WO2005098405A1 - ガスセンサ用ヒータコイル、ガスセンサ用検知素子、接触燃焼式ガスセンサおよび接触燃焼式ガスセンサの製造方法 - Google Patents

ガスセンサ用ヒータコイル、ガスセンサ用検知素子、接触燃焼式ガスセンサおよび接触燃焼式ガスセンサの製造方法 Download PDF

Info

Publication number
WO2005098405A1
WO2005098405A1 PCT/JP2005/005407 JP2005005407W WO2005098405A1 WO 2005098405 A1 WO2005098405 A1 WO 2005098405A1 JP 2005005407 W JP2005005407 W JP 2005005407W WO 2005098405 A1 WO2005098405 A1 WO 2005098405A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
heater coil
gas sensor
wire
wound
Prior art date
Application number
PCT/JP2005/005407
Other languages
English (en)
French (fr)
Inventor
Ikuo Takahashi
Junji Satoh
Yoshirou Hirai
Original Assignee
Citizen Watch Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co., Ltd. filed Critical Citizen Watch Co., Ltd.
Priority to JP2006512011A priority Critical patent/JP4688794B2/ja
Priority to KR1020067020512A priority patent/KR101099070B1/ko
Priority to US10/594,006 priority patent/US7713480B2/en
Priority to EP05727120.7A priority patent/EP1731900B1/en
Publication of WO2005098405A1 publication Critical patent/WO2005098405A1/ja
Priority to US12/730,680 priority patent/US8246913B2/en
Priority to US12/730,703 priority patent/US8257656B2/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/18Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor the conductor being embedded in an insulating material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/14Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature
    • G01N27/16Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature caused by burning or catalytic oxidation of surrounding material to be tested, e.g. of gas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/14Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature

Definitions

  • Heater coil for gas sensor sensing element for gas sensor, contact combustion type gas sensor, and method of manufacturing contact combustion type gas sensor
  • the present invention relates to a heater coil for a gas sensor, a sensing element for a gas sensor, a contact combustion type gas sensor, and a method for manufacturing a contact combustion type gas sensor.
  • a catalytic combustion type gas sensor has been known as a sensor for detecting a combustible gas such as hydrogen gas or methane gas.
  • the contact combustion type gas sensor heats a sensing element, in which a catalyst layer is carried on a heat conduction layer covering a heater coil, to a predetermined temperature, contacts a combustible gas to the catalyst layer and burns it.
  • a sensing element in which a catalyst layer is carried on a heat conduction layer covering a heater coil, to a predetermined temperature, contacts a combustible gas to the catalyst layer and burns it.
  • FIG. 18 is a cross-sectional view showing a configuration of a conventional sensing element
  • FIG. 19 is a front view showing a configuration of a conventional heater coil.
  • the conventional sensing element 1 has a configuration in which a heater coil 12 is embedded in a heat conductive layer 11 and a catalyst layer 13 is attached to the surface of the heat conductive layer 11.
  • a portion embedded in the heat conductive layer 11 (hereinafter, referred to as a bead portion) is a single-turn coil in which a wire is wound in a coil shape (for example, See Patent Document 1.)
  • the lead portion 15 which also increases both end forces of the bead portion 14, is not coiled.
  • a portion of the sensing element where the bead portion of the heater coil is covered by the heat conduction layer and the catalyst layer is referred to as a combustion portion.
  • a resistance wire is wound around a core wire, and an insulating agent is charged in that state.
  • an insulating agent is charged in that state.
  • a method of welding the electrode pins are known (e.g., see Patent Document 3.) 0 According to this method, it is possible to prevent the shape of the winding portion of the resistance wire from being broken when manufacturing the sensing element.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 3-162658 (FIG. 1)
  • Patent Document 2 Japanese Patent Publication No. 2-59949 (Fig. 1)
  • Patent Document 3 JP-A-52-116289
  • the voltage output from the Wheatstone bridge circuit be stabilized in a short time as long as the gas concentration is the same.
  • the shorter the time required to stabilize the output voltage the faster the response speed.
  • embed the heater coil wire in the combustion part as long as possible so that the heater coil receives the combustion heat efficiently and the resistance change of the heater coil occurs efficiently.
  • the bead portion of the heater coil becomes large, and accordingly, the amount of the heat conductive layer and the amount of the catalyst layer covering the bead portion also increase, so that the combustion portion becomes heavy.
  • the sensing element is mounted inside the sensor by supporting the leads at both ends of the heater coil with electrode pins for external connection, so if the combustion part becomes heavy, the sensing element cannot be supported by the lead, Failures such as breakage of the lead portion are likely to occur.
  • the gas sensitivity is improved and the response speed is increased without sacrificing the ability to support the sensing element at the lead portion of the heater coil. It is extremely difficult. Further, in the conventional contact combustion type gas sensor, since the lead portion of the heater coil has no shock absorbing ability, when an external force is applied, the impact is hardly alleviated and concentrates on the combustion portion. Therefore, there is a disadvantage that the catalyst layer is likely to be missing, and the adjusted zero point fluctuates greatly.
  • the present inventors have replaced a conventional heater coil in which only the portion embedded in the combustion section is formed in a coil shape, and further wound a part of a coil wire in which a wire is wound in a coil shape. It is proposed to use a coiled coil as a heater coil. According to this proposal, the actual length of the wire constituting the heater coil becomes longer than before even if the dimensions of the appearance are the same as the conventional heater coil, so that the resistance of the heater coil increases and the gas sensitivity becomes lower. Get higher. Further, since the coiled coil portion of the heater coil is embedded in the combustion section, the length of the wire in the combustion section becomes longer than before, so that the resistance change of the heater coil occurs efficiently and the response speed increases.
  • the present invention has been made in view of the above, and has a heater coil for a gas sensor capable of improving gas sensitivity without sacrificing the ability to support a detection element at a lead portion of the heater coil.
  • a gas sensor heater coil capable of providing a gas sensor detection element and a contact combustion type gas sensor, or capable of achieving a high response speed without sacrificing the ability to support the detection element at a lead portion of the heater coil.
  • An object of the present invention is to provide a detection element for a gas sensor and a contact combustion type gas sensor. Further, the present invention provides a gas sensor heater coil capable of reducing the amount of change of the zero point when an impact is applied, An object of the present invention is to provide a detection element for a gas sensor and a contact combustion type gas sensor.
  • the present invention also provides a method for manufacturing a contact combustion type gas sensor that can easily handle a heater coil without breaking the shape of a winding portion of a heater coil having at least both ends wound in a coil shape.
  • the purpose is to:
  • Another object of the present invention is to provide a method for manufacturing a contact combustion type gas sensor capable of reducing variation in resistance value of a heater coil having at least both ends wound in a coil shape.
  • Still another object of the present invention is to provide a method for manufacturing a contact combustion type gas sensor that can increase the bonding strength between a heater coil having at least both ends wound in a coil shape and an electrode pin.
  • a heater coil for a gas sensor according to the invention of claim 1 is a heater coil used for a contact combustion type gas sensor, and a combustion heat generated at the time of gas combustion.
  • the bead portion has a bead portion whose electrical characteristic value changes, and a lead portion in which both end forces of the bead portion also extend, and the bead portion is wound in a coil shape for an integer n of 2 or more (n — 1) It is characterized by comprising an n-fold wound coil in which a wire consisting of a double-turn coil is further wound in a coil shape.
  • the sensing element using the heater coil by manufacturing the sensing element using the heater coil, even if the size of the burning portion of the sensing element is almost the same as that of the conventional device, the inside of the burning portion is formed.
  • the effective length of the bead portion to be embedded is longer than when the bead portion is formed by a conventional single-turn coil. Therefore, since the resistance of the heater coil increases, the gas sensitivity of the contact combustion type gas sensor using the heater coil increases.
  • the heater coil receives more combustion heat and causes a change in resistance efficiently, the contact combustion type gas sensor using the heater coil has a higher response speed. Further, since the size of the combustion part may be almost the same as the conventional one, the weight of the combustion part becomes almost the same as the conventional one. Therefore, by using this heater coil, it is possible to improve the gas sensitivity of the contact combustion type gas sensor and to increase the response speed without sacrificing the ability to support the sensing element at the lead portion.
  • a gas sensor heater coil according to claim 2 is characterized in that, in the invention according to claim 1, the lead portion is configured by a (n-1) double-wound coil.
  • the lead portion has the same configuration as that of the coil spring.
  • the shock applied from the outside is absorbed by the spring elasticity of the lead portion. Therefore, since the impact transmitted to the combustion part is reduced, the catalyst layer is less likely to be lost, and the zero point of the contact combustion type gas sensor can be prevented from greatly fluctuating due to the impact.
  • the heater coil for a gas sensor according to the invention of claim 3 is the invention according to claim 1 or 2, wherein the wire diameter of the non-coiled raw wire as a starting material is 1111 or more and 100111 or less. It is characterized by being.
  • the wire diameter of the original wire is 1 ⁇ m or more, it is easy to manufacture a heater coil having a bead portion formed of a multi-turn coil.
  • the diameter of the original wire is 100 m or less, the use of this heater coil provides a sensing element having a size suitable for use in a contact combustion type gas sensor.
  • the heater coil for a gas sensor according to the invention of claim 4 is the invention according to claim 1 or 2, wherein the diameter of the non-coiled raw wire as a starting material is 10 111 or more and 50 111 or less. It is characterized by being.
  • a power supply circuit having an appropriate voltage and current value can be used as a power supply circuit for driving a control circuit of the contact combustion type gas sensor.
  • the use of an appropriate power supply circuit is important because the catalytic layer can be brought to an appropriate operating temperature when operating a catalytic combustion gas sensor.
  • the heater coil for a gas sensor according to the invention of claim 5 is the invention according to claim 1 or 2, wherein the diameter of the non-coiled raw wire as a starting material is 20 111 or more and 30 111 or less. It is characterized by being.
  • this heater coil by using this heater coil, a sensing element having a weight of about 1 mg in the combustion part can be obtained, so that the sensing element can be sufficiently supported by the lead portion of the heater coil. . Further, in the contact combustion type gas sensor using the heater coil, the impact strength is improved. Further, by using the heater coil, the bead portion of the heater coil is embedded at a higher density in the combustion portion of the detection element, so that the heater coil can receive more combustion heat. Thereby, the resistance change of the heater coil occurs more efficiently. Therefore, in the contact combustion type gas sensor using the heater coil, The response speed becomes faster. In addition, since the resistance of the heater coil is further increased, the power supply voltage can be further increased. Therefore, in the contact combustion type gas sensor using the heater coil, the gas sensitivity is further increased.
  • the wire diameter of the base wire is smaller than 20 ⁇ m, the yield decreases when manufacturing the heater coil. Since the wire diameter of the base wire is 20 m or more, the heater coil can be easily manufactured. can do. That is, it is possible to manufacture a heater coil without lowering the yield, and by using the heater coil, it is possible to further improve the gas sensitivity and the response characteristics of the contact combustion type gas sensor. From the above, considering the gas sensitivity and response characteristics of the contact combustion type gas sensor and the easiness of manufacturing the heater coil, the wire diameter of the raw wire is optimally between 20 ⁇ m and 30 ⁇ m. .
  • the heater coil for a gas sensor according to the invention of claim 6 is the invention according to any one of claims 115, wherein the m-fold wound coil corresponds to an integer m of 1 or more and n or less.
  • the winding diameter is not less than 0.5 times and not more than 20 times the diameter of the core used for winding the coil when forming the m-fold wound coil.
  • the combustion portion of the detection element does not become heavy, so that the detection element can be sufficiently supported by the lead portion of the heater coil.
  • the amount of the heat conductive layer filled in the inner space of the bead coil increases.
  • the support performance of the sensing element by the lead part is reduced, and the impact resistance of the contact combustion type gas sensor may be reduced to a range that is practically allowable.
  • the heater coil for a gas sensor according to the invention of claim 7 is the invention according to any one of claims 115, wherein the m-fold wound coil is provided for an integer m of 1 or more and n or less.
  • the winding diameter is 1 to 10 times the diameter of the core used to wind the coil when forming an m-fold wound coil.
  • the heater coil can be obtained with a high yield.
  • the support performance of the sensing element by the lead portion can be obtained stably. Even if the winding diameter of the m-fold wound coil is 20 times or less the diameter of the core metal, If it exceeds 10 times, the shape stability of the m-fold wound coil after winding processing will be slightly lower.
  • the number of turns of the n-fold wound coil is 1 or more and 30 or less. It is characterized by the following.
  • the combustion portion of the detection element does not become heavy, so that the detection element can be sufficiently supported by the lead portion of the heater coil. If a heater coil with more than 30 turns is used, the combustion part becomes heavy and the lead of the heater coil cannot stably support the sensing element.
  • the gas sensor heater coil according to the ninth aspect of the present invention is the gas sensor heater coil according to any one of the eighteenth to eighteenth aspects, wherein, for an integer k of 1 or more, k in the n-fold wound coil
  • the length of the gap between the winding part of the winding and the winding part of the (k + 1) winding is 0.5 times or more of the diameter of the wire composed of the (n-1) double winding coil. It is characterized by being less than twice.
  • the contact combustion type gas sensor using the heater coil in the contact combustion type gas sensor using the heater coil, a sufficiently high-speed response characteristic can be obtained. Also, when a sensing element is manufactured using this heater coil, it is possible to prevent short-circuiting between the winding part of the k-th winding and the winding part of the (k + 1) -th winding in the n-fold winding coil.
  • the catalyst layer can be formed by filling the space inside the coil of the bead portion with the heat conductive layer.
  • the adjacent windings may come into contact with each other to cause a short circuit.
  • the gap exceeds 10 times the diameter of the wire, the gap between the windings is too large, so that the space inside the coil of the bead can be sufficiently filled with the heat conductive layer. Therefore, a catalyst layer cannot be formed.
  • the gas sensor heater coil according to the tenth aspect of the present invention is characterized in that, in the invention according to any one of the first to nineteenth aspects, it is made of a platinum wire.
  • the heater coil for a gas sensor according to the invention of claim 11 is characterized in that, in the invention according to any one of claims 11 to 19, it is made of a platinum-based alloy wire.
  • the heater coil for a gas sensor according to the invention of claim 12 is a heater coil used for a contact combustion type gas sensor, and has an electric characteristic due to combustion heat generated at the time of gas combustion. It has a bead portion whose property value changes, and a lead portion that extends at both ends of the bead portion, wherein the lead portion is wound in a coil shape.
  • the lead portion has the same configuration as the coil spring, in the contact combustion type gas sensor using the heater coil, an externally applied shock is applied to the spring of the lead portion. Absorbed by elasticity. Therefore, the impact transmitted to the combustion portion of the detection element is reduced, so that the catalyst layer is less likely to be lost, and the zero point of the contact combustion type gas sensor can be suppressed from greatly fluctuating due to the impact.
  • a gas sensor detection element is a detection element used for a contact combustion type gas sensor, and generates at the time of gas combustion.
  • a heater portion having a bead portion whose electrical characteristic value changes due to combustion heat generated, and a lead portion extending at both ends of the bead portion, a heat conductive layer covering the bead portion, and a surface of the heat conductive layer.
  • a catalyst layer attached thereto, and for an integer n of 2 or more, the bead portion is further wound in a coil shape by winding a wire composed of a (n-1) double wound coil. It is characterized by being constituted by an n-fold wound coil.
  • the effective length of the bead portion embedded in the combustion portion is replaced by the conventional single-wound coil. It becomes longer than the case where it comprises. Therefore, since the resistance of the heater coil is increased, the gas sensitivity is increased in the contact combustion type gas sensor using this detection element. In addition, since the heater coil receives a large amount of combustion heat and causes a resistance change efficiently, the contact combustion type gas sensor using this detection element has a high response speed. Further, since the size of the combustion part may be almost the same as the conventional one, the weight of the combustion part becomes almost the same as the conventional one. Therefore, it is possible to improve the gas sensitivity of the contact combustion type gas sensor and to increase the response speed without sacrificing the ability to support the sensing element at the lead portion.
  • the gas sensor detection element according to the fourteenth aspect of the present invention is the gas sensor detection element according to the thirteenth aspect, wherein the sensing element is constituted by a (n-1) multiply wound coil of a lead portion of the heater coil.
  • the feature is.
  • the lead portion of the heater coil has the same configuration as that of the coil spring.
  • the impact is absorbed by the spring elasticity of the lead portion. Therefore, since the impact transmitted to the combustion portion is reduced, the catalyst layer is less likely to be missing, and the zero point of the contact combustion type gas sensor can be suppressed from greatly changing due to the impact.
  • the detection element for a gas sensor according to the invention of claim 15 is the invention according to claim 13 or 14, wherein a wire diameter of a non-coiled raw wire as a starting material of the heater coil is 1 ⁇ m. It is not less than 100 ⁇ m or less.
  • the wire diameter of the original wire of the heater coil is 1 ⁇ m or more, it is possible to easily manufacture a heater coil having a bead portion formed of a multi-turn coil. . Therefore, the production of the sensing element becomes easy. Also, since the wire diameter of the heater coil is 100 / zm or less, a sensing element having a size suitable for use in a contact combustion type gas sensor can be obtained.
  • the gas sensor sensing element according to the invention of claim 16 is the invention according to claim 13 or 14, wherein the wire diameter of the non-coiled raw wire as a starting material of the heater coil is 10 ⁇ m. Not less than 50 ⁇ m.
  • a power supply circuit having an appropriate voltage / current value can be used as a power supply circuit for driving the control circuit of the catalytic combustion type gas sensor.
  • the use of a suitable power supply circuit is important because the catalytic layer can be brought to an appropriate operating temperature when operating the catalytic combustion type gas sensor.
  • the sensing element for a gas sensor according to the invention of claim 17 is the invention according to claim 13 or 14, wherein the wire diameter of the non-coiled raw wire as a starting material of the heater coil is 20 ⁇ m. Not less than 30 ⁇ m.
  • the weight of the combustion part can be reduced to about 1 mg, so that the sensing element can be sufficiently supported by the lead part of the heater coil. Further, in the contact combustion type gas sensor using this detection element, the impact resistance is improved. Furthermore, since the bead portion of the heater coil is buried at a higher density in the combustion portion, the heater coil can receive more combustion heat. Thereby, the resistance change of the heater coil occurs even more efficiently. Therefore, in the contact combustion type gas sensor using this detection element, the response speed is further increased. Further, since the resistance of the heater coil is further increased, the power supply voltage can be further increased. Therefore, in the contact combustion type gas sensor using this detection element, the gas Sensitivity is further increased.
  • the wire diameter of the heater coil wire is smaller than 20 ⁇ m, the yield decreases when the heater coil is manufactured.
  • the wire diameter of the heater coil wire is 20 ⁇ m or more. Therefore, the heater coil can be easily manufactured. Therefore, a sensing element can be obtained with a high yield. That is, it is possible to manufacture a sensing element that does not lower the yield, and by using the manufactured sensing element, it is possible to further improve the gas sensitivity and the response characteristics of the contact combustion type gas sensor. From the above, considering the gas sensitivity and response characteristics of the contact combustion type gas sensor and the ease of manufacturing the heater coil, the wire diameter of the heater coil wire is 20 ⁇ m or more and 30 ⁇ m or less. Is best.
  • the gas sensor detection element according to the eighteenth aspect of the present invention is the gas sensor detection element according to any one of the thirteenth to seventeenth aspects, wherein the heater coil has m weights for an integer m of 1 to n.
  • the winding diameter of the wound coil is characterized in that it is 0.5 times or more and 20 times or less the diameter of the core metal used for winding into a coil when manufacturing an m- fold wound coil.
  • the sensing element can be sufficiently supported by the lead portion of the heater coil.
  • the amount of the heat conductive layer filled in the space inside the coil of the bead portion is reduced. This increases the weight of the combustion part, resulting in a decrease in the ability of the lead part to support the sensing element, and the impact resistance of the contact combustion type gas sensor may fall below a practically acceptable range, causing inconvenience. .
  • the gas sensor detection element according to the nineteenth aspect of the present invention is the gas sensor detection element according to any one of the thirteenth to seventeenth aspects, wherein the heater coil has m weights for an integer m of 1 or more and n or less.
  • the winding diameter of the wound coil is 1 to 10 times the diameter of the core used for winding the coil when forming the m- fold wound coil.
  • the shape stability of the m-fold wound coil after winding processing is good, so that the heater coil can be obtained with high yield. Therefore, a yield detecting element can be obtained.
  • the support performance of the sensing element by the lead portion can be obtained stably. Even if the winding diameter of the m-fold wound coil is less than 20 times the diameter of the core metal, if it exceeds 10 times, the shape stability of the m-fold wound coil after winding is slightly lower. Become. [0052]
  • the detection element for a gas sensor according to the invention of claim 20 is the invention according to any one of claims 13 to 19, wherein the number of windings of the n-fold winding coil of the heater coil is 1 or more. It is characterized by the following.
  • the sensing element can be sufficiently supported by the lead portion of the heater coil. If a heater coil having more than 30 turns is used, the combustion part becomes heavy, and the sensing element cannot be stably supported by the heater coil leads.
  • the detection element for a gas sensor according to the invention of claim 21 is the invention according to any one of claims 13 to 20, wherein an n-fold winding of the heater coil is provided for an integer k of 1 or more.
  • the length of the gap between the winding part of the k-th winding and the winding part of the (k + 1) -th winding is 0. It is characterized by being 5 times or more and 10 times or less.
  • the contact combustion type gas sensor using this detection element in the contact combustion type gas sensor using this detection element, a sufficiently high-speed response characteristic can be obtained.
  • the sensing element it is possible to prevent a short circuit between the winding part of the k-th winding and the winding part of the (k + 1) -th winding in the n-fold winding coil, and to prevent the bead part from being short-circuited.
  • the catalyst layer can be formed by filling the space inside the coil with a heat conductive layer.
  • a gas sensor detecting element according to the invention of claim 22 is the invention according to any one of claims 13-21, wherein the heater coil is made of a platinum wire.
  • the gas sensor sensing element according to the invention of claim 23 is the invention according to any one of claims 13-21, wherein the heater coil is made of a platinum-based alloy wire rod! / It is characterized by
  • the detection element for a gas sensor according to the invention of claim 24 is used for a contact combustion type gas sensor.
  • a heater coil having a bead portion whose electrical characteristic value changes due to combustion heat generated at the time of combustion of a gas, a lead portion extending at both ends of the bead portion, and heat covering the bead portion.
  • the lead portion of the heater coil has the same configuration as the coil spring, in the contact combustion type gas sensor using this detection element, an externally applied shock is applied to the lead portion. Is absorbed by the elasticity of the spring. Therefore, since the impact transmitted to the combustion portion is reduced, the catalyst layer is less likely to be missing, and the zero point of the contact combustion type gas sensor can be suppressed from greatly changing due to the impact.
  • the contact combustion type gas sensor according to the invention of claim 25 has an electric characteristic value that changes due to combustion heat generated when gas is burned.
  • a heater coil having a bead portion and a lead portion extending at both ends of the bead portion; a heat conductive layer covering the bead portion; and a catalyst layer attached to a surface of the heat conductive layer,
  • the bead portion is a sensing element formed of an n-fold wound coil in which a wire formed of a (n-1) double-turn coil wound in a coil shape is further wound in a coil shape.
  • a compensating element having a heater coil having the same configuration as the heater coil connected in series to the sensing element, a first resistive element, and a second resistive element connected in series to the first resistive element.
  • the second resistance element constitutes a Wheatstone bridge circuit, and a connection node between the detection element and the compensation element, the first resistance element and the second A voltage between the resistor element and a connection node is output.
  • the effective length of the bead portion embedded in the combustion portion is replaced by the conventional single-wound coil. It becomes longer than the case where it comprises. Accordingly, the resistance of the heater coil increases, and the gas sensitivity increases. In addition, since the heater coil receives more combustion heat and changes resistance efficiently, the response speed is increased. Furthermore, since the size of the combustion part can be almost the same as the conventional one, Also, the weight of the combustion part becomes almost the same as the conventional one. Therefore, it is possible to improve the gas sensitivity without sacrificing the support capability of the sensing element at the lead portion and to achieve a high response speed.
  • a contact combustion gas sensor is the contact combustion type gas sensor according to the twenty-fifth aspect, wherein the heater coil is configured by a (n-1) multiply wound coil.
  • the lead portion of the heater coil has a configuration similar to that of the coil spring, an externally applied impact is absorbed by the spring elasticity of the lead portion. Therefore, since the impact transmitted to the combustion part of the detection element is reduced, the lack of the catalyst layer or the like occurs, and the zero point can be prevented from largely fluctuating due to the impact.
  • the contact combustion type gas sensor according to the invention of claim 27 is the invention according to claim 25 or 26, wherein the wire diameter of the non-coiled raw wire as a starting material of the heater coil is 1 ⁇ m. It is not less than 100 ⁇ m or less.
  • the wire diameter of the original wire of the heater coil is 1 ⁇ m or more, it is possible to easily manufacture a heater coil having a bead portion formed of a multi-turn coil. . Therefore, the production of the sensing element becomes easy, and the production of the contact combustion type gas sensor becomes easy. Further, since the diameter of the original wire of the heater coil is 100 ⁇ m or less, a contact combustion type gas sensor having a detection element of an appropriate size can be obtained.
  • a wire diameter of the non-coiled raw wire as a starting material of the heater coil is 10 ⁇ m. Not less than 50 ⁇ m.
  • a power supply circuit having an appropriate voltage / current value can be used as a power supply circuit for driving the control circuit of the contact combustion type gas sensor. It is important to use a suitable power supply circuit because the catalytic layer can be brought to an appropriate operating temperature when operating the catalytic combustion type gas sensor.
  • a wire diameter of a non-coiled raw wire as a starting material of the heater coil is 20 ⁇ m. Not less than 30 ⁇ m.
  • the weight of the combustion part of the detection element is about lmg
  • the sensing element can be sufficiently supported by the lead portion of the data coil. Further, in the contact combustion type gas sensor using the heater coil, the impact resistance is improved. Furthermore, since the bead portion of the heater coil is embedded at a higher density in the combustion portion, the heater coil can receive more combustion heat. Thereby, the resistance change of the heater coil occurs even more efficiently. Therefore, the response speed is further increased. In addition, since the resistance of the heater coil is further increased, the power supply voltage can be further increased. Therefore, the gas sensitivity is further increased.
  • the wire diameter of the base wire of the heater coil becomes smaller than 20 ⁇ m, the yield decreases when the heater coil is manufactured.
  • the wire diameter of the base wire of the heater coil is 20 ⁇ m or more. Therefore, the heater coil can be easily manufactured. Therefore, a contact combustion type gas sensor can be obtained with good yield. That is, it is possible to manufacture a contact combustion type gas sensor without lowering the yield, and it is possible to further improve gas sensitivity and response characteristics. From the above, considering the balance between gas sensitivity and response characteristics and ease of manufacturing a heater coil, it is optimal that the wire diameter of the original wire of the heater coil is 20 ⁇ m or more and 30 ⁇ m or less.
  • the contact combustion type gas sensor according to the invention of claim 30 is the invention according to any one of claims 25 to 29, wherein the heater coil has m weights for an integer m of 1 or more and n or less.
  • the winding diameter of the wound coil is characterized in that it is 0.5 times or more and 20 times or less the diameter of the core metal used for winding into a coil when manufacturing an m- fold wound coil.
  • the combustion portion of the detection element does not become heavy! Therefore, the detection element can be sufficiently supported by the lead portion of the heater coil.
  • the amount of the heat conductive layer filled in the space inside the coil of the bead increases.
  • the combustion part becomes heavy, the performance of supporting the sensing element by the lead part is reduced, and if the impact resistance is sometimes reduced to a range that is practically allowable, a disadvantage occurs.
  • the contact combustion type gas sensor according to the invention of claim 31 is the invention according to any one of claims 25 to 29, wherein the heater coil has m weights for an integer m of 1 or more and n or less.
  • the winding diameter of the wound coil is used for winding in a coil shape when manufacturing an m- fold wound coil.
  • the diameter of the cored bar is at least 1 and at most 10 times.
  • the shape stability of the m-fold wound coil after winding processing is good, so that the heater coil can be obtained with high yield. Therefore, a yield contact gas sensor can be obtained. Further, the support performance of the sensing element by the lead portion can be obtained stably. Even if the winding diameter of the m-fold wound coil is less than 20 times the diameter of the core metal, if it exceeds 10 times, the shape stability of the m-fold wound coil after winding becomes slightly lower. Become.
  • the contact combustion type gas sensor according to the invention of claim 32 is the invention according to any one of claims 25 to 31, wherein the number of turns of the n-fold coil of the heater coil is 1 or more. It is characterized by the following.
  • the combustion portion of the detection element does not become heavy! Therefore, the detection element can be sufficiently supported by the lead portion of the heater coil.
  • the combustion portion becomes heavy, and the detection element cannot be stably supported by the lead portion of the heater coil.
  • the contact combustion type gas sensor according to the invention of claim 33 is the invention according to any one of claims 25 to 32, wherein the heater coil has n double windings for an integer k of 1 or more.
  • the length of the gap between the winding part of the k-th winding and the winding part of the (k + 1) -th winding is 0. It is characterized by being 5 times or more and 10 times or less.
  • a sufficiently high-speed response characteristic can be obtained.
  • the sensing element it is possible to prevent a short circuit between the winding part of the k-th winding and the winding part of the (k + 1) -th winding in the n-fold winding coil, and to prevent the coil of the bead part
  • a catalyst layer can be formed by filling the heat conductive layer in the inner space of the catalyst.
  • a heater coil whose gap between the k-th winding and the (k + 1) -th winding is shorter than 0.5 times the diameter of the wire is used, In some cases, adjacent winding portions come into contact with each other to cause a short circuit.
  • the contact combustion type gas sensor according to the invention of claim 34 is characterized in that, in the invention of any one of claims 25 to 33, the heater coil is made of a platinum wire. .
  • the contact combustion type gas sensor according to the invention of claim 35 is the invention according to any one of claims 25 to 32, wherein the heater coil is made of a platinum-based alloy wire! / ⁇ It is characterized by that.
  • a sensing element having a heater coil having: a heat conductive layer covering the bead portion; and a catalyst layer attached to a surface of the heat conductive layer, wherein the lead portion is wound in a coil shape.
  • a compensation element having a heater coil having the same configuration as the heater coil, a first resistance element, a second resistance element connected in series to the first resistance element, A power supply for applying a DC voltage to both ends of each of a series connection of a detection element and the compensation element, and a series connection of the first resistance element and the second resistance element.
  • the second resistor element and the second resistor element constitute a Wheatstone bridge circuit, and the Wheatstone bridge circuit connects a connection node between the sensing element and the compensation element, the first resistor element, and the second resistor. A voltage between the element and a connection node is output.
  • the lead portion of the heater coil since the lead portion of the heater coil has the same configuration as the coil spring, an externally applied impact is absorbed by the spring elasticity of the lead portion. Therefore, since the impact transmitted to the combustion part of the detection element is reduced, the lack of the catalyst layer or the like occurs, and the zero point can be prevented from largely fluctuating due to the impact.
  • the electric characteristic value of the heater coil changes due to the combustion heat generated by the combustion of the contacted gas, and based on the change in the characteristic value!
  • a contact combustion type gas sensor for detecting the presence of flammable gas at least both ends of the heater coil are wound in a coil shape, and the heater coil is welded to the coil portions at both ends of the heater coil. And a sintered body covering a part of the heater coil.
  • At a bonding interface between the heater coil and the electrode at least one metal element constituting the electrode is provided in a composition ratio of the electrode. Alloy layer containing a higher proportion than And features.
  • the electric characteristic value of the heater coil changes due to the combustion heat generated by the combustion of the contacted gas, and based on the change in the characteristic value!
  • a contact combustion type gas sensor for detecting the presence of flammable gas at least both ends of the heater coil are wound in a coil shape, and the heater coil is welded to the coil portions at both ends of the heater coil. And a sintered body covering a part of the heater coil.
  • At a bonding interface between the heater coil and the electrode at least one metal element constituting the electrode is provided in a composition ratio of the electrode.
  • alloy layer containing a higher proportion than the above, and only in the welding portion between the heater coil and the electrode, inside the coiled portion of the heater coil, the alloy layer is higher in the alloy layer than in the electrode! ⁇ ⁇ Included in percentage A core wire made of the metal element is provided.
  • an alloy layer containing a metal element constituting the electrode at a higher ratio than the constituent ratio in the electrode is provided at the joining interface between the heater coil and the electrode (hereinafter, such an alloy layer is referred to as such Alloy layer is referred to as a rich layer), so that high bonding strength can be obtained.
  • the rich layer is welded to the electrode while the end portion of the heater coil is wound around the core wire made of at least one metal element constituting the electrode, so that the metal material constituting the core wire is the metal material of the electrode. It is a result of alloying.
  • the contact combustion type gas sensor according to the invention of claim 39 is, in the invention of claim 37 or 38, included in the alloy layer at a higher ratio than that in the electrode.
  • the metal element is characterized in that the ion array is larger than the metal constituting the heater coil.
  • the core wire can be melted by etching after welding to the electrode while the end portion of the heater coil is wound around the core wire, the core wire can be easily removed except for the rich layer. Can be extinguished.
  • the heater coil is a coiled coil described later. Even if it is configured, the core wire can be easily removed after welding.
  • the contact combustion gas sensor according to claim 40 is the invention according to claim 37 or 38, wherein the heater coil is made of platinum or a platinum alloy, and the electrode is made of an alloy containing nickel. And wherein the metal element contained in the alloy layer at a higher proportion than in the electrode is nickel.
  • nickel is a metal lower than platinum or a platinum alloy
  • the core wire is made of nickel, the core wire can be easily melted without leaving the heater coil. .
  • the contact combustion type gas sensor according to the invention of claim 41 is the invention according to any one of claims 37 to 40, wherein at least a portion of the heater coil covered by the sintered body is provided.
  • a part is characterized in that the wire is wound in a coil shape and a coil wire is further wound in a coil shape to form a coiled coil.
  • the electric characteristic value of the heater coil changes due to the combustion heat generated by the combustion of the contacted gas, and based on the change in the characteristic value.
  • a contact-combustion gas sensor that detects the presence of flammable gas.
  • An alloy layer formed by alloying a metal element and at least one metal element constituting the electrode is present.
  • the electric characteristic value of the heater coil changes due to the combustion heat generated by the combustion of the contacted gas, and based on the change in the characteristic value!
  • a heater coil wound at least at both ends in a coil shape and a coil-shaped portion at both ends of the heater coil are provided.
  • a sintered body covering a part of the heater coil, and a bonding interface between the heater coil and the electrode is included in a gap between the heater coil and the electrode.
  • an alloy layer formed by alloying a metal element that is not present with at least one metal element that constitutes the electrode, and the coil of the heater coil is provided only at a welding portion between the heater coil and the electrode.
  • a core wire made of the metal element is provided inside the shape of the metal layer, which is included in the alloy layer but included in the deviation of the heater coil and the electrode.
  • the joining interface between the heater coil and the electrode includes the! / ⁇ ! Since there is an alloy layer formed by alloying with at least one metal element constituting the alloy, high bonding strength can be obtained.
  • the alloy layer is welded to the electrode with the end of the heater coil wound around a core made of a metal element not included in either the heater coil or the electrode, thereby forming a metal material forming the core.
  • irregularities in the winding portion of the heater coil at the welding portion during welding and deformation of the coil shape can be prevented, so that variation in the resistance value of the heater coil can be reduced.
  • the contact combustion type gas sensor according to the invention of claim 44 is characterized in that, in the invention of claim 42 or 43, a force contained in the alloy layer is a deviation of the heater coil and the electrode.
  • the metal element is characterized in that the metal element has a larger ionization depth than the metal constituting the heater coil.
  • the core wire can be melted by etching after welding to the electrode while the end portion of the heater coil is wound around the core wire, the core wire can be easily formed without the alloy layer. Can be extinguished. Further, even when the heater coil is constituted by a coiled coil described later, the core wire can be easily eliminated after welding.
  • the contact combustion type gas sensor according to the invention of Claim 45 is the invention according to any one of Claims 42 to 44, wherein the heater coil has a portion covered with the sintered body. At least a part thereof is characterized in that the wire is wound in a coil shape, and a coil wire is further wound in a coil shape.
  • a method for manufacturing a contact combustion type gas sensor according to the invention of claim 46 is characterized in that the heater coil is heated by combustion heat generated by combustion of the contacted gas.
  • the heater coil is heated by combustion heat generated by combustion of the contacted gas.
  • the electric characteristic value of the heater coil changes due to combustion heat generated by the combustion of the contacted gas, and the characteristic value changes.
  • a contact-combustion gas sensor that detects the presence of flammable gas based on the above, at least both ends are wound around a core wire to form a coil-shaped heater coil, and the coil is wound around the core wire.
  • the core wire is made of a metal which is lower than a constituent material of the heater coil.
  • the core wire eliminating step only the core wire is eliminated by etching.
  • the core wire can be easily eliminated by etching after welding to the electrode while the end portion of the heater coil is wound around the core wire. Further, even when the heater coil is formed of a coiled coil described later, the core wire can be easily eliminated after welding.
  • the core wire is made of nickel, and the heater coil is made of platinum or platinum. It is made of a platinum alloy, and in the core wire eliminating step, the core wire is annihilated by using an etching solution for nickel.
  • nickel is a metal lower than platinum or a platinum alloy
  • the core wire can be easily melted by leaving the heater coil by etching.
  • the sintered body of the heater coil is provided in the invention according to any one of claims 46 to 50. At least a part of the portion covered by the coil is wound into a coil shape around the core wire to form a coiled coil.
  • the wire constituting the heater coil becomes longer, and the heater coil has a longer length. Since the resistance increases, a sensor with high gas sensitivity can be obtained. In addition, the wire constituting the heater coil is buried longer in the sintered body, and the resistance change of the heater coil occurs efficiently, so that a sensor having a high response speed can be obtained.
  • the core wire joins the heater coil and the electrode. It is characterized in that it also serves as a brazing filler metal.
  • the heater coil for a gas sensor, the sensing element for a gas sensor, and the contact combustion type gas sensor according to the present invention exhibit an effect when the gas sensitivity is high and a contact combustion type gas sensor can be obtained. Further, there is an effect that a contact combustion type gas sensor having a high response speed can be obtained. Further, there is an effect that a contact combustion type gas sensor having a small zero point fluctuation due to an impact having a high impact resistance can be obtained.
  • the method for manufacturing a contact combustion gas sensor according to the present invention includes a contact combustion gas sensor having a heater coil wound at least at both ends in a coil shape and having a small variation in the resistance value of the heater coil. Is obtained. Further, there is an effect that a contact combustion type gas sensor having a heater coil wound at least at both ends in a coil shape and having a high bonding strength between the heater coil and the electrode pin can be obtained. Furthermore, when manufacturing a contact combustion type gas sensor, handle a heater coil with at least both ends wound in a coil shape.
  • FIG. 1 is a front view showing a configuration of a heater coil according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view illustrating a configuration of a sensing element according to an embodiment of the present invention.
  • FIG. 3 is a partial cross-sectional view showing a configuration of a sensor main body of a catalytic combustion type gas sensor according to an embodiment of the present invention.
  • FIG. 4 is a configuration diagram of a control circuit of a catalytic combustion type gas sensor according to an embodiment of the present invention. It is a circuit diagram showing composition.
  • FIG. 5 is a flowchart showing a method for manufacturing a catalytic combustion type gas sensor according to an embodiment of the present invention.
  • FIG. 6 is a partially enlarged view showing a state in the course of manufacturing the contact combustion type gas sensor according to the embodiment of the present invention.
  • FIG. 7 is a partially enlarged view showing a state during the manufacture of the contact combustion gas sensor according to the embodiment of the present invention.
  • FIG. 8 is an explanatory diagram showing an SEM image showing a surface state of a welded part in an example.
  • FIG. 9 is an explanatory view showing an SEM image showing a cross-sectional state of a welded part in an example.
  • FIG. 10 is a chart showing an XMA analysis result at point A in FIG. 9.
  • FIG. 11 is a chart showing an XMA ⁇ vector at point B in FIG.
  • FIG. 12 is a chart showing an XMA spectrum at point C in FIG. 9.
  • FIG. 13 is a chart showing an XMA analysis result at point D in FIG. 9.
  • FIG. 14 is a photograph showing the overall shape of the heater coil of the example.
  • FIG. 15 is an explanatory diagram showing an SEM image showing the surface of a welded part in a comparative example.
  • FIG. 16 is an explanatory diagram showing an SEM image showing a cross section of a welded part in a comparative example.
  • FIG. 17 is a photograph showing the overall shape of a heater coil of a comparative example.
  • FIG. 18 is a cross-sectional view showing a configuration of a conventional sensing element.
  • FIG. 19 is a front view showing a configuration of a conventional heater coil.
  • FIG. 1 is a front view showing a configuration of a heater coil according to an embodiment of the present invention.
  • the bead portion 24 of the heater coil 22 is formed of, for example, a double-turn coil.
  • the lead portion 25 of the heater coil 22 is formed of, for example, a single coil.
  • a resistance wire (original wire) made of a normal non-coiled wire is wound around a primary core wire to manufacture a single-turn coil.
  • this single-turn coil is used as a new wire, and a part of this wire is wound around a secondary core wire, and the portion to be the bead portion 24 is made into a double-turn coil.
  • the secondary core wire may be a wire having the same diameter as the primary core wire or a wire having a different diameter.
  • the lead portion 25 may be formed of a double or more wound coil, and the bead portion 24 may be formed of a triple or more wound coil.
  • the lead portion 25 and the bead portion 24 are a double wound coil and a triple wound coil, respectively, first, the original wire is wound around the primary core wire to produce a single wound coil.
  • a double-wound coil is produced by winding the coil around a secondary core wire using the coil as a primary wire (primary wire).
  • the part may be wound around a tertiary core wire, and the part serving as the bead part 24 may be formed into a triple wound coil.
  • the number of repetitions of the winding process for winding the element wire around the core wire may be increased.
  • FIG. 2 is a cross-sectional view illustrating a configuration of a sensing element according to an embodiment of the present invention.
  • the sensing element 2 has a configuration in which a bead portion 24 of a heater coil 22 is covered with a heat conductive layer 21 made of a sintered body, and a catalyst layer 23 is attached to the surface of the heat conductive layer 21.
  • the heat conductive layer 21 is made of, for example, alumina (aluminum).
  • the catalyst layer 23 is composed of a combustion catalyst made of an oxidized metal according to the flammable gas to be detected. The catalyst layer 23 is heated to a temperature corresponding to the flammable gas to be detected by applying a voltage to both ends of the heater coil 22.
  • the gas to be detected for example, an organic component gas such as methane gas, hydrogen gas, LP gas (liquefied petroleum gas), propane gas, butane gas, ethylene gas, carbon monoxide gas, or ethanolic acetone is used. No. Then, for example, when the gas to be detected is S methane gas, the catalyst layer 23 is heated to about 450 ° C.
  • FIG. 3 is a partial cross-sectional view showing the configuration of the sensor main body of the contact combustion type gas sensor according to the embodiment of the present invention.
  • the sensor body 3 has external connection electrode pins 32 and 33 that penetrate a plate-shaped mount base 31 made of ceramic resin.
  • the configuration is such that the lead portions 25 at both ends of the element 2 are fixed.
  • a compensating element including a heater coil having the same configuration as the heater coil 22 of the detecting element 2 is provided alongside the detecting element 2.
  • the compensating element and the detecting element 2 are surrounded by a mount base 31 and an explosion-proof structure 34 made of a gas-permeable metal mesh or a sintered body of metal or ceramic.
  • FIG. 4 is a circuit diagram showing a configuration of a control circuit of the catalytic combustion type gas sensor according to the embodiment of the present invention.
  • the control circuit of the catalytic combustion type gas sensor 5 includes a sensing element 2, a compensation element 4 connected in series with the sensing element 2, a first resistance element 51, and a first resistance element 51 connected in series. It has a second resistance element 52 and a power supply (power supply circuit) 53 connected thereto.
  • These sensing element 2, compensating element 4, first and second resistance elements 51, 52 form a Wheatstone bridge circuit! /
  • Power supply 53 applies a DC voltage to both ends of a series connection of sensing element 2 and compensation element 4 and a series connection of first resistance element 51 and second resistance element 52, respectively. .
  • the power of the Wheatstone bridge circuit also depends on the connection node between the sensing element 2 and the compensating element 4 (indicated by A in FIG. 4) and the connection node between the first resistive element 51 and the second resistive element 52 ( Figure 4 B) is output. Assuming that the current-carrying resistance values of the detection element 2, the compensation element 4, the first resistance element 51, and the second resistance element 52 are R, R, R, and R,
  • each heater coil 22 of the detecting element 2 and the compensating element 4 When a rated voltage is applied to each heater coil 22 of the detecting element 2 and the compensating element 4 by the power supply 53, each heater coil 22 generates heat, and the detecting element 2 and the compensating element 4 respond to the gas to be detected.
  • the operating temperature is reached, and the gas sensor 5 obtains an output voltage V depending on the current-carrying resistance value obtained from the equilibrium temperature with the environment. And when the detection target gas is detected out
  • the output voltage V increases to the + (plus) side by an amount corresponding to the gas sensitivity.
  • the operating temperature of the catalyst for causing the detection target gas to contact burn with high efficiency is selected based on the gas type.
  • a heater coil having a higher resistance value is used, a higher power supply voltage is required to obtain a desired catalyst operating temperature. Due to the nature of the bridge circuit, the power supply voltage and the output voltage V are in a proportional relationship, so the heater with a higher resistance value out
  • the gas sensitivity when using a coil has a higher value. That is, since the heater coil 22 having the above-described configuration has a higher resistance value than that of the conventional heater coil as described later, the use of the heater coil 22 provides a high gas sensitivity.
  • the raw wire constituting the heater coil 22 for example, platinum or a platinum alloy wire, an alloy wire based on platinum or a platinum alloy such as platinum or a platinum alloy rhodium alloy, or an iron-palladium alloy wire may be used. it can.
  • the wire diameter of the original wire is not less than m and not more than 100 / z m. The reason is that if the wire diameter of the wire is less than 1 ⁇ m, it is difficult to manufacture a double-wound coil that constitutes the bead portion 24, while the wire diameter of the wire exceeds 100 m This is because the combustion part of the detection element 2 becomes too large.
  • the diameter of the original wire is preferably 10 m or more and 50 m or less.
  • the power supply 53 having an appropriate voltage / current value can be used, so that the catalyst layer 23 can be set to an appropriate operating temperature when the catalytic combustion type gas sensor 5 operates.
  • the wire diameter is 50 m
  • the voltage-current value is 0.75 V-400 m A power supply can be used.
  • the diameter of the original wire is 10 m
  • a power supply with a voltage and current value of 12 V to 25 mA can be used.
  • the diameter of the original wire is more preferably 20 / zm or more and 30 / zm or less.
  • the volume occupied by the bead portion 24 is reduced and the weight of the combustion portion of the detection element 2 is reduced to about 1 mg, so that the detection element 2 is sufficiently supported by the lead portion 25 of the heater coil 22. Because they can do it.
  • the impact resistance of the contact combustion type gas sensor 5 is improved.
  • the bead portion 24 of the heater coil 22 can be buried at a higher density in the combustion portion of the sensing element 2, the ability of the heater coil 22 to receive the heat of combustion is increased, and the heater coil 22 is capable of receiving heat during combustion.
  • the resistance change occurs more efficiently, and the response speed of the catalytic combustion gas sensor 5 increases.
  • the resistance of the heater coil 22 is increased by the thin wire and the power supply voltage can be further increased as described above, so that the gas sensitivity of the contact combustion type gas sensor 5 increases. .
  • Table 1 shows the relationship between the diameter of the base wire of the heater coil 22, the weight of the combustion part of the sensing element 2, the gas sensitivity of the contact combustion gas sensor 5, and the response time of the contact combustion gas sensor 5. This is shown below.
  • the relative weight (au), relative gas sensitivity (au), and relative response time (au) of each wire diameter range are all based on heater coils based on platinum wire with a wire diameter of 30 ⁇ m. It is a relative value to the weight of the combustion part (lmg), gas sensitivity (40mV) and response time (5 seconds) when using.
  • the bead portion 24 and the lead portion 25 are a double wound coil and a single wound coil, respectively.
  • the gas sensitivity is the sensitivity to 4000 ppm of hydrogen gas
  • the response time is the time required to reach 90% or more of the stable output value at 4000 ppm of hydrogen gas.
  • the winding diameter of the single-turn coil is 0.5 times or more and 20 times or less the diameter of the core metal (primary core wire) used for winding the original wire in a coil shape.
  • the winding diameter of the double wound coil is 0.5 times or more and 20 times or less the diameter of the core used to further wind the single wound coil (element wire) in a coil shape.
  • the winding diameter exceeds 20 times, the amount of the heat conductive layer 21 filled in the inner space of the coil of the bead portion 24 increases and the combustion portion becomes heavy, so that the lead portion 25 supports the sensing element 2 by the lead portion 25. And the impact resistance of the contact combustion type gas sensor 5 may be lower than a practically allowable range.
  • the winding diameter of the single-wound coil is preferably not less than 1 and not more than 10 times the diameter of the core metal used for winding the original wire in a coil shape.
  • the winding diameter of the double-wound coil is preferably not less than 1 and not more than 10 times the diameter of the core used for further winding the single-wound coil (element wire) into a coil. .
  • the reason is that the shape stability of the coil after winding is good, so that the heater coil 22 can be obtained with good yield, and the force that can stably obtain the support performance of the sensing element 2 by the lead portion 25. It is.
  • the winding diameter is 20 times or less, if the winding diameter exceeds 10 times, the shape stability of the coil after winding becomes slightly lower.
  • the number of turns of the double spiral coil as the final spiral is 1 or more and 30 or less. The same applies when the final spiral is a wound coil having three or more turns. The reason is that the combustion of sensing element 2 This is because the lead portion 25 of the heater coil 22 can sufficiently support the sensing element 2 because the portion does not become heavy. If the number of turns exceeds 30, the combustion portion becomes heavy, and the sensing element 2 cannot be stably supported by the lead portion 25 of the heater coil 22. In particular, it is appropriate that the number of turns of the double wound coil is four to ten.
  • the length of the gap between a certain winding portion 26 and the winding portion 27 adjacent to this winding portion 26 is 0.5 times or more and 10 times or less the diameter of the wires.
  • the first reason is the ability to obtain sufficiently fast response characteristics.
  • the catalyst layer 23 can be formed by filling the space inside the coil of the bead portion 24 with the heat conductive layer 21.
  • the length of the gap between the winding part 26 and the adjacent winding part 27 is generally determined by the distance between the wires called the pitch and the pitch of the spiral. It is the distance except half of the thickness of each of the part 26 and the winding part 27.
  • Table 2 shows the relationship between the gap distance between the wires of the heater coil 22 and the response time of the contact combustion type gas sensor 5.
  • the gap distance between the wires is expressed as a magnification relative to the diameter of the wires.
  • the relative response time (a.u.) of each inter-wire gap distance range is a relative value with respect to the response time when using a heater coil in which the inter-wire gap distance is equal to the diameter of the wire.
  • the bead portion 24 and the lead portion 25 are a double wound coil and a single wound coil, respectively.
  • Table 3 shows a comparison result of gas sensitivity.
  • the value obtained by subtracting the output voltage value in air from the output voltage value in gas was used as the gas sensitivity, and two comparisons were made: sensitivity comparison for 4000 ppm hydrogen gas and 4000 ppm methane gas.
  • the gas sensitivity of the sample of the example was about three times that of the sample of the conventional example.
  • Table 4 shows a comparison result of the response speed.
  • Table 4 shows the response time, which is the time required to reach 90% or more of the stable output value at 1800 ppm of hydrogen gas.
  • the response time of the sample of the example was approximately half of the response time of the sample of the conventional example. That is The response speed of the sample of the embodiment is approximately twice that of the sample of the conventional example.
  • Table 5 shows a comparison result of zero point fluctuation (converted value of hydrogen concentration) generated after a drop impact.
  • the contact combustion type gas sensors of the embodiment and the conventional example were freely dropped from a height of lm onto a cedar board having a thickness of 30 mm.
  • the zero point fluctuation after the drop impact was converted to a hydrogen concentration, which was less than 2000 ppm in the example, but exceeded 2000 ppm in the conventional example.
  • FIG. 5 is a flowchart showing a manufacturing procedure.
  • 6 and 7 are partially enlarged views showing a state in the course of manufacturing the catalytic combustion type gas sensor 5.
  • FIG. First prepare a normal non-coiled resistance wire, This is wound around a primary core wire to produce a single wound coil (step S1).
  • the primary core wire may be a wire rod made of a metal lower than the resistance wire used. This is because it is necessary to melt the primary core wire while leaving the resistance wire in the subsequent wet etching process.
  • the primary core is made of nickel, aluminum, copper or a stainless alloy.
  • the diameter of the primary core wire is suitably 20-60 / z m. In a single-turn coil, the length of the gap between a certain winding part 28 and the winding part 29 adjacent to this winding part 28 (see FIG. 7), that is, the gap distance between the wires It is appropriate that the diameter be 0.5 times or more and 10 times or less of the diameter of the strand.
  • a part of the single wound coil that is, a part to be the bead portion 24 is wound around a secondary core wire to produce a double wound coil, which is the heater coil 22 (Step S2).
  • the material of the secondary core wire is not particularly limited, but is, for example, carbide or hardened steel.
  • the diameter of the secondary core wire is suitably 100-300 ⁇ m.
  • the element wire is a platinum or platinum alloy wire having a diameter
  • the primary core wire is a nickel wire having a diameter of 40 m.
  • the gap distance between the strands is preferably 20 m.
  • the diameter of the primary wire composed of the single-wound coil is 80 m (20 m (diameter of the wire) +40 m (—diameter of the core wire) +20 m (the diameter of the wire) Diameter))).
  • the gap distance between the single-wound coil and the strand is preferably 80 ⁇ m! / ,.
  • the lead portions 25 at both ends of the heater coil 22 are welded to the electrode pins 32, 33 projecting from the mount base 31 by a resistance welding method, a laser welding method, a thermocompression bonding method, or the like. (Step S3). At this point, the primary core wire 6 remains as shown in FIG.
  • the electrode pins 32 and 33 are made of, for example, nickel or nickel-copper alloy (monel). Alternatively, the electrode pins 32 and 33 may be made of a nickel-chromium molybdenum alloy such as Inconel Hastelly (trade name), a stainless steel alloy such as SUS316L, titanium or a titanium alloy, or a combination thereof to improve corrosion resistance. it can. Electrode pin 3 Most preferred as material 2 and 33 is Hastelloy (trade name). Although not particularly limited, for example, the diameter of the electrode pins 32, 33 is about 600 / zm.
  • any method may be used, but a resistance welding method is preferable.
  • the resistance welding method can stably control the energization time on the order of milliseconds, at which the voltage of the welding equipment rises extremely rapidly, so that different materials are welded together as in the present embodiment. It is suitable for welding thin metal wires.
  • the resistance welding method When the resistance welding method is performed, a well-known transistor-type resistance welding machine can be used.
  • the welding conditions in this case are not particularly limited.
  • the voltage is 2.0-3. OV
  • the energizing time is 3 milliseconds
  • the head load is 0.5-5 kgf. is there.
  • the voltage value is preferably 2.3 V.
  • Step S4 the one obtained by welding the heater coil 22 to the electrode pins 32 and 33 is immersed in an etchant to dissolve and extinguish the primary core wire 6.
  • the welding portion between the heater coil 22 and the electrode pins 32 and 33 may be covered and etched to leave the primary core wire 6 only at the welding portion.
  • the etching solution is, for example, a mixed aqueous solution of nitric acid (30%), sulfuric acid (3%) and hydrogen peroxide (2%), or a ferric chloride solution (40% aqueous solution).
  • the bath temperature is preferably room temperature (for example, 25 ° C)
  • the immersion time is suitably 60 minutes.
  • a ferric salt solution for example, it is appropriate to set the bath temperature to 40 ° C. and the immersion time to 3 minutes.
  • FIG. 7 shows a state in which the primary core wire has disappeared by etching.
  • Step S8 a slurry such as a heat conductive material and a combustion catalyst is applied to the bead portion 24 of the heater coil 22, and the slurry is heated and fired (Step S8).
  • the sensor main body 3 is assembled by mounting the explosion-proof structure 34 and the like (step S9).
  • a non-coiled platinum or platinum alloy wire having a diameter of 20 m is used as a strand, and this is wound around a primary core wire 6 made of a nickel wire having a diameter of 40 ⁇ m with a gap distance between the strands of 20 m. A single wound coil was manufactured.
  • the single-wound coil was wound 6 times on a secondary core wire made of a 150 m-diameter cemented wire at a gap distance of 80 / zm between wires, thereby producing a double-wound coil in the bead portion 24.
  • the lengths of the lead portions 25 at both ends of the bead portion 24 were each lmm.
  • the electrode pins 32 and 33 were made of Hastelloy having a diameter of 600 ⁇ m, and a resistance welding method was used. The welding conditions were as described above, except that the head weight was 1.5 kgf and the voltage value was 2.3 V. Then, an etching treatment was performed for 60 minutes using a mixed aqueous solution of nitric acid, sulfuric acid and hydrogen peroxide at a bath temperature of room temperature.
  • FIG. 8 and FIG. 9 are photographs of the surface and cross section of the welded part of the example, respectively, observed with a scanning electron microscope.
  • 15 and 16 are photographs obtained by observing the surface and cross section of the welded portion of the comparative example with a scanning electron microscope.
  • each winding portion of the lead portion 25 of the heater coil 22 is regularly and sufficiently crushed and joined to the electrode pins 32 and 33 as compared with the comparative example. You can see that there is. Also, comparing FIG. 9 and FIG. 16, it can be seen that the example is partially alloyed at the bonding interface where the bonding area is wider than the comparative example. The alloying is also apparent from the analytical results shown in Figs. FIGS. 10, 11, 12 and 13 show X-rays at the locations indicated by “A”, “B”, “C” and “D” in the cross-sectional photograph of the embodiment shown in FIG. 9, respectively. 5 is a chart showing a result of analysis by a micro analyzer (XMA).
  • XMA micro analyzer
  • Point “C” which is a portion near the heater coil 22 at the junction interface between the heater coil 22 and the electrode pins 32, 33, and the electrode pins 32, 33 at the junction interface between the heater coil 22 and the electrode pins 32, 33.
  • point “D” which is a closer part, peaks of platinum or a platinum alloy, nickel, and chromium are observed. This is because the nickel of the primary core wire 6 functions as a brazing material at the bonding interface between the heater coil 22 and the electrode pins 32 and 33, and the heater coil 22 and the primary core wire 6 and the electrode pins 32 and 33 are alloyed. Is shown.
  • the vicinity of the point “D” is a rich layer in which the nickel content is higher than that of the balta of the electrode pins 32 and 33 because the nickel primary core wire 6 is present during welding.
  • step S1 and step S2 in FIG. 5 were performed, and step S4 was performed first to perform the primary operation. After the core wire 6 has disappeared, welding in step S3 is performed, and after the steps from step 5 to step S7, the heater coil 22 is pulled vertically between the electrode pins 32 and 33, respectively. 22 or the strength at the time of fracture of the welded part was measured.
  • FIG. 14 and FIG. 17 show the overall shape of the heater coil 22 in the example and the comparative example, respectively. From FIG. 14, it can be seen that in the example, the bead portion 24 of the heater coil 22 has no distortion. On the other hand, in the comparative example, the bead portion 24 of the heater coil 22 is distorted, and it can be seen that the adjacent winding portions of the bead portion 24 are almost in contact with each other. The cause of such distortion is that when welding is performed without a primary core wire, the coil of the heater coil 22 is wound. Inadvertently crushing the part or damaging the coil shape.
  • the effect of the bead part 24 embedded in the combustion part of the heater coil 22 is obtained.
  • the length is longer than when the bead portion 24 is formed of a conventional single-turn coil. Accordingly, the resistance of the heater coil 22 increases, so that the gas sensitivity of the contact combustion type gas sensor 5 increases, and the SZN ratio improves.
  • the heater coil 22 receives more combustion heat and causes a resistance change efficiently, the response speed of the contact combustion type gas sensor 5 is increased. Further, since the size of the combustion part may be almost the same as the conventional one, the weight of the combustion part becomes almost the same as the conventional one. Therefore, the gas sensitivity of the contact combustion type gas sensor 5 can be improved and the response speed can be increased without sacrificing the ability to support the detection element 2 at the lead portion 25 of the heater coil 22.
  • the resistance of the heater coil 22 increases due to the thinning of the original wire of the heater coil 22, current consumption can be reduced.
  • the lead portion 25 has the same configuration as the coil spring, an externally applied impact is absorbed by the spring elasticity of the lead portion 25. Therefore, the impact transmitted to the combustion part of the detection element 2 is reduced, so that the catalyst layer 23 is less likely to be lost, and the zero point can be suppressed from greatly changing due to the impact.
  • the heater coil 22 having a coiled coil has a small variation in resistance value of the heater coil 22, and the bonding strength between the heater coil 22 and the electrode pins 32, 33 is high.
  • the contact combustion type gas sensor 5 is obtained. Further, when manufacturing the contact combustion type gas sensor 5, it is easy to handle the heater coil 22 composed of a coiled coil.
  • the welding method and its conditions, or the etching method and its conditions can be appropriately changed.
  • the various numerical values and materials described above are examples, and are not limited thereto. There is no.
  • the heater coil for a gas sensor, the sensing element for a gas sensor, the contact combustion type gas sensor, and the method for manufacturing the contact combustion type gas sensor, which are effective in the present invention, are useful for a gas leak detection device for home use or industrial use. It is suitable for a device for detecting a flammable gas used in a fuel cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

 ヒータコイル(22)のリード部(25)を、コイル状に巻かれた一重巻回コイルにより構成し、ビード部(24)を、一重巻回コイルをさらにコイル状に巻いた二重巻回コイルにより構成する。ビード部(24)を熱伝導層(21)中に埋め込み、熱伝導層(21)の表面に触媒層(23)を付着させて、検知素子(2)とすることによって、接触燃焼式ガスセンサのガス感度および応答速度の向上を図る。また、耐衝撃強度の向上により、ゼロ点変動を小さくする。電極ピンにヒータコイルの両端を固定する際には、白金線等を一次芯線に巻きつけた状態のまま、電極ピンにヒータコイルの両端を抵抗溶接法等により溶接した後、ウェットエッチング処理を行い、白金線等を残したまま、一次芯線を溶かして消滅させる。

Description

明 細 書
ガスセンサ用ヒータコイル、ガスセンサ用検知素子、接触燃焼式ガスセン サおよび接触燃焼式ガスセンサの製造方法
技術分野
[0001] 本発明は、ガスセンサ用ヒータコイル、ガスセンサ用検知素子、接触燃焼式ガスセ ンサおよび接触燃焼式ガスセンサの製造方法に関するものである。
背景技術
[0002] 従来より、水素ガスやメタンガス等の可燃性ガスを検知するセンサとして、接触燃焼 式ガスセンサが公知である。接触燃焼式ガスセンサは、ヒータコイルを被う熱伝導層 に触媒層を担持させた検知素子を所定の温度に加熱しておき、可燃性ガスを触媒層 に接触させて燃焼させ、その燃焼熱による温度変化に基づくヒータコイルの抵抗変化 を電圧変化として出力することにより、可燃性ガスの存在を検知するものである。
[0003] 図 18は、従来の検知素子の構成を示す断面図であり、図 19は、従来のヒータコィ ルの構成を示す正面図である。図 18に示すように、従来の検知素子 1は、熱伝導層 11中にヒータコイル 12が埋め込まれており、熱伝導層 11の表面に触媒層 13が付着 された構成となっている。図 19に示すように、従来のヒータコイル 12では、熱伝導層 11中に埋め込まれる部分 (以下、ビード部とする)は、線材をコイル状に巻いた一重 卷回コイルとなっている(例えば、特許文献 1参照。 ) oビード部 14の両端力も伸びる リード部 15は、コイル状になっていない。なお、本明細書では、検知素子において、 ヒータコイルのビード部を熱伝導層および触媒層が被う部分を、燃焼部と呼ぶこと〖こ する。
[0004] また、接触燃焼式ガスセンサでは、上述した構成の検知素子と、この検知素子と同 様の構成で、かつ触媒の代わりに不活性な酸ィ匕物を担持させた補償素子と、 2個の 抵抗素子とにより、ホイートストンブリッジ回路が構成されている。そして、燃焼熱によ りヒータコイルの抵抗が変化すると、その抵抗変化は、ホイートストンブリッジ回路から 電圧変化として出力される (例えば、特許文献 2参照。 )0
[0005] 検知素子を作製する方法として、芯線に抵抗線を卷回し、その状態で絶縁剤を電 着コートし、絶縁剤を加熱焼成した後、抵抗線の非有効部分を露出させ、芯線を溶 解してから、電極ピンに溶接する方法が公知である(例えば、特許文献 3参照。 )0こ の方法によれば、検知素子を製造する際に、抵抗線の卷回部の形状が崩れるのを 防ぐことができる。
[0006] 特許文献 1 :特開平 3— 162658号公報 (第 1図)
特許文献 2:特公平 2-59949号公報 (第 1図)
特許文献 3:特開昭 52— 116289号公報
発明の開示
発明が解決しょうとする課題
[0007] 接触燃焼式ガスセンサでは、同じガス濃度であれば、ホイートストンブリッジ回路か ら出力される電圧の変化量は大き!/、方が好ま 、。この出力電圧の変化量が大き 、 ということは、ガス感度が高いということである。ヒータコイルのビード部のコイル巻き数 を増やせば、ヒータコイルの、燃焼熱による抵抗変化に寄与する部分の長さ(以下、 有効長とする)が長くなり、ヒータコイルの抵抗が大きくなるので、ガス感度が高くなる
[0008] また、接触燃焼式ガスセンサでは、同じガス濃度であれば、ホイートストンブリッジ回 路から出力される電圧ができるだけ短時間で安定する方が好ましい。出力電圧の安 定に要する時間が短いということは、応答速度が速いということである。応答速度を速 くするには、燃焼部内にヒータコイルの線材をできるだけ長く埋め込み、ヒータコイル が燃焼熱を効率よく受けて、ヒータコイルの抵抗変化が効率よく起こるようにすればよ い。
[0009] しかし、いずれの場合も、ヒータコイルのビード部が大きくなり、それに伴ってビード 部を覆う熱伝導層の量や触媒層の量も増えるので、燃焼部が重くなつてしまう。検知 素子は、ヒータコイルの両端のリード部を外部接続用の電極ピンで支持することにより 、センサ内に取り付けられているので、燃焼部が重くなると、リード部で検知素子を支 えきれなくなり、リード部の破断などの故障が起こりやすくなる。
[0010] 従って、従来の接触燃焼式ガスセンサでは、ヒータコイルのリード部での検知素子 の支持能力を犠牲にすることなぐガス感度の向上および応答速度の高速ィ匕を図る ことは極めて困難である。また、従来の接触燃焼式ガスセンサでは、ヒータコイルのリ ード部に衝撃吸収能力がないため、外部力も衝撃が加わると、その衝撃が殆ど緩和 されずに燃焼部に集中してしまう。そのため、触媒層の欠落などが発生しやすいとい う不具合があり、調整済みのゼロ点が大きく変動してしまうという欠点がある。
[0011] そこで、本発明者らは、燃焼部に埋め込まれる部分だけをコイル状にした従来のヒ ータコイルに代えて、線材をコイル状に巻いたコイル線の一部をさらにコイル状に卷 いたコイルドコイルをヒータコイルとして用いることを提案する。この提案によれば、従 来のヒータコイルと外観上の寸法が同じでも、ヒータコイルを構成する線材の実際の 長さが従来よりも長くなるので、ヒータコイルの抵抗が大きくなり、ガス感度が高くなる 。また、ヒータコイルのコイルドコイルの部分が燃焼部内に埋め込まれることによって、 燃焼部内の線材の長さが従来よりも長くなるので、ヒータコイルの抵抗変化が効率よ く起こり、応答速度が速くなる。
[0012] しカゝしながら、コイルドコイルよりなるヒータコイルでは、電極ピンに溶接される部分 がすでにコイル状になっているため、上記特許文献 3に開示されているように芯線を 溶解してから溶接を行う方法では、次のような新たな問題が生じることがわ力つた。例 えば、芯線の溶解後にヒータコイルを取り扱う際にコイルの卷回部を不用意に潰して しまうことが多い。また、溶接時に溶接部位でヒータコイルの卷回部が不規則に潰れ たり、コイル形状が歪んでヒータコイルが部分的に短絡してしまうため、ロット内におけ るヒータコイルの抵抗値のばらつきが大きい。さら〖こ、芯線を溶解させたことにより、そ の芯線のあった部分、すなわちコイルの内側部分が空胴になっているため、溶接自 体が不安定となり、十分な接合強度が得られない。
[0013] 本発明は、上記に鑑みてなされたものであって、ヒータコイルのリード部での検知素 子の支持能力を犠牲にすることなぐガス感度の向上を図ることができるガスセンサ 用ヒータコイル、ガスセンサ用検知素子および接触燃焼式ガスセンサを提供すること 、またはヒータコイルのリード部での検知素子の支持能力を犠牲にすることなぐ応答 速度の高速ィ匕を図ることができるガスセンサ用ヒータコイル、ガスセンサ用検知素子 および接触燃焼式ガスセンサを提供することを目的とする。また、本発明は、衝撃が 加わった場合のゼロ点の変動量を小さくすることができるガスセンサ用ヒータコイル、 ガスセンサ用検知素子および接触燃焼式ガスセンサを提供することを目的とする。
[0014] また、本発明は、少なくとも両端がコイル状に巻かれたヒータコイルの卷回部の形状 を崩すことなぐヒータコイルを容易に取り扱うことができる接触燃焼式ガスセンサの製 造方法を提供することを目的とする。また、本発明は、少なくとも両端がコイル状に卷 かれたヒータコイルの抵抗値のばらつきを小さくすることができる接触燃焼式ガスセン サの製造方法を提供することを目的とする。さらに、本発明は、少なくとも両端がコィ ル状に巻かれたヒータコイルと電極ピンとの接合強度を高くすることができる接触燃 焼式ガスセンサの製造方法を提供することを目的とする。
課題を解決するための手段
[0015] 上述した課題を解決し、目的を達成するため、請求項 1の発明にかかるガスセンサ 用ヒータコイルは、接触燃焼式ガスセンサに用いられるヒータコイルであって、ガスの 燃焼時に発生する燃焼熱により電気的な特性値が変化するビード部と、該ビード部 の両端力も伸びるリード部とを有し、 2以上の整数 nに対して、前記ビード部が、コィ ル状に巻かれた (n— 1)重卷回コイルよりなる素線をさらにコイル状に巻いた n重卷回 コイルにより構成されて 、ることを特徴とする。
[0016] 請求項 1の発明によれば、このヒータコイルを用いて検知素子を作製することによつ て、検知素子の燃焼部の大きさが従来とほぼ同じであっても、燃焼部内に埋め込ま れるビード部の有効長が、ビード部を従来の一重卷回コイルで構成した場合よりも長 くなる。従って、ヒータコイルの抵抗が大きくなるので、このヒータコイルを用いた接触 燃焼式ガスセンサでは、ガス感度が高くなる。また、ヒータコイルがより多くの燃焼熱 を受けて、効率よく抵抗変化を起こすので、このヒータコイルを用いた接触燃焼式ガ スセンサでは、応答速度が速くなる。さらに、燃焼部の大きさは従来とほぼ同じでよい ので、燃焼部の重さも従来とほぼ同じになる。従って、このヒータコイルを用いることに よって、リード部での検知素子の支持能力を犠牲にすることなぐ接触燃焼式ガスセ ンサのガス感度の向上や応答速度の高速ィ匕を図ることができる。
[0017] 請求項 2の発明に力かるガスセンサ用ヒータコイルは、請求項 1に記載の発明にお いて、前記リード部が、(n— 1)重卷回コイルにより構成されていることを特徴とする。
[0018] 請求項 2の発明によれば、リード部がコイルばねと同様の構成になっているので、こ のヒータコイルを用いた接触燃焼式ガスセンサでは、外部から加わった衝撃がリード 部のばね弾性により吸収される。従って、燃焼部に伝わる衝撃が小さくなるので、触 媒層の欠落などが発生しにくくなり、接触燃焼式ガスセンサのゼロ点が衝撃により大 きく変動するのを抑えることができる。
[0019] 請求項 3の発明に力かるガスセンサ用ヒータコイルは、請求項 1または 2に記載の発 明において、出発材料となる非コイル状の原線の線径は、 1 111以上100 111以下 であることを特徴とする。
[0020] 請求項 3の発明によれば、原線の線径が 1 μ m以上であるので、ビード部が多重卷 回コイルよりなるヒータコイルの作製が容易である。また、原線の線径が 100 m以下 であるので、このヒータコイルを用いることによって、接触燃焼式ガスセンサに用いる のに適した大きさの検知素子が得られる。
[0021] 請求項 4の発明に力かるガスセンサ用ヒータコイルは、請求項 1または 2に記載の発 明において、出発材料となる非コイル状の原線の線径は、 10 111以上50 111以下 であることを特徴とする。
[0022] 請求項 4の発明によれば、このヒータコイルを用いることによって、接触燃焼式ガス センサの制御回路を駆動する電源回路として、適当な電圧 電流値を有する電源回 路を用いることができる。適当な電源回路を用いることは、接触燃焼式ガスセンサを 動作させる際に、触媒層を適切な動作温度にすることができるので、重要である。
[0023] 請求項 5の発明に力かるガスセンサ用ヒータコイルは、請求項 1または 2に記載の発 明において、出発材料となる非コイル状の原線の線径は、 20 111以上30 111以下 であることを特徴とする。
[0024] 請求項 5の発明によれば、このヒータコイルを用いることによって、燃焼部の重量が lmg程度の検知素子が得られるので、ヒータコイルのリード部で検知素子を十分に 支えることができる。また、このヒータコイルを用いた接触燃焼式ガスセンサでは、耐 衝撃強度も向上する。さらに、このヒータコイルを用いることによって、検知素子の燃 焼部内にヒータコイルのビード部がより高密度に埋め込まれるので、ヒータコイルがよ り多くの燃焼熱を受けることができる。それによつて、ヒータコイルの抵抗変化がより一 層、効率よく起こる。従って、このヒータコイルを用いた接触燃焼式ガスセンサでは、 応答速度がさらに速くなる。また、ヒータコイルの抵抗がより一層、大きくなるので、電 源電圧をより高くすることができる。従って、このヒータコイルを用いた接触燃焼式ガス センサでは、ガス感度がさらに高くなる。
[0025] また、原線の線径が 20 μ mよりも小さくなると、ヒータコイルを作製する際の歩留まり が低下する力 原線の線径が 20 m以上であるので、ヒータコイルを容易に作製す ることができる。つまり、歩留まりを低下させることなぐヒータコイルを作製することが でき、またそのヒータコイルを用いることにより、接触燃焼式ガスセンサのガス感度お よび応答特性をさらに改善することができる。以上より、接触燃焼式ガスセンサのガス 感度および応答特性と、ヒータコイルの作製の容易さとの兼ね合いを考慮すると、原 線の線径は、 20 μ m以上 30 μ m以下であるのが最適である。
[0026] 請求項 6の発明に力かるガスセンサ用ヒータコイルは、請求項 1一 5のいずれか一 つに記載の発明において、 1以上 n以下の整数 mに対して、 m重卷回コイルの卷き径 は、 m重卷回コイルを作製する際にコイル状に巻くために用いられる芯金の径の 0. 5 倍以上 20倍以下であることを特徴とする。
[0027] 請求項 6の発明によれば、このヒータコイルを用いることによって、検知素子の燃焼 部が重くならないので、ヒータコイルのリード部で検知素子を十分に支えることができ る。それに対して、 m重卷回コイルの卷き径が芯金の径の 20倍を超えるヒータコイル を用いた場合には、ビード部のコイルの内側空間に充填される熱伝導層の量が増え 、燃焼部が重くなるため、リード部による検知素子の支持性能が低下し、接触燃焼式 ガスセンサの耐衝撃性能が実用上許容される範囲よりも低下することがあるという不 都合が生じる。
[0028] 請求項 7の発明に力かるガスセンサ用ヒータコイルは、請求項 1一 5のいずれか一 つに記載の発明において、 1以上 n以下の整数 mに対して、 m重卷回コイルの卷き径 は、 m重卷回コイルを作製する際にコイル状に巻くために用いられる芯金の径の 1倍 以上 10倍以下であることを特徴とする。
[0029] 請求項 7の発明によれば、卷線カ卩ェ後の m重卷回コイルの形状安定性がよ 、ので 、ヒータコイルが歩留まりよく得られる。また、リード部による検知素子の支持性能が安 定して得られる。なお、 m重卷回コイルの卷き径が芯金の径の 20倍以下であっても、 10倍を超えると、卷線加工後の m重卷回コイルの形状安定性は、多少、低くなる。
[0030] 請求項 8の発明に力かるガスセンサ用ヒータコイルは、請求項 1一 7のいずれか一 つに記載の発明において、前記 n重卷回コイルの巻き数は、 1以上 30以下であること を特徴とする。
[0031] 請求項 8の発明によれば、このヒータコイルを用いることによって、検知素子の燃焼 部が重くならないので、ヒータコイルのリード部で検知素子を十分に支えることができ る。 n重卷回コイルの巻き数が 30を超えるヒータコイルを用いた場合には、燃焼部が 重くなり、ヒータコイルのリード部で検知素子を安定して支えることができない。
[0032] 請求項 9の発明に力かるガスセンサ用ヒータコイルは、請求項 1一 8のいずれか一 つに記載の発明において、 1以上の整数 kに対して、前記 n重卷回コイルにおける k 巻き目の卷回部と (k+ 1)巻き目の卷回部との間の隙間の長さは、前記 (n— 1)重卷 回コイルよりなる素線の直径の 0. 5倍以上 10倍以下であることを特徴とする。
[0033] 請求項 9の発明によれば、このヒータコイルを用いた接触燃焼式ガスセンサでは、 十分に高速な応答特性が得られる。また、このヒータコイルを用いて検知素子を作製 する際に、 n重卷回コイルにおける k巻き目の卷回部と (k+ 1)巻き目の卷回部とが短 絡するのを防ぐことができるとともに、ビード部のコイルの内側空間に熱伝導層を充填 させて触媒層を形成することができる。それに対して、 k巻き目の卷回部と (k+ 1)卷 き目の卷回部との間の隙間が素線の直径の 0. 5倍の長さよりも短いヒータコイルでは 、隣り合う卷回部同士が接触して短絡してしまうことがある。一方、当該隙間が素線の 直径の 10倍を超える場合には、卷回部間の隙間があきすぎているため、ビード部の コイルの内側空間に熱伝導層を十分に充填させることができず、従って触媒層を形 成することができない。
[0034] 請求項 10の発明に力かるガスセンサ用ヒータコイルは、請求項 1一 9のいずれか一 つに記載の発明において、白金の線材でできていることを特徴とする。請求項 11の 発明に力かるガスセンサ用ヒータコイルは、請求項 1一 9のいずれか一つに記載の発 明にお 、て、白金をベースとする合金の線材でできて 、ることを特徴とする。
[0035] 請求項 12の発明に力かるガスセンサ用ヒータコイルは、接触燃焼式ガスセンサに 用いられるヒータコイルであって、ガスの燃焼時に発生する燃焼熱により電気的な特 性値が変化するビード部と、該ビード部の両端力 伸びるリード部とを有し、前記リー ド部がコイル状に巻かれて 、ることを特徴とする。
[0036] 請求項 12の発明によれば、リード部がコイルばねと同様の構成になっているので、 このヒータコイルを用いた接触燃焼式ガスセンサでは、外部から加わった衝撃がリー ド部のばね弾性により吸収される。従って、検知素子の燃焼部に伝わる衝撃が小さく なるので、触媒層の欠落などが発生しにくくなり、接触燃焼式ガスセンサのゼロ点が 衝撃により大きく変動するのを抑えることができる。
[0037] また、上述した課題を解決し、目的を達成するため、請求項 13の発明にかかるガス センサ用検知素子は、接触燃焼式ガスセンサに用いられる検知素子であって、ガス の燃焼時に発生する燃焼熱により電気的な特性値が変化するビード部、および該ビ ード部の両端力 伸びるリード部を有するヒータコイルと、前記ビード部を覆う熱伝導 層と、前記熱伝導層の表面に付着された触媒層と、を備え、 2以上の整数 nに対して 、前記ビード部が、コイル状に巻かれた (n— 1)重卷回コイルよりなる素線をさらにコィ ル状に卷 、た n重卷回コイルにより構成されて ヽることを特徴とする。
[0038] 請求項 13の発明によれば、検知素子の燃焼部の大きさが従来とほぼ同じであって も、燃焼部内に埋め込まれるビード部の有効長力 ビード部を従来の一重卷回コイル で構成した場合よりも長くなる。従って、ヒータコイルの抵抗が大きくなるので、この検 知素子を用いた接触燃焼式ガスセンサでは、ガス感度が高くなる。また、ヒータコイル 力 り多くの燃焼熱を受けて、効率よく抵抗変化を起こすので、この検知素子を用い た接触燃焼式ガスセンサでは、応答速度が速くなる。さらに、燃焼部の大きさは従来 とほぼ同じでよいので、燃焼部の重さも従来とほぼ同じになる。従って、リード部での 検知素子の支持能力を犠牲にすることなぐ接触燃焼式ガスセンサのガス感度の向 上や応答速度の高速ィ匕を図ることができる。
[0039] 請求項 14の発明に力かるガスセンサ用検知素子は、請求項 13に記載の発明にお いて、前記ヒータコイルのリード部力 (n— 1)重卷回コイルにより構成されていることを 特徴とする。
[0040] 請求項 14の発明によれば、ヒータコイルのリード部がコイルばねと同様の構成にな つているので、この検知素子を用いた接触燃焼式ガスセンサでは、外部から加わった 衝撃がリード部のばね弾性により吸収される。従って、燃焼部に伝わる衝撃が小さく なるので、触媒層の欠落などが発生しにくくなり、接触燃焼式ガスセンサのゼロ点が 衝撃により大きく変動するのを抑えることができる。
[0041] 請求項 15の発明に力かるガスセンサ用検知素子は、請求項 13または 14に記載の 発明において、前記ヒータコイルの出発材料となる非コイル状の原線の線径は、 1 μ m以上 100 μ m以下であることを特徴とする。
[0042] 請求項 15の発明によれば、ヒータコイルの原線の線径が 1 μ m以上であるので、ビ ード部が多重卷回コイルよりなるヒータコイルを容易に作製することができる。従って、 検知素子の作製が容易となる。また、ヒータコイルの原線の線径が 100 /z m以下であ るので、接触燃焼式ガスセンサに用いるのに適した大きさの検知素子が得られる。
[0043] 請求項 16の発明に力かるガスセンサ用検知素子は、請求項 13または 14に記載の 発明において、前記ヒータコイルの出発材料となる非コイル状の原線の線径は、 10 μ m以上 50 μ m以下であることを特徴とする。
[0044] 請求項 16の発明によれば、この検知素子を用いることによって、接触燃焼式ガスセ ンサの制御回路を駆動する電源回路として、適当な電圧 電流値を有する電源回路 を用いることができる。適当な電源回路を用いることは、接触燃焼式ガスセンサを動 作させる際に、触媒層を適切な動作温度にすることができるので、重要である。
[0045] 請求項 17の発明に力かるガスセンサ用検知素子は、請求項 13または 14に記載の 発明において、前記ヒータコイルの出発材料となる非コイル状の原線の線径は、 20 μ m以上 30 μ m以下であることを特徴とする。
[0046] 請求項 17の発明によれば、燃焼部の重量を lmg程度にすることができるので、ヒ ータコイルのリード部で検知素子を十分に支えることができる。また、この検知素子を 用いた接触燃焼式ガスセンサでは、耐衝撃強度も向上する。さらに、燃焼部内にヒー タコイルのビード部がより高密度に埋め込まれるので、ヒータコイルがより多くの燃焼 熱を受けることができる。それによつて、ヒータコイルの抵抗変化がより一層、効率よく 起こる。従って、この検知素子を用いた接触燃焼式ガスセンサでは、応答速度がさら に速くなる。また、ヒータコイルの抵抗がより一層、大きくなるので、電源電圧をより高く することができる。従って、この検知素子を用いた接触燃焼式ガスセンサでは、ガス 感度がさらに高くなる。
[0047] また、ヒータコイルの原線の線径が 20 μ mよりも小さくなると、ヒータコイルを作製す る際の歩留まりが低下する力 ヒータコイルの原線の線径が 20 μ m以上であるので、 ヒータコイルを容易に作製することができる。従って、歩留まりよく検知素子が得られ る。つまり、歩留まりを低下させることなぐ検知素子を作製することができ、またその 作製した検知素子を用いることにより、接触燃焼式ガスセンサのガス感度および応答 特性をさらに改善することができる。以上より、接触燃焼式ガスセンサのガス感度およ び応答特性と、ヒータコイルの作製の容易さとの兼ね合いを考慮すると、ヒータコイル の原線の線径は、 20 μ m以上 30 μ m以下であるのが最適である。
[0048] 請求項 18の発明に力かるガスセンサ用検知素子は、請求項 13— 17のいずれか一 つに記載の発明において、 1以上 n以下の整数 mに対して、前記ヒータコイルの m重 卷回コイルの卷き径は、 m重卷回コイルを作製する際にコイル状に巻くために用いら れる芯金の径の 0. 5倍以上 20倍以下であることを特徴とする。
[0049] 請求項 18の発明によれば、燃焼部が重くならないので、ヒータコイルのリード部で 検知素子を十分に支えることができる。それに対して、 m重卷回コイルの卷き径が芯 金の径の 20倍を超えるヒータコイルを用いた場合には、ビード部のコイルの内側空 間に充填される熱伝導層の量が増え、燃焼部が重くなるため、リード部による検知素 子の支持性能が低下し、接触燃焼式ガスセンサの耐衝撃性能が実用上許容される 範囲よりも低下することがあると 、う不都合が生じる。
[0050] 請求項 19の発明に力かるガスセンサ用検知素子は、請求項 13— 17のいずれか一 つに記載の発明において、 1以上 n以下の整数 mに対して、前記ヒータコイルの m重 卷回コイルの卷き径は、 m重卷回コイルを作製する際にコイル状に巻くために用いら れる芯金の径の 1倍以上 10倍以下であることを特徴とする。
[0051] 請求項 19の発明によれば、ヒータコイルを作製する際に、卷線加工後の m重卷回 コイルの形状安定性がよいので、歩留まりよくヒータコイルが得られる。従って、歩留 まりょく検知素子が得られる。また、リード部による検知素子の支持性能が安定して得 られる。なお、 m重卷回コイルの卷き径が芯金の径の 20倍以下であっても、 10倍を 超えると、卷線加工後の m重卷回コイルの形状安定性は、多少、低くなる。 [0052] 請求項 20の発明に力かるガスセンサ用検知素子は、請求項 13— 19のいずれか一 つに記載の発明において、前記ヒータコイルの n重卷回コイルの巻き数は、 1以上 30 以下であることを特徴とする。
[0053] 請求項 20の発明によれば、燃焼部が重くならな 、ので、ヒータコイルのリード部で 検知素子を十分に支えることができる。 n重卷回コイルの巻き数が 30を超えるヒータコ ィルを用いた場合には、燃焼部が重くなり、ヒータコイルのリード部で検知素子を安定 して支えることができない。
[0054] 請求項 21の発明に力かるガスセンサ用検知素子は、請求項 13— 20のいずれか一 つに記載の発明において、 1以上の整数 kに対して、前記ヒータコイルの n重卷回コィ ルにおける k巻き目の卷回部と (k+ 1)巻き目の卷回部との間の隙間の長さは、前記 (n— 1)重卷回コイルよりなる素線の直径の 0. 5倍以上 10倍以下であることを特徴と する。
[0055] 請求項 21の発明によれば、この検知素子を用いた接触燃焼式ガスセンサでは、十 分に高速な応答特性が得られる。また、検知素子を作製する際に、 n重卷回コイルに おける k巻き目の卷回部と (k+ 1)巻き目の卷回部とが短絡するのを防ぐことができる とともに、ビード部のコイルの内側空間に熱伝導層を充填させて触媒層を形成するこ とができる。それに対して、 k巻き目の卷回部と (k+ 1)巻き目の卷回部との間の隙間 が素線の直径の 0. 5倍の長さよりも短いヒータコイルを用いた場合には、隣り合う卷 回部同士が接触して短絡してしまうことがある。一方、当該隙間が素線の直径の 10 倍を超える場合には、卷回部間の隙間があきすぎているため、ビード部のコイルの内 側空間に熱伝導層を十分に充填させることができず、従って触媒層を形成することが できない。
[0056] 請求項 22の発明に力かるガスセンサ用検知素子は、請求項 13— 21のいずれか一 つに記載の発明において、前記ヒータコイルは、白金の線材でできていることを特徴 とする。請求項 23の発明に力かるガスセンサ用検知素子は、請求項 13— 21のいず れか一つに記載の発明において、前記ヒータコイルは、白金をベースとする合金の 線材でできて!/ヽることを特徴とする。
[0057] 請求項 24の発明にかかるガスセンサ用検知素子は、接触燃焼式ガスセンサに用 いられる検知素子であって、ガスの燃焼時に発生する燃焼熱により電気的な特性値 が変化するビード部、および該ビード部の両端力 伸びるリード部を有するヒータコィ ルと、前記ビード部を覆う熱伝導層と、前記熱伝導層の表面に付着された触媒層と、 を備え、前記ヒータコイルのリード部がコイル状に巻かれて 、ることを特徴とする。
[0058] 請求項 24の発明によれば、ヒータコイルのリード部がコイルばねと同様の構成にな つているので、この検知素子を用いた接触燃焼式ガスセンサでは、外部から加わった 衝撃がリード部のばね弾性により吸収される。従って、燃焼部に伝わる衝撃が小さく なるので、触媒層の欠落などが発生しにくくなり、接触燃焼式ガスセンサのゼロ点が 衝撃により大きく変動するのを抑えることができる。
[0059] また、上述した課題を解決し、目的を達成するため、請求項 25の発明にかかる接 触燃焼式ガスセンサは、ガスの燃焼時に発生する燃焼熱により電気的な特性値が変 化するビード部、および該ビード部の両端力 伸びるリード部を有するヒータコイルと 、前記ビード部を覆う熱伝導層と、前記熱伝導層の表面に付着された触媒層と、を備 え、 2以上の整数 nに対して、前記ビード部が、コイル状に巻かれた (n— 1)重卷回コ ィルよりなる素線をさらにコイル状に巻いた n重卷回コイルにより構成された検知素子 と、前記検知素子に直列に接続された、前記ヒータコイルと同一構成のヒータコイル を備えた補償素子と、第 1の抵抗素子と、前記第 1の抵抗素子に直列に接続された 第 2の抵抗素子と、前記検知素子と前記補償素子との直列接続体、および前記第 1 の抵抗素子と前記第 2の抵抗素子との直列接続体のそれぞれの両端に直流電圧を 印加する電源と、を備え、前記検知素子、前記補償素子、前記第 1の抵抗素子およ び前記第 2の抵抗素子は、ホイートストンブリッジ回路を構成し、該ホイートストンプリ ッジ回路から、前記検知素子と前記補償素子との接続ノードと、前記第 1の抵抗素子 と前記第 2の抵抗素子との接続ノードとの間の電圧が出力されることを特徴とする。
[0060] 請求項 25の発明によれば、検知素子の燃焼部の大きさが従来とほぼ同じであって も、燃焼部内に埋め込まれるビード部の有効長力 ビード部を従来の一重卷回コイル で構成した場合よりも長くなる。従って、ヒータコイルの抵抗が大きくなるので、ガス感 度が高くなる。また、ヒータコイルがより多くの燃焼熱を受けて、効率よく抵抗変化を起 こすので、応答速度が速くなる。さらに、燃焼部の大きさは従来とほぼ同じでよいので 、燃焼部の重さも従来とほぼ同じになる。従って、リード部での検知素子の支持能力 を犠牲にすることなぐガス感度の向上や応答速度の高速ィ匕を図ることができる。
[0061] 請求項 26の発明にかかる接触燃焼式ガスセンサは、請求項 25に記載の発明にお いて、前記ヒータコイルのリード部力 (n— 1)重卷回コイルにより構成されていることを 特徴とする。
[0062] 請求項 26の発明によれば、ヒータコイルのリード部がコイルばねと同様の構成にな つているので、外部から加わった衝撃がリード部のばね弾性により吸収される。従つ て、検知素子の燃焼部に伝わる衝撃が小さくなるので、触媒層の欠落などが発生し に《なり、ゼロ点が衝撃により大きく変動するのを抑えることができる。
[0063] 請求項 27の発明に力かる接触燃焼式ガスセンサは、請求項 25または 26に記載の 発明において、前記ヒータコイルの出発材料となる非コイル状の原線の線径は、 1 μ m以上 100 μ m以下であることを特徴とする。
[0064] 請求項 27の発明によれば、ヒータコイルの原線の線径が 1 μ m以上であるので、ビ ード部が多重卷回コイルよりなるヒータコイルを容易に作製することができる。従って、 検知素子の作製が容易となり、接触燃焼式ガスセンサの作製が容易となる。また、ヒ ータコイルの原線の線径が 100 μ m以下であるので、適当な大きさの検知素子を有 する接触燃焼式ガスセンサが得られる。
[0065] 請求項 28の発明に力かる接触燃焼式ガスセンサは、請求項 25または 26に記載の 発明において、前記ヒータコイルの出発材料となる非コイル状の原線の線径は、 10 μ m以上 50 μ m以下であることを特徴とする。
[0066] 請求項 28の発明によれば、接触燃焼式ガスセンサの制御回路を駆動する電源回 路として、適当な電圧 電流値を有する電源回路を用いることができる。適当な電源 回路を用いることは、接触燃焼式ガスセンサを動作させる際に、触媒層を適切な動作 温度にすることができるので、重要である。
[0067] 請求項 29の発明に力かる接触燃焼式ガスセンサは、請求項 25または 26に記載の 発明において、前記ヒータコイルの出発材料となる非コイル状の原線の線径は、 20 μ m以上 30 μ m以下であることを特徴とする。
[0068] 請求項 29の発明によれば、検知素子の燃焼部の重量が lmg程度になるので、ヒ ータコイルのリード部で検知素子を十分に支えることができる。また、このヒータコイル を用いた接触燃焼式ガスセンサでは、耐衝撃強度も向上する。さらに、燃焼部内にヒ ータコイルのビード部がより高密度に埋め込まれるので、ヒータコイルがより多くの燃 焼熱を受けることができる。それによつて、ヒータコイルの抵抗変化がより一層、効率 よく起こる。従って、応答速度がさらに速くなる。また、ヒータコイルの抵抗がより一層、 大きくなるので、電源電圧をより高くすることができる。従って、ガス感度がさらに高く なる。
[0069] また、ヒータコイルの原線の線径が 20 μ mよりも小さくなると、ヒータコイルを作製す る際の歩留まりが低下する力 ヒータコイルの原線の線径が 20 μ m以上であるので、 ヒータコイルを容易に作製することができる。従って、歩留まりよく接触燃焼式ガスセ ンサが得られる。つまり、歩留まりを低下させることなぐ接触燃焼式ガスセンサを作 製することができ、またガス感度および応答特性をさらに改善することができる。以上 より、ガス感度および応答特性と、ヒータコイルの作製の容易さとの兼ね合いを考慮 すると、ヒータコイルの原線の線径は、 20 μ m以上 30 μ m以下であるのが最適であ る。
[0070] 請求項 30の発明に力かる接触燃焼式ガスセンサは、請求項 25— 29のいずれか一 つに記載の発明において、 1以上 n以下の整数 mに対して、前記ヒータコイルの m重 卷回コイルの卷き径は、 m重卷回コイルを作製する際にコイル状に巻くために用いら れる芯金の径の 0. 5倍以上 20倍以下であることを特徴とする。
[0071] 請求項 30の発明によれば、検知素子の燃焼部が重くならな!、ので、ヒータコイルの リード部で検知素子を十分に支えることができる。それに対して、 m重卷回コイルの卷 き径が芯金の径の 20倍を超えるヒータコイルを用いた場合には、ビード部のコイルの 内側空間に充填される熱伝導層の量が増え、燃焼部が重くなるため、リード部による 検知素子の支持性能が低下し、耐衝撃性能が実用上許容される範囲よりも低下する ことがあると 、う不都合が生じる。
[0072] 請求項 31の発明に力かる接触燃焼式ガスセンサは、請求項 25— 29のいずれか一 つに記載の発明において、 1以上 n以下の整数 mに対して、前記ヒータコイルの m重 卷回コイルの卷き径は、 m重卷回コイルを作製する際にコイル状に巻くために用いら れる芯金の径の 1倍以上 10倍以下であることを特徴とする。
[0073] 請求項 31の発明によれば、ヒータコイルを作製する際に、卷線加工後の m重卷回 コイルの形状安定性がよいので、歩留まりよくヒータコイルが得られる。従って、歩留 まりょく接触燃焼式ガスセンサが得られる。また、リード部による検知素子の支持性能 が安定して得られる。なお、 m重卷回コイルの卷き径が芯金の径の 20倍以下であつ ても、 10倍を超えると、卷線加工後の m重卷回コイルの形状安定性は、多少、低くな る。
[0074] 請求項 32の発明に力かる接触燃焼式ガスセンサは、請求項 25— 31のいずれか一 つに記載の発明において、前記ヒータコイルの n重卷回コイルの巻き数は、 1以上 30 以下であることを特徴とする。
[0075] 請求項 32の発明によれば、検知素子の燃焼部が重くならな!、ので、ヒータコイルの リード部で検知素子を十分に支えることができる。 n重卷回コイルの巻き数が 30を超 えるヒータコイルを用いた場合には、燃焼部が重くなり、ヒータコイルのリード部で検 知素子を安定して支えることができな 、。
[0076] 請求項 33の発明に力かる接触燃焼式ガスセンサは、請求項 25— 32のいずれか一 つに記載の発明において、 1以上の整数 kに対して、前記ヒータコイルの n重卷回コィ ルにおける k巻き目の卷回部と (k+ 1)巻き目の卷回部との間の隙間の長さは、前記 (n— 1)重卷回コイルよりなる素線の直径の 0. 5倍以上 10倍以下であることを特徴と する。
[0077] 請求項 33の発明によれば、十分に高速な応答特性が得られる。また、検知素子を 作製する際に、 n重卷回コイルにおける k巻き目の卷回部と (k+ 1)巻き目の卷回部と が短絡するのを防ぐことができるとともに、ビード部のコイルの内側空間に熱伝導層を 充填させて触媒層を形成することができる。それに対して、 k巻き目の卷回部と (k+ 1 )卷き目の卷回部との間の隙間が素線の直径の 0. 5倍の長さよりも短いヒータコイル を用いた場合には、隣り合う卷回部同士が接触して短絡してしまうことがある。一方、 当該隙間が素線の直径の 10倍を超える場合には、卷回部間の隙間があきすぎてい るため、ビード部のコイルの内側空間に熱伝導層を十分に充填させることができず、 従って触媒層を形成することができない。 [0078] 請求項 34の発明に力かる接触燃焼式ガスセンサは、請求項 25— 33のいずれか一 つに記載の発明において、前記ヒータコイルは、白金の線材でできていることを特徴 とする。請求項 35の発明にかかる接触燃焼式ガスセンサは、請求項 25— 32のいず れか一つに記載の発明において、前記ヒータコイルは、白金をベースとする合金の 線材でできて!/ヽることを特徴とする。
[0079] 請求項 36の発明にかかる接触燃焼式ガスセンサは、ガスの燃焼時に発生する燃 焼熱により電気的な特性値が変化するビード部、および該ビード部の両端カゝら伸び るリード部を有するヒータコイルと、前記ビード部を覆う熱伝導層と、前記熱伝導層の 表面に付着された触媒層と、を備え、前記リード部がコイル状に巻かれた検知素子と 、前記検知素子に直列に接続された、前記ヒータコイルと同一構成のヒータコイルを 備えた補償素子と、第 1の抵抗素子と、前記第 1の抵抗素子に直列に接続された第 2 の抵抗素子と、前記検知素子と前記補償素子との直列接続体、および前記第 1の抵 抗素子と前記第 2の抵抗素子との直列接続体のそれぞれの両端に直流電圧を印加 する電源と、を備え、前記検知素子、前記補償素子、前記第 1の抵抗素子および前 記第 2の抵抗素子は、ホイートストンブリッジ回路を構成し、該ホイートストンブリッジ回 路から、前記検知素子と前記補償素子との接続ノードと、前記第 1の抵抗素子と前記 第 2の抵抗素子との接続ノードとの間の電圧が出力されることを特徴とする。
[0080] 請求項 36の発明によれば、ヒータコイルのリード部がコイルばねと同様の構成にな つているので、外部から加わった衝撃がリード部のばね弾性により吸収される。従つ て、検知素子の燃焼部に伝わる衝撃が小さくなるので、触媒層の欠落などが発生し に《なり、ゼロ点が衝撃により大きく変動するのを抑えることができる。
[0081] 請求項 37の発明にかかる接触燃焼式ガスセンサは、接触したガスの燃焼により発 生した燃焼熱によってヒータコイルの電気的な特性値が変化し、その特性値の変化 に基づ!/ヽて可燃性ガスの存在を検知する接触燃焼式ガスセンサにお!ヽて、少なくと も両端がコイル状に巻かれたヒータコイルと、前記ヒータコイルの両端のコイル状の部 分にそれぞれ溶接された電極と、前記ヒータコイルの一部を被う焼結体と、を備え、 前記ヒータコイルと前記電極との接合界面に、前記電極を構成する少なくとも一つの 金属元素を、前記電極における構成割合よりも高い割合で含む合金層が存在するこ とを特徴とする。
[0082] 請求項 38の発明にかかる接触燃焼式ガスセンサは、接触したガスの燃焼により発 生した燃焼熱によってヒータコイルの電気的な特性値が変化し、その特性値の変化 に基づ!/ヽて可燃性ガスの存在を検知する接触燃焼式ガスセンサにお!ヽて、少なくと も両端がコイル状に巻かれたヒータコイルと、前記ヒータコイルの両端のコイル状の部 分にそれぞれ溶接された電極と、前記ヒータコイルの一部を被う焼結体と、を備え、 前記ヒータコイルと前記電極との接合界面に、前記電極を構成する少なくとも一つの 金属元素を、前記電極における構成割合よりも高い割合で含む合金層が存在し、前 記ヒータコイルと前記電極との溶接部位にのみ、前記ヒータコイルのコイル状の部分 の内側に、前記合金層中に前記電極中よりも高!ヽ割合で含まれて!/ヽる前記金属元 素よりなる芯線が設けられていることを特徴とする。
[0083] 請求項 37または 38の発明によれば、ヒータコイルと電極との接合界面に、電極を 構成する金属元素を電極中の構成割合よりも高い割合で含む合金層(以下、このよう な合金層のことをリッチ層と呼ぶ)が存在するため、高い接合強度が得られる。また、 そのリッチ層は、電極を構成する少なくとも一つの金属元素よりなる芯線にヒータコィ ルの端部を卷きつけた状態で電極に溶接したことにより、その芯線を構成する金属 材料が電極の金属材料と合金化したためにできたものである。従って、溶接時のヒー タコイルの端部には、卷回部の内側に芯線があるので、溶接時の取り扱いによってそ の卷回部が不用意に潰れるのを防ぐことができる。また、溶接時に溶接部位でヒータ コイルの卷回部が不規則に潰れたり、コイル形状が歪むのを防ぐことができるので、ヒ ータコイルの抵抗値のばらつきを小さくすることができる。
[0084] 請求項 39の発明に力かる接触燃焼式ガスセンサは、請求項 37または 38に記載の 発明にお 、て、前記合金層中に前記電極中よりも高 、割合で含まれて 、る前記金属 元素は、前記ヒータコイルを構成する金属よりもイオンィ匕列が大であることを特徴とす る。
[0085] 請求項 39の発明によれば、芯線にヒータコイルの端部を卷きつけた状態で電極に 溶接した後に、エッチングにより芯線を溶解させることができるので、リッチ層を除いて 芯線を容易に消滅させることができる。また、ヒータコイルが後述するコイルドコイルで 構成されて 、る場合でも、溶接後に芯線を容易〖こ消滅させることができる。
[0086] 請求項 40の発明に力かる接触燃焼式ガスセンサは、請求項 37または 38に記載の 発明において、前記ヒータコイルは白金または白金合金でできており、前記電極は二 ッケルを含む合金でできており、前記合金層中に前記電極中よりも高 ヽ割合で含ま れている前記金属元素はニッケルであることを特徴とする。
[0087] 請求項 40の発明によれば、ニッケルは白金または白金合金よりも卑な金属である ため、芯線がニッケルでできていることによって、ヒータコイルを残して容易に芯線を 溶かすことができる。
[0088] 請求項 41の発明に力かる接触燃焼式ガスセンサは、請求項 37— 40のいずれか一 つに記載の発明において、前記ヒータコイルの、前記焼結体に被われている部分の 少なくとも一部は、線材をコイル状に卷 、たコイル線をさらにコイル状に卷 ヽたコイル ドコイルになって ヽることを特徴とする。
[0089] 請求項 41の発明によれば、ヒータコイルを構成する線材が長くなるので、ヒータコィ ルの抵抗が大きくなり、ガス感度が高くなる。また、ヒータコイルを構成する線材が焼 結体の中により長く埋め込まれることになるので、ヒータコイルの抵抗変化が効率よく 起こり、応答速度が速くなる。
[0090] 請求項 42の発明にカゝかる接触燃焼式ガスセンサは、接触したガスの燃焼により発 生した燃焼熱によってヒータコイルの電気的な特性値が変化し、その特性値の変化 に基づ!/ヽて可燃性ガスの存在を検知する接触燃焼式ガスセンサにお!ヽて、少なくと も両端がコイル状に巻かれたヒータコイルと、前記ヒータコイルの両端のコイル状の部 分にそれぞれ溶接された電極と、前記ヒータコイルの一部を被う焼結体と、を備え、 前記ヒータコイルと前記電極との接合界面に、前記ヒータコイルおよび前記電極の ヽ ずれにも含まれていない金属元素と、前記電極を構成する少なくとも一つの金属元 素との合金化により生じた合金層が存在することを特徴とする。
[0091] 請求項 43の発明にかかる接触燃焼式ガスセンサは、接触したガスの燃焼により発 生した燃焼熱によってヒータコイルの電気的な特性値が変化し、その特性値の変化 に基づ!/ヽて可燃性ガスの存在を検知する接触燃焼式ガスセンサにお!ヽて、少なくと も両端がコイル状に巻かれたヒータコイルと、前記ヒータコイルの両端のコイル状の部 分にそれぞれ溶接された電極と、前記ヒータコイルの一部を被う焼結体と、を備え、 前記ヒータコイルと前記電極との接合界面に、前記ヒータコイルおよび前記電極の ヽ ずれにも含まれていない金属元素と、前記電極を構成する少なくとも一つの金属元 素との合金化により生じた合金層が存在し、前記ヒータコイルと前記電極との溶接部 位にのみ、前記ヒータコイルのコイル状の部分の内側に、前記合金層中には含まれ て 、るが、前記ヒータコイルおよび前記電極の 、ずれにも含まれて 、な 、前記金属 元素よりなる芯線が設けられていることを特徴とする。
[0092] 請求項 42または 43の発明によれば、ヒータコイルと電極との接合界面に、ヒータコ ィルおよび電極の!/ヽずれにも含まれて!/ヽな!ヽ金属元素と、電極を構成する少なくとも 一つの金属元素との合金化により生じた合金層が存在するため、高い接合強度が得 られる。また、その合金層は、ヒータコイルおよび電極のいずれにも含まれていない 金属元素よりなる芯線にヒータコイルの端部を卷きつけた状態で電極に溶接したこと により、その芯線を構成する金属材料が電極の金属材料と合金化したためにできた ものである。従って、溶接時のヒータコイルの端部には、卷回部の内側に芯線がある ので、溶接時の取り扱いによってその卷回部が不用意に潰れるのを防ぐことができる 。また、溶接時に溶接部位でヒータコイルの卷回部が不規則に潰れたり、コイル形状 が歪むのを防ぐことができるので、ヒータコイルの抵抗値のばらつきを小さくすることが できる。
[0093] 請求項 44の発明に力かる接触燃焼式ガスセンサは、請求項 42または 43に記載の 発明において、前記合金層中には含まれている力 前記ヒータコイルおよび前記電 極の ヽずれにも含まれて ヽな ヽ前記金属元素は、前記ヒータコイルを構成する金属 よりもイオンィ匕列が大であることを特徴とする。
[0094] 請求項 44の発明によれば、芯線にヒータコイルの端部を卷きつけた状態で電極に 溶接した後に、エッチングにより芯線を溶解させることができるので、合金層を除いて 芯線を容易に消滅させることができる。また、ヒータコイルが後述するコイルドコイルで 構成されて 、る場合でも、溶接後に芯線を容易〖こ消滅させることができる。
[0095] 請求項 45の発明に力かる接触燃焼式ガスセンサは、請求項 42— 44の 、ずれか一 つに記載の発明において、前記ヒータコイルの、前記焼結体に被われている部分の 少なくとも一部は、線材をコイル状に卷 、たコイル線をさらにコイル状に卷 ヽたコイル ドコイルになって ヽることを特徴とする。
[0096] 請求項 45の発明によれば、ヒータコイルを構成する線材が長くなるので、ヒータコィ ルの抵抗が大きくなり、ガス感度が高くなる。また、ヒータコイルを構成する線材が焼 結体の中により長く埋め込まれることになるので、ヒータコイルの抵抗変化が効率よく 起こり、応答速度が速くなる。
[0097] また、上述した課題を解決し、目的を達成するため、請求項 46の発明にかかる接 触燃焼式ガスセンサの製造方法は、接触したガスの燃焼により発生した燃焼熱によ つてヒータコイルの電気的な特性値が変化し、その特性値の変化に基づ ヽて可燃性 ガスの存在を検知する接触燃焼式ガスセンサを製造するにあたって、少なくとも両端 が芯線に巻きつけられてコイル状をなすヒータコイルを作製するコイル作製工程と、 前記芯線に巻きつけられた状態のまま、前記ヒータコイルの両端のコイル状の部分を それぞれ電極に溶接する溶接工程と、前記芯線を消滅させる芯線消滅工程と、芯線 のなくなった前記ヒータコイルの一部を焼結体で被う焼結体被覆工程と、を含むこと を特徴とする。
[0098] 請求項 47の発明にカゝかる接触燃焼式ガスセンサの製造方法は、接触したガスの燃 焼により発生した燃焼熱によってヒータコイルの電気的な特性値が変化し、その特性 値の変化に基づいて可燃性ガスの存在を検知する接触燃焼式ガスセンサを製造す るにあたって、少なくとも両端が芯線に巻きつけられてコイル状をなすヒータコイルを 作製するコイル作製工程と、前記芯線に巻きつけられた状態のまま、前記ヒータコィ ルの両端のコイル状の部分をそれぞれ電極に溶接する溶接工程と、前記ヒータコィ ルと前記電極との溶接部位を除いて、前記芯線を消滅させる芯線消滅工程と、前記 ヒータコイルの、前記芯線のない部分の少なくとも一部を焼結体で被う焼結体被覆ェ 程と、を含むことを特徴とする。
[0099] 請求項 46または 47の発明によれば、溶接時のヒータコイルの端部には、卷回部の 内側に芯線があるので、溶接時の取り扱いによってその卷回部が不用意に潰れるの を防ぐことができる。また、溶接時に溶接部位でヒータコイルの卷回部が不規則に潰 れたり、コイル形状が歪むのを防ぐことができるので、ヒータコイルの抵抗値のばらつ きを小さくすることができる。さら〖こ、溶接によって、ヒータコイルと電極との接合界面 に合金層が生じるので、高い接合強度が得られる。
[0100] 請求項 48の発明にかかる接触燃焼式ガスセンサの製造方法は、請求項 46または 47に記載の発明において、前記溶接工程では、前記ヒータコイルの、芯線に巻きつ けられた端部を前記電極に押し付け、抵抗溶接法、レーザー溶接法または熱圧着に よる溶接法の 、ずれかを行うことを特徴とする。
[0101] 請求項 48の発明によれば、溶接部位でヒータコイルの卷回部が不規則に潰れるの を容易に防ぐことができるので、ヒータコイルの抵抗値のばらつきを小さくすることがで きる。
[0102] 請求項 49の発明にかかる接触燃焼式ガスセンサの製造方法は、請求項 46— 48 のいずれか一つに記載の発明において、前記芯線は、前記ヒータコイルの構成材料 よりも卑な金属材料で構成されており、前記芯線消滅工程では、前記芯線のみをェ ツチングにより消滅させることを特徴とする。
[0103] 請求項 49の発明によれば、芯線にヒータコイルの端部を卷きつけた状態で電極に 溶接した後に、エッチングにより芯線を容易に消滅させることができる。また、ヒータコ ィルが後述するコイルドコイルで構成されて ヽる場合でも、溶接後に芯線を容易に消 滅させることができる。
[0104] 請求項 50の発明にかかる接触燃焼式ガスセンサの製造方法は、請求項 46— 48 のいずれか一つに記載の発明において、前記芯線はニッケルでできており、前記ヒ ータコイルは白金または白金合金でできており、前記芯線消滅工程では、ニッケル用 のエッチング液を用いて前記芯線を消滅させることを特徴とする。
[0105] 請求項 50の発明によれば、ニッケルは白金または白金合金よりも卑な金属である ため、エッチングによりヒータコイルを残して容易に芯線を溶かすことができる。
[0106] 請求項 51の発明にかかる接触燃焼式ガスセンサの製造方法は、請求項 46— 50 のいずれか一つに記載の発明において、前記コイル作製工程では、前記ヒータコィ ルの、前記焼結体により被覆される部分の少なくとも一部を、前記芯線にコイル状に 巻いたコイル線をさらにコイル状に巻いてコイルドコイルにすることを特徴とする。
[0107] 請求項 51の発明によれば、ヒータコイルを構成する線材が長くなり、ヒータコイルの 抵抗が大きくなるので、ガス感度の高いセンサが得られる。また、ヒータコイルを構成 する線材が焼結体の中により長く埋め込まれることになり、ヒータコイルの抵抗変化が 効率よく起こるので、応答速度の速いセンサが得られる。
[0108] 請求項 52の発明にかかる接触燃焼式ガスセンサの製造方法は、請求項 46— 51 のいずれか一つに記載の発明において、前記芯線が、前記ヒータコイルと前記電極 とを接合するためのろう材を兼ねていることを特徴とする。
[0109] 請求項 52の発明によれば、ろう材を新たに用意して溶接を行わなくても、十分に高 い接合強度が得られる。
発明の効果
[0110] 本発明にカゝかるガスセンサ用ヒータコイル、ガスセンサ用検知素子および接触燃焼 式ガスセンサは、ガス感度の高 、接触燃焼式ガスセンサが得られると!ヽぅ効果を奏す る。また、応答速度の速い接触燃焼式ガスセンサが得られるという効果を奏する。さら に、耐衝撃強度が高ぐ衝撃によるゼロ点変動の小さい接触燃焼式ガスセンサが得 られるという効果を奏する。
[0111] また、本発明にかかる接触燃焼式ガスセンサの製造方法は、少なくとも両端がコィ ル状に巻かれたヒータコイルを有し、かつそのヒータコイルの抵抗値のばらつきが小 さい接触燃焼式ガスセンサが得られるという効果を奏する。また、少なくとも両端がコ ィル状に巻かれたヒータコイルを有し、かつそのヒータコイルと電極ピンとの接合強度 が高い接触燃焼式ガスセンサが得られるという効果を奏する。さら〖こ、接触燃焼式ガ スセンサを製造する際に、少なくとも両端がコイル状に巻かれたヒータコイルの取り扱
V、が容易になると 、う効果を奏する。
図面の簡単な説明
[0112] [図 1]図 1は、本発明の実施の形態に力かるヒータコイルの構成を示す正面図である
[図 2]図 2は、本発明の実施の形態に力かる検知素子の構成を示す断面図である。
[図 3]図 3は、本発明の実施の形態にカゝかる接触燃焼式ガスセンサのセンサ本体の 構成を示す部分断面図である。
[図 4]図 4は、本発明の実施の形態にカゝかる接触燃焼式ガスセンサの制御回路の構 成を示す回路図である。
[図 5]図 5は、本発明の実施の形態にカゝかる接触燃焼式ガスセンサの製造方法を示 すフローチャートである。
[図 6]図 6は、本発明の実施の形態にカゝかる接触燃焼式ガスセンサの製造途中の状 態を示す部分拡大図である。
[図 7]図 7は、本発明の実施の形態にカゝかる接触燃焼式ガスセンサの製造途中の状 態を示す部分拡大図である。
[図 8]図 8は、実施例の溶接部位の表面状態を示す SEM像を示す説明図である。
[図 9]図 9は、実施例の溶接部位の断面状態を示す SEM像を示す説明図である。
[図 10]図 10は、図 9の A点における XMAの分析結果を示すチャートである。
[図 11]図 11は、図 9の B点における XMA ^ベクトルを示すチャートである。
[図 12]図 12は、図 9の C点における XMAスペクトルを示すチャートである。
[図 13]図 13は、図 9の D点における XMAの分析結果を示すチャートである。
[図 14]図 14は、実施例のヒータコイルの全体形状を示す写真である。
[図 15]図 15は、比較例の溶接部位の表面を示す SEM像を示す説明図である。
[図 16]図 16は、比較例の溶接部位の断面を示す SEM像を示す説明図である。
[図 17]図 17は、比較例のヒータコイルの全体形状を示す写真である。
[図 18]図 18は、従来の検知素子の構成を示す断面図である。
[図 19]図 19は、従来のヒータコイルの構成を示す正面図である。
符号の説明
2 検知素子
4 補償素子
5 接触燃焼式ガスセンサ
21 熱伝導層
22 ヒータコィノレ 26, 27 卷回咅
32, 33 電極ピン
51 第 1の抵抗素子
52 第 2の抵抗素子
53 電源
6 一次芯線
発明を実施するための最良の形態
[0114] 以下に、本発明に力かるガスセンサ用ヒータコイル、ガスセンサ用検知素子、接触 燃焼式ガスセンサおよび接触燃焼式ガスセンサの製造方法の実施例を図面に基づ いて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。
[0115] 図 1は、本発明の実施の形態に力かるヒータコイルの構成を示す正面図である。図 1に示すように、本実施の形態では、ヒータコイル 22のビード部 24は、例えば二重卷 回コイルにより構成されている。ヒータコイル 22のリード部 25は、例えば一重卷回コィ ルにより構成されている。このヒータコイル 22の作製にあたっては、まず、通常の非コ ィル状の線材よりなる抵抗線 (原線)を一次芯線に巻きつけて、一重卷回コイルを作 製する。そして、この一重卷回コイルを新たな素線とし、この素線の一部を二次芯線 に卷きつけて、ビード部 24となる部分を二重卷回コイルにする。二次芯線は、一次芯 線と同じ径の線でもよいし、異なる径の線でもよい。
[0116] なお、リード部 25を二重以上の卷回コイルにより構成し、ビード部 24を三重以上の 卷回コイルにより構成してもよい。例えば、リード部 25およびビード部 24をそれぞれ 二重卷回コイルおよび三重卷回コイルとする場合には、まず、原線を一次芯線に卷 きつけて一重卷回コイルを作製し、この一重卷回コイルを素線 (一次素線)として二次 芯線への巻きつけによって二重卷回コイルを作製し、さらに、この二重卷回コイルを 新たな素線(二次素線)として、その一部を三次芯線に巻きつけて、ビード部 24とな る部分を三重卷回コイルにすればよい。リード部 25およびビード部 24のコイルの多 重数をさらに増やす場合には、素線を芯線に巻きつける卷線加工の繰り返し回数を 増やせばよい。
[0117] 図 2は、本発明の実施の形態に力かる検知素子の構成を示す断面図である。図 2 に示すように、検知素子 2は、ヒータコイル 22のビード部 24を焼結体よりなる熱伝導 層 21により被い、熱伝導層 21の表面に触媒層 23を付着させた構成となっている。熱 伝導層 21は、例えばアルミナ(酸ィ匕アルミニウム)により構成されている。触媒層 23は 、検知対象の可燃性ガスに応じた酸ィ匕金属よりなる燃焼触媒により構成されている。 触媒層 23は、ヒータコイル 22の両端に電圧が印加されることによって、検知対象の 可燃性ガスに応じた温度に加熱される。
[0118] ここで、検知対象ガスとして、例えば、メタンガス、水素ガス、 LPガス (液化石油ガス )、プロパンガス、ブタンガス、エチレンガス、一酸化炭素ガス、またはエタノーノレゃァ セトン等の有機成分ガスが挙げられる。そして、例えば、検知対象ガス力 Sメタンガスで ある場合には、触媒層 23は約 450°Cに加熱される。
[0119] 図 3は、本発明の実施の形態にカゝかる接触燃焼式ガスセンサのセンサ本体の構成 を示す部分断面図である。図 3に示すように、センサ本体 3は、セラミックスゃ榭脂で できた板状のマウントベース 31を貫通する外部接続用の電極ピン 32, 33を有し、こ の電極ピン 32, 33に検知素子 2の両端のリード部 25を固定した構成となっている。 また、図 3には現れていないが、検知素子 2に並んで、検知素子 2のヒータコイル 22と 同一構成のヒータコイルを備えた補償素子が設けられて ヽる。この補償素子および 検知素子 2は、マウントベース 31と、ガス透過性を有する金網または金属もしくはセラ ミックスの焼結体よりなる防爆構造体 34により囲まれている。
[0120] 図 4は、本発明の実施の形態にカゝかる接触燃焼式ガスセンサの制御回路の構成を 示す回路図である。図 4に示すように、接触燃焼式ガスセンサ 5の制御回路は、検知 素子 2、検知素子 2に直列に接続された補償素子 4、第 1の抵抗素子 51、第 1の抵抗 素子 51に直列に接続された第 2の抵抗素子 52、および電源 (電源回路) 53を有する 。これら検知素子 2、補償素子 4、第 1および第 2の抵抗素子 51, 52は、ホイートスト ンブリッジ回路を構成して!/、る。
[0121] 電源 53は、検知素子 2と補償素子 4との直列接続体、および第 1の抵抗素子 51と 第 2の抵抗素子 52との直列接続体のそれぞれの両端に、直流電圧を印加する。そし て、このホイートストンブリッジ回路力もは、検知素子 2と補償素子 4との接続ノード(図 4に Aで示す)と、第 1の抵抗素子 51と前記第 2の抵抗素子 52との接続ノード(図 4に Bで示す)との間の電圧が出力される。検知素子 2、補償素子 4、第 1の抵抗素子 51 および第 2の抵抗素子 52のそれぞれの通電抵抗値を R、 R、 Rおよび Rとすると、
D C 1 2
[R XR =R XR ]のときに、ホイートストンブリッジ回路の出力電圧 V はゼロボルト
C 1 D 2 out となる。
[0122] 電源 53により、検知素子 2および補償素子 4の各ヒータコイル 22に定格電圧を印加 すると、それぞれのヒータコイル 22が発熱し、検知素子 2および補償素子 4が検知対 象ガスに応じた動作温度になり、環境との平衡温度により得られた通電抵抗値に依 存した出力電圧 V がガスセンサ 5から得られる。そして、検知対象ガスを検知した場 out
合には、検知対象ガスの接触燃焼により検知素子 2の通電抵抗値 Rのみが上昇す
D
るので、出力電圧 V は、ガス感度に応じた分だけ + (プラス)側に上昇する。
out
[0123] ここで、検知対象ガスを高効率で接触燃焼させるための触媒動作温度は、そのガス 種に基づいて選択される。より高い抵抗値を有するヒータコイルを用いた場合、所望 の触媒動作温度を得るには、より高い電源電圧が必要となる。ブリッジ回路の性質上 、電源電圧と出力電圧 V とは比例関係にあるので、より高い抵抗値を有するヒータ out
コイルを用いた場合のガス感度は、より高い値となる。つまり、上述した構成のヒータ コイル 22は、後述するように従来のものよりも抵抗値が高いので、このヒータコイル 22 を用いることによって、高 、ガス感度が得られることになる。
[0124] 次に、ヒータコイル 22の具体的な特徴について説明する。ヒータコイル 22を構成す る原線としては、例えば、白金または白金合金線や、白金または白金合金 ロジウム 合金等の白金または白金合金をベースとした合金線や、鉄 パラジウム合金線を用 いることができる。原線の線径は、: m以上 100 /z m以下である。その理由は、原線 の線径が 1 μ m未満では細すぎるため、ビード部 24を構成する二重卷回コイルの作 製が困難であり、一方、原線の線径が 100 mを超えると、検知素子 2の燃焼部が大 きくなりすぎるからである。
[0125] また、原線の線径は、好ましくは 10 m以上 50 m以下であるとよい。その理由は 、適当な電圧 電流値を有する電源 53を用いることができ、それによつて、接触燃焼 式ガスセンサ 5の動作時に、触媒層 23を適切な動作温度にすることができるからであ る。例えば、原線の線径が 50 mである場合には、電圧-電流値が 0. 75V-400m Aの電源を用いることができる。また、原線の線径が 10 mである場合には、電圧 電流値が 12V— 25mAの電源を用いることができる。
[0126] さらに、原線の線径は、より好ましくは 20 /z m以上 30 /z m以下であるとよい。その理 由は、第 1に、ビード部 24の占有体積が小さくなり、検知素子 2の燃焼部の重量が 1 mg程度になるので、ヒータコイル 22のリード部 25で検知素子 2を十分に支えることが できるからである。第 2に、接触燃焼式ガスセンサ 5の耐衝撃強度が向上するからで ある。第 3に、検知素子 2の燃焼部内にヒータコイル 22のビード部 24をより高密度に 埋め込むことができるので、ヒータコイル 22の、燃焼熱を受ける能力が高くなり、燃焼 時のヒータコイル 22の抵抗変化がより一層、効率よく起こり、接触燃焼式ガスセンサ 5 の応答速度が速くなるからである。第 4に、細線ィ匕によってヒータコイル 22の抵抗が 大きくなり、それによつて上述したように電源電圧をより高くすることができるので、接 触燃焼式ガスセンサ 5のガス感度が高くなるからである。第 5に、原線の線径が 20 mよりも小さくなると、ヒータコイル 22を作製する際の歩留まりが低下するからである。
[0127] 表 1に、ヒータコイル 22の原線の線径と、検知素子 2の燃焼部の重量、接触燃焼式 ガスセンサ 5のガス感度、および接触燃焼式ガスセンサ 5の応答時間との関係をまと めて示す。表 1においては、各線径範囲の相対重量 (a. u. )、相対ガス感度(a. u. ) および相対応答時間(a. u. )は、いずれも、線径が 30 μ mである白金線を原線とし たヒータコイルを用いた場合の燃焼部の重量(lmg)、ガス感度 (40mV)および応答 時間(5秒)に対する相対値である。ビード部 24およびリード部 25は、それぞれ二重 卷回コイルおよび一重卷回コイルとする。なお、ガス感度は、水素ガス 4000ppmに 対する感度であり、応答時間は、水素ガス 4000ppm時の出力安定値の 90%以上に 到達する所要時間である。
[0128] [表 1] 表 1
Figure imgf000030_0001
[0129] 一重卷回コイルの卷き径は、原線をコイル状に巻くために用いられる芯金(一次芯 線)の径の 0. 5倍以上 20倍以下である。同様に、二重卷回コイルの卷き径は、一重 卷回コイル (素線)をさらにコイル状に巻くために用いられる芯金の径の 0. 5倍以上 2 0倍以下である。三重以上の卷回コイルの場合も同様である。その理由は、検知素子 2の燃焼部が重くならないので、ヒータコイル 22のリード部 25で検知素子 2を十分に 支えることができる力もである。卷き径が 20倍を超えると、ビード部 24のコイルの内側 空間に充填される熱伝導層 21の量が増えて、燃焼部が重くなるため、リード部 25に よる検知素子 2の支持性能が低下し、接触燃焼式ガスセンサ 5の耐衝撃性能が実用 上許容される範囲よりち低くなることがある。
[0130] また、一重卷回コイルの卷き径は、好ましくは、原線をコイル状に巻くために用いら れる芯金の径の 1倍以上 10倍以下であるとよい。同様に、二重卷回コイルの卷き径 は、好ましくは、一重卷回コイル (素線)をさらにコイル状に巻くために用いられる芯金 の径の 1倍以上 10倍以下であるとよい。三重以上の卷回コイルの場合も同様である 。その理由は、卷線カ卩ェ後のコイルの形状安定性がよいので、ヒータコイル 22が歩 留まりよく得られることと、リード部 25による検知素子 2の支持性能が安定して得られ る力 である。なお、卷き径が 20倍以下であっても、 10倍を超えると、卷線加工後の コイルの形状安定性は、多少、低くなる。
[0131] 最終螺旋体である二重卷回コイルの巻き数は、 1以上 30以下である。最終螺旋体 が三重以上の卷回コイルである場合も同様である。その理由は、検知素子 2の燃焼 部が重くならないので、ヒータコイル 22のリード部 25で検知素子 2を十分に支えること ができるからである。巻き数が 30を超えると、燃焼部が重くなり、ヒータコイル 22のリー ド部 25で検知素子 2を安定して支えることができない。特に、二重卷回コイルの卷数 は、 4一 10巻きであるのが適当である。
[0132] 最終螺旋体である二重卷回コイルにおいて、ある卷回部 26と、この卷回部 26の隣 りの卷回部 27 (図 1参照)との間の隙間の長さ、すなわち素線である一重卷回コイル の素線間隙間距離は、素線の直径の 0. 5倍以上 10倍以下である。最終螺旋体が三 重以上の卷回コイルである場合も同様である。その理由は、第 1に、十分に高速な応 答特性が得られる力 である。第 2に、検知素子 2を作製する際に、隣り合う卷回部 2 6, 27が短絡するのを防ぐことができる力もである。第 3に、ビード部 24のコイルの内 側空間に熱伝導層 21を充填させて触媒層 23を形成することができるからである。こ こで、卷回部 26とその隣りの卷回部 27との間の隙間の長さ(素線間隙間距離)とは、 一般に螺旋体にぉ 、てピッチと呼ばれる線間距離から、卷回部 26および卷回部 27 のそれぞれの太さの半分を除 、た距離である。
[0133] 表 2に、ヒータコイル 22の素線間隙間距離と接触燃焼式ガスセンサ 5の応答時間と の関係を示す。表 2においては、素線間隙間距離を素線の径に対する倍率で表して いる。また、各素線間隙間距離範囲の相対応答時間 (a. u. )は、素線間隙間距離が 素線の径に等しいヒータコイルを用いた場合の応答時間に対する相対値である。ビ ード部 24およびリード部 25は、それぞれ二重卷回コイルおよび一重卷回コイルとす る。
[0134] [表 2] 表 2
Figure imgf000031_0001
( * )素線径に対する倍率 [0135] 次に、図 1に示す構成のヒータコイル 22を用いた接触燃焼式ガスセンサ 5 (実施例 とする)と、図 19に示す構成のヒータコイル 12を用いた接触燃焼式ガスセンサ (従来 例とする)とで、ガスセンサとしての性能を比較した結果について説明する。この性能 比較においては、実施例および従来例で、同一組成の燃焼触媒等を用いた。また、 燃焼触媒の動作温度も同じにした。実施例の 5個のサンプルについて、検知素子 2 の燃焼部内に埋め込まれるビード部 24の有効長(図 2参照)の平均値は、 75mmで あった。また、従来例の 5個のサンプルについて、検知素子 1の燃焼部内に埋め込ま れるビード部 14の有効長(図 18参照)の平均値は、 15mmであった。その他の条件 等は、全て同じであった。
[0136] 表 3に、ガス感度の比較結果を示す。ここでは、ガス中での出力電圧値から空気中 での出力電圧値を減算した値をガス感度とし、水素ガス 4000ppmに対する感度の 比較と、メタンガス 4000ppmに対する感度の比較の二つを行った。実施例のサンプ ルのガス感度は、従来例のサンプルのガス感度のおおよそ 3倍であった。
[0137] [表 3] 表 3
(単位: mV)
Figure imgf000032_0001
[0138] 表 4に、応答速度の比較結果を示す。ここでは、水素ガス 1800ppm時の出力安定 値の 90%以上に到達する所要時間を応答時間として、表 4に示した。実施例のサン プルの応答時間は、従来例のサンプルの応答時間のおおよそ半分であった。つまり 、実施例のサンプルの応答速度は、従来例のサンプルの応答速度のおおよそ 2倍で あつ 7こ。
[表 4] 表 4
(単位:秒)
Figure imgf000033_0001
[0140] 表 5に、落下衝撃後に発生するゼロ点変動 (水素濃度換算値)の比較結果を示す。
ここでは、実施例および従来例の各接触燃焼式ガスセンサを、 lmの高さから、 30m mの厚さの杉板上に自由落下させた。落下衝撃後のゼロ点変動は、水素濃度換算 値で、実施例では 2000ppm以下であつたのに対して、従来例では 2000ppmを超 えていた。
[0141] [表 5] 表 5
Figure imgf000033_0002
[0142] 次に、接触燃焼式ガスセンサ 5の製造方法について説明する。図 5は、製造手順を 示すフローチャートである。また、図 6および図 7は、接触燃焼式ガスセンサ 5の製造 途中の状態を示す部分拡大図である。まず、通常の非コイル状の抵抗線を用意し、 これを一次芯線に巻きつけて一重卷回コイルを作製する (ステップ S 1)。
[0143] 一次芯線は、用いる抵抗線よりも卑な金属でできた線材であればょ 、。これは、後 のウエットエッチング工程にぉ 、て、抵抗線を残して一次芯線を溶かす必要があるか らである。例えば、一次芯線は、ニッケル、アルミニウム、銅またはステンレス合金など でできている。一次芯線の径は、 20— 60 /z mであるのが適当である。また、一重卷 回コイルにおいて、ある卷回部 28と、この卷回部 28の隣りの卷回部 29 (図 7参照)と の間の隙間の長さ、すなわち素線の素線間隙間距離は、素線の直径の 0. 5倍以上 10倍以下であるのが適当である。
[0144] 次いで、一重卷回コイルの一部、すなわちビード部 24となる部分を二次芯線に巻き つけて二重卷回コイルを作製し、ヒータコイル 22とする (ステップ S 2)。二次芯線の材 料は、特に問わないが、例えば、超硬や焼入れ鋼などである。二次芯線の径は、 10 0— 300 μ mであるのが適当である。
[0145] 素線 (抵抗線)、一次芯線、一重卷回コイル、二次芯線および二重卷回コイルの最 も好ましい組み合わせは、以下の通りである。すなわち、素線は、 径の白金ま たは白金合金線であり、一次芯線は、 40 m径のニッケル線である。この組み合わ せでは、素線の素線間隙間距離は、 20 mであるのがよい。また、最も好ましい組み 合わせのときには、一重卷回コイルよりなる一次素線の直径は、 80 m (20 m (素 線の直径) +40 m (—次芯線の直径) + 20 m (素線の直径) )になる。この組み 合わせによる二重卷回コイルにおいて、一重卷回コイルを素線とする素線間隙間距 離は、 80 μ mであるのがよ!/、。
[0146] 次いで、二次芯線を抜き取った後、マウントベース 31から突出する電極ピン 32, 33 にヒータコイル 22の両端のリード部 25を抵抗溶接法、レーザー溶接法または熱圧着 法などにより溶接する (ステップ S3)。この時点では、図 6に示すように、一次芯線 6は 残っている。
[0147] 電極ピン 32, 33は、例えば、ニッケル、またはニッケル 銅合金(モネル)でできて いる。あるいは、電極ピン 32, 33を、インコネルゃハステロィ(商品名)などのニッケル —クロム モリブデン合金、 SUS316L等のステンレス合金、チタンもしくはチタン合金 、またはそれらの組み合わせで構成し、耐食性の向上を図ることもできる。電極ピン 3 2, 33の材料として最も好ましいのは、ハステロィ(商品名)である。特に限定しないが 、例えば、電極ピン 32, 33の直径は、 600 /z m程度である。
[0148] 溶接法としては、いずれの方法でもよいが、抵抗溶接法が好ましい。その理由は、 抵抗溶接法は、溶接装置の電圧の立ち上がりが極めて速ぐミリ秒オーダーの通電 時間を安定して制御することができるので、本実施の形態のように、異なる材料同士 を溶接したり、極細の金属線を溶接するのに適して 、る力 である。
[0149] 抵抗溶接法を実施する場合には、周知のトランジスタ式抵抗溶接機を用いることが できる。その場合の溶接条件としては、特に限定しないが、例えば、電圧が 2. 0-3. OVであり、通電時間が 3ミリ秒であり、ヘッド加重が 0. 5— 5kgfであるのが適当であ る。上述した素線 (抵抗線)、一次芯線、一重卷回コイル、二次芯線および二重卷回 コイルの最も好ましい組み合わせの場合には、電圧値は 2. 3Vであるのが好ましい。
[0150] 次いで、電極ピン 32, 33にヒータコイル 22を溶接したものをエッチング液中に浸漬 し、一次芯線 6を溶かして消滅させる (ステップ S4)。その際、ヒータコイル 22と電極ピ ン 32, 33との溶接部位を被覆してエッチングを行うことによって、その溶接部位にの み、一次芯線 6を残すようにしてもよい。
[0151] エッチング液は、例えば、硝酸(30%)と硫酸(3%)と過酸化水素(2%)の混合水 溶液、または塩ィ匕第二鉄溶液 (40%水溶液)である。硝酸と硫酸と過酸化水素の混 合水溶液を用いる場合、例えば、浴温は室温 (例えば、 25°C)であり、浸漬時間は 60 分であるのが適当である。一方、塩ィ匕第二鉄溶液を用いる場合は、例えば、浴温を 4 0°Cとし、浸漬時間を 3分とするのが適当である。
[0152] エッチングが終了したら、エッチング液中から、電極ピン 32, 33〖こヒータコイル 22を 溶接したものを引き上げ、水洗し (ステップ S5)、イソプロピルアルコール (IPA)等の 有機溶媒で洗浄し (ステップ S6)、乾燥する (ステップ S7)。図 7は、エッチングにより 一次芯線が消滅した状態を示して 、る。
[0153] 次 、で、ヒータコイル 22のビード部 24に、熱伝導材ゃ燃焼触媒などのスラリーを塗 布し、それを加熱焼成する (ステップ S8)。そして、防爆構造体 34などの取り付けを 行ってセンサ本体 3を組み立てる (ステップ S9)。最後に、センサ本体 3を制御回路に 取り付け (ステップ S 10)、センサのゼロ点調整等を行って、接触燃焼式ガスセンサ 5 が完成する。
[0154] ここまでで説明した素線 (抵抗線)、一次芯線、一重卷回コイル、二次芯線および二 重卷回コイルの最も好ましい組み合わせ、溶接条件、またはエッチング条件などの具 体的な数値や材料等は、本発明者らが行った実験により明らかとなったものである。
[0155] 次に、上述した製造方法に従って製造することによって、ヒータコイル 22と電極ピン 32, 33との接合界面に現れる特徴点について説明する。一例として、 20 m径の非 コイル状の白金または白金合金線を素線とし、これを 40 μ m径のニッケル線よりなる 一次芯線 6に、 20 mの素線間隙間距離で巻きつけて、一重卷回コイルを作製した 。そして、この一重卷回コイルを、 150 m径の超硬線よりなる二次芯線に、 80 /z m の素線間隙間距離で 6巻きして、ビード部 24に二重卷回コイルを作製した。ビード部 24の両端のリード部 25の長さは、それぞれ lmmとした。
[0156] また、電極ピン 32, 33を 600 μ m径のハステロイで構成し、抵抗溶接法を採用した 。溶接条件は、ヘッド加重を 1. 5kgfとし、電圧値を 2. 3Vとした以外は、上述した通 りであった。そして、硝酸と硫酸と過酸化水素の混合水溶液を用い、浴温を室温とし て、 60分間のエッチング処理を行った。
[0157] 以下、一次芯線 6を残してヒータコイル 22と電極ピン 32, 33とを溶接した場合を実 施例とし、一次芯線 6を消滅させた後にヒータコイル 22と電極ピン 32, 33とを溶接し た場合を比較例とする。図 8および図 9は、それぞれ実施例の溶接部位の表面およ び断面を走査型電子顕微鏡で観察した写真である。また、図 15および図 16は、それ ぞれ比較例の溶接部位の表面および断面を走査型電子顕微鏡で観察した写真であ る。
[0158] 図 8と図 15を比較すると、実施例は比較例よりも、ヒータコイル 22のリード部 25の各 卷回部が規則正しぐかつ十分に押しつぶされて電極ピン 32, 33に接合しているの がわかる。また、図 9と図 16を比較すると、実施例は比較例よりも、接合面積が広ぐ 接合界面において一部が合金化しているのがわかる。合金化していることは、図 10 一図 13に示す分析結果力もも明らかである。図 10、図 11、図 12および図 13は、そ れぞれ、図 9に示す実施例の断面写真の「A」、 「B」、 「C」および「D」で示す箇所に おける X線マイクロアナライザー (XMA)による分析結果を示すチャートである。 [0159] 電極ピン 32, 33のバルタにあたる「A」点では、ニッケルとクロムとモリブデンのピー クが観察され、白金または白金合金のピークは観察されない(図 10)。ヒータコイル 2 2の、電極ピン 32, 33と接合していない箇所である「B」点では、白金または白金合金 のピークが観察され、ニッケルとクロムとモリブデンのピークは観察されな 、(図 11)。
[0160] ヒータコイル 22と電極ピン 32, 33との接合界面のヒータコイル 22寄りの部分である 「C」点、およびヒータコイル 22と電極ピン 32, 33との接合界面の電極ピン 32, 33寄 りの部分である「D」点では、ともに、白金または白金合金、ニッケル、クロムのピーク が観察される。これは、ヒータコイル 22と電極ピン 32, 33との接合界面において、一 次芯線 6のニッケルがろう材として機能し、ヒータコイル 22と一次芯線 6と電極ピン 32 , 33とが合金化したことを示している。「D」点付近は、溶接時にニッケルの一次芯線 6があるため、電極ピン 32, 33のバルタよりもニッケルの含有割合が高いリッチ層であ る。
[0161] 合金化による接合強度の向上を確認するため、上述した実施例および比較例をそ れぞれ 10個ずつ用意し、破断強度の測定を行った。実施例については、図 5のステ ップ S1からステップ S7までの工程を経たものについて、また、比較例については、図 5のステップ S1およびステップ S2を行 、、ステップ S4を先に行って一次芯線 6を消 滅させてからステップ S3の溶接を行い、さらにステップ 5からステップ S7までの工程 を経たものについて、それぞれ、ヒータコイル 22を電極ピン 32, 33間で垂直に引つ 張り、ヒータコイル 22または溶接部位が破断するときの強度を測定した。また、白金ま たは白金合金線の破断強度を知るため、 20 μ m径で 50mmの長さの白金または白 金合金線の両端を引っ張り、白金または白金合金線が破断するときの強度も測定し た。測定結果を表 6に示す。
[0162] [表 6] 表 6
単位: gw
Figure imgf000038_0001
[0163] 10個の実施例は、いずれもヒータコイル 22の途中で破断した。その破断強度は、 2 0 m径の白金または白金合金線の引張強度とほぼ同じであった。それに対して、 1 0個の比較例の破断強度は、いずれも 20 m径の白金または白金合金線の引張強 度よりも低ぐヒータコイル 22と電極ピン 32, 33との溶接部位で破断した。これより、 一次芯線 6を残したまま溶接すれば、白金または白金合金線の引張強度以上の十 分に高 、接合強度が得られることが確認された。
[0164] また、図 14および図 17に、それぞれ実施例および比較例におけるヒータコイル 22 の全体形状を示す。図 14より、実施例では、ヒータコイル 22のビード部 24に歪みが 全くないのがわかる。それに対して、比較例では、ヒータコイル 22のビード部 24が歪 んでおり、ビード部 24の隣り合う卷回部同士が接触しそうになつているのがわかる。こ のように歪む原因は、一次芯線のない状態で溶接を行う際に、ヒータコイル 22の卷回 部を不用意に潰してしまったり、コイル形状を損傷してしまうことである。
[0165] ビード部 24の隣り合う卷回部同士が接触したり、コイルが潰れてしまうと、その部分 が短絡するため、ヒータコイル 22の抵抗に寄与する有効長が短くなり、抵抗値が小さ くなる。従って、電極ピン 32, 33間の抵抗値を測定することによって、ヒータコイル 22 の局所的な短絡の有無を知ることができる。この短絡の有無を確認するため、上述し た実施例および比較例をそれぞれ 10個ずつ用意し、抵抗値を測定した。実施例お よび比較例は、それぞれ、上述した接合強度の測定の場合と同じ工程を経たもので ある。測定結果を表 7に示す。
[0166] [表 7]
単位: Ω
実施例 比較例
(芯線有りで接合) (芯線無しで接合)
11.5 9.1
11.2 11.0
11.1 10.5
11.2 10.9
11.6 11.0
11.0 11.2
11.3 9.6
11.2 10.2
11.4 11.5
11.5 10.8
平均値 11.3 10.5 取大値 11.6 11.5 最小値 11.0 9.1 キ示準偏¾E 0.2 0.7 [0167] 10個の実施例の抵抗値の最小値は 11. 0 Ωであり、最大値は 11. 6 Ωであった。 そして、その標準偏差は 0. 2であった。それに対して、 10個の比較例の抵抗値の最 小値は 9. 1 Ωであり、最大値は 11. 5 Ωであった。比較例では、標準偏差は 0. 7で あり、抵抗値が小さい方へばらついていた。これより、一次芯線 6を残したまま溶接す れば、ビード部 24の隣り合う卷回部同士が接触したり、コイルが潰れてしまうのを防ぐ ことができることが確認された。
[0168] 以上説明したように、実施の形態によれば、検知素子 2の燃焼部の大きさが従来と ほぼ同じであっても、ヒータコイル 22の、燃焼部内に埋め込まれるビード部 24の有効 長が、ビード部 24を従来の一重卷回コイルで構成した場合よりも長くなる。従って、ヒ ータコイル 22の抵抗が大きくなるので、接触燃焼式ガスセンサ 5のガス感度が高くな り、 SZN比が改善される。
[0169] また、ヒータコイル 22がより多くの燃焼熱を受けて、効率よく抵抗変化を起こすので 、接触燃焼式ガスセンサ 5の応答速度が速くなる。さらに、燃焼部の大きさは従来とほ ぼ同じでよいので、燃焼部の重さも従来とほぼ同じになる。従って、ヒータコイル 22の リード部 25での検知素子 2の支持能力を犠牲にすることなぐ接触燃焼式ガスセンサ 5のガス感度の向上や応答速度の高速ィ匕を図ることができる。
[0170] また、ヒータコイル 22の原線の細線化により、ヒータコイル 22の抵抗が大きくなるの で、消費電流の低減ィ匕を図ることができる。また、リード部 25がコイルばねと同様の構 成になっているので、外部から加わった衝撃がリード部 25のばね弾性により吸収され る。従って、検知素子 2の燃焼部に伝わる衝撃が小さくなるので、触媒層 23の欠落な どが発生しにくくなり、ゼロ点が衝撃により大きく変動するのを抑えることができる。
[0171] また、コイルドコイルで構成されたヒータコイル 22を有し、かつそのヒータコイル 22 の抵抗値のばらつきが小さぐさら〖こ、そのヒータコイル 22と電極ピン 32, 33との接合 強度が高い接触燃焼式ガスセンサ 5が得られる。また、接触燃焼式ガスセンサ 5を製 造する際に、コイルドコイルで構成されたヒータコイル 22の取り扱いが容易である。
[0172] 以上において、本発明は、上述した実施の形態に限らず、種々変更可能である。
例えば、溶接方法やその条件、またはエッチング方法やその条件は、適宜変更可能 である。また、上述した種々の数値や材料等は一例であり、これに限定されるもので はない。
産業上の利用可能性
以上のように、本発明に力かるガスセンサ用ヒータコイル、ガスセンサ用検知素子、 接触燃焼式ガスセンサおよび接触燃焼式ガスセンサの製造方法は、家庭用または 産業用のガス漏れ検知装置に有用であり、特に、燃料電池に用いられる可燃性ガス を検知する装置に適して ヽる。

Claims

請求の範囲
[1] 接触燃焼式ガスセンサに用いられるヒータコイルであって、
ガスの燃焼時に発生する燃焼熱により電気的な特性値が変化するビード部と、該ビ ード部の両端力も伸びるリード部とを有し、 2以上の整数 nに対して、前記ビード部が 、コイル状に巻かれた (n— 1)重卷回コイルよりなる素線をさらにコイル状に巻いた n重 卷回コイルにより構成されていることを特徴とするガスセンサ用ヒータコイル。
[2] 前記リード部が、(n— 1)重卷回コイルにより構成されていることを特徴とする請求項
1に記載のガスセンサ用ヒータコイル。
[3] 出発材料となる非コイル状の原線の線径は、 1 μ m以上 100 μ m以下であることを 特徴とする請求項 1または 2に記載のガスセンサ用ヒータコイル。
[4] 出発材料となる非コイル状の原線の線径は、 10 μ m以上 50 μ m以下であることを 特徴とする請求項 1または 2に記載のガスセンサ用ヒータコイル。
[5] 出発材料となる非コイル状の原線の線径は、 20 μ m以上 30 μ m以下であることを 特徴とする請求項 1または 2に記載のガスセンサ用ヒータコイル。
[6] 1以上 n以下の整数 mに対して、 m重卷回コイルの卷き径は、 m重卷回コイルを作 製する際にコイル状に巻くために用いられる芯金の径の 0. 5倍以上 20倍以下である ことを特徴とする請求項 1または 2に記載のガスセンサ用ヒータコイル。
[7] 1以上 n以下の整数 mに対して、 m重卷回コイルの卷き径は、 m重卷回コイルを作 製する際にコイル状に巻くために用いられる芯金の径の 1倍以上 10倍以下であるこ とを特徴とする請求項 1または 2に記載のガスセンサ用ヒータコイル。
[8] 前記 n重卷回コイルの巻き数は、 1以上 30以下であることを特徴とする請求項 1また は 2に記載のガスセンサ用ヒータコイル。
[9] 1以上の整数 kに対して、前記 n重卷回コイルにおける k巻き目の卷回部と (k+ 1) 巻き目の卷回部との間の隙間の長さは、前記 (n— 1)重卷回コイルよりなる素線の直 径の 0. 5倍以上 10倍以下であることを特徴とする請求項 1または 2に記載のガスセン サ用ヒータコイル。
[10] 白金の線材でできていることを特徴とする請求項 1または 2に記載のガスセンサ用ヒ 一タコィノレ。
[11] 白金をベースとする合金の線材でできていることを特徴とする請求項 1または 2に記 載のガスセンサ用ヒータコイル。
[12] 接触燃焼式ガスセンサに用いられるヒータコイルであって、
ガスの燃焼時に発生する燃焼熱により電気的な特性値が変化するビード部と、該ビ ード部の両端力 伸びるリード部とを有し、前記リード部がコイル状に巻かれているこ とを特徴とするガスセンサ用ヒータコイル。
[13] 接触燃焼式ガスセンサに用いられる検知素子であって、
ガスの燃焼時に発生する燃焼熱により電気的な特性値が変化するビード部、およ び該ビード部の両端力 伸びるリード部を有するヒータコイルと、
前記ビード部を被う熱伝導層と、
前記熱伝導層の表面に付着された触媒層と、を備え、
2以上の整数 nに対して、前記ビード部が、コイル状に巻かれた (n— 1)重卷回コィ ルよりなる素線をさらにコイル状に巻いた n重卷回コイルにより構成されていることを 特徴とするガスセンサ用検知素子。
[14] 前記ヒータコイルのリード部力 (n— 1)重卷回コイルにより構成されていることを特 徴とする請求項 13に記載のガスセンサ用検知素子。
[15] 前記ヒータコイルの出発材料となる非コイル状の原線の線径は、 1 μ m以上 100 μ m以下であることを特徴とする請求項 13または 14に記載のガスセンサ用検知素子。
[16] 前記ヒータコイルの出発材料となる非コイル状の原線の線径は、 10 m以上 50 μ m以下であることを特徴とする請求項 13または 14に記載のガスセンサ用検知素子。
[17] 前記ヒータコイルの出発材料となる非コイル状の原線の線径は、 20 μ m以上 30 μ m以下であることを特徴とする請求項 13または 14に記載のガスセンサ用検知素子。
[18] 1以上 n以下の整数 mに対して、前記ヒータコイルの m重卷回コイルの卷き径は、 m 重卷回コイルを作製する際にコイル状に巻くために用いられる芯金の径の 0. 5倍以 上 20倍以下であることを特徴とする請求項 13または 14に記載のガスセンサ用検知 素子。
[19] 1以上 n以下の整数 mに対して、前記ヒータコイルの m重卷回コイルの卷き径は、 m 重卷回コイルを作製する際にコイル状に巻くために用いられる芯金の径の 1倍以上 1 0倍以下であることを特徴とする請求項 13または 14に記載のガスセンサ用検知素子
[20] 前記ヒータコイルの n重卷回コイルの巻き数は、 1以上 30以下であることを特徴とす る請求項 13または 14に記載のガスセンサ用検知素子。
[21] 1以上の整数 kに対して、前記ヒータコイルの n重卷回コイルにおける k巻き目の卷 回部と (k+ 1)巻き目の卷回部との間の隙間の長さは、前記 (n— 1)重卷回コイルより なる素線の直径の 0. 5倍以上 10倍以下であることを特徴とする請求項 13または 14 に記載のガスセンサ用検知素子。
[22] 前記ヒータコイルは、白金の線材でできていることを特徴とする請求項 13または 14 に記載のガスセンサ用検知素子。
[23] 前記ヒータコイルは、白金をベースとする合金の線材でできていることを特徴とする 請求項 13または 14に記載のガスセンサ用検知素子。
[24] 接触燃焼式ガスセンサに用いられる検知素子であって、
ガスの燃焼時に発生する燃焼熱により電気的な特性値が変化するビード部、およ び該ビード部の両端力 伸びるリード部を有するヒータコイルと、
前記ビード部を被う熱伝導層と、
前記熱伝導層の表面に付着された触媒層と、を備え、
前記ヒータコイルのリード部がコイル状に巻かれていることを特徴とするガスセンサ 用検知素子。
[25] ガスの燃焼時に発生する燃焼熱により電気的な特性値が変化するビード部、およ び該ビード部の両端力 伸びるリード部を有するヒータコイルと、前記ビード部を被う 熱伝導層と、前記熱伝導層の表面に付着された触媒層と、を備え、 2以上の整数 nに 対して、前記ビード部が、コイル状に巻かれた (n— 1)重卷回コイルよりなる素線をさら にコイル状に巻いた n重卷回コイルにより構成された検知素子と、
前記検知素子に直列に接続された、前記ヒータコイルと同一構成のヒータコイルを 備えた補償素子と、
第 1の抵抗素子と、
前記第 1の抵抗素子に直列に接続された第 2の抵抗素子と、 前記検知素子と前記補償素子との直列接続体、および前記第 1の抵抗素子と前記 第 2の抵抗素子との直列接続体のそれぞれの両端に直流電圧を印加する電源と、を 備え、
前記検知素子、前記補償素子、前記第 1の抵抗素子および前記第 2の抵抗素子は 、ホイートストンブリッジ回路を構成し、該ホイートストンブリッジ回路から、前記検知素 子と前記補償素子との接続ノードと、前記第 1の抵抗素子と前記第 2の抵抗素子との 接続ノードとの間の電圧が出力されることを特徴とする接触燃焼式ガスセンサ。
[26] 前記ヒータコイルのリード部力 (n— 1)重卷回コイルにより構成されていることを特 徴とする請求項 25に記載の接触燃焼式ガスセンサ。
[27] 前記ヒータコイルの出発材料となる非コイル状の原線の線径は、 1 μ m以上 100 μ m以下であることを特徴とする請求項 25または 26に記載の接触燃焼式ガスセンサ。
[28] 前記ヒータコイルの出発材料となる非コイル状の原線の線径は、 10 m以上 50 μ m以下であることを特徴とする請求項 25または 26に記載の接触燃焼式ガスセンサ。
[29] 前記ヒータコイルの出発材料となる非コイル状の原線の線径は、 20 μ m以上 30 μ m以下であることを特徴とする請求項 25または 26に記載の接触燃焼式ガスセンサ。
[30] 1以上 n以下の整数 mに対して、前記ヒータコイルの m重卷回コイルの卷き径は、 m 重卷回コイルを作製する際にコイル状に巻くために用いられる芯金の径の 0. 5倍以 上 20倍以下であることを特徴とする請求項 25または 26に記載の接触燃焼式ガスセ ンサ。
[31] 1以上 n以下の整数 mに対して、前記ヒータコイルの m重卷回コイルの卷き径は、 m 重卷回コイルを作製する際にコイル状に巻くために用いられる芯金の径の 1倍以上 1
0倍以下であることを特徴とする請求項 25または 26に記載の接触燃焼式ガスセンサ
[32] 前記ヒータコイルの n重卷回コイルの巻き数は、 1以上 30以下であることを特徴とす る請求項 25または 26に記載の接触燃焼式ガスセンサ。
[33] 1以上の整数 kに対して、前記ヒータコイルの n重卷回コイルにおける k巻き目の卷 回部と (k+ 1)巻き目の卷回部との間の隙間の長さは、前記 (n— 1)重卷回コイルより なる素線の直径の 0. 5倍以上 10倍以下であることを特徴とする請求項 25または 26 に記載の接触燃焼式ガスセンサ。
[34] 前記ヒータコイルは、白金の線材でできていることを特徴とする請求項 25または 26 に記載の接触燃焼式ガスセンサ。
[35] 前記ヒータコイルは、白金をベースとする合金の線材でできていることを特徴とする 請求項 25または 26に記載の接触燃焼式ガスセンサ。
[36] ガスの燃焼時に発生する燃焼熱により電気的な特性値が変化するビード部、およ び該ビード部の両端力 伸びるリード部を有するヒータコイルと、前記ビード部を被う 熱伝導層と、前記熱伝導層の表面に付着された触媒層と、を備え、前記リード部がコ ィル状に巻かれた検知素子と、
前記検知素子に直列に接続された、前記ヒータコイルと同一構成のヒータコイルを 備えた補償素子と、
第 1の抵抗素子と、
前記第 1の抵抗素子に直列に接続された第 2の抵抗素子と、
前記検知素子と前記補償素子との直列接続体、および前記第 1の抵抗素子と前記 第 2の抵抗素子との直列接続体のそれぞれの両端に直流電圧を印加する電源と、を 備え、
前記検知素子、前記補償素子、前記第 1の抵抗素子および前記第 2の抵抗素子は 、ホイートストンブリッジ回路を構成し、該ホイートストンブリッジ回路から、前記検知素 子と前記補償素子との接続ノードと、前記第 1の抵抗素子と前記第 2の抵抗素子との 接続ノードとの間の電圧が出力されることを特徴とする接触燃焼式ガスセンサ。
[37] 接触したガスの燃焼により発生した燃焼熱によってヒータコイルの電気的な特性値 が変化し、その特性値の変化に基づ 、て可燃性ガスの存在を検知する接触燃焼式 ガスセンサにおいて、
少なくとも両端力 Sコイル状に巻かれたヒータコイルと、
前記ヒータコイルの両端のコイル状の部分にそれぞれ溶接された電極と、 前記ヒータコイルの一部を被う焼結体と、を備え、
前記ヒータコイルと前記電極との接合界面に、前記電極を構成する少なくとも一つ の金属元素を、前記電極における構成割合よりも高い割合で含む合金層が存在する ことを特徴とする接触燃焼式ガスセンサ。
[38] 接触したガスの燃焼により発生した燃焼熱によってヒータコイルの電気的な特性値 が変化し、その特性値の変化に基づ 、て可燃性ガスの存在を検知する接触燃焼式 ガスセンサにおいて、
少なくとも両端力 Sコイル状に巻かれたヒータコイルと、
前記ヒータコイルの両端のコイル状の部分にそれぞれ溶接された電極と、 前記ヒータコイルの一部を被う焼結体と、を備え、
前記ヒータコイルと前記電極との接合界面に、前記電極を構成する少なくとも一つ の金属元素を、前記電極における構成割合よりも高い割合で含む合金層が存在し、 前記ヒータコイルと前記電極との溶接部位にのみ、前記ヒータコイルのコイル状の 部分の内側に、前記合金層中に前記電極中よりも高 ヽ割合で含まれて 、る前記金 属元素よりなる芯線が設けられていることを特徴とする接触燃焼式ガスセンサ。
[39] 前記合金層中に前記電極中よりも高!ヽ割合で含まれて!/ヽる前記金属元素は、前記 ヒータコイルを構成する金属よりもイオンィ匕列が大であることを特徴とする請求項 37ま たは 38に記載の接触燃焼式ガスセンサ。
[40] 前記ヒータコイルは白金または白金合金でできており、前記電極はニッケルを含む 合金でできており、前記合金層中に前記電極中よりも高 、割合で含まれて ヽる前記 金属元素はニッケルであることを特徴とする請求項 37または 38に記載の接触燃焼 式ガスセンサ。
[41] 前記ヒータコイルの、前記焼結体に被われて!/、る部分の少なくとも一部は、線材を コイル状に卷 、たコイル線をさらにコイル状に卷 、たコイルドコイルになって!/、ること を特徴とする請求項 37または 38に記載の接触燃焼式ガスセンサ。
[42] 接触したガスの燃焼により発生した燃焼熱によってヒータコイルの電気的な特性値 が変化し、その特性値の変化に基づ 、て可燃性ガスの存在を検知する接触燃焼式 ガスセンサにおいて、
少なくとも両端力 Sコイル状に巻かれたヒータコイルと、
前記ヒータコイルの両端のコイル状の部分にそれぞれ溶接された電極と、 前記ヒータコイルの一部を被う焼結体と、を備え、 前記ヒータコイルと前記電極との接合界面に、前記ヒータコイルおよび前記電極の V、ずれにも含まれて 、な 、金属元素と、前記電極を構成する少なくとも一つの金属 元素との合金化により生じた合金層が存在することを特徴とする接触燃焼式ガスセン サ。
[43] 接触したガスの燃焼により発生した燃焼熱によってヒータコイルの電気的な特性値 が変化し、その特性値の変化に基づ 、て可燃性ガスの存在を検知する接触燃焼式 ガスセンサにおいて、
少なくとも両端力 Sコイル状に巻かれたヒータコイルと、
前記ヒータコイルの両端のコイル状の部分にそれぞれ溶接された電極と、 前記ヒータコイルの一部を被う焼結体と、を備え、
前記ヒータコイルと前記電極との接合界面に、前記ヒータコイルおよび前記電極の V、ずれにも含まれて 、な 、金属元素と、前記電極を構成する少なくとも一つの金属 元素との合金化により生じた合金層が存在し、
前記ヒータコイルと前記電極との溶接部位にのみ、前記ヒータコイルのコイル状の 部分の内側に、前記合金層中には含まれているが、前記ヒータコイルおよび前記電 極の 、ずれにも含まれて 、な 、前記金属元素よりなる芯線が設けられて 、ることを特 徴とする接触燃焼式ガスセンサ。
[44] 前記合金層中には含まれて!/ヽるが、前記ヒータコイルおよび前記電極の!/ヽずれに も含まれて ヽな ヽ前記金属元素は、前記ヒータコイルを構成する金属よりもイオンィ匕 列が大であることを特徴とする請求項 42または 43に記載の接触燃焼式ガスセンサ。
[45] 前記ヒータコイルの、前記焼結体に被われて!/、る部分の少なくとも一部は、線材を コイル状に卷 、たコイル線をさらにコイル状に卷 、たコイルドコイルになって!/、ること を特徴とする請求項 42または 43に記載の接触燃焼式ガスセンサ。
[46] 接触したガスの燃焼により発生した燃焼熱によってヒータコイルの電気的な特性値 が変化し、その特性値の変化に基づ 、て可燃性ガスの存在を検知する接触燃焼式 ガスセンサを製造するにあたって、
少なくとも両端が芯線に巻きつけられてコイル状をなすヒータコイルを作製するコィ ル作製工程と、 前記芯線に巻きつけられた状態のまま、前記ヒータコイルの両端のコイル状の部分 をそれぞれ電極に溶接する溶接工程と、
前記芯線を消滅させる芯線消滅工程と、
芯線のなくなった前記ヒータコイルの一部を焼結体で被う焼結体被覆工程と、 を含むことを特徴とする接触燃焼式ガスセンサの製造方法。
[47] 接触したガスの燃焼により発生した燃焼熱によってヒータコイルの電気的な特性値 が変化し、その特性値の変化に基づ 、て可燃性ガスの存在を検知する接触燃焼式 ガスセンサを製造するにあたって、
少なくとも両端が芯線に巻きつけられてコイル状をなすヒータコイルを作製するコィ ル作製工程と、
前記芯線に巻きつけられた状態のまま、前記ヒータコイルの両端のコイル状の部分 をそれぞれ電極に溶接する溶接工程と、
前記ヒータコイルと前記電極との溶接部位を除 、て、前記芯線を消滅させる芯線消 滅工程と、
前記ヒータコイルの、前記芯線のない部分の少なくとも一部を焼結体で被う焼結体 被覆工程と、
を含むことを特徴とする接触燃焼式ガスセンサの製造方法。
[48] 前記溶接工程では、前記ヒータコイルの、芯線に巻きつけられた端部を前記電極に 押し付け、抵抗溶接法、レーザー溶接法または熱圧着による溶接法のいずれかを行 うことを特徴とする請求項 46または 47に記載の接触燃焼式ガスセンサの製造方法。
[49] 前記芯線は、前記ヒータコイルの構成材料よりも卑な金属材料で構成されており、 前記芯線消滅工程では、前記芯線のみをエッチングにより消滅させることを特徴とす る請求項 46または 47に記載の接触燃焼式ガスセンサの製造方法。
[50] 前記芯線はニッケルでできており、前記ヒータコイルは白金または白金合金ででき ており、前記芯線消滅工程では、ニッケル用のエッチング液を用いて前記芯線を消 滅させることを特徴とする請求項 46または 47に記載の接触燃焼式ガスセンサの製造 方法。
[51] 前記コイル作製工程では、前記ヒータコイルの、前記焼結体により被覆される部分 の少なくとも一部を、前記芯線にコイル状に巻いたコイル線をさらにコイル状に巻い てコイルドコイルにすることを特徴とする請求項 46または 47に記載の接触燃焼式ガ スセンサの製造方法。
前記芯線が、前記ヒータコイルと前記電極とを接合するためのろう材を兼ねて 、るこ とを特徴とする請求項 46または 47に記載の接触燃焼式ガスセンサの製造方法。
PCT/JP2005/005407 2004-03-30 2005-03-24 ガスセンサ用ヒータコイル、ガスセンサ用検知素子、接触燃焼式ガスセンサおよび接触燃焼式ガスセンサの製造方法 WO2005098405A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2006512011A JP4688794B2 (ja) 2004-03-30 2005-03-24 ガスセンサ用ヒータコイル、ガスセンサ用検知素子、接触燃焼式ガスセンサおよび接触燃焼式ガスセンサの製造方法
KR1020067020512A KR101099070B1 (ko) 2004-03-30 2005-03-24 가스센서용 히터코일, 가스센서용 검지소자, 접촉 연소식가스센서 및 접촉 연소식 가스센서의 제조방법
US10/594,006 US7713480B2 (en) 2004-03-30 2005-03-24 Heater coil for gas sensor, detection element for gas sensor, contact combustion type gas sensor, and method for manufacturing contact combustion type gas sensor
EP05727120.7A EP1731900B1 (en) 2004-03-30 2005-03-24 Detecting element for gas sensor and catalytic combustion gas sensor comprising detecting element
US12/730,680 US8246913B2 (en) 2004-03-30 2010-03-24 Heater coil for gas sensor, detecting element for gas sensor, catalytic combustion gas sensor, and manufacturing method of catalytic combustion gas sensor
US12/730,703 US8257656B2 (en) 2004-03-30 2010-03-24 Heater coil for gas sensor, detecting element for gas sensor, catalytic combustion gas sensor, and manufacturing method of catalytic combustion gas sensor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004101537 2004-03-30
JP2004101539 2004-03-30
JP2004-101539 2004-03-30
JP2004-101537 2004-03-30

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US10/594,006 A-371-Of-International US7713480B2 (en) 2004-03-30 2005-03-24 Heater coil for gas sensor, detection element for gas sensor, contact combustion type gas sensor, and method for manufacturing contact combustion type gas sensor
US12/730,680 Division US8246913B2 (en) 2004-03-30 2010-03-24 Heater coil for gas sensor, detecting element for gas sensor, catalytic combustion gas sensor, and manufacturing method of catalytic combustion gas sensor
US12/730,703 Division US8257656B2 (en) 2004-03-30 2010-03-24 Heater coil for gas sensor, detecting element for gas sensor, catalytic combustion gas sensor, and manufacturing method of catalytic combustion gas sensor

Publications (1)

Publication Number Publication Date
WO2005098405A1 true WO2005098405A1 (ja) 2005-10-20

Family

ID=35125195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/005407 WO2005098405A1 (ja) 2004-03-30 2005-03-24 ガスセンサ用ヒータコイル、ガスセンサ用検知素子、接触燃焼式ガスセンサおよび接触燃焼式ガスセンサの製造方法

Country Status (5)

Country Link
US (3) US7713480B2 (ja)
EP (1) EP1731900B1 (ja)
JP (1) JP4688794B2 (ja)
KR (1) KR101099070B1 (ja)
WO (1) WO2005098405A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005315845A (ja) * 2004-03-30 2005-11-10 Citizen Watch Co Ltd ガスセンサ用検知素子および接触燃焼式ガスセンサ
JP2010066174A (ja) * 2008-09-11 2010-03-25 Citizen Finetech Miyota Co Ltd ガスセンサ

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170079089A1 (en) * 2014-06-06 2017-03-16 Panasonic Intellectual Property Management Co., Ltd. Electrostatic grip detection device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52116289A (en) 1976-03-25 1977-09-29 Matsushita Electric Ind Co Ltd Gas detecting element and its production
JPS59137849A (ja) 1983-01-27 1984-08-08 Yazaki Corp 接触燃焼式の可燃性ガス検知素子の製法
JPS6182659A (ja) * 1984-09-11 1986-04-26 ゼネラル・エレクトリツク・カンパニイ 二重コイル・フイラメントの構造的配置を改良した白熱電球
JPS63152553A (ja) 1987-10-29 1988-06-25 中村製袋株式会社 紐の端末処理構造
JPS63152553U (ja) * 1987-03-26 1988-10-06
JPH0259949A (ja) 1988-08-26 1990-02-28 Toshiba Corp ディジーチェーン割込み処理装置
JPH0259949B2 (ja) * 1983-04-28 1990-12-13 Riken Keiki Kk
JPH0337988A (ja) * 1989-07-01 1991-02-19 Hitachi Ltd 無機絶縁ヒータおよびその製法並びにそれを用いた陰極線管
JPH03162658A (ja) 1989-11-21 1991-07-12 Fuji Electric Co Ltd ガス検知素子
JPH1050253A (ja) * 1996-07-30 1998-02-20 Toshiba Lighting & Technol Corp ランプおよび照明装置
JP2003121402A (ja) * 2001-10-11 2003-04-23 Sakaguchi Giken:Kk 接触燃焼式coガスセンサ

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2258836A (en) * 1939-06-29 1941-10-14 Telefunken Ges Fur Drathlose T Cathode heater
US2314134A (en) * 1942-01-08 1943-03-16 Colonial Lighting Co Inc Gaseous discharge device
US2703833A (en) * 1951-12-06 1955-03-08 Heraeus Gmbh W C Resistance thermometer
US3524693A (en) * 1967-08-17 1970-08-18 Tokyo Shibaura Electric Co Method for assembling a carbide filament incandescent lamp
US3725720A (en) * 1972-07-12 1973-04-03 Westinghouse Electric Corp Electric lamp mount having a beaded filament coil
US3778664A (en) * 1972-12-22 1973-12-11 Westinghouse Electric Corp Beaded coils for electric lamps and similar devices
US3979625A (en) * 1975-06-10 1976-09-07 General Electric Company Ceramic spaced sensor assembly for a gas leak detector
US4560723A (en) * 1983-11-14 1985-12-24 Minnesota Mining And Manufacturing Company Cyanoacrylate adhesive composition having sustained toughness
DE3712271A1 (de) * 1987-04-10 1988-10-27 Vacuumschmelze Gmbh Nickelbasis-lot fuer hochtemperatur-loetverbindungen
JP3659064B2 (ja) * 1999-05-24 2005-06-15 ウシオ電機株式会社 白熱ランプ
CA2342683A1 (en) 2000-04-03 2001-10-03 Unilever Plc Test methods and devices
JP2001349861A (ja) * 2000-06-07 2001-12-21 Yazaki Corp 接触燃焼式ガスセンサ

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52116289A (en) 1976-03-25 1977-09-29 Matsushita Electric Ind Co Ltd Gas detecting element and its production
JPS59137849A (ja) 1983-01-27 1984-08-08 Yazaki Corp 接触燃焼式の可燃性ガス検知素子の製法
JPH0259949B2 (ja) * 1983-04-28 1990-12-13 Riken Keiki Kk
JPS6182659A (ja) * 1984-09-11 1986-04-26 ゼネラル・エレクトリツク・カンパニイ 二重コイル・フイラメントの構造的配置を改良した白熱電球
JPS63152553U (ja) * 1987-03-26 1988-10-06
JPS63152553A (ja) 1987-10-29 1988-06-25 中村製袋株式会社 紐の端末処理構造
JPH0259949A (ja) 1988-08-26 1990-02-28 Toshiba Corp ディジーチェーン割込み処理装置
JPH0337988A (ja) * 1989-07-01 1991-02-19 Hitachi Ltd 無機絶縁ヒータおよびその製法並びにそれを用いた陰極線管
JPH03162658A (ja) 1989-11-21 1991-07-12 Fuji Electric Co Ltd ガス検知素子
JPH1050253A (ja) * 1996-07-30 1998-02-20 Toshiba Lighting & Technol Corp ランプおよび照明装置
JP2003121402A (ja) * 2001-10-11 2003-04-23 Sakaguchi Giken:Kk 接触燃焼式coガスセンサ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005315845A (ja) * 2004-03-30 2005-11-10 Citizen Watch Co Ltd ガスセンサ用検知素子および接触燃焼式ガスセンサ
JP4724426B2 (ja) * 2004-03-30 2011-07-13 シチズンホールディングス株式会社 ガスセンサ用検知素子および接触燃焼式ガスセンサ
US8425846B2 (en) 2004-03-30 2013-04-23 Citizen Holdings Co., Ltd. Sensing element for catalytic combustion type gas sensor
JP2010066174A (ja) * 2008-09-11 2010-03-25 Citizen Finetech Miyota Co Ltd ガスセンサ

Also Published As

Publication number Publication date
US8257656B2 (en) 2012-09-04
EP1731900A4 (en) 2011-05-11
JPWO2005098405A1 (ja) 2008-02-28
EP1731900A1 (en) 2006-12-13
US8246913B2 (en) 2012-08-21
US20100175995A1 (en) 2010-07-15
JP4688794B2 (ja) 2011-05-25
KR101099070B1 (ko) 2011-12-26
EP1731900B1 (en) 2018-10-17
US20070209936A1 (en) 2007-09-13
US7713480B2 (en) 2010-05-11
US20100176094A1 (en) 2010-07-15
KR20060131957A (ko) 2006-12-20

Similar Documents

Publication Publication Date Title
JP4724426B2 (ja) ガスセンサ用検知素子および接触燃焼式ガスセンサ
WO2005098405A1 (ja) ガスセンサ用ヒータコイル、ガスセンサ用検知素子、接触燃焼式ガスセンサおよび接触燃焼式ガスセンサの製造方法
JP2992748B2 (ja) 接触燃焼式ガスセンサ及びその製造方法
JP6224311B2 (ja) 半導体ガスセンサ素子
JP2009262159A (ja) ダイレクト溶接装置およびその溶接方法
CN100552449C (zh) 传感器用加热线圈及检测元件、气体传感器及其制造方法
JP3485213B2 (ja) 接触燃焼式ガスセンサ
JP4361095B2 (ja) ヒューズエレメント用絶縁中間コイルを備えるコイル状可溶導体
CN207730339U (zh) 一种外绕簧式镍电阻敏感元件
RU2221241C1 (ru) Быстродействующий резистивный датчик взрывоопасных концентраций водорода (варианты) и способ его изготовления
JP4440743B2 (ja) 白金合金線およびその製造方法
JP2001307901A (ja) 耐サージ薄型抵抗器および抵抗器における抵抗線と外部接続端子の接続構造
JP2006047111A (ja) 電流計測用シャント
JP2007248197A (ja) 接触燃焼式ガスセンサ
JP4537830B2 (ja) ガス検出装置の製造方法およびガス検出装置
JPH02298851A (ja) 検出素子端子構造
JP2005283315A (ja) ガスセンサ用ヒータコイルの製造方法
JP2013229112A (ja) 2芯平行リード線及びリード線付きサーミスタ
JP2006019225A (ja) 超耐熱電線・ケーブル
WO2020203100A1 (ja) Mems型半導体式ガス検知素子
JP3112765B2 (ja) 熱式流量計
JPH02263145A (ja) 半導体式ガスセンサ
KR0137830B1 (ko) 후막형 가스 감지소자 및 그 제조방법
JPH05258909A (ja) ガラス封入形サーミスタ
JP2009079908A (ja) 接触燃焼式ガスセンサ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007209936

Country of ref document: US

Ref document number: 10594006

Country of ref document: US

Ref document number: 2006512011

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005727120

Country of ref document: EP

Ref document number: 200580009988.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020067020512

Country of ref document: KR

Ref document number: 1020067020511

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2005727120

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067020512

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1020067020511

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10594006

Country of ref document: US