WO2005096368A1 - プローブ装置およびこのプローブ装置を具えたウエハ検査装置並びにウエハ検査方法 - Google Patents

プローブ装置およびこのプローブ装置を具えたウエハ検査装置並びにウエハ検査方法 Download PDF

Info

Publication number
WO2005096368A1
WO2005096368A1 PCT/JP2005/006108 JP2005006108W WO2005096368A1 WO 2005096368 A1 WO2005096368 A1 WO 2005096368A1 JP 2005006108 W JP2005006108 W JP 2005006108W WO 2005096368 A1 WO2005096368 A1 WO 2005096368A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
inspection
wafer
anisotropic conductive
connection
Prior art date
Application number
PCT/JP2005/006108
Other languages
English (en)
French (fr)
Inventor
Hisao Igarashi
Katsumi Sato
Kazuo Inoue
Original Assignee
Jsr Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr Corporation filed Critical Jsr Corporation
Priority to KR1020067019147A priority Critical patent/KR101139666B1/ko
Priority to US10/593,830 priority patent/US7446544B2/en
Priority to EP05727781A priority patent/EP1732120A4/en
Publication of WO2005096368A1 publication Critical patent/WO2005096368A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07364Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card with provisions for altering position, number or connection of probe tips; Adapting to differences in pitch
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07314Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card the body of the probe being perpendicular to test object, e.g. bed of nails or probe with bump contacts on a rigid support
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07364Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card with provisions for altering position, number or connection of probe tips; Adapting to differences in pitch
    • G01R1/07371Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card with provisions for altering position, number or connection of probe tips; Adapting to differences in pitch using an intermediate card or back card with apertures through which the probes pass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07364Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card with provisions for altering position, number or connection of probe tips; Adapting to differences in pitch
    • G01R1/07378Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card with provisions for altering position, number or connection of probe tips; Adapting to differences in pitch using an intermediate adapter, e.g. space transformers

Definitions

  • Probe device wafer inspection device equipped with the probe device, and wafer inspection method
  • the present invention relates to a wafer inspection device, a wafer inspection method implemented in the wafer inspection device, and a probe device that can be suitably used in the wafer inspection device, and more particularly, to a probe device formed on a wafer.
  • a wafer inspection apparatus and method for performing a probe test on a part or all of a large number of integrated circuits at a time, or a burn-in test on a part or all of a large number of integrated circuits formed on a wafer at a time The present invention relates to a wafer inspection apparatus and a wafer inspection method for performing the same, and a probe apparatus that can be suitably used for these wafer inspection apparatuses.
  • a probe test is performed on each of these integrated circuits.
  • a semiconductor chip is formed by cutting the wafer, the semiconductor chip is housed and sealed in an appropriate knockout, and further burn-in is performed for each of the knocked-out semiconductor integrated circuit devices.
  • a test is performed. Therefore, in order to assure the quality of the semiconductor integrated circuit device, not only the electrical characteristics of the semiconductor integrated circuit device but also the electrical characteristics of the semiconductor chip itself must be inspected by the burn-in test. It is extremely important to do.
  • a mounting method has been developed in which a semiconductor chip itself is used as an integrated circuit device, and a circuit device including the semiconductor chip is directly mounted on a printed circuit board, for example. Has been requested.
  • a probe test is generally performed on, for example, 16 or 32 integrated circuits of a large number of integrated circuits formed on the wafer at a time. Then, a method of sequentially performing a probe test on other integrated circuits is adopted.
  • FIG. 17 is an explanatory cross-sectional view schematically showing a configuration of an example of a conventional wafer inspection apparatus for performing a WLBI test or a probe test on a wafer on which a large number of integrated circuits are formed.
  • a wafer inspection apparatus is described in, for example, Patent Documents 1 and 2.
  • This wafer inspection apparatus has an inspection circuit board 80 on which a number of inspection electrodes 81 are formed on a front surface (a lower surface in the figure).
  • a probe 85 is provided on a surface of the inspection circuit board 80 through a connector 85.
  • Card 90 is arranged.
  • the probe card 90 is connected to a connection circuit board 91 and an electrode (not shown) of an integrated circuit on a wafer W to be tested, which is provided on the surface (the lower surface in the figure) of the connection circuit board 91.
  • a contact member 95 having a number of contacts (not shown) to be contacted. Below the contact member 95, there is disposed a ueno, tray 96, on which the ueno, W to be inspected, is placed, which also serves as a heating plate.
  • the contact member 95 for example, a contact member made of an anisotropic conductive sheet in which a plurality of connecting conductive portions each extending in the thickness direction are insulated from each other by an insulating portion, or an insulating sheet.
  • a sheet-like connector in which a contact made of a metal body extending through in the thickness direction is arranged, a sheet-like connector in which an anisotropic conductive sheet and one sheet-like connector are laminated, and the like can be used.
  • connection circuit board 91 of the probe card 90 On the back surface of the connection circuit board 91 of the probe card 90, a number of terminal electrodes 92 are formed in accordance with a pattern corresponding to the pattern of the test electrodes 81 of the test circuit board 80.
  • the connection circuit board 91 is arranged so that each of the terminal electrodes 92 faces the inspection electrode 81 of the inspection circuit board 80 by the guide pin 93.
  • connection pins 86 which are called “pogo pins” and can be compressed in the longitudinal direction, are arranged according to the pattern corresponding to the pattern of the test electrodes 81 on the test circuit board 80. ing.
  • the connector 85 is arranged in a state where each of the connection pins 86 is positioned between the inspection electrode 81 of the force detection circuit board 80 and the terminal electrode 92 of the connection circuit board 91.
  • a wafer W to be inspected is placed on a wafer tray 96, and the wafer W is moved upward by an appropriate driving means (not shown) to move the wafer W.
  • each of the connection pins 86 of the connector 85 is compressed in a lengthwise manner, and thereby the test electrode of the test circuit board 80 is pressed.
  • Each of the contact electrodes 95 is electrically connected to each of the terminal electrodes 92 of the connection circuit board 91, and each of the electrodes to be inspected of a part of the integrated circuit formed on the Ueno and W is connected to the contact member 95.
  • Each of the contacts makes contact, thereby achieving the required electrical connection.
  • the wafer W is heated to a predetermined temperature by the wafer tray 96, and in this state, a required electrical inspection (WLBI test or probe test) on the wafer W is performed.
  • Patent Document 1 JP-A-2000-147063
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2000-323535
  • the wafer inspection apparatus as shown in FIG. 17 has the following problems. That is, in the wafer inspection apparatus having such a configuration, in practice, each component constituting the wafer inspection apparatus itself has a warp or undulation, and the wafer tray 96 has an inclination. It has a relatively large degree of inclination (undulation).
  • the planar accuracy of the wafer mounting surface in the wafer tray 96 (the degree of variation in the height level within the plane) is about ⁇ 20 / zm, and the wafer W and the inspection circuit board 80 And the board material itself that constitutes the connection circuit board 91
  • the degree of warpage and undulation is about ⁇ 10 / zm.
  • the thickness variation of the anisotropic conductive sheet itself is about ⁇ 10 m when the thickness is 200 m, and the contact member 95
  • a laminate of an anisotropically conductive sheet and a sheet-like connector is used as the above, there is a variation in the thickness of the sheet-like connector itself in addition to the variation in the thickness of the anisotropically conductive sheet itself. Is about ⁇ 5 m with a thickness of 80 ⁇ m.
  • connection pins 86 need to have a considerably large length, so that the distance of the signal transmission system is considerably long, so that high-speed processing is required.
  • the electrical test of a high-performance integrated circuit there is a problem that it is difficult to cope with the electrical test of a high-performance integrated circuit.
  • the present invention has been made in view of the above circumstances, and a purpose of the present invention is to collectively carry out electrical tests on a large number of electrodes to be tested in a large number of integrated circuits formed on a wafer. And a wafer inspection apparatus capable of reliably achieving a good electrical connection state for all the electrodes to be inspected, and performing an electrical inspection of a high-performance integrated circuit.
  • An object of the present invention is to provide a wafer inspection method and a probe device that can be suitably used for the wafer inspection device.
  • the probe device of the present invention is used for performing electrical inspection of a large number of integrated circuits formed on a wafer, and includes a testing circuit substrate having a large number of testing electrodes on a front surface, and a back surface.
  • the pressure of the test electrode is reduced by the test circuit board and the connection circuit board disposed between the probe card and the test circuit board and the connection circuit board of the probe card.
  • an anisotropic conductive connector for electrically connecting each of the terminal electrodes and each of the terminal electrodes, and a parallelism for adjusting the parallelism of the inspection circuit board to the wafer and the parallelism of the connection circuit board to the wafer.
  • the parallelism adjustment mechanism is characterized in that it has a position variable mechanism that relatively displaces the inspection circuit board or the connection circuit board in the thickness direction of the anisotropic conductive connector.
  • the parallelism adjusting mechanism has a plurality of position variable mechanisms, and each position variable mechanism independently sets the displacement amount of the inspection circuit board or the connection circuit board. It is preferable that it is configured as possible.
  • a spacer is provided between the circuit board for inspection and the circuit board for connection in the probe card, the spacer regulating a distortion amount of the anisotropic conductive connector. It is preferable that it is set as the structure. In this case, the total thickness of the spacer is preferably at least 50% of the total thickness of the anisotropic conductive connector.
  • the anisotropic conductive connector extends in the thickness direction corresponding to the electrode regions where the connection target electrodes of the connection circuit board and the inspection circuit board are formed.
  • a frame plate having a plurality of anisotropic conductive film disposing holes formed therein; and a frame plate disposed in each of the anisotropic conductive film disposing holes of the frame plate and supported by a peripheral portion of the anisotropic conductive film disposing hole. Consisting of a plurality of elastic anisotropic conductive films,
  • Spacers are provided on both sides of the frame plate of the anisotropically conductive connector, and the spacers are provided in regions corresponding to the regions of the anisotropically conductive connector where the elastic anisotropically conductive film is formed. It can be constituted by a frame-like member having an opening, and having a minute projection made of an elastic member at least on a contact surface with the circuit board for inspection and a contact surface with the circuit board for connection.
  • the contact member constituting the probe card includes an anisotropic conductive sheet in which a plurality of connecting conductive portions extending in the thickness direction are insulated from each other by the insulating portion. It is preferable to be constituted by the above.
  • an anisotropic conductive sheet in which a plurality of connecting conductive portions extending in the thickness direction are insulated from each other by an insulating portion, or an anisotropic conductive sheet supported by a frame plate.
  • a wafer inspection apparatus of the present invention is for performing electrical inspection of a large number of integrated circuits formed on a wafer, and includes the above-described probe device.
  • the wafer inspection method of the present invention provides a circuit board for inspection, an anisotropic conductive connector, and a circuit board for inspection or a connection circuit board, which are relatively displaced by a position variable mechanism constituting a parallelism adjusting mechanism.
  • the three connection circuit boards are temporarily fixed in a state in which the anisotropic conductive connector is narrowed by the test circuit board and the connection circuit board, and this is used to fix each of the test electrodes on the test circuit board.
  • Each of the terminal electrodes on the connection circuit board is electrically connected to each of the terminal electrodes via the connection conductive portion of the anisotropically conductive connector, and the state force is further increased so that the contact member of the probe card is attached to the wafer to be inspected.
  • the parallelism of the test circuit board to the wafer and the parallelism of the connection circuit board to the wafer were measured, and based on the obtained results,
  • the parallelism of the inspection circuit board to the wafer is adjusted.
  • the parallelism of the connection circuit board to the wafer is adjusted, and the displacement of the test circuit board or the connection circuit board in the direction in which the separation distance between the test circuit board and the connection circuit board is increased.
  • an electrical inspection is performed by bringing the entire probe apparatus into contact with the wafer.
  • the parallelism adjusting mechanism includes a plurality of position variable mechanisms.
  • the contact member of the probe card is in contact with the wafer to be inspected, the electrical resistance of each conductive part of the anisotropic conductive connector is measured, and the distribution of the obtained electrical resistance is measured.
  • the correction amount of the displacement amount by each position variable mechanism can be set so that the state becomes uniform.
  • the electrical resistance value of each of the connection conductive portions in the anisotropic conductive connector is 0.1 ⁇ or less, and the connection in the anisotropic conductive connector is not performed. It is preferable that the load per conductive part is set to be 0.01 to 0.4N.
  • the inspection circuit board, the anisotropic conductive connector, and the probe card reduce the pressure of the anisotropic conductive connector by the inspection circuit board and the connection circuit board.
  • the inspection initial state which is fixed, is set in this state, the inclination of the entire wafer inspection apparatus is adjusted by the parallelism adjustment mechanism, and the inspection initial state is changed to the inspection circuit board, the probe card, and the like.
  • the inspection circuit board or the connection circuit board in the direction in which the separation distance between the inspection circuit board and the connection circuit board increases.
  • the displacement of the contact is prohibited by the position variable mechanism, and high parallelism to the wafer is maintained throughout the probe device.
  • the results and the respective electrodes to be inspected was made form are electrically connected, it can be stably obtained with a small load the necessary electrical connection state.
  • the contact member of the probe card is constituted by a member provided with an anisotropic conductive sheet in which a plurality of connecting conductive portions each extending in the thickness direction are mutually insulated by the insulating portion.
  • the unevenness can be absorbed by the anisotropically conductive connector, and the unevenness can be absorbed by the contact member by applying pressure while maintaining high parallelism to the wafer throughout the probe device. Since the loss can be obtained in a state in which the loss is reduced as much as possible, a good electrical connection state can be more stably obtained with a small load.
  • the wafer inspection apparatus of the present invention since the above-described probe device is provided, a good electrical connection is provided between each of the electrodes to be inspected formed on the wafer and each of the contacts of the contact member.
  • the electrical connection state can be stably obtained with a small load, and therefore, the intended electrical inspection can be reliably performed with high reliability.
  • FIG. 1 is a plan view schematically showing a configuration of a main part of an example of a wafer inspection apparatus according to the present invention, together with a wafer to be inspected.
  • FIG. 2 is an explanatory sectional view showing an enlarged view of the wafer inspection apparatus shown in FIG. 1.
  • FIG. 3 is an explanatory cross-sectional view showing a state where a frame plate is arranged via an spacer between an upper mold and a lower mold for a mold for forming an elastic anisotropic conductive film.
  • FIG. 4 is an explanatory sectional view showing a state in which a molding material layer of a desired form is formed between an upper mold and a lower mold of a mold.
  • FIG. 5 is an explanatory sectional view showing a state in which the inspection circuit board and the connection circuit board in the wafer inspection apparatus shown in FIGS. 1 and 2 are electrically connected.
  • FIG. 6 is an explanatory cross-sectional view showing a state in which each of contacts on a connection circuit board of a wafer inspection apparatus is electrically connected to each of electrodes to be inspected of a part of an integrated circuit formed on a wafer. is there.
  • FIG. 7 is a graph schematically showing a characteristic curve of an anisotropic conductive connector constituting a contact member.
  • FIG. 8 is an explanatory cross-sectional view showing an enlarged main part of another configuration example of the wafer inspection apparatus according to the present invention.
  • FIG. 9 is an explanatory sectional view showing a state in which the inspection circuit board and the connection circuit board in the wafer inspection apparatus shown in FIG. 8 are electrically connected.
  • FIG. 10 is an explanatory cross-sectional view showing a state in which each of contacts on a connection circuit board of a wafer inspection apparatus is electrically connected to each of electrodes to be inspected of a part of an integrated circuit formed on a wafer. It is. [11] FIG. 11 is an explanatory cross-sectional view showing another configuration example of the anisotropic conductive connector.
  • FIG. 12 is an explanatory partial cross-sectional view showing another configuration example of each connection conductive portion in the anisotropic conductive connector.
  • FIG. 13 is an explanatory partial cross-sectional view showing still another configuration example of each connection conductive portion in the anisotropic conductive connector.
  • FIG. 14 is a partial cross-sectional view for explanation showing still another configuration example of each connection conductive portion in the anisotropic conductive connector.
  • FIG. 15 is an explanatory cross-sectional view showing still another configuration example of the anisotropic conductive connector.
  • FIG. 16 is an explanatory cross-sectional view showing an enlarged main part of still another configuration example of the wafer inspection apparatus according to the present invention.
  • FIG. 17 is an explanatory cross-sectional view schematically showing the configuration of an example of a conventional wafer inspection apparatus.
  • FIG. 1 is a schematic diagram of an example of a wafer inspection apparatus according to the present invention.
  • FIG. 2 is a plan view illustrating the wafer inspection apparatus shown in FIG. 1 together with a target wafer.
  • FIG. 1 is a schematic diagram of an example of a wafer inspection apparatus according to the present invention.
  • FIG. 2 is a plan view illustrating the wafer inspection apparatus shown in FIG. 1 together with a target wafer.
  • the wafer inspection apparatus includes an inspection circuit board 30 having a large number of inspection electrodes 31 formed on a front surface (a lower surface in FIG. 2) and an inspection circuit board 30 via an anisotropic conductive connector 20 described in detail below.
  • a probe device 10 comprising a probe card 40 arranged on the surface of the probe 30 and a wafer tray serving as a heating plate on which a wafer W to be inspected is placed below the probe card 40. 58 are arranged and configured. Further, the wafer tray 58 can be moved vertically by a suitable driving means (not shown).
  • the probe card 40 includes a connection circuit board 41 having a plurality of terminal electrodes 42 formed on the back surface (the top surface in FIG. 2) in accordance with a pattern corresponding to the pattern of the test electrodes 31 of the test circuit board 30, and a connection circuit board 41.
  • a contact member provided on the front surface (lower surface in FIG. 2) of the circuit board 41 and having a large number of contacts (not shown) to be brought into contact with electrodes to be inspected (not shown) of the integrated circuit in the inspection target W, W It consists of:
  • Examples of the material forming the inspection circuit board 30 and the connection circuit board 41 include glass, ceramics, and epoxy resin.
  • Anisotropically conductive connectors (hereinafter, referred to as "inclination adjustment anisotropically conductive connectors") 20, which are arranged between the inspection circuit board 30 and the connection circuit board 41 of the probe card 40, respectively.
  • the frame plate 21 has a plurality of anisotropic conductive film disposing holes 22 extending therethrough in the thickness direction. Each of the anisotropic conductive film disposing holes 22 of the frame plate 21 has a conductive material in the thickness direction.
  • the elastic anisotropic conductive film 25 having a property is arranged so as to cover the hole 22 for disposing the anisotropic conductive film, and the peripheral edge of the elastic anisotropic conductive film 25 is used for disposing the anisotropic conductive film on the frame plate 21. It is fixed to and supported by the opening edge of the hole 22.
  • the frame plate 21 has a plurality of positioning holes 23 for positioning the circuit board 30 for inspection and the probe card 40. In this example, four positioning holes 23 are formed at four corners of the rectangular frame plate 21
  • the elastic anisotropic conductive film 25 is formed of an elastic polymer material, and is a connection target electrode, specifically, the test electrode 31 and the connection circuit board 41 of the test circuit board 30. And a plurality of connection conductive portions 26 extending in the thickness direction, respectively, and an insulating portion 27 insulating these connection conductive portions 26 from each other. RU
  • connection conductive portion 26 in the elastic anisotropic conductive film 25 contains conductive particles P exhibiting magnetism densely in a state of being aligned in the thickness direction.
  • the insulating portion 27 contains no or almost no conductive particles P.
  • the connecting conductive portion 26 is formed such that the forces on both surfaces of the insulating portion 27 also protrude.
  • the total thickness of the elastic anisotropic conductive film 25 is, for example, preferably 100 to 3000 ⁇ m, more preferably 150 to 2500 111, and particularly preferably 200 to 2000 / ⁇ .
  • the film has sufficient irregularity absorption necessary for adjusting the inclination (angulation) in the entire wafer inspection apparatus, and has a sufficient thickness.
  • the thickness is 100 m or more, the elastic anisotropic conductive film 25 having sufficient strength can be reliably obtained.
  • the thickness is 3000 m or less, the connection conductive portion 26 having the required conductive characteristics can be formed. Obtained reliably.
  • the projecting heights of the protruding portions 26A and 26B of the elastic anisotropic conductive film 25 in the connecting conductive portion 26 are preferably such that the total thereof is at least 20% of the thickness of the connecting conductive portion 26. More preferably, the size is at least 25%, particularly preferably at least 30%.
  • both the inspection circuit board 30 and the probe card 40 are arranged via the anisotropic conductive connector 20 for adjusting the force and inclination.
  • the anisotropic conductive connector 20 for tilt adjustment is made to be in a state of being narrowed down by the inspection circuit board 30 and the probe card 40, and each of the inspection electrodes 31 on the inspection circuit board 30 is connected to the probe card 40 for connection.
  • Each of the terminal electrodes 42 of the circuit board 41 It is used while being fixed in an electrically connected state.
  • the maximum distortion amount of the elastic anisotropic conductive film 25 in the anisotropic conductive connector 20 for tilt adjustment is regulated between the inspection circuit board 30 and the probe card 40.
  • a plurality of spacers 55 (four in this example) are provided so as to be inserted or fitted into each of the positioning holes 23 of the frame plate 21 in the anisotropic conductive connector 20 for tilt adjustment!
  • a parallelism adjusting mechanism 50 for adjusting the inclination of the entire wafer inspection apparatus is provided.
  • Each spacer 55 is made of, for example, an electrically insulating cylinder and has a shaft portion of a bolt 52 as a position variable mechanism 51 constituting a parallelism adjusting mechanism 50 described later. It is inserted into the internal space of the laser 55.
  • each of the terminal electrodes 42 of the connection circuit board 41 faces each of the test electrodes 31 of the test circuit board 30, and the connection conductive portions 26 of the anisotropic conductive connector 20 for tilt adjustment.
  • Each of the electrodes is positioned so as to face each of the connection target electrodes.
  • the thickness of the spacer 55 is, for example, preferably 50% or more of the total thickness of the anisotropic conductive connector 20 for inclination adjustment, more preferably 60 to 90%. .
  • the magnitude of the clamping pressure on the elastic anisotropic conductive film 25 is prevented from being excessively large, and the necessary conductive property of the connection conductive portion 26 in the elastic anisotropic conductive film 25 is reliably obtained. .
  • the parallelism adjustment mechanism 50 includes a plurality of variable positions that relatively displace the inspection circuit board 30 or the probe card 40 in the thickness direction (the vertical direction in FIG. 2) of the anisotropic conductive connector 20 for tilt adjustment. With mechanism 51.
  • each position variable mechanism 51 is provided with an inspection circuit.
  • the bolt 52 Specifically, a bolt 52 constituting the position variable mechanism 51 is formed by a recess 32 having a head formed on the back surface of the inspection circuit board 30.
  • the through hole 33 and the shaft Is fixed or passed through the through-hole 33 and extends downward, passes through the inside space of the spacer 55 and the through-hole 44 in the connection circuit board 41, and the base end of the shaft portion is connected to the probe card.
  • test circuit board 30 and the probe card 40 are provided so as to be in contact with the bottom surface of the recess 43 in the test circuit board 41.
  • the test circuit board 30 or the probe card 40 is fixed by preventing the movement (displacement) in the direction in which the separation distance between the cards 40 increases, and by adjusting the tightening amount of the nut 53.
  • Anisotropic guide for tilt adjustment It is relatively displaced in the thickness direction of the sexual connector 20.
  • the pitch of the test electrodes 31 on the test circuit board 30 is preferably, for example, 500 to 5000 m, more preferably 800 to 2500 / ⁇ .
  • the required electrical connection between the test electrodes 31 and the terminal electrodes 42 of the connection circuit board 41 can be reliably achieved, and the test electrodes 31 are formed. Since the electrodes 31 can be arranged with high density, a large number of inspection electrodes 31 can be formed in accordance with the number of electrodes to be inspected on the wafer W to be inspected.
  • Each of the contacts of the contact member constituting the probe card 40 is electrically connected to each of the test electrodes 31 of the test circuit board 30 via an appropriate circuit (not shown) on the connection circuit board 41. It is connected to the.
  • the contact member in this example is, for example, an anisotropically conductive connector 45 having the same basic configuration as the anisotropically conductive connector 20 for tilt adjustment (hereinafter referred to as “one anisotropically conductive connector for forming a contact”) 45. It is configured.
  • the connection conductive portion 47 of the elastic anisotropic conductive film 46 is formed according to a pattern corresponding to the pattern of the electrode to be inspected formed on the wafer W.
  • the arrangement pitch of the conductive parts 47 is smaller than that of the anisotropic conductive connector 20 for inclination adjustment.
  • reference numeral 48 denotes an insulating portion
  • 49 denotes a frame plate.
  • the anisotropic conductive connector 20 for tilt adjustment and the anisotropic conductive connector 45 for contact formation will be described.
  • Various materials such as a metal material, a ceramic material, and a resin material are used as materials for forming the frame plates 21 and 49 of the anisotropic conductive connector 20 for adjusting the inclination and the anisotropic conductive connector 45 for forming a contact.
  • iron, copper, nickel, chromium, conolt, magnesium, manganese, molybdenum, indium, lead, palladium, titanium, tungsten, aluminum, gold, platinum, silver or other metal or these Metal materials such as alloys or alloy steels, ceramic materials such as silicon nitride, silicon carbide, and alumina, non-woven cloth reinforced epoxy resin, non-woven cloth reinforced polyimide resin, non-woven cloth reinforced screw Resin materials such as maleimide triazine resin and aramide resin are exemplified.
  • a linear thermal expansion coefficient is a coefficient of linear thermal expansion of a material forming the inspection circuit board 30 and the connection circuit board 41. It is preferable to use one that is equivalent or approximate to.
  • both the material forming the test circuit board 30 and the material forming the connection circuit board 41 are used. It is preferable to use one that is equal to or approximate to the average linear thermal expansion coefficient. Specifically, it is preferable to use a material having a coefficient of linear thermal expansion of 5 ⁇ 10 ′′ VK or less as the material forming the frame board 21.
  • the circuit board for inspection 30 and the circuit board 41 for connection are preferably used. If it is made from a glass substrate, a coefficient of linear thermal expansion was sigma preferable to use those 3X 10- 6 ⁇ 10 X 10- 6 ⁇ , circuit board 30 for inspection and the connection circuitry board 41 is but if it is made from organic substrate such as a glass epoxy substrate, and linear thermal expansion coefficient and is preferred instrument specific examples using those 6 ⁇ 10- 6 ⁇ 20 ⁇ 10- 6 ⁇ , inspection
  • metal materials such as iron-nickel alloys such as stainless steel and copper alloys such as phosphor bronze, polyimide resin, liquid crystal polymer resin and the like. Fatty materials.
  • a material having a linear thermal expansion coefficient equal to or close to that of the material forming the wafer to be inspected should be used. Is preferred. Specifically, if wood charge constituting the wafer is silicon, a coefficient of linear thermal expansion 1. 5 ⁇ 10- 4 ⁇ less, in particular, 3 ⁇ 10- 6 8 as preferred tool a specific example be used as the X 10- 6 ZK is I members type alloy such as invar, Elinvar alloys such as Elinvar, Suno one Inno one, this one-Honoré, 4
  • Metallic materials such as alloys, non-woven non-woven reinforced organic resin materials, and resin materials such as aramide resins.
  • the thickness of the frame plates 21 and 49 is not particularly limited as long as the shape can be maintained and the anisotropic conductive films 25 and 46 can be held. ⁇ m, preferably 50-250 ⁇ m.
  • the elastic polymer material forming the elastic anisotropic conductive films 25 and 46 a heat-resistant polymer material having a crosslinked structure is preferable.
  • Various materials can be used as the curable polymer material forming material that can be used to obtain a strong cross-linked polymer material, and specific examples thereof include silicone rubber, polybutadiene rubber, natural rubber, and polystyrene.
  • Conjugated rubbers such as isoprene rubber, styrene-butadiene copolymer rubber, acrylonitrile-butadiene copolymer rubber, and their hydrogenated products, styrene butadiene-gen block copolymer rubber, styrene isoprene block copolymer Block copolymer rubbers such as coalesced products and their hydrogenated kasumu products, black-mouthed prene, urethane rubber, polyester rubber, epichloronohydrin rubber, ethylene-propylene copolymer rubber, ethylene-propylene-copolymer rubber And a soft liquid epoxy rubber.
  • silicone rubber is preferred from the viewpoints of moldability and electrical properties!
  • silicone rubber one obtained by crosslinking or condensing a liquid silicone rubber is preferable.
  • the liquid silicone rubber may be any of a condensation type, an addition type, and a compound having a bull group-hydroxyl group. Specific examples include raw dimethyl silicone rubber, raw methyl silicone rubber, raw methyl methyl silicone rubber and the like.
  • the liquid silicone rubber containing a bullet group (polydimethylsiloxane containing a bullet group) is usually prepared by using dimethyldichlorosilane or dimethyldialkoxysilane in the presence of dimethylvinylchlorosilane or dimethylvinylalkoxysilane.
  • hydrolysis and condensation reactions are performed, for example, followed by fractionation by repeated dissolution and precipitation.
  • Liquid silicone rubbers containing vinyl groups at both ends are polymerized with a cyclic siloxane such as otatamethylcyclotetrasiloxane in the presence of a catalyst to form a polymerization terminator such as dimethyldibutyl.
  • alkalis such as tetramethylammonium hydroxide and n-butylphospho-hydroxymide or a silanolate solution thereof can be used.
  • alkalis such as tetramethylammonium hydroxide and n-butylphospho-hydroxymide or a silanolate solution thereof can be used.
  • Such a vinyl group-containing polydimethylsiloxane preferably has a molecular weight Mw (referred to as a standard polystyrene-converted weight average molecular weight; the same applies hereinafter) of 10,000 to 40,000.
  • Mw molecular weight
  • the molecular weight distribution index refers to the value of the ratio MwZMn between the standard polystyrene equivalent weight average molecular weight Mw and the standard polystyrene equivalent number average molecular weight Mn. Same as above), but those having 2 or less are preferred.
  • a liquid silicone rubber containing hydroxyl groups (hydroxyl-containing polydimethylsiloxane) is usually prepared by adding dimethyldichlorosilane or dimethyldialkoxysilane in the presence of dimethylhydrochlorosilane or dimethylhydroalkoxysilane. It can be obtained by carrying out hydrolysis and condensation reactions, for example, followed by fractionation by repeated dissolution and precipitation.
  • cyclic siloxane is polymerized in the presence of a catalyst in the presence of a catalyst, and as a polymerization terminator, dimethinolehydrochlorosilane, methinoreshydrochlorosilane or dimethinolehydroalkoxysilane is used as a polymerization terminator, and other reaction conditions (for example, , The amount of the cyclic siloxane and the amount of the polymerization terminator).
  • alkali such as tetramethylammonium hydroxide and ⁇ -butylphosphodium hydroxide or a silanolate solution thereof can be used. For example, it is 80 to 130 ° C.
  • Such a hydroxyl group-containing polydimethylsiloxane preferably has a molecular weight Mw of 10,000 to 40,000. Further, from the viewpoint of heat resistance of the obtained elastic anisotropic conductive films 25 and 46, those having a molecular weight distribution index of 2 or less are preferable.
  • the above-mentioned butyl group-containing polydimethylsiloxane and hydroxyl Either one of the group-containing polydimethylsiloxanes can be used, and both are used in combination.
  • a cured product of an additional liquid silicone rubber (hereinafter referred to as a “cured silicone rubber”) is used as an elastic polymer substance. ) Having a compression set at 150 ° C of 10% or less, more preferably 8% or less, and even more preferably 6% or less. If the compression set exceeds 10%, the conductive parts 26 and 47 will be permanently set when the resulting anisotropically conductive connector is used repeatedly many times or in a high-temperature environment. Immediately after this occurs, the chain of the conductive particles P in the connecting conductive portions 26 and 47 is disturbed, so that it becomes difficult to maintain the required conductivity.
  • the compression set of the cured silicone rubber can be determined by a method based on JIS K 6249.
  • the cured silicone rubber forming the elastic anisotropic conductive films 25, 46 preferably has a durometer A hardness of 10 to 60 at 23 ° C, more preferably 15 to 60. 55, particularly preferably 20 to 50.
  • the durometer A hardness is less than 10
  • the insulating parts 27 and 48 that insulate the connecting conductive parts 26 and 47 from each other are excessively distorted and the conductive part 26 In some cases, it may be difficult to maintain the required insulation between the connection portions or between the connection conductive portions 47.
  • the amount of the uncured component of the cured silicone rubber is increased and the pressure is applied, the uncured component of the cured silicone rubber is converted into the inspection electrode 31 of the inspection circuit board 30 and the terminal electrode of the connection circuit board 41. The substance may adhere to 42 and have an adverse effect.
  • the durometer A hardness is more than 60, a considerably large load is required to apply appropriate strain to the conductive portions 26 and 47 for connection. Deformation and destruction are likely to occur.
  • the cured silicone rubber When an anisotropic conductive connector is used in a burn-in test, the cured silicone rubber preferably has a durometer A hardness of 25 to 40 at 23 ° C. Use a silicone rubber cured product with a durometer A hardness outside the above range.
  • the obtained anisotropically conductive connector is used repeatedly in the burn-in test, permanent set occurs in the conductive parts 26, 47 for connection immediately and this causes As a result of the disorder of the chain of the conductive particles P, it may be difficult to maintain the required conductivity.
  • the durometer A hardness of the cured silicone rubber can be measured by a method based on JIS K 6249.
  • the cured silicone rubber forming the elastic anisotropic conductive films 25, 46 preferably has a bow I tear strength at 23 ° C of 8 kNZm or more, more preferably 10 kNZm. It is more preferably at least 15 kNZm, particularly preferably at least 20 kNZm. If the tear strength is less than 8 kNZm, the durability is likely to decrease when excessive strain is applied to the elastic anisotropic conductive films 25 and 46.
  • the tear strength of the cured silicone rubber can be determined by a method based on JIS K 6249.
  • the addition type liquid silicone rubber is a one-pack type liquid silicone rubber which is cured by a reaction between a bullet group and a Si-H bond, and is composed of a polysiloxane containing both a bullet group and a Si-H bond. (One-component type), and two-component type (two-component type), which has both vinyl group-containing polysiloxane and Si—H bond-containing polysiloxane power. It is preferable to use a mold liquid silicone rubber.
  • addition type liquid silicone rubber those having a viscosity at 23 ° C of 100 to 1,250 Pa's are preferably used, more preferably 150 to 800 Pa's, and particularly preferably 250 to 800 Pa's. ⁇ 500 Pa's. If the viscosity is less than 100 Pa's, the conductive particles in the additional liquid silicone rubber are likely to settle out immediately afterwards, as a molding material for obtaining the elastic anisotropic conductive film described later. A stable storage stability, and when a parallel magnetic field is applied to the molding material layer, the conductive particles are not aligned so as to line up in the thickness direction and form a chain of conductive particles in a uniform state. Can be difficult.
  • the obtained molding material has a high viscosity, so that it may be difficult to form a molding material layer in a mold, and When a parallel magnetic field is applied to the material layer, the conductive particles do not move sufficiently, so that the conductive particles do not move. It may be difficult to orient the chips so that they are aligned in the thickness direction.
  • the polymer substance forming material may contain a curing catalyst for curing the polymer substance forming material.
  • a curing catalyst an organic peroxide, a fatty acid azoide compound, a hydrosilylide catalyst, or the like can be used.
  • organic peroxide used as the curing catalyst examples include benzoyl peroxide, bisdicyclobenzoyl peroxide, dicumyl peroxide, and ditertiary butyl peroxide.
  • fatty acid azo compound used as a curing catalyst examples include azobisisobutyl nitrile.
  • the catalyst that can be used as a catalyst for the hydrosilylation reaction include chloroplatinic acid and salts thereof, a siloxane complex containing a platinum-unsaturated group, a complex of butylsiloxane and platinum, and platinum and 1,3-dibutyltetramethyldisiloxane.
  • known complexes such as a complex of triorganophosphine or phosphite with platinum, a chelate of acetyl acetate platinum, and a complex of cyclic gen and platinum.
  • the amount of the curing catalyst used is appropriately selected in consideration of the type of the polymer-forming material, the type of the curing catalyst, and other curing conditions. 15 parts by weight.
  • the conductive particles P having magnetism that constitute the conductive portions 26 and 47 for connection include, for example, particles of a metal such as iron, nickel, and cobalt, particles of an alloy thereof, or a particle containing these metals. Particles, or core particles of these particles, and the surface of the core particles is plated with a metal having good conductivity such as gold, silver, palladium, rhodium, or non-magnetic metal particles or glass beads. Inorganic material particles or polymer particles such as core particles are used as core particles, and the surface of the core particles is coated with a conductive magnetic material such as nickel or cobalt. One coated with both of the metals having good properties.
  • nickel particles as core particles, the surfaces of which are plated with a metal having good conductivity such as gold or silver.
  • Means for coating the surface of the core particles with a conductive metal is not particularly limited, but may be, for example, an electroless plating.
  • the coverage of the conductive metal on the particle surface is preferably 40% or more, more preferably 45% or more, and particularly preferably 47 to 95%.
  • the coating amount of the conductive metal is preferably from 2.5 to 50% by weight of the core particles, more preferably from 3 to 45% by weight, still more preferably from 3.5 to 40% by weight, and particularly preferably. Is from 5 to 30% by weight.
  • the particle diameter of the conductive particles P is preferably 1 to 500 ⁇ m, more preferably 2 to 400 m, further preferably 5 to 300 m, and particularly preferably 10 to 300 ⁇ m. ⁇ 150 m.
  • the particle size distribution (DwZDn) of the conductive particles P is preferably from 1 to LO, more preferably from 1 to 7, still more preferably from 1 to 5, and particularly preferably from 1 to 4.
  • the elastic anisotropic conductive films 25 and 46 obtained can be easily deformed under pressure, and the contact between the elastic anisotropic conductive films 25 and 46 can be improved. Sufficient electrical contact is obtained between conductive particles P in connection conductive portions 26 and 47.
  • the shape of the conductive particles P is not particularly limited, but is spherical, star-shaped, or agglomerated because they can be easily dispersed in the polymer-forming material. It is preferable that the particles are in a lump formed by the secondary particles.
  • the water content of the conductive particles P is preferably 5% or less, more preferably 3% or less, further preferably 2% or less, and particularly preferably 1% or less.
  • the conductive particles P whose surfaces are treated with a coupling agent such as a silane coupling agent can be used as appropriate. Since the surface of the conductive particles P is treated with the coupling agent, the adhesiveness between the conductive particles P and the elastic polymer material is increased, and as a result, the obtained elastic anisotropic conductive films 25 and 46 are formed. , High durability in repeated use
  • the amount of the coupling agent used is appropriately selected within a range that does not affect the conductivity of the conductive particles P, but the coverage of the coupling agent on the surface of the conductive particles P (based on the surface area of the conductive core particles). More preferably, the coverage is 7 to: LOO%, more preferably 10 to: LOO%, and particularly preferably 20 to 50%. This is 100%.
  • the content ratio of the conductive particles P in the conductive portions 26 and 47 for connection is 10 to 60% by volume, preferably 15 to 50%. If this ratio is less than 10%, the connection conductive portions 26 and 47 having sufficiently low electric resistance may not be obtained. On the other hand, if this ratio exceeds 60%, the obtained conductive parts 26 and 47 for connection may be fragile or may not have the necessary elasticity as the conductive parts 26 and 47 for connection immediately.
  • the polymer substance-forming material may contain, if necessary, an inorganic filler such as ordinary silica powder, colloidal silica, airgel silica, and alumina.
  • an inorganic filler such as ordinary silica powder, colloidal silica, airgel silica, and alumina.
  • the use amount of such an inorganic filler is not particularly limited, but if it is used in an excessively large amount, it is not preferable because the movement of the conductive particles P due to a magnetic field is greatly hindered in a production method described later.
  • the anisotropic conductive connector 20 for tilt adjustment as described above can be manufactured as follows. The same applies to the anisotropic conductive connector 45 for forming a contact.
  • a plurality of anisotropic conductive film disposing holes 22 are formed in the frame board constituting material corresponding to the electrode regions where the connection target electrodes related to the connection circuit board 41 and the inspection circuit board 30 are formed.
  • the frame plate 21 is manufactured by forming the positioning holes 23 at predetermined positions of the frame plate constituent material.
  • an etching method or the like can be used as a method of forming the anisotropic conductive film disposing hole 22 and the positioning hole 23, for example.
  • the polymer material shows magnetism.
  • a molding material in which the conductive particles P are dispersed is prepared.
  • a mold for forming the elastic anisotropic conductive film is prepared, and the prepared molding material is applied to each molding surface of the upper mold 70 and the lower mold 75 in the mold.
  • the molding material layer 25B is formed by applying in accordance with this pattern, that is, the arrangement pattern of the elastic anisotropic conductive film 25 to be formed.
  • a method of applying the molding material to the molding surfaces of the upper mold 70 and the lower mold 75 it is preferable to use a screen printing method. According to such a method, it is easy to apply the molding material according to a required pattern, and it is possible to apply an appropriate amount of the molding material.
  • the arrangement pattern of the connection conductive portions 26 of all the elastic anisotropic conductive films 25 to be formed is formed on the lower surface of the ferromagnetic substrate 71.
  • a ferromagnetic layer 72 is formed according to an antipodal pattern, and a non-magnetic layer 73 is formed in a portion other than the ferromagnetic layer 72, and the ferromagnetic layer 72 and the non-magnetic layer 72 are formed. 73 forms a molding surface.
  • a ferromagnetic layer 77 is formed on the upper surface of the ferromagnetic substrate 76 according to the same pattern as the arrangement pattern of the connection conductive portions 26 of all the anisotropically conductive films 25 to be formed.
  • a non-magnetic layer 78 is formed in a portion other than the ferromagnetic layer 77, and a forming surface is formed by the ferromagnetic layer 77 and the non-magnetic layer 78.
  • recesses 74A and 74B are formed corresponding to the protruding portions 26A and 26B of the connecting conductive portion 26 of the elastic anisotropic conductive film 25 to be molded. Is formed.
  • Ferromagnetic substrates such as iron, iron-nickel alloy, iron-cobalt alloy, nickel, and cobalt may be used as the material forming the ferromagnetic substrates 71 and 76 in each of the upper mold 70 and the lower mold 75.
  • the ferromagnetic substrates 71 and 76 preferably have a thickness of 0.1 to 50 mm, have a smooth surface, are chemically degreased, and are mechanically polished. I prefer that.
  • the ferromagnetic layers 72 and 77 in each of the upper mold 70 and the lower mold 75 may be made of a ferromagnetic material such as iron, iron-nickel alloy, iron-cobalt alloy, nickel, or cobalt. Metals can be used.
  • the ferromagnetic layers 72 and 77 preferably have a thickness of 10 m or more. When the thickness is less than 10 m, it is difficult to apply a magnetic field having a sufficient intensity distribution to the molding material layer formed in the mold, and as a result, the connection in the molding material layer becomes difficult. Since it becomes difficult to aggregate the conductive particles P at a high density in the portion where the conductive portion 26 is to be formed, a sheet having good anisotropic conductivity may not be obtained.
  • a nonmagnetic metal such as copper, a heat-resistant polymer substance, or the like may be used.
  • Able to use the radiation-cured polymer material because the nonmagnetic layers 73 and 78 can be easily formed by one photolithography method.
  • Photoresists such as a system dry film resist, an epoxy system liquid resist, and a polyimide system liquid resist can be used.
  • the thickness of the nonmagnetic layers 73 and 78 is set in accordance with the thickness of the ferromagnetic layers 72 and 77 and the height of the projecting connecting portion 26 of the target elastic anisotropic conductive film 25.
  • a plurality of openings K having a shape conforming to the planar shape of the elastic anisotropic conductive film 25 to be formed are formed on the molding surface of the lower mold 75 on which the molding material layer 25B is formed.
  • the frame plate 21 is positioned and arranged via the spacer 79B, and a plurality of shapes having a shape conforming to the planar shape of the elastic anisotropic conductive film 25 to be formed are formed on the frame plate 21.
  • the upper mold 70 on which the molding material layer 25B has been formed is positioned and arranged via the spacer 79A having the opening K formed thereon, and further, these are superimposed, as shown in FIG. Between the mold 70 and the lower mold 75, a molding material layer 25A having a desired form (the form of the anisotropic conductive film 25 to be formed) is formed.
  • a pair of electromagnets are arranged on the upper surface of the ferromagnetic substrate 71 in the upper die 70 and the lower surface of the ferromagnetic substrate 76 in the lower die 75 and actuated.
  • the conductive particles P dispersed in the shape material layer 25A are connected to the connecting conductive portion 26 located between the ferromagnetic layer 72 of the upper mold 70 and the corresponding ferromagnetic layer 77 of the lower mold 75. And are aligned in the thickness direction.
  • an electrical inspection is performed on the wafer W as follows. That is, first, the nuts 53 of the respective position variable mechanisms 51 constituting the parallelism adjusting mechanism 50 are tightened by a predetermined amount and uniformly set tightening amount, as shown in FIG.
  • the inspection circuit board is 30, the inclination adjusting anisotropic conductive connector 20 and the probe card 40 are temporarily fixed, and thereby, each of the test electrodes 31 on the test circuit board 30 and the connection circuit board constituting the probe card 40.
  • Each of the terminal electrodes 42 in 41 is electrically connected to each of the connection conductive portions 26 in the anisotropic conductive connector 20 for tilt adjustment.
  • each of the connection conductive portions 47 of the contact forming anisotropic conductive connector 45 constituting the probe card 40 is connected to each of the electrodes to be inspected of a part of the integrated circuit formed on the wafer W.
  • an inspection initial state setting operation for adjusting the parallelism of the three of the inspection circuit board 30, the probe card 40, and the wafer W, that is, a parallelism adjustment process is performed. .
  • each of the conductive portions 47 for connection in the anisotropically conductive connector 45 for forming a contact forming the probe card 40 is subjected to inspection of a part of the integrated circuit formed on the wafer W.
  • Each of the electrodes is brought into contact with each other, and this state force is further pressed upward, so that each of the connecting conductive portions 47 in the anisotropic conductive connector 45 for contact formation and each of the electrodes to be tested in the Ueno and W are connected.
  • the electrical resistance of each of the conductive portions 26 for connection in the anisotropic conductive connector 20 for tilt adjustment is measured, and the distribution of the obtained electrical resistance is substantially uniform.
  • the amount of tightening of the nut 53 in each position variable mechanism 51 is set separately for each nut 53, and the amount of tightening of each nut 53 is adjusted based on these amounts of correction. Is done.
  • the “substantially uniform state” refers to a state in which the electrical resistance values of all the connecting conductive portions 26 match within a range of 50 m ⁇ .
  • the inspection circuit board 30, the probe card 40, and the wafer W are in a state having a high degree of parallelism.
  • the conductive state is ensured by the elastic anisotropic conductive film 25 in the anisotropic conductive connector 20 for tilt adjustment being pressed by the detection circuit board 30 and the connection circuit board 41 and compressed in the thickness direction.
  • the inspection circuit board 30 and the anisotropically conductive connector for tilt adjustment are prohibited in a state where movement (displacement) in the direction in which the separation distance between the inspection circuit board 30 and the connection circuit board 41 is increased is prohibited.
  • An inspection initial state in which a predetermined electrical inspection is fixed by the three members 20 and the probe card 40 is set.
  • the electrical resistance value of all the connecting conductive parts 26 of the elastic anisotropic conductive film 25 in the anisotropic conductive connector 20 for inclination adjustment is, for example, 0.1 ⁇ or less. Therefore, the clamping pressure on the elastic anisotropic conductive film 25 by the inspection circuit board 30 and the connection circuit board 41 is in a state of 0.01 to 0.4 N per connection conductive part 26. Is preferred. If the value of the sandwiching pressure is too small, it may be difficult to perform a required electrical test because the electrical resistance value of the connecting conductive portion 26 becomes high. On the other hand, if the value of the clamping pressure is excessive, the inspection circuit board 30 and the connection circuit board 41 may be deformed, so that stable electrical connection may be difficult.
  • each of the connecting conductive portions 47 in the contact forming anisotropic conductive connector 45 becomes a wafer, W is in contact with each of the electrodes to be inspected of some integrated circuits formed in W This state force is further pressed upward with a load of a predetermined magnitude, thereby achieving the required electrical connection.
  • the wafer W is heated to a predetermined temperature by the wafer tray 58, and in this state, the required electrical inspection (WLBI test or probe test) is performed on the wafer W.
  • the probe apparatus 10 having the parallelism adjustment mechanism 50 for adjusting the inclination of the entire wafer inspection apparatus with respect to the wafer W is provided.
  • the nuts 53 are independently tightened with the tightening amounts adjusted to an appropriate size, and the parallelism of the entire wafer inspection apparatus is adjusted, so that the inspection circuit board 30, the probe card 40 (the connection circuit board 41) are adjusted.
  • the wafer W to be inspected have a very high degree of parallelism.
  • the inspection circuit board 30, the anisotropic conductive connector 20 for tilt adjustment, and the probe are tightened by tightening the nuts 53 of the respective position variable mechanisms 51 to a predetermined size and uniformly set.
  • the three members of the card 40 are temporarily fixed, and the probe device 10 is formed on the wafer W and each of the connection conductive portions 47 in the anisotropic conductive connector 45 for contact formation by further applying pressure while the entire probe device 10 is in contact with the wafer W. Electrically connected to each of the electrodes to be inspected, and each of the electrodes set so that the electrical resistance values of all the connection conductive portions 26 in the anisotropically conductive connector 20 for tilt adjustment become substantially uniform.
  • the wafer W itself. Since the inclination of the inspection circuit board 30 and the probe card 40 is adjusted in consideration of the undulation and warpage of the wafer itself, the initial inspection state of the wafer inspection apparatus is changed to the inspection circuit board 30 and the probe card 40 (connection Circuit board 41) and the wafer W to be inspected have a very high degree of parallelism, which increases the separation distance between the inspection circuit board 30 and the connection circuit board 41. The displacement of the probe is prohibited by the position variable mechanism 51, and high parallelism with respect to the wafer W is maintained throughout the probe device 10. As a result, the required electrical connection state can be stably obtained with a small load, so that the intended electrical inspection of the wafer W can be performed at a high level. It can be performed reliably and reliably.
  • the contact member of the probe card 40 is formed of an anisotropic conductive connector including an elastic anisotropic conductive film (anisotropic conductive sheet) 46
  • the inspection is basically performed from the initial state of the inspection.
  • the anisotropic conductive connector 20 for tilt adjustment by applying pressure to the inspection state where a load is applied provides the unevenness absorption by the anisotropic conductive connector 20, and the force is maintained while maintaining high parallelism to the wafer W throughout the probe device 10.
  • the pressure By applying the pressure, the inherent irregularity absorbing property of the elastic anisotropic conductive film 46 in the anisotropic conductive nectar 45 for forming a contact can be obtained in a state where loss is reduced as much as possible.
  • the parallelism of each of the connection conductive portions of the anisotropic conductive connector for contact formation, the electrode to be inspected formed on the wafer W, and the force of the wafer inspection apparatus is adjusted.
  • FIG. 7 by electrical connection in the state of being connected, as shown in FIG. 7, the load in a state where all the connecting conductive parts have begun to contact each of the electrodes to be inspected on the wafer W.
  • the initial load 1 is reached with a small load but the parallelism of the whole wafer inspection device is not adjusted, in the anisotropic conductive connector for forming contacts, all the conductive parts for connection are inspected on the wafer W.
  • overdrive amount the amount of strain of the elastic anisotropic conductive film when the pressure is applied from the initial load to the inspection load in the inspection state.
  • overdrive amount the amount of strain of the elastic anisotropic conductive film when the pressure is applied from the initial load to the inspection load in the inspection state.
  • the anisotropic conductive connector 45 for forming a contact has a stable resistance value (conductive property) with a small load, that is, a stable electrical connection.
  • the connection state can be achieved (see the load-resistance curve shown by the solid line in FIG. 7); however, if the parallelism is not adjusted, the resistance (conductive property) reaches a stable state. By this time, a large load is required (see the load-resistance curve shown by the broken line in FIG. 7).
  • the overdrive amount due to the anisotropic conductive connector 20 for tilt adjustment (in this case, when the pressure is increased from the initial load 1 in the initial state of the inspection to the inspection load in the inspection state).
  • the amount of distortion of the elastic anisotropic conductive film 25) is obtained, and the overdrive amount ⁇ 1 is obtained by the anisotropic conductive connector 45 for forming the contact, so that a good electrical connection state can be more reliably stabilized with a small load.
  • the intended electrical inspection of the wafer W can be reliably performed with high reliability.
  • the total amount of overdrive for the entire probe device 10 is calculated by using the anisotropically conductive connector 20 for tilt adjustment and the anisotropically conductive connector 45 for forming a contact each having a total thickness of 500 m.
  • a length of about 60 to 120 m can be secured.
  • the anisotropic conductive connector 20 for tilt adjustment is one in which the elastic anisotropic conductive film 25 is supported by the frame plate 21 made of a metal material, the tilt adjustment is performed when the frame plate 21 is held.
  • the entirety of the anisotropically conductive connector 20 is not greatly deformed, so that the work of positioning the anisotropically conductive connector 20 for tilt adjustment with respect to the connection target electrode can be performed by using the position variable mechanism 51.
  • the positioning operation for the connection target electrode can be easily performed.
  • the inspection electrodes 31 of the inspection circuit board 30 are electrically connected by a specific inclination adjusting anisotropic conductive connector 120, so that the inspection electrodes 31 are arranged at a high density. Therefore, a large number of test electrodes 31 can be formed, so that a large number of test electrodes can be inspected at once.
  • the electrical connection using the anisotropic conductive connector can achieve a stable connection state even with a small contact resistance S, so that good electrical characteristics can be obtained.
  • the inspection electrode 31 of the inspection circuit board 30 and the terminal electrode 42 of the connection circuit board 41 are electrically connected via the connection conductive part 26 of the anisotropically conductive connector 20 for adjustment. Therefore, since the distance of the signal transmission system is short, it is possible to cope with electrical inspection of a high-performance integrated circuit that requires high-speed processing.
  • the frame plates 21 and 49 of the anisotropically conductive connector 20 for tilt adjustment and the anisotropically conductive connector 45 for contact formation are made of a material with a small coefficient of linear thermal expansion, they are also inspected for changes in the temperature environment. Good electrical connection between the circuit board 30 for connection and the circuit board 41 for connection can be stably maintained, and good electrical connection between the probe device 10 and the wafer W can be stably maintained. it can.
  • the probe device may have the configuration shown in FIG.
  • the spacer 60 that regulates the maximum distortion amount of the anisotropic conductive connector 20 for tilt adjustment includes an anisotropic conductive member for tilt adjustment. It consists of a rectangular frame having an opening 63 in a region corresponding to the region where the elastic anisotropic conductive film 25 of the conductive connector 20 is formed, and is disposed on both surfaces of the frame plate 21 in the anisotropic conductive connector 20 for tilt adjustment. Then, the tilt adjusting anisotropic conductive connector 20 is supported.
  • the basic configuration of this wafer inspection apparatus is the same as that of the wafer inspection apparatus shown in FIG. 2 except that spacers having different configurations are used. For convenience, the same components are used. Are denoted by the same reference numerals.
  • a through hole 64 extending in the thickness direction is formed at a position corresponding to the positioning hole 23 of the anisotropic conductive connector 20 for tilt adjustment, and constitutes the position variable mechanism 51.
  • the bolts 52 are inserted into the through holes 64 in each spacer 60 and the positioning holes 23 in the anisotropic conductive connector 20 for tilt adjustment, so that the inspection circuit board 30 and the anisotropic tilt adjustment
  • the conductive connector 20 and the probe card 40 are connected to the test electrode 31 on the test circuit board 30 so as to face the terminal electrodes 42 on the connection circuit board 41 and to adjust the inclination of the anisotropic conductive connector 20.
  • the conductive portions 26 for connection in are positioned so as to face each of the electrodes to be connected.
  • the spacers 60, 60 in this example are a pair of a rectangular frame-shaped plate portion 62 made of, for example, a metal and the frame plate 21 of the anisotropic conductive connector 20 for tilt adjustment in the plate portion 62.
  • a plurality of column-shaped minute projections 61 made of an elastic body are formed on the surface that is in contact with and the surface that is in contact with the inspection circuit board 30 or the connection circuit board 41.
  • the total thickness of the two spacers 60 and 60 including the frame plate 21 of the anisotropically conductive connector 20 for tilt adjustment is, for example, 50% or more of the total thickness of the anisotropically conductive connector 20 for tilt adjustment.
  • the size is more preferably 50 to 70%.
  • the total thickness of the thickness of the two spacers 60 including the minute protrusions 61 and the thickness of the frame plate 21 in the anisotropic conductive connector 20 for tilt adjustment is equal to the thickness of the anisotropic conductive connector 20 for tilt adjustment.
  • the size is preferably 90% or more of the total thickness, more preferably 90 to 95%.
  • the spacer 60 having such a configuration By using the spacer 60 having such a configuration, the magnitude of the narrow pressure applied to the elastic anisotropic conductive film 25 in the anisotropic conductive connector 20 for inclination adjustment is prevented from being excessive, and the connection is performed. The required conductivity is reliably obtained in the conductive section 26 for use, and the desired inclination correction function by the minute projections 61 is reliably obtained.
  • a predetermined electrical inspection is performed on wafer W in the same manner as in the wafer inspection apparatus shown in FIGS. 1 and 2. That is, the nuts 53 of each position variable mechanism 51 constituting the parallelism adjusting mechanism 50 are As shown in FIG. 9, the elastic anisotropic conductive film 25 in the anisotropic conductive connector 20 for tilt adjustment is connected to the circuit board 30 for inspection by tightening with the specified tightening amount.
  • the circuit board 41 for inspection and the circuit board 30 for inspection and tilt adjustment are used in a state where each of the minute projections 61 of the spacer 60 is compressed in the thickness direction by being narrowly pressed while being pressed by the circuit board 41 and compressed in the thickness direction.
  • the anisotropic conductive connector 20 and the probe card 40 are temporarily fixed, thereby adjusting the inclination of each of the inspection electrodes 31 on the inspection circuit board 30 and each of the terminal electrodes 42 on the connection circuit board 41. It is electrically connected through each of the connecting conductive portions 26 in the anisotropic conductive connector 20 for use.
  • the wafer W to be inspected is placed on the wafer tray 58, and the wafer tray 58 is moved upward to bring the wafer W into contact with the probe card 40. From this state, the wafer W is further pressed upward, as shown in FIG. As shown, each of the connection conductive portions 47 in the anisotropic conductive connector 45 for contact formation is brought into contact with each of the electrodes to be inspected of a part of the integrated circuit formed on the wafer W. In a state where the electrical connection has been achieved by further pressing upward from above, the electrical resistance value of each of the connection conductive portions 26 in the anisotropic conductive connector 20 for tilt adjustment is measured, and the obtained electrical resistance value is obtained.
  • the correction amount of the tightening amount of the nut 53 in each position variable mechanism 51 is set separately for each nut 53 so that the distribution of the nuts is substantially uniform, and based on these correction amounts, Tightening of the nut 53 's are adjusted respectively.
  • the inspection circuit board 30, the probe card 40, and the wafer W are in a state having a high degree of parallelism. Then, the elastic anisotropic conductive film 25 in the anisotropic conductive connector 20 for adjusting the inclination is clamped by the inspection circuit board 30 and the connection circuit board 41 so that the conduction state is ensured and the inspection circuit board 30 is connected. In a state in which movement (displacement) in a direction in which the separation distance from the connection circuit board 41 becomes large is prohibited, the inspection circuit board 30, the inclination adjusting anisotropic conductive connector 20, and the probe card 40 are connected. An inspection initial state for performing a predetermined electrical inspection, which is a state in which the operator is fixed, is set.
  • the wafer tray 58 is moved upward by an appropriate driving means, so that the contact forming anisotropic conductive connector 45 is moved.
  • Each of the connection conductive portions 47 in the above is brought into contact with each of the test electrodes of a part of the integrated circuit formed on the wafer W, and this state force is further pressed upward, so that the required electrical connection is made. Is achieved.
  • the wafer W is heated to a predetermined temperature by the wafer tray 58, and in this state, a required electrical inspection (WLBI test or probe test) is performed on the wafer W!
  • the wafer inspection apparatus having the above configuration, basically, the same effects as those shown in FIGS. 1 and 2 can be obtained, and at the same time, the minute projections in the spacer 60 can be obtained. Since the tilt adjustment function according to 61 can be obtained, a good electrical connection state can be obtained more stably with a small load, so that the intended electrical inspection of the wafer W can be performed with high reliability. Can be performed reliably.
  • the wafer inspection apparatus having the above-described configuration, it is not necessary to form the minute projections 61 of the spacer 60 on both sides, and it is also possible to adopt a configuration in which the micro projections 61 are formed on one of the surfaces. ,.
  • the inspection circuit board or the connection circuit board is displaced relative to the thickness direction of the anisotropic conductive connector. And the distance between the test circuit board and the connection circuit board increases when the test electrodes on the test circuit board and the terminal electrodes on the connection circuit board are electrically connected.
  • various mechanisms can be used that are not limited to a pair of fastening members consisting of bolts and nuts.
  • an anisotropic conductive connector for tilt adjustment which electrically connects each of the test electrodes 31 on the test circuit board 30 and each of the terminal electrodes 42 in the connection circuit board 41, is shown in FIG.
  • the elastic anisotropic conductive film 25 may have a configuration in which minute projections are formed on each connection conductive portion.
  • each connection conductive portion 26 in the elastic anisotropic conductive film 25 of the inclination adjusting anisotropic conductive connector 20 has a microprojection having, for example, a plurality of columnar microprojections 28A on both end surfaces. It is assumed that a part is formed.
  • each micro-projection portion 28A is the same as that of the anisotropic conductive connector 20 for tilt adjustment.
  • the size is, for example, 5 to 10% of the total thickness.
  • such a minute projection portion 28A is formed by forming an elastic anisotropic conductive film having a molding surface on which a concave portion for forming a minute projection portion in a desired form is formed. Can be obtained by using a metal mold.
  • the shape of the minute projections in each of the connection conductive portions 26 is not particularly limited.
  • the minute projections include a plurality of spherical minute projections 28B.
  • it can be constituted by one composed of a plurality of wires 28C.
  • the elastic anisotropic conductive film 25 itself of the tilt adjusting anisotropic conductive connector 20 itself has high irregularity absorption property, and the wafer The inclination adjusting function of the inspection device is improved, and thereby, a good electrical connection state can be more reliably and stably obtained with a small load.
  • connection conductive portion 26 of the anisotropic conductive connector 20 for tilt adjustment may have a configuration having a hemispherical or elliptical spherical protruding portion 26C.
  • it may be configured to have a frustum-shaped protruding portion whose diameter decreases toward the tip.
  • At least one of the elastic anisotropically conductive films has a DLC film formed of at least one of the elastically anisotropically conductive films.
  • a structure integrally formed so as to cover the insulating portion can be used.
  • a DLC film 46A is formed so as to cover the entire surface of the elastic anisotropic conductive film 46. ing.
  • the basic configuration other than having the DLC film 46A is the same as the anisotropic conductive connector shown in FIG. 2, and for convenience, the same components are denoted by the same reference numerals. It is.
  • the thickness of the DLC film 46A is, for example, preferably 1 to 500 nm, more preferably 2 to 50 nm.
  • the DLC film 46A preferably has a surface resistivity of 1 ⁇ 10 8 to 1 ⁇ 10 " ⁇ / port. More preferably, it is 1 X 10 1 () to 1 X ⁇ 12 ⁇ .
  • the DLC film 46 ⁇ preferably has a ratio of diamond bond to graphite bond of 9: 1 to 5: 5, more preferably 8: 2 to 6: 4. A DLC film 46 ⁇ having a surface resistivity of is reliably obtained.
  • the anisotropic conductive connector 45 1S for forming a contact which contacts the wafer W in the probe device 10 is formed. Since the wafer W has the elastic anisotropic conductive film 46, it is possible to prevent the wafer W from being contaminated, and it is also possible to prevent the wafer W from being contaminated in a high-temperature environment while being pressurized by the helmet or W. Even if left for a long time, the elastic anisotropic conductive film 46 can be prevented from adhering to the wafer W, thereby preventing the elastic anisotropic conductive film 46 and the wafer W from being damaged. it can. Furthermore, since the accumulation of electric charges on the surface of the elastic anisotropic conductive film 46 can be prevented or suppressed, the adverse effects of static electricity can be eliminated.
  • the specific configuration of the contact member in the probe card 40 is not particularly limited.
  • a contact member composed of a blade or a pin and a micro spring pin is arranged, and the contact member is anisotropic.
  • a conductive sheet for example, an anisotropic conductive connector 45 shown in FIG. 2 without the frame plate 21
  • a metal sheet extending through the insulating sheet in the thickness direction thereof
  • a connector formed of a sheet-like connector on which a connector is arranged for example, as shown in FIG. 16, a connector formed by laminating an anisotropic conductive connector 45 and a sheet-like connector 65 can be used.
  • reference numeral 66 denotes a metal body (contact)
  • 67 denotes an insulating sheet.
  • Diameter 8 inch silicon (coefficient of linear thermal expansion 3. 3 X 10- 6 ZK) manufactured on the wafer are respectively the dimension in the transverse direction is 11000 m, the dimension in the vertical direction is 6000 m rectangular
  • a total of 64 integrated circuits were formed in a matrix, eight in the vertical direction and eight in the horizontal direction.
  • Each of the integrated circuits formed on the wafer has an electrode area to be inspected at the center thereof, and the electrode area to be inspected has 60 electrodes to be inspected each made of gold-plated copper having a surface of 120 m. They are arranged in a line in a horizontal direction at a pitch. Also, two of the 60 electrodes to be inspected are electrically connected to each other.
  • Each electrode to be inspected has a horizontal dimension of 80 m and a vertical dimension of 170 m, and the total number of electrodes to be inspected in the wafer is 3,840.
  • all the electrodes to be inspected are electrically connected to a common bow I extension electrode (not shown) formed on the periphery of the wafer.
  • this wafer is referred to as “evaluation wafer Wl”.
  • the plane accuracy of the silicon wafer itself in the evaluation wafer W1 was ⁇ 8 / zm.
  • evaluation wafer W2 The plane accuracy of the silicon wafer itself in this evaluation wafer W1 was ⁇ 10 m.
  • a mold for forming an elastic anisotropic conductive film was produced under the following conditions.
  • Ferromagnetic substrate 71, 76: material; iron, thickness; 6000 / z m
  • 'Ferromagnetic layers 72, 77: material; nickel; dimensions; width 60 m, height 150 m, thickness 50 / zm, arrangement pitch (center-to-center distance); 120 m, number of ferromagnetic layers; 3840 (A total of 64 areas with 60 ferromagnetic layers are formed, corresponding to the electrode areas to be inspected for integrated circuits on the evaluation wafer W1.)
  • Non-magnetic material layer (73) Material; hardened dry film resist, thickness: 80 m' Non-magnetic material layer (78): Material; hardened dry film resist, thickness: 80 m Location (74A): horizontal 60 / zm, vertical 150 / zm, depth 30 / zm
  • Each of the openings (8600 m in the horizontal direction and 1450 ⁇ m in the vertical direction) formed in the wafer W1 for evaluation correspond to the electrode area to be inspected. (Two rectangles) for forming an elastic anisotropic conductive film were produced.
  • the addition-type liquid silicone rubber is a two-pack type having a viscosity of liquid A of 500 Pa.s and a viscosity of liquid B of 500 Pa's.
  • a cured product having a compression set of 6%, a cured product having a durometer A hardness of 40, and a cured product having a tear strength of 30 kNZm was used.
  • the viscosity at 23 ⁇ 2 ° C was measured by a B-type viscometer.
  • the liquid A and the liquid B in the two-part addition-type liquid silicone rubber were stirred and mixed at an equal ratio.
  • the mixture is poured into a mold, and the mixture is subjected to a defoaming treatment under reduced pressure, and then a curing treatment is performed at 120 ° C. for 30 minutes to have a thickness of 12.7 mm and a diameter of 12.7 mm.
  • a cylindrical body made of a 29 mm silicone rubber cured product was prepared, and post-curing was performed on the cylindrical body at 200 ° C. for 4 hours.
  • the compression set at 150 ⁇ 2 ° C was measured in accordance with JIS K 6249.
  • a frame plate is positioned and placed on the upper surface of the lower die of the above-mentioned die via a spacer, and the upper die is positioned and placed on this frame plate via a spacer.
  • the molding material prepared was filled in a molding space formed by the upper mold, the lower mold, the two spacers, and the frame plate to form a molding material layer.
  • the molding material layer formed between the upper mold and the lower mold is heated to 100 ° C.
  • an elastic anisotropic conductive film was formed in each of the holes for disposing the elastic anisotropic conductive film of the frame plate.
  • post-curing treatment was performed at 200 ° C for 4 hours to produce an anisotropic conductive connector for forming a contact.
  • the formed elastic anisotropic conductive film has a horizontal dimension of 8600 m and a vertical dimension of 1450 m for each of the elastic anisotropic conductive films.
  • 3840 connecting conductive portions corresponding to the electrodes to be inspected on the evaluation wafer W1 are arranged at a pitch of 120 m.
  • the connection circuit board is The protruding height of the protruding part on the other side to be connected to the frame is 30 m, the thickness of the insulating part is 100 m, and the thickness of each elastic anisotropic conductive film supported by the frame plate ( The thickness of one of the forked parts) is 20 m. Further, when the content ratio of the conductive particles in the connection conductive portion in each of the elastic anisotropic conductive films was examined, the volume fraction of all the connection conductive portions was about 30%. The degree of thickness variation of the entire anisotropic conductive connector for forming a contact was ⁇ 5 m.
  • Alumina ceramics (linear thermal expansion coefficient: 4.8 X 10 " 6 / K) was used as the substrate material, and the surface electrode was formed on the surface according to the pattern corresponding to the pattern of the electrode to be inspected of the integrated circuit on the evaluation wafer W1.
  • a connection circuit board (which has been confirmed in advance as a non-defective product) with a terminal electrode (back electrode) connected to each of the front electrodes on the back side is prepared.
  • a contact forming anisotropic conductive connector is brought into contact with the surface of the contact forming anisotropic conductive connector, and each of the connection conductive portions of the contact forming anisotropic conductive connector and each of the terminal electrodes of the connection circuit board are appropriately connected to the connection circuit board. While electrically connected through a circuit, an anisotropically conductive connector for forming a contact is arranged, and
  • connection circuit board is a rectangle having an overall dimension of 10 cm ⁇ 10 cm, and its plane accuracy is ⁇ 10 / zm.
  • Each of the terminal electrodes (backside electrode) has a diameter of 400 ⁇ m, and is arranged in rows and columns with 10 pitches in the horizontal direction and 6 pitches in the vertical direction at a pitch of 800 ⁇ m.
  • Each of the surface electrodes has a lateral dimension force of 3 ⁇ 40 ⁇ m and a vertical dimension of 170 ⁇ m, and is arranged in a row in a horizontal direction at a pitch of 120 m. You.
  • the dimensions of the ferromagnetic layer (72, 77) were changed to a diameter of 300 m and a thickness of 100 m, and the recesses (74A, A mold having the same configuration except that 74B) was changed to a diameter of 300 / ⁇ and a depth of 100 m was produced.
  • the frame plate thickness force OO / zm stainless steel (SUS304, saturation magnetization 0. Olw b / m 2, the coefficient of linear thermal expansion: 1. 73 X 10- 5 ZK) prepared made from elastic anisotropically
  • SUS304 thickness force OO / zm stainless steel
  • those made of stainless steel (SUS304) having a thickness of 50 ⁇ m were prepared.
  • the horizontal dimension of the elastic anisotropic conductive film placement hole in the frame plate is 8000 m
  • the vertical dimension is 4800 m
  • the horizontal dimension of the spacer opening is 9000 m
  • the vertical dimension is The dimensional force is 800 ⁇ m.
  • the addition-type liquid silicone rubber is a two-part type having a viscosity of liquid A of 180 Pa.s and a viscosity of liquid B of 180 Pa's.
  • a cured product having a compression strain of 5%, a cured product having a durometer A hardness of 23, and a cured product having a tear strength of 8 kNZm was used.
  • an elastic anisotropic conductive film was formed in each of the elastic conductive film arranging holes in the frame plate, thereby producing an anisotropic conductive connector for tilt adjustment.
  • the formed elastic anisotropic conductive film has a horizontal dimension of 9000 m and a vertical dimension of 5800 m.
  • 3840 connecting conductive portions corresponding to the terminal electrodes (back surface electrodes) of the probe card are arranged at a pitch of 800 ⁇ m.
  • the diameter is 300 m
  • the total thickness force is 00 / ⁇
  • the protruding height of the protruding portion on one side and the protruding portion on the other side is 100 m
  • the thickness of the insulating part is 200 m.
  • the thickness of each of the conductive films supported on the frame plate (one thickness of the forked portion) is 50 ⁇ m.
  • the content ratio of the conductive particles in the conductive portion for connection in each of the elastic anisotropic conductive films was examined, it was found that the volume fraction of all the conductive portions for connection was about 30%.
  • the thickness variation of the entire anisotropic conductive connector for inclination adjustment was ⁇ 10 ⁇ m.
  • a recess and a through hole for disposing the position variable mechanism are formed, and a recess and a through hole for disposing the position variable mechanism are formed on the connection circuit board at positions corresponding to the positioning holes of the anisotropic conductive connector for tilt adjustment.
  • the inspection circuit board is a disk having a thickness of 5 mm and a diameter of 30 cm, and the plane accuracy of the area where the inspection electrodes are formed is ⁇ 10 ⁇ m.
  • Each of the test electrodes has a diameter force of 00 ⁇ m and is arranged at a pitch of 800 m.
  • the size of the opening diameter of the through hole for arranging the position variable mechanism on the inspection circuit board and the connection circuit board is 3000 / zm.
  • the test circuit board is mounted from one side so that the base end is exposed in the recess of the connection circuit board, and nuts are screwed into the base ends of the bolts, thereby adjusting the tilt.
  • the anisotropically conductive connector for connection is configured such that each of the conductive portions for connection in the elastic anisotropically conductive film has a probe cap.
  • the test circuit board is positioned so that each of the test electrodes is positioned on the conductive part for connection in the anisotropically conductive connector for tilt adjustment.
  • a probe device according to the present invention which is arranged in an aligned state, was manufactured.
  • precision screws with a nominal diameter of 3. Omm and a pitch of 0.35 mm were used as the bolts constituting the position variable mechanism.
  • the evaluation wafer W1 is placed on a test table equipped with a heater, and the alignment is performed so that each of the conductive parts for connection of the anisotropic conductive connector for contact formation in the probe device is positioned on the electrode to be inspected on the evaluation wafer W1. Placed.
  • the plane accuracy of the test bench Is ⁇ 10 / zm.
  • the elastic anisotropic conductive film in the anisotropic conductive connector for tilt adjustment is pressed by the inspection circuit board and the connection circuit board.
  • the inspection circuit board, the anisotropically conductive connector for tilt adjustment, and the connection circuit board are temporarily fixed. And the terminal electrodes on the connection circuit board are electrically connected to each other through the connection conductive portions of the tilt adjustment anisotropic conductive connector.
  • the level of variation of the height level of the surface of the probe card on which the terminal electrodes are formed with respect to the surface of the evaluation wafer on which the electrodes to be inspected is formed is ⁇ 15 ⁇ m
  • the inspection circuit board has The degree of variation in the height level of the surface on which the inspection electrode is formed with respect to the surface of the evaluation wafer on which the electrode to be inspected is formed is ⁇ 20 ⁇ m.
  • each of the conductive portions for connection in the anisotropic conductive connector for contact formation is connected to each of the electrodes to be inspected on the evaluation wafer W1.
  • the state force was further pressed upward, and in a state where the electrical connection was achieved, the electric resistance value of each of the connection conductive parts in the anisotropic conductive connector was measured and obtained.
  • Set the correction amount of the nut tightening amount in each position variable mechanism so that the electric resistance value becomes substantially uniform, and individually adjust the nut tightening amount in each position variable mechanism based on this correction amount. Repeat the operation as necessary! ⁇ Adjust the parallelism of the whole wafer inspection system and set the initial inspection state.
  • the electrical resistance value of all the conductive parts for connection of the elastic anisotropic conductive film in the anisotropic conductive connector for inclination adjustment is 0.1 ⁇ or less (the electric resistance value is in the range of 50 m ⁇ ),
  • the pressing force on the elastic anisotropic conductive film between the inspection circuit board and the connection circuit board was set to 8 g per connection conductive part.
  • test table is moved upward so that each of the connection conductive portions in the anisotropic conductive connector for contact formation is brought into contact with each of the electrodes to be inspected on the evaluation wafer W1, and from this state further downward.
  • 38kg load conductive for connection of anisotropic conductive connector for contact formation
  • the load applied to each part is pressurized at an average of about 10 g) .
  • the test 1 shown below is performed, and the test electrodes of the test circuit board with respect to the test electrodes of the evaluation wafer W1 are tested. Inspection of the electrical connection state revealed that the proportion of the conductive part for connection having a conduction resistance of less than 1 ⁇ was 100%.
  • the initial state of the inspection is set by the same method as described above, and the test table is moved upward to apply pressure to each of the conductive parts for connection in the anisotropic conductive connector for contact formation.
  • the test table is moved upward to apply pressure to each of the conductive parts for connection in the anisotropic conductive connector for contact formation.
  • the average load applied to each conductive part for connection of the anisotropic conductive connector for contact formation is about 10 g).
  • the electrical connection state of the test electrode of the test circuit board to the test electrode of the evaluation wafer W1 was examined.
  • the ratio of the conductive portion pairs having a resistance of 10 M ⁇ or more was 0%, and it was confirmed that a good electrical connection state was achieved for all the electrodes to be inspected.
  • the electrical resistance between the 3840 test electrodes on the test circuit board and the bow I of the evaluation weno and W1 was determined by the electrical resistance of the conductive part for connection (hereinafter, “ The measurement was made sequentially as “conduction resistance”.), And the proportion of the conductive part for connection with a conduction resistance of less than 1 ⁇ was calculated.
  • the electrical resistance between two adjacent test electrodes on the test circuit board is defined as the electric resistance between two adjacent connection conductive parts (hereinafter referred to as “conductive part pair”). Electrical resistance (hereinafter referred to as “insulation resistance”) was measured sequentially, and the ratio of conductive parts with an insulation resistance of 10 ⁇ ⁇ or more was calculated.
  • test table was heated to 85 ° C. while the evaluation wafer W1 was pressed under the above conditions by the entire probe device, and the same test 1 as above was performed.
  • the proportion of the conductive portion for connection having a resistance of less than 1 ⁇ was 100%.
  • the initial state of the inspection was set by the same method as above, and the same test 2 as above was performed.As a result, the ratio of the conductive part pairs having an insulation resistance of 10 M ⁇ or more was 0%. And good electrical connection is maintained for all the electrodes under test. In addition, it was confirmed that a good electrical connection state can be stably obtained even with environmental changes such as heat history due to temperature changes.
  • the strain amount (overdrive amount) of the film was 80 ⁇ m, and it was confirmed that the desired unevenness absorbability was obtained with a small load.
  • Example 1 except that the spacer having the following configuration was used as the spacer for regulating the amount of distortion, and the spacer was arranged on both surfaces of the frame plate of the anisotropic conductive connector for adjusting the inclination.
  • a probe device (see FIG. 5) having the same configuration as that manufactured in Example 1 was manufactured.
  • the spacer is formed on a rectangular frame-shaped plate-shaped portion having an opening in a region corresponding to the region where the elastic anisotropic conductive film is formed in the anisotropically conductive connector for tilt adjustment, and formed on both surfaces of the plate-shaped portion. And a plurality of minute projections made of an elastic body.
  • the plate is made of stainless steel and has a thickness of 50 m.
  • the microprojections are made of silicone rubber and have a cylindrical shape with a diameter of 50 111 and a projection height of 40 / zm (20% of the total thickness of the anisotropic conductive connector for tilt adjustment). It is.
  • the total thickness of the two spacers including the frame plate in the anisotropically conductive connector for tilt adjustment is 360 m (90% of the total thickness of the anisotropically conductive connector for tilt adjustment).
  • the anisotropic conductive film in the anisotropically conductive connector for tilt adjustment is pressed by the inspection circuit board and the connection circuit board and compressed in the thickness direction.
  • the electrodes to be inspected on the evaluation wafer W1 are formed on the surface on which the terminal electrodes of the probe card are formed.
  • the degree of variation of the height level with respect to the contacted surface is ⁇ 20 m, and the height level of the surface of the circuit board for inspection where the test electrodes are formed is higher than the surface of the test wafer W1 where the electrodes to be tested are formed.
  • Ba The degree of cracking is ⁇ 25 m.
  • the initial state of inspection (the same initial state of inspection as in Example 1) is set by adjusting the parallelism of the entire wafer inspection apparatus, and the test table is moved upward to make the anisotropic conductive connector for contact formation.
  • Each of the conductive parts for connection in (1) is brought into contact with each of the electrodes to be inspected on the wafer W1 for evaluation, and a load of 38 kg is further raised from this state (an anisotropic conductive connector for forming a contact.
  • the same test 1 as in Example 1 was carried out, and the electrical resistance of the test electrode of the test circuit board with respect to the test electrode of the evaluation wafer and W1 was measured. Inspection of the connection state revealed that the proportion of conductive parts for connection with a conduction resistance of less than 1 ⁇ was 100%.
  • Example 2 the same test 2 as in Example 1 was performed using the evaluation wafer W2 to check the electrical connection state of the test electrode of the test circuit board to the test electrode of the test wafer W1.
  • the ratio of the conductive part pairs having an insulation resistance of 10 ⁇ or more was 0%, and it was confirmed that a good electrical connection state was achieved for all the electrodes to be tested.
  • test table was heated to 85 ° C. while the evaluation wafer W1 was pressed under the above conditions by the entire probe apparatus, and the same test 1 as described above was performed.
  • the proportion of the conductive portion for connection having a resistance of less than 1 ⁇ was 100%.
  • the initial state of the inspection was set by the same method as above, and the same test 2 as above was performed.
  • the good electrical connection state is maintained for all the electrodes to be inspected, and the good electrical connection state can be stably obtained even with environmental changes such as heat history due to temperature changes. It was confirmed that.
  • the film distortion (overdrive) force was 100 m, and it was confirmed that the desired unevenness absorption could be obtained with a small load.
  • a comparative probe device having the same configuration as the one manufactured in the first embodiment was prepared, except that there was no variable position mechanism constituting the parallelism adjusting mechanism.
  • the probe device was evaluated in the same manner as in Example 1. As a result, a poor connection was observed in some of the electrodes to be tested, and a good electrical connection state was not obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Measuring Leads Or Probes (AREA)

Abstract

 多数の被検査電極についての電気的検査を一括して行うことができると共に、すべての被検査電極について良好な電気的接続状態を小さい荷重で確実に達成することができるウエハ検査装置およびウエハ検査方法並びにプローブ装置を提供する。  本発明のプローブ装置は、多数の検査用電極を有する検査用回路基板と、多数の端子電極を有する接続用回路基板および接触部材を有するプローブカードと、検査用回路基板と接続用回路基板との間に配置された、前記検査用電極の各々と前記端子電極の各々とを電気的に接続する異方導電性コネクターと、前記検査用回路基板および前記接続用回路基板の、ウエハに対する平行度を調整する平行度調整機構とを具えてなり、平行度調整機構は、検査用回路基板または接続用回路基板を異方導電性コネクターの厚み方向に相対的に変位させる位置可変機構を具えている。ウエハ検査装置は、上記のプローブ装置を備えてなる。

Description

明 細 書
プローブ装置およびこのプローブ装置を具えたウェハ検査装置並びにゥ ェハ検査方法
技術分野
[0001] 本発明は、ウェハ検査装置およびこのウェハ検査装置において実施されるウェハ 検査方法、並びに、ウェハ検査装置に好適に用いることができるプローブ装置に関 し、更に詳しくは、ウェハに形成された多数の集積回路の一部若しくは全部について 一括してプローブ試験を行うためのウェハ検査装置およびウェハ検査方法、または ウェハに形成された多数の集積回路の一部若しくは全部について一括してバーンィ ン試験を行うためのウェハ検査装置およびウェハ検査方法、並びにこれらのウェハ 検査装置に好適に用 、ることができるプローブ装置に関するものである。
背景技術
[0002] 一般に、半導体集積回路装置の製造工程においては、ウェハ上に多数の集積回 路を形成した後、これらの集積回路の各々についてプローブ試験が行われる。次い で、このウェハを切断することによって半導体チップが形成され、この半導体チップが 適宜のノ ッケージ内に収納されて封止され、更に、ノ ッケージィ匕された半導体集積 回路装置の各々について、バーンイン試験が行われる。而して、半導体集積回路装 置の品質保証を行うためには、バーンイン試験によって、当該半導体集積回路装置 の電気的特性の検査を行うことのみならず、半導体チップ自体の電気的特性の検査 を行うことが極めて重要である。また、近年、半導体チップ自体を集積回路装置として 用い、当該半導体チップよりなる回路装置を例えばプリント回路基板上に直接実装 する実装法が開発されており、そのため、半導体チップ自体の品質保証を行うことが 要請されている。
[0003] 然るに、半導体チップは微小なものであってその取扱いが不便なものであるため、 半導体チップよりなる回路装置の検査を行うためには、長い時間を要し、また、検査 コストが相当に高くなる。
このような理由から、最近において、半導体チップよりなる回路装置の電気的特性 の検査をウェハの状態で行う WLBI (Wafer Level Burn— in)試験が注目されて いる。
一方、ウェハ上に形成された集積回路に対して行われるプローブ試験においては 、一般に、ウェハ上に形成された多数の集積回路のうち例えば 16個または 32個の 集積回路について一括してプローブ試験を行い、順次、その他の集積回路について プローブ試験を行う方法が採用されて 、る。
而して、近年、検査効率を向上させ、検査コストの低減ィ匕を図るために、ウェハ上に 形成された多数の集積回路のうち例えば 64個、 124個または全部の集積回路につ V、て一括してプローブ試験を行うことが要請されて 、る。
[0004] 図 17は、多数の集積回路が形成されたウェハについて WLBI試験またはプローブ 試験を行うための従来のウェハ検査装置の一例における構成の概略を示す説明用 断面図である。このようなウェハ検査装置は、例えば特許文献 1および特許文献 2に 記載されている。
このウェハ検査装置は、表面(図において下面)に多数の検査用電極 81が形成さ れた検査用回路基板 80を有し、この検査用回路基板 80の表面には、コネクター 85 を介してプローブカード 90が配置されている。このプローブカード 90は、接続用回路 基板 91と、この接続用回路基板 91の表面(図において下面)に設けられた、検査対 象であるウェハ Wにおける集積回路の被検査電極(図示省略)に接触される多数の 接触子(図示省略)を有する接触部材 95とにより構成されている。接触部材 95の下 方には、検査対象であるウエノ、 Wが載置される、加熱板を兼ねたウエノ、トレイ 96が配 置されている。
ここに、接触部材 95としては、例えば、接触子が各々厚み方向に伸びる複数の接 続用導電部が絶縁部によって相互に絶縁されてなる異方導電性シートよりなるもの、 絶縁性シートにその厚み方向に貫通して伸びる金属体よりなる接触子が配置されて なるシート状コネクターよりなるもの、異方導電性シートとシート状コネクタ一とが積層 されてなるものなどを用いることができる。
[0005] プローブカード 90における接続用回路基板 91の裏面には、検査用回路基板 80の 検査用電極 81のパターンに対応するパターンに従って多数の端子電極 92が形成さ れ、当該接続用回路基板 91は、ガイドピン 93によって、端子電極 92の各々が検査 用回路基板 80の検査用電極 81に対向するよう配置されて 、る。
コネクター 85においては、「ポゴピン」と称される長さ方向に弹性的に圧縮し得る多 数の接続ピン 86が、検査用回路基板 80の検査用電極 81のパターンに対応するパ ターンに従って配列されている。そして、コネクター 85は、接続ピン 86の各々力 検 查用回路基板 80の検査用電極 81と接続用回路基板 91の端子電極 92との間に位 置された状態で配置されて 、る。
[0006] このウェハ検査装置においては、検査対象であるウェハ Wがウェハトレイ 96上に載 置され、ウエノ、トレイ 96が適宜の駆動手段(図示せず)によって上方に移動されること によりウェハ Wがプローブカード 90に接触され、この状態からさらに上方に加圧され ることによりコネクター 85の接続ピン 86の各々が長さ方向に弹性的に圧縮され、これ により、検査用回路基板 80の検査用電極 81の各々と接続用回路基板 91の端子電 極 92の各々とが電気的に接続されると共に、ウエノ、 Wに形成された一部の集積回路 の被検査電極の各々に、接触部材 95の接触子の各々が接触し、これにより、所要の 電気的接続が達成される。そして、ウェハトレイ 96によってウェハ Wが所定の温度に 加熱され、この状態で、ウェハ Wについての所要の電気的検査 (WLBI試験または プローブ試験)が行われる。
特許文献 1 :特開 2000— 147063号公報
特許文献 2:特開 2000— 323535号公報
発明の開示
[0007] し力しながら、図 17に示すようなウェハ検査装置においては、次のような問題があ る。すなわち、このような構成のウェハ検査装置においては、実際上、ウェハ検査装 置を構成する各々の構成部材それ自体が反りやうねり等を有すると共に、ウェハトレ ィ 96に傾きがあるために、ウェハ Wに対して比較的程度の大きい傾き(アンジュレー シヨン)を有する状態とされて 、る。
具体的な一例を示すと、例えば、ウェハトレイ 96におけるウェハ載置面の平面精度 (その平面内における高さレベルのバラツキの程度)が ± 20 /z m程度であり、ウェハ W、検査用回路基板 80および接続用回路基板 91を構成する基板材料それ自体の そりやうねりの程度がそれぞれ ± 10 /z m程度である。また、接触部材 95として異方 導電性シートが用いられる場合には、異方導電性シートそれ自体の厚さバラツキの 程度が、厚みが 200 mのもので ± 10 m程度であり、接触部材 95として異方導電 性シートとシート状コネクターとの積層体が用いられる場合には、異方導電性シート それ自体の厚さバラツキの他に、シート状コネクターそれ自体の厚さバラツキあり、そ の程度は、厚みが 80 μ mのもので ± 5 m程度である。
従って、単に、ウェハトレイ 96を上方に移動させてウェハ Wを加圧するだけでは、ゥ ェハ検査装置全体の傾きによって、例えば接触部材 95がウェハ Wに対して方当たり した状態になるなど、接触部材 95における接触子の各々とウェハ Wにおける被検査 電極との間に良好な電気的接続状態を確実に得ることが困難であり、結局、所期の 電気的検査を安定的に行うことができな 、、という問題がある。
[0008] また、上記構成のウェハ検査装置においては、接続ピン 86として、その長さが相当 に大きいものが必要であることから、信号伝送系の距離が相当に長くなるため、高速 処理が必要とされる高機能の集積回路の電気的検査に対応することが困難である、 という問題がある。
[0009] 本発明は、以上のような事情に基づいてなされたものであって、その目的は、ゥェ ハに形成された多数の集積回路における多数の被検査電極についての電気的検査 を一括して行うことができると共に、すべての被検査電極について良好な電気的接続 状態を確実に達成することができ、しかも、高機能の集積回路の電気的検査を行うこ とができるウェハ検査装置およびウェハ検査方法、並びにこのウェハ検査装置に好 適に用いることができるプローブ装置を提供することにある。
[0010] 本発明のプローブ装置は、ウェハに形成された多数の集積回路の電気的検査を 行うために用いられるものであって、表面に多数の検査用電極を有する検査用回路 基板と、裏面に前記検査用回路基板の検査用電極のパターンに対応するパターン に従って複数の端子電極が形成された接続用回路基板、およびこの接続用回路基 板の表面に設けられた、検査対象であるウェハにおける集積回路の被検査電極に 接触される多数の接触子が配置されてなる接触部材を有し、当該接続用回路基板 の端子電極の各々が前記検査用回路基板の検査用電極に対向するよう配置された プローブカードと、前記検査用回路基板と前記プローブカードにおける接続用回路 基板との間に配置された、当該検査用回路基板と当該接続用回路基板とによって狭 圧されることにより、前記検査用電極の各々と前記端子電極の各々とを電気的に接 続する異方導電性コネクターと、前記検査用回路基板のウェハに対する平行度およ び前記接続用回路基板のウェハに対する平行度を調整する平行度調整機構とを具 えてなり、平行度調整機構は、検査用回路基板または接続用回路基板を異方導電 性コネクターの厚み方向に相対的に変位させる位置可変機構を具えていることを特 徴とする。
[0011] 本発明のプローブ装置においては、平行度調整機構が複数の位置可変機構を具 えており、各々の位置可変機構が、検査用回路基板または接続用回路基板の変位 量がそれぞれ独立に設定可能に構成されているものであることが好ましい。
[0012] また、本発明のプローブ装置においては、検査用回路基板とプローブカードにおけ る接続用回路基板との間には、異方導電性コネクターの歪み量を規制するスぺーサ が設けられた構成とされていることが好ましい。この場合には、スぺーサの全厚は、異 方導電性コネクターの全厚の 50%以上の大きさであることが好ましい。
[0013] 本発明のプローブ装置においては、異方導電性コネクターが、接続用回路基板お よび検査用回路基板に係る接続対象電極が形成された電極領域に対応してそれぞ れ厚み方向に伸びる複数の異方導電膜配置用孔が形成されたフレーム板と、このフ レーム板の各異方導電膜配置用孔内に配置され、当該異方導電膜配置用孔の周辺 部に支持された複数の弾性異方導電膜とよりなり、
スぺーサが、当該異方導電性コネクターにおけるフレーム板の両面に配設されて おり、当該スぺーサは、異方導電性コネクターにおける弾性異方導電膜が形成され た領域に対応する領域に開口が形成された枠状のものであって、少なくとも検査用 回路基板に対する接触面および接続用回路基板に対する接触面に、弾性部材より なる微小突起部を有するものにより構成することができる。
このような構成のスぺーサにお 、ては、微小突起部を含むスぺーサの厚みと異方 導電性コネクターにおけるフレーム板の厚みとの合計の厚み力 S、異方導電性コネクタ 一の全厚の 90%以上の大きさである構成とされて 、ることが好まし 、。 [0014] さらに、本発明のプローブ装置においては、プローブカードを構成する接触部材が 、各々厚み方向に伸びる複数の接続用導電部が絶縁部によって相互に絶縁されて なる異方導電性シートを具えたものにより構成されていることが好ましい。
このような接触部材としては、各々厚み方向に伸びる複数の接続用導電部が絶縁 部によって相互に絶縁されてなる異方導電性シートまたは当該異方導電性シートが フレーム板によって支持されてなる異方導電性コネクターと、当該異方導電性シート または当該異方導電性コネクターの表面に配置された、絶縁性シートと、この絶縁性 シートをその厚み方向に貫通して伸び、被検査電極のパターンに対応するパターン に従って配置された複数の電極構造体とよりなるシート状コネクターとにより構成され てなるものを用いることが好まし 、。
[0015] 本発明のウェハ検査装置は、ウェハに形成された多数の集積回路の電気的検査 を行うためのものであって、上記のプローブ装置を備えてなることを特徴とする。
[0016] 本発明のウェハ検査方法は、平行度調整機構を構成する位置可変機構によって 検査用回路基板または接続用回路基板を相対的に変位させて、検査用回路基板、 異方導電性コネクターおよび接続用回路基板の三者を異方導電性コネクターを検査 用回路基板と接続用回路基板とによって狭圧した状態で仮固定し、これ〖こより、当該 検査用回路基板における検査用電極の各々と当該接続用回路基板における端子 電極の各々とを異方導電性コネクターにおける接続用導電部を介して電気的に接続 し、この状態力もさらに加圧してプローブカードにおける接触部材を検査対象である ウェハに接触させた状態において、検査用回路基板のウェハに対する平行度およ び接続用回路基板のウェハに対する平行度を測定し、得られた結果に基づいて位 置可変機構による変位量の補正量を設定し、当該補正量に基づ!、て位置可変機構 による変位量を調整する検査初期状態設定操作を行うことにより、検査用回路基板 のウェハに対する平行度および接続用回路基板のウェハに対する平行度を調整し、 検査用回路基板と接続用回路基板との間の離間距離の大きさが大きくなる方向に 対する検査用回路基板または接続用回路基板の変位を禁止した状態にぉ 、て、プ ローブ装置全体をウェハに接触させて電気的検査を行うことを特徴とする。
[0017] 本発明のウェハ検査方法においては、平行度調整機構が複数の位置可変機構を 具えており、プローブカードにおける接触部材を検査対象であるウェハに接触させた 状態において、異方導電性コネクターにおける各々の接続用導電部の電気抵抗値 を測定し、得られた電気抵抗値の分布が均一な状態となるよう、各々の位置可変機 構による変位量の補正量を設定することができる。
また、本発明のウェハ検査方法においては、検査初期状態は、異方導電性コネク ターにおける接続用導電部の各々の電気抵抗値が 0. 1 Ω以下であって、異方導電 性コネクターにおける接続用導電部 1個当たりの荷重が 0. 01〜0. 4Nとなる状態に 設定されることが好ましい。
[0018] 本発明のプローブ装置によれば、検査用回路基板、異方導電性コネクターおよび プローブカードの三者が、異方導電性コネクターが検査用回路基板と接続用回路基 板とによって狭圧された状態で、固定された状態とされる検査初期状態が設定される に際して、ウェハ検査装置全体の傾きが平行度調整機構によって調整されて、当該 検査初期状態が、検査用回路基板、プローブカードおよび検査対象であるウェハの 三者が極めて高い平行度を有する状態に設定されるので、検査用回路基板と接続 用回路基板との離間距離が大きくなる方向に対する検査用回路基板または接続用 回路基板の変位が位置可変機構によって禁止されてウェハに対する高い平行度が プローブ装置全体に維持されながら、接触部材における接触子の各々とウェハに形 成された被検査電極の各々とが電気的に接続される結果、所要の電気的接続状態 を小さい荷重で安定的に得ることができる。
[0019] また、プローブカードにおける接触部材が、各々厚み方向に伸びる複数の接続用 導電部が絶縁部によって相互に絶縁されてなる異方導電性シートを具えたものにより 構成されている場合には、基本的に、異方導電性コネクターによる凹凸吸収性が得 られると共に、ウェハに対する高い平行度がプローブ装置全体に維持されながら加 圧されることによって接触部材における異方導電性シート本来の凹凸吸収性がロス が可及的に少なくされた状態で得られるので、一層確実に、良好な電気的接続状態 を小さい荷重で安定的に得ることができる。
[0020] 本発明のウェハ検査装置によれば、上記のプローブ装置を具えてなるので、ウェハ に形成された被検査電極の各々と接触部材の接触子の各々との間に、良好な電気 的接続状態を小さい荷重で安定的に得ることができ、従って、所期の電気的検査を 高 ヽ信頼性をもって確実に行うことができる。
[0021] 本発明のウェハ検査方法によれば、ウェハ検査装置全体の傾きが平行度調整機 構によって補正された状態でウェハに形成された被検査電極の各々と接触部材の 接触子の各々とが電気的に接続されるので、所期の電気的検査を高い信頼性をもつ て確実に行うことができる。
図面の簡単な説明
[0022] [図 1]本発明に係るウェハ検査装置の一例における要部の構成の概略を、検査対象 であるウェハと共に示す平面図である。
[図 2]図 1に示すウェハ検査装置を拡大して示す説明用断面図である。
[図 3]弾性異方導電膜成形用の金型の上型および下型の間にスぺーサーを介してフ レーム板が配置された状態を示す説明用断面図である。
[図 4]金型の上型と下型の間に、目的とする形態の成形材料層が形成された状態を 示す説明用断面図である。
[図 5]図 1および図 2に示すウェハ検査装置における検査用回路基板と接続用回路 基板とが電気的に接続された状態を示す説明用断面図である。
[図 6]ウェハ検査装置の接続用回路基板における接触子の各々とウェハに形成され た一部の集積回路の被検査電極の各々とが電気的に接続された状態を示す説明用 断面図である。
[図 7]接触部材を構成する異方導電性コネクターの特性曲線を模式的に示すグラフ である。
[図 8]本発明に係るウェハ検査装置の他の構成例における要部を拡大して示す説明 用断面図である。
[図 9]図 8に示すウェハ検査装置における検査用回路基板と接続用回路基板とが電 気的に接続された状態を示す説明用断面図である。
[図 10]ウェハ検査装置の接続用回路基板における接触子の各々とウェハに形成さ れた一部の集積回路の被検査電極の各々とが電気的に接続された状態を示す説明 用断面図である。 圆 11]異方導電性コネクターの他の構成例を示す説明用断面図である。
[図 12]異方導電性コネクターにおける各々の接続用導電部の他の構成例を示す説 明用部分断面図である。
[図 13]異方導電性コネクターにおける各々の接続用導電部の更に他の構成例を示 す説明用部分断面図である。
[図 14]異方導電性コネクターにおける各々の接続用導電部の更に他の構成例を示 す説明用部分断面図である。
圆 15]異方導電性コネクターの更に他の構成例を示す説明用断面図である。
[図 16]本発明に係るウェハ検査装置の更に他の構成例における要部を拡大して示 す説明用断面図である。
圆 17]従来におけるウェハ検査装置の一例における構成の概略を示す説明用断面 図である。
符号の説明
10 プローブ装置
20 傾き調整用異方導電性コネクター
21 フレーム板
22 異方導電膜配置用孔
23 位置決め孔
25 弾性異方導電膜
25A 成形材料層(目的形態)
25B 成形材料層
26 接続用導電部
26A, 26B 突出部分
26C 突出部分
27 絶縁部
28A 微小突起部分
28B 微小突起部分
28C ワイヤー 検査用回路基板
検査用電極
凹所
貫通孔
プローブカード
接続用回路基板
端子電極
凹所
貫通孔
接点形成用異方導電性コネクタA 異方導電性コネクター 弾性異方導電膜
A DLC膜
接続用導電部
絶縁部
フレーム板
平行度調整機構
位置可変機構
ボルト
ナット
スぺーサ
ウエノ、トレイ
スぺーサ
微小突起部分
板状部分
開口
貫通孔
シート状コネクター 66 金属体 (接触子)
67 絶縁性シート
W ウェハ
70 上型
71 強磁性体基板
72 強磁性体層
73 非磁性体層
74A 凹所
75 下型
76 強磁性体基板
77 強磁性体層
78 非磁性体層
74B 凹所
79A, 79B スぺーサ
K 開口
80 検査用回路基板
81 検査用電極
85 コネクター
86 接続ピン
90 プローブカード
91 接続用回路基板
92 端子電極
93 ガイドピン
95 接触部材
96 ウエノヽトレイ
発明を実施するための最良の形態
以下、本発明について詳細に説明する。
図 1は、本発明に係るウェハ検査装置の一例における要部の構成の概略を、検査 対象であるウェハと共に示す平面図であり、図 2は、図 1に示すウェハ検査装置を拡 大して示す説明用断面図である。
このウェハ検査装置は、表面(図 2において下面)に多数の検査用電極 31が形成 された検査用回路基板 30と、以下に詳述する異方導電性コネクター 20を介して検 查用回路基板 30の表面に配置されたプローブカード 40とを具えてなるプローブ装 置 10を具えており、プローブカード 40の下方には、検査対象であるウェハ Wが載置 される、加熱板を兼ねたウェハトレイ 58が配置されて、構成されている。また、ウェハ トレイ 58は、適宜の駆動手段(図示せず)によって上下方向に移動可能な状態とされ ている。
プローブカード 40は、裏面(図 2において上面)に検査用回路基板 30の検査用電 極 31のパターンに対応するパターンに従って複数の端子電極 42が形成された接続 用回路基板 41と、この接続用回路基板 41の表面(図 2において下面)に設けられた 、検査対象であるウエノ、 Wにおける集積回路の被検査電極(図示省略)に接触され る多数の接触子(図示省略)を有する接触部材とにより構成されている。
検査用回路基板 30および接続用回路基板 41を構成する材料としては、例えばガ ラス、セラミックス、エポキシ榭脂などを例示することができる。
[0025] 検査用回路基板 30とプローブカード 40における接続用回路基板 41との間に配置 される異方導電性コネクター (以下、「傾き調整用異方導電性コネクター」という。) 20 は、それぞれ厚み方向に貫通して伸びる複数の異方導電膜配置用孔 22が形成され たフレーム板 21を有し、このフレーム板 21の異方導電膜配置用孔 22の各々に、厚 み方向に導電性を有する弾性異方導電膜 25が当該異方導電膜配置用孔 22を塞ぐ よう配置され、これらの弾性異方導電膜 25の周縁部が、当該フレーム板 21の異方導 電膜配置用孔 22の開口縁部に固定されて支持されて、構成されている。また、フレ ーム板 21には、検査用回路基板 30およびプローブカード 40との位置決めを行うた めの複数の位置決め孔 23が形成されている。この例においては、 4つの位置決め孔 23が矩形のフレーム板 21の 4隅に形成されている。
[0026] 弾性異方導電膜 25は、弾性高分子物質によって形成されており、接続対象電極、 具体的には、検査用回路基板 30における検査用電極 31および接続用回路基板 41 における端子電極 42のパターンに対応するパターンに従って配置された、それぞれ 厚み方向に伸びる複数の接続用導電部 26と、これらの接続用導電部 26を相互に絶 縁する絶縁部 27とにより構成されて 、る。
弾性異方導電膜 25における接続用導電部 26には、磁性を示す導電性粒子 Pが厚 み方向に並ぶよう配向した状態で密に含有されている。これに対して、絶縁部 27は、 導電性粒子 Pが全く或いは殆ど含有されて 、な 、ものである。
また、図示の例では、接続用導電部 26は、絶縁部 27の両面の各々力も突出するよ う形成されている。
[0027] 弾性異方導電膜 25の全厚は、例えば 100〜3000 μ mであることが好ましぐより 好ましくは150〜2500 111、特に好ましくは 200〜2000 /ζ πιである。弹性異方導電 膜 25の厚みが上記範囲を満足することにより、ウェハ検査装置全体における傾き (ァ ンジユレーシヨン)を調整するために必要とされる十分な凹凸吸収性を有するものとな ると共に、厚みが 100 m以上であれば、十分な強度を有する弾性異方導電膜 25 が確実に得られ、一方、この厚みが 3000 m以下であれば、所要の導電性特性を 有する接続用導電部 26が確実に得られる。
[0028] 弾性異方導電膜 25の接続用導電部 26における突出部分 26A, 26Bの突出高さ は、その合計が当該接続用導電部 26の厚みの 20%以上の大きさであることが好まし ぐより好ましくは 25%以上の大きさ、特に好ましくは 30%以上の大きさである。この ような突出高さを有する突出部分 26A, 26Bを形成することより、当該接続用導電部 26が小さい圧力で十分に圧縮されるため、良好な導電性が確実に得られる。また、 プローブ装置 10全体の傾き調整を行うに際しての圧縮量の変量幅 (調整幅)を大きく することができる。
[0029] 上述したように、本発明のプローブ装置 10においては、検査用回路基板 30および プローブカード 40の両者力 傾き調整用異方導電性コネクター 20を介して配置され ている。
そして、傾き調整用異方導電性コネクター 20が検査用回路基板 30およびプローブ カード 40によって狭圧された状態とされて検査用回路基板 30における検査用電極 3 1の各々とプローブカード 40における接続用回路基板 41の端子電極 42の各々とが 電気的に接続された状態で固定されて用いられる。
[0030] 本発明のプローブ装置 10においては、検査用回路基板 30およびプローブカード 4 0の間に、傾き調整用異方導電性コネクター 20における弾性異方導電膜 25の最大 歪み量を規制するためのスぺーサ 55の複数 (この例においては 4つ)が傾き調整用 異方導電性コネクター 20におけるフレーム板 21の位置決め孔 23の各々に揷通また は嵌合された状態で設けられて!/、ると共に、ウェハ検査装置全体の有する傾きを調 整するための平行度調整機構 50が設けられている。
[0031] 各々のスぺーサ 55は、例えば、電気的に絶縁性の円筒状のものよりなり、後述する 平行度調整機構 50を構成する位置可変機構 51としてのボルト 52の軸部が当該スぺ ーサ 55の内部空間内に挿通される。これにより、当該接続用回路基板 41の端子電 極 42の各々が検査用回路基板 30の検査用電極 31の各々に対向すると共に、傾き 調整用異方導電性コネクター 20の接続用導電部 26の各々が接続対象電極の各々 に対向するよう、位置決めされた状態とされる。
[0032] スぺーサ 55の厚みは、例えば傾き調整用異方導電性コネクター 20の全厚の 50% 以上の大きさであることが好ましぐより好ましくは 60〜90%の大きさである。これによ り、弾性異方導電膜 25に対する挟圧力の大きさが過大になることが防止されて、弾 性異方導電膜 25における接続用導電部 26に所要の導電性が確実に得られる。
[0033] 平行度調整機構 50は、検査用回路基板 30またはプローブカード 40を傾き調整用 異方導電性コネクター 20の厚み方向(図 2において上下方向)に相対的に変位させ る複数の位置可変機構 51を具えて 、る。
この例においては、図 1に示されているように、 4つの位置可変機構 51がプローブ 装置 10の平面内における 4隅の位置に配置されており、各々の位置可変機構 51は 、検査用回路基板 30または接続用回路基板 41の変位量 (検査用回路基板 30およ び接続用回路基板 41の間の離間距離の大きさ)を互いに独立して調整することがで きるもの、例えばボルト 52とナット 53と力もなる一対の締結部材により構成されている 具体的には、位置可変機構 51を構成するボルト 52が、その頭部が検査用回路基 板 30の裏面に形成された凹所 32の貫通孔 33の開口縁部に係止されると共に、軸部 が当該貫通孔 33に固定または揷通されて下方に伸び、スぺーサ 55の内部空間内 および接続用回路基板 41における貫通孔 44内を揷通されて当該軸部の基端部が プローブカード 40における接続用回路基板 41の表面に形成された凹所 43内に露 出する状態で、配置されており、このボルト 52に適合するナット 53がボルト 52の基端 部に螺合されて接続用回路基板 41における凹所 43の底面に対接された状態で設 けられており、これにより、検査用回路基板 30およびプローブカード 40 (接続用回路 基板 41)が検査用回路基板 30およびプローブカード 40間の離間距離が大きくなる 方向に対する移動 (変位)が禁止された状態で固定されると共に、ナット 53の締め付 け量が調整されることにより、検査用回路基板 30またはプローブカード 40が傾き調 整用異方導電性コネクター 20の厚み方向に相対的に変位される。
[0034] 検査用回路基板 30における検査用電極 31のピッチは、例えば 500〜5000 m であることが好ましぐより好ましくは 800〜2500 /ζ πιである。このようなピッチで検査 用電極 31が形成されることにより、当該検査用電極 31と接続用回路基板 41の端子 電極 42との所要の電気的接続を確実に達成することができると共に、検査用電極 31 を高 、密度で配置することが可能であるため、検査対象であるウェハ Wの被検査電 極数に応じた多数の検査用電極 31を形成することができる。
[0035] プローブカード 40を構成する接触部材における接触子の各々は、接続用回路基 板 41における適宜の回路(図示省略)を介して検査用回路基板 30の検査用電極 31 の各々に電気的に接続されている。
この例における接触部材は、例えば傾き調整用異方導電性コネクター 20と基本的 な構成が同一である異方導電性コネクター(以下、「接点形成用異方導電性コネクタ 一」という。)45により構成されている。この接点形成用異方導電性コネクター 45は、 弾性異方導電膜 46における接続用導電部 47がウェハ Wに形成された被検査電極 のパターンに対応するパターンに従って形成されており、例えば、接続用導電部 47 の配設ピッチが傾き調整用異方導電性コネクター 20のそれよりも小さいものとされて いる。図 2において、 48は絶縁部であり、 49はフレーム板である。
[0036] 以下に、傾き調整用異方導電性コネクター 20および接点形成用異方導電性コネク ター 45の具体的な構成について説明する。 [0037] 傾き調整用異方導電性コネクター 20および接点形成用異方導電性コネクター 45 におけるフレーム板 21, 49を構成する材料としては、金属材料、セラミックス材料、榭 脂材料などの種々の材料を用いることができ、その具体例としては、鉄、銅、ニッケル 、クロム、コノルト、マグネシウム、マンガン、モリブデン、インジウム、鉛、パラジウム、 チタン、タングステン、アルミニウム、金、白金、銀などの金属またはこれらを 2種以上 組み合わせた合金若しくは合金鋼などの金属材料、窒化珪素、炭化珪素、アルミナ などのセラミックス材料、ァラミツド不繊布補強型エポキシ榭脂、ァラミツド不繊布補強 型ポリイミド榭脂、ァラミツド不繊布補強型ビスマレイミドトリアジン榭脂、ァラミド榭脂な どの榭脂材料が挙げられる。
[0038] また、傾き調整用異方導電性コネクター 20におけるフレーム板 21を構成する材料 としては、線熱膨張係数が検査用回路基板 30および接続用回路基板 41を構成する 材料の線熱膨張係数と同等若しくは近似したものを用いることが好ましい。ここに、検 查用回路基板 30と接続用回路基板 41とが異なる材料により構成されている場合に は、検査用回路基板 30を構成する材料および接続用回路基板 41を構成する材料 の両者の平均の線熱膨張係数と同等若しくは近似したものを用いることが好ましい。 具体的には、フレーム板 21を構成する材料としては、線熱膨張係数が 5 X 10"VK 以下であるものを用いることが好ましぐ例えば検査用回路基板 30および接続用回 路基板 41がガラス基板よりなるものである場合には、線熱膨張係数が 3X 10— 6〜10 X 10— 6Ζκのものを用いることが好ましぐまた、検査用回路基板 30および接続用回 路基板 41がガラスエポキシ基板などの有機基板よりなるものである場合には、線熱 膨張係数が 6Χ 10— 6〜20Χ 10— 6ΖΚのものを用いることが好ましぐその具体例とし ては、検査用回路基板 41および接続用回路基板 41を構成する材料と同一の材料 や、ステンレス鋼などの鉄一ニッケル合金やリン青銅などの銅合金などの金属材料、 ポリイミド榭脂、液晶ポリマー榭脂などの榭脂材料が挙げられる。
一方、接点形成用異方導電性コネクター 45におけるフレーム板 49を構成する材料 としては、線熱膨張係数が検査対象であるウェハを構成する材料の線熱膨張係数と 同等若しくは近似したものを用いることが好ましい。具体的には、ウェハを構成する材 料がシリコンである場合には、線熱膨張係数が 1. 5Χ 10— 4ΖΚ以下、特に、 3Χ 10— 6 〜8 X 10— 6ZKのものを用いることが好ましぐその具体例としては、インバーなどのィ ンバー型合金、エリンバーなどのエリンバー型合金、スーノ 一インノ 一、 コノ 一ノレ、 4
2ァロイなどの金属材料、ァラミツド不繊布補強型有機榭脂材料、ァラミド榭脂などの 榭脂材料が挙げられる。
[0039] また、フレーム板 21, 49の厚みは、その形状が維持されると共に、弹性異方導電 膜 25, 46を保持することが可能であれば、特に限定されないが、例えば 30〜: LOOO μ m、好ましくは 50〜250 μ mである。
[0040] 弾性異方導電膜 25, 46を形成する弾性高分子物質としては、架橋構造を有する 耐熱性の高分子物質が好ま U、。力かる架橋高分子物質を得るために用いることが できる硬化性の高分子物質形成材料としては、種々のものを用いることができ、その 具体例としては、シリコーンゴム、ポリブタジエンゴム、天然ゴム、ポリイソプレンゴム、 スチレン—ブタジエン共重合体ゴム、アクリロニトリル—ブタジエン共重合体ゴムなど の共役ジェン系ゴムおよびこれらの水素添力卩物、スチレン ブタジエンージェンブロ ック共重合体ゴム、スチレン イソプレンブロック共重合体などのブロック共重合体ゴ ムおよびこれらの水素添カ卩物、クロ口プレン、ウレタンゴム、ポリエステル系ゴム、ェピ クロノレヒドリンゴム、エチレン プロピレン共重合体ゴム、エチレン プロピレンージェ ン共重合体ゴム、軟質液状エポキシゴムなどが挙げられる。これらの中では、成形カロ ェ性および電気特性の観点から、シリコーンゴムが好まし!/、。
[0041] シリコーンゴムとしては、液状シリコーンゴムを架橋または縮合したものが好ましい。
液状シリコーンゴムは、縮合型のもの、付加型のもの、ビュル基ゃヒドロキシル基を含 有するものなどのいずれであってもよい。具体的には、ジメチルシリコーン生ゴム、メ チルビ-ルシリコーン生ゴム、メチルフエ-ルビ-ルシリコーン生ゴムなどを挙げること ができる。
[0042] これらの中で、ビュル基を含有する液状シリコーンゴム(ビュル基含有ポリジメチル シロキサン)は、通常、ジメチルジクロロシランまたはジメチルジアルコキシシランを、 ジメチルビ-ルクロロシランまたはジメチルビ-ルアルコキシシランの存在下において 、加水分解および縮合反応させ、例えば引続き溶解 沈殿の繰り返しによる分別を 行うこと〖こより得られる。 また、ビニル基を両末端に含有する液状シリコーンゴムは、オタタメチルシクロテトラ シロキサンのような環状シロキサンを触媒の存在下にお 、てァ-オン重合し、重合停 止剤として例えばジメチルジビュルシロキサンを用い、その他の反応条件 (例えば、 環状シロキサンの量および重合停止剤の量)を適宜選択することにより得られる。ここ で、ァ-オン重合の触媒としては、水酸ィ匕テトラメチルアンモ -ゥムおよび水酸化 n— ブチルホスホ-ゥムなどのアルカリまたはこれらのシラノレート溶液などを用いることが でき、反応温度は、例えば 80〜130°Cである。
このようなビニル基含有ポリジメチルシロキサンは、その分子量 Mw (標準ポリスチレ ン換算重量平均分子量をいう。以下同じ。)が 10000〜40000のものであることが好 ましい。また、得られる弾性異方導電膜 25, 46の耐熱性の観点から、分子量分布指 数 (標準ポリスチレン換算重量平均分子量 Mwと標準ポリスチレン換算数平均分子 量 Mnとの比 MwZMnの値をいう。以下同じ。)が 2以下のものが好ましい。
[0043] 一方、ヒドロキシル基を含有する液状シリコーンゴム(ヒドロキシル基含有ポリジメチ ルシロキサン)は、通常、ジメチルジクロロシランまたはジメチルジアルコキシシランを 、ジメチルヒドロクロロシランまたはジメチルヒドロアルコキシシランの存在下にお!/、て、 加水分解および縮合反応させ、例えば引続き溶解 沈殿の繰り返しによる分別を行 うことにより得られる。
また、環状シロキサンを触媒の存在下においてァ-オン重合し、重合停止剤として 、 ί列免ばジメチノレヒドロクロロシラン、メチノレジヒドロクロロシランまたはジメチノレヒドロア ルコキシシランなどを用い、その他の反応条件 (例えば、環状シロキサンの量および 重合停止剤の量)を適宜選択することによつても得られる。ここで、ァ-オン重合の触 媒としては、水酸ィ匕テトラメチルアンモ -ゥムおよび水酸化 η—ブチルホスホ-ゥムな どのアルカリまたはこれらのシラノレート溶液などを用いることができ、反応温度は、例 えば 80〜130°Cである。
[0044] このようなヒドロキシル基含有ポリジメチルシロキサンは、その分子量 Mwが 10000 〜40000のものであることが好ましい。また、得られる弾性異方導電膜 25, 46の耐 熱性の観点から、分子量分布指数が 2以下のものが好ま 、。
本発明にお 、ては、上記のビュル基含有ポリジメチルシロキサンおよびヒドロキシル 基含有ポリジメチルシロキサンのいずれか一方を用いることもでき、両者を併用するこ とちでさる。
[0045] また、ウェハに形成された集積回路についてのプローブ試験またはバーンイン試 験に用いる場合には、弾性高分子物質として、付加型液状シリコーンゴムの硬化物( 以下、「シリコーンゴム硬化物」という。)であって、その 150°Cにおける圧縮永久歪み が 10%以下であるものを用いることが好ましぐより好ましくは 8%以下、さらに好まし くは 6%以下である。この圧縮永久歪みが 10%を超える場合には、得られる異方導 電性コネクターを多数回にわたって繰り返し使用したとき或いは高温環境下におい て繰り返し使用したときには、接続用導電部 26, 47に永久歪みが発生しやすぐこれ により、接続用導電部 26, 47における導電性粒子 Pの連鎖に乱れが生じる結果、所 要の導電性を維持することが困難となる。
ここで、シリコーンゴム硬化物の圧縮永久歪みは、 JIS K 6249に準拠した方法に よって柳』定することができる。
[0046] また、弾性異方導電膜 25, 46を形成するシリコーンゴム硬化物は、その 23°Cにお けるデュロメーター A硬度が 10〜60のものであることが好ましぐさらに好ましくは 15 〜55、特に好ましくは 20〜50のものである。
このデュロメーター A硬度が 10未満である場合には、加圧されたときに、接続用導 電部 26, 47を相互に絶縁する絶縁部 27, 48が過度に歪みやすぐ接続用導電部 2 6間または接続用導電部 47間の所要の絶縁性を維持することが困難となることがあ る。また、シリコーンゴム硬化物の未硬化成分量が多くなり、加圧されることにより当該 シリコーンゴム硬化物の未硬化成分が検査用回路基板 30の検査用電極 31および 接続用回路基板 41の端子電極 42に付着し、悪影響を与えることがある。一方、この デュロメーター A硬度が 60を超える場合には、接続用導電部 26, 47に適正な歪み を与えるために相当に大きい荷重による加圧力が必要となるため、例えば検査対象 であるウェハに大きな変形や破壊が生じやすくなる。
また、異方導電性コネクターをバーンイン試験に用いる場合には、シリコーンゴム硬 化物は、その 23°Cにおけるデュロメーター A硬度が 25〜40のものであることが好まし い。シリコーンゴム硬化物として、デュロメーター A硬度が上記の範囲外のものを用い る場合には、得られる異方導電性コネクターをバーンイン試験に繰り返し使用したと きには、接続用導電部 26, 47に永久歪みが発生しやすぐこれにより、接続用導電 部 26, 47における導電性粒子 Pの連鎖に乱れが生じる結果、所要の導電性を維持 することが困難となることがある。
ここで、シリコーンゴム硬化物のデュロメーター A硬度は、 JIS K 6249に準拠した 方法によって測定することができる。
[0047] また、弾性異方導電膜 25, 46を形成するシリコーンゴム硬化物は、その 23°Cにお ける弓 Iき裂き強度が 8kNZm以上のものであることが好ましく、さらに好ましくは 10k NZm以上、より好ましくは 15kNZm以上、特に好ましくは 20kNZm以上のもので ある。この引き裂き強度が 8kNZm未満である場合には、弾性異方導電膜 25, 46に 過度の歪みが与えられたときに、耐久性の低下を起こしやす 、。
ここで、シリコーンゴム硬化物の引き裂き強度は、 JIS K 6249に準拠した方法に よって柳』定することができる。
[0048] また、付加型液状シリコーンゴムとしては、ビュル基と Si— H結合との反応によって 硬化するものであって、ビュル基および Si— H結合の両方を含有するポリシロキサン からなる一液型(一成分型)のもの、およびビニル基を含有するポリシロキサンおよび Si— H結合を含有するポリシロキサン力もなる二液型(二成分型)のもののいずれも 用いることができる力 二液型の付加型液状シリコーンゴムを用いることが好ましい。
[0049] また、付加型液状シリコーンゴムとしては、その 23°Cにおける粘度が 100〜1, 250 Pa' sのものを用いることが好ましぐさらに好ましくは 150〜800Pa' s、特に好ましく は 250〜500Pa' sのものである。この粘度が lOOPa' s未満である場合には、後述す る弾性異方導電膜を得るための成形材料にぉ ヽて、当該付加型液状シリコーンゴム 中における導電性粒子の沈降が生じやすぐ良好な保存安定性が得られず、また、 成形材料層に平行磁場を作用させたときに、導電性粒子が厚み方向に並ぶよう配向 せず、均一な状態で導電性粒子の連鎖を形成することが困難となることがある。一方 、この粘度が 1, 250Pa' sを超える場合には、得られる成形材料が粘度の高いものと なるため、金型内に成形材料層を形成しにくいものとなることがあり、また、成形材料 層に平行磁場を作用させても、導電性粒子が十分に移動せず、そのため、導電性粒 子を厚み方向に並ぶよう配向させることが困難となることがある。
[0050] 高分子物質形成材料中には、当該高分子物質形成材料を硬化させるための硬化 触媒を含有させることができる。このような硬化触媒としては、有機過酸化物、脂肪酸 ァゾィ匕合物、ヒドロシリルイ匕触媒などを用いることができる。
硬化触媒として用いられる有機過酸化物の具体例としては、過酸化べンゾィル、過 酸化ビスジシクロべンゾィル、過酸化ジクミル、過酸化ジターシャリーブチルなどが挙 げられる。
硬化触媒として用いられる脂肪酸ァゾ化合物の具体例としては、ァゾビスイソプチ口 二トリルなどが挙げられる。
ヒドロシリル化反応の触媒として使用し得るものの具体例としては、塩化白金酸およ びその塩、白金 不飽和基含有シロキサンコンプレックス、ビュルシロキサンと白金と のコンプレックス、白金と 1, 3 ジビュルテトラメチルジシロキサンとのコンプレックス、 トリオルガノホスフィンあるいはホスファイトと白金とのコンプレックス、ァセチルァセテ ート白金キレート、環状ジェンと白金とのコンプレックスなどの公知のものが挙げられ る。
硬化触媒の使用量は、高分子物質形成材料の種類、硬化触媒の種類、その他の 硬化処理条件を考慮して適宜選択されるが、通常、高分子物質形成材料 100重量 部に対して 3〜 15重量部である。
[0051] 接続用導電部 26, 47を構成する磁性を示す導電性粒子 Pとしては、例えば、鉄、 ニッケル、コバルトなどの磁性を示す金属の粒子若しくはこれらの合金の粒子または これらの金属を含有する粒子、またはこれらの粒子を芯粒子とし、当該芯粒子の表面 に金、銀、パラジウム、ロジウムなどの導電性の良好な金属のメツキを施したもの、あ るいは非磁性金属粒子若しくはガラスビーズなどの無機物質粒子またはポリマー粒 子を芯粒子とし、当該芯粒子の表面に、ニッケル、コバルトなどの導電性磁性体のメ ツキを施したもの、あるいは芯粒子に、導電性磁性体および導電性の良好な金属の 両方を被覆したものなどが挙げられる。
これらの中では、ニッケル粒子を芯粒子とし、その表面に金や銀などの導電性の良 好な金属のメツキを施したものを用いることが好まし 、。 芯粒子の表面に導電性金属を被覆する手段としては、特に限定されるものではな いが、例えば無電解メツキにより行うことができる。
[0052] 導電性粒子 Pとして、芯粒子の表面に導電性金属が被覆されてなるものを用いる場 合には、良好な導電性が得られる観点から、粒子表面における導電性金属の被覆率 (芯粒子の表面積に対する導電性金属の被覆面積の割合)が 40%以上であることが 好ましぐさらに好ましくは 45%以上、特に好ましくは 47〜95%である。
また、導電性金属の被覆量は、芯粒子の 2. 5〜50重量%であることが好ましぐよ り好ましくは 3〜45重量%、さらに好ましくは 3. 5〜40重量%、特に好ましくは 5〜30 重量%である。
[0053] また、導電性粒子 Pの粒子径は、 1〜500 μ mであることが好ましぐより好ましくは 2 〜400 m、さら〖こ好ましくは 5〜300 m、特〖こ好ましくは 10〜150 mである。 また、導電性粒子 Pの粒子径分布 (DwZDn)は、 1〜: LOであることが好ましぐより 好ましくは 1〜7、さらに好ましくは 1〜5、特に好ましくは 1〜4である。
このような条件を満足する導電性粒子 Pを用いることにより、得られる弾性異方導電 膜 25, 46は、加圧変形が容易なものとなり、また、当該弾性異方導電膜 25, 46の接 続用導電部 26, 47において導電性粒子 P間に十分な電気的接触が得られる。 また、導電性粒子 Pの形状は、特に限定されるものではないが、高分子物質形成材 料中に容易に分散させることができる点で、球状のもの、星形状のものあるいはこれ らが凝集した 2次粒子による塊状のものであることが好ましい。
[0054] また、導電性粒子 Pの含水率は、 5%以下であることが好ましぐより好ましくは 3% 以下、さらに好ましくは 2%以下、特に好ましくは 1%以下である。このような条件を満 足する導電性粒子 Pを用いることにより、成形材料層を硬化処理する際に、当該成形 材料層内に気泡が生ずることが防止または抑制される。
[0055] また、導電性粒子 Pの表面がシランカップリング剤などのカップリング剤で処理され たものを適宜用いることができる。導電性粒子 Pの表面がカップリング剤で処理される こと〖こより、当該導電性粒子 Pと弾性高分子物質との接着性が高くなり、その結果、得 られる弾性異方導電膜 25, 46は、繰り返しの使用における耐久性が高いものとなる カップリング剤の使用量は、導電性粒子 Pの導電性に影響を与えな 、範囲で適宜 選択されるが、導電性粒子 Pの表面におけるカップリング剤の被覆率 (導電性芯粒子 の表面積に対するカップリング剤の被覆面積の割合)が 5%以上となる量であること が好ましぐより好ましくは上記被覆率が 7〜: LOO%、さらに好ましくは 10〜: LOO%、 特に好ましくは 20〜100%となる量である。
[0056] 接続用導電部 26, 47における導電性粒子 Pの含有割合は、体積分率で 10〜60 %、好ましくは 15〜50%となる割合で用いられることが好ましい。この割合が 10%未 満の場合には、十分に電気抵抗値の小さい接続用導電部 26, 47が得られないこと がある。一方、この割合が 60%を超える場合には、得られる接続用導電部 26, 47は 脆弱なものとなりやすぐ接続用導電部 26, 47として必要な弾性が得られないことが ある。
[0057] 高分子物質形成材料中には、必要に応じて、通常のシリカ粉、コロイダルシリカ、ェ ァロゲルシリカ、アルミナなどの無機充填材を含有させることができる。このような無機 充填材を含有させることにより、得られる成形材料のチクソトロピー性が確保され、そ の粘度が高くなり、しかも、導電性粒子 Pの分散安定性が向上すると共に、硬化処理 されて得られる弾性異方導電膜 25, 46の強度が高くなる。
このような無機充填材の使用量は、特に限定されるものではないが、あまり多量に 使用すると、後述する製造方法において、磁場による導電性粒子 Pの移動が大きく阻 害されるため、好ましくない。
[0058] 以上のような傾き調整用異方導電性コネクター 20は、以下のようにして製造するこ とができる。また、接点形成用異方導電性コネクター 45についても同様である。 先ず、接続用回路基板 41および検査用回路基板 30に係る接続対象電極が形成 された電極領域に対応して複数の異方導電膜配置用孔 22をフレーム板構成材料に 形成すると共に、複数の位置決め孔 23をフレーム板構成材料の所定の位置に形成 することにより、フレーム板 21を作製する。ここで、異方導電膜配置用孔 22および位 置決め孔 23を形成する方法としては、例えばエッチング法などを利用することができ る。
[0059] 次 ヽで、硬化されて弾性高分子物質となる高分子物質形成材料中に、磁性を示す 導電性粒子 Pが分散されてなる成形材料を調製する。そして、図 3に示すように、弾 性異方導電膜成形用の金型を用意し、この金型における上型 70および下型 75の各 々の成形面に、調製した成形材料を、所要のパターンすなわち形成すべき弾性異方 導電膜 25の配置パターンに従って塗布することによって成形材料層 25Bを形成する 。ここで、上型 70および下型 75の成形面に成形材料を塗布する方法としては、スクリ ーン印刷法を用いることが好ましい。このような方法によれば、成形材料を所要のパ ターンに従って塗布することが容易で、しカゝも、適量の成形材料を塗布することがで きる。
[0060] また、金型について具体的に説明すると、上型 70においては、強磁性体基板 71の 下面に、成形すべき全ての弾性異方導電膜 25の接続用導電部 26の配置パターン に対掌なパターンに従って強磁性体層 72が形成され、この強磁性体層 72以外の個 所には、非磁性体層 73が形成されており、これらの強磁性体層 72および非磁性体 層 73によって成形面が形成されている。
一方、下型 75においては、強磁性体基板 76の上面に、成形すべき全ての弹性異 方導電膜 25の接続用導電部 26の配置パターンと同一のパターンに従って強磁性 体層 77が形成され、この強磁性体層 77以外の個所には、非磁性体層 78が形成さ れており、これらの強磁性体層 77および非磁性体層 78によって成形面が形成され ている。
また、上型 70および下型 75の成形面の各々には、成形すべき弾性異方導電膜 25 の接続用導電部 26における突出部分 26A, 26Bのそれぞれに対応して凹所 74A, 74Bが形成されている。
[0061] 上型 70および下型 75の各々における強磁性体基板 71, 76を構成する材料として は、鉄、鉄—ニッケル合金、鉄—コバルト合金、ニッケル、コバルトなどの強磁性金属 を用いることができる。この強磁性体基板 71, 76は、その厚みが 0. l〜50mmであ ることが好ましぐ表面が平滑で、化学的に脱脂処理され、また、機械的に研磨処理 されたものであることが好まし 、。
[0062] また、上型 70および下型 75の各々における強磁性体層 72, 77を構成する材料と しては、鉄、鉄—ニッケル合金、鉄—コバルト合金、ニッケル、コバルトなどの強磁性 金属を用いることができる。この強磁性体層 72, 77は、その厚みが 10 m以上であ ることが好ましい。この厚みが 10 m未満である場合には、金型内に形成される成形 材料層に対して、十分な強度分布を有する磁場を作用させることが困難となり、この 結果、当該成形材料層における接続用導電部 26を形成すべき部分に導電性粒子 P を高密度に集合させることが困難となるため、良好な異方導電性を有するシートが得 られないことがある。
[0063] また、上型 70および下型 75の各々における非磁性体層 73, 78を構成する材料と しては、銅などの非磁性金属、耐熱性を有する高分子物質などを用いることができる 力 フォトリソグラフィ一の手法により容易に非磁性体層 73, 78を形成することができ る点で、放射線によって硬化された高分子物質を用いることが好ましぐその材料とし ては、例えばアクリル系のドライフィルムレジスト、エポキシ系の液状レジスト、ポリイミ ド系の液状レジストなどのフォトレジストを用いることができる。
また、非磁性体層 73, 78の厚みは、強磁性体層 72, 77の厚み、目的とする弾性 異方導電膜 25の接続用導電部 26の突出高さに応じて設定される。
[0064] そして、成形材料層 25Bが形成された下型 75の成形面上に、それぞれ形成すべき 弾性異方導電膜 25の平面形状に適合する形状を有する複数の開口 Kが形成された スぺーサー 79Bを介して、フレーム板 21を位置合わせして配置すると共に、このフレ ーム板 21上に、それぞれ形成すべき弾性異方導電膜 25の平面形状に適合する形 状を有する複数の開口 Kが形成されたスぺーサー 79Aを介して、成形材料層 25Bが 形成された上型 70を位置合わせして配置し、更に、これらを重ね合わせることにより 、図 4に示すように、上型 70と下型 75との間に、目的とする形態 (形成すべき弹性異 方導電膜 25の形態)の成形材料層 25Aが形成される。
このようにフレーム板 21と上型 70および下型 75との間にスぺーサー 79A, 79Bを 配置することにより、目的とする形態の弾性異方導電膜を形成することができると共に 、隣接する弾性異方導電膜同士が連結することが防止されるため、互いに独立した 多数の弾性異方導電膜を確実に形成することができる。
[0065] 次いで、上型 70における強磁性体基板 71の上面および下型 75における強磁性 体基板 76の下面に例えば一対の電磁石を配置してこれを作動させることにより、成 形材料層 25A中に分散されていた導電性粒子 Pが、上型 70の強磁性体層 72とこれ に対応する下型 75の強磁性体層 77との間に位置する接続用導電部 26となる部分 に集合して厚み方向に並ぶよう配向する。そして、この状態において、成形材料層 2 5Aを硬化処理することにより、弾性高分子物質中に導電性粒子が厚み方向に並ぶ よう配向した状態で含有されてなる複数の接続用導電部 26が、導電性粒子が全く或 いは殆ど存在しない高分子弾性物質よりなる絶縁部 27によって相互に絶縁された状 態で配置されてなる複数の弾性異方導電膜 25が、フレーム板 21の弾性異方導電膜 配置用孔 22の開口縁部に固定された状態で形成され、以て、図 2に示されている傾 き調整用異方導電性コネクター 20が得られる。
[0066] 上記構成のウェハ検査装置においては、次のようにしてウェハ Wについて電気的 検査が行われる。すなわち、先ず、平行度調整機構 50を構成する各々の位置可変 機構 51におけるナット 53を、所定の大きさで一律に設定された締め付け量で、締め 付けることにより、図 5に示されているように、傾き調整用異方導電性コネクター 20に おける弾性異方導電膜 25が検査用回路基板 30と接続用回路基板 41とよって挟圧 されて厚み方向に圧縮された状態で、検査用回路基板 30、傾き調整用異方導電性 コネクター 20およびプローブカード 40の三者を仮固定し、これにより、検査用回路基 板 30における検査用電極 31の各々とプローブカード 40を構成する接続用回路基板 41における端子電極 42の各々とを傾き調整用異方導電性コネクター 20における接 続用導電部 26の各々を介して電気的に接続する。
そして、検査対象であるウェハ Wをウェハトレイ 58上に載置し、ウェハトレイ 58を上 方に移動させてウェハ Wをプローブカード 40に接触させ、この状態からさらに上方に 加圧することにより、図 6に示されているように、プローブカード 40を構成する接点形 成用異方導電性コネクター 45における接続用導電部 47の各々を、ウェハ Wに形成 された一部の集積回路の被検査電極の各々に接触させて電気的に接続させ、この 状態において、検査用回路基板 30、プローブカード 40およびウェハ Wの三者の平 行度を調整する検査初期状態設定操作、すなわち平行度調整処理が行われる。
[0067] 具体的には、プローブカード 40を構成する接点形成用異方導電性コネクター 45に おける接続用導電部 47の各々力 ウェハ Wに形成された一部の集積回路の被検査 電極の各々に接触され、この状態力も更に上方に加圧されることにより、接点形成用 異方導電性コネクター 45における接続用導電部 47の各々とウエノ、 Wにおける被検 查電極の各々との電気的接続が達成された状態において、傾き調整用異方導電性 コネクター 20における接続用導電部 26の各々の電気抵抗値を測定し、得られた電 気抵抗値の分布が実質的に均一な状態となるよう、各々の位置可変機構 51におけ るナット 53の締め付け量の補正量が各々のナット 53について別個に設定され、これ らの補正量に基づいて各々のナット 53の締め付け量が調整される。ここに、「実質的 に均一な状態」とは、すべての接続用導電部 26における電気抵抗値が士 50m Ωの 範囲内で一致する状態をいう。
[0068] 以上のような検査初期状態設定操作を必要に応じて繰り返して行うことにより、検査 用回路基板 30、プローブカード 40およびウェハ Wの三者が高 ヽ平行度を有する状 態であって、傾き調整用異方導電性コネクター 20における弾性異方導電膜 25が検 查用回路基板 30と接続用回路基板 41とよって挟圧されて厚み方向に圧縮されるこ とにより導通状態が確保されると共に検査用回路基板 30と接続用回路基板 41との 間の離間距離が大きくなる方向への移動 (変位)が禁止された状態で、検査用回路 基板 30、傾き調整用異方導電性コネクター 20およびプローブカード 40の三者が固 定された、所定の電気的検査を行うに際しての検査初期状態が設定される。
この検査初期状態においては、傾き調整用異方導電性コネクター 20における弾性 異方導電膜 25のすベての接続用導電部 26の電気抵抗値が例えば 0. 1 Ω以下とな る状態、であって、検査用回路基板 30と接続用回路基板 41とによる弾性異方導電 膜 25に対する挟圧力が、接続用導電部 26の 1個当たり 0. 01〜0. 4Nである状態と されていることが好ましい。この挟圧力の値が過小である場合には、接続用導電部 2 6の電気抵抗値が高くなつて所要の電気的検査を行うことが困難となることがある。一 方、この挟圧力の値が過大である場合には、検査用回路基板 30および接続用回路 基板 41が変形するため、安定な電気的接続が困難となることがある。
[0069] そして、ウェハ検査装置の検査初期状態が設定された後、ウェハトレイ 58が上方に 移動されることにより、接点形成用異方導電性コネクター 45における接続用導電部 4 7の各々がウエノ、 Wに形成された一部の集積回路の被検査電極の各々に接触され 、この状態力 更に所定の大きさの荷重で上方に加圧されることにより、所要の電気 的接続が達成される。
次いで、ウェハトレイ 58によってウェハ Wが所定の温度に加熱され、この状態で、ゥ ェハ Wにつ!/、ての所要の電気的検査 (WLBI試験またはプローブ試験)が行われる 而して、上記構成のウェハ検査装置によれば、ウェハ検査装置全体のウェハ Wに 対する傾きを調整する平行度調整機構 50を有するプローブ装置 10を具え、平行度 調整機構 50を構成する各々の位置可変機構 51におけるナット 53が適正な大きさに 調整された締め付け量で各々独立して締め付けられてウェハ検査装置全体の平行 度調整が行われることにより、検査用回路基板 30、プローブカード 40 (接続用回路 基板 41)および検査対象であるウェハ Wの三者が極めて高い平行度を有する状態と なる。
具体的には、各々の位置可変機構 51におけるナット 53を所定の大きさで一律に設 定された締め付け量で締め付けることにより検査用回路基板 30、傾き調整用異方導 電性コネクター 20およびプローブカード 40の三者を仮固定し、プローブ装置 10全体 をウェハ Wに接触させた状態から更に加圧して、接点形成用異方導電性コネクター 45における接続用導電部 47の各々とウェハ Wに形成された被検査電極の各々とを 電気的に接続し、傾き調整用異方導電性コネクター 20におけるすべての接続用導 電部 26の電気抵抗値が実質的に均一となるよう設定された各々の補正量で、各々 の位置可変機構 51におけるナット 53の締め付け量が別個に調整されることにより、ゥ エノ、 Wにおける被検査電極が形成された面との関係において、換言すればウェハ W それ自体のうねりや反りなどを考慮して、検査用回路基板 30およびプローブカード 4 0の傾きが調整されるので、ウェハ検査装置の検査初期状態が、検査用回路基板 30 、プローブカード 40 (接続用回路基板 41)および検査対象であるウェハ Wの三者が 極めて高い平行度を有する状態とされ、これにより、検査用回路基板 30と接続用回 路基板 41との離間距離が大きくなる方向への変位が位置可変機構 51によって禁止 されてウェハ Wに対する高い平行度がプローブ装置 10全体に維持されながら、接点 形成用異方導電性コネクター 45における接続用導電部 47の各々とウエノ、 Wにおけ る被検査電極の各々とが電気的に接続される結果、所要の電気的接続状態を小さ い荷重で安定的に得ることができ、従って、ウェハ Wについての所期の電気的検査 を高 、信頼性をもって確実に行うことができる。
また、プローブカード 40における接触部材が弾性異方導電膜 (異方導電性シート) 46を具えてなる異方導電性コネクタ一により構成されていることにより、基本的に、検 查初期状態から検査荷重が作用される検査状態まで加圧されることによる傾き調整 用異方導電性コネクター 20による凹凸吸収性が得られ、し力も、ウェハ Wに対する高 い平行度がプローブ装置 10全体に維持されながら加圧されることによって接点形成 用異方導電性ネクター 45における弾性異方導電膜 46本来の凹凸吸収性がロスが 可及的に少なくされた状態で得られる。
すなわち、上記構成のウェハ検査装置によれば、接点形成用異方導電性コネクタ 一 45における接続用導電部の各々とウェハ Wに形成された被検査電極と力 ウェハ 検査装置全体の平行度が調整された状態で、電気的に接続されることにより、図 7に 示されて!/、るように、すべての接続用導電部がウェハ Wにおける被検査電極の各々 に接触され始めた状態における荷重、すなわち初期荷重 1に小さい荷重で達するが 、ウェハ検査装置全体の平行度を調整しない場合には、接点形成用異方導電性コ ネクターにおいては、すべての接続用導電部がウェハ Wにおける被検査電極の各 々に接触され始めた状態における荷重、すなわち初期荷重 2に達するまでに大きな 荷重が必要となる。従って、平行度の調整を行うことにより、初期荷重から検査状態 における検査時荷重まで加圧が行われるときの弾性異方導電膜の歪み量 (以下「ォ 一バードライブ量」という。 ) δ 1を、平行度調整を行わない場合におけるオーバードラ イブ量 δ 2に比して十分に大きなものとすることができる。例えば、接点形成用異方 導電性コネクター 45における弾性異方導電膜 46においては、同図 7において一点 鎖線で示す荷重—歪み曲線に示されているように、平行度調整を行わない場合に比 較して、全厚が 150 mのもので 20〜40%程度大きいオーバードライブ量( δ \/ δ 2)が得られる。
また、平行度の調整を行うことにより、接点形成用異方導電性コネクター 45におい ては、小さい荷重で、抵抗値 (導電特性)が安定した状態、すなわち安定した電気的 接続状態を達成することができる(図 7において実線で示す荷重—抵抗値曲線参照 。;)が、平行度の調整を行わない場合であれば、抵抗値 (導電特性)が安定した状態 に達するまでに大きな荷重が必要とされる(同図 7において破線で示す荷重—抵抗 値曲線参照。)。
従って、プローブ装置 10全体においては、傾き調整用異方導電性コネクター 20に よるオーバードライブ量 (この場合には、検査初期状態における初期荷重 1から検査 状態における検査時荷重まで加圧されたときの弾性異方導電膜 25の歪み量)が得ら れると共に接点形成用異方導電性コネクター 45によるオーバードライブ量 δ 1が得ら れ、一層確実に、良好な電気的接続状態を小さい荷重で安定的に得ることができ、 これにより、ウェハ Wについての所期の電気的検査を高い信頼性をもって確実に行う ことができる。具体的には、プローブ装置 10全体に係るオーバードライブ量の総量を 、各々全厚が 500 mの傾き調整用異方導電性コネクター 20および接点形成用異 方導電性コネクター 45を用いた場合において、例えば 60〜120 m程度確保する ことができる。
また、以上のようなウェハ検査装置によれば、更に以下に示す効果が得られる。
(1)傾き調整用異方導電性コネクター 20が、弾性異方導電膜 25が金属材料よりなる フレーム板 21によって支持されてなるものであることにより、当該フレーム板 21を保 持したときには傾き調整用異方導電性コネクター 20全体が大きく変形することがなく 、これにより、当該傾き調整用異方導電性コネクター 20の接続対象電極に対する位 置合わせ作業を位置可変機構 51を利用して、具体的には、ボルト 52を位置決め用 ピンとして利用して容易に行うことができる。
また、接点形成用異方導電性コネクター 45についても同様に、接続対象電極に対 する位置合わせ作業を容易に行うことができる。
(2)検査用回路基板 30と接続用回路基板 41との離間距離が短いため、当該ウェハ 検査装置の高さ方向の寸法を小さくすることができ、従って、ウェハ検査装置全体の 小型化を図ることができる。
(3)検査用回路基板 30の検査用電極 31に作用される加圧力が小さいため、当該検 查用電極 31が損傷することがなぐ当該検査用回路基板 30の使用寿命が短くなるこ とがない。
(4)検査用回路基板 30の検査用電極 31は、特定の傾き調整用異方導電性コネクタ 一 20によって電気的に接続されることにより、当該検査用電極 31を高密度で配置す ることができ、従って、多数の検査用電極 31を形成することができるので、多数の被 検査電極につ!、ての検査を一括して行うことができる。
(5)異方導電性コネクターによる電気的接続は接触抵抗力 S小さぐしカゝも、安定した 接続状態を達成することができるため、良好な電気特性が得られる。
(6)検査用回路基板 30の検査用電極 31と接続用回路基板 41の端子電極 42とが傾 き調整用異方導電性コネクター 20における接続用導電部 26を介して電気的に接続 されているため、信号伝送系の距離が短ぐ従って、高速処理が必要とされる高機能 の集積回路の電気的検査についても対応することができる。
(7)傾き調整用異方導電性コネクター 20および接点形成用異方導電性コネクター 4 5におけるフレーム板 21, 49は線熱膨張係数が小さい材料よりなるため、温度環境 の変化に対しても検査用回路基板 30と接続用回路基板 41との良好な電気的接続 状態を安定に維持することができると共に、プローブ装置 10とウェハ Wとの良好な電 気的接続状態を安定に維持することができる。
以上、本発明の一実施形態について説明したが、本発明は上記の実施形態に限 定されるものではなぐ種々の変更をカ卩えることができる。
例えば、本発明に係るウェハ検査装置においては、プローブ装置が図 8に示す構 成のものとされて ヽてもよ 、。
このプローブ装置について具体的に説明すると、このウェハ検査装置を構成する プローブ装置 10においては、傾き調整用異方導電性コネクター 20の最大歪み量を 規制するスぺーサ 60が、傾き調整用異方導電性コネクター 20の弾性異方導電膜 25 が形成された領域に対応する領域に開口 63を有する矩形枠状のものよりなり、傾き 調整用異方導電性コネクター 20におけるフレーム板 21の両面に配置されて当該傾 き調整用異方導電性コネクター 20を支持する構成とされている。このウェハ検査装 置は、互いに構成が異なるスぺーサが用いられていること以外は、基本的な構成は、 図 2に示すウェハ検査装置と同一のものであり、便宜上、同一の構成部材について は同一の符号が付してある。
[0074] スぺーサ 60には、傾き調整用異方導電性コネクター 20の位置決め孔 23に対応す る位置に、厚み方向に伸びる貫通孔 64が形成されており、位置可変機構 51を構成 するボルト 52が各々のスぺーサ 60における貫通孔 64および傾き調整用異方導電性 コネクター 20における位置決め孔 23に挿通された状態とされることにより、検査用回 路基板 30、傾き調整用異方導電性コネクター 20およびプローブカード 40の三者が 、検査用回路基板 30における検査用電極 31の各々が接続用回路基板 41における 端子電極 42の各々に対向すると共に傾き調整用異方導電性コネクター 20における 接続用導電部 26の各々が接続対象電極の各々に対向するよう位置決めされた状態 で、配置される。
[0075] この例におけるスぺーサ 60, 60は、例えば金属よりなる矩形枠状の板状部分 62と 、この板状部分 62における、傾き調整用異方導電性コネクター 20のフレーム板 21に 対接される面、および検査用回路基板 30または接続用回路基板 41に対接される面 に、弾性体よりなる柱状の微小突起部分 61が複数形成されている。
[0076] 傾き調整用異方導電性コネクター 20のフレーム板 21を含む 2つのスぺーサ 60, 6 0の全厚は、例えば傾き調整用異方導電性コネクター 20の全厚の 50%以上の大き さであることが好ましぐより好ましくは 50〜70%の大きさである。
また、微小突起部分 61を含む 2つのスぺーサ 60の厚みと、傾き調整用異方導電性 コネクター 20におけるフレーム板 21の厚みとの合計の厚みは、傾き調整用異方導電 性コネクター 20の全厚の 90%以上の大きさであることが好ましぐより好ましくは 90〜 95%の大きさである。
このような構成のスぺーサ 60が用いられることにより、傾き調整用異方導電性コネク ター 20における弾性異方導電膜 25に対する狭圧力の大きさが過大になることが防 止されて、接続用導電部 26に所要の導電性が確実に得られ、し力も、微小突起部分 61による所期の傾き補正機能が確実に得られる。
[0077] そして、このウェハ検査装置においては、図 1および図 2に示すウェハ検査装置と 同様にしてウェハ Wについて所定の電気的検査が行われる。すなわち、平行度調整 機構 50を構成する各々の位置可変機構 51におけるナット 53を、所定の大きさで一 律に設定された締め付け量で、締め付けることにより、図 9に示されているように、傾 き調整用異方導電性コネクター 20における弾性異方導電膜 25が検査用回路基板 3 0と接続用回路基板 41とよって挟圧されて厚み方向に圧縮されると共にスぺーサ 60 における微小突起部分 61の各々が狭圧されて厚み方向に圧縮された状態で、検査 用回路基板 30、傾き調整用異方導電性コネクター 20およびプローブカード 40の三 者を仮固定し、これにより、検査用回路基板 30における検査用電極 31の各々と当該 接続用回路基板 41における端子電極 42の各々とを傾き調整用異方導電性コネクタ 一 20における接続用導電部 26の各々を介して電気的に接続する。
そして、検査対象であるウェハ Wをウェハトレイ 58上に載置し、ウェハトレイ 58を上 方に移動させてウェハ Wをプローブカード 40に接触させ、この状態からさらに上方に 加圧することにより、図 10に示されているように、接点形成用異方導電性コネクター 4 5における接続用導電部 47の各々を、ウェハ Wに形成された一部の集積回路の被 検査電極の各々に接触させ、この状態から更に上方に加圧することにより電気的接 続が達成された状態において、傾き調整用異方導電性コネクター 20における接続 用導電部 26の各々の電気抵抗値を測定し、得られた電気抵抗値の分布が実質的に 均一な状態となるよう、各々の位置可変機構 51におけるナット 53の締め付け量の補 正量が各々のナット 53について別個に設定され、これらの補正量に基づいて、各々 のナット 53の締め付け量がそれぞれ調整される。
[0078] 以上のような検査初期状態設定操作を必要に応じて繰り返して行うことにより、検査 用回路基板 30、プローブカード 40およびウェハ Wの三者が高 ヽ平行度を有する状 態であって、傾き調整用異方導電性コネクター 20における弾性異方導電膜 25が検 查用回路基板 30と接続用回路基板 41とよって挟圧されて導通状態が確保されると 共に検査用回路基板 30と接続用回路基板 41との間の離間距離が大きくなる方向へ の移動 (変位)が禁止された状態で、検査用回路基板 30、傾き調整用異方導電性コ ネクター 20およびプローブカード 40の三者が固定された状態である、所定の電気的 検査を行うに際しての検査初期状態が設定される。
[0079] そして、ウェハ検査装置の検査初期状態が設定された後、ウェハトレイ 58が適宜の 駆動手段によって上方に移動されることにより、接点形成用異方導電性コネクター 45 における接続用導電部 47の各々がウェハ Wに形成された一部の集積回路の被検 查電極の各々に接触され、この状態力 更に上方に加圧されることにより、所要の電 気的接続が達成される。
次いで、ウェハトレイ 58によってウェハ Wが所定の温度に加熱され、この状態で、ゥ ェハ Wにつ!/、ての所要の電気的検査 (WLBI試験またはプローブ試験)が行われる
[0080] 而して、上記構成のウェハ検査装置によれば、基本的には、図 1および図 2に示さ れているものと同様の効果が得られると共に、スぺーサ 60における微小突起部分 61 による傾き調整機能が得られるので、一層確実に、良好な電気的接続状態を小さい 荷重で安定的に得ることができ、これにより、ウェハ Wについての所期の電気的検査 を高 、信頼性をもって確実に行うことができる。
[0081] 上記構成のウェハ検査装置においては、スぺーサ 60の微小突起部分 61が両面に 形成さて 、る必要はなく、 、ずれか一方の面に形成された構成とされて 、てもよ 、。
[0082] 以上にぉ 、て、本発明における平行度調整機構を構成する位置可変機構としては 、検査用回路基板または接続用回路基板を異方導電性コネクターの厚み方向に相 対的に変位させることができると共に、検査用回路基板における検査用電極と接続 用回路基板における端子電極とが電気的に接続された状態において、検査用回路 基板と接続用回路基板との間の離間距離が大きくなる方向への変位を禁止すること ができるものであれば、ボルトとナットとよりなる一対の締結部材に限定されるもので はなぐ種々の機構を利用することができる。
[0083] また、検査用回路基板 30における検査用電極 31の各々と接続用回路基板 41〖こ おける端子電極 42の各々とを電気的に接続する傾き調整用異方導電性コネクター は、例えば図 11に示されているように、弾性異方導電膜 25における各々の接続用 導電部に微小突起部が形成された構成のものとされて 、てもよ 、。
具体的には、この傾き調整用異方導電性コネクター 20の弾性異方導電膜 25にお ける各々の接続用導電部 26は、両端面に例えば複数の柱状の微小突起部分 28A を有する微小突起部が形成されたものとされている。
各々の微小突起部分 28Aの突出高さは、傾き調整用異方導電性コネクター 20の 全厚の例えば 5〜10%の大きさとされている。
このような微小突起部分 28Aは、上述した異方導電性コネクターの製造方法にお いて、目的とする形態の微小突起部分成形用凹所が形成された成形面を有する弾 性異方導電膜成形用の金型を用いることにより、得ることができる。
[0084] 各々の接続用導電部 26における微小突起部は、その形状が特に制限されるもの ではなぐ例えば、図 12に示されているように、複数の球状の微小突起部分 28Bより なるもの、あるいは図 13に示されているように、複数本のワイヤー 28Cよりなるものな どにより構成することができる。
[0085] このような異方導電性コネクターを具えたウェハ検査装置によれば、傾き調整用異 方導電性コネクター 20の各々の弾性異方導電膜 25それ自体の凹凸吸収性が高く なり、ウェハ検査装置の傾き調整機能が向上し、これにより、一層確実に、良好な電 気的接続状態を小さい荷重で安定的に得ることができる。
[0086] また、傾き調整用異方導電性コネクター 20における接続用導電部 26は、図 14に 示されているように、半球状または楕円球状の突出部分 26Cを有する構成とされて いても、あるいは、先端に向かうに従って小径となる錐台状の突出部分を有する構成 とされていてもよい。
[0087] また、接触部材として異方導電性コネクターが用いられる場合において、当該異方 導電性コネクタ一として、弾性異方導電膜における一面または両面に、 DLC膜が弾 性異方導電膜の少なくとも絶縁部を覆うよう一体的に形成された構成のものを用いる ことができる。
具体的に説明すると、例えば図 15に示されているように、この異方導電性コネクタ 一 45Aにお 、ては、 DLC膜 46Aが弾性異方導電膜 46の表面全面を覆うよう形成さ れている。 DLC膜 46Aを具備していること以外の基本的な構成は、図 2に示されて いる異方導電性コネクターと同様のものであり、便宜上、同一の構成部材については 同一の符号が付してある。
DLC膜 46Aの厚みは、例えば l〜500nmであることが好ましぐより好ましくは 2〜 50nmである。
また、 DLC膜 46Aは、その表面抵抗率が 1 X 108〜1 X 10" Ω /口であることが好 ましぐより好ましくは 1 X 101()〜1 X ιο12ΩΖ口である。
さらに、 DLC膜 46Αは、ダイヤモンド結合とグラフアイト結合との比率が 9 : 1〜5: 5 であることが好ましぐより好ましくは 8 : 2〜6: 4であり、これにより、上記の範囲の表面 抵抗率を有する DLC膜 46Αが確実に得られる。
[0088] このような接点形成用異方導電性コネクター 45を具えたウェハ検査装置によれば、 プローブ装置 10におけるウェハ Wに接触する接点形成用異方導電性コネクター 45 1S DLC膜 46Aが形成された弾性異方導電膜 46を有するものであるため、ウェハ W が汚染されることを防止することができると共に、高温環境下にお 、てウエノ、 Wによつ て加圧された状態で長時間放置された場合にも、弾性異方導電膜 46がウェハ Wに 接着することを防止することができ、これにより、弾性異方導電膜 46およびウェハ W に損傷を与えることを回避することができる。更に、弾性異方導電膜 46の表面に電荷 が蓄積されることを防止または抑制することができるので、静電気による悪影響を排 除することができる。
[0089] さらに、プローブカード 40における接触部材の具体的な構成は、特に限定されるも のではなぐ例えばブレードまたはピンおよびマイクロスプリングピンよりなる接触子が 配列されてなるもの、接触子が異方導電性シート (例えば図 2に示す異方導電性コネ クタ一 45においてフレーム板 21を具備しない構成のもの)よりなるもの、絶縁性シー トにその厚み方向に貫通して伸びる金属体よりなる接触子が配置されてなるシート状 コネクターよりなるもの、例えば図 16に示されているように、異方導電性コネクター 45 とシート状コネクター 65とが積層されてなるものなどを用いることができる。同図 16に おいて、 66は金属体 (接触子)、 67は絶縁性シートである。
実施例
[0090] 以下、本発明の具体的な実施例について説明する力 本発明はこれらに限定され るものではない。
[0091] <実施例 1>
(1)評価用ウェハの作製:
直径が 8インチのシリコン (線熱膨張係数 3. 3 X 10— 6ZK)製のウェハ上に、それぞ れ、横方向における寸法が 11000 m、縦方向における寸法が 6000 mである矩 形の集積回路を、縦方向に 8個ずつ、横方向に 8個ずつ縦横に並ぶよう合計で 64個 形成した。ウェハに形成された集積回路の各々は、その中央に被検査電極領域を有 し、この被検査電極領域には、それぞれ表面に金メッキがなされた銅よりなる 60個の 被検査電極が 120 mのピッチで横方向に一列に配列されている。また、 60個の被 検査電極のうち 2個ずつが互いに電気的に接続されている。各々の被検査電極は、 横方向における寸法が 80 m、縦方向における寸法が 170 mのものであり、ゥェ ハ全体の被検査電極の総数は 3840個である。また、全ての被検査電極は、当該ゥ ェハの周縁部に形成された共通の弓 I出し電極 (図示省略)に電気的に接続されて ヽ る。以下、このウェハを「評価用ウェハ Wl」という。この評価用ウェハ W1におけるシリ コンウェハ自体の平面精度は ±8 /z mであった。
また、集積回路における 60個の被検査電極について、引き出し電極を形成せず、 被検査電極の各々が互いに電気的に絶縁されていること以外は、評価用ウェハ W1 と同様の構成の 64個の集積回路をウェハ上に形成した。このウェハ全体の被検査 電極の総数は 3840個である。以下、このウェハを「評価用ウェハ W2」という。この評 価用ウェハ W 1におけるシリコンウェハ自体の平面精度は ± 10 mであつた。
(2)プローブカードの作製:
〔接点形成用異方導電性コネクターの作製〕
先ず、図 3に示す構成に従って、弾性異方導電膜成形用の金型を下記の条件によ り作製した。
•強磁性体基板(71, 76):材質;鉄、厚み; 6000 /z m
'強磁性体層(72, 77):材質;ニッケル、寸法;横 60 m,縦 150 m,厚み 50 /z m 、配置ピッチ(中心間距離); 120 m、強磁性体層の数; 3840個(60個の強磁性体 層が形成された領域が、評価用ウェハ W1における集積回路の被検査電極領域に 対応して合計で 64個形成)
'非磁性体層 (73):材質;ドライフィルムレジストを硬化処理したもの、厚み;80 m '非磁性体層 (78):材質;ドライフィルムレジストを硬化処理したもの、厚み;80 m •凹所(74A):横 60 /z m,縦 150 /z m,深さ 30 /z m
'凹所(74B):横 60 /z m,縦 150 /z m,深さ 30 /z m [0093] そして、厚みが 60 μ mの 42ァロイ (飽和磁化 1. 7Wb/m2 ,線熱膨張係数 6. 2 X 10— 6Ζκ)よりなり、評価用ウェハ W1における各被検査電極領域に対応して形成さ れた 64個の弾性異方導電膜配置用孔 (横方向における寸法が 7600 m,縦方向 における寸法が 450 μ m)を有するフレーム板を作製すると共に、厚みが 20 μ mのス テンレス鋼(SUS304)よりなり、各々、評価用ウェハ W1における被検査電極領域に 対応して形成された複数の開口(横方向における寸法が 8600 m,縦方向におけ る寸法が 1450 μ mの矩形)を有する弾性異方導電膜成形用の 2枚のスぺーサーを 作製した。
一方、付加型液状シリコーンゴム 100重量部に、導電性粒子 55重量部を添加して 混合し、その後、減圧による脱泡処理を施すことにより弾性異方導電膜の成形用材 料を調製した。ここで、導電性粒子としては、平均粒子径 10 mのニッケル粒子を芯 粒子とし、この芯粒子に、その重量の 25重量%となる被覆量で金をィ匕学メツキにより 被覆したものを用いた。また、付加型液状シリコーンゴムとしては、 A液の粘度が 500 Pa. sで、 B液の粘度が 500Pa' sである二液型のものであって、硬化物の 150°Cにお ける永久圧縮歪みが 6%、硬化物のデュロメーター A硬度が 40、硬化物の引裂強度 が 30kNZmのものを用 、た。
[0094] また、上記の付加型液状シリコーンゴムの特性は、次のようにして測定した。
(ィ)付加型液状シリコーンゴムの粘度:
B型粘度計により、 23 ± 2°Cにおける粘度を測定した。
(口)シリコーンゴム硬化物の圧縮永久歪み:
二液型の付加型液状シリコーンゴムにおける A液と B液とを等量となる割合で攪拌 混合した。次いで、この混合物を金型に流し込み、当該混合物に対して減圧による 脱泡処理を行った後、 120°C、 30分間の条件で硬化処理を行うことにより、厚みが 1 2. 7mm、直径が 29mmのシリコーンゴム硬化物よりなる円柱体を作製し、この円柱 体に対して、 200°C、 4時間の条件でポストキュアを行った。このようにして得られた円 柱体を試験片として用い、 JIS K 6249に準拠して 150± 2°Cにおける圧縮永久歪 みを測定した。
(ハ)シリコーンゴム硬化物の引裂強度: 上記(口)と同様の条件で付加型液状シリコーンゴムの硬化処理およびポストキュア を行うことにより、厚みが 2. 5mmのシートを作製した。このシートから打ち抜きによつ てタレセント形の試験片を作製し、 JIS K 6249に準拠して 23± 2°Cにおける引裂 強度を測定した。
(二)デュロメーター A硬度:
上記 (ハ)と同様にして作製されたシートを 5枚重ね合わせ、得られた積重体を試験 片として用い、 JIS K 6249に準拠して 23 ± 2°Cにおけるデュロメーター A硬度を測 し 7こ。
[0095] 次いで、上記金型における下型の上面にスぺーサーを介してフレーム板を位置合 わせして配置し、このフレーム板上にスぺーサーを介して上型を位置合わせして配 置すると共に、上型、下型、 2枚のスぺーサ一およびフレーム板によって形成される 成形空間内に、調製した成形材料を充填して成形材料層を形成した。
そして、上型および下型の間に形成された成形材料層に対し、強磁性体層の間に 位置する部分に、電磁石によって厚み方向に 1. 8Tの磁場を作用させながら、 100 °C、 1時間の条件で硬化処理を施すことにより、フレーム板の弾性異方導電膜配置 用孔の各々に弾性異方導電膜を形成した。金型より取り出した後、 200°C、 4時間の 条件で後硬化処理を行うことにより、接点形成用異方導電性コネクターを製造した。
[0096] 形成された弾性異方導電膜について具体的に説明すると、弾性異方導電膜の各 々は、横方向の寸法が 8600 m、縦方向の寸法が 1450 mである。弾性異方導 電膜の各々には、評価用ウェハ W1における被検査電極に対応する 3840個の接続 用導電部が 120 mのピッチで配列されており、接続用導電部の各々は、横方向の 寸法が 60 /z m,縦方向の寸法が 150 /z m,厚みが 160 mであり、評価用ウェハ W 1に接続されるべき一面側の突出部分の突出高さが 30 m、接続用回路基板に接 続されるべき他面側の突出部分の突出高さが 30 mであり、絶縁部の厚みが 100 mであり、弾性異方導電膜の各々におけるフレーム板に支持された部分の厚み(二 股部分の一方の厚み)は 20 mである。また、弾性異方導電膜の各々における接続 用導電部中の導電性粒子の含有割合を調べたところ、全ての接続用導電部につい て体積分率で約 30%であった。 また、この接点形成用異方導電性コネクター全体の厚みバラツキの程度は ± 5 m であった。
[0097] 基板材料としてアルミナセラミックス (線熱膨張係数 4. 8 X 10"6/K)を用い、表面 に評価用ウェハ W1における集積回路の被検査電極のパターンに対応するパターン に従って表面電極が形成されると共に、裏面に表面電極の各々に接続された端子 電極 (裏面電極)が形成された接続用回路基板 (予め良品であることが確認されたも の)を用意し、この接続用回路基板の表面に接点形成用異方導電性コネクターを対 接させて接点形成用異方導電性コネクターにおける接続用導電部の各々と接続用 回路基板における端子電極の各々とを接続用回路基板における適宜の回路を介し て電気的に接続した状態で、接点形成用異方導電性コネクターを配置し、これにより
、プローブカードを作製した。ここに、接続用回路基板は、全体の寸法が 10cm X 10 cmの矩形であり、その平面精度は ± 10 /z mである。また、端子電極 (裏面電極)の 各々は、径の大きさが 400 μ mであるものであり、 800 μ mのピッチで横方向に 10個 ずつ、縦方向に 6個ずつ縦横に並んだ状態で配列されており、表面電極の各々は、 横方向の寸法力 ¾0 μ mで、縦方向の寸法が 170 μ mであるものであり、 120 mの ピッチで横方向に一列に配列されて 、る。
[0098] (3)傾き調整用異方導電性コネクターの作製:
上記接点形成用異方導電性コネクターの作製例において、強磁性体層(72, 77) の寸法を直径 300 m、厚み 100 mに変更すると共に、接続用導電部形成用の凹 所(74A, 74B)を直径 300 /ζ πι、深さ 100 mに変更したこと以外は同様の構成を 有する金型を作製した。
フレーム板としては、厚み力 OO /z mのステンレス鋼(SUS304,飽和磁化 0. Olw b/m2 ,線熱膨張係数: 1. 73 X 10— 5ZK)よりなるものを用意し、弾性異方導電膜成 形用の上側スぺーサ一および下側スぺーサ一として、各々、厚みが 50 μ mのステン レス鋼(SUS304)よりなるものを用意した。ここに、フレーム板における弾性異方導 電膜配置用孔の横方向における寸法が 8000 m、縦方向における寸法が 4800 mであり、スぺーサにおける開口の横方向における寸法が 9000 m、縦方向におけ る寸法力 800 μ mである。 一方、付加型液状シリコーンゴム 100重量部に、導電性粒子 42重量部を添加して 混合し、その後、減圧による脱泡処理を施すことにより弾性異方導電膜の成形用材 料を調製した。ここで、導電性粒子としては、平均粒子径 40 mのニッケル粒子を芯 粒子とし、この芯粒子に、その重量の 15重量%となる被覆量で金をィ匕学メツキにより 被覆したものを用いた。また、付加型液状シリコーンゴムとしては、 A液の粘度が 180 Pa. sで、 B液の粘度が 180Pa' sである二液型のものであって、硬化物の 150°Cにお ける永久圧縮歪みが 5%、硬化物のデュロメーター A硬度が 23、硬化物の引裂強度 が 8kNZmのものを用 、た。
以上のこと以外は上記と同様にして、フレーム板における弾性導電膜配置用孔の 各々に弾性異方導電膜を形成し、以つて傾き調整用異方導電性コネクターを製造し た。
[0099] 形成された弾性異方導電膜について具体的に説明すると、弾性異方導電膜の各 々は、横方向の寸法が 9000 m、縦方向の寸法が 5800 mである。弾性異方導 電膜の各々には、プローブカードにおける端子電極 (裏面電極)に対応する 3840個 の接続用導電部が 800 μ mのピッチで配列されており、接続用導電部の各々は、直 径が 300 m、全厚力 00 /ζ πι、一面側の突出部分および他面側の突出部分の突 出高さがそれぞれ 100 mであり、絶縁部の厚みが 200 mであり、弹性異方導電 膜の各々におけるフレーム板に支持された部分の厚み(二股部分の一方の厚み)は 50 μ mである。また、弾性異方導電膜の各々における接続用導電部中の導電性粒 子の含有割合を調べたところ、全ての接続用導電部について体積分率で約 30%で めつに。
また、この傾き調整用異方導電性コネクター全体の厚みバラツキの程度は、 ± 10 μ mであった。
[0100] (4)プローブ装置の作製:
先ず、傾き調整用異方導電性コネクターにおけるフレーム板の 4隅の位置に、歪み 量規制用のスぺーサが嵌合されて配置される位置決め孔を形成する。また、基板材 料としてアルミナセラミックス (線熱膨張係数 4. 8 X 10"VK)を用い、評価用ウェハ W1における集積回路の被検査電極のパターンに対応するパターンに従って検査電 極が形成された検査用回路基板 (予め良品であることが確認されたもの)を用意し、 この検査用回路基板における、傾き調整用異方導電性コネクターの位置決め孔に対 応する位置に、位置可変機構配置用の凹所および貫通孔を形成すると共に、接続 用回路基板における、傾き調整用異方導電性コネクターの位置決め孔に対応する 位置に、位置可変機構配置用の凹所および貫通孔を形成した。ここに、検査用回路 基板は、厚みが 5mm、直径が 30cmの円板状のものであり、その検査電極が形成さ れた領域の平面精度は ± 10 μ mである。また、検査電極の各々は、直径力 00 μ m であるものであり、 800 mのピッチで配列されている。また、検査用回路基板および 接続用回路基板における位置可変機構配置用の貫通孔の開口径の大きさは、いず れも、 3000 /z mである。
次いで、傾き調整用異方導電性コネクターのフレーム板の位置決め孔の各々に、 ァノレミニクム J;りなり、 力 S9000 μ m、内 力 3500 μ m、 み力 250 m(Hさ言周 整用異方導電性コネクターの全厚の 55%の大きさ)である円筒状のスぺーサを配置 し、図 2に示されているように、ボルトの各々を、その頭部を検査用回路基板の凹所 における貫通孔の開口縁部に係止させると共に軸部を当該貫通孔内、歪み量規制 用のスぺーサの内部空間内および接続用回路基板の凹所における貫通孔内に挿 通させて基端部が接続用回路基板の凹所内に露出するよう、検査用回路基板の一 面側から装着し、各々のボルトの基端部にナットを螺合して設け、これにより、傾き調 整用異方導電性コネクターがその弾性異方導電膜における接続用導電部の各々が プローブカードの端子電極上に位置するよう位置合わせされた状態で配置されると 共に、検査用回路基板がその検査電極の各々が傾き調整用異方導電性コネクター における接続用導電部上に位置するよう位置合わせされた状態で配置されてなる本 発明に係るプローブ装置を作製した。ここに、位置可変機構を構成するボルトとして は、呼び径が 3. Omm、ピッチが 0. 35mmの精密ネジを用いた。
〔プローブ装置の評価〕
評価用ウェハ W1をヒーターを具えた試験台に配置し、プローブ装置における接点 形成用異方導電性コネクターの接続用導電部の各々が評価用ウェハ W1における 被検査電極上に位置するよう位置合わせして配置した。ここに、試験台の平面精度 は ± 10 /z mである。
プローブ装置における位置可変機構を構成するナットの各々を一律の締め付け量 で締め付けることにより、傾き調整用異方導電性コネクターにおける弾性異方導電膜 が検査用回路基板と接続用回路基板とよって挟圧されて厚み方向に圧縮された状 態で、当該検査用回路基板、当該傾き調整用異方導電性コネクターおよび当該接 続用回路基板の三者を仮固定し、これにより、当該検査用回路基板における検査用 電極の各々と当該接続用回路基板における端子電極の各々とを当該傾き調整用異 方導電性コネクターにおける接続用導電部の各々を介して電気的に接続する。 この状態においては、プローブカードの端子電極が形成された面の、評価用ウェハ の被検査電極が形成された面に対する高さレベルのバラツキの程度が ± 15 μ mで あり、検査用回路基板の検査電極が形成された面の、評価用ウェハの被検査電極が 形成された面に対する高さレベルのバラツキの程度が ± 20 μ mである。
[0102] そして、評価用ウェハ W1が配置された試験台を上方に移動させることにより、接点 形成用異方導電性コネクターにおける接続用導電部の各々を評価用ウェハ W1に おける被検査電極の各々に接触させ、この状態力も更に上方に加圧することにより、 電気的接続を達成した状態にぉ ヽて、異方導電性コネクターにおける接続用導電部 の各々の電気抵抗値を測定し、得られた電気抵抗値が実質的に均一な大きさとなる よう、各々の位置可変機構におけるナット締め付け量の補正量を設定し、この補正量 に基づいて各々の位置可変機構におけるナット締め付け量を個々に調整する操作 を必要に応じて繰り返し行!ヽ、ウェハ検査装置全体の平行度を調整し検査初期状態 を設定する。ここに、検査初期状態は、傾き調整用異方導電性コネクターにおける弾 性異方導電膜のすべての接続用導電部の電気抵抗値が 0. 1 Ω以下 (電気抵抗値 が士 50m Ωの範囲内で一致)する状態であって、検査用回路基板と接続用回路基 板とによる弾性異方導電膜に対する挟圧力が接続用導電部の 1個当たり 8gとなる状 態に設定した。
[0103] そして、試験台を上方に移動させて接点形成用異方導電性コネクターにおける接 続用導電部の各々を評価用ウェハ W1における被検査電極の各々に接触させ、この 状態から更に下方に 38kgの荷重 (接点形成用異方導電性コネクターの接続用導電 部 1個当たりに加わる荷重が平均で約 lOg)で加圧し、この状態で、以下に示すよう な試験 1を行うことにより評価用ウェハ W1の被検査電極に対する検査用回路基板の 検査電極の電気的接続状態を調べたところ、導通抵抗が 1 Ω未満である接続用導電 部の割合が 100%であった。 また、評価用ウェハ W2を用い、上記と同様の方法に より検査初期状態を設定し、試験台を上方に移動させて加圧して接点形成用異方導 電性コネクターにおける接続用導電部の各々を評価用ウェハ W1における被検査電 極の各々に接触させ、この状態から更に上方に 38kgの荷重 (接点形成用異方導電 性コネクターの接続用導電部 1個当たりに加わる荷重が平均で約 10g)で加圧し、こ の状態で、以下に示すような試験 2を行うことにより評価用ウェハ W1の被検査電極に 対する検査用回路基板の検査電極の電気的接続状態を調べたところ、絶縁抵抗が 10M Ω以上である導電部対の割合が 0%であり、全ての被検査電極について良好 な電気的接続状態が達成されて ヽることが確認された。
[0104] 試験 1 :
室温(25°C)下において、検査用回路基板における 3840個の検査用電極と評価 用ウエノ、 W1の弓 I出し電極との間の電気抵抗を、接続用導電部における電気抵抗 ( 以下、「導通抵抗」という。)として順次測定し、導通抵抗が 1 Ω未満である接続用導 電部の割合を算出した。
試験 2 :
室温(25°C)下において、検査用回路基板における隣接する 2つの検査用電極の 間の電気抵抗を、隣接する 2つの接続用導電部(以下、「導電部対」という。)の間の 電気抵抗 (以下、「絶縁抵抗」という。)として順次測定し、絶縁抵抗が 10Μ Ω以上で ある導電部対の割合を算出した。
[0105] また、プローブ装置全体によつて、評価用ウェハ W1を上記の条件で押圧した状態 のままで、試験台を 85°Cに加熱し、上記と同様の試験 1を行ったところ、導通抵抗が 1 Ω未満である接続用導電部の割合が 100%であった。
また、評価用ウェハ W2を用い、上記と同様の方法により検査初期状態を設定し、 上記と同様の試験 2を行ったところ、絶縁抵抗が 10M Ω以上である導電部対の割合 が 0%であり、全ての被検査電極にっ ヽて良好な電気的接続状態が維持されており 、温度変化による熱履歴などの環境の変化に対しても良好な電気的接続状態が安 定的に得られることが確認された。
さらに、このプローブ装置においては、接点形用異方導電性コネクターにおける接 続用導電部が評価用ウェハにおける被検査電極に接触された状態から検査状態ま で加圧されたときの弾性異方導電膜の歪み量 (オーバードライブ量)が 80 μ mであり 、小さい荷重で所期の凹凸吸収性が得られることが確認された。
[0106] <実施例 2>
実施例 1にお 、て、歪み量規制用のスぺーサとして下記に示す構成のものを用い、 当該スぺーサを傾き調整用異方導電性コネクターにおけるフレーム板の両面に配置 したこと以外は、実施例 1において作製したものと同様の構成を有するプローブ装置 (図 5参照。)を作製した。
〔スぺーサの構成〕
スぺーサは、傾き調整用異方導電性コネクターにおける弾性異方導電膜が形成さ れた領域に対応する領域に開口を有する矩形枠状の板状部分と、この板状部分の 両面に形成された、弾性体よりなる複数の微小突起部分とにより構成されている。 板状部分は、ステンレス鋼よりなり、厚みが 50 mのものである。また、微小突起部 分は、シリコーンゴムよりなり、直径が 50 111,突出高さが 40 /z m (傾き調整用異方 導電性コネクターの全厚の 20%の大きさ)である円柱状のものである。
傾き調整用異方導電性コネクターにおけるフレーム板を含む 2つのスぺーサの全 厚は、 360 m (傾き調整用異方導電性コネクターの全厚の 90%の大きさ)である。
[0107] 〔プローブ装置の評価〕
このプローブ装置においては、傾き調整用異方導電性コネクターにおける弹性異 方導電膜が検査用回路基板と接続用回路基板とよって挟圧されて厚み方向に圧縮 された状態で、当該検査用回路基板、当該傾き調整用異方導電性コネクターおよび 当該接続用回路基板の三者を仮固定した場合における、プローブカードの端子電 極が形成された面の、評価用ウェハ W1の被検査電極が形成された面に対する高さ レベルのバラツキの程度が ± 20 mであり、検査用回路基板の検査電極が形成さ れた面の、評価用ウェハ W1の被検査電極が形成された面に対する高さレベルのバ ラツキの程度が ± 25 mである。
[0108] ウェハ検査装置全体の平行度を調整することにより検査初期状態 (実施例 1と同一 の検査初期状態)を設定し、試験台を上方に移動させて接点形成用異方導電性コネ クタ一における接続用導電部の各々を評価用ウェハ W1における被検査電極の各々 に接触させ、この状態から更に上方に 38kgの荷重 (接点形成用異方導電性コネクタ 一の接続用導電部 1個当たりに加わる荷重が平均で約 10g)で加圧し、この状態で、 実施例 1と同様の試験 1を行うことにより評価用ウエノ、 W1の被検査電極に対する検 查用回路基板の検査電極の電気的接続状態を調べたところ、導通抵抗が 1 Ω未満 である接続用導電部の割合が 100%であった。
また、評価用ウェハ W2を用い、実施例 1と同様の試験 2を行うことにより評価用ゥェ ハ W1の被検査電極に対する検査用回路基板の検査電極の電気的接続状態を調 ベたところ、絶縁抵抗が 10Μ Ω以上である導電部対の割合が 0%であり、全ての被 検査電極にっ ヽて良好な電気的接続状態が達成されて ヽることが確認された。
[0109] また、プローブ装置全体によつて、評価用ウェハ W1を上記の条件で押圧した状態 のままで、試験台を 85°Cに加熱し、上記と同様の試験 1を行ったところ、導通抵抗が 1 Ω未満である接続用導電部の割合が 100%であった。
また、評価用ウェハ W2を用い、上記と同様の方法により検査初期状態を設定し、 上記と同様の試験 2を行ったところ、絶縁抵抗が 10M Ω以上である導電部対の割合 が 0%であり、全ての被検査電極にっ ヽて良好な電気的接続状態が維持されており 、温度変化による熱履歴などの環境の変化に対しても良好な電気的接続状態が安 定的に得られることが確認された。
さらに、このプローブ装置においては、接点形用異方導電性コネクターにおける接 続用導電部が評価用ウェハにおける被検査電極に接触された状態から検査状態ま で加圧されたときの弾性異方導電膜の歪み量 (オーバードライブ量)力 100 mであ り、小さい荷重で所期の凹凸吸収性が得られることが確認された。
[0110] <比較例 1 >
実施例 1にお ヽて、平行度調整機構を構成する位置可変機構を有さな ヽことの他 は実施例 1において作製したものと同様の構成を有する比較用のプローブ装置を作 製し、このプローブ装置について実施例 1と同様の評価を行ったところ、一部の被検 查電極について接続不良が認められ、良好な電気的接続状態が得られな力つた。

Claims

請求の範囲
[1] ウェハに形成された多数の集積回路の電気的検査を行うためのプローブ装置であ つて、 表面に多数の検査用電極を有する検査用回路基板と、
裏面に前記検査用回路基板の検査用電極のパターンに対応するパターンに従つ て複数の端子電極が形成された接続用回路基板、およびこの接続用回路基板の表 面に設けられた、検査対象であるウェハにおける集積回路の被検査電極に接触され る多数の接触子が配置されてなる接触部材を有し、当該接続用回路基板の端子電 極の各々が前記検査用回路基板の検査用電極に対向するよう配置されたプローブ カードと、
前記検査用回路基板と前記プローブカードにおける接続用回路基板との間に配置 された、当該検査用回路基板と当該接続用回路基板とによって狭圧されることにより 、前記検査用電極の各々と前記端子電極の各々とを電気的に接続する異方導電性 コネクターと、
前記検査用回路基板のウェハに対する平行度および前記接続用回路基板のゥェ ハに対する平行度を調整する平行度調整機構と
を具えてなり、平行度調整機構は、検査用回路基板または接続用回路基板を異方 導電性コネクターの厚み方向に相対的に変位させる位置可変機構を具えていること を特徴とするプローブ装置。
[2] 平行度調整機構は、複数の位置可変機構を具えており、各々の位置可変機構は、 検査用回路基板または接続用回路基板の変位量がそれぞれ独立に設定可能に構 成されて!/ヽることを特徴とする請求項 1に記載のプローブ装置。
[3] 検査用回路基板とプローブカードにおける接続用回路基板との間には、異方導電 性コネクターの歪み量を規制するスぺーサが設けられていることを特徴とする請求項
1または請求項 2に記載のプローブ装置。
[4] スぺーサの全厚は、異方導電性コネクターの全厚の 50%以上の大きさであることを 特徴とする請求項 3に記載のプローブ装置。
[5] 異方導電性コネクタ一は、接続用回路基板および検査用回路基板に係る接続対 象電極が形成された電極領域に対応してそれぞれ厚み方向に伸びる複数の異方導 電膜配置用孔が形成されたフレーム板と、このフレーム板の各異方導電膜配置用孔 内に配置され、当該異方導電膜配置用孔の周辺部に支持された複数の弾性異方導 電膜とよりなり、
スぺーサが異方導電性コネクターにおけるフレーム板の両面に配設されており、当 該スぺーサは、異方導電性コネクターにおける弾性異方導電膜が形成された領域に 対応する領域に開口が形成された枠状のものであって、少なくとも検査用回路基板 に対する接触面および接続用回路基板に対する接触面に、弾性部材よりなる微小 突起部を有するものであることを特徴とする請求項 3に記載のプローブ装置。
[6] 微小突起部を含むスぺーサの厚みと異方導電性コネクターにおけるフレーム板の 厚みとの合計の厚み力 異方導電性コネクターの全厚の 90%以上の大きさであるこ とを特徴とする請求項 5に記載のプローブ装置。
[7] プローブカードを構成する接触部材力 各々厚み方向に伸びる複数の接続用導電 部が絶縁部によって相互に絶縁されてなる異方導電性シートを具えたものであること を特徴とする請求項 1乃至請求項 6のいずれか一に記載のプローブ装置。
[8] プローブカードを構成する接触部材力 各々厚み方向に伸びる複数の接続用導電 部が絶縁部によって相互に絶縁されてなる異方導電性シートまたは当該異方導電性 シートがフレーム板によって支持されてなる異方導電性コネクターと、
当該異方導電性シートまたは当該異方導電性コネクターの表面に配置された、絶 縁性シートと、この絶縁性シートをその厚み方向に貫通して伸び、被検査電極のパタ ーンに対応するパターンに従って配置された複数の電極構造体とよりなるシート状コ ネクターと
により構成されていることを特徴とする請求項 7に記載のプローブ装置。
[9] ウェハに形成された多数の集積回路の電気的検査を行うための検査装置であって 請求項 1乃至請求項 8のいずれか一に記載のプローブ装置を備えてなることを特 徴とするウェハ検査装置。
[10] 平行度調整機構を構成する位置可変機構によって検査用回路基板または接続用 回路基板を相対的に変位させて、検査用回路基板、異方導電性コネクターおよび接 続用回路基板の三者を異方導電性コネクターを検査用回路基板と接続用回路基板 とによって狭圧した状態で仮固定し、これにより、当該検査用回路基板における検査 用電極の各々と当該接続用回路基板における端子電極の各々とを異方導電性コネ クタ一における接続用導電部を介して電気的に接続し、この状態からさらに加圧して プローブカードにおける接触部材を検査対象であるウェハに接触させた状態におい て、検査用回路基板のウェハに対する平行度および接続用回路基板のウェハに対 する平行度を測定し、得られた結果に基づ!、て位置可変機構による変位量の補正 量を設定し、当該補正量に基づ 、て位置可変機構による変位量を調整する検査初 期状態設定操作を行うことにより、検査用回路基板のウェハに対する平行度および 接続用回路基板のウェハに対する平行度を調整し、
検査用回路基板と接続用回路基板との間の離間距離の大きさが大きくなる方向に 対する検査用回路基板または接続用回路基板の変位を禁止した状態にぉ 、て、プ ローブ装置全体をウェハに接触させて電気的検査を行うことを特徴とするウェハ検査 方法。
[11] 平行度調整機構が複数の位置可変機構を具えており、
プローブカードにおける接触部材を検査対象であるウェハに接触させた状態にお いて、異方導電性コネクターにおける各々の接続用導電部の電気抵抗値を測定し、 得られた電気抵抗値の分布が均一な状態となるよう、各々の位置可変機構による変 位量の補正量が設定されることを特徴とする請求項 10に記載のウェハ検査方法。
[12] 検査初期状態は、異方導電性コネクターにおける接続用導電部の各々の電気抵 抗値が 0. 1 Ω以下であって、異方導電性コネクターにおける接続用導電部 1個当た りの荷重が 0. 01〜0. 4Nとなる状態に設定されることを特徴とする請求項 10または 請求項 11に記載のウェハ検査方法。
PCT/JP2005/006108 2004-03-31 2005-03-30 プローブ装置およびこのプローブ装置を具えたウエハ検査装置並びにウエハ検査方法 WO2005096368A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020067019147A KR101139666B1 (ko) 2004-03-31 2005-03-30 프로브 장치 및 이 프로브 장치를 구비한 웨이퍼 검사 장치및 웨이퍼 검사 방법
US10/593,830 US7446544B2 (en) 2004-03-31 2005-03-30 Probe apparatus, wafer inspecting apparatus provided with the probe apparatus and wafer inspecting method
EP05727781A EP1732120A4 (en) 2004-03-31 2005-03-30 PROBE DEVICE, WAFER SEARCHING DEVICE EQUIPPED WITH THE PROBE DEVICE, AND WAFER SEARCHING METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004102948 2004-03-31
JP2004-102948 2004-03-31

Publications (1)

Publication Number Publication Date
WO2005096368A1 true WO2005096368A1 (ja) 2005-10-13

Family

ID=35064073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006108 WO2005096368A1 (ja) 2004-03-31 2005-03-30 プローブ装置およびこのプローブ装置を具えたウエハ検査装置並びにウエハ検査方法

Country Status (6)

Country Link
US (1) US7446544B2 (ja)
EP (1) EP1732120A4 (ja)
KR (1) KR101139666B1 (ja)
CN (1) CN100539061C (ja)
TW (1) TW200600795A (ja)
WO (1) WO2005096368A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007116826A1 (ja) 2006-04-11 2007-10-18 Jsr Corporation 異方導電性コネクターおよび異方導電性コネクター装置

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4727948B2 (ja) * 2004-05-24 2011-07-20 東京エレクトロン株式会社 プローブカードに用いられる積層基板
JP2006194620A (ja) * 2005-01-11 2006-07-27 Tokyo Electron Ltd プローブカード及び検査用接触構造体
JP5188161B2 (ja) * 2007-11-30 2013-04-24 東京エレクトロン株式会社 プローブカード
US20090186534A1 (en) * 2008-01-17 2009-07-23 Amphenol Corporation Electrical Connector Contact
WO2009107747A1 (ja) * 2008-02-29 2009-09-03 日本発條株式会社 配線基板およびプローブカード
JP5113905B2 (ja) * 2008-04-25 2013-01-09 株式会社アドバンテスト 試験システムおよびプローブ装置
JP4555362B2 (ja) * 2008-06-02 2010-09-29 株式会社アドバンテスト プローブ、電子部品試験装置及びプローブの製造方法
JP4863130B2 (ja) * 2009-05-22 2012-01-25 山一電機株式会社 基板接続用コネクタ、それを備える半導体装置用ソケット、ケーブル用コネクタ、および、ボードツーボードコネクタ
US7766672B1 (en) * 2009-06-24 2010-08-03 Cameo Communication, Inc. Electronic connector with a circuit board sandwiched between two spacers and enclosed in a frame
US8673416B2 (en) * 2009-10-28 2014-03-18 Xerox Corporation Multilayer electrical component, coating composition, and method of making electrical component
JP5379065B2 (ja) * 2010-04-21 2013-12-25 新光電気工業株式会社 プローブカード及びその製造方法
US9244099B2 (en) 2011-05-09 2016-01-26 Cascade Microtech, Inc. Probe head assemblies, components thereof, test systems including the same, and methods of operating the same
JP5941713B2 (ja) * 2012-03-14 2016-06-29 東京エレクトロン株式会社 ウエハ検査用インターフェース及びウエハ検査装置
JP6255914B2 (ja) * 2013-11-07 2018-01-10 日本電産リード株式会社 検査治具
JP6218718B2 (ja) * 2014-10-22 2017-10-25 三菱電機株式会社 半導体評価装置及びその評価方法
JP6796596B2 (ja) * 2015-03-31 2020-12-09 テクノプローベ エス.ピー.エー. フィルタリング特性を強化した、電子機器の試験装置のプローブカード
US10497092B2 (en) * 2015-11-19 2019-12-03 Camtek Ltd Continuous light inspection
DE102015120156B4 (de) * 2015-11-20 2019-07-04 Semikron Elektronik Gmbh & Co. Kg Vorrichtung zur materialschlüssigen Verbindung von Verbindungspartnern eines Leistungselekronik-Bauteils und Verwendung einer solchen Vorrichtung
KR101739537B1 (ko) * 2016-05-11 2017-05-25 주식회사 아이에스시 검사용 소켓 및 도전성 입자
US20190293684A1 (en) * 2016-05-31 2019-09-26 Nidec Read Corporation Contact conduction jig and inspection device
JP6855185B2 (ja) * 2016-07-27 2021-04-07 株式会社日本マイクロニクス 電気的接続装置
JP6365953B1 (ja) * 2017-03-07 2018-08-01 株式会社東京精密 プローバ
CN107525953A (zh) * 2017-09-25 2017-12-29 惠科股份有限公司 一种探针装置
JP7308660B2 (ja) * 2019-05-27 2023-07-14 東京エレクトロン株式会社 中間接続部材及び検査装置
FR3097054B1 (fr) * 2019-06-07 2021-07-02 Schneider Electric Ind Sas Capteur de courant et système de mesure comportant un tel capteur de courant
CN110426536A (zh) * 2019-07-29 2019-11-08 重庆伟鼎电子科技有限公司 Pcb导电布测试线路板
CN113967881B (zh) * 2020-07-22 2023-07-28 上海复旦微电子集团股份有限公司 用于测试的夹具、设备及系统
CN111929566A (zh) * 2020-08-20 2020-11-13 厦门市三安集成电路有限公司 晶圆测试方法、装置及其控制设备
TWI739712B (zh) * 2021-02-02 2021-09-11 漢民測試系統股份有限公司 生物晶片測試系統
CN113848459B (zh) * 2021-10-08 2023-10-24 法特迪精密科技(苏州)有限公司 一种测试插座用探针
CN116754918B (zh) * 2023-07-05 2024-03-08 苏州联讯仪器股份有限公司 一种晶圆级别的半导体高压可靠性测试夹具

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07231018A (ja) * 1993-08-25 1995-08-29 Tokyo Electron Ltd プローブ装置
JP2002246428A (ja) * 2000-12-08 2002-08-30 Jsr Corp 異方導電性シートおよびウエハ検査装置
JP2003031628A (ja) * 2002-04-25 2003-01-31 Hitachi Ltd 半導体素子の製造方法および半導体素子へのプロービング方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100248569B1 (ko) * 1993-12-22 2000-03-15 히가시 데쓰로 프로우브장치
JP2929948B2 (ja) * 1994-09-20 1999-08-03 三菱電機株式会社 プローブ式テストハンドラー及びそれを用いたicのテスト方法
JPH1123615A (ja) * 1997-05-09 1999-01-29 Hitachi Ltd 接続装置および検査システム
JP3467394B2 (ja) * 1997-10-31 2003-11-17 松下電器産業株式会社 バーンイン用ウェハカセット及びプローブカードの製造方法
JPH11160356A (ja) * 1997-11-25 1999-06-18 Matsushita Electric Ind Co Ltd ウェハ一括型測定検査用プローブカードおよびセラミック多層配線基板ならびにそれらの製造方法
EP1200843A1 (en) * 1999-07-28 2002-05-02 Nanonexus, Inc. Construction structures and manufacturing processes for integrated circuit wafer probe card assemblies
JP3788258B2 (ja) * 2001-03-27 2006-06-21 Jsr株式会社 異方導電性コネクターおよびその応用製品
US6737879B2 (en) * 2001-06-21 2004-05-18 Morgan Labs, Llc Method and apparatus for wafer scale testing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07231018A (ja) * 1993-08-25 1995-08-29 Tokyo Electron Ltd プローブ装置
JP2002246428A (ja) * 2000-12-08 2002-08-30 Jsr Corp 異方導電性シートおよびウエハ検査装置
JP2003031628A (ja) * 2002-04-25 2003-01-31 Hitachi Ltd 半導体素子の製造方法および半導体素子へのプロービング方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1732120A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007116826A1 (ja) 2006-04-11 2007-10-18 Jsr Corporation 異方導電性コネクターおよび異方導電性コネクター装置
EP2015399A1 (en) * 2006-04-11 2009-01-14 JSR Corporation Anisotropic conductive connector and anisotropic conductive connector device
US8124885B2 (en) 2006-04-11 2012-02-28 Jsr Corporation Anisotropically conductive connector and anisotropically conductive connector device
EP2015399A4 (en) * 2006-04-11 2013-01-30 Jsr Corp ANISOTROPER CONDUCTIVE CONNECTOR AND ANISOTROPE CONDUCTIVE CONNECTOR ASSEMBLY
TWI416111B (zh) * 2006-04-11 2013-11-21 Jsr Corp To the electrically conductive connector and to the different conductive connector device

Also Published As

Publication number Publication date
KR20060132733A (ko) 2006-12-21
CN1938842A (zh) 2007-03-28
TW200600795A (en) 2006-01-01
CN100539061C (zh) 2009-09-09
EP1732120A4 (en) 2012-02-29
US7446544B2 (en) 2008-11-04
US20070178727A1 (en) 2007-08-02
TWI340830B (ja) 2011-04-21
KR101139666B1 (ko) 2012-05-15
EP1732120A1 (en) 2006-12-13

Similar Documents

Publication Publication Date Title
WO2005096368A1 (ja) プローブ装置およびこのプローブ装置を具えたウエハ検査装置並びにウエハ検査方法
US6969622B1 (en) Anisotropically conductive connector, its manufacture method and probe member
JP3543765B2 (ja) ウエハ検査用プローブ装置
KR100844627B1 (ko) 이방 도전성 시트, 그의 제조 방법 및 그의 응용
WO2007043350A1 (ja) 異方導電性コネクター装置および回路装置の検査装置
WO2006008784A1 (ja) 異方導電性コネクター装置および回路装置の検査装置
JP3726839B2 (ja) プローブ装置およびこのプローブ装置を具えたウエハ検査装置並びにウエハ検査方法
US8410808B2 (en) Anisotropic conductive connector, probe member and wafer inspection system
WO2006009144A1 (ja) 異方導電性コネクターおよびその製造方法、アダプター装置並びに回路装置の電気的検査装置
JP2004342597A (ja) 異方導電性シートおよびその製造方法、アダプター装置およびその製造方法並びに回路装置の電気的検査装置
JP2003077559A (ja) 異方導電性コネクターおよびその製造方法並びにその応用製品
WO2005101589A1 (ja) 異方導電性シート製造用型および異方導電性シートの製造方法
KR101167748B1 (ko) 웨이퍼 검사용 탐침 부재, 웨이퍼 검사용 프로브 카드 및웨이퍼 검사 장치
US20070040245A1 (en) Anisotropic conductive sheet, manufacturing method thereof, and product using the same
JP2001050983A (ja) プローブカード
JP4479477B2 (ja) 異方導電性シートおよびその製造方法並びにその応用製品
JP3928607B2 (ja) 異方導電性シート、その製造方法およびその応用
JP3879464B2 (ja) 回路装置検査用異方導電性シートおよびその製造方法並びにその応用製品
JP3906068B2 (ja) 異方導電性シート、コネクターおよびウエハ検査装置
JP2006284418A (ja) ウエハ検査用プローブカードおよびウエハ検査装置
JP2005222826A (ja) 異方導電性シートの製造方法
JP3700721B2 (ja) 回路基板の検査装置および回路基板の検査方法
JP2006237242A (ja) ウエハ検査用プローブカードおよびウエハ検査装置
JP2006105851A (ja) シート状プローブおよびその製造方法並びにその応用
JP2007263635A (ja) ウエハ検査用プローブカードおよびウエハ検査装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005727781

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067019147

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10593830

Country of ref document: US

Ref document number: 2007178727

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580010268.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005727781

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067019147

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10593830

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP