WO2005103695A1 - 遺伝子検出方法及び遺伝子検出装置 - Google Patents

遺伝子検出方法及び遺伝子検出装置 Download PDF

Info

Publication number
WO2005103695A1
WO2005103695A1 PCT/JP2005/008374 JP2005008374W WO2005103695A1 WO 2005103695 A1 WO2005103695 A1 WO 2005103695A1 JP 2005008374 W JP2005008374 W JP 2005008374W WO 2005103695 A1 WO2005103695 A1 WO 2005103695A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
gene
stranded nucleic
double
detecting
Prior art date
Application number
PCT/JP2005/008374
Other languages
English (en)
French (fr)
Inventor
Mizuo Maeda
Katsumi Akimoto
Junichi Hori
Ryusuke Murayama
Jinpei Tabata
Katsuhiko Bando
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Microtec Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd., Microtec Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to EP05737304A priority Critical patent/EP1757935A4/en
Priority to US11/587,281 priority patent/US20080138802A1/en
Priority to JP2006512666A priority patent/JPWO2005103695A1/ja
Publication of WO2005103695A1 publication Critical patent/WO2005103695A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6825Nucleic acid detection involving sensors

Definitions

  • the present invention relates to a gene detection method and an apparatus for detecting a target gene having a specific gene sequence present in a sample by reading electrochemical luminescence of an intercalating agent.
  • Conventional methods for electrochemically detecting a specific gene sequence include immobilizing a single-stranded nucleic acid probe having a base sequence complementary to a target gene to be detected on an electrode surface; And a single-stranded denatured target gene sample, and then specifically binds to the double-stranded nucleic acid between the nucleic acid probe and the target gene sample, and is an electrochemically active import agent. Is added to the reaction system between the nucleic acid probe and the gene sample. Then, a voltage was applied to the reaction system to which the intercalating agent was added, electrochemical measurement was performed, and the intercalating agent bound to the double-stranded nucleic acid was detected to hybridize with the target gene sample. The nucleic acid probe is detected to confirm the presence of the gene of interest (see, for example, Patent Documents 1 and 2).
  • the intercalating agent refers to a substance that recognizes the double-stranded nucleic acid and specifically binds to the double-stranded nucleic acid.
  • Each of the intercalating agents has a plate-shaped intercalating group such as a phenyl group in the molecule, and the intercalating group intervenes between base pairs of the double-stranded nucleic acid to form a double-stranded nucleic acid. Binds to nucleic acids.
  • the binding between the intercalating agent and the double-stranded nucleic acid is a binding by electrostatic interaction or hydrophobic interaction, and the insertion of the intercalating agent between the base pairs of the double-stranded nucleic acid and the base thereof. Coupling is an equilibrium reaction in which departure from the pair is repeated at a constant rate.
  • intercalants there are substances that cause an electrically reversible oxidation-reduction reaction.
  • an intercalating agent that causes an electrochemically reversible oxidation-reduction reaction the presence of the intercalating agent bound to the double-stranded nucleic acid is detected by measuring the electrochemical change. can do.
  • this electrochemical change can be detected by current, light emission, or the like generated during oxidation-reduction.
  • the intercalating agent specifically binds only to the double-stranded nucleic acid, and that the amount of the importing agent bound to the double-stranded nucleic acid be accurately detected. It was important.
  • the intercalating agent used for conventional gene detection also nonspecifically adsorbs to a single-stranded nucleic acid probe or the surface of an electrode to which the nucleic acid probe is immobilized.
  • the non-specifically adsorbed intercalating agent becomes background noise when detecting the amount of the intercalating agent bound to the double-stranded nucleic acid, and causes a reduction in detection sensitivity.
  • Patent Document 1 Patent No. 2 5 7 3 4 4 3
  • Patent Document 2 Patent No. 3 2 3 3 8 5 1
  • the intercalating agent and the double-stranded nucleic acid are bound by an electrostatic interaction or a hydrophobic interaction, the binding force is weak, and during the aforementioned washing treatment, There is a problem that the intercalating agent bound to the double-stranded nucleic acid is also dissociated, which in turn lowers the detection sensitivity.
  • the intercalating agent bound to the double-stranded nucleic acid when considering that the intercalating agent bound to the double-stranded nucleic acid is not dissociated, the intercalating agent having nonspecific adsorption to the single-stranded nucleic acid probe or the electrode surface is considered. Since the removal is insufficient, background noise cannot be sufficiently removed, and a problem arises in that the detection sensitivity is reduced.
  • the present invention has been made in order to solve the above problems, and has as its object to provide a gene detection method and a device capable of detecting a gene in a sample sample with high sensitivity. Means for solving the problem
  • a gene detection method of the present invention is a gene detection method for detecting a gene having a specific sequence in a sample sample, wherein one gene to be detected in the sample sample is detected.
  • the double-stranded nucleic acid obtained by hybridizing the gene sample and the nucleic acid probe can be irreversibly and firmly bound to the intercalating agent, and the gene in the specimen sample can be detected with high sensitivity. Can be detected.
  • the intercalating agent bound to the double-stranded nucleic acid is not dissociated, but the single-stranded nucleic acid probe or the intercalating agent non-specifically adsorbed to the electrode surface is used. Since the gene can be removed, the gene in the sample can be detected with high sensitivity.
  • the electrochemical measurement includes applying a voltage to the electrode and measuring an amount of electrochemiluminescence due to the intercalating agent covalently bonded to the double-stranded nucleic acid. is there.
  • the double-stranded nucleic acid immobilized on the electrode can be detected with high sensitivity.
  • the gene sample that has been subjected to the hybridization reaction with the nucleic acid probe is Can be detected every time.
  • the method for detecting a gene of the present invention further comprises a double-stranded nucleic acid binding site wherein the intercalating agent specifically inserts into the double-stranded nucleic acid and forms a covalent bond with the double-stranded nucleic acid by light irradiation; It comprises a compound having: an electrochemically active site having electrochemical activity; and a linking site for linking the double-stranded nucleic acid binding site and the electrochemically active site.
  • the double-stranded nucleic acid and the intercalating agent can be irreversibly and firmly bound.
  • the ratio of the intercalating agent inserted into the double-stranded nucleic acid increases, and the detection is to be performed.
  • Gene samples can be detected with high sensitivity.
  • the double-stranded nucleic acid binding site is a photosensitizing insertion agent.
  • the double-stranded nucleic acid and the intercalating agent can be irreversibly and firmly bound by light irradiation.
  • the photosensitizing intercalator is a flocummarin derivative.
  • the furocoumarin derivative is a psoralen derivative.
  • the compound having a redox property is a compound exhibiting electrochemiluminescence.
  • the intercalating agent bound to the nucleic acid dioxide immobilized on the electrode undergoes an oxidation-reduction reaction and emits light, and the gene to be detected is determined by measuring the amount of electrochemical emission.
  • the sample can be detected.
  • the compound exhibiting electrochemiluminescence may be a metal complex having a heterocyclic compound as a ligand, rubrene, anthracene, coronene, pyrene, fluoranthene, chrysene, phenanthrene, perylene, binaphthyl. , Which is octatetraene.
  • the metal complex having a heterocyclic compound in the ligand is a metal complex having a pyridine site in the ligand.
  • the method for detecting a gene according to the present invention further comprises:
  • the complex is a metal bipyridine complex or a metal phenanthate phosphorus complex.
  • the central metal of the metal complex having a heterocyclic compound as the ligand is ruthenium or osmium.
  • the gene detection device of the present invention is a gene detection device for detecting a gene having a specific sequence in a specimen sample, wherein the single-stranded gene having a base sequence complementary to the gene sequence to be detected is provided.
  • An electrode having a nucleic acid probe immobilized thereon, a nucleic acid probe immobilized on the electrode, and a gene sample in which the gene to be detected in the sample has been changed to a single strand are hybridized to form a double-stranded nucleic acid.
  • An electrode moving unit that sequentially moves the electrode into each of the double-stranded nucleic acid forming tank, the filler addition tank, the washing tank, and the detection tank. Things.
  • the double-stranded nucleic acid obtained by hybridizing the gene sample and the nucleic acid probe and the intercalating agent that is irreversibly and firmly bound are detected by electrochemical measurement, whereby It is possible to provide a gene detection device capable of detecting a gene with high sensitivity. Further, in the washing tank, the intercalating agent that is non-specifically adsorbed to the single-stranded nucleic acid probe or the electrode surface is removed without dissociating the intercalating agent bound to the double-stranded nucleic acid. Therefore, the gene in the sample can be detected with high sensitivity.
  • the gene detection device of the present invention is a gene detection device for detecting a gene having a specific sequence in a specimen sample, wherein the single-stranded gene having a base sequence complementary to the gene sequence to be detected is provided.
  • An intercalating agent tank for holding an intercalating agent, a washing liquid tank for holding a washing solution for removing the unreacted intercalating agent from the double-stranded nucleic acid, and an electrolytic solution for detecting an intercalating agent covalently bonded to the double-stranded nucleic acid
  • a nucleic acid probe immobilized on the electrode and the gene sample to form a double-stranded nucleic acid which is connected to the electrolyte solution tank holding the sample, the gene sample preparation section, the
  • the double-stranded nucleic acid and the intercalating agent are covalently bonded by light irradiation, the unreacted double-stranded nucleic acid and the unreacted intercalating agent are washed with the above-mentioned washing solution, and the intercalating agent covalently bonded to the double-stranded nucleic acid is A treatment tank for detecting by electrochemical measurement.
  • the double-stranded nucleic acid obtained by hybridizing the gene sample and the nucleic acid probe and the intercalating agent that is irreversibly and firmly bound are detected by electrochemical measurement, whereby It is possible to provide a gene detection device capable of detecting the above-mentioned gene with high sensitivity, and since the treatment tank is one, the size of the gene detection device can be reduced. Furthermore, in the treatment layer, when the double-stranded nucleic acid and the unreacted intercalating agent are washed with the washing solution, the single-stranded nucleic acid probe or the single-stranded nucleic acid probe is not dissociated without dissociating the intercalating agent bound to the double-stranded nucleic acid. It is possible to remove the intercalating agent that is non-specifically adsorbed on the electrode surface, thereby providing a small-sized gene detection device capable of detecting the gene in the specimen sample with high sensitivity.
  • an intercalating agent that is electrochemically active and that is covalently bonded to the double-stranded nucleic acid by light irradiation is used.
  • the double-stranded nucleic acid and the intercalating agent can be covalently bound by light irradiation, and the double-stranded nucleic acid and the intercalating agent can be irreversibly and firmly bound.
  • the gene sample can be detected with high sensitivity.
  • the double-stranded nucleic acid and the intercalating agent are covalently bonded to each other, Since the washing treatment is performed to remove the adsorbing intercalating agent, the importing agent bound to the double-stranded nucleic acid is not dissociated by the washing solution, The single-stranded nucleic acid probe and the intercalating agent that is nonspecifically adsorbed on the electrode surface can be removed, and the gene in the sample can be detected with high sensitivity.
  • FIG. 1 is a diagram illustrating a configuration of the gene detection device according to the first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating another configuration of the gene detection device according to the second embodiment of the present invention.
  • FIG. 3 shows the maximum electrochemical values detected at the gold electrode x where the double-stranded nucleic acid was formed and the electrode y where the double-stranded nucleic acid was not formed, obtained by the process of Example 1 of the present invention. It shows the amount of light emission.
  • the gene samples in the following embodiments include, for example, blood, leukocytes, serum, urine, feces, semen, saliva, cultured cells, tissue cells such as various organ cells, and any other samples containing genes.
  • the double-stranded nucleic acid is released by destroying the cells in the sample, and dissociated into single-stranded nucleic acid by heat treatment or alkali treatment.
  • the gene sample in the present embodiment may be a nucleic acid fragment that has been cut with a restriction enzyme and purified by electrophoretic separation or the like.
  • a gene sample to be tested is created. As described above, this gene sample disrupts cells in an arbitrary sample to release double-stranded nucleic acid, and is denatured into a single strand by heat treatment or alkali treatment.
  • the cells in the sample can be destroyed by an ordinary method, for example, by applying a physical action such as shaking or ultrasonic waves from the outside.
  • nucleic acids are released from cells using a nucleic acid extraction solution (for example, a solution containing a surfactant such as SDS, Triton-X, Tween-20, or a solution containing saponin, EDTA, protease, etc.). It can also be done.
  • a single-stranded nucleic acid probe having a base sequence complementary to the gene sequence to be detected is generated.
  • the nucleic acid probe a nucleic acid obtained by cutting a nucleic acid extracted from a biological sample with a restriction enzyme and purifying the nucleic acid by separation by electrophoresis or a single-stranded nucleic acid obtained by chemical synthesis can be used.
  • the nucleic acid is dissociated into single-stranded nucleic acid by heat treatment or thermal treatment. Then, the nucleic acid probe obtained as described above is fixed to the electrode.
  • the electrode used in the present invention may be any electrode as long as it can be used as an electrode.
  • noble metal electrodes such as gold, platinum, platinum black, palladium, and rhodium, graphite, and glass powder
  • Carbon electrodes such as carbon, pyrolytic graphite, carbon paste, and carbon fiber
  • oxide electrodes such as titanium oxide, tin oxide, manganese oxide, and lead oxide
  • Si, Ge, ZnO, CdS, Semiconductor electrodes such as Tio and GaAs may be used.
  • These electrodes may be coated with a conductive polymer, and if coated in this way, a more stable probe-immobilized electrode can be prepared.
  • a known method is used as a method of immobilizing the nucleic acid probe on the electrode.
  • the electrode is gold
  • a thiol group is introduced into the 5′- or 3,1 terminal (preferably, the 5, -terminal) of the nucleic acid probe to be immobilized, and the gold and iodine are shared. Through the bonding, the nucleic acid probe is fixed to the gold electrode.
  • the method of introducing a thiol group into this nucleic acid probe is described in the literature (M. Maedaeta 1., Chem. Lett;., 1805-1808 (1994) and 8. A. Connollly, Nucleic Acids Res. , 13, 4484 (1985)).
  • a nucleic acid probe having a thiol group obtained by the above method is dropped on a gold electrode and left at low temperature for several hours, whereby the nucleic acid probe is fixed to the electrode, and a nucleic acid probe is produced.
  • a carboxylic acid group is introduced into the electrode surface by oxidizing the glassy carbon with potassium permanganate, thereby obtaining a nucleic acid probe. Is fixed on the glassy carbon electrode surface by the amide bond.
  • the actual method of immobilizing the nucleic acid probe on the glassy carbon electrode is described in detail in the literature (KM Mi 11 aneta 1., An alytical Chemistry, 65, 2317-2323 (1993)). Has been described.
  • the electrode on which the nucleic acid probe is immobilized is brought into contact with a solution containing the gene sample. Thereby, a sequence complementary to the immobilized nucleic acid probe is provided.
  • the resulting gene sample hybridizes, forming double-stranded nucleic acids on the electrodes. Since the method of hybridizing the nucleic acid probe and the gene sample is well known, the description is omitted here.
  • an importing agent is added to the electrode on which the double-stranded nucleic acid is formed, and the intercalating agent is introduced into the double-stranded nucleic acid.
  • the addition of the filler may be added to the sample before forming the double-stranded nucleic acid, that is, before the hybridization reaction.
  • the double-stranded nucleic acid to which the intercalating agent has been added is irradiated with light to form a covalent bond between the double-stranded nucleic acid and the intercalating agent.
  • a substance having a characteristic of being specifically inserted into the double-stranded nucleic acid and covalently binding to the double-stranded nucleic acid by light irradiation is used as the intercalating agent.
  • the intercalating agent binds strongly and irreversibly to the double-stranded nucleic acid, so that the intercalating agent bound to the double-stranded nucleic acid is dissociated from the double-stranded nucleic acid in the subsequent washing step. In the washing step, only the unreacted intercalating agent can be removed.
  • a substance having an electrochemically active characteristic is used as the intercalating agent. -Thereby, the presence of the double-stranded nucleic acid can be detected with high sensitivity by an electrochemical signal derived from the intercalating agent specifically bound to the double-stranded nucleic acid.
  • the importing agent satisfying these two characteristics is specifically: a double-stranded nucleic acid binding site (I) that is specifically inserted into the double-stranded nucleic acid and is covalently bound to the double-stranded nucleic acid by light irradiation; A compound having an electrochemically active site (F) having activity; and a linking site (L) for linking the double-stranded nucleic acid binding site (I) and the electrochemically active site (F).
  • the filler of the present invention can be represented by the following general formula (1).
  • F represents an electrochemically active group
  • L represents a linking group
  • I represents a double-stranded nucleic acid insertion group having a site that crosslinks with a double-stranded nucleic acid by light irradiation.
  • the double-stranded nucleic acid import group I shown in the general formula (1) can be used as the double-stranded nucleic acid import group I shown in the general formula (1).
  • the substance include a photosensitive insertion agent that is a substance that specifically inserts into a double-stranded nucleic acid and that is covalently bound to the double-stranded nucleic acid by light irradiation.
  • Examples of such a photosensitizing intercalator include a flocoumarin derivative, and a psoralen derivative is particularly preferable.
  • a psoralen derivative enters a double-stranded nucleic acid, it causes a non-covalent interaction with the double-stranded nucleic acid, and when it is irradiated with long-wave ultraviolet light (300 to 400 nm), it becomes double-stranded.
  • the psoralen derivative portion inserted into the nucleic acid becomes firmly and irreversibly covalently bonded to the double-stranded nucleic acid, and forms a stable covalent bond.
  • psoralen derivative examples include psoralen, methoxypsoralen, trimethylpsoralen and the like.
  • any substance that can be used as the electrochemically active group F shown in the general formula (1) may be any substance as long as it is an electrochemically detectable substance.
  • a compound having a redox property, which can detect a substance by measuring a redox current generated during the reaction, can be given.
  • Examples of such a compound having redox properties include, for example, fuecopene, catecholamine, a metal complex having a heterocyclic compound as a ligand, rubrene, anthracene, coronene, pyrene, fluoranthene, chrysene, phenanthrene, ⁇ There are Lillen, Binaphthyl, Okku Tetraen or Viologen.
  • metal complexes having a heterocyclic compound as a ligand rubrene, anthracene, coronene, pyrene, fluoranthene, chrysene, phenanthrene, perylene, binaphthyl, and octatetraene, which are mentioned as examples of the above compounds having a redox property, Some of them generate electrochemiluminescence at the time of oxidation-reduction reaction, and the substance can be detected by measuring the luminescence.
  • Examples of the metal complex having a heterocyclic compound as the ligand include oxygen and nitrogen. And the like, for example, a metal complex having a pyridine moiety, a pyran moiety, or the like in a ligand. Particularly, a metal complex having a pyridine moiety in a ligand is preferable.
  • Examples of the metal complex possessed by the ligand include a metal piperidine complex, a metal phenanthate phosphorus complex and the like.
  • the central metal of the metal complex having a heterocyclic compound in the ligand for example, ruthenium, osmium, zinc, cobalt, platinum, chromium, molybdenum, tungsten, technetium, rhenium, rhodium, iridium, palladium, copper , Indium, lanthanum, praseodymium, neodymium, samarium, and the like.
  • the complex in which the central metal is ruthenium or osmium has good electrochemiluminescence properties, and the good electrochemiluminescence.
  • the substance having characteristics include a ruthenium biviridine complex, a ruthenium phenanthroline phosphorus complex, an osmium pyridine complex, and an osmium phenanthroline complex.
  • any group that links the electrochemically active group F and the double-stranded nucleic acid import group I can be used as the linker.
  • the sequence is not particularly limited, and examples thereof include an alkyl group, a hydroxyl group, a CO-group, a NH-group, a phosphate group, and a group composed of a combination thereof.
  • Such an intercalating agent is added before or after the gene sample and the nucleic acid probe are hybridized, and the double-stranded nucleic acid in which the nucleic acid probe and the gene sample are hybridized by light irradiation is shared with the intercalating agent. After bonding, the electrode is washed.
  • the double-stranded nucleic acid Presence can be detected with high sensitivity.
  • the electrochemical signal derived from the intercalating agent differs depending on the type of the intercalating agent to be added. However, when an intercalating agent that generates an oxidation-reduction current is used, a potentiostat or a funk is used. It can be measured with a measurement system such as a shion generator. On the other hand, when an intercalating agent that generates electrochemiluminescence is used, measurement can be performed using a photomultiplier or the like.
  • FIG. 1 is a diagram illustrating a configuration of the gene detection device according to the first embodiment.
  • the gene detector 100 has five types of tanks: a double-stranded nucleic acid formation tank 3, a gene sample washing tank 7, an intercalating agent reaction tank 9, an injector washing tank 13 and a detection tank 15.
  • Have. 1 is a gene sample preparation unit for preparing a gene sample to be tested from cells in a sample
  • 2 is an electrode on which a single-stranded nucleic acid probe having a sequence complementary to the gene sample to be detected is fixed. It is.
  • Reference numeral 5 denotes an electrode holding arm 5a for holding the electrode 2 and an arm driving unit 5b for driving the electrode holding arm 5a.
  • the five tanks 3, 7, 9, 13, and 15 described above are provided.
  • the inside is an electrode moving unit for sequentially moving the electrodes 2, and examples thereof include a transfer arm and a loader such as a belt conveyor.
  • 6 is a gene sample washing solution tank for holding a washing solution for washing unreacted gene samples on the surface of the electrode 2
  • 8 is an intercalating agent tank for holding the intercalating agent
  • 1 2 is an unreacted intercalating agent on the surface of the electrode 2.
  • 14 is an electrolyte tank for holding an electrolyte.
  • the gene sample preparation unit 1 is in the double-stranded nucleic acid reaction tank 3, the gene sample washing liquid 6 is in the gene sample washing tank 7, the intercalating agent tank 8 is in the intercalating agent reaction tank 9, The intercalating agent cleaning liquid tank 12 is connected to the intercalating agent cleaning tank 13, and the electrolytic solution tank 14 is connected to the detecting tank 15.
  • the inlet reaction tank 9 has a UV lamp 11 for irradiating the electrode 2 with light
  • the detection tank 15 has a potentiometer 17 for applying a voltage to the electrode 2
  • a photomultiplier 16 that measures the electrochemiluminescence of the electrode 2
  • a control unit 18 that controls the applied voltage applied to the electrode 2 and acquires and analyzes the measurement result from the photomultiplier 16 Is provided.
  • the double-stranded nucleic acid forming tank 3 and the intercalating agent reaction tank 9 are fitted with temperature controllers 4 and 10, respectively. Next, the operation of the device 100 will be described.
  • test cells containing the gene to be detected are introduced into the gene sample preparation section 1, and a sample solution containing a gene sample in which the gene to be tested has been denatured into a single strand is prepared. Then, the sample solution containing the gene sample is sent to the double-stranded nucleic acid forming tank 3, and the sample solution is set on the electrode 2 on which the nucleic acid probe is fixed, which is set in the double-stranded nucleic acid reaction tank 3. Is dropped. At this time, in the double-stranded nucleic acid forming tank 3, the temperature inside the tank is controlled by the temperature controller 4 in advance.
  • a gene sample having a sequence complementary to the nucleic acid probe fixed to the electrode 2 hybridizes to form a double-stranded nucleic acid.
  • the electrode 2 is moved to the gene sample washing tank 7 by the electrode moving section 5.
  • the washing solution held in the gene sample washing solution tank 6 is dropped on the electrode 2, and the unreacted gene sample on the surface of the electrode 2 is removed with the washing solution.
  • the electrode 2 is moved to the intercalating agent reaction tank 9 by the electrode moving unit 5.
  • the intercalating agent held in the intercalating agent tank 8 is dropped onto the electrode 2, and the intercalating agent is injected into the double-stranded nucleic acid.
  • the temperature in the tank is controlled to an appropriate temperature by the temperature controller 10.
  • the UV lamp 11 irradiates the electrode 2 on which the filler is dropped with light, thereby forming a covalent bond between the filler and the double-stranded nucleic acid.
  • the electrode 2 is moved to the intercalating agent washing tank 13 by the electrode moving unit 5.
  • the cleaning liquid held in the intercalating agent cleaning liquid tank 12 is dropped onto the electrode 2, and the unreacted intercalating agent on the surface of the electrode 2 is removed with the cleaning liquid.
  • the electrode 2 is moved to the detection tank 15 by the electrode moving unit 5.
  • the electrode 2 is connected to a potentiostat 17, and the electrolyte held in the electrolyte tank 14 is dropped on the electrode 2.
  • the potentiostat 17 applies a voltage to the electrode 2 under the control of the controller 18. Apply to cause electrochemiluminescence. Then, the electrochemical emission is measured by the photomultiplier 16, and the measured value is input to the control unit 18 and analyzed.
  • the intercalating agent to be inserted into the double-stranded nucleic acid obtained by hybridizing the nucleic acid probe having the complementary sequence with the gene to be detected is Since a substance which is highly active and covalently binds to the double-stranded nucleic acid by light irradiation is used, the double-stranded nucleic acid and the intercalating agent are covalently bound to each other by light irradiation.
  • the strand nucleic acid and the intercalating agent can be irreversibly and firmly bound to each other. As a result, a highly accurate measurement result can be obtained, and a gene having a specific sequence to be detected can be detected with high sensitivity. Can be detected.
  • a covalent bond is formed between the intercalating agent and the double-stranded nucleic acid even if the unreacted intercalating agent on the surface of the electrode 2 is washed.
  • the intercalating agent bound to the double-stranded nucleic acid is not dissociated, the intercalating agent can be removed by nonspecific adsorption to the single-stranded nucleic acid probe or the electrode surface. Genes in a sample can be detected with high sensitivity.
  • a washing tank as a washing tank, a gene sample washing tank 7 for washing unreacted gene samples after the double-stranded nucleic acid forming step, and an unreacted filler after the additive adding step are used. And an intercalating agent washing tank 13 for washing the cleaning agent.However, a single washing tank may be used to perform these washing processes in the same washing tank. Among them, only the unreacted intercalating agent washing treatment may be performed, and the unreacted gene sample washing treatment may not be performed.
  • a tank for performing the processing is provided for each processing on the electrode 2, but all the processing can be realized in one tank.
  • the first embodiment a case is described in which a plurality of processing tanks for performing a plurality of processings on the electrode 2 are provided and each processing is performed in a different processing tank.
  • the number of processing tanks is one, and The processing for pole 2 is performed in the one processing tank.
  • FIG. 2 is a diagram illustrating a configuration of the gene detection device according to the second embodiment.
  • the gene detector 200 has a treatment tank 23 for treating the electrode 2. are doing.
  • Reference numeral 25 denotes an electrode moving unit for moving the electrode in the horizontal direction inside the processing tank 23.
  • Reference numeral 27 denotes a waste liquid tank for discharging the liquid accumulated in the processing tank 23.
  • an electrode 2 on which a nucleic acid probe is fixed and an electrode moving section 25 for moving the electrode 2 in a horizontal direction are provided inside the tank.
  • the sample preparation part 1, the gene sample washing liquid tank 6, the filler tank 8, the intercalating agent washing liquid tank 12, the electrolyte tank 14, and the waste liquid tank 27 are connected.
  • the processing tank 23 is provided with a UV lamp 11 for irradiating the electrode 2 with light, and a photomultiplier 16 for measuring the electrochemiluminescence of the electrode 2, and is fitted to the temperature controller 4. Is what it is.
  • the device 200 controls a potentiostat 17 for applying a voltage to the electrode 2, a voltage applied to the electrode 2, and acquires a measurement result from the photomultiplier 16.
  • a control unit 18 for analysis is provided.
  • test cells containing the gene to be detected are introduced into the gene sample preparation section 1 to prepare a sample solution containing the single-stranded denatured gene sample to be tested. Then, the sample solution containing the gene sample is sent to the processing tank 23, and the sample solution is dropped onto the electrode 2 set in the processing tank 23 and on which the nucleic acid probe is fixed. At this time, in the processing tank 23, the temperature in the tank is controlled to an appropriate temperature by the temperature controller 4.
  • a gene sample having a sequence complementary to the nucleic acid probe fixed to the electrode 2 hybridizes to form a double-stranded nucleic acid.
  • the washing solution held in the gene sample washing solution tank 6 is dropped onto the electrode 2, and the unreacted gene sample on the surface of the electrode 2 is removed with the washing solution.
  • the electrode moving section 25 moves the electrode 2 in a predetermined Move to The cleaning liquid dropped on the electrode 2 is collected in a waste liquid tank 27.
  • the intercalating agent held in the intercalating agent tank 8 is dropped onto the electrode 2, and the intercalating agent is inserted into the double-stranded nucleic acid to cause a reaction.
  • the electrode moving section 25 horizontally moves the electrode 2 to a predetermined position so that the intercalating agent sent from the injecting agent tank 8 is appropriately dropped on the electrode 2.
  • the temperature in the tank is controlled to an appropriate temperature by the temperature controller 4. .
  • the cleaning liquid held in the intercalating agent cleaning liquid tank 12 is dropped onto the electrode 2, and the unreacted filler on the surface of the electrode 2 is removed with the cleaning liquid.
  • the electrode moving unit 25 horizontally moves the electrode 2 to a predetermined position so that the cleaning liquid sent from the intercalating agent cleaning liquid tank 12 is appropriately dropped on the electrode 2.
  • the cleaning liquid dropped on the electrode 2 is collected in a waste liquid tank 27.
  • the electrode 2 is connected to a potentiometer 17 and the electrolyte held in the electrolyte tank 14 is dropped onto the electrode 2.
  • the electrode moving section 25 horizontally moves the electrode 2 to a predetermined position so that the electrolytic solution sent from the lysing tank 14 is appropriately dropped on the electrode 2.
  • the potentiostat 17 applies a voltage to the electrode 2 under the control of the control unit 18 to cause electrochemiluminescence. Then, the electrochemical emission is measured by the photomultiplier 16, and the measured value is input to the control unit 18 and analyzed.
  • the intercalating agent to be inserted into the double-stranded nucleic acid obtained by subjecting the gene to be detected to a nucleic acid probe having a complementary sequence to the double-stranded nucleic acid is electrochemically Since a substance which is highly active and is covalently bonded to the double-stranded nucleic acid by light irradiation is used, the double-stranded nucleic acid and the intercalating agent are covalently bonded by light irradiation, The stranded nucleic acid and the importing agent can be irreversibly and firmly bound. As a result, a highly accurate measurement result can be obtained, and the gene to be detected having a specific sequence can be highly detected.
  • Sensitivity can be detected. Further, according to the second embodiment, even if the unreacted import agent on the surface of the electrode 2 is washed, a covalent bond is formed between the insert agent and the double-stranded nucleic acid.
  • the intercalating agent bound to the double-stranded nucleic acid does not dissociate, but non-specifically adsorbs to the single-stranded nucleic acid probe or electrode surface. Since the inserted intercalating agent can be removed, the gene in the sample can be detected with high sensitivity.
  • a gene sample washing liquid tank 6 for washing unreacted gene samples after the double-stranded nucleic acid forming step, and an intercalating agent washing liquid tank for washing unreacted intercalating agents after the intercalating agent adding step The cleaning solution tank provided in the treatment layer 23 is used as one, and the unreacted gene sample after the double-stranded nucleic acid forming step is washed, and the unreacted gene sample after the light irradiation step is used.
  • the cleaning of the intercalator may be performed using the same cleaning liquid, or, of the two cleaning processes, only the intercalator cleaning process is performed and the gene sample cleaning process is not performed. Is also good.
  • a gold electrode was prepared by forming 200 nm of gold on a glass substrate using a sputtering device (SH-350 manufactured by ULVAC) with 10 nm of titanium as an underlayer, and forming an electrode pattern by photolithography.
  • the nucleic acid probe has a 5 'mono-terminal phosphate group having the sequence of A 40-base oligodeoxynucleotide (Yukara Bio Inc.) modified with a thiol group was used. Then, the nucleic acid probe was dissolved in 10 mM PBS (sodium phosphate buffer at pH 7.4) and adjusted to 100 / M.
  • the prepared solution of the nucleic acid probe was dropped on the gold electrode, and allowed to stand at room temperature for 4 hours under saturated wetness, so that the thiol group and the gold were bound to fix the nucleic acid probe to the gold electrode. .
  • ATGAT AGTGG GAAAATTATT GCATATCTGG ATCCAGGG from the 5'-end complementary to the nucleic acid probe An oligodoxynucleotide having a GG sequence (Yukara Bio Inc.) was used.
  • the gene sample was dissolved in a hybridization solution in which 10 mM PBS and 2 ⁇ SSC were mixed, and adjusted to 20 M.
  • the prepared hybridization solution in which the gene sample was dissolved was dropped on the gold electrode on which the nucleic acid probe was immobilized, and reacted for 4 hours in a constant temperature bath at 40 ° C to remove the double-stranded nucleic acid. Formed. Thus, a gold electrode X on which a double-stranded nucleic acid was formed was obtained.
  • a gold electrode y on which no double-stranded nucleic acid is formed is prepared as a comparison object.
  • the gold electrode y. On which the double-stranded nucleic acid is not formed can be obtained by using a gene sample having a sequence that is non-complementary to the nucleic acid probe (hereinafter referred to as “comparative gene sample”). The same processing as when obtaining the gold electrode X on which the nucleic acid is formed is performed.
  • the comparative gene sample a gene sample having a sequence of 40 mer Po1y-A (manufactured by Yukara) and AAAAAAAAAAAAAA ⁇ A AAAAAAAAA AAAAAAAAAAA was used.
  • the synthesis of the psoralen-modified ruthenium complex can be obtained by the following procedure.
  • 4'-chloromethyl-1,4,5,8-trimethylpsoralen (0.5 g, 1.8 lmmo 1) synthesized by a known method (Biochemistry, vol. 16, No. 6, 1977).
  • dimethylformamide (dried) dissolved in sodium hydroxide, and 1,4-diamminobutane (0.32 g, 3.63 mmol) was added dropwise with stirring at 160 ° C., and the mixture was reacted for 12 hours.
  • the crude product was purified by silica gel chromatography to obtain product A (yield 40%).
  • 4 was dissolved in THF 60.
  • the product C (0.30 g, 0.56 mmo 1) and the product D (0.32 g, 0.66 mmo 1) were dissolved in dimethylformamide and refluxed for 6 hours.After the reaction, Distilled water was added to and dissolved in the dark purple substance obtained by distilling off the solvent, and the unreacted complex was removed by filtration. Then, the solvent was distilled off.
  • the psoralen-modified ruthenium complex thus obtained was adjusted to 2 ⁇ M with 1 OmM PBS.
  • the prepared solution is added to each of the gold electrode x on which the double-stranded nucleic acid is formed and the gold electrode y on which the double-stranded nucleic acid is not formed, and the solution is placed in a refrigerator at 4 ° C for 30 minutes. Was done.
  • each of the gold electrodes X and y was irradiated with ultraviolet rays of 365 nm and 5 mW / cm 2 for 10 minutes using a UV crosslinker (Funakoshi UVP CL 1000 L type) for 10 minutes. It was covalently bound to a single-stranded nucleic acid. After the covalent bonding, each of the gold electrodes X and y was rocked and washed with 1 OmM PBS for 10 minutes to remove unreacted Ru complex.
  • a UV crosslinker Unakoshi UVP CL 1000 L type
  • the voltage was applied from 0 V to 1.3 V, and electrochemical measurement was performed for 1 second.
  • the measurement of the amount of electrochemiluminescence was carried out using a photomultiplier tube (H7300-01, manufactured by Hamamatsu Photonics), and the maximum luminescence was measured.
  • FIG. 3 shows the results obtained by the electrochemical measurement of Example 1.
  • the luminescence at the gold electrode X on which double-stranded nucleic acid is formed is significantly higher than that on the gold electrode y without double-stranded nucleic acid.
  • double-stranded nucleic acid can be detected with high sensitivity by using the filler of this example.
  • the gene detection method according to the present invention can detect a gene having a specific sequence with high sensitivity, and can be applied to uses such as gene diagnosis, infectious disease diagnosis, and genomic drug discovery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

検体試料中の特定の配列を有する遺伝子を高感度に検出する遺伝子検出方法及びその装置を提供する。検体試料中の特定の配列を有する検出すべき遺伝子を一本鎖に変性して遺伝子サンプルを作製する遺伝子サンプル作製工程と、該遺伝子サンプルの配列に対して相補的な塩基配列を有する一本鎖の核酸プローブを電極に固定化する固定化工程と、前記核酸プローブを固定化してなる電極に、前記遺伝子サンプルを添加して、電極上に前記核酸プローブと前記遺伝子サンプルとがハイブリダイズした二本鎖核酸を形成する二本鎖核酸形成工程と、電気化学的に活性であり、かつ光照射により前記二本鎖核酸と共有結合する挿入剤を添加する挿入剤添加工程と、光照射を行うことで前記二本鎖核酸と前記挿入剤を共有結合させる光照射工程と、前記二本鎖核酸と未反応の挿入剤を洗浄する洗浄工程と、前記二本鎖核酸と共有結合した挿入剤を電気化学的な測定により検出する測定工程を含む。

Description

明 細 書 遺伝子検出方法及び遺伝子検出装置 技術分野
本発明は、 試料中に存在する特定の遺伝子配列を有する目的遺伝子を、 挿入剤 の電気化学的な発光を読み取ることで検出する遺伝子検出方法及びその装置に関 する。
背景技術
従来の、 電気化学的に特定の遺伝子配列を検出する方法は、 検出すべき目的遺 伝子に対して相補的な塩基配列を有する一本鎖の核酸プローブを電極表面に固定 化し、 該核酸プローブと、 一本鎖に変性された目的遺伝子サンプルとをハイプリ ダイズさせた後、 該核酸プローブと目的遺伝子サンプルとの二本鎖核酸に特異的 に結合し、 且つ電気化学的に活性な揷入剤を、 該核酸プローブと遺伝子サンプル との反応系に添加する。 そして、 前記揷入剤が添加された反応系中に電圧を印加 して電気化学的な測定を行い、 前記二本鎖核酸に結合した挿入剤を検出すること により、 前記目的遺伝子サンプルとハイブリダィズした前記核酸プローブを検出 し、 目的とする遺伝子の存在を確認する (例えば、 特許文献 1及び特許文献 2参 照)。
ここで、 前記挿入剤とは、 前記二本鎖の核酸を認識して、 該ニ本鎖核酸と特異 的に結合する物質を指す。 前記挿入剤は、 何れも分子中にフエニル基等の平板状 挿入基を有し、 該揷入基が二本鎖核酸の塩基対と塩基対との間に介入することに よって、 二本鎖核酸と結合する。 この挿入剤と二本鎖核酸との結合は、 静電気的 相互作用あるいは疎水的相互作用での結合であって、 前記挿入剤の前記二本鎖核 酸の塩基対間への挿入、 及びその塩基対間からの離脱が一定の速度で繰り返され る平衡反応による結合である。
前記挿入剤の中には、 電気的に可逆な酸化還元反応を起こす物質がある。 この ような電気化学的に可逆である酸化還元反応を起こす挿入剤を用いることにより、 電気化学的変化の測定によって、 前記二本鎖核酸に結合した挿入剤の存在を検出 することができる。 なお、 この電気化学的変化は、 酸化還元時に発生する電流や 発光等で検出することができる。
つまり、 従来の遺伝子検出方法においては、 前記挿入剤が二本鎖核酸にのみ特 異的に結合すること、 また、 前記二本鎖核酸に結合した揷入剤の量を正確に検出 することが重要であった。
しかし、 従来の遺伝子検出に用いられる挿入剤は、 一本鎖の核酸プローブや、 該核酸プローブが固定される電極表面にも、非特異的に吸着してしまう。そして、 この非特異的に吸着した挿入剤は、 前記二本鎖核酸に結合した挿入剤の量の検出 時に、 バックグランドノイズとなり、 検出感度を低下させる原因となる。
これを解消するため、 従来方法においては、 前記核酸プローブと遺伝子サンプ ルとの反応系に前記挿入剤を添加した後に、 前述したバックグラウンドノイズと なる、 一本鎖の核酸プローブや電極表面に非特異的な吸着をしている挿入剤を除 去する洗浄処理が必要となっている (例えば、 特許文献 2参照)。
特許文献 1特許第 2 5 7 3 4 4 3号公報
特許文献 2特許第 3 2 3 3 8 5 1号公報
発明の開示
発明が解決しょうとする課題
しかしながら、 前述したように、 挿入剤と二本鎖核酸とは、 静電気的相互作用 あるいは疎水的相互作用によって結合されているものであるため、 その結合力は 弱く、前述の洗浄処理の際に、二本鎖核酸に結合させた挿入剤も解離してしまい、 逆に検出感度を低下させてしまう、 という課題がある。
一方、 前記洗浄処理において、 前記二本鎖核酸に結合した挿入剤が解離しない ように考慮した場合は、 前記一本鎖の核酸プローブや電極表面に非特異的な吸着 をしている挿入剤の除去が不十分となるため、 バックグランドノイズを十分に除 去できず、 検出感度が低下してしまう問題が生じる。
さらに、 前記挿入剤と二本鎖核酸間の結合反応が平衡反応であることから、 該 挿入剤が二本鎖核酸の塩基対間へ挿入される割合が低いため、 たとえ前述したバ ックグラウンドノィズが生じなかったとしても、 検出感度が低いという問題があ つた。 本発明は、 前記課題を解決するためになされたものであって、 検体試料中の遺 伝子を高感度に検出可能な遺伝子検出方法及びその装置を提供することを目的と する。 課題を解決するための手段
前記従来の課題を解決するため、 本発明の遺伝子検出方法は、 検体試料中の特 定の配列を有する遺伝子を検出する遺伝子検出方法であって、 前記検体試料中の 検出すべき遺伝子を一本鎖に変性して遺伝子サンプルを作製する遺伝子サンプル 作製工程と、 前記検出すべき遺伝子配列に対して相補的な塩基配列を有する一本 鎖の核酸プローブを電極に固定化させる固定化工程と、 前記一本鎖の遺伝子サン プルを、 前記一本鎖の核酸プローブが固定化された電極に添加し、 前記核酸プロ ーブと前記遺伝子サンプルとがハイブリダイズした二本鎖核酸を形成する二本鎖 核酸形成工程と、前記二本鎖核酸が形成された電極に、電気化学的に活性であり、 且つ光照射により前記二本鎖核酸と共有結合する挿入剤を添加する揷入剤添加工 程と、 光照射を行うことにより、 前記二本鎖核酸と前記挿入剤とを共有結合させ る光照射工程と、 前記二本鎖核酸と未反応の挿入剤を洗浄する洗浄工程と、 前記 洗浄工程後の、 前記二本鎖核酸と共有結合した挿入剤を電気化学的な測定により 検出する検出工程、 とを含むものである。
これにより、 前記遺伝子サンプルと核酸プローブとをハイプリダイズさせた二 本鎖核酸と、 前記挿入剤とを、 不可逆的、 且つ強固に結合させることができ、 前 記検体試料中の遺伝子を高感度に検出することができる。 また、 前記洗浄工程に おいて、 前記二本鎖核酸に結合した挿入剤は解離することがないが、 一本鎖の核 酸プローブあるいは電極表面に非特異的な吸着をしている挿入剤を除去すること ができるため、 前記検体試料中の遺伝子を高感度に検出することができる。
さらに、 本発明の遺伝子検出方法は、 前記電気化学的な測定が、 前記電極に対 して電圧を印加し、 前記二本鎖核酸と共有結合した挿入剤による電気化学発光量 を測定するものである。
これにより、 電極に固定された二本鎖核酸を高感度に検出することができ、 こ の結果、 核酸プローブとハイブリゼーシヨン反応させた遺伝子サンプルを、 高感 度に検出することができる。
さらに、 本発明の遺伝子検出方法は、 前記挿入剤が、 前記二本鎖核酸に特異的 に挿入し、 かつ光照射により該ニ本鎖核酸と共有結合を形成する二本鎖核酸結合 部位と、 電気化学活性を有する電気化学活性部位と、 前記二本鎖核酸結合部位と 前記電気化学活性部位とを連結する連結部位と、 を有する化合物からなるもので ある。
これにより、 前記二本鎖核酸と前記挿入剤とを、 不可逆的、 且つ強固に結合さ せることができ、 この結果、 前記二本鎖核酸に挿入される挿入剤の割合が増え、 検出すべき遺伝子サンプルを高感度に検出することができる。
さらに、 本発明の遺伝子検出方法は、 前記二本鎖核酸結合部位が、 感光性を持 つ挿入剤であるものである。
これにより、 前記二本鎖核酸と前記挿入剤とを、 光照射することによって、 不 可逆的、 且つ強固に結合させることができる。
さらに、 本発明の遺伝子検出方法は、 前記感光性を持つ挿入剤が、 フロクマリ ン誘導体であるものである。
さらに、 本発明の遺伝子検出方法は、 前記フロクマリン誘導体が、 ソラレン誘 導体であるものである。
さらに、 本発明の遺伝子検出方法は、 前記酸化還元性を有する化合物が、 電気 化学発光を示す化合物であるものである。
これにより、 前記電極に電圧を印加すると、 該電極に固定化された二酸化核酸 に結合した挿入剤が酸化還元反応すると共に発光し、 該電気化学発光量を測定す ることで、 検出すべき遺伝子サンプルを検出することができる。
さらに、 本発明の遺伝子検出方法は、 前記電気化学発光を示す化合物が、 配位 子に複素環系化合物を有する金属錯体、 ルブレン、 アントラセン、 コロネン、 ピ レン、 フルオランテン、 クリセン、 フエナントレン、 ペリレン、 ビナフチル、 ォ クタテトラエンであるものである。
さらに、 本発明の遺伝子検出方法は、 前記配位子に複素環系化合物を有する金 属錯体が、 配位子にピリジン部位を有する金属錯体であるものである。
さらに、 本発明の遺伝子検出方法は、 前記配位子にピリジン部位を有する金属 錯体が、 金属ビピリジン錯体、 金属フエナント口リン錯体であるものである。 さらに、 本発明の遺伝子検出方法は、 前記配位子に複素環系化合物を有する金 属錯体の中心金属が、 ルテニウム、 ォスニゥムであるものである。
これにより、 前記電極に電圧を印加した際、 より良好な電気化学発光量を得る ことができ、 前記遺伝子サンプルをより高感度に検出することができる。
また、 本発明の遺伝子検出装置は、 検体試料中の特定の配列を有する遺伝子を 検出する遺伝子検出装置であって、 前記検出すべき遺伝子配列に対して相補的な 塩基配列を有する一本鎖の核酸プローブを固定化してなる電極と、 前記電極に固 定化した核酸プローブと、 前記検体試料中の前記検出すべき遺伝子を一本鎖に変 性した遺伝子サンプルとをハイブリダィズさせて二本鎖核酸を形成する二本鎖核 酸形成槽と、 電気化学的に活性であり、 且つ光照射により前記二本鎖核酸と共有 結合する挿入剤を、 前記電極に添加して光照射し、 前記二本鎖核酸と前記挿入剤 とを共有結合させる挿入剤添加槽と、 前記二本鎖核酸と未反応の挿入剤を洗浄液 により除去する洗浄槽と、 前記二本鎖核酸と共有結合した挿入剤を電気化学的な 測定により検出する検出槽と、 前記電極を、 前記二本鎖核酸形成槽、 前記揷入剤 添加槽、 前記洗浄槽、 及び前記検出槽の各槽内に、順に移動させる電極移動部と、 を備えるものである。
これにより、 前記遺伝子サンプルと核酸プローブとをハイブリダィズさせた二 本鎖核酸と、 不可逆的、 且つ強固に結合させた挿入剤を、 電気化学的な測定によ り検出することで、 前記検体試料中の遺伝子を高感度に検出できる遺伝子検出装 置を提供できる。 さらに、 前記洗浄槽において、 前記二本鎖核酸に結合した挿入 剤を解離させることなく、 前記一本鎖の核酸プロ一ブあるいは電極表面に非特異 的な吸着をしている挿入剤を除去することができるため、 前記検体試料中の遺伝 子を高感度に検出することができる。
また、 本発明の遺伝子検出装置は、 検体試料中の特定の配列を有する遺伝子を 検出する遺伝子検出装置であって、 前記検出すべき遺伝子配列に対して相補的な 塩基配列を有する一本鎖の核酸プローブを固定化してなる電極と、 前記検出すベ き遺伝子を一本鎖に変性して遺伝子サンプルを作製する遺伝子サンプル作製部と、 電気化学的に活性であり、 且つ光照射により前記二本鎖核酸と共有結合する挿入 剤を保持する挿入剤タンクと、 前記二本鎖核酸と未反応の挿入剤を除去する洗浄 液を保持する洗浄液タンクと、 前記二本鎖核酸を共有結合した挿入剤を検出する ための電解液を保持する電解液タンクと、 前記遺伝子サンプル作製部、 挿入剤夕 ンク、 洗浄液タンク、 及び電解液タンクと接続され、 前記電極に固定化した核酸 プローブと前記遺伝子サンプルとにより二本鎖核酸を形成させ、 該ニ本鎖核酸と 前記挿入剤を光照射により共有結合させ、 前記二本鎖核酸と未反応の挿入剤を前 記洗浄液で洗浄し、 前記二本鎖核酸に共有結合した挿入剤を電気化学的な測定に より検出する処理槽と、 を備えるものである。
これにより、 前記遺伝子サンプルと核酸プローブとをハイブリダィズさせた二 本鎖核酸と、 不可逆的、 且つ強固に結合させた挿入剤を、 電気化学的な測定によ り検出することで、 前記検体試料中の遺伝子を高感度に検出できる遺伝子検出装 置を提供でき、 また処理槽を一つとしたので、 遺伝子検出装置を小型化できる。 さらに、 前記処理層において、 前記二本鎖核酸と未反応の挿入剤を前記洗浄液で 洗浄する際、 前記二本鎖核酸に結合した挿入剤を解離させることなく、 前記一本 鎖の核酸プローブあるいは電極表面に非特異的な吸着をしている挿入剤を除去す' ることができ、 これにより、 前記検体試料中の遺伝子を高感度に検出することの できる小型の遺伝子検出装置を提供できる。 発明の効果
本発明の遺伝子検出方法及び装置によれば、 特定の配列を有する遺伝子を検出 する際に、 電気化学的に活性で、 且つ光照射により前記二本鎖核酸と共有結合す る挿入剤を用いるようにしたので、 光照射により、 前記二本鎖核酸と前記挿入剤 とを共有結合させて、 該ニ本鎖核酸と挿入剤とを、 不可逆的に、 且つ強固に結合 させることができ、 この結果、 前記遺伝子サンプルを高感度に検出することがで きる。
また、 本発明の遺伝子検出方法及び装置によれば、 前記光照射により、 前記二 本鎖核酸と挿入剤とを共有結合させた後、 前記一本鎖の核酸プローブや電極表面 に非特異的な吸着をしている挿入剤を除去するために洗浄処理を行うようにした ので、 前記二本鎖核酸に結合した揷入剤は洗浄液により解離することがないが、 前記一本鎖の核酸プローブや電極表面に非特異的な吸着をしている挿入剤を除去 することができ、 前記検体試料中の遺伝子を高感度に検出することができる。 図面の簡単な説明
図 1は本発明の実施の形態 1にかかる遺伝子検出装置の構成を示す図である。 図 2は本発明の実施の形態 2にかかる遺伝子検出装置の別の構成を示す図であ る。
図 3は本発明の実施例 1の工程により得られた、 二本鎖核酸が形成された金電 極 x、 及び二本鎖核酸が形成されていない電極 yそれぞれにおいて検出された最 大電気化学発光量を示すものである。
符号の説明
1 遺伝子サンプル作製部
2 電極
3 二本鎖核酸形成槽
4, 1 0 温度コントローラ
5 , 2 5 電極移動部
5 a 電極保持アーム
5 b アーム駆動部
6 遺伝子サンプル洗浄液タンク
7 遺伝子サンプル洗浄槽
8 挿入剤タンク
9 挿入剤反応槽
1 1 UVランプ
1 2 挿入剤洗浄液タンク
1 3 挿入剤洗浄槽
1 4 電解液タンク
1 5 検出槽
1 6 , フォトマル
1 7 ポテンシヨスタツ卜 1 8 制御部
2 3 処理槽
2 7 廃液タンク
1 0 0 , 2 0 0 遺伝子検出装置 発明を実施するための最良の形態
以下に、 本発明の遺伝子検出方法について詳細に説明する。
なお、 以下の実施の形態における遺伝子サンプルとは、 例えば、 血液、 白血球、 血清、 尿、 糞便、 精液、 唾液、 培養細胞、 各種臓器細胞のような組織細胞、 その 他遺伝子を含有する任意の試料から、 該試料中の細胞を破壊して二本鎖核酸を遊 離させ、 熱処理あるいはアルカリ処理によって、 一本鎖の核酸に解離させたもの である。 また、 本実施の形態における遺伝子サンプルは、 制限酵素で切断して電 気泳動による分離等で精製した核酸断片でもよい。
(実施の形態 1 )
以下、 実施の形態 1における遺伝子検出方法について説明する。
まず、 検査対象となる遺伝子サンプルを作成する。 この遺伝子サンプルは、 前 述したように、 任意の試料中の細胞を破壊して二本鎖核酸を遊離させ、 熱処理あ るいはアルカリ処理によって、 一本鎖に変性させる。
このとき、 前記試料中の細胞の破壊は、 常法により行うことができ、 例えば、 振とう、 超音波等の物理的作用を外部から加えて行うことができる。 また、 核酸 抽出溶液 (例えば、 S D S、 T r i t o n— X、 Tw e e n— 2 0等の界面活性 剤、 又はサポニン、 E D T A、 プロテア一ゼ等を含む溶液等) を用いて、 細胞か ら核酸を遊離させることもできる。
次に、 検出すべき遺伝子配列に対して相補的な塩基配列を有する一本鎖の核酸 プローブを生成する。
この核酸プローブは、 生物試料から抽出した核酸を制限酵素で切断し、 電気泳 動による分離等で精製した核酸あるいは化学合成で得られた一本鎖の核酸を用い ることができる。 生物試料から抽出した核酸の場合には、 熱処理あるいはアル力 リ処理によって、 一本鎖の核酸に解離させておくことが好ましい。 そしてこの後、 前述のようにして得られた核酸プロ一ブを電極に固定する。 本発明で用いる電極は、 電極として使用可能であればどのようなものであって もよく、 例えば、 金、 白金、 白金黒、 パラジウム、 ロジウムのような貴金属電極 や、 グラフアイト、 グラシ一力一ボン、 パイロリティックグラフアイ卜、 力一ポ ンペースト、 カーボンファイバーのような炭素電極や、 酸化チタン、 酸化スズ、 酸化マンガン、 酸化鉛のような酸化物電極や、 S i、 Ge、 ZnO、 CdS、 T i 0、 GaAsのような半導体電極等が挙げられる。 これらの電極には、 導電 性高分子によって被覆しても良く、 このように被覆すれば、 より安定なプローブ 固定化電極を調製することができる。
なお、 前記核酸プローブを前記電極に固定化する方法としては、 公知の方法が 用いられる。 一例をあげると、 例えば前記電極が金である場合、 固定する核酸プ ローブの 5' —もしくは 3, 一末端 (好ましくは、 5, -末端) にチオール基を 導入し、 金とィォゥとの共有結合を介して、 前記核酸プローブが該金電極に固定 される。 この核酸プローブにチオール基を導入する方法は、 文献 (M. Ma e d a e t a 1., Ch em. Le t t;., 1805〜 1808 (1994) 及び8. A. Conno l l y, Nu c l e i c Ac i d s Re s., 13, 4484 (1985)) に記載されているものが挙げられる。
即ち、 前記方法によって得られたチオール基を有する核酸プローブを、 金電極 に滴下し、 低温下で数時間放置することにより、 該核酸プローブが電極に固定さ れ、 核酸プローブが作製される。
また別の例をあ ると、 例えば前記電極がグラシ一カーボンである場合、 まず グラシ一カーボンを過マンガン酸カリウムで酸化することによって、 電極表面に カルボン酸基を導入し、 これにより、 核酸プローブが、 アミド結合によりグラシ 一カーボン電極表面に固定される。 このグラシ一カーボン電極に核酸プローブを 固定する、 実際の固定化方法については、 文献 (K. M. M i 1 1 a n e t a 1., An a l y t i c a l Ch emi s t r y, 65, 2317〜 2323 (1 993)) に詳細が記載されている。
次に、 前述の核酸プロ一ブが固定された電極を、 前記遺伝子サンプルを含む溶 液に接触させる。 これにより、 前記固定された核酸プローブと相補的な配列を有 する遺伝子サンプルがハイブリダィズし、 電極に二本鎖核酸が形成される。 この 核酸プローブと遺伝子サンプルとをハイブリダィズさせる方法は周知であるため、 ここでは説明を省略する。
このようにして電極に二本鎖核酸を形成した後、 該ニ本鎖核酸が形成された電 極に揷入剤を添加し、 挿入剤を前記二本鎖核酸に揷入反応させる。 なお、 この揷 入剤の添加は、 二本鎖核酸を形成する前、 つまりハイブリダィゼーシヨン反応前 に、 前記検体試料中に添加するものであってもよい。
そしてこの後、 挿入剤が添加された二本鎖核酸に対して光照射を行い、 二本鎖 核酸と挿入剤との間で共有結合を形成させる。
以下、 本実施の形態 1の挿入剤について説明する。
本発明では、 挿入剤として、 前記二本鎖核酸に特異的に挿入し、 且つ光照射に より二本鎖核酸と共有結合する特徴をもつ物質を用いる。
これにより、 前記挿入剤は、二本鎖核酸と、 強固且つ不可逆的に結合するため、 この後の洗浄工程により、 二本鎖核酸と結合した挿入剤が、 該ニ本鎖核酸から解 離することがなく、 洗浄工程では未反応の挿入剤のみを除去できる。
さらに、 本発明では、 挿入剤として、 電気化学的に活性である特徴を持つ物質 を用いる。 - これにより、 前記二本鎖核酸に特異的に結合した挿入剤由来の電気化学的な信 号により、 華二本鎖核酸の;^在を高感度に検出できる。
このような 2つの特性を満たす揷入剤は、 前記二本鎖核酸に特異的に挿入し、 且つ光照射により二本鎖核酸と共有結合する二本鎖核酸結合部位 (I ) と、 電気 化学活性を有する電気化学活性部位 (F ) と、 前記二本鎖核酸結合部位 (I ) と 前記電気化学活性部位 (F ) とを連結する連結部位 (L ) と、 を有する化合物で ある。
例えば、 本発明の揷入剤は、 下記一般式 (1)で表すことができる。
一般式; F — L — I · · ■ (1)
(式中 Fは電気化学活性基、 Lは連結基、 Iは光照射により二本鎖核酸と架橋す る部位を有する二本鎖核酸挿入基を表わす。)
ここで、 前記一般式 (1)に示す、 二本鎖核酸揷入基 Iとして用いることができる 物質としては、 二本鎖核酸に特異的に挿入し、 且つ光照射により二本鎖核酸と共 有結合する物質である、 感光性を持つ挿入剤を挙げることができる。
そして、 このような感光性を持つ挿入剤としては、 例えば、 フロクマリン誘導 体が挙げられ、 特に、 ソラレン誘導体が好ましい。 このソラレン誘導体は、 二本 鎖核酸に揷入すると、 二本鎖核酸と非共有的相互作用を起こし、 さらにこれに長 波長紫外線 (3 0 0〜4 0 0 n m) を照射すると、 二本鎖核酸に挿入したソラレ ン誘導体部分が、 強固に且つ不可逆的に二本鎖核酸と共有結合するようになり、 安定な共有結合を形成する。
従って、 後述する洗浄工程において、 二本鎖核酸を形成しなかった電極表面に 固定された一本鎖の核酸プローブや、 該電極表面に非特異吸着した挿入剤を洗浄 等した際に、 二本鎖核酸に結合させた揷入剤が抜け落ちることがなくなり、 該洗 浄工程において強い洗浄を行って、 前記未反応の一本鎖の核酸プローブや、 非特 異吸着した挿入剤を確実に除去することができる。
このようなソラレン誘導体の具体的な例としては、 ゾラレン、 メトキシソラレ ン、 トリメチルソラレン等が挙げられる。
次に、 前記一般式 (1)に示す、 電気化学活性基 Fとして用いることができる物質 は、 電気化学的に検出可能な物質であればどのようなものでもよく、 例えば、 可 逆な酸化還元反応時に生じる酸化還元電流を測定することで物質の検出が可能な、 酸化還元性を有する化合物を挙げることができる。
そして、 このような酸化還元性を有する化合物としては、 例えば、 フエ口セン、 カテコールアミン、 配位子に複素環系化合物を有する金属錯体、 ルブレン、 アン トラセン、 コロネン、 ピレン、 フルオランテン、 クリセン、 フエナントレン、 ぺ リレン、 ビナフチル、 ォク夕テトラェンもしくはビオローゲン等がある。
さらに、 前述酸化還元性を有する化合物の例として挙げた、 配位子に複素環系 化合物を有する金属錯体、 ルブレン、 アントラセン、 コロネン、 ピレン、 フルォ ランテン、 クリセン、 フエナントレン、 ペリレン、 ビナフチル、 ォクタテトラエ ンには、 酸化還元反応時に電気化学発光を生じるものもあり、 その発光を測定す ることで物質の検出を行うこともできる。
そして、 前記配位子に複素環系化合物を有する金属錯体としては、 酸素や窒素 等を含む複素環系化合物、 例えば、 ピリジン部位、 ピラン部位等を配位子に有す る金属錯体があり、 特に、 ピリジン部位を配位子に有する金属錯体が好ましく、 そして該ピリジン部位を配位子に有する金属錯体としては、 例えば、 金属ピピリ ジン錯体、 金属フエナント口リン錯体等がある。
さらに、 前記配位子に複素環系化合物を有する金属錯体の中心金属としては、 例えば、 ルテニウム、 ォスニゥム、 亜鉛、 コバルト、 白金、 クロム、 モリブデン、 タングステン、 テクネチウム、 レニウム、 ロジウム、 イリジウム、 パラジウム、 銅、 インジウム、 ランタン、 プラセオジム、 ネオジム、 サマリウム等を挙げるこ とができ、 そして特に、 該中心金属が、 ルテニウム、 ォスニゥムである錯体は、 良好な電気化学発光特性を有し、 該良好な電気化学発光特性を有する物質として は、 例えば、 ルテニウムビビリジン錯体、 ルテニウムフエナン卜口リン錯体、 ォ スニゥムビピリジン錯体、 ォスニゥムフエナントロリン錯体等を挙げることがで さる。
そして、 前記一般式 (1)において、 連結基 Lとして用いることができる基として は、前記電気化学活性基 Fと前記二本鎖核酸掙入基 Iとを連結するものであれば、 そのリンカ一配列は特に制限されるものではなく、 例えば、 アルキル基、 一〇一 基、 一 C O—基、 一 NH—基、 リン酸基、 又はこれらの組み合わせから成る基な どを挙げることができる。
このような挿入剤を、 前記遺伝子サンプルと前記核酸プローブをハイブリダィ ズさせる前か後に添加し、 光照射により、 前記核酸プローブと遺伝子サンプルが ハイブリダィズした二本鎖核酸と、 前記揷入剤とを共有結合させたのち、 電極の 洗浄処理を行う。
そしてこの洗浄処理により、 電極表面に固定された未反応の一本鎖の核酸プロ ーブや、 該電極表面に非特異的に吸着した挿入剤を除去する。
この結果、 前記ハイブリダィズした二本鎖核酸には、 特異的に共有結合した揷 入剤のみが残るようになり、 この挿入剤由来の電気化学的な信号を測定すること により、 二本鎖核酸の存在を高感度に検出することができる。
前記挿入剤由来の電気化学的な信号は、添加する挿入剤の種類により異なるが、 酸化還元電流を生じる挿入剤を用いた場合には、 ポテンシヨスタツト、 ファンク シヨンジェネレータ等からなる計測系で測定できる。 一方、 電気化学発光を生じ る挿入剤を用いた場合には、 フォトマルチプライヤー等を用いて計測が可能であ る。
以下、 本発明にかかる遺伝子検出装置について、 図 1を用いて説明する。 図 1 は本実施の形態 1にかかる遺伝子検出装置の構成を示す図である。図 1において、 遺伝子検出装置 1 0 0は、 二本鎖核酸形成槽 3、 遺伝子サンプル洗浄槽 7、 挿入 剤反応槽 9、 揷入剤洗浄槽 1 3、 検出槽 1 5の 5種類の槽を有している。 1は試 料中の細胞より検査対象となる遺伝子サンプルを作製する遺伝子サンプル作製部 であり、 2は該検出対象の遺伝子サンプルと相補的配列を有する 1本鎖の核酸プ ローブが固定された電極である。 5は前記電極 2を保持する電極保持アーム 5 a と、 該電極保持アーム 5 aを駆動するアーム駆動部 5 bとからなり、 前述した 5 つの槽 3, 7 , 9 , 1 3 , 1 5の内部に、 前記電極 2を順に移動させる電極移動 部であり、 例えば、 搬送アームや、 ベルトコンベアのようなローダ一が例に挙げ られる。
6は電極 2表面の未反応の遺伝子サンプルを洗浄する洗浄液を保持する遺伝子 サンプル洗浄液タンクであり、 8は挿入剤を保持する挿入剤タンクであり、 1 2 は電極 2表面の未反応の挿入剤を洗浄する洗浄液を保持する挿入剤洗浄液タンク であり、 1 4は電解液を保持する電解液タンクである。
そして、 前記遺伝子サンプル作製部 1は前記二本鎖核酸反応槽 3に、 前記遺伝 子サンプル洗浄液夕ンク 6は前記遺伝子サンプル洗浄槽 7に、 前記挿入剤タンク 8は前記挿入剤反応槽 9に、 前記挿入剤洗浄液タンク 1 2は前記挿入剤洗浄槽 1 3に、 前記電解液タンク 1 4は前記検出槽 1 5に、 それぞれ接続されている。 ま た、 前記揷入剤反応槽 9には、 電極 2に光を照射する UVランプ 1 1が、 前記検 出槽 1 5には、 電極 2に電圧を印加するポテンシヨス夕ット 1 7と、 前記電極 2 の電気化学発光を測定するフォトマル 1 6と、 前記電極 2に印加する印加電圧を 制御すると共に、 前記フォトマル 1 6から測定結果を取得して解析する制御部 1 8と、 が設けられている。
また、 前記二本鎖核酸形成槽 3、 挿入剤反応槽 9は、 それぞれ温度コント口一 ラ 4, 1 0により嵌合されている。 次に、 当該装置 1 0 0の動作を説明する。
まず検出しょうとする遺伝子を含む被検査細胞を遺伝子サンプル作製部 1に入 れ、 検査対象となる遺伝子を一本鎖に変性した遺伝子サンプルを含有する試料溶 液を作成する。 そして、 前記遺伝子サンプルを含有する試料溶液を二本鎖核酸形 成槽 3に送り、 該ニ本鎖核酸反応槽 3内にセットされた、 核酸プローブが固定さ れた電極 2に、 前記試料溶液を滴下する。 このとき二本鎖核酸形成槽 3では、 温 度コントローラ 4により、 槽内温度を適温に制御しておく。
前記試料溶液が滴下された電極 2表面では、 該電極 2に固定された核酸プロ一 ブと相補的な配列を有する遺伝子サンプルがハイプリダイズし、 二本鎖核酸が形 成される。
反応終了後、 該電極 2を電極移動部 5により、 遺伝子サンプル洗浄槽 7に移動 させる。
遺伝子サンプル洗浄槽 7では、 前記遺伝子サンプル洗浄液タンク 6に保持され た洗浄液を前記電極 2に滴下し、 該洗浄液で前記電極 2表面の未反応の遺伝子サ ンプルを除去する。
洗浄終了後、 電極 2を電極移動部 5により、 挿入剤反応槽 9に移動させる。 挿入剤反応槽 9では、 前記挿入剤タンク 8に保持された揷入剤を前記電極 2に 滴下し、 該揷入剤を前記二本鎖核酸に揷入反応させる。 このとき挿入剤反応槽 9 では、 温度コントローラ 1 0により、 槽内温度を適温に制御しておく。
さらにこの後、 前記揷入剤反応槽 9で、 前記 U Vランプ 1 1により、 前記挿入 剤を滴下した電極 2に光照射することで、 前記揷入剤と二本鎖核酸を共有結合を 形成させる。
反応終了後、該電極 2を電極移動部 5により、挿入剤洗浄槽 1 3に移動させる。 挿入剤洗浄槽 1 3では、 前記挿入剤洗浄液タンク 1 2に保持された洗浄液を前 記電極 2に滴下して、 該洗浄液で前記電極 2表面の未反応の挿入剤を除去する。 洗浄終了後、 電極 2を電極移動部 5により、 検出槽 1 5に移動させる。
検出槽 1 5では、 前記電極 2をポテンシヨスタツト 1 7に接続し、 前記電解液 タンク 1 4に保持された電解液を前記電極 2に滴下する。
前記ポテンシヨスタツト 1 7は制御部 1 8の制御の下、 電極 2に対して電圧を 印加し、 電気化学発光させる。 そして、 前記フォトマル 1 6により、 該電気化学 発光を測定し、 該測定値は制御部 1 8に入力され、 解析される。
以上のように、 本実施の形態 1によれば、 検出対象の遺伝子と相補的な配列を 有する核酸プローブとをハイブリダィズして得た二本鎖核酸に挿入する挿入剤と して、 電気化学的に活性で、 且つ光照射により前記二本鎖核酸と共有結合する物 質を用いるようにしたので、 光照射により、 前記二本鎖核酸と前記挿入剤とを共 有結合させて、 該ニ本鎖核酸と挿入剤とを、 不可逆的に、 且つ強固に結合させる ことができ、 この結果、 高精度な測定結果を得ることができ、 特定の配列を有す る検出すべき遺伝子を高感度に検出できる。 また、 本実施の形態 1によれば、 電 極 2の表面の、 未反応の揷入剤を洗浄しても、 前記挿入剤と二本鎖核酸とで共有 結合を形成させるようにしたので、 前記二本鎖核酸に結合した挿入剤は解離する ことがないが、 一本鎖の核酸プローブあるいは電極表面に非特異的な吸着をして レ ^る挿入剤を除去することができるため、 前記検体試料中の遺伝子を高感度に検 出することができる。
なお、 本実施の形態 1では、 洗浄槽として、 二本鎖核酸形成工程後の未反応の 遺伝子サンプルを洗浄する遺伝子サンプル洗浄槽 7と、 揷入剤添加工程後の未反 応の揷入剤を洗浄する挿入剤洗浄槽 1 3とを設ける構成としたが、 洗浄槽を一つ にして、 これらの洗浄処理を同一の洗浄槽で行う構成としてもよいし、あるいは、 前記 2つの洗浄処理のうち、 前記未反応の挿入剤洗浄処理のみを行い、 前記未反 応の遺伝子サンプル洗浄処理を行わないものとしてもよい。
さらに、 前述した遺伝子検出装置 1 0 0では、 電極 2に対する処理毎に、 その 処理をするための槽を設ける構成としたが、 全ての処理を一つの槽で実現するこ とも可能である。
(実施の形態 2 )
前記実施の形態 1では、 電極 2に対する複数の処理を行う処理槽を複数設け、 各処理を異なる処理槽で行う場合を説明したが、 本実施の形態 2では、 処理槽を 一つとし、 電極極 2に対する処理を、 該 1つの処理槽で行うものである。
図 2は、 本実施の形態 2にかかる遺伝子検出装置の構成を示す図である。 図 2 において、 遺伝子検出装置 2 0 0は、 電極 2に対して処理を行う処理槽 2 3を有 している。 2 5は前記処理槽 2 3内部で、 前記電極を水平方向に移動させる電極 移動部であり、 例えば、 例えばステージを平行移動させる機構などが例に挙げら れる。 そして、 2 7は前記処理槽 2 3内部にたまった液を排出する廃液タンクで ある。
前記処理槽 2 3には、 槽内部に、 核酸プローブが固定された電極 2と、 該電極 2を水平方向に移動させる電極移動部 2 5とが設けられ、 さらに、 槽上部に、 前 記遺伝子サンプル作製部 1、 遺伝子サンプル洗浄液タンク 6、 揷入剤タンク 8、 挿入剤洗浄液タンク 1 2、 電解液タンク 1 4、 及び廃液タンク 2 7が接続されて いる。
また、 前記処理槽 2 3には、 電極 2に光を照射する UVランプ 1 1と、 該電極 2の電気化学発光を測定するフォトマル 1 6とが設けられ、 温度コントローラ 4 に嵌合されているものである。
さらに、 当該装置 2 0 0には、 電極 2に電圧を印加するポテンシヨスタツト 1 7と、 前記電極 2に印加する印加電圧を制御すると共に、 前記フォトマル 1 6か ら測定結果を取得して解析する制御部 1 8とが設けられている。
次に、 当該装置 2 0 0の動作を説明する。
まず検出しょうとする遺伝子を含む被検査細胞を遺伝子サンプル作製部 1に入 れ、 検査対象となる一本鎖に変性された遺伝子サンプルを含有する試料溶液を作 成する。 そして、 前記遺伝子サンプルを含有する試料溶液を処理槽 2 3に送り、 該処理槽 2 3内にセットされた、 核酸プローブが固定された電極 2に、 前記試料 溶液を滴下する。 このとき処理槽 2 3では、 温度コントローラ 4により、 槽内温 度を適温に制御しておく。
前記試料溶液が滴下された電極 2表面では、 該電極 2に固定された核酸プロ一 ブと相補的な配列を有する遺伝子サンプルがハイプリダイズし、 二本鎖核酸が形 成される。
• 反応終了後、 前記遺伝子サンプル洗浄液タンク 6に保持された洗浄液を前記電 極 2に滴下し、該洗浄液で前記電極 2表面の未反応の遺伝子サンプルを除去する。 このとき、 電極移動部 2 5は、 遺伝子サンプル洗浄液タンク 6から送られる洗浄 液が前記電極 2に対して適切に滴下されるよう、 該電極 2を所定位置に水平方向 に移動させる。 また、 前記電極 2に滴下された洗浄液は、 廃液タンク 2 7に回収 される。
洗浄終了後、前記揷入剤タンク 8に保持された挿入剤を前記電極 2に滴下して、 該挿入剤を前記二本鎖核酸に挿入反応させる。 このとき、 電極移動部 2 5は、 挿 入剤タンク 8から送られる挿入剤が前記電極 2に対して適切に滴下されるよう、 該電極 2を所定位置に水平方向に移動させる。 また、 処理槽 2 3では、 温度コン トローラ 4により、 槽内温度を適温に制御しておく。 .
反応終了後、 前記挿入剤洗浄液タンク 1 2に保持された洗浄液を前記電極 2に 滴下して、 該洗浄液で前記電極 2表面の未反応の揷入剤を除去する。 このとき、 電極移動部 2 5は、 挿入剤洗浄液タンク 1 2から送られる洗浄液が前記電極 2に 対して適切に滴下されるよう、 該電極 2を所定位置に水平方向に移動させる。 ま た、 前記電極 2に滴下された洗浄液は、 廃液タンク 2 7に回収される。
洗浄終了後、 前記電極 2をポテンシヨス夕ット 1 7に接続し、 前記電解液タン ク 1 4に保持された電解液を前記電極 2に滴下する。 このとき、 電極移動部 2 5 は、 解液タンク 1 4から送られる電解液が前記電極 2に対して適切に滴下される よう、 該電極 2を所定位置に水平方向に移動させる。
前記ポテンシヨスタツト 1 7は制御部 1 8の制御の下、 電極 2に対して電圧を 印加し、 電気化学発光させる。 そして、 前記フォトマル 1 6により、 該電気化学 発光を測定し、 該測定値は制御部 1 8に入力され解析される。
以上のように、 本実施の形態 2によれば、 検出対象の遺伝子と相補的な配列を 有する核酸プローブとを八イブリダィズして得た二本鎖核酸に挿入する挿入剤と して、 電気化学的に活性で、 且つ光照射により前記二本鎖核酸と共有結合する物 質を用いるようにしたので、 光照射により、 前記二本鎖核酸と前記挿入剤とを共 有結合させて、 該ニ本鎖核酸と揷入剤とを、 不可逆的に、 且つ強固に結合させる ことができ、 この結果、 高精度な測定結果を得ることができ、 特定の配列を有す る検出すべき遺伝子を高感度に検出できる。 また、 本実施の形態 2によれば、 電 極 2の表面の、 未反応の揷入剤を洗浄しても、 前記挿入剤と二本鎖核酸とで共有 結合を形成させるようにしたので、 前記二本鎖核酸に結合した挿入剤は解離する ことがないが、 一本鎖の核酸プローブあるいは電極表面に非特異的な吸着をして いる挿入剤を除去することができるため、 前記検体試料中の遺伝子を高感度に検 出することができる。
なお、 本実施の形態 2では、 二本鎖核酸形成工程後の未反応の遺伝子サンプル を洗浄する遺伝子サンプル洗浄液タンク 6と、 挿入剤添加工程後の未反応の挿入 剤を洗浄する挿入剤洗浄液タンク 12とを設ける構成としたが、 処理層 23に設 ける洗浄液タンクを一つにして、 二本鎖核酸形成工程後の未反応の遺伝子サンプ ルを洗浄する処理と、 光照射工程後の未反応の挿入剤を洗浄する処理とを同一の 洗浄液を用いて行うようにしてもよいし、 前記 2つの洗浄処理のうち、 前記揷入 剤洗浄処理のみを行い前記遺伝子サンプル洗浄処理は行わないものとしてもよい。 実施例 1
以下、 本発明の実施例を示すが、 本発明はこれに限定されるものではない。
( 1 ) 金電極表面への核酸プローブの固定化
ガラス基板上にスパッ夕装置 (アルバック製 SH— 350) によりチタン 10 nmを下地に金 200 nmを形成し、 フォトリソグラフイエ程により電極パター ンを形成することで、金電極を準備した。電極表面をピラニア溶液(過酸化水素: 濃硫酸 =1 : 3) で 1分間洗浄し、 純水ですすいだ後、 窒素ブローで乾燥させた。 核酸プローブには、 ヒト由来 Cy t o c h r ome P— 450の遺伝子配列 の 5' —末端より 629— 668番目に位置する CCCCCTGGAT CCA GATATGC AATAATTTTC C C A C T AT C ATの配列を有する 5' 一末端のリン酸基を介してチオール基を修飾した 40塩基のオリゴデォキシ ヌクレオチド (夕カラバイオ製) を使用した。 そして、 該核酸プローブを 10m Mの PBS (pH7. 4のリン酸ナトリウム緩衝液) に溶解させ、 100 /Mに 調整した。
この調整した核酸プローブの溶液を前記金電極上に滴下し、 飽和湿潤下、 室温 で 4時間放置することで、 チォ一ル基と金とを結合させて、 核酸プローブを金電 極に固定した。
(2) ハイブリダィゼーシヨン
遺伝子サンプルには、 前記核酸プローブと相補的な 5' —末端から ATGAT AGTGG GAAAATTATT GCATATCTGG ATCCAGGG GGの配列を有するオリゴデォキシヌクレオチド(夕カラバイオ製)を使用した。 そして、 該遺伝子サンプルを、 10mMの PBS、 及び 2 XS S Cを混合したハ イブリダィゼ一シヨン溶液に溶解させ、 20 Mに調整した。
この調整した、 遺伝子サンプルが溶解したハイブリダィゼーシヨン溶液を、 前 記核酸プローブを固定した金電極上に滴下し、 40°Cの恒温槽内で 4時間反応さ せ、 二本鎖核酸を形成させた。 これにより、 二本鎖核酸が形成された金電極 Xを 得た。一 ·
さらに、 本実施例においては、 比較対象として、 二本鎖核酸が形成されていな い金電極 yを作成する。 この二本鎖核酸が形成されない金電極 y.は、 前記核酸プ ローブと非相補的な配列を有する遺伝子サンプル' (以下、 「比較遺伝子サンプル」 と称す。)を使用して、前記二本鎖核酸が形成された金電極 Xを得る時と同様の処 理をする。 なお、 ここでは、 前記比較遺伝子サンプルとして、 40me rの Po 1 y-A (夕カラバイオ製)、 AAAAAAAAAA AAAAAAAAAA · A AAAAAAAAA A A A A A A A A A Aの配列を有する遺伝子サンプルを使 用した。
(3) 挿入剤の添加
挿入剤には、 下記の化 1に示すソラレン修飾ルテニウム錯体を使用した。
(化 1)
Figure imgf000021_0001
ソラレン修飾ルテニウム錯体の合成は、 以下の手順により得ることができる。 まず、 公知の方法 (B i o c h emi s t r y, vo l . 16, No 6, 19 77) により合成した 4'一クロロメチル一 4, 5, 8—トリメチルソラレン ( 0. 5 g、 1. 8 lmmo 1) を、 水酸化ナトリウム溶解 ジメチルホルムアミド (乾 燥) に溶かし、 160°Cで撹拌しながら 1,4—ジァミノブタン (0.32 g、 3. 63mmo 1) を滴下し 12時間反応させた。 溶媒を留去した後、 粗生成物をシ リカゲルクロマトグラフィー処理により精製し、 生成物 Aを得た(収率 40%)。 次に、 THF 60. OmLに溶解させた 4, 4, —ジメチル— 2, 2, ビビリ ジン 2. 50 g (1. 35 X 10—2mo 1) 溶液を窒素雰囲気の容器に注入した 後、 リチウムジイソプロピルアミド 2 M溶液 16. 9mL (2. 70 X 10— 2m o 1) を滴下し、 冷却しながら 30分撹拌した。 一方、 同様に窒素気流中で乾燥 させた容器に、 1, 2—ジブロモェタン 7. 61 g (4.05 X 10— 2mo 1 ) と THF 1 OmLとを加え、 冷却しながら撹拌させた。
この 1, 2 _ジブロモェタンと THFとが挿入された容器に、 先程の、 THF に溶解させた 4, 4' —ジメチルー 2, 2 ' ビピリジン溶液とリチウムジィソプ 口ピルアミド 2M溶液とを反応させた反応液をゆっくり滴下させ、 2. 5時間反 応させた。 そして、 この反応溶液を、 2 Nの塩酸で中和して、 THFを留去した 後、 クロ口ホルムで抽出し、 さらに、 前記溶媒を留去して得た粗生成物をシリカ ゲルカラムで精製し、 生成物 Bを得た (収率 47%)。
そして、 前記生成物 A (0. 50 g> 1. 52mmo 1 ) と前記生成物 B (0. 49 g、 1. 68mmo 1 ) とを、 水酸化ナトリウム溶解ジメチルホルムアミド (乾燥) に溶かし、 160°Cで 18時間撹拌させた。 そして、 この攪拌した溶媒 を留去した後、 粗生成物をシリカゲルクロマトグラフィー処理により精製し、 生 成物 Cを得た (収率 38%)0
さらに、 塩化ルテニウム (III) (2. 98 g、 0. 01mo l)、 及び 2,2,一 ビピリジン (3. 44 g、 0. 022mo 1 ) をジメチルホルムアミド (80. OmL) 中で 6時間還流した後、 溶媒を留去した。 その後、 アセトンを加え、 一 晚冷却することで得られた黒色沈殿物を採取し、エタノール水溶液 17 OmL (ェ タノ一ル:水 =1 : 1) を加え、 1時間加熱還流を行った。 ろ過後、 塩化リチウム を 20 g加え、 エタノールを留去し、 さらに一晩冷却した。析出した黒色物質は、 吸引ろ過で採取し、 生成物 Dを得た (収率 68. 2 )o
そして、 前記生成物 C (0. 30 g、 0. 56mmo 1 ) と前記生成物 D (0.· 32 g、 0. 66mmo 1 ) とを、 ジメチルホルムアミドに溶かして 6時間還流 し、 反応後、 溶媒を留去させて得た黒紫色の物質に蒸留水を加えて溶解させ、 未 反応錯体をろ過により除去した後、 溶媒を留去した。
得られた粗生成物は、 シリカゲルクロマトグラフィー処理により精製し、 ゾラ レン修飾ルテニウム錯体を得た(収率 68%)。表 1は、 前述のようにして得たソ ラレン修飾ルテニウム錯体のプロトン NMR H-NMR) の結果である。
(表 1)
^-NMR (300MHz、 DMSOd- 6)
σ
1. 4〜 1. 8 (6Η, m)
2. 4〜2. 6 (12Η, m)
2. 74 (2Η, t)
3. 8〜3. 1 (寸6Η, m)
4. 31 (2Η, s)
6. 32 (1H, s)
7. 38 (2H, d)
7. 54 (7H, m)
7. 77 (4H, m)
8. 16
8. 70 (2H, d)
8. 88 (4H, d)
このようにして得られたソラレン修飾ルテニウム錯体を、 1 OmMの PBSで 2 xMに調整した。
この調整した溶液を、 前記二本鎖核酸が形成された金電極 x、 及び二本鎖核酸 が形成されていない金電極 yにそれぞれ添加し、 30分間 4 °Cの冷蔵庫内で暗反 J心を行った。
(4) 二本鎖核酸と挿入剤との共有結合
30分後、 前記金電極 X, yそれぞれに、 UVクロスリンカ一 (フナコシ製 U VP CL 1000 L型) を用いて波長 365 nm、 5 mW/c m2の紫外線を 10 分間照射し、 ゾラレンと二本鎖核酸とを共有結合させた。共有結合後、 金電極 X, yそれぞれを 1 OmMの PBSで 10分間揺動洗浄し、 未反応の Ru錯体を取り 除いた。
(5) 電気化学測定 以上の工程の後、 前記金電極 x、 及び二本鎖核酸が形成されていない金電極 y のそれぞれに、 0 . 1 MのP B S、 及び 0 . 1 Mのトリエチルァミンを混合した 電解液を滴下した。
その後、 それぞれの金電極 X , yに電圧を印加し、 この時に生じた挿入剤由来 の電気化学発光の測定を行った。
なお、 電圧の印加は、 0 Vから 1 . 3 Vまで走査し、 1秒間電気化学測定を行 つた。 電気化学発光量の測定は、 光電子増倍管 (浜松ホトニクス製 H 7 3 6 0— 0 1 ) を用いて行い、 最大発光量を測定した。
図 3は、 本実施例 1の電気化学測定にて得られた結果を示すものである。 図 3 から明らかなように、 二本鎖核酸が形成された金電極 Xでの発光量は、 二本鎖核 酸が形成されていない金電極 yでの発光量と比較して著しく高い値となっており、 本実施例の揷入剤を用いれば、 高感度に二本鎖核酸の検出を行うことが可能であ ることが分かる。 産業上の利用可能性
本発明にかかる遺伝子検出方法は、 特定の配列を有する遺伝子を高感度に検出 することができ、 遺伝子診断、 感染症診断、 ゲノム創薬等の用途に適用できる。

Claims

請 求 の 範 囲
1 . 検体試料中の特定の配列を有する遺伝子を検出する遺伝子検出方法であつ て、
前記検体試料中の検出すべき遺伝子を一本鎖に変性して遺伝子サンプルを作製 する遺伝子サンプル作製工程と、
前記検出すべき遺伝子配列に対して相補的な塩基配列を有する一本鎖の核酸プ ローブを電極に固定化させる固定化工程と、
前記一本鎖の遺伝子サンプルを、 前記一本鎖の核酸プローブが固定化された電 極に添加し、 前記核酸プロ一ブと前記遺伝子サンプルとがハィブリダイズした二 本鎖核酸を形成する二本鎖核酸形成工程と、
前記二本鎖核酸が形成された電極に、 電気化学的に活性であり、 且つ光照射に より前記二本鎖核酸と共有結合する挿入剤を添加する挿入剤添加工程と、 光照射を行うことにより、 前記二本鎖核酸と前記挿入剤とを共有結合させる光 照射工程と、
前記二本鎖核酸と未反応の挿入剤を洗浄する洗浄工程と、
前記洗浄工程後の、 前記二本鎖核酸と共有結合した挿入剤を電気化学的な測定 により検出する検出工程、 とを含む、
ことを特徴とする遺伝子検出方法。
2 . 請求項 1に記載の遺伝子検出方法において、
前記電気化学的な測定は、 前記電極に対して ¾圧を印加し、 前記二本鎖核酸と 共有結合した挿入剤による電気化学発光量を測定するものである、
ことを特徴とする遺伝子検出方法。
3 . 請求項 1に記載の遺伝子検出方法において、
前記揷入剤は、
前記二本鎖核酸に特異的に挿入し、 かつ光照射により該ニ本鎖核酸と共有結合 を形成する二本鎖核酸結合部位と、
電気化学活性を有する電気化学活性部位と、
前記二本鎖核酸結合部位と前記電気化学活性部位とを連結する連結部位と、 を 有する化合物からなる、
ことを特徴とする遺伝子検出方法。
4 . 請求項 3に記載の遺伝子検出方法において、
前記二本鎖核酸結合部位が、 感光性を持つ挿入剤である、
ことを特徴とする遺伝子検出方法。
5 . 請求項 4に記載の遺伝子検出方法において、
前記感光性を持つ挿入剤が、 フロクマリン誘導体である、
ことを特徴とする遺伝子検出方法。
6 . 請求項 5に記載の遺伝子検出方法において、
前記フロクマリン誘導体が、 ソラレン誘導体である、
ことを特徴とする遺伝子検出方法。
7 . 請求項 3に記載の遺伝子検出方法において、
前記電気化学活性部位が、 酸化還元性を有する化合物である、
ことを特徴とする遺伝子検出方法。
8 . 請求項 7に記載の遺伝子検出方法において、
前記酸化還元性を有する化合物が、 電気化学発光を示す化合物である、 ことを特徴とする遺伝子検出方法。
9 . 請求項 8に記載の遺伝子検出方法において、
前記電気化学発光を示す化合物が、配位子に複素環系化合物を有する金属錯体、 ルブレン、 アントラセン、 コロネン、 ピレン、 フルオランテン、 クリセン、 フエ ナン卜レン、 ペリレン、 ビナフチル、 ォクタテトラェンである、
ことを特徴とする遺伝子検出方法。
1 0 . 請求項 9に記載の遺伝子検出方法において、
前記配位子に複素環系化合物を有する金属錯体が、 配位子にピリジン部位を有 する金属錯体である、
ことを特徴とする遺伝子検出方法。
1 1 . 請求項 1 0に記載の遺伝子検出方法において、
前記配位子にピリジン部位を有する金属錯体が、 金属ビピリジン錯体、 金属フ ェナント口リン錯体である、 ことを特徴とする遺伝子検出方法。
1 2 . 請求項 9に記載の遺伝子検出方法において、
前記配位子に複素環系化合物を有する金属錯体の中心金属が、 ルテニウム、 ォ スニゥムである、
ことを特徴とする遺伝子検出方法。
1 3 . 検体試料中の特定の配列を有する遺伝子を検出する遺伝子検出装置であ つて、
前記検出すべき遺伝子配列に対して相補的な塩基配列を有する一本鎖の核酸プ ローブを固定化してなる電極と、
前記電極に固定化した核酸プローブと、 前記検体試料中の前記検出すべき遺伝 子を一本鎖に変性した遺伝子サンプルとをハイブリダィズさせて二本鎖核酸を形 成する二本鎖核酸形成槽と、
電気化学的に活性であり、 且つ光照射により前記二本鎖核酸と共有結合する揷 入剤を、 前記電極に添加して光照射し、 前記二本鎖核酸と前記挿入剤とを共有結 合させる挿入剤添加槽と、
前記二本鎖核酸と未反応の挿入剤を洗浄液により除去する洗浄槽と、 前記二本鎖核酸と共有結合した挿入剤を電気化学的な測定により検出する検出 槽と、
前記電極を、 前記二本鎖核酸形成槽、 前記挿入剤添加槽、 前記洗浄槽、 及び前 記検出槽の各槽内に、 順に移動させる電極移動部と、 を備える、
ことを特徴とする遺伝子検出装置。
1 4 . 検体試料中の特定の配列を有する遺伝子を検出する遺伝子検出装置であ つて、
前記検出すべき遺伝子配列に対して相補的な塩基配列を有する一本鎖の核酸プ ローブを固定化してなる電極と、
前記検出すべき遺伝子を一本鎖に変性して遺伝子サンプルを作製する遺伝子サ ンプル作製部と、
電気化学的に活性であり、 且つ光照射により前記二本鎖核酸と共有結合する揷 入剤を保持する挿入剤タンクと、 前記二本鎖核酸と未反応の揷入剤を除去する洗浄液を保持する洗浄液タンクと、 前記二本鎖核酸を共有結合した揷入剤を検出するための電解液を保持する電解 液タンクと、
前記遺伝子サンプル作製部、 前記揷入剤タンク、 前記洗浄液タンク、 及び前記 電解液タンクと接続され、 前記電極に固定化した核酸プローブと前記遺伝子サン プルとにより二本鎖核酸を形成させ、 該ニ本鎖核酸と前記揷入剤を光照射により 共有結合させ、 前記二本鎖核酸と未反応の揷入剤を前記洗浄液で洗浄し、 前記二 本鎖核酸に共有結合した揷入剤を電気化学的な測定により検出する処理槽と、 を 備える、
ことを特徴とする遺伝子検出装置。
PCT/JP2005/008374 2004-04-23 2005-04-25 遺伝子検出方法及び遺伝子検出装置 WO2005103695A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05737304A EP1757935A4 (en) 2004-04-23 2005-04-25 METHOD AND DEVICE FOR DETECTING GENES
US11/587,281 US20080138802A1 (en) 2004-04-23 2005-04-25 Gene Detection Method and Gene Detection Apparatus
JP2006512666A JPWO2005103695A1 (ja) 2004-04-23 2005-04-25 遺伝子検出方法及び遺伝子検出装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-128940 2004-04-23
JP2004128940 2004-04-23

Publications (1)

Publication Number Publication Date
WO2005103695A1 true WO2005103695A1 (ja) 2005-11-03

Family

ID=35197102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/008374 WO2005103695A1 (ja) 2004-04-23 2005-04-25 遺伝子検出方法及び遺伝子検出装置

Country Status (5)

Country Link
US (1) US20080138802A1 (ja)
EP (1) EP1757935A4 (ja)
JP (1) JPWO2005103695A1 (ja)
CN (1) CN1947013A (ja)
WO (1) WO2005103695A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013531790A (ja) * 2010-06-11 2013-08-08 クルマラ,サカリ 統合炭素電極チップによるランタニドキレートの電気的励起及びこれらのチップを用いた分析方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8101368B2 (en) 2006-02-13 2012-01-24 Dvs Sciences Inc. Quantitation of cellular DNA and cell numbers using element labeling

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61500688A (ja) * 1983-12-12 1986-04-10 エイチ・ア−ル・アイ・リサ−チ・インコ−ポレ−テッド 核酸の交雑検定
JPH07506483A (ja) * 1992-01-24 1995-07-20 アプリジェン エス.アー. 光架橋によって安定させた2本鎖dnaの変性勾配電気泳動による突然変異検出方法
JP2002139491A (ja) * 2000-10-31 2002-05-17 Fuji Photo Film Co Ltd 2本鎖dnaの分析方法
JP2002524091A (ja) * 1998-08-21 2002-08-06 ナックスコー・インコーポレイテッド 架橋可能な固定化核酸を用いるアッセイ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5776672A (en) * 1990-09-28 1998-07-07 Kabushiki Kaisha Toshiba Gene detection method
US6649350B2 (en) * 1997-04-09 2003-11-18 California Institute Of Technology Electrochemical sensor using intercalative, redox-active moieties
US6221586B1 (en) * 1997-04-09 2001-04-24 California Institute Of Technology Electrochemical sensor using intercalative, redox-active moieties
US6506895B2 (en) * 1997-08-15 2003-01-14 Surmodics, Inc. Photoactivatable nucleic acids
JP3888807B2 (ja) * 1999-08-06 2007-03-07 凸版印刷株式会社 遺伝子を検出する方法、並びに検出装置及び検出用チップ
JP2006170615A (ja) * 2001-01-19 2006-06-29 Shigeori Takenaka 遺伝子の検出方法、検出装置、並びに検出用チップ
EP1412487B1 (en) * 2001-07-30 2010-06-16 Meso Scale Technologies LLC Assay electrodes having immobilized lipid/protein layers and methods of making and using the same
KR100459394B1 (ko) * 2001-10-30 2004-12-03 엘지전자 주식회사 인터컬레이터를 이용한 핵산의 전기화학발광 검출방법
WO2004094986A2 (en) * 2003-04-16 2004-11-04 Handylab, Inc. System and method for electrochemical detection of biological compounds
US7741033B2 (en) * 2003-05-13 2010-06-22 Trustees Of Boston College Electrocatalytic nucleic acid hybridization detection
US7833406B2 (en) * 2004-07-06 2010-11-16 Panasonic Corporation Gene detection method, and intercalator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61500688A (ja) * 1983-12-12 1986-04-10 エイチ・ア−ル・アイ・リサ−チ・インコ−ポレ−テッド 核酸の交雑検定
JPH07506483A (ja) * 1992-01-24 1995-07-20 アプリジェン エス.アー. 光架橋によって安定させた2本鎖dnaの変性勾配電気泳動による突然変異検出方法
JP2002524091A (ja) * 1998-08-21 2002-08-06 ナックスコー・インコーポレイテッド 架橋可能な固定化核酸を用いるアッセイ
JP2002139491A (ja) * 2000-10-31 2002-05-17 Fuji Photo Film Co Ltd 2本鎖dnaの分析方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013531790A (ja) * 2010-06-11 2013-08-08 クルマラ,サカリ 統合炭素電極チップによるランタニドキレートの電気的励起及びこれらのチップを用いた分析方法

Also Published As

Publication number Publication date
EP1757935A4 (en) 2008-01-16
JPWO2005103695A1 (ja) 2008-03-13
CN1947013A (zh) 2007-04-11
EP1757935A1 (en) 2007-02-28
US20080138802A1 (en) 2008-06-12

Similar Documents

Publication Publication Date Title
EP3402745B1 (en) Nano-sensors for nucleic acid detection and discrimination
JP2003514227A (ja) 被検体検出のための結合促進法
KR100423021B1 (ko) 혼합 인터칼레이터, 이를 이용한 디엔에이의 전기화학적검출방법 및 이를 위한 검출 키트
Huang et al. A label-free electrochemical sensor for detection of mercury (II) ions based on the direct growth of guanine nanowire
JP2003090815A (ja) 遺伝子の電気化学的検出方法と核酸チップ
JP2006170615A (ja) 遺伝子の検出方法、検出装置、並びに検出用チップ
JP5214941B2 (ja) 単一プローブ分子素子及び単一プローブ分子素子の製造方法
JP5429962B2 (ja) 核酸検出方法及び核酸検出キット
WO2005103695A1 (ja) 遺伝子検出方法及び遺伝子検出装置
JP4701176B2 (ja) 遺伝子検出方法、及び挿入剤
KR100482718B1 (ko) 핵산 프로브 고정화 기체 및 그것을 이용한 표적 핵산의존재를 검출하는 방법
JP2006337351A (ja) 遺伝子の電気化学的検出方法
JP2009136238A (ja) 遺伝子検出方法
JP2003083968A (ja) Dnaチップおよびアッセイ方法
AU2004202326B2 (en) Method for the detection of nucleic acids
JP2007232675A (ja) 遺伝子検出方法
JP2006343156A (ja) 遺伝子検出方法
JP2002000299A (ja) 複数の電位を用いる遺伝子の発現解析
JP2006061061A (ja) 遺伝子検出方法
US20040152091A1 (en) Biosensor, device and method for detecting nucleic acids by means of at least two units for immobilizing nucleic acids
WO2009107614A2 (en) Method for detection of target nucleic acid and device for detection of target nucleic acid
JP2007043937A (ja) 遺伝子検出方法
JPWO2006038686A1 (ja) 遺伝子検出方法、及び遺伝子検出装置
JP2007304091A (ja) 遺伝子検出方法
US20030152958A1 (en) Nucleic acid fragment-fixed electrode and its use

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11587281

Country of ref document: US

Ref document number: 2006512666

Country of ref document: JP

Ref document number: 200580012754.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2005737304

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005737304

Country of ref document: EP