備えた画像形成装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8497888B2 (en) 2007-02-09 2013-07-30 Brother Kogyo Kabushiki Kaisha Image display device

Also Published As

Publication number Publication date
US20070035504A1 (en) 2007-02-15
US8310467B2 (en) 2012-11-13
JP2005308865A (ja) 2005-11-04

Similar Documents

Publication Publication Date Title
JP5687880B2 (ja) 画像表示装置
US8416501B2 (en) Image display apparatus and method of controlling the same
EP1962515B1 (en) Projection display and lighting unit
US20080088914A1 (en) Illumination device and projector
JP2009300931A (ja) パルス幅変調信号生成装置およびそれを備えた画像表示装置、並びにパルス幅変調信号生成方法
JP5549459B2 (ja) 画像表示装置
JP4840175B2 (ja) 画像表示装置
JP2007047243A (ja) 画像表示装置及び画像表示装置の制御方法
US9491426B2 (en) Scanning projection system
US20090147033A1 (en) Color display system
JP2006323355A (ja) 光走査装置、光走査装置の制御方法及び画像表示装置
WO2005103794A1 (ja) 光出射信号出力装置
JP5743468B2 (ja) 投影システムにおける交流水銀ランプおよびdmdの動作方法および装置
JP2009198988A (ja) 画像表示装置
WO2012032740A1 (ja) 画像表示装置
JP5609370B2 (ja) 画像表示装置
JP2014109610A (ja) プラネタリウム装置
JP5929894B2 (ja) プロジェクタおよびその制御方法
JP2005292380A (ja) コヒーレント光を用いるディスプレイ
KR20070091977A (ko) 프로젝션 장치
WO2023048246A1 (ja) 光路制御装置および表示装置並びに光路制御方法
JP4488337B2 (ja) 表示装置
JP2003255252A (ja) 光走査型画像表示装置及びスペックル除去方法
JP5863998B2 (ja) 画像表示装置
JP2023047667A (ja) 表示装置および表示方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11582431

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 11582431

Country of ref document: US

122 Ep: pct application non-entry in european phase