WO2005103131A1 - 熱硬化性樹脂の分解方法 - Google Patents

熱硬化性樹脂の分解方法 Download PDF

Info

Publication number
WO2005103131A1
WO2005103131A1 PCT/JP2005/007613 JP2005007613W WO2005103131A1 WO 2005103131 A1 WO2005103131 A1 WO 2005103131A1 JP 2005007613 W JP2005007613 W JP 2005007613W WO 2005103131 A1 WO2005103131 A1 WO 2005103131A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
monomer
reaction tank
oligomer
thermosetting resin
Prior art date
Application number
PCT/JP2005/007613
Other languages
English (en)
French (fr)
Inventor
Masaru Hidaka
Takaharu Nakagawa
Toyoyuki Urabe
Tetsuya Maekawa
Original Assignee
Matsushita Electric Works, Ltd.
International Center For Environmental Technology Transfer
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works, Ltd., International Center For Environmental Technology Transfer filed Critical Matsushita Electric Works, Ltd.
Priority to JP2006512586A priority Critical patent/JPWO2005103131A1/ja
Publication of WO2005103131A1 publication Critical patent/WO2005103131A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/14Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with steam or water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/0009Coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00132Controlling the temperature using electric heating or cooling elements
    • B01J2219/00135Electric resistance heaters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention provides a method for decomposing a thermosetting resin obtained by crosslinking a copolymer composed of a polyhydric alcohol and an acid with a crosslinking agent using a supercritical or subcritical fluid, and recovering monomers and Z or oligomers from the decomposition products. About.
  • thermosetting resins are hydrolyzed using a supercritical fluid or a subcritical fluid as a reaction solvent, and the resulting monomers and Z or oligomers are recovered, so that these can be used as a raw material of the thermosetting resins. Reuse has been done.
  • thermosetting resin and a fluid are charged into a reaction vessel, and the reaction vessel is sealed and heated to a supercritical or subcritical temperature to bring the fluid to a supercritical or subcritical state, and the supercritical or subcritical state is obtained.
  • Performs a decomposition reaction of thermosetting resin with a subcritical fluid and after cooling the reactants in the reactor to room temperature, the reactor removes the reactants and recovers monomer and Z or oligomers.
  • Patent Document 1 Japanese Patent Application Laid-Open No. H10-087872
  • Patent Document 2 JP-A-10-024274
  • thermosetting resin is heated to decompose the thermosetting resin and then cooled to take out the reaction product
  • the thermosetting resin in the reaction tank is decomposed in a batch system. Therefore, the next thermosetting resin cannot be charged into the reaction tank until the cooling is completed. It takes a long time to heat and cool a reaction tank with a high heat capacity. Therefore, there is a problem that the productivity of the decomposition of the thermosetting resin and the recovery of the monomer and Z or the oligomer is low, and there is a problem that the energy is inefficient.
  • thermosetting resin obtained by crosslinking a copolymer of a polyhydric alcohol and an unsaturated organic acid such as an unsaturated polyester with a crosslinking agent such as styrene is used, for example, by using water as a supercritical or subcritical fluid to form an ester.
  • a crosslinking agent such as styrene
  • monomers such as polyhydric alcohols and unsaturated organic acids and z or oligomers, and oligomers which are copolymers of a crosslinking agent and an unsaturated organic acid are formed. Since they dissolve or disperse in water, it has been difficult to separate and recover these monomers and Z or oligomers from water with high yield, energy efficiency and high productivity.
  • the present invention has been made in view of the above points, and provides a method for decomposing a thermosetting resin capable of recovering a monomer and Z or an oligomer having high yield, high energy efficiency, and high productivity.
  • the aim is to provide a method.
  • the present invention includes the following inventions.
  • a monomer and Z or an oligomer which can be cooled without cooling the temperature in the reaction vessel to room temperature can also be taken out and recovered from the reaction vessel. Therefore, it is possible to prevent the decomposition product from remaining in the reaction tank for a long time and being further decomposed. Further, it is not necessary to perform heating again to evaporate and recover the monomer and Z or the oligomer. Further, it becomes possible to decompose the thermosetting resin not in a batch system but in a continuous system. As a result, it is possible to recover the monomer and Z or oligomer by decomposing the thermosetting resin having high yield, high energy efficiency and high productivity.
  • FIG. 1 is a schematic sectional view showing an example of an embodiment of the present invention.
  • FIG. 2 is a schematic sectional view showing another example of the embodiment of the present invention.
  • FIG. 3 is a schematic sectional view showing another example of the embodiment of the present invention.
  • FIG. 4 is a schematic sectional view showing another example of the embodiment of the present invention.
  • FIG. 5 is a schematic sectional view showing another example of the embodiment of the present invention.
  • FIG. 6 is a schematic sectional view showing another example of the embodiment of the present invention.
  • FIG. 7 is a schematic sectional view showing another example of the embodiment of the present invention.
  • FIG. 8 is a schematic sectional view showing another example of the embodiment of the present invention.
  • FIG. 9 is a schematic sectional view showing another example of the embodiment of the present invention.
  • FIG. 10 is a schematic sectional view showing another example of the embodiment of the present invention.
  • FIG. 11 is a schematic sectional view showing another example of the embodiment of the present invention.
  • FIG. 12 is a schematic sectional view showing another example of the embodiment of the present invention.
  • the present invention is directed to a thermosetting resin obtained by crosslinking a copolymer obtained by copolymerizing a polyhydric alcohol and an acid with a crosslinking agent.
  • polyhydric alcohols include, but are not limited to, glycols such as ethylene glycol, propylene glycol, diethylene glycol, and dipropylene glycol. These can be used in combination.
  • the acid examples include unsaturated organic acids such as aliphatic unsaturated polybasic acids (e.g., aliphatic unsaturated dibasic acids such as maleic anhydride, maleic acid, and fumaric acid) .1S Limited to these. It is not done. These can be used in combination. Further, the unsaturated organic acid and a saturated organic acid such as phthalic anhydride can be used in combination.
  • the cross-linking agent include a cross-linking agent having an unsaturated group such as styrene / methyl methacrylate, but are not limited thereto. These can be used in combination.
  • a portion derived from the crosslinking agent in the thermosetting resin is referred to as a “crosslinked portion”.
  • the crosslinked portion may be a portion derived from one crosslinker or a portion derived from an oligomer or polymer obtained by polymerizing a plurality of crosslinkers.
  • thermosetting resin in the present invention means a resin that is cured (crosslinked) mainly by heating or the like, but as long as the object of the present invention is achieved, curing (crosslinking) proceeds by heating or the like. Uncured or partially cured resin is also included.
  • thermosetting resin may be any type of resin as long as the object of the present invention is achieved. That is, there is no limitation on the type, structure and constituent components of the resin, the type, amount and degree of crosslinking of the crosslinking agent, the type and amount of the additive, and the like.
  • thermosetting resin examples include, for example, a copolymer obtained by reacting dalicol such as ethylene dalicol as a polyhydric alcohol with an unsaturated organic acid such as maleic acid as an acid, and styrene as a crosslinking agent. And unsaturated polyester resins cross-linked with a cross-linking agent having an unsaturated group.
  • the thermosetting resin is decomposed by using a fluid in a supercritical state or a subcritical state (hereinafter collectively referred to as a critical state! / ⁇ ⁇ ) as a reaction solvent.
  • the reaction is carried out by an ester exchange reaction.
  • the reaction can be performed by charging a thermosetting resin and a fluid into a reaction tank, heating the reaction tank, and maintaining the inside of the reaction tank at a temperature “pressure” at which the fluid becomes a critical state.
  • the fluid used for the reaction in the critical state include water. That is, supercritical water or subcritical water can be used in the present invention.
  • the supercritical water means water in a state exceeding a critical point (critical temperature: 374.4 ° C, critical pressure: 22.1 MPa).
  • Subcritical water means that the temperature and pressure of water are below the critical point of water, the temperature is 140 ° C or higher, and the pressure at that time is 0.36 MPa (saturated vapor pressure of 140 ° C) or higher.
  • the reaction conditions are preferably a temperature of 180 to 250 ° C, a pressure of 1.0 to 4.0 OMPa, and a reaction time of 1 to 4 hours.
  • the ratio of thermosetting resin to water in a critical state is 5 to 100% by mass.
  • a steal exchange reaction hydrolysis is possible.
  • a fluid in a critical state may contain an alkali salt. Since the hydrolysis reaction of the thermosetting resin is promoted by the alkali salt, the processing time can be shortened, and the processing cost can be reduced.
  • a thermosetting resin is treated with a fluid in a critical state, secondary decomposition may occur due to the acid catalyst effect of a polyhydric alcohol which is a decomposition product and an acid generated at the same time.
  • an alkali salt is contained in a fluid in a critical state, the acid can be neutralized by a base of the alkali salt, and thus the secondary decomposition can be suppressed.
  • alkali salt means a salt of an alkali metal or an alkaline earth metal which shows basic properties by reacting with an acid, for example, potassium hydroxide (KOH) or hydroxide potassium.
  • Alkali metal hydroxides such as sodium hydroxide (NaOH), calcium carbonate, barium carbonate, calcium hydroxide, magnesium carbonate, etc. Powers are not limited to these. Of these, alkali metal hydroxides are particularly preferred.
  • the content of the alkali salt in the fluid is not particularly limited. However, the content of the acid residue derived from the copolymer (polyester) and the content derived from the crosslinked portion, which are obtained by decomposing the thermosetting resin, are obtained. It is preferably at least 2 molar equivalents based on the theoretical number of moles of the acid residue contained in the compound comprising the residue. When the content of the alkali salt is less than 2 molar equivalents, the compound may be recovered.
  • the upper limit of the content of the alkali salt in the subcritical water is not particularly limited, but is preferably 10 molar equivalents or less.
  • the compound containing an acid residue derived from the copolymer and a residue derived from the crosslinked portion is a reaction product of a polybasic acid generated by hydrolysis of the copolymer (polyester) and the crosslinked portion.
  • the acid residue also includes a residue derived from a polymer obtained by polymerizing the above polybasic acid.
  • the polyester has a fumaric acid residue and the crosslinked portion is a styrene polymer
  • a styrene-fumaric acid copolymer is obtained as the compound.
  • the theoretical number of moles of the acid residue contained in the above compound is defined as the ratio of the number of the molecule of the acid residue obtained by analyzing the compound by NMR to the number of the molecule of the residue derived from the crosslinked portion, and the used crosslinking agent. And the estimated number of moles of acid residues present in the compound, determined from the amount of
  • thermosetting resin is subjected to a decomposition reaction using a fluid in a critical state in the reaction tank.
  • Can decompose monomers such as polyhydric alcohols (e.g., glycols) and acids (e.g., organic acids), as well as compounds that contain acid residues derived from these oligomers and copolymers and residues derived from cross-links. It can be obtained as a reaction product in good yield.
  • the recovery of the monomer and Z or the oligomer such as polyhydric alcohol and acid, which are the products of the decomposition reaction, is carried out after the completion of the decomposition reaction of the thermosetting resin or during the decomposition reaction by adjusting the temperature in the reaction tank to the monomer and the temperature.
  • a gas containing the monomer and Z or the oligomer is generated, and the gas can be recovered.
  • reaction liquid in which the decomposition reaction product and the fluid are mixed in the reaction vessel is maintained at a temperature at which the monomer and the Z or the oligomer evaporate, the reaction liquid monomer and the Z or the oligomer (and the fluid) evaporate, and this monomer And a gas containing Z or oligomers is generated. By recovering this gas, monomer and Z or oligomer can be recovered.
  • the temperature at which the monomer and Z or the oligomer evaporates is not particularly limited as long as the monomer and Z or the oligomer evaporate, and is appropriately determined depending on the type of the monomer and Z or the oligomer and the type of the fluid used. You can choose. For example, 15
  • the temperature is 0 to 230 ° C, preferably a temperature not lower than the boiling point of the monomer and Z or oligomer.
  • ethylene glycol and maleic anhydride are obtained as monomers
  • the boiling point of ethylene glycol is 197 ° C and the boiling point of maleic anhydride is 202 ° C, for example, it is 210 ° C or more.
  • the temperature may be lower than the boiling point of the monomer and / or the Z or the oligomer when the fluid azeotropes with the monomer and / or the Z or the oligomer. That is, the temperature may be equal to or higher than the azeotropic point of the monomer and Z or the oligomer and the fluid.
  • the upper limit of the temperature is not particularly set, but is preferably set to 230 ° C. or lower so that components other than the monomer and Z or oligomer (and fluid) to be recovered do not evaporate.
  • the recovery of the gas containing the monomer and Z or the oligomer in the present invention can be performed at any time as long as the temperature of the reaction solution is maintained at a temperature at which the monomer and Z or the oligomer evaporate.
  • a predetermined time for example, one hour.
  • the monomer and the z or oligomer are cooled until the mixture is cooled to room temperature, such as when the mixture of the decomposition product and the fluid in the reaction tank is cooled to room temperature and taken out of the reaction tank. It is possible to avoid staying in the reaction tank for a long time. Therefore, it is possible to prevent a situation in which the decomposition reaction proceeds further to destroy the monomer and Z or the oligomer, and to lower the recovery rate of the monomer and Z or the oligomer.
  • the gas containing the monomer and Z or oligomer generated as described above is usually a mixed gas of the monomer and Z or oligomer and the fluid used for the reaction.
  • the monomer and the Z or oligomer can be separated by the hydrodynamic force and recovered. This can be performed, for example, by providing a cooling device for cooling the gas in a recovery path (for example, a recovery pipe) of the gas discharged from the reaction vessel (see FIGS. 2 to 7 and 9 to 12). .
  • the temperature lower than the boiling point of the monomer and z or the oligomer and equal to or higher than the boiling point of the fluid can be appropriately selected depending on the type of the fluid used and the type of the monomer and Z or the oligomer. For example, 100 to 150 ° C. can be mentioned. For example, when the fluid is water and ethylene glycol (boiling point: 197 ° C) and maleic anhydride (boiling point: 202 ° C) are obtained as monomers, the temperature can be set to 100 to 150 ° C.
  • Adsorption means or membrane separation from the mixed gas of the above monomer and Z or oligomer and fluid Means can also be used to separate the monomer and Z or oligomer. This can be performed, for example, by providing an adsorption means or a membrane separation means in a recovery path (for example, a recovery pipe) of the gas discharged from the reactor (see FIG. 8). For example, by passing a mixed gas of monomer and Z or an oligomer and a fluid through an adsorbent (for example, one composed of an adsorbent such as a nitrogen adsorbent), the fluid in the gas is adsorbed by the adsorbent.
  • an adsorbent for example, one composed of an adsorbent such as a nitrogen adsorbent
  • the monomer and Z or oligomer in the mixed gas can be adsorbed by the adsorbing means, whereby the monomer and Z or oligomer can be recovered in a state separated by fluid force.
  • a membrane separation means for example, one consisting of a separation membrane such as a gas separation membrane
  • only the monomer and z or oligomer are not allowed to pass through the membrane in the mixed gas of monomer and Z or oligomer and the fluid.
  • the monomer and Z or oligomer are recovered in a state separated from the fluid by passing the membrane through the membrane or by passing the membrane only through the fluid without passing the monomer and Z or oligomer in the mixed gas through the membrane. can do.
  • adsorption separation or membrane separation more efficient separation can be performed than in the case of separation using a boiling point difference.
  • the reaction solution in the reaction tank is a highly viscous solution in which the concentration of decomposition products of thermosetting resin (for example, a compound containing an acid residue derived from a copolymer and a residue derived from a crosslinked portion) is high. It becomes. As a result, decomposition products may adhere to the inner wall and become scorched, making recovery difficult. Further, when a thermosetting resin containing an inorganic substance is decomposed, the inorganic substance precipitates.
  • thermosetting resin for example, a compound containing an acid residue derived from a copolymer and a residue derived from a crosslinked portion
  • the decomposition reaction can be performed while supplying a fluid to the reaction tank.
  • the decomposition reaction can be performed while maintaining the fluid amount in the reaction tank at a constant amount.
  • a fluid supply means for example, a liquid supply pump
  • the fluid supply means is adjusted so that the fluid volume in the reaction tank becomes a predetermined volume.
  • the amount of decrease in the fluid in the reaction tank can be ascertained from the amount of fluid collected in the collection container, and the fluid can be fed into the reaction tank according to the decrease.
  • the above method includes a fluid amount measuring means (for example, a flow rate sensor) for measuring a fluid amount in the reaction tank, and a fluid supply means (for example, a liquid supply means) for supplying a fluid to the reaction tank in accordance with the fluid amount.
  • a supply pump can also be provided in the reaction tank (see FIG. 12).
  • the reaction tank is provided with a liquid supply pump, a flow sensor for measuring the amount of fluid in the reaction tank, and a controller that receives a signal from the flow sensor and sends a signal to the liquid supply pump to control the liquid supply pump. .
  • the liquid supply pump is operated through the controller to feed the fluid into the reaction tank.
  • the supply of the fluid to the reaction tank by the fluid supply means is performed in order to efficiently separate the precipitated inorganic material monomer and z or oligomer in the reaction tank and to efficiently stir the reaction solution in the reaction tank.
  • the reaction is performed from the lower part of the reaction tank (the lower half of the reaction tank; the closer to the bottom of the reaction tank, the better).
  • the decomposition reaction can be performed with the fluid amount in the reaction tank being substantially constant. Further, it is possible to prevent the decomposition products and the like from adhering to the inner wall and burning. Further, the monomer and Z or oligomer attached to the precipitated inorganic substance in the reaction tank can be separated and dissolved in the fluid. This monomer and Z or oligomer move to the upper part of the reaction tank together with the fluid and evaporate, so that they can be recovered. Therefore, the recovery rate of the monomer and Z or oligomer can be increased. The fluid from which the monomer and Z or oligomer forces have also been separated can be released, but can be circulated and recycled by returning to the reactor.
  • a means for returning the fluid in the gas discharged from the reaction tank to the reaction tank for example, a return pipe, a pump, etc.
  • the reaction tank for example, a return pipe, a pump, etc.
  • the fluid is liquefied and liquid in a state where it can be returned as a gas, and is pressurized as necessary and returned to the reaction tank.
  • the fluid When the fluid is returned to the reaction tank in a liquid state, it can be efficiently circulated.
  • a method of squeezing the fluid for example, a method of cooling the fluid to a temperature equal to or lower than its boiling point using a cooling device or the like can be mentioned (see FIGS. 5, 7, and 10).
  • the returned fluid can be used for stirring the reaction liquid in the reaction tank. This can be done, for example, by positioning the tip of the end of the fluid return pipe connected to the reaction tank below the level of the reaction liquid (see FIG. 4).
  • the recovery of the produced monomer and Z or oligomer in the present invention can be carried out even during the decomposition reaction which is carried out by force after the completion of the decomposition reaction of the thermosetting resin.
  • the generated monomer and Z or oligomer are recovered after the decomposition reaction is completed, the monomer and Z or oligomer generated at the beginning of the decomposition reaction are secondarily decomposed, and the recovery rate of monomer and Z or oligomer decreases. There is a risk of doing so.
  • the generated monomer and Z or oligomer can be immediately discharged to the high-temperature reactor and recovered.
  • the embodiment of the present invention for recovering the generated monomer and Z or oligomer while performing the decomposition reaction is performed, for example, using an apparatus in which a closed system is formed as shown in FIGS. 3 to 7 and 10 described below. It can be carried out.
  • thermosetting resin in the reaction tank gradually decreases.
  • the used fluid also flows out as a gas, so that the amount of fluid in the reaction tank also decreases. Therefore, a mixed slurry of a liquid fluid used in a critical state and a pulverized thermosetting resin can be supplied to the reaction tank. This can be performed, for example, by providing a means (pump, pipe, etc.) for supplying the mixed slurry in the reaction tank (see FIGS. 6 and 7).
  • the fluid separated from the monomer and Z or the oligomer as described above can be returned to the reaction vessel, and the thermosetting resin can be supplied to the reaction vessel.
  • the operation of decomposing the thermosetting resin to recover the monomer and the Z or oligomer can be continued for a long time. That is, the decomposition of the thermosetting resin and the recovery of the monomer and Z or the oligomer can be performed not as a batch process but as a continuous process. Therefore, decomposition of the thermosetting resin and recovery of the monomer and Z or oligomer can be performed with high productivity. Further, the ratio of the time required for heating up when starting the operation and the ratio of the cooling time required for finishing the operation can be reduced, so that production efficiency can be improved.
  • the fluid in the critical state must be alkaline.
  • the decomposition reaction can be performed while supplying the salt.
  • the decomposition reaction is performed while maintaining the pH of the fluid in the reaction tank within a range that does not adversely affect the acid (for example, alkaline, preferably pH is in the range of 10 to 14, particularly preferably in the range of 13 to 14). be able to. Therefore, the decomposition of the thermosetting resin and the recovery of the monomer and Z or oligomer can be performed with high productivity.
  • an alkali salt supply means for example, a pump
  • a predetermined amount of the alkali salt is fed into the reaction tank according to the measured or predicted consumption of the alkali salt by the decomposition reaction.
  • the above method comprises a pH measuring means (for example, a pH sensor) for measuring the pH of the fluid in the reaction vessel, and an alkali salt supply means (supplying an alkali salt to the reaction vessel according to the pH).
  • a pump can be provided in the reaction tank (see FIG. 10).
  • a pH controller is provided in the reaction tank.
  • a pump is operated through a pH controller to feed the alkali salt solution into the reaction tank.
  • the pH of the fluid in the reaction tank Can be checked at any time, and an alkali salt can be supplied into the reaction tank at any time according to the pH. Therefore, the pH of the fluid in the reaction tank can always be maintained within a predetermined range, so that the thermosetting resin is efficiently decomposed over a long period of time, and the recovery of the monomer and Z or oligomer is reduced. Can be enhanced.
  • the fluid from which the monomer and the Z or oligomer have been removed can be returned to the reaction vessel, and the alkali salt can be supplied to the reaction vessel.
  • This can be performed, for example, by providing a means for mixing and storing the fluid returned to the reaction tank and the alkali salt (such as a storage tank) and the above-described alkali salt supply means in the reaction tank (see FIG. 10).
  • a means for mixing and storing the fluid returned to the reaction tank and the alkali salt such as a storage tank
  • the above-described alkali salt supply means in the reaction tank (see FIG. 10).
  • FIG. 1 shows an example of an embodiment of the present invention.
  • a recovery port 6 is provided at the top of the pressure-resistant reaction tank 1 and a discharge port 7 is provided at the bottom.
  • the recovery port 6 is provided with an on-off valve 8 for releasing pressure
  • the outlet 7 is provided with an on-off valve 9 for discharging.
  • a heating device 10 formed by a heat exchanger or the like is provided around the reaction tank 1. By circulating the heat medium in the heating device 10 by the pump 11, the inside of the reaction tank 1 can be heated while controlling it to a predetermined temperature.
  • thermosetting resin 2 and the fluid 3 are charged into the reaction tank 1, the inside of the reaction tank 1 is sealed and heated by the heating device 10, and the inside of the reaction tank 1 is heated.
  • the temperature can be maintained at a temperature at which the fluid 3 becomes a critical state, and the transesterification reaction of the thermosetting resin 2 using the fluid 3 in the critical state as a reaction solvent.
  • the heating device 10 is controlled to maintain the temperature in the reaction tank 1 at a temperature at which the monomer and / or Z or the oligomer evaporates (for example, 150 to 230 ° C.), and the on-off valve 8 of the recovery port 6 is opened.
  • the recovery port 6 of the reaction vessel 1 is opened while maintaining the temperature at which the monomer and Z or the oligomer evaporate (for example, a temperature higher than their boiling point), the decomposition reaction products in the reaction vessel 1 are removed.
  • Reaction liquid power mixed with fluid 3 Monomer and Z or oligomer are vaporized Then, the gas containing the monomer and Z or the oligomer is discharged from the recovery port 6. By recovering this gas, monomer and Z or oligomer can be recovered.
  • Reaction products such as a polymer of a cross-linking agent (for example, styrene) and an acid (for example, phthalic acid), undecomposed resin, and the like remaining in the reaction tank 1 after recovering the gas are discharged from the on-off valve 9 at the outlet 7. , And can be recovered by discharging from the reaction tank 1.
  • FIG. 2 shows another example of the embodiment of the present invention.
  • a collection pipe 13 is connected to the collection port 6 of the reaction tank 1, and a cooling device 14 is provided in the collection pipe 13.
  • the cooling device 14 can circulate a refrigerant or the like to cool the gas passing through the collection pipe 13.
  • the rest of the configuration is the same as the device in Fig. 1.
  • thermosetting resin 2 is decomposed by using the fluid 3 in the critical state in the reaction tank 1, and then the temperature in the reaction tank 1 is changed to the monomer and the temperature.
  • the on-off valve 8 of the recovery port 6 is opened while maintaining the temperature at which Z or the oligomer evaporates, the reaction liquid power in which the decomposition reaction product and the fluid 3 in the reaction tank 1 are mixed evaporates the monomer and Z or oligomer.
  • the boiling point of the fluid 3 such as water used in the critical state is generally lower than the temperature at which the monomer and the Z or oligomer evaporate, the mixed gas of the monomer and the Z or oligomer gas and the gas of the fluid 3 is collected at the recovery port 6. Is discharged from By setting the cooling device 14 in a temperature range below the boiling point of the monomer, Z or oligomer and at least the boiling point of the fluid 3 (for example, 100 to 150 ° C), the monomer and Z or oligomer can be cooled.
  • a collection vessel 15 is disposed at the end of the collection pipe 13, and the liquefied monomer and Z or oligomer 4 flow into the collection vessel 15 and are collected. Fluid 3 may be discharged as a gas.
  • FIG. 3 shows another example of the embodiment of the present invention.
  • a fluid return pipe 17 is provided between the collection vessel 15 and the reaction tank 1.
  • a pump 18 is provided in the fluid return pipe 17, and one end of the fluid return pipe 17 is air-tightly connected to an upper portion of the reaction tank 1.
  • the other end of the fluid return pipe 17 is air-tightly connected to a position above the liquid surface of the liquid monomer and Z or oligomer 4 in the recovery container 15.
  • the collection container 15 is formed in a closed structure.
  • the heating device 10 has the same force as that of the device shown in FIG.
  • the gas coming out of the recovery port 6 of the reaction tank 1 is cooled by the cooling device 14 so that the monomer and Z or the oligomer 4 are liquidized and stored. It can be collected in a container 15.
  • the fluid 3 flows into the collection container 15 as a gas.
  • the function of the pump 18 the fluid 3 in the collection container 15 is sucked in a gas state into the fluid return pipe 17 and returned to the reaction tank 1.
  • a closed system is formed between the reaction tank 1 and the container 15 through the recovery pipe 13 and the fluid return pipe 17 even when the on-off valve 8 of the recovery port 6 is kept open. Therefore, the high pressure in the reaction tank 1 can be maintained.
  • a gas is discharged from the recovery port 6 of the reaction tank 1 while the thermosetting resin 2 is decomposed in the reaction tank 1 under high-temperature and high-pressure conditions in a critical state, and the gas is cooled by the cooling device 14. Then, the monomer and Z or the oligomer 4 can be separated and the liquid monomer and Z or the oligomer 4 can be separated and collected in the collection container 15. At the same time, the gas of fluid 3 can be returned from the recovery vessel 15 to the reaction tank 1 through the fluid return pipe 17.
  • the fluid 3 can be recovered by discharging from the reaction tank 1, so that secondary decomposition can be prevented and the recovery rate can be improved. Since the fluid 3 is constantly returned to the reaction vessel 1, the amount of the fluid 3 in the critical state in the reaction vessel 1 decreases, and the efficiency of the decomposition reaction of the thermosetting resin 2 decreases. Can be prevented. Further, even if the monomer and Z or the oligomer remain in the fluid 3 without being separated, the monomer and Z or the oligomer are returned to the reaction tank 1 so that they can be recovered again.
  • FIG. 4 shows another example of the embodiment of the present invention. Connected to reaction tank 1 of fluid return pipe 17 The end of the continued end is positioned below the liquid level of the mixed liquid of the critical state fluid 3 and the thermosetting resin 2 in the reaction tank 1.
  • the other configuration is the same as that of the apparatus shown in FIG.
  • the fluid 3 is returned in a gaseous state through a fluid return pipe 17 so as to be blown out into a mixture of the fluid 3 and the thermosetting resin 2 in a critical state.
  • the mixed fluid of the fluid 3 and the thermosetting resin 2 in the critical state can be stirred by the returned fluid 3. Therefore, the efficiency of the decomposition reaction of the thermosetting resin 2 can be increased.
  • the pressure inside the reaction tank 1 in which the thermosetting resin 2 undergoes a decomposition reaction with the fluid 3 in a critical state becomes high pressure. It is difficult to provide a stirring mechanism such as a rotary blade in the reaction tank 1 so that the high pressure is maintained, which makes the apparatus complicated and expensive.
  • the fluid 3 returned as described above the inside of the reaction tank 1 can be stirred without providing a stirring mechanism.
  • FIG. 5 shows another example of the embodiment of the present invention.
  • a collection pipe 13 provided with the cooling device 14 described above is connected to the collection port 6 of the reaction tank 1.
  • a fluid cooling device 20 is provided farther from the recovery port 6 than the cooling device 14 of the recovery pipe 13.
  • a refrigerant or the like is circulated in the fluid cooling device 20, and the gas passing through the collection pipe 13 can be cooled at a temperature equal to or lower than the boiling point of the fluid 3.
  • a recovery branch pipe 21 is branched and connected to the recovery pipe 13, and the recovery branch pipe 21 is connected to the recovery vessel 15.
  • the end of the recovery pipe 13 opposite to the recovery port 6 is connected to a fluid recovery container 22.
  • One end of the fluid return pipe 17 is connected to the bottom of the fluid recovery container 22, and the other end of the fluid return pipe 17 is connected to the upper part of the reaction tank 1.
  • the fluid return pipe 17 is provided with a pump 23 for liquid supply.
  • the recovery pipe 13 is airtightly connected to the reaction tank 1, the recovery vessel 15, and the fluid recovery vessel 22, and the fluid return pipe 17 is airtightly connected to the reaction tank 1 and the fluid recovery vessel 22. Therefore, a closed system that can maintain the high pressure in the reaction tank 1 even when the on-off valve 8 of the recovery port 6 is kept open is formed.
  • Other configurations are the same as those of the apparatus in FIG.
  • the inside of the reaction tank 1 is kept under a high temperature and high pressure condition where the fluid 3 becomes a critical state.
  • the decomposition reaction of the thermosetting resin 2 can be performed in the above.
  • the gas flowing out of the recovery port 6 of the reaction tank 1 to the recovery pipe 13 is cooled by the cooling device 14 to a temperature lower than the boiling point of the monomer and Z or the oligomer and higher than the boiling point of the fluid 3 so that the gas in the gas is cooled.
  • Monomer and Z or oligo The mer 4 can be liquefied and collected in the collection container 15 through the collection branch pipe 21.
  • the fluid 3 passes through the cooling pipe 14 of the recovery pipe 13 as a gas.
  • the fluid 3 When the fluid 3 is cooled to a temperature equal to or lower than the boiling point of the fluid 3 by the fluid cooling device 20, the fluid 3 becomes liquid and flows into the fluid container 22.
  • the liquid fluid 3 in the fluid recovery container 22 is pressurized by the pump 23 and returned to the reaction tank 1 through the fluid return pipe 17.
  • the gas flows from the recovery port 6 of the reaction tank 1 Then, the gas is cooled by the cooling device 14 to liquefy the monomer and Z or the oligomer 4, and can be separated and collected in the collection container 15.
  • the fluid 3 is cooled and liquefied by the fluid cooling device 20, and the liquid fluid 3 can be returned from the fluid recovery container 22 to the reaction tank 1 through the fluid return pipe 17.
  • FIG. 6 shows another example of the embodiment of the present invention.
  • One end of a collection pipe 13 provided with a cooling device 14 is connected to the collection port 6 of the reaction tank 1, and the other end of the collection pipe 13 is connected to a collection container 15.
  • a liquid supply pipe 25 is connected to the upper part of the reaction tank 1, and the liquid supply pipe 25 is provided with a liquid supply pump 26.
  • the collection pipe 13 is airtightly connected to the reaction tank 1 and the collection vessel 15, respectively. Further, the liquid supply pump 26 keeps the liquid supply pipe 25 airtight. Therefore, a closed system capable of maintaining the high pressure in the reaction tank 1 even when the on-off valve 8 of the recovery port 6 is kept open is formed.
  • Other configurations are the same as those of the apparatus in FIG.
  • the reaction tank 1 is kept under high temperature and high pressure conditions where the fluid 3 becomes critical.
  • the decomposition reaction of the thermosetting resin 2 can be carried out. Further, by cooling the gas flowing out of the recovery port 6 of the reaction tank 1 into the recovery pipe 13 with the cooling device 14, the monomer and Z or the oligomer 14 are liquefied and collected in the recovery vessel 15 through the recovery pipe 13. Can be. As described above, while the thermosetting resin 2 is decomposed in the reaction tank 1 and the monomer and Z or the oligomer 4 of the decomposition product are collected from the recovery port 6, the thermosetting resin 2 in the reaction tank 1 is gradually reduced.
  • thermosetting resin 2 is decomposed in the reaction tank 1 to decompose the thermosetting resin 2 for a long time.
  • the operation of recovering the monomer and Z or oligomer 4 can be continued. Accordingly, the production efficiency can be improved by reducing the ratio of the time required for raising the temperature when starting the operation and the ratio of the cooling time required for ending the operation.
  • thermosetting resin 2 In addition to supplying the mixed slurry of the liquid fluid 3 and the thermosetting resin 2 as described above, only the fluid such as water used in the critical state is supplied in the liquid state in the liquid state.
  • the decomposition reaction of the thermosetting resin 2 may be performed in the reaction tank 1 while supplying from the reaction tank 1.
  • the monomer and Z or oligomer 14 of the decomposition product are recovered from the recovery port 6 while decomposing the thermosetting resin 2 in the reaction tank 1
  • the fluid 3 in the critical state also flows out as a gas from the recovery port 6. Then, the amount of the fluid 3 in the reaction tank 1 decreases, and the efficiency of the decomposition reaction of the thermosetting resin gradually decreases.
  • thermosetting resin 2 By performing the decomposition reaction of the thermosetting resin 2 in the reaction tank 1 while supplying the fluid 3, the decomposition reaction of the thermosetting resin 2 can be maintained at a high efficiency. At this time, a liquid supply pump 26 having a low capacity and a simple structure can be used as compared with the case where a mixed slurry of the fluid 3 and the thermosetting resin 2 is supplied.
  • FIG. 7 shows another example of the embodiment of the present invention.
  • a recovery pipe 13 provided with a cooling device 14 and a fluid cooling device 20 is connected to the recovery port 6 of the reaction tank 1.
  • a collection branch pipe 21 branched and connected to the collection pipe 13 is connected to the collection container 15.
  • the end of the collection pipe 13 is connected to a fluid collection container 22.
  • a mixer tank 28 is connected to the upper part of the reaction tank 1 by a supply pipe 29.
  • One end of the fluid return pipe 17 is connected to the bottom of the fluid recovery container 22, and the other end of the fluid return pipe 17 is connected to the mixer tank 28.
  • the fluid return pipe 17 is provided with a pump 23 for liquid transport.
  • the mixer tank 28 is configured to mix and store the fluid 3 and the pulverized thermosetting resin 2.
  • the collection pipe 13 is airtight in the reaction tank 1, the collection vessel 15, and the fluid collection vessel 22, the fluid return pipe 17 is in the fluid collection vessel 22 and the mixer tank 28, and the supply pipe 29 of the mixer tank 28 is in the reaction tank 1. Connect to It is. Therefore, a closed system capable of maintaining the high pressure in the reaction tank 1 even when the on-off valve 8 of the recovery port 6 is kept open is formed.
  • Other configurations are the same as those of the apparatus in FIG.
  • the reaction tank 1 is placed under high-temperature and high-pressure conditions where the fluid 3 becomes critical.
  • the decomposition reaction of the thermosetting resin 2 can be carried out.
  • the monomer and Z or oligomer 4 in the gas can be liquefied and recovered in the recovery container 15. it can.
  • the fluid 3 in the gas with the fluid cooling device 20 the fluid 3 can be liquefied and collected in the fluid collection container 22.
  • the liquid fluid 3 in the fluid recovery container 22 is pressurized by the pump 23 and returned to the mixer tank 28 through the fluid return pipe 17.
  • the fluid 3 returned to the mixer tank 28 in this way is mixed with the pulverized thermosetting resin 2, and the mixed slurry is supplied to the reaction tank 1 through the supply pipe 29.
  • the monomer and the Z or the oligomer are returned to the reaction tank 1, so that the recovery is performed again. be able to.
  • FIG. 8 shows another example of the embodiment of the present invention.
  • a collection pipe 13 is connected to the collection port 6 of the reaction tank 1, and a separation and collection device 31 is provided in the collection pipe 13.
  • the separation / recovery device 31 is provided with an adsorbing means such as an adsorbent such as a nitrogen adsorbent, or a membrane separating means such as a gas separation membrane.
  • an adsorbing means such as an adsorbent such as a nitrogen adsorbent, or a membrane separating means such as a gas separation membrane.
  • thermosetting resin 2 is decomposed using the fluid 3 in a critical state in the reaction tank 1
  • the temperature in the reaction tank 1 is increased to evaporate the monomer and Z or oligomer.
  • the open / close valve 8 of the recovery port 6 is opened while maintaining the temperature at a low temperature
  • the mixture of the decomposition reaction product and the fluid 3 in the reaction tank 1 converts the monomer and Z or oligomer gas into water used in a critical state.
  • Vapor containing gas such as fluid 3 comes out of recovery port 6. If the separation and recovery device 31 is provided with an adsorption means, the monomer and Z or oligomer and the fluid 3 are mixed.
  • the gas of the fluid 3 in the mixed gas can be adsorbed by the adsorption means, so that the monomer and Z or the oligomer 4 coming out of the recovery pipe 13 can be fluidized. It can be collected separately from 3.
  • the monomer and the Z or oligomer 4 can be recovered in a state separated from the fluid 3 by adsorbing the gas of the monomer and the Z or oligomer 4 in the mixed gas by the adsorption means.
  • the separation and recovery device 31 is provided with a membrane separation means, the gas of the fluid 3 in the mixed gas does not pass through the membrane, and only the monomer and Z or oligomer gases can pass through the membrane.
  • the monomer and / or oligomer coming out of the recovery pipe 13 can be recovered in a state separated from the fluid 3.
  • the monomer and Z or oligomer 4 in a state separated from the fluid 3 can be separated from the fluid 3 by passing only the gas of the fluid 3 through the membrane without passing the gas of the monomer and Z or the oligomer 4 in the mixed gas through the membrane. Can be recovered.
  • separating the monomer and Z or oligomer from the fluid 3 by means of adsorption separation or membrane separation more efficient separation can be performed than in the case of separation by fractional distillation utilizing a difference in boiling point.
  • FIG. 9 shows another example of the embodiment of the present invention.
  • a plurality of reaction vessels 1 are used.
  • a collection pipe 13 is connected to a recovery port 6 and a cooling device 14 is provided in the recovery pipe 13 as in FIG.
  • the other end of the reaction tank 1b has a recovery pipe 13 connected to the recovery port 6 thereof.
  • the recovery pipe 13 is provided with a heat exchanger 33 instead of the cooling device 14.
  • a heating device 10 formed by a heat medium pipe 34 and the like is provided around each of the reaction tanks la and lb.
  • the heat medium While heating the heat medium in the heat medium pipe 34 with the heater 135, the heat medium is circulated along the heat medium pipe 34 by the pump 11, thereby heating the reaction tank 1 while controlling the inside of the reaction tank 1 to a predetermined temperature. be able to.
  • a part of the heat medium pipe 34 of the heating device 10 provided in one of the reaction vessels la is disposed as a heat exchange section 36 in the heat exchange 33 provided in the other reaction vessel lb.
  • the heat exchange section 36 is set at a position upstream of the heater 35 in the flow of the heat medium in the heat medium pipe 34.
  • Other configurations are the same as those of the apparatus in FIG.
  • thermosetting resin 2 can be decomposed by using the fluid 3 in a critical state in each of the reaction tanks la and lb. And thermosetting in one reaction tank la. After the decomposition reaction of fat 2 is completed, the temperature in this reaction tank la is maintained at a temperature at which the monomer and Z or oligomer generated by the decomposition of thermosetting resin 2 evaporate, and the on-off valve of the recovery port 6 is opened. When 8 is opened, the mixture force of the decomposition reaction product and fluid 3 in reaction tank 1 evaporates monomer and Z or oligomer and fluid 3, and the mixed gas of monomer and Z or oligomer gas and fluid 3 gas collects Come out of 6.
  • the mixed gas is cooled by the cooling device 14 at a temperature lower than the boiling point of the monomer and Z or the oligomer and higher than the boiling point of the fluid 3.
  • the monomer and Z or oligomer are liquefied and fractionated by a gaseous fluid with three forces, and the liquefied monomer and Z or oligomer 4 flow into the circulation container 15 from the collection pipe 13 and are collected.
  • the on-off valve 8 is opened and a gas mixture of the monomer and the gas of Z or oligomer and the gas of the fluid 3 comes out from the recovery port 6, the mixed gas is exchanged by heat exchange.
  • the monomer and Z or oligomer are liquefied and fractionated from the gaseous fluid 3, and the liquefied monomer and Z or oligomer 4 flow into the collection vessel 15 from the collection pipe 13 and are collected.
  • the heat exchange section 36 of the heating medium pipe 34 of the heating device 10 provided in one reaction vessel la is arranged. Accordingly, in the heat exchanger 33, heat is exchanged between the mixed gas of the fluid 3 and the monomer or Z or oligomer coming out of the reaction vessel lb and the heat exchange section 36, and the heat exchange in the heat medium pipe 34 is performed. The medium is heated by this mixture. Then, the latent heat generated when the monomer and the Z or oligomer in the mixed gas are liquefied is recovered by the heat medium.
  • the heat generated when the monomer and Z or oligomer in the mixed gas are cooled and liquefied can be recovered by the heat medium in the heat medium pipe 34. Further, in heating this heating medium with the heater 35 to raise the temperature inside the reaction tank la to a temperature suitable for the decomposition reaction of the thermosetting resin 2, the amount of heating heat by the heater 35 is small and energy Efficient operation can be performed.
  • the mixed gas power of the fluid 3 and the monomer and Z or the oligomer coming out of the reaction vessel lb also recovers heat.
  • FIG. 10 shows another example of the embodiment of the present invention.
  • a fluid storage tank 40 is connected to the upper part of the reaction tank 1 by a supply pipe 41.
  • One end of the fluid return pipe 17 is connected to the bottom of the fluid recovery container 22, and the other end is connected to the fluid storage tank 40.
  • the recovery pipe 13 is connected to the reaction tank 1 and the storage container 15 and the fluid recovery vessel 22, the fluid return pipe 17 is connected to the fluid recovery vessel 22 and the fluid storage tank 40, and the supply pipe 41 of the fluid storage tank 40 is connected to the reaction tank 1.
  • the supply pipe 41 is provided with a pump 42 for feeding liquid.
  • An alkaline salt storage tank 43 is connected to the upper part of the fluid storage tank 40 by a supply pipe 44.
  • the fluid storage tank 40 is configured to mix and store the fluid 3 and an alkali salt.
  • the reaction tank 1 is provided with a pH sensor 45 for measuring the pH of the fluid 3 in the reaction tank 1, and a pH controller 46 for receiving a signal from the pH sensor 45 and sending a signal to the pump 42 to control the pump 42. Let's be!
  • the pH controller 46 activates the S-pump 42, and the mixture of the fluid 3 and the alkali salt stored in the fluid storage tank 40 is discharged. Feed into reaction tank 1.
  • Other configurations are the same as those of the apparatus in FIG.
  • the reaction tank 1 is kept under high-temperature and high-pressure conditions under which the fluid 3 becomes critical.
  • a decomposition reaction of the thermosetting resin 2 can be performed.
  • the gas flowing out of the recovery port 6 of the reaction tank 1 into the recovery pipe 13 is cooled by the cooling device 14, so that the monomer and Z or the oligomer 14 in the gas can be liquefied and recovered in the recovery container 15. it can.
  • the fluid 3 in the gas with the fluid cooling device 20, the fluid 3 can be liquefied and collected in the fluid collection container 22.
  • the liquid fluid 3 in the fluid recovery container 22 is pressurized by the pump 23 and returned to the liquid storage tank 40 through the fluid return pipe 17.
  • the alkali salt is mixed with the fluid 3 returned to the liquid storage tank 40 as described above.
  • the P H sensor-45 provided in the reaction vessel 1 pH of the fluid 3 in the reaction tank 1 can be checked at any time.
  • the pump 42 is operated by the pH controller 46 until the pH of the fluid 3 in the reaction tank 1 reaches the predetermined value, and the alkali salt in the liquid storage tank 40 is discharged.
  • the mixed fluid 3 can be supplied to the reaction tank 1 through the supply pipe 41.
  • the pH of the fluid in the reaction tank is checked at any time, and an alkali salt is supplied into the reaction tank at any time according to the pH. Can be paid.
  • the pH of the fluid 3 in the reaction tank 1 can be always maintained at a predetermined value (for example, alkaline). Therefore, the thermosetting resin 2 can be efficiently decomposed over a long time, and the recovery rate of the monomer and the Z or oligomer 4 can be increased. Further, since the fluid other than the monomer and the Z or the oligomer can be circulated, the monomer, the Z or the oligomer can be prevented from being further decomposed by the alkali salt.
  • FIG. 11 shows another example of the embodiment of the present invention.
  • a liquid supply pipe 51 is connected to a lower portion of the reaction tank 1, and a liquid supply pump 52 is provided in the liquid supply pipe 51.
  • the rest of the configuration is the same as the device in FIG.
  • FIG. 12 shows another example of the embodiment of the present invention.
  • the reaction tank 1 has a flow sensor 53 that measures the amount of the fluid 3 in the reaction tank 1 and a controller 54 that receives a signal from the flow sensor 53 and sends a signal to the liquid supply pump 52 to control the liquid supply pump 52. Is provided.
  • the controller 54 activates the liquid supply pump 52 according to the amount of fluid in the reaction tank 1 measured by the flow sensor 53, and sends the fluid 3 to the reaction tank 1 through the liquid supply pipe 51.
  • Other configurations are the same as those of the apparatus in FIG.
  • thermosetting resin 2 is decomposed by using the fluid 3 in the critical state in the reaction tank 1
  • the monomer and Z or The oligomer 14 can be collected and collected in the collection container 15.
  • the fluid 3 can be supplied to the lower part of the reaction tank 1 from the liquid supply pipe 51 by the liquid supply pump 52.
  • the on-off valve on the upper part of the reaction tank is opened to recover the vapor containing the monomer and Z or the oligomer, so that the fluid can be fed from the lower part of the reaction tank. This makes it possible to keep the amount of fluid in the reaction tank almost constant.
  • the amount of the fluid 3 in the reaction tank 1 can be checked at any time by the flow rate sensor 53 provided in the reaction tank 1.
  • the controller 54 operates the liquid supply pump 52 until the amount of fluid in the reaction tank 1 reaches the predetermined amount. Fluid 3 can be supplied to the lower part. That is, the amount of fluid in the reaction tank is checked at any time, and according to the amount, the reaction tank is A fluid can be supplied into the inside at any time. Thus, the amount of fluid in the reaction tank can always be kept almost constant.
  • thermosetting resin even if the decomposition of the thermosetting resin progresses, it is possible to suppress the increase in the concentration of the decomposition solution and prevent the decomposition products from adhering to the inner wall and burning. You. Further, the inorganic substance precipitated at the lower part of the reaction tank is washed, and the attached monomer and Z or oligomer can be separated and dissolved in the fluid. Thus, the monomer and
  • the yield of Z or oligomer can be increased.
  • the glycol recovery rate, the organic acid recovery rate, and the generation rate of a compound containing an acid residue derived from polyester and a residue derived from a crosslinked portion (hereinafter, also referred to as “compound [1]”) are shown. It was determined as follows.
  • the glycol recovery was calculated from the following equation.
  • Glycol recovery rate (%) Quantitative result of glycol monomer component Z Estimated content of dalicol monomer component in thermosetting resin X 100
  • the organic acid recovery rate was calculated from the following equation.
  • Organic acid recovery rate (%) Quantification result of organic acid monomer component z Estimated content of organic acid monomer component in thermosetting resin X 100
  • Formation rate (%) of compound [1] (dry weight of precipitate formed by adding hydrochloric acid to water-soluble component after decomposition treatment to adjust pH to about 4) / (decomposed and obtained (Estimated content of compound [1], determined from the ratio of the number of molecules of acid residues and residues derived from the crosslinks obtained by analyzing the compound by NMR and the amount of the crosslinker forming material used) X 100
  • thermosetting resin unsaturated polyester resin
  • a varnish prepared by blending 65% by weight of propylene glycol, a glycol that is a polyhydric alcohol, 1% by weight of neopentyl glycol, 25% by weight of dipropylene glycol, and maleic anhydride, an unsaturated organic acid, in an amount equivalent to the total amount of glycol.
  • styrene and a varnish were added in an equivalent amount as a crosslinking agent.
  • 165 parts by mass of calcium carbonate and 90 parts by mass of glass fiber were blended with 100 parts by mass of a mixture of varnish and styrene, and the mixture was cured to obtain the thermosetting resin.
  • thermosetting resin 40 kg of the above thermosetting resin and 160 kg of a 0.72 mol ZL aqueous NaOH solution were charged into the reactor shown in FIG. Thereafter, the temperature of the reaction tank containing the thermosetting resin and the aqueous NaOH solution was raised to 230 ° C, the water in the reaction tank was brought into a subcritical state, and the thermosetting resin was decomposed for 4 hours. Was. After the heating device was turned off, the vapor containing monomer and Z or oligomer was extracted through the recovery pipe by opening the on-off valve at the recovery port for 1 hour while maintaining the temperature at about 230 ° C. The steam containing the monomer and Z or the oligomer was recovered by flowing the steam into the recovery vessel while passing through room temperature tap water and passing through the cooled heat exchanger while cooling.
  • the glycol monomer component in the water-soluble component of the recovered fluid was quantified by gas chromatography analysis (GC analysis), and the glycol recovery was calculated.
  • the organic acid monomer component was quantified by ion exchange chromatography analysis (IC analysis) to calculate the organic acid recovery rate.
  • the water-soluble component was acidified with hydrochloric acid, the resulting precipitate was separated and recovered with an organic solvent, the mass was measured, and the mass was compared with the mass of the thermosetting resin. And the production rate of the compound containing the residue derived from the crosslinked portion (compound [1] in the table) was calculated. The results are shown in Table 1.

Abstract

 本発明は、収率高く、またエネルギー効率高く、さらに生産性高く、モノマー及び/又はオリゴマーを回収することができる熱硬化性樹脂の分解方法を提供する。詳細には、多価アルコール及び酸よりなるコポリマーを架橋剤で架橋した熱硬化性樹脂を、反応槽内で超臨界又は亜臨界流体を用いてモノマー及び/又はオリゴマーに分解すること;該反応槽内の反応液を該モノマー及び/又はオリゴマーが蒸発する温度に保持することによって、該モノマー及び/又はオリゴマーを含む気体を発生させること;及び該気体を回収することによって、該モノマー及び/又はオリゴマーを回収すること;を含む、熱硬化性樹脂の分解方法を提供する。

Description

明 細 書
熱硬化性樹脂の分解方法
技術分野
[0001] 本特許出願は、日本国特許出願第 2004— 128814号について優先権を主張する ものであり、ここに参照することによって、その全体が本明細書中へ組み込まれるもの とする。
本発明は、超臨界又は亜臨界流体を用いて多価アルコール及び酸よりなるコポリ マーを架橋剤で架橋した熱硬化性榭脂を分解し、分解生成物からモノマー及び Z 又はオリゴマーを回収する方法に関する。
背景技術
[0002] 熱硬化性榭脂を超臨界流体又は亜臨界流体を反応溶媒として用いて加水分解し 、生成されたモノマー及び Z又はオリゴマーを回収することによって、これらを熱硬化 性榭脂の原料として再利用することが行われている。
[0003] 例えば、反応槽に熱硬化性榭脂と流体を仕込み、反応槽を密閉して超臨界温度又 は亜臨界温度に加熱することによって流体を超臨界又は亜臨界状態にし、超臨界又 は亜臨界流体によって熱硬化性榭脂の分解反応を行 、、そして反応槽内の反応物 を常温にまで冷却した後、反応槽カも反応物を取り出して、モノマー及び Z又はオリ ゴマーの回収を行うことが提案されている(例えば、特許文献 1、特許文献 2等参照) 特許文献 1 :特開平 10— 087872号公報
特許文献 2 :特開平 10— 024274号公報
発明の開示
発明が解決しょうとする課題
[0004] しかし、上記のように、超臨界温度又は亜臨界温度に加熱して反応槽内で熱硬化 性榭脂の分解反応を行った後、反応物を常温にまで冷却して反応槽から取り出す場 合、分解生成物は常温に冷却されるまで長時間反応槽内に留まる。その結果、さら に分解され、目的とするモノマー及び Z又はオリゴマーの回収の収率が低下すると いう問題があった。また、反応生成物を常温にまで冷却して力 モノマー及び Z又は オリゴマーを蒸発させて回収するためには、反応生成物を再度加熱する必要がある など、エネルギー効率が悪いという問題があった。さらに、加熱して熱硬化性榭脂の 分解を行った後に冷却して反応生成物を取り出すようにすると、反応槽内での熱硬 化性榭脂の分解はバッチ式となる。そのため、冷却が終了しないと次の熱硬化性榭 脂を反応槽に仕込むことができない。し力も、熱容量の高い反応槽を加熱'冷却する ためには長時間を要する。従って、熱硬化性榭脂の分解とモノマー及び Z又はオリ ゴマーの回収の生産性が低いという問題や、エネルギー的にも非効率であるという問 題があった。
[0005] また、不飽和ポリエステルなど、多価アルコールと不飽和有機酸からなるコポリマー をスチレン等の架橋剤で架橋した熱硬化性榭脂を、例えば超臨界又は亜臨界流体 として水を用いてエステル交換反応して分解すると、多価アルコールや不飽和有機 酸などのモノマー及び z又はオリゴマー、さらに架橋剤と不飽和有機酸の共重合体 であるオリゴマーなどが生成する。これらは水中に溶解乃至分散するので、水中から これらのモノマー及び Z又はオリゴマーを、収率やエネルギー効率や生産性高ぐ分 離して回収することは困難であった。
[0006] 本発明は上記の点に鑑みてなされたものであり、収率高ぐまたエネルギー効率高 ぐさらに生産性高ぐモノマー及び Z又はオリゴマーを回収することができる熱硬化 性榭脂の分解方法を提供することを目的とする。
課題を解決するための手段
[0007] 本発明は、以下の発明を包含する。
[1] 多価アルコール及び酸よりなるコポリマーを架橋剤で架橋した熱硬化性榭脂を
、反応槽内で超臨界又は亜臨界流体を用いてモノマー及び Z又はオリゴマーに分 解すること;
該反応槽内の反応液を該モノマー及び Z又はオリゴマーが蒸発する温度に保持 することによって、該モノマー及び Z又はオリゴマーを含む気体を発生させること; 及び
該気体を回収することによって、該モノマー及び Z又はオリゴマーを回収すること; を含む、熱硬化性榭脂の分解方法。
[2] 前記回収した気体を、前記モノマー及び Z又はオリゴマーの沸点未満で且つ 前記流体の沸点以上の温度に冷却することによって、該気体中に含まれる該モノマ 一及び Z又はオリゴマーと該流体とを分離して、該モノマー及び Z又はオリゴマーを 回収することを含む、前記 [1]に記載の方法。
[3] 前記モノマー及び Z又はオリゴマーから分離された流体を液化し、該液化した 流体を反応槽に戻しながら、反応槽内で熱硬化性榭脂を分解することを含む、前記 [ 2]に記載の方法。
[4] 前記液化した流体に新たな熱硬化性榭脂を混合し、該混合物を反応槽に供給 しながら、反応槽内で熱硬化性榭脂を分解することを含む、前記 [3]に記載の方法。
[5] 前記回収した気体中に含まれる前記モノマー及び Z又はオリゴマーを、吸着手 段又は膜分離手段によって前記流体から分離して、回収することを含む、前記 [1]に 記載の方法。
[6] 反応槽にアルカリ塩を供給しながら、反応槽内で熱硬化性榭脂を分解すること を含む、前記 [1]乃至 [5]の ヽずれかに記載の方法。
[7] 前記液化した流体にアルカリ塩を混合し、該混合物を反応槽に供給しながら、 反応槽内で熱硬化性榭脂を分解することを含む、前記 [3]に記載の方法。
[8] 反応槽に流体を供給しながら、反応槽内で熱硬化性榭脂を分解することを含 む、前記 [1]乃至 [7]のいずれかに記載の方法。
発明の効果
本発明によれば、反応槽内の温度を常温にまで冷却することなぐモノマー及び Z 又はオリゴマーを反応槽カも取り出して回収することができる。従って、反応槽内に分 解生成物が長時間留まってさらに分解されることを低減することができる。また、モノ マー及び Z又はオリゴマーを蒸発させて回収するために再度加熱を行う必要がなく なる。さらに、熱硬化性榭脂の分解をバッチ式でなく連続式で行うことが可能になる。 その結果、収率高ぐエネルギー効率高ぐさらに生産性高ぐ熱硬化性榭脂を分解 してモノマー及び Z又はオリゴマーを回収することができる。
図面の簡単な説明 [0009] [図 1]本発明の実施の形態の一例を示す概略断面図である。
[図 2]本発明の実施の形態の他の一例を示す概略断面図である。
[図 3]本発明の実施の形態の他の一例を示す概略断面図である。
[図 4]本発明の実施の形態の他の一例を示す概略断面図である。
[図 5]本発明の実施の形態の他の一例を示す概略断面図である。
[図 6]本発明の実施の形態の他の一例を示す概略断面図である。
[図 7]本発明の実施の形態の他の一例を示す概略断面図である。
[図 8]本発明の実施の形態の他の一例を示す概略断面図である。
[図 9]本発明の実施の形態の他の一例を示す概略断面図である。
[図 10]本発明の実施の形態の他の一例を示す概略断面図である。
[図 11]本発明の実施の形態の他の一例を示す概略断面図である。
[図 12]本発明の実施の形態の他の一例を示す概略断面図である。
符号の説明
[0010] 1 反応槽
2 熱硬化性榭脂
3 超臨界又は亜臨界状態で使用される流体
4 モノマー及び/又はオリゴマー
発明を実施するための最良の形態
[0011] 以下、本発明を実施するための最良の形態を説明する。
本発明にお 、ては、多価アルコール及び酸を共重合したコポリマーを架橋剤で架 橋して得られる熱硬化性榭脂をその対象とする。
多価アルコールとしては、エチレングリコール、プロピレングリコール、ジエチレング リコール、ジプロピレングリコールなどのグリコールを例示することができる力 これら に限定されるものではない。これらは併用することもできる。
酸としては、脂肪族不飽和多塩基酸 (例えば、無水マレイン酸、マレイン酸、フマル 酸などの脂肪族不飽和二塩基酸など)などの不飽和有機酸を例示することができる 1S これらに限定されるものではない。これらは併用することもできる。また、該不飽和 有機酸と、無水フタル酸などの飽和有機酸を併用することもできる。 架橋剤としては、スチレンゃメタクリル酸メチルなどの不飽和基を有する架橋剤を例 示することができるが、これら〖こ限定されるものではない。これらは併用することちでき る。また、本発明において、上記熱硬化性榭脂中の上記架橋剤に由来する部分を「 架橋部」という。該架橋部は、 1個の架橋剤に由来する部分でもよぐ複数の架橋剤 が重合したオリゴマー又はポリマーに由来する部分でもよ 、。
本発明における「熱硬化性榭脂」とは、主として加熱等により硬化 (架橋)された榭 脂を意味するが、本発明の目的が達成される限り、加熱等により硬化 (架橋)が進行 する未硬化又は部分的に硬化された榭脂も含まれる。
上記熱硬化性榭脂は、本発明の目的が達成される限り、いかなる態様の榭脂であ つてもよい。すなわち、榭脂の種類、構造及びその構成成分、架橋剤の種類、量及 び架橋度、添加物の種類及び量などに制限はない。
上記熱硬化性榭脂の具体例としては、例えば、多価アルコールとしてエチレンダリ コールなどのダリコールと、酸としてマレイン酸などの不飽和有機酸を反応させて得ら れたコポリマーを、架橋剤としてスチレンなどの不飽和基を有する架橋剤で架橋した 不飽和ポリエステル榭脂などが挙げられる。
[0012] 本発明における熱硬化性榭脂の分解は、超臨界状態又は亜臨界状態 (以下、総 称して臨界状態と!/ヽぅ)の流体を反応溶媒として用いて熱硬化性榭脂をエステル交 換反応させることにより行う。例えば、反応槽に熱硬化性榭脂と流体を仕込み、反応 槽を加熱し、反応槽内を流体が臨界状態になる温度'圧力に維持することによって行 うことができる。臨界状態で反応に用いる流体としては、例えば、水が挙げられる。す なわち、超臨界水又は亜臨界水を本発明に用いることができる。
ここで超臨界水とは、臨界点 (臨界温度 374.4°C、臨界圧力 22.1MPa)を超えた状 態にある水を意味する。また、亜臨界水とは、水の温度及び圧力が水の臨界点以下 であって、且つ、温度が 140°C以上、その時の圧力が 0. 36MPa (140°Cの飽和蒸 気圧)以上の範囲にある状態の水を意味する。
[0013] 流体として水を用いる場合の反応条件は、好ましくは、温度が 180〜250°C、圧力 が 1. 0〜4. OMPa、反応時間が 1〜4時間である。また、臨界状態の水に対する熱 硬化性榭脂の割合は、 5〜100質量%である。力かる条件により、熱硬化性榭脂をェ ステル交換反応 (加水分解)することができる。
[0014] また、臨界状態の流体 (特に水)にアルカリ塩を含有させることもできる。アルカリ塩 により熱硬化性榭脂の加水分解反応が促進されるので、処理時間を短くすることが でき、処理コストを低くすることができる。また、臨界状態の流体で熱硬化性榭脂を処 理する場合、分解生成物である多価アルコール力 同時に生成される酸の酸触媒効 果により二次分解される虞がある。アルカリ塩を臨界状態の流体に含有させた場合、 アルカリ塩の塩基によって当該酸を中和することができるので、上記二次分解を抑制 することができる。
ここで、「アルカリ塩」とは、酸と反応して塩基性の性質を示すアルカリ金属やアル力 リ土類金属の塩を意味し、例えば、水酸ィ匕カリウム (KOH)や水酸ィ匕ナトリウム(NaO H)などのアルカリ金属の水酸ィ匕物、炭酸カルシウム、炭酸バリウム、水酸化カルシゥ ム、炭酸マグネシウムなどが挙げられる力 これに限定されるものではない。なかでも 、アルカリ金属の水酸化物が特に好ましい。
[0015] 上記流体中のアルカリ塩の含有量は、特に限定されるものではないが、熱硬化性 榭脂を分解して得られる、上記コポリマー(ポリエステル)由来の酸残基と架橋部由来 の残基を含んでなる化合物に含まれる酸残基の理論モル数に対して、 2モル当量以 上であることが好ましい。アルカリ塩の含有量が 2モル当量未満であると、前記化合 物を回収しに《なる虞がある。尚、亜臨界水中のアルカリ塩の含有量の上限は、特 に限定はされないが、 10モル当量以下であること力 コスト面など力も好ましい。 ここで、上記コポリマー由来の酸残基と架橋部由来の残基を含んでなる化合物は、 上記コポリマー(ポリエステル)の加水分解により生じる多塩基酸と架橋部の反応生 成物である。該酸残基には、上記多塩基酸が重合したポリマー由来の残基も含まれ る。例えば、ポリエステルがフマル酸残基を有し、架橋部がスチレンポリマーである場 合、上記化合物として、スチレンーフマル酸共重合体が得られる。
また、上記化合物に含まれる酸残基の理論モル数とは、該化合物を NMRで分析し て得られた酸残基と架橋部由来の残基の分子の数の比率と、用いた架橋剤の量より 求めた、該化合物中に存在する酸残基の推定含有モル数を表す。
[0016] 上記のように反応槽内で、臨界状態の流体を用いて熱硬化性榭脂を分解反応させ ることによって、多価アルコール (例えばグリコール)や酸 (例えば有機酸)などのモノ マー、これらのオリゴマー、コポリマー由来の酸残基と架橋部由来の残基を含んでな る化合物などを、分解反応生成物として収率良く得ることができる。
[0017] 上記分解反応生成物力 の多価アルコールや酸などのモノマー及び Z又はオリゴ マーの回収は、熱硬化性榭脂の分解反応終了後あるいは分解反応の間、反応槽内 の温度をモノマー及び Z又はオリゴマーが蒸発する温度に保持することによって、モ ノマー及び Z又はオリゴマーを含有する気体を発生させ、該気体を回収することによ り行うことができる。反応槽内の分解反応生成物と流体が混合された反応液をモノマ 一及び Z又はオリゴマーが蒸発する温度に保持すると、該反応液力 モノマー及び Z又はオリゴマー (及び流体)が蒸発し、このモノマー及び Z又はオリゴマーを含む 気体が発生する。この気体を回収することによって、モノマー及び Z又はオリゴマー を回収することができる。
[0018] 本発明におけるモノマー及び Z又はオリゴマーが蒸発する温度は、モノマー及び Z又はオリゴマーが蒸発する温度であれば特に限定されず、モノマー及び Z又はォ リゴマーの種類、使用する流体の種類によって適宜選択することができる。例えば 15
0〜230°Cであり、好ましくは該モノマー及び Z又はオリゴマーの沸点以上の温度で ある。例えば、エチレングリコール及び無水マレイン酸がモノマーとして得られる場合
、エチレングリコールの沸点が 197°C、無水マレイン酸の沸点が 202°Cであるので、 例えば 210°C以上である。
また、該温度は、モノマー及び Z又はオリゴマーと流体が共沸する場合、モノマー 及び Z又はオリゴマーの沸点未満の温度とすることもできる。すなわち、モノマー及 び Z又はオリゴマーと流体の共沸点以上の温度とすることもできる。
該温度の上限は特に設定されるものではないが、回収するこれらのモノマー及び Z 又はオリゴマー (及び流体)以外の成分が蒸発しな!、ように、 230°C以下に設定する のが好ましい。
また、本発明におけるモノマー及び Z又はオリゴマーを含む気体の回収は、反応 液の温度が上記モノマー及び Z又はオリゴマーが蒸発する温度に保持されている間 であれば、いつでも行うことができる。例えば、分解反応の間、分解反応終了後から 所定の時間(例えば、 1時間)行うことができる。
[0019] 本発明によれば、反応槽内の分解生成物と流体の混合物を常温にまで冷却して反 応槽から取り出す場合のように、常温に冷却されるまでモノマー及び z又はオリゴマ 一が反応槽内に長時間に留まるようなことを避けることができる。従って、分解反応が さらに進んでモノマー及び Z又はオリゴマーが破壊され、モノマー及び Z又はオリゴ マーの回収率が低下するようなことを防ぐことができる。また、モノマー及び Z又はォ リゴマーを回収するために、モノマー及び Z又はオリゴマーが蒸発する温度に維持 するだけでょ 、ことから、反応生成物を常温にまで冷却して力 モノマー及び Z又は オリゴマーを蒸発させるために再度加熱を行うような場合と比べて、必要エネルギー が大幅に少なくなる。従って、エネルギー効率良くモノマー及び Z又はオリゴマーの 回収を行うことができる。
[0020] 上記のように発生させたモノマー及び Z又はオリゴマーを含む気体は、通常、モノ マー及び Z又はオリゴマーと、反応に使用した流体の混合気体である。該気体をモ ノマー及び Z又はオリゴマーの沸点未満で且つ流体の沸点以上の温度に冷却する ことによって、モノマー及び Z又はオリゴマーを該流体力 分離して、回収することが できる。これは、例えば、反応槽カも排出された気体の回収経路 (例えば回収配管) に該気体を冷却するための冷却装置を設けることで行うことができる(図 2〜7及び 9 〜12参照)。当該温度範囲に該気体を置いた場合、該気体中のモノマー及び Z又 はオリゴマーは液ィ匕される力 流体は液ィ匕されないためである。反応槽から生じた気 体をー且冷却して液状にしたものを再度加熱して、モノマー及び z又はオリゴマーと 流体を分留するような場合に比べて、エネルギー効率高くモノマー及び Z又はオリゴ マーを流体力 分離して回収することができる。
該モノマー及び z又はオリゴマーの沸点未満で且つ流体の沸点以上の温度は、 使用する流体の種類、モノマー及び Z又はオリゴマーの種類によって適宜選択する ことができる。例えば、 100〜150°Cが挙げられる。例えば、流体が水であり、ェチレ ングリコール(沸点: 197°C)及び無水マレイン酸(沸点: 202°C)がモノマーとして得ら れる場合、 100〜150°Cとすることができる。
[0021] 上記モノマー及び Z又はオリゴマーと流体の混合気体から、吸着手段又は膜分離 手段を用いて、モノマー及び Z又はオリゴマーを分離することもできる。これは、例え ば、反応槽力 排出された気体の回収経路 (例えば回収配管)に吸着手段又は膜分 離手段を設けることで行うことができる(図 8参照)。例えば、モノマー及び Z又はオリ ゴマーと流体の混合気体を吸着手段 (例えば、窒素吸着剤などの吸着剤からなるも の)に通過させることにより、該気体中の流体を吸着手段に吸着させることによって、 あるいは、該混合気体中のモノマー及び Z又はオリゴマーを吸着手段に吸着させる ことによって、モノマー及び Z又はオリゴマーを流体力 分離した状態で回収すること ができる。また、膜分離手段 (例えば、ガス分離膜などの分離膜からなるもの)を用い た場合、モノマー及び Z又はオリゴマーと流体の混合気体中の流体に膜を通過させ ず、モノマー及び z又はオリゴマーのみに膜を通過させることによって、あるいは、混 合気体中のモノマー及び Z又はオリゴマーに膜を通過させず、流体のみに膜を通過 させることによって、モノマー及び Z又はオリゴマーを流体から分離した状態で回収 することができる。このようにモノマー及び Z又はオリゴマーを吸着分離や膜分離の 手段で流体から分離することによって、沸点差を利用して分離する場合よりも、効率 的な分離を行うことができる。
上記のように分解生成物のモノマー及び Z又はオリゴマーを回収する場合、使用し た流体も気体として反応槽から流出するので、反応槽内の流体の量も減少する。従 つて、反応槽内の反応液は、熱硬化性榭脂の分解生成物(例えばコポリマー由来の 酸残基と架橋部由来の残基を含んでなる化合物)の濃度が高ぐ粘度の高い液とな る。その結果、分解生成物が内壁に付着して焦げ付き、回収が困難になる虞がある。 また、無機物を含む熱硬化性榭脂を分解した場合、無機物が沈殿する。その無機物 に付着したモノマー及び Z又はオリゴマーを回収することは困難である。このような問 題を解消するため、反応槽に流体を供給しながら分解反応を行うこともできる。この場 合、反応槽内の流体量を一定量に維持して分解反応を行うことができる。
これは、例えば、流体供給手段 (例えば液供給ポンプ)を反応槽に設けることで行う ことができる(図 11参照)。例えば、熱硬化性榭脂が十分に分解する時間 (好適には 1〜4時間)分解反応を行った後、反応槽力 モノマー及び Z又はオリゴマーを含む 気体を回収する。同時に、反応槽内の流体量が所定量になるように、流体供給手段 を通じて流体を反応槽内に送り込むようにする。この場合、回収容器に回収される流 体量から反応槽内の流体の減少量を把握して、その減少量に応じて反応槽に流体 を送り込むこともできる。
また、上記方法は、反応槽内の流体量を測定するための流体量測定手段 (例えば 流量センサー)と、その流体量に応じて、反応槽に流体を供給するための流体供給 手段 (例えば液供給ポンプ)を反応槽に設けることでも行うことができる(図 12参照)。 例えば、液供給ポンプ、反応槽内の流体量を測定するための流量センサー、流量セ ンサ一より信号を受けて液供給ポンプに信号を送って液供給ポンプを制御する制御 器を反応槽に設ける。この流量センサーによって測定された反応槽内の流体量が所 定量以下になると、制御器を通じて液供給ポンプを作動させ、流体を反応槽に送り 込むようにする。
また、反応槽への流体供給手段による流体の供給は、反応槽内の沈殿した無機物 力 モノマー及び z又はオリゴマーを効率的に分離させるため、反応槽内の反応液 を効率的に攪拌するため、反応槽の下部 (反応槽の下半分。反応槽の底に近いほど 好ましい。)から行うことが好ましい。
このように反応槽に流体を供給しながら分解反応を行う場合、反応槽内の流体量を ほぼ一定にして分解反応を行うことができる。また、分解生成物等が内壁に付着して 焦げ付くことを防ぐことができる。さらに、反応槽内の沈殿した無機物に付着したモノ マー及び Z又はオリゴマーを分離して流体中に溶解させることができる。このモノマ 一及び Z又はオリゴマーは、流体と共に反応槽上部に移動して蒸発するので、回収 可能である。従って、モノマー及び Z又はオリゴマーの回収率を高めることができる。 モノマー及び Z又はオリゴマー力も分離された流体は、放出することもできるが、反 応槽に返送することによって循環させて再利用することができる。これは、例えば、反 応槽から排出された気体中の流体を反応槽に返送する手段 (例えば返送配管、ボン プなど)を設けることで行うことができる(図 3〜5、 7及び 10参照)。この場合、反応槽 内の臨界状態の流体の量が減少して、熱硬化性榭脂の分解反応の効率が低下する ことを防ぐことができる。また、流体中に分離されないで残ったモノマー及び Z又はォ リゴマーも反応槽に戻すことができるので、再度の回収を行うことができる。 流体は、気体のままで返送することができる力 液化して液体の状態で、必要に応 じて加圧して、反応槽に返送することが好ましい。流体を液体の状態で反応槽に戻 す場合、効率的に循環させることができる。流体の液ィ匕方法としては、特に限定され ないが、例えば、冷却装置などを用いて、流体をその沸点以下に冷却する方法など が挙げられる(図 5、 7及び 10参照)。
また、返送する流体を反応槽内の反応液の攪拌に利用することもできる。これは、 例えば、流体の返送配管の反応槽に接続する端部の先端を反応液の液面より下に 位置させることで行うことができる(図 4参照)。
[0024] 本発明における生成されたモノマー及び Z又はオリゴマーの回収は、熱硬化性榭 脂の分解反応の終了後ば力りでなぐ分解反応中にも行うことができる。分解反応の 終了後に、生成されたモノマー及び Z又はオリゴマーを回収する場合、分解反応の 初期に生成されたモノマー及び Z又はオリゴマーが二次分解された結果、モノマー 及び Z又はオリゴマーの回収率が低下する虞がある。し力しながら、分解反応を行い ながら生成されたモノマー及び Z又はオリゴマーを回収する場合、生成されたモノマ 一及び Z又はオリゴマーを直ちに高温の反応槽力 排出して回収することができる ので、二次分解を防止してその回収率を向上することができる。分解反応を行いなが ら生成されたモノマー及び Z又はオリゴマーを回収する本発明の実施態様は、例え ば、後述する図 3〜7及び 10に示すような密閉系が形成される装置を用いて行うこと ができる。
[0025] 上記のように反応槽内で熱硬化性榭脂を分解しながら、分解生成物のモノマー及 び Z又はオリゴマーを回収する場合、反応槽内の熱硬化性榭脂が徐々に減少する と共に、使用した流体も気体として流出するので、反応槽内の流体の量も減少する。 そこで、臨界状態にして使用される液状の流体と熱硬化性榭脂の粉砕物との混合 スラリーを反応槽に供給することもできる。これは、例えば、混合スラリーを供給するた めの手段 (ポンプ、配管など)を反応槽に設けることで行うことができる(図 6及び 7参 照)。さらに、上記のようにモノマー及び Z又はオリゴマーから分離された流体を反応 槽に戻すと共に、熱硬化性榭脂を反応槽に供給することもできる。これは、例えば、 反応槽に返送する流体と榭脂の粉砕物を混合'貯留する手段 (ミキサー槽など)と、 上記混合スラリーを供給するための手段を反応槽に設けることで行うことができる(図
7参照)。
この場合、長時間に亘つて熱硬化性榭脂を分解してモノマー及び Z又はオリゴマ 一を回収する操作を持続させることができる。すなわち、熱硬化性榭脂の分解とモノ マー及び Z又はオリゴマーの回収をバッチ式でなく連続式のプロセスとして行うこと ができる。従って、熱硬化性榭脂の分解とモノマー及び Z又はオリゴマーの回収を生 産性高く行うことができる。さらに、操作を立ち上げる際に要する昇温時間や、操作を 終了する際に要する冷却時間の比率を小さくすることができるので、生産効率を高め ることがでさる。
熱硬化性榭脂の分解反応を促進し、かつ、熱硬化性榭脂の分解反応により生成さ れる酸による悪影響 (モノマーである多価アルコールの分解等)を避けるため、臨界 状態の流体にアルカリ塩を供給しながら分解反応を行うこともできる。この場合、反応 槽内の流体の pHを酸による悪影響が生じない範囲(例えばアルカリ性、好ましくは p Hが 10〜14の範囲、特に好ましくは 13〜14の範囲)に維持して分解反応を行うこと ができる。従って、熱硬化性榭脂の分解と、モノマー及び Z又はオリゴマーの回収を 生産性高く行うことができる。
これは、例えば、アルカリ塩を反応槽に供給するためのアルカリ塩供給手段 (例え ばポンプ)を反応槽に設けることで行うことができる。例えば、一定時間(例えば 1〜4 時間)経過後、分解反応によるアルカリ塩の測定される又は予測される消費量に応じ て、所定量のアルカリ塩を反応槽に送り込むようにする。
また、上記方法は、反応槽内の流体の pHを測定するための pH測定手段 (例えば p Hセンサー)と、その pHに応じて、アルカリ塩を反応槽に供給するためのアルカリ塩 供給手段 (例えばポンプ)を反応槽に設けることで行うことができる(図 10参照)。例え ば、アルカリ塩を反応槽に供給するためのポンプ、反応槽内の流体の pHを測定する ための pHセンサー、 pHセンサーより信号を受けてポンプに信号を送ってポンプを制 御するための pH制御器を反応槽に設ける。この pHセンサーによって測定された反 応槽内の流体の pHが所定の値以下になると、 pH制御器を通じてポンプを作動させ 、アルカリ塩の溶液を反応槽に送り込むようにする。この場合、反応槽内の流体の pH を随時確認し、かつ、 pHに応じて反応槽内にアルカリ塩を随時供給することができる 。従って、反応槽内の流体の pHを、常に、所定の範囲に保持することができるので、 長期に渡って熱硬化性榭脂を効率的に分解し、モノマー及び Z又はオリゴマーの回 収率を高めることができる。
さらに、上記のようにモノマー及び Z又はオリゴマーを除いた流体を反応槽に戻す と共に、アルカリ塩を反応槽に供給することもできる。これは、例えば、反応槽に返送 する流体とアルカリ塩を混合'貯留する手段 (貯留槽など)と、上記アルカリ塩供給手 段を反応槽に設けることで行うことができる(図 10参照)。モノマー及び/又はオリゴ マーを除!、た流体を循環することで、モノマー及び z又はオリゴマーがアルカリ塩に よってさらに分解されることを避けることができる。
[0027] 以下、本発明の好適な実施の形態を図 1〜12を参照して説明する。
図 1は本発明の実施の形態の一例を示す。耐圧製の反応槽 1の上部に回収口 6が 設けてあると共に下部に排出口 7が設けてある。回収口 6には圧力抜き用の開閉弁 8 力 排出口 7には排出用開閉弁 9がそれぞれ設けてある。また反応槽 1の周囲には熱 交換器などで形成される加熱装置 10が設けてある。加熱装置 10にポンプ 11で熱媒 を循環させることによって、反応槽 1内を所定温度に制御しながら加熱することができ る。
[0028] 熱硬化性榭脂を分解するにあたっては、反応槽 1に熱硬化性榭脂 2と流体 3を仕込 み、反応槽 1内を密閉して加熱装置 10で加熱し、反応槽 1内を流体 3が臨界状態に なる温度'圧力に維持することによって、臨界状態の流体 3を反応溶媒として熱硬化 性榭脂 2をエステル交換反応させることによって行うことができる。
[0029] そして熱硬化性榭脂 2を分解反応して得られる反応生成物から、多価アルコール や酸のモノマー及び Z又はオリゴマーを回収するにあたっては、熱硬化性榭脂 2の 分解反応終了後、加熱装置 10を制御して反応槽 1内の温度をモノマー及び Z又は オリゴマーが蒸発する温度 (例えば 150〜230°C)に保持し、回収口 6の開閉弁 8を 開く。このようにモノマー及び Z又はオリゴマーが蒸発する温度 (例えば、それらの沸 点以上の温度)に保持した状態で反応槽 1の回収口 6を開放すると、反応槽 1内の分 解反応生成物と流体 3が混合された反応液力 モノマー及び Z又はオリゴマーが蒸 発して、このモノマー及び Z又はオリゴマーを含む気体が回収口 6から排出される。 この気体を回収することによって、モノマー及び Z又はオリゴマーを回収することがで きる。このように気体を回収した後に反応槽 1内に残る架橋剤(例えばスチレン)と酸( 例えばフタル酸)の重合体などの反応生成物、未分解榭脂などは、排出口 7の開閉 弁 9を開 、て反応槽 1から払い出すことによって回収することができる。
[0030] 図 2は本発明の実施の形態の他の一例を示す。反応槽 1の回収口 6に回収配管 13 を接続し、回収配管 13に冷却装置 14が設けてある。冷却装置 14は冷媒等を循環さ せて回収配管 13内を通過する気体を冷却することができる。その他の構成は図 1の 装置と同じである。
[0031] この図 2の装置において、上記のように、反応槽 1内で臨界状態の流体 3を用いて 熱硬化性榭脂 2を分解反応させた後、反応槽 1内の温度をモノマー及び Z又はオリ ゴマーが蒸発する温度に保持して回収口 6の開閉弁 8を開くと、反応槽 1内の分解反 応生成物と流体 3が混合された反応液力 モノマー及び Z又はオリゴマーが蒸発す る。臨界状態にして用いる水などの流体 3の沸点は、一般にこのモノマー及び Z又は オリゴマーが蒸発する温度より低 、ので、モノマー及び Z又はオリゴマーの気体と流 体 3の気体の混合気体が回収口 6から排出される。そして冷却装置 14をモノマー及 び Z又はオリゴマーの沸点未満で且つ流体 3の沸点以上の温度 (例えば 100〜150 °C)の範囲に冷却温度を設定しておくことで、モノマー及び Z又はオリゴマーと流体 3 の混合気体が回収配管 13を通過する際に、モノマー及び/又はオリゴマーは液ィ匕 されるが流体 3は液ィ匕されないので、モノマー及び Z又はオリゴマーを流体 3から分 離することができる。回収配管 13の先端には回収容器 15が配置してあり、液化した モノマー及び Z又はオリゴマー 4は回収容器 15に流入して回収される。流体 3は気 体のまま排出してもよい。
[0032] 図 3は本発明の実施の形態の他の一例を示す。回収容器 15と反応槽 1との間に流 体返送配管 17が設けてある。流体返送配管 17にはポンプ 18が設けてあり、流体返 送配管 17の一端は反応槽 1の上部に気密的に接続してある。また流体返送配管 17 の他端は回収容器 15内の液状のモノマー及び Z又はオリゴマー 4の液面より上の位 置に気密的に接続してある。回収容器 15は密閉構造に形成してある。この実施の形 態では加熱装置 10はヒーター等で形成してある力 その他の構成は図 2の装置と同 じである。
[0033] この図 3の装置において、上記のように、反応槽 1の回収口 6から出てくる気体を冷 却装置 14で冷却することによって、モノマー及び Z又はオリゴマー 4を液状にして回 収容器 15に回収することができる。一方、流体 3は気体のまま回収容器 15内に流入 する。そしてポンプ 18の働きで、回収容器 15内の流体 3は気体の状態で流体返送 配管 17に吸引されて、反応槽 1に返送される。この図 3の装置においては、回収口 6 の開閉弁 8を開いたままでも、回収配管 13と流体返送配管 17を通して反応槽 1と回 収容器 15の間で密閉系が形成される。従って、反応槽 1内の高圧を維持することが できる。その結果、臨界状態の高温高圧条件下で反応槽 1内において熱硬化性榭 脂 2の分解反応を行いながら、反応槽 1の回収口 6から気体を流出させ、この気体を 冷却装置 14で冷却してモノマー及び Z又はオリゴマー 4を液ィ匕し、液状のモノマー 及び Z又はオリゴマー 4を回収容器 15に分離回収することができる。同時に、流体 3 の気体を回収容器 15から流体返送配管 17を通して反応槽 1に返送することができる
[0034] 図 1や図 2の実施の形態のように熱硬化性榭脂 2の分解反応の終了後に生成され たモノマー及び Z又はオリゴマー 4を回収する場合、分解反応の初期に生成された モノマー及び Z又はオリゴマー 4は二次分解されて、モノマー及び Z又はオリゴマー 4の回収率が低下する虞がある。しかしながら、このように反応槽 1内で熱硬化性榭 脂 2の分解反応を行いながら分解生成されたモノマー及び Z又はオリゴマー 4を回 収する場合、生成されたモノマー及び Z又はオリゴマー 4を直ちに高温の反応槽 1か ら排出して回収することができるので、二次分解を防止して回収率を向上できる。し 力も流体 3は反応槽 1に常時返送されて 、るので、反応槽 1内の臨界状態の流体 3の 量が減少して、熱硬化性榭脂 2の分解反応の効率が低下することを防ぐことができる 。また流体 3中にモノマー及び Z又はオリゴマーが分離されずに残っていても、この モノマー及び Z又はオリゴマーも反応槽 1に戻されるので、再度の回収を行うことが できる。
[0035] 図 4は本発明の実施の形態の他の一例を示す。流体返送配管 17の反応槽 1に接 続される端部の先端を、反応槽 1の臨界状態の流体 3と熱硬化性榭脂 2の混合液の 液面より下に位置させてある。その他の構成は図 3の装置と同じである。
[0036] この装置では、流体 3は気体の状態で、流体返送配管 17を通して臨界状態の流体 3と熱硬化性榭脂 2の混合液中に吹き出すようにして返送される。この返送される流 体 3によって臨界状態の流体 3と熱硬化性榭脂 2の混合液を攪拌することができる。 従って、熱硬化性榭脂 2の分解反応の効率を高めることができる。熱硬化性榭脂 2を 臨界状態の流体 3で分解反応させる反応槽 1内は高圧となる。この高圧が保たれるよ うに反応槽 1内に回転翼などの攪拌機構を設けることは難しぐ装置が複雑になって 高価になる。これに対して、上記のように返送する流体 3を利用することによって、攪 拌機構を設けずに、反応槽 1内の攪拌を行うことができる。
[0037] 図 5は本発明の実施の形態の他の一例を示す。反応槽 1の回収口 6に既述の冷却 装置 14を設けた回収配管 13が接続してある。回収口 6から回収配管 13の冷却装置 14よりも遠 、位置に流体冷却装置 20が設けてある。流体冷却装置 20には冷媒等を 循環させてあり、回収配管 13内を通過する気体を流体 3の沸点以下の温度で冷却 することができる。そして冷却装置 14と流体冷却装置 20の間の位置において回収配 管 13に回収分岐管 21が分岐接続してあり、この回収分岐管 21は回収容器 15に接 続してある。また回収配管 13の回収口 6と反対側の端部は流体回収容器 22に接続 してある。流体返送配管 17の一端は流体回収容器 22の底部に、流体返送配管 17 の他端は反応槽 1の上部にそれぞれ接続してある。この流体返送配管 17には液送 用のポンプ 23が設けてある。回収配管 13は反応槽 1や回収容器 15、流体回収容器 22に、流体返送配管 17は反応槽 1や流体回収容器 22に、それぞれ気密的に接続 してある。従って、回収口 6の開閉弁 8を開いたままでも、反応槽 1内の高圧を維持で きる密閉系が形成される。その他の構成は図 4の装置と同じである。
[0038] この図 5の装置において、図 3や図 4の場合と同様に、回収口 6の開閉弁 8を開いた 状態で、流体 3が臨界状態になる高温高圧条件下で反応槽 1内において熱硬化性 榭脂 2の分解反応を行うことができる。また、反応槽 1の回収口 6から回収配管 13に 出てくる気体を冷却装置 14で、モノマー及び Z又はオリゴマーの沸点以下で且つ流 体 3の沸点以上の温度に冷却することによって、気体中のモノマー及び Z又はオリゴ マー 4を液状にして回収分岐管 21を通して回収容器 15に回収することができる。流 体 3は気体のまま回収配管 13の冷却装置 14の部分を通過する。流体冷却装置 20 により流体 3の沸点以下の温度に冷却することで、流体 3は液状になって流体回収容 器 22内に流入する。そして流体回収容器 22内の液状の流体 3は、ポンプ 23で加圧 して、流体返送配管 17を通して反応槽 1に返送される。
[0039] 図 5の装置によれば、反応槽 1内において流体 3が臨界状態になる高温高圧条件 下で熱硬化性榭脂 2の分解反応を行いながら、反応槽 1の回収口 6から気体を流出 させ、この気体を冷却装置 14で冷却してモノマー及び Z又はオリゴマー 4を液ィ匕し、 回収容器 15に分離回収することができる。同時に、流体 3を流体冷却装置 20で冷却 して液化し、液状の流体 3を流体回収容器 22から流体返送配管 17を通して反応槽 1 に返送することができる。そして流体 3を液ィ匕した状態でポンプ 23を用いて圧送する ことによって、気体として返送する場合よりも流量制御が容易であるので、効率良く流 体 3の返送を行うことができる。
[0040] 図 6は本発明の実施の形態の他の一例を示す。反応槽 1の回収口 6に、冷却装置 14を設けた回収配管 13の一端が接続してあり、回収配管 13の他端は回収容器 15 に接続してある。また反応槽 1の上部には液供給管 25が接続してあり、液供給管 25 には液供給ポンプ 26が設けてある。回収配管 13は反応槽 1や回収容器 15にそれぞ れ気密的に接続してある。また液供給ポンプ 26によって液供給管 25の気密が保た れる。従って、回収口 6の開閉弁 8を開いたままでも、反応槽 1内の高圧を維持できる 密閉系が形成される。その他の構成は図 2の装置と同じである。
[0041] この図 6の装置において、図 3乃至図 5の場合と同様に、回収口 6の開閉弁 8を開い た状態で、流体 3が臨界状態になる高温高圧条件下で反応槽 1内において熱硬化 性榭脂 2の分解反応を行うことができる。また、反応槽 1の回収口 6から回収配管 13 に出てくる気体を冷却装置 14で冷却することによって、モノマー及び Z又はオリゴマ 一 4を液状にして回収配管 13を通して回収容器 15に回収することができる。このよう に反応槽 1内で熱硬化性榭脂 2を分解しながら、分解生成物のモノマー及び Z又は オリゴマー 4を回収口 6から回収すると、反応槽 1内の熱硬化性榭脂 2が徐々に減少 すると共に、臨界状態の流体 3も回収口 6から気体として流出するので、反応槽 1内 の流体 3の量も減少する。そこで、臨界状態にして使用される液状の流体 3と熱硬化 性榭脂 2を粉砕したものとの混合スラリーを液供給ポンプ 26によって液供給管 25か ら反応槽 1に供給するようにしてある。このように流体 3と熱硬化性榭脂 2を供給しな がら、反応槽 1内において熱硬化性榭脂 2の分解反応を行うことによって、長時間に 亘つて熱硬化性榭脂 2を分解してモノマー及び Z又はオリゴマー 4を回収する操作を 持続させることができる。従って、操作を立ち上げる際に要する昇温時間や、操作を 終了する際に要する冷却時間の比率が小さくなつて、生産効率を高めることができる
[0042] また上記のように液状の流体 3と熱硬化性榭脂 2との混合スラリーを供給する他、臨 界状態にして使用される水などの流体のみを液体の状態で液供給管 25から供給し ながら、反応槽 1内において熱硬化性榭脂 2の分解反応を行うようにしてもよい。反応 槽 1内で熱硬化性榭脂 2を分解しながら、分解生成物のモノマー及び Z又はオリゴマ 一 4を回収口 6から回収すると、臨界状態の流体 3も回収口 6から気体として流出する ので、反応槽 1内の流体 3の量が減少し、熱硬化性榭脂の分解反応の効率が徐々に 低下する。このように流体 3を供給しながら、反応槽 1内において熱硬化性榭脂 2の 分解反応を行うことによって、熱硬化性榭脂 2の分解反応の効率高く維持することが できる。このときには、流体 3と熱硬化性榭脂 2との混合スラリーを供給する場合よりも 、液供給ポンプ 26として能力が低く構造が簡単なものを用いることができる。
[0043] 図 7は本発明の実施の形態の他の一例を示す。図 5の実施の形態と同様に、反応 槽 1の回収口 6に冷却装置 14と流体冷却装置 20を設けた回収配管 13が接続してあ る。この回収配管 13に分岐接続した回収分岐管 21が回収容器 15に接続してある。 回収配管 13の端部は流体回収容器 22に接続してある。また反応槽 1の上部にはミ キサー槽 28が供給管 29によって接続してある。流体返送配管 17の一端が流体回収 容器 22の底部に、流体返送配管 17の他端がミキサー槽 28に接続してある。この流 体返送配管 17には液送用のポンプ 23が設けてある。ミキサー槽 28は、流体 3と熱硬 化性榭脂 2の粉砕物とを混合して貯溜するようにしたものである。回収配管 13は反応 槽 1や回収容器 15、流体回収容器 22に、流体返送配管 17は流体回収容器 22ゃミ キサー槽 28に、ミキサー槽 28の供給管 29は反応槽 1に、それぞれ気密的に接続し てある。従って、回収口 6の開閉弁 8を開いたままでも、反応槽 1内の高圧を維持でき る密閉系が形成される。その他の構成は図 5の装置と同じである。
[0044] この図 7の装置において、図 3乃至図 6の場合と同様に、回収口 6の開閉弁 8を開い た状態で、流体 3が臨界状態になる高温高圧条件下で反応槽 1内において熱硬化 性榭脂 2の分解反応を行うことができる。また、反応槽 1の回収口 6から回収配管 13 に出てくる気体を冷却装置 14で冷却することによって、気体中のモノマー及び Z又 はオリゴマー 4を液状にして回収容器 15に回収することができる。また、気体中の流 体 3を流体冷却装置 20で冷却することによって、流体 3を液状にして流体回収容器 2 2内に回収することができる。そして流体回収容器 22内の液状の流体 3は、ポンプ 23 で加圧して、流体返送配管 17を通してミキサー槽 28に返送される。このようにミキサ ー槽 28に返送された流体 3に熱硬化性榭脂 2を粉砕したものが混合され、この混合 スラリーは供給管 29を通して反応槽 1に供給される。このように流体 3を熱硬化性榭 脂 2と混合した状態で反応槽 1に返送することによって、反応槽 1内の熱硬化性榭脂 2と流体 3の量を常に一定に保って、長時間に亘つて熱硬化性榭脂 2を分解してモノ マー及び Z又はオリゴマー 4を回収する操作を持続させることができる。また、流体 3 を循環させることによって、流体 3中にモノマー及び Z又はオリゴマーが分離されず に残っていても、このモノマー及び Z又はオリゴマーも反応槽 1に戻されるので、再 度の回収を行うことができる。
[0045] 図 8は本発明の実施の形態の他の一例を示す。反応槽 1の回収口 6に回収配管 13 を接続し、回収配管 13に分離回収装置 31が設けてある。分離回収装置 31内には 窒素吸着剤など吸着剤カゝらなる吸着手段や、あるいはガス分離膜など分離膜からな る膜分離手段が設けてある。その他の構成は図 1の装置と同じである。
[0046] この図 8の装置において、反応槽 1内で臨界状態の流体 3を用いて熱硬化性榭脂 2 を分解反応させた後、反応槽 1内の温度をモノマー及び Z又はオリゴマーが蒸発す る温度に保持して回収口 6の開閉弁 8を開くと、反応槽 1内の分解反応生成物と流体 3の混合物から、モノマー及び Z又はオリゴマーの気体と、臨界状態にして用いた水 などの流体 3の気体を含む蒸気が回収口 6から出てくる。そして分離回収装置 31に 吸着手段を設けている場合には、このモノマー及び Z又はオリゴマーと流体 3の混合 気体が回収配管 13を通して分離回収装置 31を通過する際に、混合気体中の流体 3 の気体を吸着手段に吸着させることができるので、回収配管 13から出てくるモノマー 及び Z又はオリゴマー 4を流体 3から分離した状態で回収することができる。あるいは 、混合気体中のモノマー及び Z又はオリゴマー 4の気体を吸着手段に吸着させること により、流体 3から分離した状態でモノマー及び Z又はオリゴマー 4を回収することが できる。また分離回収装置 31に膜分離手段を設けている場合には、混合気体中の 流体 3の気体に膜を通過させず、モノマー及び Z又はオリゴマーの気体のみに膜を 通過させることができるので、回収配管 13から出てくるモノマー及び/又はオリゴマ 一を流体 3から分離した状態で回収することができる。あるいは、混合気体中のモノ マー及び Z又はオリゴマー 4の気体に膜を通過させず、流体 3の気体のみに膜を通 過させることにより、流体 3から分離した状態でモノマー及び Z又はオリゴマー 4を回 収することができる。このようにモノマー及び Z又はオリゴマーを吸着分離や膜分離 の手段で流体 3から分離することによって、沸点差を利用した分留で分離する場合よ りも、効率的な分離を行うことができる。
[0047] 図 9は本発明の実施の形態の他の一例を示す。複数の反応槽 1を用いるようにして ある。複数の反応槽 la, lbのうち一方の反応槽 laには、図 2と同様に、その回収口 6 に回収配管 13を接続し、回収配管 13に冷却装置 14が設けてある。他方の反応槽 1 bにも同様にその回収口 6に回収配管 13が接続してある力 この回収配管 13には冷 却装置 14の代りに熱交換器 33が設けてある。また各反応槽 la, lbの周囲には熱媒 配管 34などで形成される加熱装置 10が設けてある。熱媒配管 34内の熱媒をヒータ 一 35で加熱しながら、ポンプ 11でこの熱媒を熱媒配管 34に沿って循環させることに よって、反応槽 1内を所定温度に制御しながら加熱することができる。そして一方の反 応槽 laに設けた加熱装置 10の熱媒配管 34の一部が、他方の反応槽 lbに設けた熱 交翻 33内に熱交換部 36として配置してある。この熱交換部 36は熱媒配管 34の熱 媒の流れにおいて、ヒーター 35より上流側の位置に設定される。その他の構成は図 2の装置と同じである。
[0048] この図 9の装置において、各反応槽 la, lb内で臨界状態の流体 3を用いて熱硬化 性榭脂 2を分解反応させることができる。そして、一方の反応槽 la内での熱硬化性榭 脂 2の分解反応が終了した後、この反応槽 la内の温度を熱硬化性榭脂 2の分解で 生成されたモノマー及び Z又はオリゴマーが蒸発する温度に保持して、回収口 6の 開閉弁 8を開くと、反応槽 1内の分解反応生成物と流体 3の混合物力 モノマー及び Z又はオリゴマーと流体 3が蒸発し、モノマー及び Z又はオリゴマーの気体と流体 3 の気体の混合気体が回収口 6から出てくる。そしてこの混合気体が冷却装置 14によ つて、モノマー及び Z又はオリゴマーの沸点未満で且つ流体 3の沸点以上の温度で 冷却される。これにより、モノマー及び Z又はオリゴマーは液ィヒされて気体の流体 3 力 分留され、液ィ匕したモノマー及び Z又はオリゴマー 4は回収配管 13から回収容 器 15に流入して回収される。また、他方の反応槽 lbにおいては、開閉弁 8を開いて モノマー及び Z又はオリゴマーの気体と流体 3の気体の混合気体が回収口 6から出 てくると、この混合気体は熱交 によって、モノマー及び/又はオリゴマーの沸 点未満で且つ流体 3の沸点以上の温度で冷却される。これにより、モノマー及び Z又 はオリゴマーは液ィ匕されて気体の流体 3から分留され、液ィ匕したモノマー及び Z又は オリゴマー 4は回収配管 13から回収容器 15に流入して回収される。
上記のように、他方の反応槽 lbに設けた熱交換器 33内には、一方の反応槽 laに 設けた加熱装置 10の熱媒配管 34の熱交換部 36が配置してある。従って、熱交換器 33内において、反応槽 lbから出てきたモノマー及び Z又はオリゴマーと流体 3の混 合気体と熱交換部 36との間で熱交換が行われ、熱媒配管 34内の熱媒がこの混合気 体によって加熱される。そして混合気体中のモノマー及び Z又はオリゴマーが液ィ匕 する際の潜熱が熱媒に回収される。このようにして、混合気体中のモノマー及び Z又 はオリゴマーを冷却して液ィ匕する際の熱を熱媒配管 34内の熱媒で回収することがで きる。また、この熱媒をヒーター 35で加熱して反応槽 la内を熱硬化性榭脂 2の分解 反応に適した温度にまで昇温させるにあたって、ヒーター 35による加熱熱量は少なく て済み、エネルギー的に効率的な運転を行うことができる。尚、図 9の実施の形態で は、反応槽 la, lbのうち、反応槽 lbから出るモノマー及び Z又はオリゴマーと流体 3 の混合気体力も熱を回収するようにしている。同様に、反応槽 laにおいても冷却装 置 14の代りに熱交^^ 33を用いることで、反応槽 laから出るモノマー及び/又はォ リゴマーと流体 3の混合気体力 熱を回収することもできる。 [0050] 図 10は本発明の実施の形態の他の一例を示す。反応槽 1の上部には流体貯留槽 40が供給管 41によって接続してある。流体返送配管 17の一端が流体回収容器 22 の底部に、他端が流体貯留槽 40に接続してある。回収配管 13は反応槽 1や回収容 器 15、流体回収容器 22に、流体返送配管 17は流体回収容器 22や流体貯留槽 40 に、流体貯留槽 40の供給管 41は反応槽 1に、それぞれ気密的に接続してある。従つ て、回収口 6の開閉弁 8を開いたままでも、反応槽 1内の高圧を維持できる密閉系が 形成される。供給管 41には液送用のポンプ 42が設けてある。流体貯留槽 40の上部 にはアルカリ塩貯留槽 43が供給管 44によって接続してある。流体貯留槽 40は、流 体 3とアルカリ塩を混合して貯留するようにしたものである。また反応槽 1には、反応槽 1内の流体 3の pHを測定する pHセンサー 45、 pHセンサー 45より信号を受けてポン プ 42に信号を送ってポンプ 42を制御する pH制御器 46が設けられて!/、る。この pH センサー 45によって測定された反応槽 1内の流体 3の pHに応じて、 pH制御器 46力 S ポンプ 42を作動させ、流体貯留槽 40に貯留された流体 3とアルカリ塩の混合液を反 応槽 1内に送り込む。その他の構成は図 5の装置と同じである。
[0051] 図 10の装置によれば、図 3〜7の場合と同様に、回収口 6の開閉弁 8を開いた状態 で、流体 3が臨界状態になる高温高圧条件下で反応槽 1内において熱硬化性榭脂 2 の分解反応を行うことができる。また、反応槽 1の回収口 6から回収配管 13に出てくる 気体を冷却装置 14で冷却することによって、気体中のモノマー及び Z又はオリゴマ 一 4を液状にして回収容器 15に回収することができる。また、気体中の流体 3を流体 冷却装置 20で冷却することによって、流体 3を液状にして流体回収容器 22内に回収 することができる。そして流体回収容器 22内の液状の流体 3は、ポンプ 23で加圧さ れて流体返送配管 17を通して液体貯留槽 40に返送される。このように液体貯留槽 4 0に返送された流体 3にアルカリ塩が混合される。また、反応槽 1に設けた PHセンサ 一 45によって、反応槽 1内の流体 3の pHを随時確認することができる。流体 3の pH が所定の値以下になった場合、反応槽 1内の流体 3の pHが所定の値に達するまで、 pH制御器 46によってポンプ 42を作動させ、液体貯留槽 40中のアルカリ塩が混合さ れた流体 3が供給管 41を通じて反応槽 1に供給することができる。すなわち、反応槽 内の流体の pHを随時確認して、その pHに応じて、反応槽内にアルカリ塩を随時供 給することができる。これにより反応槽 1内の流体 3の pHを常に所定の値 (例えばァ ルカリ性)に保持することができる。従って、長時間に亘つて熱硬化性榭脂 2を効率的 に分解し、モノマー及び Z又はオリゴマー 4の回収率を高めることができる。また、モ ノマー及び Z又はオリゴマーを除 、た流体を循環させることができるので、モノマー 及び Z又はオリゴマーがアルカリ塩によってさらに分解されることを避けることができ る。
[0052] 図 11は本発明の実施の形態の他の一例を示す。反応槽 1の下部には、液供給管 51が接続してあり、液供給管 51には液供給ポンプ 52が設けてある。その他の構成 は図 2の装置と同じである。
また、図 12は本発明の実施の形態の他の一例を示す。反応槽 1には、反応槽 1内 の流体 3の量を測定する流量センサー 53、流量センサー 53より信号を受けて液供給 ポンプ 52に信号を送って液供給ポンプ 52を制御する制御器 54が設けられている。 この流量センサー 53によって測定された反応槽 1内の流体量に応じて、制御器 54が 液供給ポンプ 52を作動させ、流体 3を液供給管 51を通じて反応槽 1に送り込む。そ の他の構成は図 11の装置と同じである。
[0053] 図 11及び図 12の装置において、図 2の場合と同様に、反応槽 1内で臨界状態の 流体 3を用いて熱硬化性榭脂 2を分解反応させた後、モノマー及び Z又はオリゴマ 一 4を液ィ匕し、回収容器 15に回収することができる。
図 11の装置によれば、液供給ポンプ 52によって液供給管 51から反応槽 1の下部 に流体 3を供給できる。例えば、熱硬化性榭脂の分解終了後、反応槽上部の開閉弁 を開 、てモノマー及び Z又はオリゴマーを含む蒸気を回収する際、反応槽の下部か ら流体を送り込むことができる。これにより反応槽内の流体量を、ほぼ一定に保つこと ができる。
また、図 12の装置によれば、反応槽 1に設けられた流量センサー 53によって、反応 槽 1内の流体 3の量を随時確認することができる。反応槽 1内の流体量が所定量以下 になった場合、反応槽 1内の流体量が所定量になるまで、制御器 54によって液供給 ポンプ 52を作動させ、液供給ポンプ 52を通じて反応槽の下部に流体 3を供給するこ とができる。すなわち、反応槽内の流体量を随時確認して、その量に応じて、反応槽 内に流体を随時供給することができる。これにより反応槽内の流体量を、常に、ほぼ 一定に保つことができる。
従って、図 11及び図 12の装置によれば、熱硬化性榭脂の分解が進行しても分解 液の濃度の上昇を抑え、分解生成物が内壁に付着して焦げ付くことを防ぐことができ る。さらに、反応槽の下部に沈殿した無機物を洗浄し、付着していたモノマー及び Z 又はオリゴマーを分離させ、流体中に溶解させることができる。従って、モノマー及び
Z又はオリゴマーの収率を高めることができる。
実施例
[0054] 以下、本発明を実施例によってさらに説明する。
尚、実施例において、グリコール回収率、有機酸回収率及びポリエステル由来の酸 残基と架橋部由来の残基を含んでなる化合物(以下、「化合物 [1]」とも称する)の生 成率を以下のように求めた。
〔グリコール回収率〕
グリコール回収率は、以下の式より算出した。
グリコール回収率(%) =グリコールモノマー成分の定量結果 Z熱硬化性榭脂のダリ コールモノマー成分の推定含有量 X 100
〔有機酸回収率〕
有機酸回収率は、以下の式より算出した。
有機酸回収率 (%) =有機酸モノマー成分の定量結果 z熱硬化性榭脂の有機酸モ ノマー成分の推定含有量 X 100
〔ポリエステル由来の酸残基と架橋部由来の残基を含んでなる化合物 (化合物 [ 1 ] ) の生成率〕
化合物 [1]の生成率は、以下の式より算出した。
化合物 [1]の生成率(%) = (分解処理後の水可溶成分に塩酸を加えて pH約 4に調 整して生じさせた沈殿物の乾燥重量) / (分解して得られた化合物を NMRで分析し て得られた酸残基と架橋部由来の残基の分子の数の比率と、用いた架橋部形成材 料の量より求めた、化合物 [1]の推定含有量) X 100
[0055] (実施例) 試験用の熱硬化性榭脂 (不飽和ポリエステル榭脂)を作製した。まず、多価アルコ ールであるグリコール類のプロピレングリコール 65wt%と、ネオペンチルグリコール 1 Owt%と、ジプロピレングリコール 25wt%と、不飽和有機酸である無水マレイン酸を グリコール総量と当量配合したワニスに、架橋剤としてスチレンをワニスと当量配合し た。その後、ワニスとスチレンの混合物 100質量部に炭酸カルシウム 165質量部とガ ラス繊維 90質量部を配合して硬化させることにより上記熱硬化性榭脂を得た。
上記の熱硬化性榭脂 40kgと濃度 0. 72molZLの NaOH水溶液 160kgを図 2の 反応槽へ投入した。その後、熱硬化性榭脂と NaOH水溶液とを投入した反応槽を 2 30°Cまで昇温させ、反応槽内の水を亜臨界状態にして、熱硬化性榭脂の分解処理 を 4時間行った。加熱装置を OFFにした後、 230°C程度に保持しながら 1時間回収 口の開閉弁を開くことで、モノマー及び Z又はオリゴマーを含む蒸気を回収配管を通 して抜き取った。該蒸気を、室温の水道水を通過させて冷却した熱交 を通過さ せて冷却しながら回収容器に流入させることで、モノマー及び Z又はオリゴマーを含 む流体を回収した。
回収した流体の水可溶成分中のグリコールモノマー成分を、ガスクロマトグラフィ分 析 (GC分析)により定量し、グリコール回収率を算出した。イオン交換クロマトグラフィ 分析 (IC分析)により有機酸モノマー成分を定量して有機酸回収率を算出した。 次に、水可溶成分を塩酸で酸性にし、生じた沈殿物を有機溶剤により分離回収し て質量を測定し、熱硬化性榭脂の質量との比較'計算により、ポリエステル由来の酸 残基と架橋部由来の残基を含む化合物 (表中、化合物 [1])の生成率を算出した。そ の結果を表 1に示す。
[表 1] 実施例
処理温度 2 3 0 °C
圧力 2 . 8 M P a
処理時間 4時間
アル力 リ塩 N a O H
濃度 0 . 7 2 m o 1 / L
回収容器中のグリ コール回収率 7 %
回収容器中の有機酸回収率 0 %
回収容器中の化合物 [ 1 ] の生成率 0 % 表 1から明らかなように、反応終了後に反応槽内の温度をモノマー及び Z又はオリ ゴマーが蒸発する温度に保持しながら回収口の開閉弁を開くことで、モノマー及び z 又はオリゴマーを含む蒸気を回収でき、さらに、これからモノマー及び Z又はオリゴマ 一を回収することができることが確認された。特に、回収容器へは、有機酸、化合物 [ 1]をほとんど含まな 、、グリコールを含む流体を効率よく回収することができた。

Claims

請求の範囲
[1] 多価アルコール及び酸よりなるコポリマーを架橋剤で架橋した熱硬化性榭脂を、反 応槽内で超臨界又は亜臨界流体を用いてモノマー及び Z又はオリゴマーに分解す ること;
該反応槽内の反応液を該モノマー及び Z又はオリゴマーが蒸発する温度に保持 することによって、該モノマー及び Z又はオリゴマーを含む気体を発生させること; 及び
該気体を回収することによって、該モノマー及び Z又はオリゴマーを回収すること; を含む、熱硬化性榭脂の分解方法。
[2] 前記回収した気体を、前記モノマー及び Z又はオリゴマーの沸点未満で且つ前記 流体の沸点以上の温度に冷却することによって、該気体中に含まれる該モノマー及 び Z又はオリゴマーと該流体とを分離して、該モノマー及び Z又はオリゴマーを回収 することを含む、請求項 1に記載の方法。
[3] 前記モノマー及び Z又はオリゴマーから分離された流体を液化し、該液化した流体 を反応槽に戻しながら、反応槽内で熱硬化性榭脂を分解することを含む、請求項 2 に記載の方法。
[4] 前記液化した流体に新たな熱硬化性榭脂を混合し、該混合物を反応槽に供給しな がら、反応槽内で熱硬化性榭脂を分解することを含む、請求項 3に記載の方法。
[5] 前記回収した気体中に含まれる前記モノマー及び Z又はオリゴマーを、吸着手段 又は膜分離手段によって前記流体力 分離して、回収することを含む、請求項 1に記 載の方法。
[6] 反応槽にアルカリ塩を供給しながら、反応槽内で熱硬化性榭脂を分解することを含 む、請求項 1乃至 5のいずれかに記載の方法。
[7] 前記液ィ匕した流体にアルカリ塩を混合し、該混合物を反応槽に供給しながら、反応 槽内で熱硬化性榭脂を分解することを含む、請求項 3に記載の方法。
[8] 反応槽に流体を供給しながら、反応槽内で熱硬化性榭脂を分解することを含む、 請求項 1乃至 7のいずれかに記載の方法。
PCT/JP2005/007613 2004-04-23 2005-04-21 熱硬化性樹脂の分解方法 WO2005103131A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006512586A JPWO2005103131A1 (ja) 2004-04-23 2005-04-21 熱硬化性樹脂の分解方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004128814 2004-04-23
JP2004-128814 2004-04-23

Publications (1)

Publication Number Publication Date
WO2005103131A1 true WO2005103131A1 (ja) 2005-11-03

Family

ID=35196938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/007613 WO2005103131A1 (ja) 2004-04-23 2005-04-21 熱硬化性樹脂の分解方法

Country Status (2)

Country Link
JP (1) JPWO2005103131A1 (ja)
WO (1) WO2005103131A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1829920A1 (en) * 2004-11-09 2007-09-05 Sumitomo Bakelite Company, Limited Decomposition reaction apparatus, system for producing raw material for recycled resin composition, method for producing raw material for recycled resin composition, raw material for recycled resin composition, and formed article
JP2008231394A (ja) * 2007-02-23 2008-10-02 Matsushita Electric Works Ltd 熱硬化性樹脂の分解・回収方法
JP2009007416A (ja) * 2007-06-26 2009-01-15 Panasonic Electric Works Co Ltd プラスチックの分解方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1024274A (ja) * 1996-07-12 1998-01-27 Sumitomo Bakelite Co Ltd 熱硬化性樹脂の分解方法及びリサイクル方法
JPH10237215A (ja) * 1997-02-28 1998-09-08 Toshiba Corp 樹脂廃棄物の分解処理方法および分解処理装置
JPH11140224A (ja) * 1997-11-07 1999-05-25 Hitachi Ltd 熱硬化性廃プラスチック処理方法
JP2003055498A (ja) * 2001-08-20 2003-02-26 Chubu Electric Power Co Inc 熱硬化性樹脂の分解方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4297112B2 (ja) * 2002-11-07 2009-07-15 パナソニック電工株式会社 ポリマーの分解方法
JP2004155964A (ja) * 2002-11-07 2004-06-03 Matsushita Electric Works Ltd プラスチックの分解方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1024274A (ja) * 1996-07-12 1998-01-27 Sumitomo Bakelite Co Ltd 熱硬化性樹脂の分解方法及びリサイクル方法
JPH10237215A (ja) * 1997-02-28 1998-09-08 Toshiba Corp 樹脂廃棄物の分解処理方法および分解処理装置
JPH11140224A (ja) * 1997-11-07 1999-05-25 Hitachi Ltd 熱硬化性廃プラスチック処理方法
JP2003055498A (ja) * 2001-08-20 2003-02-26 Chubu Electric Power Co Inc 熱硬化性樹脂の分解方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1829920A1 (en) * 2004-11-09 2007-09-05 Sumitomo Bakelite Company, Limited Decomposition reaction apparatus, system for producing raw material for recycled resin composition, method for producing raw material for recycled resin composition, raw material for recycled resin composition, and formed article
EP1829920A4 (en) * 2004-11-09 2008-09-03 Sumitomo Bakelite Co DECOMPOSITION REACTION DEVICE, SYSTEM FOR PRODUCING OUTPUT MATERIAL FOR RECYCLED RESIN COMPOSITION, METHOD FOR PRODUCING OUTPUT MATERIAL FOR RECYCLED RESIN COMPOSITION, BASED MATERIAL FOR RECYCLED RESIN COMPOSITION AND FORM BODY
EP2894192A3 (en) * 2004-11-09 2015-08-12 Sumitomo Bakelite Company Limited Decomposition Reaction Apparatus, System for Producing Raw Material for Recycled Resin Composition, Method for Producing Raw Material for Recycled Resin Composition, Raw Material for Recycled Resin Composition, and Formed Article
JP2008231394A (ja) * 2007-02-23 2008-10-02 Matsushita Electric Works Ltd 熱硬化性樹脂の分解・回収方法
JP2009007416A (ja) * 2007-06-26 2009-01-15 Panasonic Electric Works Co Ltd プラスチックの分解方法

Also Published As

Publication number Publication date
JPWO2005103131A1 (ja) 2008-03-13

Similar Documents

Publication Publication Date Title
EP1731557A1 (en) Method of decomposing plastic
CN112739756B (zh) 用于解聚塑料的方法和系统
JP4495628B2 (ja) プラスチックの分解・分離方法
JPH09221565A (ja) 硬化不飽和ポリエステル樹脂廃棄物の再利用法
WO2005103131A1 (ja) 熱硬化性樹脂の分解方法
JP4495629B2 (ja) プラスチックの分解・分離方法
JP5286634B2 (ja) 芳香族化合物のスルホン化方法及び芳香族スルホン酸化合物からなる粉末
CN103773627B (zh) 一种清洗聚乳酸聚合反应装置的溶液及清洗方法
JP2004250561A (ja) ポリエステル樹脂の製造方法
JP2008291188A (ja) 熱硬化性樹脂の分解・回収方法
JP4788673B2 (ja) プラスチックの分解方法
JP2009106816A (ja) 分解装置
WO2010110434A1 (ja) 熱硬化性樹脂の分解・回収方法
JP5270871B2 (ja) プラスチック用低収縮材とそれを用いたプラスチック成形品、プラスチック用低収縮材の製造方法、並びにプラスチックの回収・再利用方法
Oliveux et al. A step change in the recycling of composite materials
JP4291126B2 (ja) プラスチックの分解方法
EP4342844A1 (en) Hydrogen production process
JP2008239819A (ja) 熱硬化性樹脂の分解装置と分解方法
JP2009235206A (ja) プラスチックの分解装置
JP2001335518A (ja) ポリエチレンテレフタレートの加水分解方法
JP2011111502A (ja) プラスチックの分解方法
JP2011529510A (ja) 触媒による連続アセチル化方法
JP2009051967A (ja) プラスチックの分解装置とそれを用いたプラスチックの分解・回収方法
JPH1057943A (ja) フラッシュ操作を用いた反応生成スラリの廃水の分離方法
JP2011246578A (ja) ビニルモノマー−多塩基酸エステル共重合体の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006512586

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase