WO2005098893A1 - 透過型x線管及びその製造方法 - Google Patents

透過型x線管及びその製造方法 Download PDF

Info

Publication number
WO2005098893A1
WO2005098893A1 PCT/JP2005/006279 JP2005006279W WO2005098893A1 WO 2005098893 A1 WO2005098893 A1 WO 2005098893A1 JP 2005006279 W JP2005006279 W JP 2005006279W WO 2005098893 A1 WO2005098893 A1 WO 2005098893A1
Authority
WO
WIPO (PCT)
Prior art keywords
stem base
ray tube
cathode filament
transmission
ray
Prior art date
Application number
PCT/JP2005/006279
Other languages
English (en)
French (fr)
Inventor
Yuichi Ito
Toru Moriike
Seiji Hosoya
Yoshihiko Dan
Makoto Otsuka
Original Assignee
Hitachi Medical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corporation filed Critical Hitachi Medical Corporation
Priority to US11/547,721 priority Critical patent/US7623629B2/en
Priority to KR1020067020820A priority patent/KR101100553B1/ko
Priority to CN2005800100210A priority patent/CN1938811B/zh
Publication of WO2005098893A1 publication Critical patent/WO2005098893A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/16Vessels; Containers; Shields associated therewith
    • H01J35/18Windows
    • H01J35/186Windows used as targets or X-ray converters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/06Cathodes
    • H01J35/064Details of the emitter, e.g. material or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/06Cathodes
    • H01J35/066Details of electron optical components, e.g. cathode cups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/16Vessels; Containers; Shields associated therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/32Tubes wherein the X-rays are produced at or near the end of the tube or a part thereof which tube or part has a small cross-section to facilitate introduction into a small hole or cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/26Sealing together parts of vessels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/02Electrical arrangements
    • H01J2235/023Connecting of signals or tensions to or through the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/06Cathode assembly
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/16Vessels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/112Non-rotating anodes
    • H01J35/116Transmissive anodes

Definitions

  • the present invention relates to an X-ray tube, and more particularly to a transmission X-ray tube and a method for manufacturing the same.
  • X-ray tubes are used as X-ray sources for medical X-ray devices, industrial measuring devices, and the like. These X-ray tubes are roughly classified into rotary anode X-ray tubes and fixed anode X-ray tubes. The type X-ray tube falls into the category of the fixed anode X-ray tube or a unique classification.
  • Patent Document 1 the use of the X-ray tube has been expanding to the X-ray source of the static eliminator.
  • Patent Document 1 relates to an electrostatic neutralization device and an electrostatic neutralization method for neutralizing a charged film, paper, and the like, and irradiates an object to be neutralized with X-rays and simultaneously eliminates both surfaces of the object. .
  • Patent Document 2 describes a transmission X-ray tube used for a static eliminator.
  • a ceramic stem in which a force source pin is erected and an emission window in which a target metal is deposited on the lower surface are supported by a ceramic bulb and brazed to each other. Further, the focusing electrode is arranged along the inner peripheral surface of the ceramic bulb, and the lower end of the focusing electrode is sandwiched between the stem and the bulb.
  • Patent Document 1 JP-A-7-6859
  • Patent Document 2 Japanese Patent Publication No. 9-180660
  • the transmission X-ray tube disclosed in Patent Document 2 is excellent in that it has a feature in the arrangement structure of the focusing electrodes and can ensure a withstand voltage.
  • the X-ray tube described in Patent Document 2 A ceramic valve is provided between the lamic stem and the exit window with the target metal deposited on the lower surface. In other words, since ceramic parts are used in two places, care must be taken when handling them. In addition, it is difficult to reduce the manufacturing cost of the conventional X-ray tube. Since it is necessary to perform brazing work on both the stem side and the emission window side, it takes time to manufacture. In the transmission X-ray tube of Patent Document 2, the brazing material used on both the stem side and the exit window side needs to have different characteristics, and the work process is complicated.
  • the brazing process between the exit window side and the ceramic bulb is performed after the process of attaching the tungsten coil (cathode filament) to the force source pin.
  • the tungsten coil and the force sword pin to which the tungsten coil is fixed are exposed to high temperatures, and the fixing portion between the tungsten coil and the force sword pin is heated.
  • the fixation of the tungsten coil and the force sword pin may be loosened.
  • the reliability and reliability of the filament may be deteriorated due to the problems of the properties and life of the filament.
  • the above object is achieved by brazing a stem base for holding a cathode filament, which is an insulating material, and a cup-shaped radiation window frame having an X-ray radiation window at a closed end, with one end side being brazed to the stem base.
  • the problem can be solved by welding the other end of the substantially cylindrical seal member to the open end of the radiation window frame.
  • the sealing member and the window frame are hermetically joined by welding, so that the step of exposing the cathode filament to a high temperature during the manufacture of the tube is not required. Also, since the temperature of the fixing portion between the cathode filament and the cathode lead does not become high, the fixing portion can be prevented from being loosened. Furthermore, the desired characteristics and long life of the cathode filament can be secured, and a high-quality, long-life, and inexpensive transmission X-ray tube can be realized.
  • the stem base has a cup shape, it is easy to braze with the seal member, and the height of the seal member can be reduced, so that the mechanical strength of the finished ball is improved. I can do it.
  • the joint between the stem base and the seal member is shielded.
  • the metallized layer at the base of the stem evaporates during the operation of the bulb, it is possible to prevent adhesion to electrode parts such as electrode leads and to suppress a decrease in withstand voltage characteristics.
  • the surface of the stem base has excellent insulation.
  • the withstand voltage is improved. Excellent heat resistance when applying silver brazing. It is easy to shape and has excellent mass productivity.
  • the fixation of the electrode lead is strengthened, the interval between the cathode filament and the radiation window can be maintained with high accuracy, and the fluctuation of the focal size and the X-ray can be prevented by preventing the fluctuation of the characteristics of the tube.
  • a high-quality, long-life transmission X-ray tube with little fluctuation in line output has been realized.
  • the material on the side of fixing the electrode lead to the cathode filament can be freely selected without considering the fixing to the stem base, and the degree of freedom in material selection is increased. At the same time, the securing of the fixing reliability is further ensured, and the interval between the cathode filament and the radiation window can be secured at a desired value, so that the characteristics can be improved.
  • the material of the stem base side of the electrode lead it is possible to select the most suitable material for fixing to the stem base side without considering the influence on fixing the cathode filament, thereby improving workability.
  • the invention according to claim 7 it is possible to prevent the deformation of the leg portion of the cathode filament, the deformation of the electron-emitting portion, and the displacement of the electron-emitting portion when the cathode filament and the electrode lead are joined.
  • the distance between the cathode filament and the radiation window can be maintained with high accuracy, and fluctuations in the characteristics of the tube can be prevented, realizing a high-quality, long-life transmission X-ray tube.
  • the welding operation is easy, and the reliability of the hermetic joint without deformation or breakage of the welded portion can be ensured.
  • the cathode filament current can be reduced by a combination of heating and exhausting of the inside of the housing, and the desired characteristics and long life of the cathode filament are ensured. It is possible to realize a high-quality and long-life transmission X-ray tube by preventing the fluctuation of the characteristics of the tube.
  • the sealing member and the window frame are hermetically joined by welding, so that the step of exposing the cathode filament to a high temperature during the manufacture of the tube is not required. Also, since the temperature of the fixing portion between the cathode filament and the cathode lead does not become high, the fixing portion can be prevented from being loosened. Furthermore, the desired characteristics and long life of the cathode filament can be secured, and a high-quality, long-life, and inexpensive transmission X-ray tube can be realized.
  • the transmission X-ray tube of the present invention includes a cathode filament that emits electrons in an evacuated envelope.
  • the envelope of the X-ray tube includes an insulating stem base, a frame having a window for emitting X-rays on the front surface, a seal member connecting the stem base and the frame, and an exhaust pipe. .
  • the stem base has a plurality of through holes for penetrating the electrode leads and an exhaust hole connected to the exhaust pipe.
  • the electrode lead penetrating the stem base faces the X-ray emission window in the X-ray tube and holds the cathode filament.
  • the electrode lead is connected to a terminal for supplying a current to the cathode filament outside the X-ray tube.
  • the frame and the X-ray emission window are fixed with a brazing material
  • the stem base and the sealing member are fixed with a brazing material
  • the sealing member and the frame are fixed by melting the member to be welded by welding! .
  • FIG. 1 to FIG. 3 are diagrams illustrating Embodiment 1 of a transmission X-ray tube according to the present invention.
  • 1 (a) is a top view
  • FIG. 1 (b) is a front view
  • FIG. 1 (c) is a bottom view
  • FIG. 2 is a sectional view taken along the line II of FIG. 1 (a)
  • FIG. It is a part enlarged view.
  • 1 is a cup-shaped stem base having an insulating property such as ceramics
  • 2 is an exhaust pipe
  • 3 is a terminal
  • 4 is an electrode lead
  • 5 is a substantially cylindrical sealing member
  • 6 is A substantially cylindrical shield
  • 7 is a filament having a cathode serving as an electron emission source (hereinafter referred to as a cathode filament)
  • 8 Is a cup-shaped window frame
  • 9 is a radiation window
  • 12 is an open end of a stem base
  • 13 is a metallized layer
  • 41 is one end of a lead wire
  • 42 is another end of a lead wire
  • 51 is one end of a sealing member.
  • 71 is the cathode filament leg
  • 72 is the cathode filament electron emission section
  • 81 is the closed end of the window frame
  • 82 is the closed end of the window frame.
  • 83 is the open end of the window frame body
  • 111 is an exhaust hole provided in the stem base
  • 112 is one lead hole provided in the stem base
  • 113 is another lead hole provided in the stem base
  • 131 is a brazing material.
  • the stem base 1 has a plurality of through holes including an exhaust hole 111 and lead holes 112 and 113 on a closed end face 11 thereof.
  • the exhaust pipe 2 is made of, for example, a copper pipe, and one end 21 of the metallized layer 13 on the bottom surface 114 of the closed end face 11 of the stem base 1 is air-tightly brazed substantially coaxially with the exhaust hole 111, and the other end is formed. Is hermetically sealed.
  • the terminal 3 is brazed to the metallized layer 13 on the bottom surface 114 of the closed end face 11 of the stem base 1 substantially coaxially with the lead holes 112, 113, respectively.
  • One end 41 of the electrode lead 4 is inserted into the lead holes 112 and 113 of the closed end face 11 of the stem base 1 and brazed to the terminal 3.
  • the sealing member 5 is also formed of a conductive material (for example, Kovar material, Fe, Fe-Ni alloy, etc.), and one end side 51 of the metallized layer 13 on the open end 12 of the stem base 1 as shown in FIG. It is brazed with brazing material 131 in an airtight manner.
  • a conductive material for example, Kovar material, Fe, Fe-Ni alloy, etc.
  • the shield 6 is fixed substantially coaxially inside the seal member 5, and shields the vicinity of the brazed portion between one end 51 of the seal member 5 and the metallized layer 13 at the open end 12 of the stem base 1, and the electrode lead 4. are doing.
  • the cathode filament 7 has its legs 71 fixed to the other end 42 of the electrode lead 4.
  • a concave portion is provided at the distal end of the other end side 42, and the leg portion 71 is arranged in the concave portion, and fixed by squeezing.
  • the electrode lead 7 and the foot of the cathode filament may be fixed by welding.
  • the window frame 8 is formed of a conductive material, for example, copper.
  • This radiation window frame The closed end 81 has a through portion 82 substantially coaxially with the window frame 8 at its closed end 81, and an X-ray transmitting radiation window 9 is hermetically brazed so as to cover the through portion 82.
  • the radiation window 9 is made of, for example, a beryllium plate or a structure in which tungsten or the like is deposited on a beryllium plate. Is accelerated and collided, generating X-rays
  • the open end 83 of the radiation window frame 8 is hermetically welded to the other end 52 of the seal member 5. In this welding connection, the window frame 8 is melted and fixed to the seal member 5 over the entire circumference. This welding is preferably, but not limited to, arc welding.
  • the interval between the radiation window 9 and the electron-emitting portion 72 of the filament 7 is accurately set to a predetermined dimension, and the centers of the two substantially coincide with the tube axis.
  • an airtight envelope is formed by the stem base 1, the exhaust pipe 2, the shield member 5, the window frame 8, the radiation window 9, the electrode leads 4 for closing the lead holes 112 and 113, the terminals 3, and the like.
  • the cathode filament can be fixed to the electrode lead after brazing. After the cathode filament is fixed to the electrode lead, the window frame 8 and the sealing member 5 can be hermetically welded. Therefore, according to the present invention, since there is no brazing step after fixing the cathode filament, it is possible to secure the desired characteristics and extend the life of the cathode filament without exposing the cathode filament to a high temperature, and to reduce the variation in the characteristics of the tube. By preventing this, it is possible to provide a high-quality, long-life transmission X-ray tube with less change in focal spot size and X-ray output.
  • a transmission type X-ray tube with excellent mechanical strength, high mass productivity, and low cost is provided. it can.
  • FIG. 4 is a cross-sectional view for explaining a transmission-type X-ray tube according to a second embodiment of the present invention.
  • FIG. 4 is a cross-sectional view for explaining a transmission-type X-ray tube according to a second embodiment of the present invention.
  • the stem base 10 also has a flat plate force.
  • the stem base 10 has a metallized layer 13 on each of an upper surface 101 and a bottom surface 102 thereof, and a first cylindrical body 151 also serving as a conductive material of the seal member 15 is hermetically brazed to the upper surface 101.
  • the sealing member 15 has a configuration in which the ceramic cylinder 152 and the first cylinder 151 are added to the sealing member 5 of FIG. 3 described above, and the ceramic cylinder 152 and the sealing member 5 and the first cylinder 151 are combined. Are airtightly brazed.
  • the end 52 of the sealing member 15 on the side of the window frame 8 is hermetically welded to the open end 83 of the window frame 8.
  • the configuration of the stem base is simple, mass production is high, and it can be obtained at low cost.
  • the stem base 10, the first cylinder 151, the ceramic cylinder 152, and the sealing member 5 Can be simultaneously performed with other electrode leads 4, exhaust pipe 2, etc., so that the desired properties of the cathode filament and the long life can be secured without exposing the cathode filament to high temperatures.
  • FIG. 5 is a cross-sectional view for explaining a transmission-type X-ray tube according to a third embodiment of the present invention.
  • the same parts as those in the above-described drawings are denoted by the same reference numerals.
  • the stem base 20 also has a flat plate force.
  • the stem base 20 has the metallized layer 13 formed on the outer surface 202 and the bottom surface 203 on the upper surface 201 side, and the cup 251 of the seal member assembly 25 is air-tightly brazed to the outer surface 202! You.
  • the cups 251 were symmetrically arranged on both sides of the second ceramic cylinder 252, and each was airtightly brazed.
  • the end 253 of the cup 251 arranged on the side of the window frame 8 is hermetically welded and joined to the open end 83 of the window frame 8.
  • the configuration of the stem base is simple, the mass productivity is high, and it can be obtained at low cost. Since the outer surface 202 of the stem base 20 and the seal member 25 are surface-bonded, the reliability of the air-tight connection can be improved.
  • the stem base 20, two cups 251 and the second The brazing of the lamic cylinder 252 can be performed simultaneously with the brazing of the other electrode leads 4, the exhaust pipe 2, and the like.
  • the transmission type X-ray tube of the present invention can fix the cathode filament to the electrode lead after brazing. After fixing the cathode filament to the electrode lead, the window frame 8 and the cup 251 can be hermetically welded.
  • Example 4 that can provide a high-quality, long-life transmission X-ray tube
  • FIG. 6 is a cross-sectional view for explaining a transmission type X-ray tube according to a fourth embodiment of the present invention.
  • FIG. 6 is a cross-sectional view for explaining a transmission type X-ray tube according to a fourth embodiment of the present invention.
  • the seal member 35 of this embodiment has a configuration in which two shields 354 are added to the seal member 25 of FIG. 5 described above.
  • the seal member 35 has a configuration in which the shields 354 are arranged at positions where the brazed portions of the two cups 251 and the second ceramic cylinder 252 and the electrode leads 4 are shielded.
  • the joint between the second ceramic cylinder and the cup can be shielded by the shield 354 with the same force as the electrode lead. Even if the metallized layer at the joint evaporates during the operation of the bulb, the adhesion to the electrode leads can be prevented, and as a result, the withstand voltage characteristics of the transmission X-ray tube are improved.
  • FIG. 7 is a cross-sectional view for explaining a transmission-type X-ray tube according to a fifth embodiment of the present invention.
  • the same parts as those in the above-described drawings are denoted by the same reference numerals.
  • the electrode leads 14 are connected to conductive wires made of different materials. That is, for example, a molybdenum wire suitable for welding is used for the supporting lead 141 connected to the cathode filament 7, while the external lead 142 for brazing to the stem base 1 and the terminal 3 is suitable for brazing, for example, Fe-29 mass% Ni. -17 mass% Co alloy (trade name: Kovar).
  • the electrode lead and the cathode filament can be securely fixed, and the interval between the cathode filament and the emission window can be secured to a desired value.
  • brazing of the stem base and the electrode lead can be made of any material without affecting the fixing of the cathode filament, so that the workability is improved.
  • Fig. 13 is a flow chart of the manufacturing process of the transmission type X-ray tube.
  • FIG. 8 is a cross-sectional view showing the structure of an assembly on the stem base side for explaining an embodiment of the method of manufacturing a transmission type X-ray tube according to the present invention.
  • components such as the stem base 1, the exhaust pipe 2, the terminal 3, the electrode lead 4, and the seal member 5 having the shield 6 are combined as shown in FIG. Set it in the tool.
  • the brazing material having a melting temperature of about 750 to 900 ° C. can be used, for example.
  • the brazing material includes silver brazing, silver copper brazing, and the like.
  • the stem base has a metallization layer 13 on the bottom surface 114 and the open end 12, respectively.
  • the electrode lead 4 further has a recess 421 for fixing the leg 71 of the cathode filament 7 at the tip of the other end 42. are doing.
  • the assembly set in the jig is carried into the furnace, and in a configuration using a silver-copper brazing, the temperature is raised to 850 ° C. and brazing of each part is performed at a time to assemble.
  • the radiation window 9 is disposed by inserting a brazing material having the same material strength as described above into the penetrating portion 82 on the closed end 81 side of the window frame 8. These are set in a jig, heated and brazed in the same manner as described above, and assembled.
  • this brazing operation can be performed simultaneously with the brazing in FIG. 8 in the same furnace.
  • brazing materials different from those in Fig. 8 in consideration of cost, workability, etc., work management becomes easier by unifying them.
  • the cathode filament 7 is attached and fixed.
  • Fig. 10 is a diagram for explaining the mounting and fixing. It is attached.
  • the leg 71 of the cathode filament 7 is inserted into the recess 421 at the tip of the other end 42 of the electrode lead 4 assembled by brazing until the tip of the cathode filament 7 contacts the bottom of the recess 421.
  • the concave portion 421 is urged by applying a strong external force, it is fixed by welding or the like to form the mount assembly 16.
  • Various methods are possible for the mounting and fixing.
  • FIG. 11 is a view for explaining an unsealed pipe 17 formed by assembling the mount assembly 16 and the window frame assembly, and the same parts as those in the above-described figures are denoted by the same reference numerals.
  • FIG. 12 is a schematic front view showing an outline of an example of an exhaust device used in the method of manufacturing a transmission type X-ray tube according to the present invention.
  • the exhaust device 18 includes a mounting table 181, a cover 182, an exhaust system 183, a heater 184, an exhaust cylinder 185, and the like.
  • the exhaust pipe 2 of the unsealed pipe 17 is set in the exhaust system 183. It is desirable to set a plurality of unsealed tubes 17 at the same time in terms of work efficiency.
  • a filament current is supplied to each of the unsealed pipes 17 and an evacuation pump (not shown) is driven while being heated by the heater 184 for heating, and the evacuation is performed in the direction of arrow 19 from the evacuation system 183 via the evacuation tube 185.
  • the heating temperature is preferably determined in consideration of the constituent members of the unsealed tube 17 and the like, for example, about 400 ° C. or more. This heating means can use various methods other than the above.
  • the exhaust pipe 2 close to the exhaust system 183 side from the hermetic sealing portion is cut off to form an exhaust system.
  • the tube is removed from 183 to produce a transmission X-ray tube as shown in FIG.
  • a higher vacuum can be achieved by performing a getter flush after the hermetic sealing.
  • the getter can be activated during the evacuation process. Therefore, when a non-evaporable getter is used, the getter flush step can be omitted. Further, in the non-evaporable getter, since the getter material does not adhere to the cathode filament and the like, a decrease in electron emission can be suppressed.
  • the cathode filament can be assembled without exposing it to a high temperature.
  • the life of the X-ray tube can be extended, and fluctuations in the characteristics of the tube can be prevented to provide a high-quality, long-life, and inexpensive transmission X-ray tube.
  • the fixed portion between the cathode filament and the lead wire is not exposed to a high temperature, loosening due to heating of the fixed portion can be suppressed.
  • the sealing sphere is heated from the outside and evacuation is performed while supplying a filament current, so that the evacuation efficiency can be improved and a high degree of vacuum can be obtained.
  • X-ray tube can be provided.
  • FIG. 1 shows an embodiment of a transmission X-ray tube of the present invention, wherein FIG. 1 (a) is a top view, FIG. 1 (b) is a front view, and FIG. 1 (c) is a bottom view. .
  • FIG. 2 is a sectional front view taken along the line II of FIG. 1 (a).
  • FIG. 3 is a partially enlarged view of FIG. 2.
  • FIG. 4 is a cross-sectional view corresponding to FIG. 2, showing another embodiment of the transmission X-ray tube of the present invention.
  • FIG. 5 is a cross-sectional view corresponding to FIG. 2, showing still another embodiment of the transmission X-ray tube of the present invention.
  • FIG. 6 is a cross-sectional view corresponding to FIG. 2, showing still another embodiment of the transmission X-ray tube of the present invention.
  • FIG. 7 is a cross-sectional view corresponding to FIG. 2, showing still another embodiment of the transmission X-ray tube of the present invention.
  • FIG. 8 is a sectional view of a stem base side assembly for explaining a method of manufacturing a transmission type X-ray tube according to the present invention.
  • FIG. 9 is a cross-sectional view of the radiation window frame side assembly for explaining the method of manufacturing a transmission X-ray tube according to the present invention.
  • FIG. 10 is a cross-sectional view of a mount assembly for describing a method of manufacturing a transmission X-ray tube according to the present invention.
  • FIG. 11 is a cross-sectional view of a sealing sphere for explaining the method of manufacturing a transmission X-ray tube according to the present invention.
  • FIG. 12 is a schematic front view showing an example of an exhaust device used in the method of manufacturing a transmission X-ray tube according to the present invention.
  • FIG. 13 is a process flow chart of a method of manufacturing a transmission X-ray tube according to the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • X-Ray Techniques (AREA)

Description

透過型 X線管及びその製造方法
技術分野
[0001] 本発明は、 X線管に係り、特に、透過型 X線管及びその製造方法に関するものであ る。
背景技術
[0002] X線管は医療用レントゲン装置、工業用計測装置等の X線源として用いられており、 これら X線管は回転陽極 X線管、固定陽極 X線管に大別され、前記透過型 X線管は 前記固定陽極 X線管の範疇若しくは独自の分類となる。
近時、 X線管は特許文献 1に開示されている様に静電気除電装置の X線源にもその 用途が拡大されつつある。
特許文献 1は、帯電したフィルムや紙などを除電する静電気除電装置および静電 気除電方法に関するもので、 X線を被除電物に照射して被除電物の両面を同時に除 電するものである。
このようにフィルム、紙等の製造や加工、粉体や液体の充填、更には半導体や表 示装置等の製造、検査工程等において静電気の除電は重要な課題となっている。 特許文献 2には除電装置に用いる透過型 X線管が記載されて 、る。
特許文献 2に記載の透過型 X線管は、力ソードピンが立設されたセラミック製ステム 部と、下面にターゲット金属が蒸着された出射窓とをセラミック製バルブで支えて相互 にロウ付けし、更に集束電極を前記セラミック製バルブの内周面に沿って配置すると 共にこの集束電極の下端部をステム部とバルブで挟む構成である。
[0003] 特許文献 1:特開平 7-6859号公報
特許文献 2:特許平 9-180660号公報
発明の開示
発明が解決しょうとする課題
[0004] 特許文献 2に開示された透過型 X線管は、集束電極の配置構造に特徴を有し耐電 圧の確保も可能な優れたものである。し力しながら、特許文献 2に記載の X線管は、セ ラミック製ステム部と下面にターゲット金属が蒸着された出射窓との間にセラミック製 バルブを設けている。即ちセラミック部品を 2箇所に使用しているため、取り扱いに注 意が必要である。また、従来の X線管は製造コストを安くすることが困難である。ステム 側と出射窓側共にロウ付け作業を行う必要があるため、製造に時間がかかる。また特 許文献 2の透過型 X線管はステム側と出射窓側の両側で使用するロウ材を異なる特 性のものとする必要があり、作業工程が複雑である。そのため量産性が難しい。更に 、出射窓側とセラミック製バルブとのロウ付け工程力 タングステンコイル (陰極フィラメ ント)を力ソードピンに取り付ける工程よりも後になる。そのため、タングステンコイル及 びタングステンコイルを固定した力ソードピンを高温に曝すことになり、タングステンコ ィルと力ソードピンの固定部が加熱される。結果としてタングステンコイルと力ソードピ ンの固定が緩むことがある。またフィラメントの特性及び寿命劣化の問題があって信 頼性に欠ける恐れがある。
課題を解決するための手段
[0005] 上記課題は、絶縁材力 なり陰極フィラメントを保持するステム基部と、閉止端に X 線放射窓を有するカップ状の放射窓枠体とを、一端側を前記ステム基部とロウ付けさ れた略筒状のシール部材の他端側を前記放射窓枠体の開放端側と溶接接合するこ とで解決できる。
発明の効果
[0006] 請求項 1に係る発明によると、ステム基部に電極リードとシール部材及び排気管等 を同時にロウ付けすることが可能である。各部材をロウ付け後に、シール部材と窓枠 体とを溶接により気密接合することで管球製造中に陰極フィラメントを高温に曝すェ 程が不要になる。また、陰極フィラメントと陰極リードとの固定部が高温にならないの で、固定部が緩むことを防止できる。さらに陰極フィラメントの所望の特性及び長寿命 化を確保出来、高品位で長寿命、かつ廉価な透過型 X線管を実現可能とした。
[0007] 請求項 2に係る発明によると、ステム基部がカップ状を呈することからシール部材と のロウ付けが容易となると共にシール部材の高さを低く出来るので完成球の機械的 強度の向上が図れる。
[0008] 請求項 3に係る発明によると、シールドによりステム基部とシール部材との接合部を 電極リードから遮蔽できる。例えば、ステム基部のメタライズ層が管球動作中に蒸発し ても、電極リード等の電極部分への付着を阻止でき、耐電圧特性の低下を抑制でき る。
[0009] 請求項 4に係る発明によると、ステム基部の表面の絶縁性が優れる。耐電圧が向上 する。銀ロウをつけるときの耐熱性が優れる。又整形も容易で、量産性にも優れてい る。
[0010] 請求項 5に係る発明によると、電極リードの固定が強固になり陰極フィラメントと放射 窓間の間隔を高精度に保持でき、管球の特性変動を防止して焦点サイズの変動や X 線出力の変動の少ない高品位で長寿命の透過型 X線管を実現可能とした。
[0011] 請求項 6に係る発明によると、電極リードの陰極フィラメントとの固定側の材料は、ス テム基部との固定を考慮することなく自由に選択でき、材料選択の自由度が大きくな ると共に固定の信頼性の確保がより一層確実となって陰極フィラメントと放射窓間の 間隔が所望の値に確保でき特性向上が図れる。
又、電極リードのステム基部側の材料は、陰極フィラメント固定への影響を考慮する ことなぐステム基部側との固定に最適な材質を選定することが可能となり、作業性の 向上が図れる
[0012] 請求項 7に係る発明によると、陰極フィラメントと電極リードとの接合するときの、陰極 フィラメントの脚部の変形、電子放出部の変形、電子放出部の変位の発生を防止で きる。また、陰極フィラメントと放射窓間の間隔を高精度に保持でき、管球の特性変動 を防止して高品位で長寿命の透過型 X線管を実現できる。
[0013] 請求項 8に係る発明によると、ロウ付けと溶接接合とを有効に組み合わせることで陰 極フィラメントと電極リードとの接合部を高温に曝す工程も無く、従って陰極フィラメン トの所望の特性及び長寿命を確保でき、管球の特性変動を防止して高品位で長寿 命の透過型 X線管を実現可能とした。
[0014] 請求項 9に係る発明によると、溶接作業が容易であると共に、溶接部分の変形や破 断の発生が無ぐ気密接合の信頼性を確保できる。
[0015] 請求項 10に係る発明によると、筐体内の加熱と排気との組み合わせで陰極フィラメ ント電流を小電流とすることが出来、陰極フィラメントの所望の特性及び長寿命を確 保でき、管球の特性変動を防止して高品位で長寿命の透過型 X線管を実現可能とし た。
[0016] 請求項 11に係る発明によると、ステム基部に電極リードとシール部材及び排気管等 を同時にロウ付けすることが可能である。各部材をロウ付け後に、シール部材と窓枠 体とを溶接により気密接合することで管球製造中に陰極フィラメントを高温に曝すェ 程が不要になる。また、陰極フィラメントと陰極リードとの固定部が高温にならないの で、固定部が緩むことを防止できる。さらに陰極フィラメントの所望の特性及び長寿命 化を確保出来、高品位で長寿命、かつ廉価な透過型 X線管を実現可能とした。
発明を実施するための最良の形態
[0017] 本発明の透過型 X線管は排気された外囲容器の中に電子を放出する陰極フィラメ ントを備えている。 X線管の外囲容器は、絶縁性のステム基部と、前面に X線を出射 するための窓を持つ枠体と、ステム基部と枠体とを繋ぐシール部材と、排気管とを備 える。
ステム基部は、電極リードを貫通させるための複数の貫通孔と、排気管につながる 排気孔とを持つ。
ステム基部を貫通した電極リードは、 X線管内で X線出射窓に対向させて陰極フイラ メントを保持する。また電極リードは、 X線管外で前記陰極フィラメントに電流を供給す るための端子に接続している。
枠体と X線出射窓とはロウ材で固着し、ステム基部とシール部材とはロウ材で固着し 、シール部材と枠体とは溶接により被溶接部材を溶かして固着して!/ヽる。
以下、本発明の実施の形態につき実施例を用いて詳細に説明する。
実施例 1
[0018] 図 1乃至図 3は本発明の透過型 X線管の実施例 1を説明する図である。なお、図 1(a) は上面図、図 1(b)は正面図、図 1(c)は下面図、図 2は図 1(a)の I-I線断面図、図 3は図 2 の一部拡大図である。
[0019] 図 1乃至図 3において、 1はセラミックスのような絶縁体力 なるカップ状のステム基部 、 2は排気管、 3は端子、 4は電極リード、 5は略筒状のシール部材、 6は略筒状のシー ルド、 7は電子放出源となる陰極を備えたフィラメント (以下、陰極フィラメントという)、 8 はカップ状の窓枠体、 9は放射窓、 12はステム基部の開放端、 13はメタライズ層、 41は リード線の一端部、 42はリード線の他の一端部、 51はシール部材の一端部、 52はシ 一ル部材の他の一端部、 71は陰極フィラメントの脚部、 72は陰極フィラメントの電子放 出部、 81は窓枠体の閉止端、 82は窓枠体の閉止端に設けた貫通部、 83は窓枠体の 開放端、 111はステム基部に設けた排気孔、 112はステム基部に設けた一方のリード 孔、 113はステム基部に設けた他の一方のリード孔、 131はロウ材である。
ステム基部 1はその閉止端面 11に排気孔 111とリード孔 112及び 113からなる複数の 貫通孔を備えている。
排気管 2は例えば銅管力 構成され、ステム基部 1の閉止端面 11の底面 114のメタラ ィズ層 13にその一端側 21を前記排気孔 111と略同軸で気密にロウ付けし、他端側を 気密封止している。
端子 3は前記ステム基部 1の閉止端面 11の底面 114のメタライズ層 13に前記リード孔 112, 113とそれぞれ略同軸でロウ付けしている。
電極リード 4はその一端側 41を前記ステム基部 1の閉止端面 11の前記リード孔 112, 113にそれぞれ挿通して前記端子 3とロウ付けされている。
シール部材 5は導電材 (例えば、コバール材, Fe, Fe-Ni合金等)力も構成され、その 一端側 51を図 3に拡大して示すように前記ステム基部 1の開放端 12のメタライズ層 13 に気密にロウ材 131でロウ付けしている。セラミック製のステム基部 1の端部にメタライ ズ層 13を形成したことで、ステム基部 1とシール部材 5とのロウ付けの信頼性が向上す る。
シールド 6はシール部材 5の内側に略同軸で固定され、前記シール部材 5の一端側 51と前記ステム基部 1の開放端 12のメタライズ層 13とのロウ付け部分付近と前記電極 リード 4とを遮蔽している。
陰極フィラメント 7はその両脚部 71を前記電極リード 4の他端側 42とそれぞれ固定し ている。例えば、この固定は前記他端側 42の先端部に凹部を設け、この凹部に脚部 71を配置して、力しめにより固定してある。あるいは電極リード 7と陰極フィラメントの足 部を溶接で固定しても良い。
窓枠体 8は導電材で形成されており、例えば銅で形成されている。この放射窓枠体 8はその閉止端 81に貫通部 82を窓枠体 8と略同軸で備えており、この貫通部 82を塞ぐ ように X線透過の放射窓 9を気密ロウ付けして備えている。この放射窓 9は例えばベリ リウム板或はベリリウム板にタングステン等を蒸着した構成等が用いられ、この放射窓 9に前記陰極フィラメント 7から放出された電子が高電圧、例えば 9キロボルト程度の高 電圧により加速されて衝突し X線を発生させる。一方、放射窓枠体 8の開放端 83は前 記シール部材 5の他端側 52と気密に溶接接合して!/、る。この溶接接合は窓枠体 8が 熔けてシール部材 5に全周にわたって固着している。この溶接接合はアーク溶接が 好ましいが、それに限定されるものではない。
この溶接接合に際し、前記放射窓 9と前記フィラメント 7の電子放出部 72の間隔は所 定の寸法に正確に設定されており、又両者はそれぞれの中心を管軸と略一致させて いる。
この構成で、ステム基部 1、排気管 2、シールド部材 5、窓枠体 8、放射窓 9、リード孔 112, 113を塞ぐ電極リード 4及び端子 3等で気密外囲器を構成している。
この実施例 1の構成であれば、シールド部材からステム基部に至る複数の構成部品 を同時にロウ付け出来る。又放射窓と窓枠体は前記ステム基部側とは別にロウ付け 形成できる。本発明の透過型 X線管はロウ付け後に陰極フィラメントを電極リードに固 定できる。陰極フィラメントを電極リードに固定した後、窓枠体 8とシール部材 5を気密 に溶接できる。従って本発明は、陰極フィラメントを固定した後にロウ付け工程が無い ので、陰極フィラメントを高温に曝すことも無ぐ陰極フィラメントの所望の特性の確保 と長寿命化が可能となり、管球の特性変動を防止して焦点サイズの変動や X線出力 の変動の少ない高品位で長寿命の透過型 X線管を提供できる。
又、セラミックス力もなるカップ状のステム基部と、導電材カもなるシールド部材及び 窓枠体を組み合わせて用いることで機械的強度に優れ、量産性が高ぐしかも廉価 な透過型 X線管を提供できる。
更に、ステム基部とシールド部材との接合部をシールドによって電極リード等力も遮 蔽した。例え接合部のメタライズ層が管球動作中に蒸発しても、電極リードを含めて 高電位差の電極部分への付着を阻止でき、結果として、透過型 X線管の耐電圧特性 が向上する。 実施例 2
[0021] 図 4は本発明の透過型 X線管の実施例 2を説明するための断面図で、前述した図と 同じ部分には同一記号を付してある。
図 4において、ステム基部 10は平板力も構成されている。ステム基部 10は、その上 面 101と底面 102にそれぞれメタライズ層 13を備えており、上面 101にシール部材 15の 導電材カもなる第 1の筒体 151を気密ロウ付けしている。このシール部材 15は前述し た図 3のシール部材 5にセラミック筒体 152と前記第 1の筒体 151を付加した構成で、セ ラミック筒体 152とシール部材 5及び第 1の筒体 151とはそれぞれ気密にロウ付けされ ている。又、前記シール部材 15の窓枠体 8側の端部 52は窓枠体 8の開放端 83と気密 に溶接接合している。
[0022] 実施例 2の構成であれば、ステム基部の構成が単純で量産性が高ぐしかも廉価に 入手出来、更にステム基部 10、第 1の筒体 151、セラミック筒体 152及びシール部材 5 のロウ付けは、他の電極リード 4、排気管 2等のロウ付けと同時に可能であり、従って 陰極フィラメントを高温に曝すことも無ぐ陰極フィラメントの所望の特性の確保と長寿 命化が可能となり、管球の特性変動を防止して高品位で長寿命の透過型 X線管を提 供できる。
実施例 3
[0023] 図 5は本発明の透過型 X線管の更に実施例 3を説明するための断面図で、前述し た図と同じ部分には同一記号を付してある。
図 5において、ステム基部 20は平板力も構成されている。ステム基部 20は、その上 面 201側の外側面 202及び底面 203にメタライズ層 13を形成しており、外側面 202にシ 一ル部材組立 25のカップ 251を気密にロウ付けして!/、る。このシール部材組立 25は第 2のセラミック筒体 252を挟んで両側に対称的に前記カップ 251を配置し、それぞれ気 密にロウ付けした。前記窓枠体 8側に配置されたカップ 251はその端部 253を窓枠体 8 の開放端 83と気密に溶接接合して!/、る。
[0024] 実施例 3の構成であれば、ステム基部の構成が単純で量産性が高ぐしかも廉価に 入手出来る。ステム基部 20の外側面 202とシール部材 25とを面接合したことで気密接 合の信頼性を高めることが出来る。更にステム基部 20、 2個のカップ 251及び第 2のセ ラミック筒体 252のロウ付けは、他の電極リード 4、排気管 2等のロウ付けと同時に可能 である。本発明の透過型 X線管はロウ付け後に陰極フィラメントを電極リードに固定で きる。陰極フィラメントを電極リードに固定した後、窓枠体 8とカップ 251を気密に溶接 できる。従って、陰極フィラメントを固定した後にロウ付け工程が無いので、陰極フイラ メントを高温に曝すことも無ぐ陰極フィラメントの所望の特性の確保と長寿命化が可 能となり、管球の特性変動を防止して高品位で長寿命の透過型 X線管を提供できる 実施例 4
[0025] 図 6は本発明の透過型 X線管の更に実施例 4を説明するための断面図で、前述した 図と同じ部分には同一記号を付してある。
図 6において、この実施例のシール部材 35は、前述した図 5のシール部材 25に 2個 のシールド 354を付カ卩した構成である。
すなわち、シール部材 35は 2個のカップ 251と第 2のセラミック筒体 252とのそれぞれ のロウ付け部分と電極リード 4とを遮蔽する位置に、それぞれシールド 354を配置した 構成である。
その他の構成は実施例 3と同一である。
[0026] 実施例 4の構成であれば、第 2のセラミック筒体とカップとの接合部をシールド 354に よって電極リード等力 遮蔽できる。例え接合部のメタライズ層が管球動作中に蒸発 しても、電極リードへの付着を阻止でき、結果として、透過型 X線管の耐電圧特性が 向上する。
実施例 5
[0027] 図 7は本発明の透過型 X線管の実施例 5を説明するための断面図で、前述した図と 同じ部分には同一記号を付してある。
この実施例では電極リード 14を異なる材料カゝらなる導線を繋ぎ合わせた。 すなわち、陰極フィラメント 7と接続する支持リード 141は溶接に適した例えばモリブ デン線を用い、一方ステム基部 1及び端子 3とロウ付けする外部リード 142はロウ付け に適した例えば Fe-29質量%Ni-17質量%Co合金 (商品名:コバール (Kovar))製の線 をそれぞれ用いた構成として 、る。 [0028] 実施例 5の構成であれば、電極リードと陰極フィラメントとが確実に固定でき、陰極フ イラメントと放射窓間の間隔が所望の値に確保できる。
又、ステム基部と電極リードのロウ付けも陰極フィラメント固定に何等影響を与えるこ となく材質選定が可能であるため作業性が向上する。
実施例 6
[0029] 次に、本発明による透過型 X線管の製造方法を実施例 6として説明する。図 13は透 過型 X線管の製造工程の流れ図である。
[0030] 図 8は本発明の透過型 X線管の製造方法の実施例を説明するためのステム基部側 の組立体の構造を示す断面図で、前述した図と同じ部分には同一記号を付してある 本発明の製造方法において、マウント組立工程ではステム基部 1、排気管 2、端子 3 、電極リード 4及びシールド 6を有するシール部材 5等の部品を図 8のように組み合わ せて治具にセットする。この時、各ロウ付け部にはロウ材が揷入される力 このロウ材 は例えば溶融温度 750〜900°C程度のものを用いことが出来る。例えば、ロウ材として 、銀ロウ、銀銅ロウ等がある。又、ステム基部は底面 114と開放端 12にそれぞれメタラ ィズ層 13を備えており、更に電極リード 4は他端側 42の先端に陰極フィラメント 7の脚 部 71を固定する例えば凹部 421を形成している。
このように治具にセットされた組立体を炉内に搬入し、銀銅ロウを用いた構成では 850°C迄加熱昇温して各部のロウ付けを一度に実行して組み立てる。
[0031] 一方、窓枠体 8側は、図 9に示すように窓枠体 8の閉止端 81側の貫通部 82に放射窓 9を前述したと同一材料力もなるロウ材を挿んで配置し、これらを治具にセットし前述と 同様に加熱してロウ付けし組み立てる。
このロウ付け作業は必要であれば前述した図 8のロウ付けと同一炉で同時に行うこと も可能である。
又、ロウ材は原価、作業性等を考慮して前述の図 8とは異なるものを用いることも可 能であるが、統一することで作業管理は容易となる。
[0032] 次に、陰極フィラメント 7の取り付け固定を行う。
図 10はこの取り付け固定を説明する図で、前述した図と同じ部分には同一記号を 付してある。
図 10に示すように、ロウ付け組み立てられた電極リード 4の他端側 42の先端の凹部 421に、陰極フィラメント 7の脚部 71をその先端が前記凹部 421の底面に当接する迄挿 入して位置決めし、凹部 421を外側力も強圧して力しめた後、溶接固定する方法等に より取り付け固定し、マウント組立 16を形成する。前記取り付け固定には色々な手法 が可能である。
[0033] 次に、陰極フィラメント 7の取り付け固定の完了したマウント組立 16と、放射窓 9を備 えた窓枠組立とを、図 11に示すように同軸に組み立てる。線 Π-Πは透過型 X線管の管 軸である。陰極フィラメント 7と放射窓 9との間隔が所定の値に確保された状態で、放 射窓枠体 8の開放端 83とシールド部材 5の他端側 52とがアーク溶接のような溶接手段 で気密に溶接される。未封止の透過型 X線管 (以下、未封止管という) 17を形成する。 なお、図 11はマウント組立 16と窓枠組立との組立てにより形成された未封止管 17を 説明する図で、前述した図と同じ部分には同一記号を付してある。
[0034] 次に、未封止管 17の管内の排気を行う。この排気は、図 12に示す排気装置 18を使 用して行う。図 12は本発明の透過型 X線管の製造方法に用いる排気装置の一例の 概略を示す模式正面図で、前述した図と同じ部分には同一記号を付してある。 この排気装置 18は、載置台 181、カバー 182、排気系 183、加熱用ヒータ 184及び排 気筒 185等からなり、未封止管 17の排気管 2を排気系 183にセットする。未封止管 17は 複数本を同時にセットすることが作業効率上望ましい。
排気作業は、未封止管 17のそれぞれにフィラメント電流を流し、かつ加熱用ヒータ 184で加熱しながら図示しない排気ポンプを駆動させて排気系 183から排気筒 185を 介して矢印 19方向に排気を行う。
又、前記加熱温度は未封止管 17の構成部材等を考慮して決定すれば良ぐ例え ば 400°C程度以上が望ましい。この加熱手段は前述の他に種々の手法が可能である
[0035] 排気により管内真空度が所定の例えば 133 X 10— 6Paに達した後、排気管 2を図示し な!、ローラで挟み、ローラを加圧回転させて排気管 2を潰して気密封止する。
この気密封止後、前記気密封止部より排気系 183側寄りの排気管 2を切断し排気系 183より管球を取り外し、図 1に示すような透過型 X線管を製造する。
ここで、封止管内に蒸発性ゲッタを備えた構造では、前記気密封止後ゲッタフラッ シュを行うことで更に高真空とすることが出来る。
封止管内に非蒸発性ゲッタを配置した場合は、排気工程中にゲッタの活性化が可 能である。よって、非蒸発性ゲッタを使用した場合は、ゲッタフラッシュ工程を省略で きる。また、非蒸発ゲッタは、ゲッタ材が陰極フィラメント等への付着がないので、電子 放出の低下を抑制できる。
[0036] この実施例 6によれば、マウント組立と窓枠組立との組み立てを溶接接合により行う ため、陰極フィラメントを高温に曝すこと無く組み込むことが出来、陰極フィラメントの 所望の特性の確保と長寿命化が可能となり、管球の特性変動を防止して高品位で長 寿命、かつ廉価な透過型 X線管を提供できる。また、陰極フィラメントとリード線との固 定部が高温にさらされないので、固定部の加熱による緩みを抑制できる。
又、排気工程では封止球を外部から加熱し、フィラメント電流を流しながら排気を行 うため、排気効率の向上が図れると共に高真空度が得られ、高品位で長寿命、かつ 廉価な透過型 X線管を提供できる。
図面の簡単な説明
[0037] [図 1]本発明の透過型 X線管の一実施例を示し、図 1(a)は上面図、図 1(b)は正面図、 図 1(c)は下面図である。
[図 2]図 1(a)の I-I線に沿った断面正面図である。
[図 3]図 2の一部拡大図である。
[図 4]本発明の透過型 X線管の他の実施例を示す図 2に対応する断面図である。
[図 5]本発明の透過型 X線管の更に他の実施例を示す図 2に対応する断面図である
[図 6]本発明の透過型 X線管の更に他の実施例を示す図 2に対応する断面図である
[図 7]本発明の透過型 X線管の更に他の実施例を示す図 2に対応する断面図である
[図 8]本発明の透過型 X線管の製造方法を説明するためのステム基部側組立体の断 面図である。
[図 9]本発明の透過型 X線管の製造方法を説明するための放射窓枠体側組立体の 断面図である。
[図 10]本発明の透過型 X線管の製造方法を説明するためのマウント組立体の断面図 である。
[図 11]本発明の透過型 X線管の製造方法を説明するための封止球の断面図である。
[図 12]本発明の透過型 X線管の製造方法に用いる排気装置の一例を示す模式正面 図である。
[図 13]本発明の透過型 X線管の製造方法のプロセスフロー図である。
符号の説明
1, 10, 20 ステム基部、
2 排気管、
3 端子、
4, 14 電極リード、
5, 15, 25, 35 シール部材、
6 シールド、
7 陰極フィラメント、
71 脚部、
8 放射窓枠体、
9 放射窓、
111, 112, 113 貫通孔、
16 マウント糸且立、
17 未封止管、
18 排気装置

Claims

請求の範囲
[1] 複数の貫通孔を有し絶縁材カ なるステム基部と、一端側をこのステム基部に固定 し他端側をステム基部上面から離隔するように延在する複数の電極リードと、この電 極リードの前記他端側に固定された陰極フィラメントと、この陰極フィラメントに対向し 、かつ閉止端に貫通部を備えたカップ状の放射窓枠体と、このカップ状の放射窓枠 体の前記貫通部を気密封止した X線透過の放射窓と、前記カップ状の放射窓枠体の 開放端に一端側を気密に溶接接合し他端側を前記ステム基部と気密接合した略筒 状のシール部材と、一端側を前記ステム基部の底面に気密接合し他端側を前記底 面力 離隔する方向に延在し管内を真空排気した後気密封止してなる排気管を備え たことを特徴とする透過型 X線管。
[2] 前記ステム基部は閉止端を持つカップ状で、前記閉止端に前記複数の貫通孔を 備えたことを特徴とする請求項 1に記載の透過型 X線管。
[3] 前記シール部材は前記ステム基部との気密接合部と前記電極リード間にシールド を備えたことを特徴とする請求項 1又は 2に記載の透過型 X線管。
[4] 前記ステム基部はセラミックス力もなることを特徴とする請求項 1乃至 3の何れかに記 載の透過型 X線管。
[5] 前記電極リードは前記一端側を前記ステム基部の貫通孔を貫通してステム基部と 固定していることを特徴とする請求項 1乃至 4の何れかに記載の透過型 X線管。
[6] 前記電極リードは材質の異なる複数の金属線の結合体からなることを特徴とする請 求項 1乃至 5の何れかに記載の透過型 X線管。
[7] 前記陰極フィラメントはその脚部を前記電極リードで挟持して 、ることを特徴とする 請求項 1乃至 6の何れかに記載の透過型 X線管。
[8] 複数の貫通孔を有し絶縁材カ なるステム基部と、一端側をこのステム基部に固定 し他端側をステム基部上面から離隔するように延在する複数の電極リードと、この電 極リードの前記他端側に固定された陰極フィラメントと、この陰極フィラメントに対向し 、かつ閉止端に貫通部を備えたカップ状の放射窓枠体と、このカップ状の放射窓枠 体の前記貫通部を気密封止した X線透過の放射窓と、前記カップ状の放射窓枠体の 開放端に一端側を気密に溶接接合し他端側を前記ステム基部と気密接合した略筒 状のシール部材と、一端側を前記ステム基部の底面に気密接合し他端側を前記底 面力 離隔する方向に延在し管内を真空排気した後気密封止してなる排気管を備え た透過型 X線管の製造において、前記ステム基部と前記電極リード、前記排気管及 び前記シールド部材をそれぞれ気密ロウ付けする工程と、前記電極リードの前記他 端側に前記陰極フィラメントを固着する工程と、この陰極フィラメントに前記放射窓を 対向させて前記放射窓枠体の前記開放端を前記シール部材の前記一端側と気密に 溶接接合して封止球を形成する工程と、前記排気管を介して前記封止球内を排気し た後前記排気管を封止する工程を含むことを特徴とする透過型 X線管の製造方法。
[9] 前記放射窓枠体と前記シール部材の溶接接合はアーク溶接によることを特徴とす る前記請求項 8に記載の透過型 X線管の製造方法。
[10] 前記封止球内の排気は、筐体内に配置された排気系に前記排気管を係合させ、 前記封止球を加熱すると共に、前記陰極フィラメントを通電して前記排気系から排気 することを特徴とする前記請求項 8又は 9に記載の透過型 X線管の製造方法。
[11] 排気された外囲容器の中に電子を放出する陰極フィラメントを備えた透過型 X線管 であって、
前記外囲容器は、絶縁性のステム基部と、前面に X線放射窓を備える枠体と、前記 ステム基部と前記枠体とを繋ぐシール部材と、排気管とを含み、
前記ステム基部は、電極リードを貫通させるための貫通孔と、前記排気管につなが る排気孔とを有し、
前記ステム基部を貫通した電極リードは、 X線管内で前記 X線放射窓に対向させて 前記陰極フィラメントを保持し、 X線管外で前記陰極フィラメントに電流を供給するた めの端子に接続し、
前記枠体と前記 X線放射窓とはロウ材で固定され、前記ステム基部と前記シール部 材とはロウ材で固定され、前記シール部材と前記枠体とは溶接により固定されて 、る ことを特徴とする透過型 X線管。
PCT/JP2005/006279 2004-04-07 2005-03-31 透過型x線管及びその製造方法 WO2005098893A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/547,721 US7623629B2 (en) 2004-04-07 2005-03-31 Transmission type X-ray tube and manufacturing method thereof
KR1020067020820A KR101100553B1 (ko) 2004-04-07 2005-03-31 투과형 x선관 및 그 제조 방법
CN2005800100210A CN1938811B (zh) 2004-04-07 2005-03-31 透射式x射线管及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-113170 2004-04-07
JP2004113170A JP5128752B2 (ja) 2004-04-07 2004-04-07 透過型x線管及びその製造方法

Publications (1)

Publication Number Publication Date
WO2005098893A1 true WO2005098893A1 (ja) 2005-10-20

Family

ID=35125342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006279 WO2005098893A1 (ja) 2004-04-07 2005-03-31 透過型x線管及びその製造方法

Country Status (5)

Country Link
US (3) US7623629B2 (ja)
JP (1) JP5128752B2 (ja)
KR (1) KR101100553B1 (ja)
CN (1) CN1938811B (ja)
WO (1) WO2005098893A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100288391A1 (en) * 2007-07-11 2010-11-18 Hongjiang Cui Exhaust system with tailored wall thickness
CN105810539A (zh) * 2015-01-21 2016-07-27 瓦里安医疗系统公司 真空组件及形成方法

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5128752B2 (ja) * 2004-04-07 2013-01-23 日立協和エンジニアリング株式会社 透過型x線管及びその製造方法
CN100381241C (zh) * 2006-02-17 2008-04-16 美的集团有限公司 真空管的焊接方法
JP5179797B2 (ja) * 2007-08-10 2013-04-10 浜松ホトニクス株式会社 X線発生装置
KR101818681B1 (ko) * 2011-07-25 2018-01-16 한국전자통신연구원 게터 내장형 전계방출 엑스선관 장치
CN103733734B (zh) * 2011-08-05 2016-04-27 佳能株式会社 放射线发生装置和放射线成像装置
JP5901180B2 (ja) * 2011-08-31 2016-04-06 キヤノン株式会社 透過型x線発生装置及びそれを用いたx線撮影装置
JP5871528B2 (ja) * 2011-08-31 2016-03-01 キヤノン株式会社 透過型x線発生装置及びそれを用いたx線撮影装置
JP5871529B2 (ja) * 2011-08-31 2016-03-01 キヤノン株式会社 透過型x線発生装置及びそれを用いたx線撮影装置
JP5580843B2 (ja) * 2012-03-05 2014-08-27 双葉電子工業株式会社 X線管
JP6153346B2 (ja) * 2013-03-05 2017-06-28 キヤノン株式会社 放射線発生装置及び放射線撮影システム
KR101361793B1 (ko) * 2013-08-19 2014-02-14 (주) 브이에스아이 광이오나이저
US9240303B2 (en) 2013-09-10 2016-01-19 Moxtek, Inc. Dual tube support for electron emitter
JP2015111504A (ja) * 2013-12-06 2015-06-18 株式会社東芝 X線管及びx線管の製造方法
US9839106B2 (en) 2014-07-23 2017-12-05 Moxtek, Inc. Flat-panel-display, bottom-side, electrostatic-dissipation
US9779847B2 (en) 2014-07-23 2017-10-03 Moxtek, Inc. Spark gap X-ray source
US9826610B2 (en) 2014-07-23 2017-11-21 Moxtek, Inc. Electrostatic-dissipation device
US9839107B2 (en) 2014-07-23 2017-12-05 Moxtek, Inc. Flowing-fluid X-ray induced ionic electrostatic dissipation
JP6388387B2 (ja) * 2014-08-25 2018-09-12 東芝電子管デバイス株式会社 X線管
KR20170082531A (ko) * 2014-11-13 2017-07-14 목스테크, 인크 정전기-소산 장치
JP6440192B2 (ja) * 2015-01-14 2018-12-19 キヤノン電子管デバイス株式会社 X線管
JP2016173926A (ja) * 2015-03-17 2016-09-29 東芝電子管デバイス株式会社 X線管
CN104889519B (zh) * 2015-04-24 2016-04-13 黄石上方检测设备有限公司 一种金属陶瓷x射线管的制造方法
US10524341B2 (en) 2015-05-08 2019-12-31 Moxtek, Inc. Flowing-fluid X-ray induced ionic electrostatic dissipation
JP6498535B2 (ja) * 2015-06-10 2019-04-10 キヤノン電子管デバイス株式会社 X線管
DE102015213810B4 (de) * 2015-07-22 2021-11-25 Siemens Healthcare Gmbh Hochspannungszuführung für einen Röntgenstrahler
JP2017054768A (ja) * 2015-09-11 2017-03-16 東芝電子管デバイス株式会社 X線管
KR101876076B1 (ko) * 2016-11-16 2018-07-06 경희대학교 산학협력단 디지털 광원장치
WO2018093164A1 (ko) * 2016-11-16 2018-05-24 경희대학교산학협력단 전자방출 소스유닛 및 이를 구비하는 디지털 광원장치
CN106683963A (zh) * 2016-12-19 2017-05-17 中国科学院深圳先进技术研究院 一种图案化碳纳米管阴极的透射式x射线源结构
JP7197245B2 (ja) 2017-01-12 2022-12-27 キヤノン電子管デバイス株式会社 X線管及びx線管の製造方法
CN109216140A (zh) * 2017-06-30 2019-01-15 同方威视技术股份有限公司 多焦点x射线管和壳体
US10910187B2 (en) * 2018-09-25 2021-02-02 General Electric Company X-ray tube cathode flat emitter support mounting structure and method
KR102201117B1 (ko) * 2019-03-29 2021-01-11 (주)피코팩 엑스레이 튜브 및 이의 제조방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62217533A (ja) * 1986-03-19 1987-09-25 Hitachi Ltd セラミツクスと金属の接合方法
JPH08180823A (ja) * 1994-12-26 1996-07-12 Shimadzu Corp 回転陽極x線管
JPH09180660A (ja) * 1995-12-25 1997-07-11 Hamamatsu Photonics Kk 透過型x線管
JP2001266781A (ja) * 2000-03-21 2001-09-28 Toshiba Corp 放射線透過窓構体およびその製造方法
JP2002025446A (ja) * 1997-12-04 2002-01-25 Hamamatsu Photonics Kk X線管の製造方法
JP2002042705A (ja) * 2000-07-28 2002-02-08 Toshiba Corp 透過放射型x線管およびその製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2090636A (en) * 1930-12-06 1937-08-24 Dimitry E Olshevsky X-ray tube
US2329318A (en) * 1941-09-08 1943-09-14 Gen Electric X Ray Corp X-ray generator
US2952790A (en) * 1957-07-15 1960-09-13 Raytheon Co X-ray tubes
EP0553912B1 (en) * 1992-01-27 1998-01-07 Koninklijke Philips Electronics N.V. X-ray tube with improved temperature control
US5391958A (en) * 1993-04-12 1995-02-21 Charged Injection Corporation Electron beam window devices and methods of making same
JP2719091B2 (ja) 1993-06-18 1998-02-25 浜松ホトニクス株式会社 静電気除電装置および静電気除電方法
JPH07312189A (ja) * 1994-05-16 1995-11-28 Yusuke Shida フリットシール型x線管の製造方法
JP4043571B2 (ja) * 1997-12-04 2008-02-06 浜松ホトニクス株式会社 X線管
JP2000306533A (ja) * 1999-02-19 2000-11-02 Toshiba Corp 透過放射型x線管およびその製造方法
US6612478B2 (en) * 2001-05-14 2003-09-02 Varian Medical Systems, Inc. Method for manufacturing x-ray tubes
US6661876B2 (en) * 2001-07-30 2003-12-09 Moxtek, Inc. Mobile miniature X-ray source
US7158612B2 (en) * 2003-02-21 2007-01-02 Xoft, Inc. Anode assembly for an x-ray tube
CN1303637C (zh) * 2003-04-29 2007-03-07 中国科学院长春光学精密机械与物理研究所 一种新型场致发射的医用微型x射线管
US7236568B2 (en) * 2004-03-23 2007-06-26 Twx, Llc Miniature x-ray source with improved output stability and voltage standoff
JP5128752B2 (ja) * 2004-04-07 2013-01-23 日立協和エンジニアリング株式会社 透過型x線管及びその製造方法
US7382862B2 (en) * 2005-09-30 2008-06-03 Moxtek, Inc. X-ray tube cathode with reduced unintended electrical field emission

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62217533A (ja) * 1986-03-19 1987-09-25 Hitachi Ltd セラミツクスと金属の接合方法
JPH08180823A (ja) * 1994-12-26 1996-07-12 Shimadzu Corp 回転陽極x線管
JPH09180660A (ja) * 1995-12-25 1997-07-11 Hamamatsu Photonics Kk 透過型x線管
JP2002025446A (ja) * 1997-12-04 2002-01-25 Hamamatsu Photonics Kk X線管の製造方法
JP2001266781A (ja) * 2000-03-21 2001-09-28 Toshiba Corp 放射線透過窓構体およびその製造方法
JP2002042705A (ja) * 2000-07-28 2002-02-08 Toshiba Corp 透過放射型x線管およびその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100288391A1 (en) * 2007-07-11 2010-11-18 Hongjiang Cui Exhaust system with tailored wall thickness
US10087808B2 (en) * 2007-07-11 2018-10-02 Emcon Technologies Germany (Augsburg) Gmbh Exhaust system with tailored wall thickness
CN105810539A (zh) * 2015-01-21 2016-07-27 瓦里安医疗系统公司 真空组件及形成方法
US9831058B2 (en) 2015-01-21 2017-11-28 Varex Imaging Corporation Vacuum assemblies and methods of formation

Also Published As

Publication number Publication date
JP2005302368A (ja) 2005-10-27
US20070211862A1 (en) 2007-09-13
KR20070031883A (ko) 2007-03-20
JP5128752B2 (ja) 2013-01-23
CN1938811A (zh) 2007-03-28
US20100074410A1 (en) 2010-03-25
CN1938811B (zh) 2010-07-21
US20090161831A1 (en) 2009-06-25
US7623629B2 (en) 2009-11-24
KR101100553B1 (ko) 2011-12-29
US7783011B2 (en) 2010-08-24

Similar Documents

Publication Publication Date Title
WO2005098893A1 (ja) 透過型x線管及びその製造方法
US6044130A (en) Transmission type X-ray tube
JP5896649B2 (ja) ターゲット構造体及びx線発生装置
US6487272B1 (en) Penetrating type X-ray tube and manufacturing method thereof
US7526069B2 (en) X-ray tube
EP1096543A1 (en) X-ray tube
JPH11167887A (ja) X線管
JP5845342B2 (ja) X線管およびx線管用電子放出素子
KR20160102743A (ko) 전계 방출 엑스선 소스 장치
JP3768889B2 (ja) 表示装置
JP2000030641A (ja) X線管
JP4919956B2 (ja) X線管及びx線管装置とx線管の製造方法
US6015325A (en) Method for manufacturing transmission type X-ray tube
JP4781156B2 (ja) 透過型x線管
TWI449074B (zh) X-ray tube
JP6659167B2 (ja) 電子銃を備えたx線発生管及びx線撮影装置
CN113257650A (zh) 一种x射线管及其制备方法
KR102340337B1 (ko) 초소형 원통형 엑스선 튜브 제조 방법
US20030201112A1 (en) Through terminal and X-ray tube
JPH04248233A (ja) X線管の陰極構体
KR20160056592A (ko) 유리튜브 하우징을 갖는 탄소나노튜브 x선 소스 및 그 제조방법
JP2003016952A (ja) マグネトロン
JPH02247950A (ja) マグネトロン
JP2006093168A (ja) 表示装置および気密容器

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580010021.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020067020820

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11547721

Country of ref document: US

Ref document number: 2007211862

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 1020067020820

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 11547721

Country of ref document: US