WO2005096367A1 - 加熱装置及びリフロー装置,はんだバンプ形成方法及び装置 - Google Patents

加熱装置及びリフロー装置,はんだバンプ形成方法及び装置 Download PDF

Info

Publication number
WO2005096367A1
WO2005096367A1 PCT/JP2005/005909 JP2005005909W WO2005096367A1 WO 2005096367 A1 WO2005096367 A1 WO 2005096367A1 JP 2005005909 W JP2005005909 W JP 2005005909W WO 2005096367 A1 WO2005096367 A1 WO 2005096367A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
solder
heating
reflow
jig
Prior art date
Application number
PCT/JP2005/005909
Other languages
English (en)
French (fr)
Other versions
WO2005096367A8 (ja
Inventor
Masaru Shirai
Junichi Onozaki
Hiroshi Saito
Isao Sakamoto
Masahiko Furuno
Haruhiko Ando
Atsushi Hiratsuka
Original Assignee
Tamura Corporation
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamura Corporation, Japan Science And Technology Agency filed Critical Tamura Corporation
Priority to EP05727854A priority Critical patent/EP1732118B1/en
Priority to US10/598,142 priority patent/US8042727B2/en
Priority to JP2006511680A priority patent/JP4759509B2/ja
Publication of WO2005096367A1 publication Critical patent/WO2005096367A1/ja
Publication of WO2005096367A8 publication Critical patent/WO2005096367A8/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/012Soldering with the use of hot gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/04Heating appliances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0016Brazing of electronic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/06Solder feeding devices; Solder melting pans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/06Solder feeding devices; Solder melting pans
    • B23K3/0607Solder feeding devices
    • B23K3/0623Solder feeding devices for shaped solder piece feeding, e.g. preforms, bumps, balls, pellets, droplets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/08Auxiliary devices therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B17/00Furnaces of a kind not covered by any preceding group
    • F27B17/0016Chamber type furnaces
    • F27B17/0025Especially adapted for treating semiconductor wafers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/02Supplying steam, vapour, gases, or liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/42Printed circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4853Connection or disconnection of other leads to or from a metallisation, e.g. pins, wires, bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/0502Disposition
    • H01L2224/05022Disposition the internal layer being at least partially embedded in the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/0502Disposition
    • H01L2224/05026Disposition the internal layer being disposed in a recess of the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05124Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05155Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05568Disposition the whole external layer protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/113Manufacturing methods by local deposition of the material of the bump connector
    • H01L2224/1131Manufacturing methods by local deposition of the material of the bump connector in liquid form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01057Lanthanum [La]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components
    • H05K3/3436Leadless components having an array of bottom contacts, e.g. pad grid array or ball grid array components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3494Heating methods for reflowing of solder

Definitions

  • the present invention relates to a heating device optimal for heating, for example, solder, and a reflow device using the heating device. Furthermore, the present invention relates to a method and an apparatus for forming a solder bump used for producing a FC (flip chip) or a BGA (ball grid array) by forming a projecting solder bump on a semiconductor substrate or an interposer substrate, for example.
  • a solder bump used for producing a FC (flip chip) or a BGA (ball grid array) by forming a projecting solder bump on a semiconductor substrate or an interposer substrate, for example.
  • a conventional general method of forming a solder bump is to apply a solder paste on a pad electrode of a substrate using a screen printing method or a dispensing method, and then reflow the solder paste by heating the solder paste. there were.
  • the solder paste is also called “cream solder”.
  • solder paste An example of the solder paste is disclosed in Patent Document 1!
  • the solder paste described in Patent Document 1 has an oxide film formed on the surface of solder particles by flowing the solder particles in the air. It is said that the forcedly formed oxide film resists the action of the flux during the reflow and suppresses the coalescence of the solder particles. Therefore, if this solder paste is applied over the board by solid coating and reflowed, solder bridges will be generated between the pad electrodes, which is suitable for high density and miniaturization of the node / node electrodes. is there. It should be noted that the solder bridge between the node / node electrodes is a phenomenon that occurs because the solder particles unite with each other to form a large lump and come into contact with both adjacent pad electrodes.
  • a reflow device In the reflow step, a reflow device is used.
  • this reflow device there is known a device in which a substrate is directly mounted on a panel heater and the substrate is heated by heat conduction from a panel heater (first conventional example).
  • this reflow apparatus has a disadvantage that the heat distribution of the substrate becomes non-uniform due to slight warpage or unevenness of the substrate.
  • a reflow apparatus in which a gap is provided between a panel heater and a substrate and the substrate is heated by heat radiation from a panel heater (second conventional example).
  • this reflow device has a drawback that the heating power is insufficient.
  • a reflow device that overcomes the drawbacks of the first and second conventional examples
  • a substrate has been developed in which the substrate is heated by applying hot air thereto (third conventional example, for example, Patent Document 2 below).
  • this reflow apparatus by providing a gap between the hot air outlet and the substrate and heating the substrate by applying the vertical force of the hot air, the substrate can be uniformly heated, and a sufficient force can be obtained.
  • Patent Document 1 JP-A-2000-94179
  • Patent Document 2 JP-A-5-92257
  • the screen printing method and the dispensing method have become unable to cope with further increasing the number of electrodes, increasing the density, and reducing the size. That is, in the screen printing method, it is necessary to make the opening of the metal mask finer, so that there are problems that the mechanical strength of the metal mask is reduced and that the solder paste hardly comes out of the opening of the metal mask. Was. In the dispense method, the solder paste is applied one by one on a large number of pad electrodes, so that the more pad electrodes, the less suitable for mass production.
  • the thickness of the oxide film of the solder particles must be accurately formed. This is because if it is too thick, the solder will not wet the pad electrode, and if it is too thin, the solder particles will coalesce. Since the action of the flux also changes depending on the state and type of flux, it was necessary to control the thickness of the oxide film accurately in accordance with these. On the other hand, if an oxide film having an appropriate thickness cannot be formed, it is not possible to achieve high-density and miniaturization of the node electrode. Therefore, although the solder paste of Patent Document 1 enables solid coating without the need for a precise mask, it has been difficult to respond to recent demands for higher density and finer design.
  • the solder paste on the substrate is sometimes oxidized, so that the solder bumps cannot be formed in some cases. This is thought to be because many heated oxygen molecules come into contact with the solder paste surface due to the use of hot air.
  • hot air when hot air is blown directly to form solder bumps on fine electrodes, the quality of solder bumps is not stable due to the effect of the hot air. Particles are also generated by hot air In some cases, it was sprayed on the substrate and attached to the solder bumps. This problem also occurs when hot air is blown only under the substrate. The reason is that the hot air goes over the lower substrate of the substrate.
  • An object of the present invention is to provide a solder bump forming method and apparatus capable of meeting recent demands for higher density and finer solder bumps. It is a further object of the present invention to provide a heating device, a reflow device, and the like, which can suppress oxidation of a solder paste even when heated using hot air, stabilize the quality, and reduce the influence of particles. It is in. A second object of the present invention is to provide a heating device, a reflow device, and the like which can form a solder bump made of a liquid solder composition even when heated using hot air.
  • a method for forming a solder bump according to the present invention includes a coating step of depositing a solder composition in a layer on a substrate provided with a plurality of pad electrodes separated from each other; And a reflow step of heating and reflowing the composition. Then, as the solder composition, a solder composition comprising a mixture of solder particles and a liquid material containing a flux component and having a property of being liquid at room temperature or during heating is used. In the reflow step, the solder composition on the substrate side is heated.
  • the solder composition is liquid at room temperature or becomes liquid during heating. To obtain such properties (fluidity), it is required that the viscosity of the liquid material be low, the mixing ratio of the solder particles be small, and the particle size of the solder particles be small. During heating, the solder particles are floating or settling in the liquid material.
  • the solder composition also includes a conventional solder paste as long as it becomes liquid during heating.
  • solder composition on the substrate is heated from the substrate side, the temperature of the solder composition becomes lower on the surface and lower on the substrate side. Then, the lower solder particles near the node electrode begin to melt first, and when melted, spread on the pad electrode. At that time, the solder particles above the nod electrode force are not sufficiently melted yet. Therefore, since the chances of the solder particles coalescing can be reduced, the occurrence of solder bridges is also suppressed.
  • the entire surface including the plurality of bump electrodes and the gaps between them is entirely covered. May be deposited in layers. That is, so-called “solid coating” can be performed using screen printing or a dispenser (discharger). Even if the solder composition is placed between the node / node electrodes, coalescence of the solder particles during reflow is suppressed, so that the occurrence of solder bridges between the bump electrodes is also suppressed. Therefore, solder bumps can be formed with high density and fineness even with a solid coating that does not require the precision required by using a precisely processed metal mask.
  • solder particles coming into contact with the node electrode are melted to form a wet-spread solder film on the pad electrode.
  • solder particles may be further combined with the solder film.
  • Such a heat state is realized by controlling the temperature profile and the temperature distribution.
  • the solder composition may be provided with a temperature difference such that the surface side is low and the substrate side is high, so that the solder particle force close to the substrate side is first settled. If a temperature difference is provided such that the surface side of the solder composition is low and the substrate side of the solder composition is high, the viscosity of the liquid material decreases as the temperature increases. It begins to settle and melt on the surface, and when it comes into contact with the pad electrode, it spreads out. At that time, the upper solder particles, which are far from the node / node electrode force, have not yet sufficiently settled and melted. Therefore, since the chances of the solder particles coalescing can be further reduced, the occurrence of solder bridges is further suppressed. Further, such a heating state is realized by controlling the temperature profile and the temperature distribution and adjusting the relationship between the temperature dependence of the viscosity of the liquid material and the melting point of the solder particles.
  • the solder particles may be supplied to the pad electrode using convection of the liquid material.
  • convection occurs in the liquid material, which causes the solder particles to move through the liquid material. Therefore, the solder particles not deposited on the pad electrode also move to the pad electrode and become a part of the solder bump. Therefore, solder particles are used effectively.
  • the substrate may be placed in a container and heated in a state where the substrate is immersed in the solder composition in the container. During the heating, the gap between the substrate and the container is also filled with the liquid solder composition. Therefore, heat conduction from the container to the substrate becomes uniform .
  • the size (height) of the solder bump is changed by adjusting the printing thickness and the content of the solder particles.
  • the thickness (height) of the solder bump can be easily changed because the thickness of the solder composition on the substrate can be arbitrarily changed by adjusting the amount of the solder composition deposited. be changed.
  • the solder bump forming apparatus forms a solder bump by heating and reflowing a solder composition on a substrate on which a plurality of pad electrodes are separately provided.
  • the solder composition used at this time is composed of a mixture of solder particles and a liquid material having a flux action, and has a property of becoming liquid at room temperature or during heating.
  • the solder bump forming apparatus according to the present invention includes heating means for heating the solder composition from the substrate side. Further, the apparatus may further include a temperature control means for controlling the temperature of the solder composition on the substrate. In this case, a desired temperature difference can be realized in which the surface side of the solder composition is low and the substrate side is high.
  • the apparatus may further include a container for housing the substrate and the solder composition on the substrate, and the heating means may heat the solder composition from the substrate side through the container.
  • the substrate may be a flat plate
  • the container may have a flat bottom surface on which the substrate is placed and a peripheral wall for preventing the liquid solder composition from overflowing.
  • the solder bump forming apparatus according to the present invention also has the same operation as the above-described solder bump forming method according to the present invention.
  • the liquid material of the solder composition is, for example, a liquid.
  • the liquid material contains a flux component whose reaction temperature is near the melting point of the solder particles, and has a viscosity that flows at room temperature and deposits in a layer on the base material.
  • the solder particles are granules that have a mixing ratio and a particle size that allow the liquid to settle toward the base material and be uniformly dispersed in the liquid.
  • this solder yarn composition When this solder yarn composition is dropped on a flat surface at room temperature, it spreads by its own weight and has a uniform thickness, and is completely different from a solder paste in this point.
  • the mixing ratio of the solder particles is small, and the particle size of the solder particles is small.
  • the mixing ratio of the solder particles is preferably 30 wt% or less, more preferably 20 wt% or less, and most preferably 10 wt% or less. It is.
  • the size of the solder particles is preferably 35 ⁇ m or less, more preferably 20 ⁇ m or less, and most preferably 10 ⁇ m or less.
  • This solder composition may have the following configuration.
  • the surface oxide film of the solder particles has only a natural oxide film.
  • the flux component of the liquid material promotes soldering between the solder particles and the base material while suppressing the coalescence of the solder particles with the reaction product while being heated above the melting point of the solder particles. It promotes coalescence between the solder film and the solder particles formed on the base material. Such a component of the flux action was discovered by the present inventors through repeated experiments and considerations.
  • Examples of such a component include an acid.
  • Acids can be broadly classified into inorganic acids (for example, hydrochloric acid) and organic acids (for example, fatty acids).
  • organic acids for example, fatty acids.
  • an organic acid will be described as an example.
  • the organic acid has a small effect of coalescing solder particles, but has a large effect of causing solder wetting on the pad electrode”.
  • the reasons for this effect are as follows (1) and (2).
  • the organic acid has a function of spreading the solder particles on the base material to alloy the interface, and a function of uniting the solder particles with the solder film formed on the base material.
  • the solder particles hardly coalesce, the mechanism by which solder wetting occurs on the base metal is unclear. It is presumed that some reaction between the solder particles and the base material has occurred to break down a slight oxide film. For example, in the case of a gold-plated base material, due to the diffusion effect of gold into the solder, solder wetting occurs even if the solder particles have a thin oxide film.
  • solder particles coalesce with the solder film thus formed may be, for example, surface tension.
  • the liquid mixed with the solder particles may be fats and oils, and the component contained in the liquids may be free fatty acids contained in the fats and oils.
  • Oils and fats are widely available for a variety of uses, so they are easily available, inexpensive, and harmless, and they originally contain organic acids called free fatty acids.
  • fatty acid esters eg, neopentyl polyol ester
  • the acid value of the fat or oil is 1 or more. Acid value refers to the number of milligrams of potassium hydroxide required to neutralize free fatty acids contained in fats and oils.
  • trimethylpropane trioleate a kinematic viscosity at 40 ° C of 3 mm 2 Zs, a kinematic viscosity at 100 ° C of 9.2 mm Vs, and an acid value of 2.4.
  • the fats and oils used in the solder composition used in the present invention are present until the bump formation is completed, and during that time, the solder is prevented from coming into direct contact with air, thereby suppressing the oxidation of the solder.
  • the organic acid contained in the fat or oil contributes to the removal of the oxide film on the solder surface, its content is controlled so that the oxide film on the solder surface is not completely removed. This makes it possible to realize a state in which soldering can be performed on the surface of the base material while suppressing coalescence of the solder particles.
  • the organic acid needs to have an amount sufficient to remove the oxidized film on the surface of the base material. Therefore, the acid value of the fat is preferably 1 or more.
  • the solder composition used in the present invention may contain an organic acid in fats and oils.
  • This organic acid may be one originally contained in fats and oils, or one added later.
  • the organic acid has an effect of reducing the solder particles and the oxide film of the base material.
  • the present inventor has found that by appropriately controlling the amount of organic acid in the fat or oil and leaving a slight oxidation film on the surface of the solder particles, it is possible to suppress the coalescence of the solder particles and to form the solder on the base material. Found that it is possible to attach them.
  • an organic acid tin salt is obtained as a by-product in a process in which the organic acid reduces the acid film on the solder surface.
  • the present inventor has also found that the value of (1) is significantly reduced. By controlling these phenomena, it is possible to prevent solder particles from coalescing, A solder bump free from short-circuit can be formed on the upper surface.
  • the "solder” is not limited to solder bump formation, but also includes a so-called “soft solder” used for semiconductor chip die bonding or, for example, copper tube bonding. Not only that, but of course lead-free solder is also included.
  • solder bumps are not limited to hemispherical or protruding ones, but include film-shaped ones.
  • the “solder film” is not limited to a film-like film, but also includes a hemispherical or projecting film.
  • the “substrate” includes a semiconductor wafer, a wiring board, and the like.
  • the "liquid material” may be a fluid or the like in addition to a liquid, and may be a fluorine-based high-boiling solvent or a fluorine-based oil in addition to oils and fats.
  • a pad is formed by using a solder composition having a property of becoming liquid at normal temperature or during heating, and heating the solder composition on the substrate from the substrate side. It is possible to create a state in which the lower solder particles close to the electrode are first melted and spread to the pad electrode, while the upper solder particles far from the pad electrode are not sufficiently melted. Therefore, it is possible to reduce the chance that the solder particles coalesce, thereby suppressing the occurrence of solder bridges. Therefore, high-density and fine solder bumps can be formed.
  • solder composition Even when the solder composition is placed on the substrate by solid coating, the coalescence of solder particles during reflow is suppressed, so that the occurrence of solder bridges can be suppressed. Bumps can be formed with high density and fineness.
  • solder particle force close to the substrate side by lowering the solder particle force close to the substrate side first, the lower solder particles close to the pad electrode are first settled and melted to spread and spread on the pad electrode. A state can be created in which the far upper solder particles are not sufficiently settled and melted. Therefore, the chance that the solder particles coalesce can be further reduced, whereby the occurrence of solder bridges can be further suppressed.
  • solder particles can be effectively used without waste.
  • the substrate is placed in a container, and the substrate is heated in a state where the substrate is immersed in the solder composition, so that the liquid solder composition is also applied to the gap between the substrate and the container. Because it can be filled and heated, heat conduction from the container to the substrate can be made uniform. Therefore, since a large number of solder bumps can be formed simultaneously under the same conditions, it is possible to reduce variations in the production of solder bumps.
  • the size (height) of the solder bump can be easily changed by adjusting the amount of the solder composition and the amount of the solder composition placed on the substrate.
  • the heating device includes a mounting table for mounting a substrate or a jig on which the substrate is mounted (hereinafter, the substrate or the jig is referred to as a “substrate or the like”), a substrate formed on the mounting table, And a heating means for blowing hot air to the lower side of the opening force substrate or the like.
  • a substrate or the like is placed on the mounting table, the opening is closed by the substrate or the like. Therefore, the hot air only blows on the lower side of the substrate or the like in the opening and does not blow out from the opening. Therefore, since hot air does not flow over the substrate, the solder paste on the substrate can be prevented from oxidizing.
  • the heating device of the present invention it is possible to form a solder bump with a liquid solder composition while heating using hot air.
  • the first reason is that, like the case of the solder paste, the solder composition can be prevented from oxidizing.
  • the second reason is the force that causes the temperature distribution to be low on the surface side of the solder composition and high on the substrate side. It is believed that for at least one of these reasons, solder bumps can be formed from the liquid solder composition. The second reason will be described later.
  • a hot air circulation path for returning the hot air applied to the lower side of the substrate or the like to the heating means again may be further provided.
  • the hot air flowing onto the substrate can be further reduced. Since the heat can also be used effectively, energy can be saved.
  • a temperature adjusting means for adjusting the temperature of the substrate may be further provided!
  • the temperature control means includes, for example, a heat absorbing plate positioned above and separated from the substrate, and a heat absorbing portion for cooling the heat absorbing plate.
  • the heat-absorbing section is, for example, an air-cooling mechanism or a water-cooling mechanism.
  • the temperature control means may be configured to include a radiation plate for heating the substrate with radiant heat and a heating unit for heating the radiation plate.
  • a holding mechanism for fixing a substrate or the like to the mounting table may be further provided. Depending on the weight of the substrate or the like and the pressure of the hot air, the substrate or the like may be blown off or displaced by the hot air. In such a case, a holding mechanism is provided to fix the substrate and the like.
  • the jig may be a container that holds the substrate immersed in the liquid solder composition.
  • the container may have a flat bottom surface on which the substrate is placed, and a peripheral wall for preventing the overflow of the solder composition.
  • the gap between the substrate and the container is also filled with the liquid solder composition. Therefore, heat conduction from the container to the substrate becomes more uniform.
  • the size (height) of the solder bump is changed by adjusting the printing thickness and the content of the solder particles.
  • the thickness of the solder composition on the substrate can be arbitrarily changed only by adjusting the mounting amount of the solder composition. . Therefore, the size (height) of the solder bump can be easily changed.
  • the solder composition is not liquid at room temperature, but may be liquid when heated.
  • a preheating unit, a reflow unit, and a cooling unit provided at least one each are arranged in this order, a substrate or the like is transported in this order by a transport mechanism, and a preliminary unit is controlled by a control unit. It controls each operation of the heating section, reflow section, cooling section and transport mechanism. And the preheating part and the reflow part also become the heating device power according to the present invention.
  • the heating device according to the present invention for the preliminary heating section and the reflow section, oxidization of solder paste on the substrate can be suppressed.
  • the cooling unit may be omitted.
  • the heating means provided in the heating means may be a means for heating by hot air or a means for heating by heat conduction.
  • the preheating section, the reflow section, and the cooling section may be arranged concentrically.
  • the entrance and the exit for the transfer of the substrate and the like are in the same place. Therefore, for example, as compared with the case where these are arranged in a straight line, the transfer processing of the substrate and the like becomes easier, and the entire configuration is simpler and smaller.
  • the transfer mechanism may include a vertical movement mechanism that moves the substrate and the like up and down with respect to the mounting table. Yes. In this case, the substrate or the like can be moved up and down and placed on the mounting table or lifted. Note that the transport mechanism may transport the substrate or the like horizontally without moving the substrate up and down.
  • the control means may stop the operation of the hot air generator when the opening is not closed by the substrate or the like. In this case, it is possible to prevent the hot air from blowing out the opening force when the opening is not closed by the substrate or the like.
  • the method of using the reflow device according to the present invention is to use a reflow device according to the present invention to continuously flow a plurality of substrates and the like, before, after or during a plurality of substrates and the like.
  • a substrate or the like is allowed to flow.
  • the dummy substrate or the like suppresses the blowing of hot air from the opening when the opening is not closed by the substrate or the like, and also suppresses fluctuations in the heat capacity seen from the heating device.
  • the dummy substrate or the like may have the same shape as the substrate or the like. In this case, the fluctuation of the heat capacity seen from the heating device can be further suppressed.
  • the liquid solder composition is a mixture of solder particles and a liquid material (base agent) having a flux action, and has the property of becoming liquid at room temperature or during heating. That is, the solder composition is liquid at room temperature or becomes liquid during heating. In order to obtain such properties (fluidity), it is required that the viscosity of the liquid material is low, the mixing ratio of the solder particles is small, and the particle size of the solder particles is small. During heating, the solder particles are floating or settling in the liquid material.
  • the solder composition includes a conventional solder paste as long as it becomes liquid during heating.
  • the solder composition is heated from the substrate side.
  • the temperature of the solder yarn composition becomes lower on the surface and becomes higher on the substrate side. Then, the lower solder particles near the pad electrode begin to melt first, and if melted, spread on the pad electrode. At that time, the upper solder particles, which are far from the pad electrode force, have not yet sufficiently melted. Therefore, the chance of the solder particles coalescing can be reduced, so that the occurrence of solder bridges is also suppressed.
  • the pad electrode is heated to a temperature equal to or higher than the melting point of the solder particles, and the pad electrode is heated.
  • the solder particles may be melted to form a solder coating that spreads over the pad electrodes, and the solder particles may be further combined with the solder coating.
  • Such a heating state is realized by controlling the temperature profile and the temperature distribution. For example, it is effective to heat the solder composition on the substrate from the substrate side and to control the temperature from the surface side of the solder composition.
  • a temperature difference is provided in the solder composition such that the surface side is low and the substrate side is high, so that the solder composition is settled on the solder particles near the substrate side. If a temperature difference is set so that the surface side of the solder composition is low and the substrate side of the solder composition is high, the viscosity of the liquid material decreases as the temperature increases, so that the solder particles below the pad electrode settle down first. It begins to melt and spreads when it comes into contact with the pad electrode. At that time, the upper solder particles, far from the pad electrode force, have not yet sufficiently settled and melted.
  • Such a heating state is realized by controlling the temperature profile and the temperature distribution, and adjusting the relationship between the temperature dependence of the viscosity of the liquid material and the melting point of the solder particles.
  • the mounting table on which the substrate and the like are mounted the opening formed on the mounting table and closed by the mounting of the substrate and the like, and the opening force
  • the hot air only hits the lower side of the substrate or the like and does not blow out from the opening, so that it is possible to prevent the hot air from flowing onto the substrate. Therefore, even if the substrate or the like is heated using hot air, it is possible to prevent the solder paste or the like on the substrate from being oxidized.
  • a solder bump can be formed with a liquid solder composition while heating using hot air and heating. This is because the hot air can be prevented from wrapping around on the substrate, so that the solder composition does not oxidize, or the solder composition has a low surface side and a high temperature distribution on the substrate side.
  • the hot air flowing onto the substrate can be further reduced, and the heat can be effectively used. Energy saving can be achieved.
  • the temperature of the substrate can be adjusted. And the formation state of the solder bump can be easily controlled. In addition, it is possible to further suppress iridescence on the solder surface.
  • the substrate or the like can be prevented from being blown off by hot air or displaced.
  • the gap between the substrate and the container can be filled with the liquid solder composition and heated. Force The heat conduction to the substrate can be made more uniform. Therefore, since a large number of solder bumps can be formed simultaneously under the same conditions, it is possible to reduce variations in manufacturing solder bumps. In addition, the size (height) of the solder bump can be changed by adjusting the amount of the solder composition placed on the substrate.
  • solder bumps can be formed with a liquid solder composition while heating using hot air.
  • the opening can be performed when the opening is not closed by the substrates or the like.
  • the blowing of hot air from the section can be suppressed.
  • the fluctuation of the heat capacity seen from the heating device is reduced, the temperature fluctuation of the hot air can be suppressed.
  • the heating device 50 is used for heating the solder composition 10 on the substrate 20, as shown in FIG. As shown in FIG. 1, the heating device 50 has a heating means 40 for heating the solder composition 10 from the substrate 20 side. The substrate 20 heated by the heating means 40 is immersed in the liquid solder composition 10 in the container 30. It is.
  • the heating means 40 has a main heating source 42, a sub-heating source 43, a blower 44, a heat storage member 45, a hot air circulation datum 46, and an opening 47.
  • the opening 47 is an opening formed to blow the hot air 41 onto the container 30.
  • an electric heater is used as the main heating source 42 and the sub-heating source 43.
  • the heat storage member 45 is made of, for example, aluminum material, and has a large number of through holes 48 through which the hot air 41 passes. Hot air 41 is circulated by blower 44.
  • the hot air 41 passes through the circulation path of the main heating source 42 ⁇ heat storage member 45 ⁇ opening 47 (bottom of vessel 30) ⁇ circulation duct 46 ⁇ sub-heating source 43 ⁇ hot air circulation duct 46 ⁇ blower 44 ⁇ main heating source 42. Circulates. Since the heating means 40 heats the container 30 by applying the hot air 41 thereto, the entire substrate 20 can be more uniformly heated as compared with a means utilizing heat conduction.
  • a mounting table 51 for supporting the container 30 is formed in a region surrounding the opening 47.
  • the heating means 40 other than the mounting table 51 and the opening 47 constitutes a hot air generator 52.
  • the opening 47 is covered by the bottom of the container 30, and the opening 47 is closed.
  • the hot air generator 52 blows the hot air 41 from the opening 47 to the bottom of the container 30.
  • the heating device 50 shown in FIG. 1 may be provided with a temperature control means 60 for controlling the temperature of the substrate 20 from the front surface side as necessary.
  • the temperature control means 60 shown in FIG. 1 includes a main temperature control source 62, a sub-temperature control source 63, a blower 64, a cold storage (or heat storage) member 65, a circulation duct 66, an opening 67, a heat absorbing plate (or radiation plate) 68 It is also equal.
  • the cold storage member 65 is made of, for example, an aluminum material, and has a large number of through holes 69 through which the temperature control medium 61 passes.
  • the heat absorbing plate 68 is also made of, for example, aluminum material, and it is desirable that the solder composition 10 side be close to a black body.
  • the temperature control medium 61 is circulated by the blower 64. That is, the temperature control medium 61 is composed of the main temperature control source 62 ⁇ the cold storage member 65 ⁇ the opening 67 (cooling the heat absorbing plate 68) ⁇ the circulation duct 66 ⁇ the sub temperature control source 63 ⁇ the circulation duct 66 ⁇ the blower 64 ⁇ the main temperature control Cycle with source 62. Further, the temperature control medium 61 may be any medium as long as it has a temperature at which the surface side of the solder composition 10 can be controlled.
  • the heat absorbing plate 68 has a function of absorbing the heat of the substrate 20, and the structure of the temperature control means 60 other than the heat absorbing plate 68 absorbs the heat of the heat absorbing plate 68, thereby forming the heat absorbing plate 68. It constitutes a heat-absorbing part that continuously exerts the heat-absorbing function of 68.
  • the main temperature control source 62 and the sub temperature control source 63 It functions as a function of cooling the temperature control medium 61.
  • the temperature control means 60 has been described as having a configuration in which the heat of the substrate 20 is removed so as to have a temperature difference between the surface side of the solder composition and the substrate side, but is not limited thereto. Absent.
  • the temperature control means 60 may be configured to heat the substrate 20 by radiant heat.
  • the heat absorbing plate 68 functions as a radiating plate that heats the substrate 20 by radiant heat, and the configuration other than the radiating plate 68 continuously heats the radiating plate 68 by heating the radiating plate 68. It constitutes a heating section to be used.
  • the main temperature control source 62 and the sub-temperature control source 63 exhibit a function of heating the temperature control medium 61.
  • the heating temperature may be equal to or higher than the heating temperature of the heating means 40.
  • Each of the temperature control means 60 does not directly contact the cold or hot air temperature control medium 61 with the solder composition 10 on the substrate 20, so that the solder composition 10 deposited in a layered manner has an adverse effect. Don't give.
  • the heating device 50 When the heating device 50 is normally used, it is used for heating the solder composition 10 on the substrate 20 by the heating means 40. That is, the substrate 20 is immersed in the solder composition 10 filled in the container 30. Then, the container 30 is mounted on the mounting table 51, and the opening 47 is closed at the bottom of the container 30. Thus, a circulation path for the hot air 41 is formed.
  • the hot air 41 When hot air 41 is generated by the heating means 40, the hot air 41 circulates through the circulation path, and the bottom of the container 30 is heated by the circulating hot air 41, and the substrate 20 is heated by receiving the heat. Since the hot air 41 does not flow over the container 30, the solder composition 10 on the substrate 20 is prevented from oxidizing.
  • the heat from the heating means 40 does not flow to the solder composition 10 side, a temperature difference occurs as compared with the substrate 20 side.
  • a state in which the temperature of the substrate 20 is higher and the temperature of the solder composition 10 is lower is generated.
  • the melting of the solder particles 11 contained in the solder composition 10 is controlled as described later. That is, the solder particles 11 mixed in the liquid material 12 of the solder composition 10 settle in the liquid material 12 and are soldered to the electrodes of the substrate 20.
  • the temperature of the solder composition 10 is low, the coalescence of the solder particles 11 settling in the liquid material 12 can be suppressed. Since the temperature on the substrate 20 side is high, the solder particles 12 And the solder particles 11 are soldered to the electrodes of the substrate 20.
  • the temperature control means 60 may be used. That is, in the above description, since only the heating means 40 is used, the temperature of the solder composition 10 cannot be adjusted.However, by using the temperature adjusting means 60, the temperature of the solder composition 10 can be controlled. Accordingly, coalescence of the solder particles 11 settling in the liquid material 12 can be suppressed, and soldering to the electrode of the substrate 20 can be performed reliably.
  • FIG. 2 is a cross-sectional view illustrating an example of a method of forming a solder bump using the heating device of FIG.
  • FIG. 1 shows a state in which the solder composition is applied on the substrate, and the vertical direction is larger than the horizontal direction.
  • the solder composition 10 used in the present embodiment also has a mixed power of a large number of solder particles 11 and a liquid material 12 that also includes fatty acid ester, and is used for forming a solder bump on the pad electrode 22.
  • the liquid material 12 When the liquid material 12 is dropped onto the substrate 20 at room temperature, the liquid material 12 spreads under its own weight and becomes uniform in thickness, and the solder wetting by the solder particles 11 while being heated to the melting point of the solder particles 11 or more causes the pad electrode 22 It has a flux action that causes bowing.
  • the solder particles 11 have a mixing ratio and a particle size such that when dropped onto the substrate 20 together with the liquid material 12, the solder particles 11 are uniformly dispersed with the liquid material 12 by a wide force S.
  • the solder particles 11 have only a natural oxide film (not shown) on the surface. Since the liquid 12 is a fatty acid ester, it originally contains a free fatty acid which is a kind of organic acid. The free fatty acid promotes the soldering between the solder particles 11 and the pad electrodes 22 while suppressing the coalescence of the solder particles 11 while being heated to a temperature equal to or higher than the melting point of the solder particles 11. It has an effect of promoting coalescence between the solder film formed on the substrate and the solder particles 11.
  • the organic acid contained in the liquid material 12 may be added as necessary. That is, the organic acid content of the liquid 12 is adjusted according to the degree of oxidation and the amount of the solder particles 11. For example, when forming a large amount of solder bumps, the amount of solder particles 11 is also large, so all It is necessary to contain an organic acid sufficient to reduce the oxide film of the solder particles 11. On the other hand, when an excessive amount of solder particles 11 more than used for bump formation is added, the content of organic acid is reduced to lower the activating force of the liquid material 12 so that the particle size distribution of the solder powder is reduced. However, it is also possible to form an optimum bump only with relatively large solder particles 11 without dissolving the solder particles 11 on the fine side. At this time, the fine solder particles 11 remaining without melting also have an effect of reducing the shortage of the nod electrode 22 by preventing the coalescence of the solder particles 11.
  • solder particles 11 need to be uniformly dispersed in the liquid material 12, it is desirable that the solder composition 10 be stirred immediately before use.
  • the material of the solder particles 11 is tin-lead solder or lead-free solder.
  • the diameter b of the solder particles 11 may be smaller than the shortest distance a between the peripheral ends of the adjacent pad electrodes 22.
  • the solder composition 10 is dropped on the substrate 20 having the node / node electrode 22 by natural fall at room temperature. With this alone, the solder composition 10 having a uniform thickness can be applied onto the substrate 20. That is, a coating film of the solder composition 10 having a uniform film thickness can be formed on the substrate 20 without using a screen printing dispenser. Since the uniformity of the coating affects the variation of the solder bump, the coating should be as uniform as possible. Thereafter, the entire substrate 20 is uniformly heated, so that solder bumps can be formed. Heating increases the temperature above the solder melting point in a short time. By raising the temperature in a short time, a decrease in the activity of the organic acid during the process can be suppressed.
  • Substrate 20 is a silicon wafer.
  • a pad electrode 22 is formed on the surface 21 of the substrate 20, a pad electrode 22 is formed.
  • a solder bump is formed by the forming method of the present embodiment.
  • the board 20 is electrically and mechanically connected to other semiconductor chips and wiring boards via solder bumps.
  • the pad electrode 22 has, for example, a circular shape and a diameter c of, for example, 40 / zm.
  • the distance d between the centers of the adjacent pad electrodes 22 is, for example, 80 / zm.
  • the diameter b of the solder particles 14 is, for example, 3 to 15 ⁇ .
  • the pad electrode 22 also acts as an aluminum electrode 24 formed on the substrate 20, a nickel layer 25 formed on the aluminum electrode 24, and a gold layer 26 formed on the nickel layer 25. .
  • the underlayer 25 and the gold layer 26 are UBM (under barrier metal or under bump metallurgy) layers.
  • the portion other than the pad electrode 22 on the substrate 20 is covered with a protective film 27.
  • an aluminum electrode 24 is formed on the substrate 20, and a protective film 27 is formed on a portion other than the aluminum electrode 24 with a polyimide resin or a silicon nitride film. These are formed by using, for example, a photolithography technique and an etching technique. Subsequently, after performing a zincate treatment on the surface of the aluminum electrode 24, a nickel layer 25 and a gold layer 26 are formed on the aluminum electrode 24 using an electroless plating method. The reason for providing this UBM layer is to impart solder wettability to the aluminum electrode 24.
  • Examples of the material of the solder particles 11 include Sn—Pb (melting point: 183 ° C.), Sn—Ag—Cu (melting point: 218 ° C.), Sn—Ag (melting point: 221 ° C.), and Sn—Cu (melting point: 227 ° C) and use other lead-free solder.
  • the heating means 40 also serves as a blower, an electric heater or the like as described above, and heats the solder composition 10 from the substrate 20 side (lower side) by applying hot air 41.
  • FIGS. 3 and 4 are cross-sectional views showing one example of a method of forming a solder bump using the heating device of FIG.
  • FIG. 3 shows a dropping process, and the process proceeds in the order of FIG. 3 [1] to FIG. 3 [3].
  • FIG. 4 shows a reflow process, and the process proceeds in the order of FIG. 4 [1] to FIG. 4 [3].
  • the following is a description based on these drawings. However, the description of the same parts as those in FIG. 2 will be omitted by retaining the same reference numerals.
  • the above-described “container 30” will be referred to as “receiving container 30”.
  • FIG. 3 does not show the pad electrode 22 on the substrate 20.
  • the substrate 20 is placed in the receiving container 30.
  • the solder composition 10 is agitated in the pouring container 31 as necessary, the solder composition 10 is dropped onto the substrate 20 from the pouring port 32.
  • the solder composition 10 spreads by its own weight and has a uniform thickness.
  • the natural force of the solder composition 10 can also be used at room temperature.
  • the solder composition 10 may be applied onto the substrate 20 using a printing machine or a discharging machine.
  • the receiving container 30 Since the receiving container 30 is heated together with the substrate 20 in the reflow process, the receiving container 30 is heat-resistant, has good heat conduction, and does not cause solder wetting by the solder particles 11. It is made of nimu. Further, the receiving container 30 has a flat bottom surface 33 on which the flat substrate 20 is placed, and a peripheral wall 34 for preventing the solder composition 10 from overflowing. In this case, since the substrate 20 is in close contact with the bottom surface 33 of the receiving container 30, heat conduction is improved. 2 and 4, the illustration of the receiving container 30 is omitted.
  • the solder composition 10 on the substrate 20 may be made to have a uniform thickness by rotating the substrate 10 horizontally. To rotate board 10 horizontally
  • a spin coater commercially available may be used.
  • FIG. 3 [2] shows a case where the substrate 20 is not immersed in the solder composition 10.
  • the thickness tl of the solder composition 10 on the substrate 20 is a value mainly determined by the surface tension and the viscosity of the solder composition 10.
  • FIG. 3 [3] shows a case where the substrate 20 is immersed in the solder composition 10.
  • the thickness t2 of the solder composition 10 on the substrate 20 can be set to a desired value according to the amount of the solder composition 10 to be dropped.
  • the solder composition 10 is placed by solid coating on the substrate 20 on which the plurality of pad electrodes 22 are separately provided. At this time, the solder composition 10 is entirely placed on the surface including the plurality of bump electrodes 22 and the protective film 27 in the gap therebetween.
  • the solder composition 10 is just like an ink.
  • the solder composition 10 is heated to a temperature equal to or higher than the melting point of the solder particles 11.
  • the temperature of the solder composition 10 becomes lower toward the surface and lower at the substrate 20 side.
  • the lower solder particles 11 near the pad electrode 22 begin to melt first, and if melted, spread on the pad electrode 22.
  • the upper solder particles 11 far from the pad electrode 22 have not yet sufficiently melted. Therefore, the opportunity for the solder particles 11 to coalesce is reduced. Since it can be reduced, the occurrence of solder bridges is also suppressed.
  • the node / node electrode 22 is heated to a temperature equal to or higher than the melting point of the solder particles 11, and the solder particles 11 in contact with the pad electrodes 22 are melted and spread on the pad electrodes 22.
  • a solder coating 23 ' is formed, and the solder particles 11 are further united with the solder coating 23'.
  • the following state is caused by the action of the organic acid contained in the liquid material 12.
  • coalescence of the solder particles 11 is suppressed.
  • some of the solder particles 11 coalesce and become larger. That is, there is no problem if the solder particles 11 coalesce with each other as long as they are equal to or smaller than a certain size.
  • the solder particles 11 spread on the pad electrode 20 to form an alloy layer at the interface.
  • a solder film 23 ' is formed on the pad electrode 20, and the solder particles 11 are further united with the solder film 23'. That is, the solder film 23 'grows to become the solder bump 23 as shown in FIG. 8 [3].
  • solder particles 11 not used for forming the solder bumps 23 are washed away together with the remaining liquid material 12 in a later step.
  • the solder composition 10 may be settled first from the solder particles 11 near the substrate 20 side by providing a temperature difference such that the surface side is low and the substrate 20 side is high. If a temperature difference is provided such that the surface side of the solder composition 10 is low and the substrate 20 side of the solder composition 10 is high, the viscosity of the liquid material 12 decreases as the temperature increases, so that the solder particles 11 below the pad electrode 22 First settles and begins to melt, and when it comes into contact with the pad electrode 22, it spreads out. At that time, the upper solder particles 11 far from the nod electrode 22 have not yet settled and melted sufficiently.
  • such a heating state may be such that, for example, the solder composition 10 on the substrate 20 is heated from the substrate 20 side, the surface-side force of the solder composition 10 is also controlled, and the temperature dependency of the viscosity of the liquid material 12 is increased. This is achieved by adjusting the relationship between the melting point of the solder particles 11 and the like.
  • the solder particles 11 may be supplied to the pad electrode 22 using the convection of the liquid material 12.
  • the solder composition 10 is heated from the substrate 20 side, convection is generated in the liquid material 12, whereby the solder particles 11 move in the liquid material 12.
  • the solder particles 11 that have not been placed on the pad electrode 22 and move to the become part of amplifier 23. Therefore, the solder particles 11 are effectively used.
  • the force described in the case where the cooling function of the temperature control means 60 is exerted on the solder composition to form the solder bumps is not limited to this.
  • the heating function of the temperature control means 60 may be exerted on the solder yarn composition to form the solder bumps! / ⁇ .
  • the cooling function and the heating function of the temperature control means 60 may be switched and used to form a solder bump.
  • FIG. 5 shows a second embodiment of the heating device according to the present invention
  • FIG. 5 [1] is a partial plan view
  • FIG. 5 [1] is a partial plan view
  • FIG. 5 [2] is a sectional view taken along line VV in FIG. 5 [1].
  • description will be made based on this drawing. However, the description of the same parts as in FIG. 1 will be omitted by giving the same reference numerals or not showing them.
  • a pressing mechanism 55 for fixing the substrate 20 to the mounting table 51 is provided.
  • the holding mechanism 55 has the same force as the plunger type solenoids 56a and 56b, and the top holding cams 57a and 57b.
  • the solenoid 56a has one end 561 rotatably mounted on the mounting table 51 and the other end 562 rotatably mounted near the outer periphery of the holding cam 57a.
  • the holding cam 57a is rotatably attached to the mounting table 51 via a center shaft 571.
  • the solenoid 56b and the holding cam 57b have the same configuration.
  • the solenoids 56a and 56b are in a contracted state, and the holding cams 57a and 57b are rotated at an angle for holding the substrate 20.
  • the holding cams 57a, 57b rotate at an angle to loosen the substrate 20.
  • the substrate 20 may be blown off or displaced by the hot air 41.
  • the holding mechanism 55 is provided to fix the substrate 20.
  • the holding mechanism 55 holds the substrate 20.
  • the holding mechanism 55 may hold the container 30 (FIG. 1).
  • FIG. 6 shows a state during heating
  • FIG. 7 shows a state during transportation.
  • the reflow device 70 of the present embodiment is provided with a preheating section 71, a reflow section 72, and a cooling section 73 arranged concentrically in this order, and includes a transfer mechanism 80 for transferring the containers 30 in this order. I have.
  • An inlet / outlet section 74 is provided between the preheating section 71 and the cooling section 73.
  • the heating device 10 described above is used for the preheating unit 71 and the reflow unit 72.
  • the reflow device 70 shown in FIG. 8 is not limited to the force using the heating device 10 without the temperature control means 60.
  • the heating device 10 having the temperature control means 60 shown in FIG. 1 may be used for the preheating section 71 and the reflow section 72.
  • the cooling unit 73 the configuration of the heating means 40 of the heating device 10 in FIG. 1 is used. In this case, a cooling medium 61 is used instead of the medium 61 supplied by the heating means 40. Then, the substrate is gradually cooled by applying the cooling medium 61 through the opening 67 and contacting the container 30 from below.
  • FIG. 8 and FIG. 9 show a transport mechanism in the reflow device in FIG. 6, FIG. 8 is a schematic cross-sectional view of the whole, and FIG. 9 is a perspective view of a container holding portion.
  • FIGS. 3 and FIG. 4 the same parts as those in FIG.
  • the transport mechanism 80 includes a central driving unit 81, four arms 82 attached to the driving unit 81, and a container holding unit 83 formed at the tip of the arm 82. Consists of The driving unit 81 also has a force with a center plate 84 that supports the four arms 82, an air cylinder 85 that moves the center plate 84 up and down, and a ring-shaped motor 86 that rotates the center plate 84 and the air cylinder 85 together.
  • the container holding portion 83 has an annular shape, and has three convex portions 831 to 833 formed on the upper surface.
  • the convex portions 831 to 833 engage with concave portions (not shown) formed on the bottom surface of the container 30.
  • the container 30 is detachably fixed to the container holder 83 by the engagement of the convex portions 831 to 833 with the concave portions.
  • FIG. 10 is a block diagram showing a control system in the reflow device of FIG. The following is a description based on this drawing. However, the same parts as those in FIG. 6 are denoted by the same reference numerals, and description thereof will be omitted.
  • the reflow device 70 further includes a control unit 75 for controlling the operations of the preheating unit 71, the reflow unit 72, the cooling unit 73, and the transport mechanism 80.
  • the control means 75 is, for example, a microcontroller. Computers and their programing skills.
  • the control target of the control means 75 is the temperature and air volume of the preheating section 71, the reflow section 72 and the cooling section 73, the transport operation of the transport mechanism 80, and the like.
  • the substrate 20 is placed in the container 30, and the solder composition 10 is dripped using a dispenser with a force.
  • the container 30 is placed on the container holding portion 83 at the entrance / exit portion 74.
  • the operation up to this point may be automated or performed by an operator.
  • the container 30 is transported to the next preheating unit 71 by rotating the ring-shaped motor 86.
  • the containers 30 located in the preheating section 71, the reflow section 72, and the cooling section 73 are also transported to the reflow section 72, the cooling section 73, and the inlet / outlet section 74, respectively.
  • the air cylinder 85 is operated via an electromagnetic valve (not shown), and the container 30 is moved up and down together with the container holder 83.
  • preheating section 71 container 30 is heated to a certain temperature by being heated for a certain time. Subsequently, the container 30 is transported to the next reflow section 72 by rotating the ring-shaped motor 86. In the reflow section 72, the container 30 is heated for a certain period of time, so that the solder composition 10 is reflowed. Subsequently, the container 30 is transported to the next cooling section 73 by rotating the ring-shaped motor 86. In the cooling section 73, the container 30 is cooled to a certain temperature by being heated for a certain time. Subsequently, the container 30 is transported to the next entrance 74 by rotating the ring-shaped motor 86. Here, by removing the container 30 from the container holding portion 83, the reflow step is completed.
  • the reflow device 70 by using the heating means 40 for the preheating portion 71 and the reflow portion 72, it is possible to form a solder bump with the solder composition 10 while heating using the hot air 41. .
  • the first reason is that since the hot air 41 does not flow around, the solder composition 10 is prevented from oxidizing.
  • the second reason is that the temperature distribution on the surface side of the solder composition 10 is low and the temperature distribution on the substrate 20 side is high.
  • the preheating unit 71 and the reflow unit 72 when the opening 47 is not closed by the container 30, as shown in FIG.
  • the supply of the hot air may be stopped.
  • the operation of the blower 44 It is stopped or the blowing of the hot air 41 is suppressed by using a shielding plate (not shown). This prevents the hot air 41 from blowing out from the opening 47 when the opening 47 is not closed by the container 30.
  • a dummy container (not shown) is flowed before, after, or in the middle of the plurality of containers 30.
  • the dummy container suppresses the blowing of hot air 41 from the opening portion 47 when the opening portion 47 is not closed by the container 30, and also suppresses the fluctuation of the heat capacity viewed from the heating means 40.
  • the cooling unit 73 may be omitted.
  • the present invention is not limited to the above embodiment.
  • a silicon wafer FC
  • a fine-pitch substrate or interposer or a wiring board (BGA) may be used.
  • the electrode material is not limited to aluminum, but may be A1-Si, Al-Si-Cu, Al-Cu, Cu, or the like.
  • FIG. 11 is a cross-sectional view illustrating a method for forming a solder bump according to an embodiment of the present invention.
  • FIG. 11 shows a state in which the solder composition is applied on the substrate, and the vertical direction is larger than the horizontal direction.
  • the solder composition 10 used in the present embodiment is composed of a mixture of a large number of solder particles 11 and a liquid (liquid material) 12 composed of a fatty acid ester, and forms a solder bump on the pad electrode 22.
  • a liquid (liquid material) 12 composed of a fatty acid ester
  • the liquid material 12 spreads under its own weight and spreads to a uniform thickness, and the solder wetting by the solder particles 11 while being heated to the melting point of the solder particles 11 or more is used as a pad. And a flux action to be caused on the electrode 22.
  • the solder particles 11 have a mixing ratio and a particle size that, when dropped onto the substrate 20 together with the liquid material 12, spread and uniformly disperse with the liquid material 12.
  • the surface oxide film of the solder particles 11 has only a natural oxide film (not shown). Since the liquid 12 is a fatty acid ester, it originally contains a free fatty acid, which is a kind of organic acid. The free fatty acid promotes the soldering between the solder particles 11 and the pad electrodes 22 while suppressing the coalescence of the solder particles 11 with the reaction product while being heated to the melting point of the solder particles 11 or higher. What is the solder film formed on the pad electrode 22? It has an effect of promoting coalescence with the solder particles 11.
  • the organic acid contained in the liquid material 12 may be added as necessary. That is, the organic acid content of the liquid 12 is adjusted according to the degree of oxidation and the amount of the solder particles 11. For example, when a large amount of solder bumps are formed, the amount of the solder particles 11 becomes large, so that it is necessary to contain an organic acid sufficient to reduce the oxide film of all the solder particles 11. On the other hand, when an excessive amount of solder particles 11 more than used for bump formation is added, the content of organic acid is reduced to lower the activating force of the liquid material 12 so that the particle size distribution of the solder powder is reduced. However, it is also possible to form an optimum bump with only the relatively large solder particles 11 without dissolving the solder particles 11 on the fine side. At this time, the fine solder particles 11 remaining without melting also have an effect of reducing the short-circuit of the node electrode 22 by preventing coalescence of the solder particles 11.
  • solder particles 11 need to be uniformly dispersed in the liquid material 12, it is desirable that the solder composition 10 be stirred immediately before use.
  • the material of the solder particles 11 is tin-lead solder or lead-free solder.
  • the diameter b of the solder particles 11 may be smaller than the shortest distance a between the peripheral ends of the adjacent pad electrodes 22.
  • the solder composition 10 is dropped on the substrate 20 having the node / node electrode 22 by natural fall at room temperature. With this alone, the solder composition 10 having a uniform thickness can be applied onto the substrate 20. That is, a coating film of the solder composition 10 having a uniform film thickness can be formed on the substrate 20 without using a screen printing dispenser. Since the uniformity of the coating affects the variation of the solder bump, the coating should be as uniform as possible. Thereafter, the entire substrate 20 is uniformly heated, so that solder bumps can be formed. Heating increases the temperature above the solder melting point in a short time. By raising the temperature in a short time, a decrease in the activity of the organic acid during the process can be suppressed.
  • Substrate 20 is a silicon wafer.
  • a pad electrode 22 is formed on the surface 21 of the substrate 20, a pad electrode 22 is formed.
  • a solder bump is formed by the forming method of the present embodiment.
  • the board 20 is electrically and mechanically connected to other semiconductor chips and wiring boards via solder bumps.
  • the pad electrode 22 has, for example, a circular shape and a diameter c of, for example, 40 / zm. Adjacent pack The distance d between the centers of the gate electrodes 22 is, for example, 80 / zm.
  • the diameter b of the solder particles 14 is, for example, 3 to 15 ⁇ .
  • the pad electrode 22 also acts as an aluminum electrode 24 formed on the substrate 20, a nickel layer 25 formed on the aluminum electrode 24, and a gold layer 26 formed on the nickel layer 25.
  • the underlayer 25 and the gold layer 26 are UBM (under barrier metal or under bump metallurgy) layers.
  • the portion other than the pad electrode 22 on the substrate 20 is covered with a protective film 27.
  • an aluminum electrode 24 is formed on the substrate 20, and a protective film 27 is formed on a portion other than the aluminum electrode 24 with a polyimide resin or a silicon nitride film. These are formed by using, for example, a photolithography technique and an etching technique. Subsequently, after performing a zincate treatment on the surface of the aluminum electrode 24, a nickel layer 25 and a gold layer 26 are formed on the aluminum electrode 24 using an electroless plating method. The reason for providing this UBM layer is to impart solder wettability to the aluminum electrode 24.
  • Examples of the material of the solder particles 11 include Sn-Pb (melting point 183 ° C), Sn-Ag-Cu (melting point 218 ° C), Sn-Ag (melting point 221 ° C), and Sn-Cu (melting point 221 ° C). 227 ° C).
  • the heating means 40 includes, for example, a blower and an electric heater, and heats the solder composition 10 from the substrate 20 side (lower side) by applying hot air 41.
  • FIG. 12 and FIG. 13 are cross-sectional views showing a first embodiment of the solder bump forming method according to the present invention.
  • FIG. 12 shows a dropping step as an example of a coating step, and the steps proceed in the order of FIG. 12 [1] to FIG. 12 [3].
  • FIG. 13 shows a reflow process, which proceeds in the order of FIG. 13 [1] to FIG. 13 [3].
  • description will be made based on these drawings. However, the same parts as those in FIG.
  • FIG. 12 does not show the pad electrode 22 on the substrate 20.
  • the substrate 20 is put in the receiving container 30.
  • the solder composition 10 is agitated in the pour container 31 as necessary, the solder composition 10 is dropped onto the substrate 20 from the pouring port 32.
  • the solder composition 10 spreads by its own weight and has a uniform thickness.
  • the loosening force at room temperature can also utilize the natural fall of the solder composition 10.
  • the solder composition 10 may be applied onto the substrate 20.
  • the receiving container 30 Since the receiving container 30 is heated together with the substrate 20 in the reflow step, the receiving container 30 is made of a metal such as aluminum, which has heat resistance, good heat conduction, and does not cause solder wetting by the solder particles 11. Further, the receiving container 30 has a flat bottom surface 33 on which the flat substrate 20 is placed, and a peripheral wall 34 for preventing the solder composition 10 from overflowing. In this case, since the substrate 20 is in close contact with the bottom surface 33 of the receiving container 30, heat conduction is improved. 1 and 3, the illustration of the receiving container 30 is omitted.
  • the solder composition 10 on the substrate 20 may have a uniform thickness by rotating the substrate 10 horizontally during or after the dropping process. To rotate board 10 horizontally
  • a spin coater commercially available may be used.
  • FIG. 12 [2] shows a case where the substrate 20 is not immersed in the solder composition 10.
  • the thickness tl of the solder composition 10 on the substrate 20 is a value mainly determined by the surface tension and the viscosity of the solder composition 10.
  • FIG. 12 [3] shows a case where the substrate 20 is immersed in the solder composition 10.
  • the thickness t2 of the solder composition 10 on the substrate 20 can be set to a desired value according to the amount of the solder composition 10 to be dropped.
  • the solder composition 10 is placed by solid coating on the substrate 20 on which the plurality of pad electrodes 22 are separately provided. At this time, the solder composition 10 is entirely placed on the surface including the plurality of bump electrodes 22 and the gap between them on the protective film 27.
  • the solder composition 10 is just like an ink.
  • the solder composition 10 is heated to the melting point of the solder particles 11 or higher.
  • the temperature of the solder composition 10 becomes lower toward the surface and becomes higher toward the substrate 20 side.
  • the solder particles 11 below the nod electrode 22 begin to melt first, and if melted, spread on the pad electrode 22.
  • the upper solder particles 11 far from the pad electrode 22 are not yet sufficiently melted. Therefore, the chance of the solder particles 11 coalescing can be reduced, so that the occurrence of solder bridges is also suppressed.
  • the node / node electrode 22 is heated to the melting point of the solder particles 11 or higher, and the solder particles 11 in contact with the pad electrode 22 are melted and spread on the nod electrode 22.
  • a solder film 23 ' is formed, and the solder particles 11 are further united with the solder film 23'.
  • the following state is caused by the action of the organic acid contained in the liquid material 12.
  • coalescence of the solder particles 11 is suppressed.
  • some of the solder particles 11 coalesce and become large. That is, there is no problem if the solder particles 11 coalesce with each other as long as they are equal to or smaller than a certain size.
  • the solder particles 11 spread on the pad electrode 20 to form an alloy layer at the interface.
  • a solder film 23 ' is formed on the pad electrode 20, and the solder particles 11 are further united with the solder film 23'. That is, the solder film 23 'grows to become the solder bump 23 as shown in FIG. 12 [3].
  • solder particles 11 not used for forming the solder bumps 23 are washed off together with the remaining liquid material 12 in a later step.
  • the solder composition 10 may be settled first from the solder particles 11 near the substrate 20 side by providing a temperature difference such that the surface side is low and the substrate 20 side is high. If a temperature difference is provided such that the surface side of the solder composition 10 is low and the substrate 20 side of the solder composition 10 is high, the viscosity of the liquid material 12 decreases as the temperature increases, so that the solder particles 11 below the pad electrode 22 First settles and begins to melt, and when it comes into contact with the pad electrode 22, it spreads out. At that time, the upper solder particles 11 far from the nod electrode 22 have not yet settled and melted sufficiently.
  • such a heating state may be such that, for example, the solder composition 10 on the substrate 20 is heated from the substrate 20 side, the surface-side force of the solder composition 10 is also controlled, and the temperature dependency of the viscosity of the liquid material 12 is increased. This is achieved by adjusting the relationship between the melting point of the solder particles 11 and the like.
  • the solder particles 11 may be supplied to the pad electrode 22 using the convection of the liquid material 12. When the solder composition 10 is heated from the substrate 20 side, convection is generated in the liquid material 12, whereby the solder particles 11 move in the liquid material 12. For this reason, the solder particles 11 that have not been placed on the pad electrode 22 and move are also moved onto the pad electrode 22 and become a part of the solder bump 23. Therefore, the solder particles 11 are effectively used.
  • FIG. 14 is a schematic sectional view showing a solder bump forming apparatus according to an embodiment of the present invention.
  • receiving container 30 is abbreviated as “container 30”.
  • the solder bump forming apparatus 50A of the present embodiment is for heating and reflowing the solder composition 10 on the substrate 20 to form solder bumps, and heating the solder composition 10 from the substrate 20 side.
  • Means 40 and temperature control means 60 for adjusting the temperature of the solder composition 10.
  • the heating means 40 also has a main heating source 42, a sub-heating source 43, a blower 44, a heat storage member 45, a hot air circulation datum 46, and an opening 47.
  • the main heating source 42 and the sub-heating source 43 are, for example, electric heaters.
  • the heat storage member 45 has, for example, an aluminum force, and has a large number of through holes 48 through which the hot air 41 passes.
  • Hot air 41 is circulated by blower 44. That is, the hot air 41 is supplied from the main heating source 42 ⁇ heat storage member 45 ⁇ opening 47 (heating the vessel 30) ⁇ circulation duct 46 ⁇ sub-heating source 43 ⁇ hot air circulation duct 46 ⁇ blower 44 ⁇ circulation path of the main heating source 42 Circulate. Since the heating means 40 heats the container 30 by applying the hot air 41 thereto, the entire substrate 20 can be more uniformly heated as compared with a means utilizing heat conduction.
  • the temperature control means 60 includes a main temperature control source 62, a sub-temperature control source 63, a blower 64, a cold storage (or heat storage) member 65, a circulation duct 66, an opening 67, a heat absorption plate (or radiation plate) 68, and the like. Power.
  • the temperature control means 60 uses cold air as the temperature control medium 61.
  • the main temperature control source 62 and the sub-temperature control source 63 are, for example, cooling water coolers.
  • the cold storage member 65 is made of, for example, aluminum material, and has a large number of through holes 69 through which the cool air 61 passes.
  • the heat absorbing plate 68 is made of, for example, an aluminum material, and it is desirable that the solder composition 10 side is in a state close to a black body.
  • the cool air 61 is circulated by the blower 64. That is, the cool air 61 is supplied from the main temperature control source 62 ⁇ the cold storage (or heat storage) member 65 ⁇ the opening 67 (cooling the heat absorbing plate 68) ⁇ the circulation duct 66 ⁇ the sub temperature control source 63 ⁇ the cool air circulation.
  • Circular duct 66 ⁇ Blower 64 Circulation route of main temperature control source 62.
  • the heat absorbing plate 68 has a function of absorbing the heat of the solder composition 10, and the configuration of the temperature control means 60 other than the heat absorbing plate 68 absorbs the heat of the heat absorbing plate 68, thereby It constitutes a heat absorbing section for continuously performing the heat absorbing function of the absorbing plate 68.
  • the main temperature control source 62 and the sub temperature control source 63 function as a function of cooling the temperature control medium 61.
  • the temperature control means 60 has been described as having a configuration in which the surface of the solder composition and the substrate have a temperature difference by removing the heat of the solder composition 10, but is not limited thereto. is not. That is, the temperature control means 60 may be configured to heat the solder composition 10 by radiant heat.
  • the heat absorbing plate 68 functions as a radiating plate that heats the solder composition 10 by radiant heat, and the configuration other than the radiating plate 68 heats the radiating plate 68 to provide the heating function of the radiating plate 68. It constitutes a heating section that can be used continuously.
  • the heating temperature may be equal to or higher than the heating temperature of the heating means 40. Since any of the temperature control means 60 is a method in which the temperature control medium 61 of cold air or hot air is not directly contacted with the solder composition 10, there is no adverse effect on the solder composition 10 deposited in layers.
  • solder bump forming apparatus 50A Next, the operation of the solder bump forming apparatus 50A will be described.
  • the solder composition 10 is heated from the substrate 20 side by the heating means 40, and the temperature of the surface of the solder composition 10 is also adjusted by the temperature adjusting means 60. Then, the temperature distribution of the solder composition 10 is higher on the substrate 20 side and lower on the surface side. At this time, as described above, since the chances of the solder particles coalescing can be reduced, the occurrence of solder bridges is also suppressed. Therefore, high-density and fine solder bumps can be easily formed.
  • FIG. 15 is a schematic sectional view showing a second embodiment of the solder bump forming apparatus according to the present invention.
  • description will be made based on this drawing. However, the same parts as those in FIG.
  • a heating means 71 using heat conduction is used instead of the heating means 40 using hot air 41 in FIG.
  • the heating means 71 is, for example, an electric heater such as a panel heater, and has a simple configuration in which the container 30 is directly mounted and the container 30 is heated by heat conduction.
  • the bump forming apparatus 70 the first embodiment The configuration can be simplified as compared with the state.
  • the present invention is not limited to the above embodiment.
  • a wiring board (BGA) may be used instead of a silicon wafer (FC).
  • the electrode material is not limited to aluminum, and may be Al-Si, Al-Si-Cu, Al-Cu, Cu, or the like.
  • Example 1 which is a more specific example of this embodiment will be described.
  • the solder particles have a composition of 96.5wt% Sn-3.Owt% Ag—0.5wt% Cu (melting point: 218 ° C) and an average diameter of 6 m (particle size distribution 2 to: L 1 m) was used.
  • One type of fatty acid ester trimethyl propane trioleate
  • the main properties of this fatty acid ester are a kinematic viscosity at 40 ° C of 48.3 mmVs, a kinematic viscosity at 100 ° C of 9.2 mmVs, and an acid value of 2.4.
  • the free fatty acid originally contained in the fatty acid ester was used without adding the organic acid.
  • vacuum defoaming was performed at a vapor pressure lower than the water pressure of the water to minimize the effect of moisture.
  • a silicon chip having a 10 mm opening was used as a substrate for forming a solder bump.
  • Pad electrodes of 80 m pitch were formed in a two-dimensional array on the silicon chip.
  • the shape of the pad electrode was 40 m.
  • the material of the surface of the pad electrode was a gold plating with a thickness of a few microns on the electroless nickel plating.
  • the material of the protective film was silicon nitride.
  • FIG. 1 is a schematic sectional view showing a first embodiment of a heating device according to the present invention.
  • FIG. 2 is a cross-sectional view showing one example of a method for forming solder bumps using the heating device of FIG. 1.
  • FIG. 3 is a cross-sectional view (dropping step) showing an example of a method of forming a solder bump using the heating device of FIG. 1, and the steps proceed in the order of FIG. 3 [1] to FIG. 3 [3].
  • FIG. 4 is a cross-sectional view (reflow process) showing an example of a solder bump forming method using the heating device of FIG. 1, and the process proceeds in the order of FIGS. 4 [1] to 4 [3].
  • FIG. 5 shows a second embodiment of the heating device according to the present invention, wherein FIG. 5 [1] is a partial plan view, and FIG. 5 [2] is a sectional view taken along line VV in FIG. 5 [1].
  • FIG. 6 is a plan view showing the first embodiment (during heating) of the reflow device according to the present invention.
  • FIG. 7 is a plan view showing the first embodiment (during transportation) of the reflow device according to the present invention. ⁇ 1—
  • FIG. 8 is a schematic sectional view showing the entire transfer mechanism in the reflow device in FIG.
  • FIG. 9 is a perspective view showing a container holding portion of the transport mechanism in the reflow device in FIG.
  • FIG. 10 is a block diagram showing a control system in the reflow device in FIG. 5.
  • FIG. 11 is a cross-sectional view showing a first embodiment of a solder bump forming method according to the present invention.
  • FIG. 12 is a cross-sectional view (dropping process) showing the first embodiment of the solder bump forming method according to the present invention, and the process proceeds in the order of FIG. 12 [1] to FIG. 12 [3].
  • FIG. 13 is a cross-sectional view (reflow process) showing the first embodiment of the solder bump forming method according to the present invention, and the process proceeds in the order of FIG. 13 [1] to FIG. 13 [3].
  • FIG. 14 is a schematic sectional view showing a first embodiment of a solder bump forming apparatus according to the present invention.
  • FIG. 15 is a schematic sectional view showing a second embodiment of the solder bump forming apparatus according to the present invention.

Description

明 細 書
加熱装置及びリフロー装置,はんだバンプ形成方法及び装置
技術分野
[0001] 本発明は、例えばはんだを加熱するのに最適な加熱装置及び、その加熱装置を利 用したリフロー装置に関する。さらに、例えば半導体基板やインターポーザ基板の上 に突起状のはんだバンプを形成して FC (flip chip)や BGA (ball grid array)を製造す る際に用 、られるはんだバンプ形成方法及び装置に関する。
背景技術
[0002] 従来の一般的なはんだバンプの形成方法は、スクリーン印刷法ゃデイスペンス法な どを用いて基板のパッド電極上にはんだペーストを塗布し、このはんだペーストをカロ 熱してリフローするというものであった。なお、はんだペーストは「クリームはんだ」とも 呼ばれる。
[0003] 前記はんだペーストの一例が特許文献 1に開示されて!、る。この特許文献 1に記載 されたはんだペーストは、はんだ粒子を空気中で流動させることにより、はんだ粒子 の表面に酸ィ匕膜を形成したものである。この強制的に形成した酸ィ匕膜は、リフロー時 にフラックスの作用に抗して、はんだ粒子同士の合一を抑える働きをするという。その ため、このはんだペーストを基板上にベタ塗りしてリフローすると、パッド電極間では んだブリッジが発生に《なるので、ノ¾ /ド電極の高密度化及び微細化に適する、とい うことである。なお、ノ¾ /ド電極間のはんだブリッジは、はんだ粒子同士が合一して大 きな塊となって、隣接するパッド電極の両方に接してしまうために起こる現象である。
[0004] またリフロー工程では、リフロー装置が用いられる。このリフロー装置として、パネル ヒータ上に基板を直接載置し、パネルヒータ力ゝらの熱伝導によって基板を加熱するも のが知られている (第一従来例)。しかし、このリフロー装置では、基板の僅かな反り や凹凸によって、基板の熱分布が不均一になるという欠点がある。また、パネルヒー タと基板とに間隙を設けて、パネルヒータからの熱輻射によって基板を加熱するリフロ 一装置が知られている(第二従来例)。しかし、このリフロー装置は加熱力が不足する 、う欠点がある。これらの第一及び第二従来例の欠点を克服するリフロー装置とし て、基板に熱風を当てて加熱するものが開発されている(第三従来例、例えば下記 特許文献 2)。このリフロー装置によれば、熱風吹き出し口と基板とに間隙を設けて、 基板の上下力 熱風を当てて加熱することにより、基板を均一に加熱でき、し力も十 分な加熱力も得られる。
[0005] 特許文献 1 :特開 2000— 94179号公報
特許文献 2:特開平 5— 92257号公報
発明の開示
発明が解決しょうとする課題
[0006] し力しながら、従来のはんだバンプの形成方法には、次のような問題があった。
[0007] 近年の更なる多電極化、高密度化及び微細化に対して、スクリーン印刷法ゃデイス ペンス法では対応できなくなりつつある。すなわち、スクリーン印刷法では、メタルマ スクの開口を微細化する必要があるので、メタルマスクの機械的強度が低下したり、メ タルマスクの開口からはんだペーストが抜け難くなつたりする、という問題が生じてき た。デイスペンス法では、多数のパッド電極の上に一つずつはんだペーストを載せて いくので、パッド電極が多くなるほど量産には向かなくなる。
[0008] 一方、特許文献 1のはんだペーストでは、はんだ粒子の酸ィ匕膜の膜厚を、精度良く 形成しなければならな力つた。なぜなら、厚すぎるとパッド電極にはんだが濡れなくな り、薄すぎるとはんだ粒子同士が合一してしまうからである。し力も、フラックスの状態 や種類によってもフラックスの作用が変化するので、これらに合わせて酸化膜の膜厚 を精度良く制御する必要があった。一方、適切な膜厚の酸ィ匕膜を形成できなければ 、 ノ ッド電極の高密度化及び微細化を達成できないことになる。したがって、特許文 献 1のはんだペーストでは、精密なマスクを不要とするベタ塗りが可能になるといって も、近年の高密度化及び微細化の要求に応えることは難し力つた。
[0009] また、第三従来例のリフロー装置では、基板上のはんだペーストが酸ィ匕することに より、はんだバンプを形成できないことがあった。これは、熱風を使うがゆえに、熱せら れた多くの酸素分子がはんだペースト表面に接触するためと考えられる。また微細な 電極にはんだバンプを形成する際に熱風を直接吹き付けると、その熱風の影響では んだバンプの品質が安定しないという欠点があった。また熱風によりパーティクルが 基板に吹き付けられてはんだバンプに付着することもあった。この問題は、基板の下 のみ力 熱風を当てたときも発生する。その理由は、熱風が基板の下力 基板の上 へ回り込むためである。
[0010] 本発明の目的は、近年のはんだバンプの高密度化及び微細化の要求に応えること ができる、はんだバンプ形成方法及び装置を提供することにある。さらに本発明の目 的は、熱風を用いて加熱しても、はんだペーストの酸ィ匕を抑制でき、品質の安定し、 かつパーティクルの影響が少な 、、加熱装置及びリフロー装置等を提供することにあ る。本発明の第二の目的は、熱風を用いて加熱しても、液状のはんだ組成物ではん だバンプを形成できる、加熱装置及びリフロー装置等を提供することにある。
課題を解決するための手段
[0011] 前記目的を達成するため、本発明に係るはんだバンプ形成方法は、複数のパッド 電極が離間して設けられた基板上にはんだ組成物を層状に堆積する塗布工程と、 基板上のはんだ組成物を加熱してリフローするリフロー工程とを備えている。そして、 はんだ組成物として、はんだ粒子と、フラックス成分を含む液体材料との混合物から なり、常温で又は加熱中に液状になる性質を有するはんだ組成物を用いる。リフロー 工程では、基板側カゝらはんだ組成物を加熱する。
[0012] はんだ組成物は、常温で液状であり、又は加熱中に液状になる。このような性質 (流 動性)を得るには、液体材料の粘度が低いこと、はんだ粒子の混合比が小さいこと、 及びはんだ粒子の粒径が小さいことが要求される。加熱中は、液体材料中にはんだ 粒子が漂っているか又は沈降している状態である。なお、このはんだ組成物には、加 熱中に液状になるものであれば従来のはんだペーストも含まれる。
[0013] ここで、基板上のはんだ組成物を基板側から加熱すると、はんだ組成物は表面に なるほど温度が低く基板側になるほど温度が高くなる。すると、ノ^ド電極に近い下方 のはんだ粒子は、先に溶融し始め、溶融すればパッド電極に濡れ広がる。その時、 ノッド電極力も遠い上方のはんだ粒子は、まだ十分に溶融していない。したがって、 はんだ粒子同士で合一する機会を減少させることができるので、はんだブリッジの発 生も抑制される。
[0014] また、塗布工程では、複数のバンプ電極上及びこれらの間隙上を含む面に全体的 にはんだ組成物を層状に堆積するとしてもよい。すなわち、スクリーン印刷やディスぺ ンサ(吐出器)を用いて、いわゆる「ベタ塗り」とすることができる。ノ¾ /ド電極間にはん だ組成物を載置しても、リフロー時にはんだ粒子同士の合一が抑制されるので、バン ブ電極間でのはんだブリッジの発生も抑えられる。したがって、精密に加工されたメタ ルマスクを使用することなぐ精度を要しないベタ塗りでもはんだバンプを高密度かつ 微細に形成できる。
[0015] リフロー工程では、最初にパッド電極をはんだ粒子の融点以上に加熱し、ノ¾ /ド電 極に接触して ヽるはんだ粒子を溶融して、パッド電極に濡れ広がったはんだ皮膜を 形成し、このはんだ皮膜に更にはんだ粒子を合一させる、としてもよい。このようなカロ 熱状態は、温度プロファイル及び温度分布を制御することによって実現される。
[0016] リフロー工程では、はんだ組成物にその表面側が低く基板側が高くなるような温度 差を設けることにより、基板側に近いはんだ粒子力も先に沈降させる、としてもよい。 はんだ組成物の表面側が低くはんだ組成物の基板側が高くなるような温度差を設け ると、液体材料は温度が高いほど粘度が低下するので、パッド電極に近い下方のは んだ粒子は、先に沈降かつ溶融し始め、パッド電極に接触すると濡れ広がる。その時 、 ノ¾ /ド電極力も遠い上方のはんだ粒子は、まだ十分に沈降かつ溶融していない。し たがって、はんだ粒子同士で合一する機会をより減少させることができるので、はん だブリッジの発生もより抑制される。また、このような加熱状態は、温度プロファイル及 び温度分布を制御することに加えて、液体材料の粘度の温度依存性とはんだ粒子の 融点との関係を調整することにより、実現される。
[0017] リフロー工程では、液体材料の対流を利用してはんだ粒子をパッド電極へ供給する 、としてもよい。はんだ組成物を基板側から加熱すると、液体材料に対流が発生し、こ れによりはんだ粒子が液体材料中を動く。そのため、パッド電極上に堆積されなかつ たはんだ粒子もパッド電極上へ移動してはんだバンプの一部になる。したがって、は んだ粒子が有効に利用される。
[0018] リフロー工程では、容器内に基板を入れて、容器内においてはんだ組成物中に基 板を浸漬した状態で加熱する、としてもよい。加熱中は、基板と容器との隙間にも液 状のはんだ組成物が満たされる。そのため、容器から基板への熱伝導が均一になる 。また、従来技術におけるはんだペーストでは、印刷厚やはんだ粒子の含有量を調 整することによって、はんだバンプの大きさ(高さ)を変えていた。これに対して、本発 明では、はんだ組成物の堆積量を調整することにより、基板上のはんだ組成物の厚 みを任意に変えられるので、簡単にはんだバンプの大きさ(高さ)を変えられる。
[0019] 本発明に係るはんだバンプ形成装置は、複数のパッド電極が離間して設けられた 基板上のはんだ組成物を、加熱及びリフローしてはんだバンプを形成するものである 。このとき用いるはんだ組成物は、はんだ粒子とフラックス作用を有する液体材料との 混合物からなり、常温で又は加熱中に液状になる性質を有する。これに加え、本発 明に係るはんだバンプ形成装置は、基板側からはんだ組成物を加熱する加熱手段 を備えている。また、基板上のはんだ組成物の温度調節を行う温調手段を更に備え てもよい。この場合は、はんだ組成物の表面側が低く基板側が高い温度差を、所望 の状態に実現できる。
[0020] また、基板及び基板上のはんだ組成物を収容する容器を更に備え、加熱手段は容 器を通して基板側からはんだ組成物を加熱する、としてもよい。このとき、基板は平板 であり、容器は、基板を載置する平らな底面と、液状のはんだ組成物の横溢を防止 する周壁とを有する、としてよい。この場合は、容器の底面上に基板が密接するので 、熱伝導が向上する。本発明に係るはんだバンプ形成装置も、前述した本発明に係 るはんだバンプ形成方法の作用と同等の作用を奏する。
[0021] 次に、本発明で用いるはんだ組成物の一例にっ 、て説明する。はんだ組成物の液 体材料は、例えば液状体である。そして、液状体は、反応温度がはんだ粒子の融点 付近であるフラクッス成分を含み、常温で流動して母材上に層状に堆積する粘性を 有している。はんだ粒子は、前記液状体内を母材に向けて沈降するとともに、前記液 状体内に均一に分散可能な混合比及び粒径を有する粒剤である。
[0022] このはんだ糸且成物は、常温の状態で平面に滴下すると自重で広がって均一な厚み になるので、この点においてはんだペーストとは全く異なる。このような性質 (流動性) を得るには、液状体の常温での粘度が低いこと、はんだ粒子の混合比が小さいこと、 及びはんだ粒子の粒径が小さいことが要求される。例えば、はんだ粒子の混合比は 、好ましくは 30wt%以下、より好ましくは 20wt%以下、最も好ましくは 10wt%以下 である。はんだ粒子の粒径は、好ましくは 35 μ m以下、より好ましくは 20 μ m以下、 最も好ましくは 10 m以下である。
[0023] このはんだ組成物は、次のような構成にしてもよい。はんだ粒子の表面酸ィ匕膜には 、自然酸ィ匕膜のみを有する。液状体のフラックス成分は、はんだ粒子の融点以上に 加熱された状態で、その反応生成物によりはんだ粒子同士の合一を抑制しつつ、は んだ粒子と母材とのはんだ付けを促進するとともに、母材上に形成されたはんだ皮膜 とはんだ粒子との合一を促進するものである。このようなフラックス作用の成分は、本 発明者が実験及び考察を繰り返して発見したものである。
[0024] このような成分としては、例えば酸が挙げられる。酸は無機酸 (例えば塩酸)と有機 酸 (例えば脂肪酸)とに大別できるが、ここでは有機酸を例に説明する。
[0025] 本発明者は、「有機酸は、はんだ粒子同士を合一させる作用は小さいが、パッド電 極にはんだ濡れを生じさせる作用は大きい。」ということを見出した。このような作用が 生じる理由として、次の(1) , (2)のようなことが考えられる。
[0026] (1) .有機酸には、はんだ粒子の酸ィ匕膜を除去する作用が弱い。そのため、はんだ 粒子に故意に酸ィ匕膜を形成しなくても、はんだ粒子の自然酸ィ匕膜によって、はんだ 粒子同士の合一を抑えることができる。したがって、本発明では、はんだ粒子の酸ィ匕 膜を形成する工程が不要である。一方、特許文献 1の従来技術では、フラックスの作 用が強すぎるので、はんだ粒子に厚い酸ィ匕膜を形成しなければ、はんだ粒子同士が 合一してしまう。
[0027] (2) .有機酸は、何らかの理由によって、はんだ粒子を母材に広げて界面を合金化 するとともに、母材上に形成されたはんだ皮膜にはんだ粒子を合一させる作用がある 。はんだ粒子同士はほとんど合一しないにもかかわらず、母材上ではんだ濡れが生 ずるメカニズムは定かではない。推測として、はんだ粒子と母材との間で、僅かな酸 化膜を打ち破る何らかの反応が起こっていると考えられる。例えば、金メッキされた母 材であれば、金のはんだ中への拡散効果により、はんだ粒子に例え薄い酸ィ匕膜があ つたとしてもはんだ濡れが生ずる。銅からなる母材の場合は、銅が有機酸と反応して 有機酸銅塩となり、その有機酸銅塩がはんだと接触することによりイオン化傾向の差 から還元され、金属銅がはんだ中に拡散してはんだ濡れが進行する。母材上に形成 されたはんだ皮膜にはんだ粒子が合一する理由については、例えば表面張力が考 えられる。
[0028] また、はんだ粒子とともに混合される液状体は油脂であり、この液状体中に含まれる 成分は油脂中に含まれる遊離脂肪酸である、としてもよい。油脂は、様々な用途で広 く流通しているので入手しやすく安価かつ無害であり、し力も遊離脂肪酸という有機 酸を元々含んでいる。特に、脂肪酸エステル (例えばネオペンチルポリオールエステ ル)は、一般に熱'酸化安定性に優れるので、はんだ付けには最適である。また、遊 離脂肪酸の含有量を十分なものとするために、油脂の酸価は 1以上であることが好ま しい。酸価とは、油脂中に含まれる遊離脂肪酸を中和するのに要する水酸化カリウム のミリグラム数をいう。すなわち、酸価の値が大きいほど、遊離脂肪酸が多く含まれる ことになる。なお、トリメチールプロパントリオレエートの主な性状は、 40°Cでの動粘度 力 3mm2Zs、 100°Cでの動粘度が 9. 2mm Vs,酸価が 2. 4である。
[0029] 本発明で用いるはんだ組成物において使用する油脂は、バンプ形成が完了するま で存在し、その間にはんだが空気と直接接触することを防ぐことにより、はんだの酸化 を抑制する。また、油脂に含ませた有機酸は、はんだ表面の酸化膜の除去に寄与す るものの、はんだ表面の酸ィ匕膜を完全に除去してしまわないように、その含有量を制 御する。これにより、はんだ粒子同士の合一を抑えつつ、母材表面にはんだ付け可 能となる状態を実現することができる。有機酸は母材表面の酸ィ匕膜を除去するに足る 量が必要であり、そのために油脂の酸価は 1以上であることが好ましい。
[0030] 本発明で用いるはんだ組成物は、油脂に有機酸が含まれるものであってもよい。こ の有機酸は、油脂中に元々含まれているものでも、後から添加したものでも、どちら でも良い。有機酸には、はんだ粒子及び母材の酸ィ匕膜を還元する効果がある。また 、本発明者は、油脂中の有機酸量を適切に制御してはんだ粒子表面に僅かな酸ィ匕 膜を残すことにより、はんだ粒子同士の合一を抑えつつ、母材上へははんだ付けが 可能となることを見出した。また、はんだに錫が含まれる場合は、有機酸がはんだ表 面の酸ィヒ膜を還元する過程で有機酸錫塩が副生成物として得られ、この有機酸錫 塩がはんだ粒子同士の合一を大幅に抑制することも、本発明者が見出した。これら の現象を制御することにより、はんだ粒子同士の合一を防ぎつつ、例えばパッド電極 上にショートの生じないはんだバンプを形成できる。
[0031] なお、ここで 、う「はんだ」には、はんだバンプ形成用に限らず、半導体チップのダ ィボンディング用や、例えば銅管の接合用に用いられる「軟ろう」と呼ばれるもの等も 含まれるとともに、当然のことながら鉛フリーはんだも含まれる。「はんだバンプ」には、 半球状や突起状のものに限らず、膜状のものも含まれる。「はんだ皮膜」とは、膜状の ものに限らず、半球状や突起状のものも含むものとする。「基板」には、半導体ウェハ や配線板などが含まれる。「液状体」は、液体の他に流動体などでもよぐ油脂の他に フッ素系高沸点溶剤やフッ素系オイルなどでもよい。
発明の効果
[0032] 本発明に係るはんだバンプ形成方法によれば、常温で又は加熱中に液状になる性 質を有するはんだ組成物を用い、基板上のはんだ組成物を基板側から加熱すること により、パッド電極に近い下方のはんだ粒子を先に溶融させてパッド電極に濡れ広が らせる一方で、パッド電極力 遠い上方のはんだ粒子を十分に溶融させない状態を 作り出すことができる。そのため、はんだ粒子同士で合一する機会を減少させること ができ、これによりはんだブリッジの発生を抑制できる。したがって、はんだバンプを 高密度かつ微細に形成できる。
[0033] また、基板上にベタ塗りではんだ組成物を載置しても、リフロー時にはんだ粒子同 士の合一が抑制されるので、はんだブリッジの発生を抑えられるので、簡単な方法で はんだバンプを高密度かつ微細に形成できる。
[0034] また、基板上のはんだ組成物を基板側から加熱するとともにはんだ組成物の表面 側から温調することより、はんだ組成物の基板側が高く表面側が低い温度分布を所 望の状態に作り出すことができる。
[0035] また、基板側に近いはんだ粒子力も先に沈降させることにより、パッド電極に近い下 方のはんだ粒子を先に沈降かつ溶融させてパッド電極に濡れ広がらせる一方で、パ ッド電極力 遠 、上方のはんだ粒子を十分に沈降かつ溶融させな 、状態を作り出す ことができる。そのため、はんだ粒子同士で合一する機会をより減少させることができ 、これによりはんだブリッジの発生をより抑制できる。
[0036] また、リフロー時に液体材料の対流を利用してはんだ粒子を動かすことにより、パッ ド電極上に載置されなかったはんだ粒子をパッド電極上へ導けるので、はんだ粒子 を無駄なく有効に利用できる。
[0037] また、容器内に基板を入れて、容器内にお!ヽてはんだ組成物中に基板を浸漬した 状態で加熱することにより、基板と容器との隙間にも液状のはんだ組成物を満たして 加熱できるので、容器から基板への熱伝導を均一にできる。したがって、同じ条件で 多数のはんだバンプを同時に形成できるので、はんだバンプの製造上のバラツキを 低減できる。これにカ卩え、はんだ組成物の基板への載置量を調整することにより、は んだバンプの大きさ(高さ)を簡単に変えることができる。
[0038] 本発明に係る加熱装置は、基板又はこの基板が載置された冶具 (以下、基板又は 冶具を「基板等」という。)を載置する載置台と、この載置台に形成され基板等の載置 によって塞がれる開口部と、この開口部力 基板等の下側に熱風を当てる加熱手段 と、を備えたものである。載置台に基板等を載置すると、開口部は基板等によって塞 がれる。そのため、熱風は、開口部の基板等の下側に当たるだけで、開口部から吹き 出ることはない。したがって、熱風が、基板の上へ回り込まないので、基板上のはん だペーストの酸ィ匕が抑えられる。また、本発明に係る加熱装置によれば、熱風を用い て加熱するものでありながら、液状のはんだ組成物ではんだバンプを形成できる。そ の第一の理由は、はんだペーストの場合と同様に、はんだ組成物の酸ィ匕が抑えられ るカゝらである。第二の理由は、はんだ組成物の表面側が低く基板側が高い温度分布 になる力もである。これらの理由の少なくとも一方により、液状のはんだ組成物ではん だバンプを形成できると考えられる。第二の理由については後述する。
[0039] 基板等の下側に当てた熱風を再び加熱手段へ帰還する熱風循環路を、更に備え てもよい。この場合は、熱風の拡散を抑制できるので、基板上へ回りこむ熱風をより低 減できる。しカゝも、熱を有効に利用できるので、省エネルギ化も図れる。
[0040] また、基板の温度を調節する温調手段を更に備えてもよ!ヽ。この場合は、基板上の 必要以上の温度上昇を防げるので、基板上のはんだペーストや基板上の液状のは んだ組成物(以下「はんだペースト等」という。)の酸化がより抑えられる。温調手段は 、例えば、基板の上方に離間して位置付けられる熱吸収板と、熱吸収板を冷却する 吸熱部とを有するものである。吸熱部は、例えば空冷機構や水冷機構力 なる。また 温調手段は、基板を輻射熱で加熱する輻射板と、前記輻射板を加熱する加熱部とを 有する構成としてもよい。
[0041] 基板等を載置台に固定する押さえ機構を更に備えてもよい。基板等の重さや熱風 の圧力によっては、基板等が熱風で吹き飛ばされたりずれたりするおそれがある。そ のような場合は、押さえ機構を設けて基板等を固定する。
[0042] 冶具は、基板を液状のはんだ組成物中に浸漬した状態で保持する容器としてもよ い。このとき、容器は、基板を載置する平らな底面と、はんだ組成物の横溢を防止す る周壁とを有するものとしてもよい。加熱中は、基板と容器との隙間にも液状のはんだ 組成物が満たされる。そのため、容器から基板への熱伝導がより均一になる。更に、 従来技術におけるはんだペーストでは、印刷厚やはんだ粒子の含有量を調整するこ とによって、はんだバンプの大きさ(高さ)を変えていた。これに対して、本発明では、 液状のはんだ組成物と容器とを用いて ヽるので、はんだ組成物の載置量を調整する だけで、基板上のはんだ組成物の厚みを任意に変えられる。そのため、簡単にはん だバンプの大きさ(高さ)を変えることができる。なお、はんだ組成物は、常温では液 状でなくても、加熱時に液状になるものであればょ 、。
[0043] 本発明に係るリフロー装置は、少なくとも一つずつ具備された予備加熱部とリフロー 部と冷却部とがこの順に配設され、搬送機構によって基板等をこの順に搬送し、制御 手段によって予備加熱部、リフロー部、冷却部及び搬送機構の各動作を制御するも のである。そして、予備加熱部及びリフロー部が本発明に係る加熱装置力もなる。予 備加熱部及びリフロー部に本発明に係る加熱装置を用いることにより、基板上のはん だペースト等の酸ィ匕が抑えられる。なお、冷却部は省略してもよい。なお、前記加熱 手段に備えられた加熱手段は、熱風により加熱するものでも、熱伝導により加熱する ものでもよい。
[0044] 予備加熱部とリフロー部と冷却部とを同心円上に配列して設けてもよい。この場合 は、基板等の搬送時の入口と出口とが同じ場所になる。したがって、例えばこれらを 直線状に配設した場合に比べて、基板等の搬送処理が容易になるとともに、全体の 構成も簡素で小型になる。
[0045] 搬送機構は、基板等を載置台に対して上下させる上下動機構を有する、としてもよ い。この場合は、基板等を上下させて、載置台に置いたり持ち上げたりすることができ る。なお、搬送機構は、基板等を上下させずに、水平のまま搬送するものでもよい。
[0046] 制御手段は、開口部が基板等によって塞がれていない時に、熱風発生部の動作を 停止させる、としてもよい。この場合は、開口部が基板等によって塞がれていない時 に、熱風が開口部力も吹き出してしまうことを防止できる。
[0047] 本発明に係るリフロー装置の使用方法は、本発明に係るリフロー装置を用いて、複 数の基板等を連続的に流して処理する際に、複数の基板等の前、後又は途中にダミ 一基板等を流すというものである。ダミー基板等は、開口部が基板等によって塞がれ ていない時の開口部からの熱風の吹き出しを抑制するとともに、加熱装置から見た熱 容量の変動を抑える。なお、ダミー基板等は、基板等と同じ形状としてもよい。この場 合は、加熱装置から見た熱容量の変動をより抑えることができる。
[0048] 次に、液状のはんだ組成物ではんだバンプを形成できる第二の理由につ 、て、詳 しく説明する。
[0049] 液状のはんだ組成物は、はんだ粒子とフラックス作用を有する液体材料 (ベース剤 )との混合物力 なり、常温で又は加熱中に液状になる性質を有する。つまり、はんだ 組成物は、常温で液状であり、又は加熱中に液状になる。このような性質 (流動性)を 得るには、液体材料の粘度が低いこと、はんだ粒子の混合比が小さいこと、及びはん だ粒子の粒径が小さいことが要求される。加熱中は、液体材料中にはんだ粒子が漂 つているか又は沈降している状態である。なお、このはんだ組成物には、加熱中に液 状になるものであれば従来のはんだペーストも含まれる。
[0050] ここで、本発明におけるリフロー工程では、基板側からはんだ組成物を加熱する。
基板上のはんだ組成物を基板側から加熱すると、はんだ糸且成物は表面になるほど温 度が低く基板側になるほど温度が高くなる。すると、パッド電極に近い下方のはんだ 粒子は、先に溶融し始め、溶融すればパッド電極に濡れ広がる。その時、パッド電極 力も遠い上方のはんだ粒子は、まだ十分に溶融していない。したがって、はんだ粒子 同士で合一する機会を減少させることができるので、はんだブリッジの発生も抑制さ れる。
[0051] また、リフロー工程では、最初にパッド電極をはんだ粒子の融点以上に加熱し、パ ッド電極に接触して!/ヽるはんだ粒子を溶融して、パッド電極に濡れ広がったはんだ皮 膜を形成し、このはんだ皮膜に更にはんだ粒子を合一させる、としてもよい。このよう な加熱状態は、温度プロファイル及び温度分布を制御することによって実現される。 例えば、基板上のはんだ組成物を、基板側から加熱するとともに、はんだ組成物の 表面側から温調することが有効である。
[0052] 更に、リフロー工程では、はんだ組成物にその表面側が低く基板側が高くなるような 温度差を設けることにより、基板側に近いはんだ粒子カゝら先に沈降させる、としてもよ V、。はんだ組成物の表面側が低くはんだ組成物の基板側が高くなるような温度差を 設けると、液体材料は温度が高いほど粘度が低下するので、パッド電極に近い下方 のはんだ粒子は、先に沈降かつ溶融し始め、パッド電極に接触すると濡れ広がる。そ の時、パッド電極力も遠い上方のはんだ粒子は、まだ十分に沈降かつ溶融していな い。したがって、はんだ粒子同士で合一する機会をより減少させることができるので、 はんだブリッジの発生もより抑制される。また、このような加熱状態は、温度プロフアイ ル及び温度分布を制御することに加えて、液体材料の粘度の温度依存性とはんだ粒 子の融点との関係を調整することにより、実現される。
[0053] 本発明に係る加熱装置によれば、基板等を載置する載置台と、載置台に形成され 基板等の載置によって塞がれる開口部と、開口部力 基板等の下側に熱風を当てる 熱風発生部とを備えたことにより、熱風が基板等の下側に当たるだけで開口部から吹 き出ないので、熱風の基板上への回り込みを防ぐことができる。したがって、熱風を用 いて基板等を加熱しても、基板上のはんだペースト等の酸ィ匕を抑えることができる。こ れにカ卩え、熱風を用いて加熱するものでありながら、液状のはんだ組成物ではんだ バンプを形成できる。その理由は、熱風の基板上への回り込みを防ぐことができるの で、はんだ組成物が酸ィ匕しないから、又は、はんだ組成物の表面側が低く基板側が 高い温度分布になるからである。
[0054] また、基板等の下側に当てた熱風を再び加熱手段へ帰還する熱風循環路を備える ことにより、基板上へ回りこむ熱風をより低減でき、し力も熱を有効に利用できるので、 省エネルギィ匕も図ることができる。
[0055] また、基板の温度を温度調節する温調手段を備えることにより、基板の温度調節を 行うことができ、はんだバンプの形成状態を容易にコントロールすることができる。また 、はんだ表面の酸ィ匕をより抑えることができる。
[0056] また、基板等を載置台に固定する押さえ機構を備えることにより、基板等が熱風で 吹き飛ばされたり、ずれたりすることを防止できる。
[0057] また、基板を液状のはんだ組成物中に浸漬した状態で保持する容器を用 、ること により、基板と容器との隙間にも液状のはんだ組成物を満たして加熱できるので、容 器力 基板への熱伝導をより均一にできる。したがって、同じ条件で多数のはんだバ ンプを同時に形成できるので、はんだバンプの製造上のバラツキを低減できる。これ に加え、はんだ組成物の基板への載置量を調整することにより、はんだバンプの大き さ(高さ)を変えることも可能である。
[0058] 本発明に係るリフロー装置によれば、予備加熱部及びリフロー部に本発明に係る加 熱装置を用いることにより、基板上のはんだペースト等の酸ィ匕を抑えることができる。 これに加え、熱風を用いて加熱するものでありながら、液状のはんだ組成物ではんだ バンプを形成できる
[0059] また、予備加熱部とリフロー部と冷却部とを同一円周上に配設することにより、基板 等の搬送処理が容易になるとともに、全体を簡素化及び小型化できる。
[0060] また、開口部が基板等によって塞がれていない時に、熱風発生部の動作を停止さ せることにより、熱風の開口部からの吹き出しを抑制できる。
[0061] 本発明に係るリフロー装置の使用方法によれば、複数の基板等の前、後又は途中 にダミー基板等を流すことにより、開口部が基板等によって塞がれていない時に、開 口部からの熱風の吹き出しを抑制できる。し力も、加熱装置から見た熱容量の変動が 少なくなるので、熱風の温度変動を抑制できる。
発明を実施するための最良の形態
[0062] 次に、本発明の実施形態を図面に基づき説明する。
[0063] 本発明の第 1の実施形態に係る加熱装置 50は図 1に示すように、基板 20上のはん だ組成物 10を加熱するために用いるものである。図 1に示すように加熱装置 50は、 はんだ組成物 10を基板 20側から加熱する加熱手段 40を有して 、る。加熱手段 40 により加熱される基板 20は、容器 30内において液状のはんだ組成物 10中に浸漬さ れている。
[0064] 加熱手段 40は、主加熱源 42、副加熱源 43、ブロワ 44、蓄熱部材 45、熱風循環ダ タト 46、開口部 47等力もなる。開口部 47は、熱風 41を容器 30に当てるために形成 された開口である。主加熱源 42及び副加熱源 43として例えば電熱ヒータを用いる。 蓄熱部材 45は、例えばアルミニウム材力 なり、熱風 41を通過させる多数の透孔 48 が形成されている。熱風 41はブロワ 44によって循環されている。すなわち、熱風 41 は、主加熱源 42→蓄熱部材 45→開口部 47 (容器 30の底部)→循環ダクト 46→副 加熱源 43→熱風循環ダクト 46→ブロワ 44→主加熱源 42の循環路を通して循環す る。この加熱手段 40は、熱風 41を容器 30に当てて加熱するので、熱伝導を利用す るものに比べて、基板 20全体をより均一に加熱できる。
[0065] また熱風循環ダクト 46は、開口部 47を取り囲む領域に、容器 30を支える載置台 51 が形成されている。載置台 51及び開口部 47以外の加熱手段 40によって熱風発生 部 52が構成されている。載置台 51に容器 30が載置されると、開口部 47が容器 30の 底部で覆われ、開口部 47が塞がれる。熱風発生部 52は、開口部 47から容器 30の 底部に熱風 41を当てる。
[0066] 図 1に示す加熱装置 50は、基板 20温度をその表面側から温調する温調手段 60を 必要に応じて備えるようにしてもよいものである。図 1に示す温調手段 60は、主温調 源 62、副温調源 63、ブロワ 64、蓄冷 (又は蓄熱)部材 65、循環ダクト 66、開口部 67 、熱吸収板 (又は輻射板) 68等力もなる。蓄冷部材 65は、例えばアルミニウム材から なり、温調媒体 61を通過させる多数の透孔 69が形成されている。熱吸収板 68は、例 えばアルミニウム材カもなり、はんだ組成物 10側を黒体に近 、状態とすることが望ま しい。温調媒体 61はブロワ 64によって循環されている。すなわち、温調媒体 61は、 主温調源 62→蓄冷部材 65→開口部 67 (熱吸収板 68を冷却)→循環ダクト 66→副 温調源 63→循環ダクト 66→ブロワ 64→主温調源 62、と循環する。また温調媒体 61 は、はんだ組成物 10の表面側を温調できる温度を保有するものであればよい。熱吸 収板 68は、基板 20の熱を吸熱する機能を有しており、温調手段 60の熱吸収板 68 以外の構成は、熱吸収板 68の熱を吸熱することにより、熱吸収板 68の吸熱機能を継 続して発揮させる吸熱部を構成している。この場合、主温調源 62、副温調源 63は、 温調媒体 61を冷却する機能として作用する。以上の説明では、温調手段 60は、基 板 20の熱を奪ってはんだ組成物の表面側と基板側とに温度差を持たせる構成のも のとして説明したが、これに限られるものではない。すなわち、温調手段 60としては、 基板 20に輻射熱により加熱する構成としてもよいものである。この場合、熱吸収板 68 は、基板 20を輻射熱により加熱する輻射板として機能し、この輻射板 68以外の構成 は、輻射板 68を加熱することにより、輻射板 68の加熱機能を継続して発揮させる加 熱部を構成している。この構成では、主温調源 62及び副温調源 63は、温調媒体 61 を加熱する機能を発揮する。なお、温調手段 60により基板 20を加熱する場合、その 加熱温度は、加熱手段 40による加熱温度と同一或いは、それ以上に加熱するように してもよい。いずれの温調手段 60も、基板 20うえのはんだ組成物 10に対して、冷風 或いは熱風の温調媒体 61を直接接触させない方式であるため、層状に堆積したは んだ組成物 10に悪影響を与えることはな 、。
[0067] 次に、加熱装置 50の動作を説明する。加熱装置 50を通常使用する場合は、加熱 手段 40により、基板 20上のはんだ組成物 10を加熱するために用いられる。すなわち 、容器 30に充填したはんだ組成物 10内に基板 20を浸漬する。そして、この容器 30 を載置台 51に載置して、容器 30の底部で開口部 47を閉塞する。これにより、熱風 4 1の循環路が形成される。加熱手段 40により熱風 41を発生させると、前記循環路を 通して循環し、循環する熱風 41により容器 30の底部が加熱され、その熱を受けて基 板 20が加熱される。熱風 41が、容器 30の上へ回り込まないので、基板 20上のはん だ組成物 10の酸ィ匕が抑えられる。
[0068] 一方、はんだ組成物 10側には、加熱手段 40による熱が回り込まないため、基板 20 側と比較すると、温度差が生じる。基板 20側とはんだ組成物 10側の温度を相対比較 すると、基板 20側の温度が高ぐはんだ組成物 10側の温度が低い状態が生成され る。このことは、後述するようにはんだ組成物 10に含まれるはんだ粒子 11の融解をコ ントロールすることを意味する。すなわち、はんだ組成物 10の液状体 12に混合され たはんだ粒子 11は、液状体 12中を沈降して基板 20の電極にはんだ付けされる。は んだ組成物 10側の温度が低 、場合は、液状体 12中を沈降するはんだ粒子 11同士 の合一が抑えられる。そして、基板 20側の温度が高いので、はんだ粒子 12が積極 的に融解され、基板 20の電極へのはんだ粒子 11のはんだ付けが促進される。
[0069] 上記説明では、加熱装置 50に温調手段 60を用いない場合について説明したが、 温調手段 60を用いてもよいものである。すなわち、上記説明では、加熱手段 40のみ であるから、はんだ組成物 10側の温度調整を行うことができないが、温調手段 60を 用いることにより、はんだ組成物 10側の温度管理を行うことができ、液状体 12中を沈 降するはんだ粒子 11同士の合一を抑制することができ、確実に基板 20の電極には んだ付けを行うことができる。
[0070] 次に、本実施形態の加熱装置を用いて、液状のはんだ組成物ではんだバンプを形 成する方法について説明する。図 2は、図 1の加熱装置を用いたはんだバンプ形成 方法の一例を示す断面図である。以下、この図面に基づき説明する。ただし、図 1と 同一部分は同一符号を付すことにより説明を省略する。なお、図 1は、基板上にはん だ組成物を塗布した状態であり、上下方向は左右方向よりも拡大して示している。
[0071] 本実施形態で使用するはんだ組成物 10は、多数のはんだ粒子 11と脂肪酸エステ ルカもなる液状体 12との混合物力もなり、パッド電極 22にはんだバンプを形成する ために用いられる。そして、液状体 12は、常温の状態で基板 20に滴下すると自重で 広がって均一な厚みになる粘度と、はんだ粒子 11の融点以上に加熱された状態で はんだ粒子 11によるはんだ濡れをパッド電極 22に弓 Iき起こすフラックス作用とを有す る。はんだ粒子 11は、液状体 12とともに基板 20に滴下した際に液状体 12とともに広 力 Sつて均一に分散するような混合比及び粒径とを有する。
[0072] また、はんだ粒子 11は表面に自然酸ィ匕膜(図示せず)のみを有する。液状体 12は 、脂肪酸エステルであるので、有機酸の一種である遊離脂肪酸を元々含んでいる。 遊離脂肪酸は、はんだ粒子 11の融点以上に加熱された状態で、はんだ粒子 11同 士の合一を抑制しつつ、はんだ粒子 11とパッド電極 22とのはんだ付けを促進すると ともに、パッド電極上 22に形成されたはんだ皮膜とはんだ粒子 11との合一を促進す る作用を有する。
[0073] 液状体 12に含まれる有機酸は、必要に応じて添加しても良い。つまり、はんだ粒子 11の酸化度合いや分量に応じて、液状体 12の有機酸含有量を調整する。例えば、 多量のはんだバンプを形成する場合は、はんだ粒子 11も多量になるので、全てのは んだ粒子 11の酸化膜を還元するのに十分な有機酸を含有する必要がある。一方、 バンプ形成に使用される以上の過剰なはんだ粒子 11を加える場合は、有機酸の含 有量を少なくして液状体 12の活性力を落とすことにより、はんだ粉末粒度分布で!/、う ところの微細な側のはんだ粒子 11を溶力さないようにして、比較的大きなはんだ粒子 11のみで最適なバンプ形成を行うことも可能である。この際、溶けずに残った微細な はんだ粒子 11は、はんだ粒子 11同士の合一を防ぐことにより、ノッド電極 22のショ ートを低減させる効果も持つ。
[0074] はんだ粒子 11は液状体 12中に均一に分散している必要があるので、はんだ組成 物 10は使用直前に攪拌しておくことが望ましい。はんだ粒子 11の材質は、錫鉛系は んだ又は鉛フリーはんだ等を使用する。隣接するパッド電極 22同士の周端間の最短 距離 aよりも、はんだ粒子 11の直径 bを小さくするとよい。
[0075] はんだ組成物 10は、ノ¾ /ド電極 22を有する基板 20上に、常温において自然落下 により滴下させる。これだけで、基板 20上に均一な厚みのはんだ組成物 10を塗布で きる。つまり、スクリーン印刷ゃデイスペンサを用いることなぐ均一な膜厚のはんだ組 成物 10の塗布膜を基板 20上に形成することができる。塗布の均一性ははんだバン プのばらつきに影響を及ぼすため、できる限り均一に塗布する。その後、基板 20全 体を均一に加熱することにより、はんだバンプの形成が可能となる。加熱は短時間で はんだ融点以上まで昇温する。短時間で昇温することにより、プロセス中での有機酸 活性力の低下を抑えることができる。
[0076] 次に、本実施形態で使用する基板 20について説明する。基板 20はシリコンウェハ である。基板 20の表面 21には、パッド電極 22が形成されている。パッド電極 22上に は、本実施形態の形成方法によってはんだバンプが形成される。基板 20は、はんだ バンプを介して、他の半導体チップや配線板に電気的及び機械的に接続される。パ ッド電極 22は、形状が例えば円であり、直径 cが例えば 40 /z mである。隣接するパッ ド電極 22の中心間の距離 dは、例えば 80 /z mである。はんだ粒子 14の直径 bは、例 えば 3〜15 πιである。
[0077] パッド電極 22は、基板 20上に形成されたアルミニウム電極 24と、アルミニウム電極 24上に形成されたニッケル層 25と、ニッケル層 25上に形成された金層 26と力もなる 。 -ッケノレ層 25及び金層 26は UBM (under barrier metal又は under bump metallurgy)層である。基板 20上のパッド電極 22以外の部分は、保護膜 27で覆われ ている。
[0078] 次に、パッド電極 22の形成方法について説明する。まず、基板 20上にアルミニウム 電極 24を形成し、アルミニウム電極 24以外の部分にポリイミド榭脂又はシリコン窒化 膜によって保護膜 27を形成する。これらは、例えばフォトリソグラフィ技術及びエッチ ング技術を用いて形成される。続いて、アルミニウム電極 24表面にジンケート処理を 施した後に、無電解めつき法を用いてアルミニウム電極 24上にニッケル層 25及び金 層 26を形成する。この UBM層を設ける理由は、アルミニウム電極 24にはんだ濡れ 性を付与するためである。
[0079] はんだ粒子 11の材質としては、例えば Sn— Pb (融点 183°C)、 Sn— Ag— Cu (融 点 218°C)、 Sn— Ag (融点 221°C)、 Sn— Cu (融点 227°C)、その他鉛フリーはんだ 等を使用する。
[0080] 加熱手段 40は、前述したようにブロワ、電熱ヒータ等力もなり、熱風 41を当てて基 板 20側(下側)からはんだ組成物 10を加熱する。
[0081] 図 3及び図 4は、図 1の加熱装置を用いたはんだバンプ形成方法の一例を示す断 面図である。図 3は滴下工程であり、図 3 [1]〜図 3 [3]の順に工程が進行する。図 4 は、リフロー工程であり、図 4[1]〜図 4[3]の順に工程が進行する。以下、これらの図 面に基づき説明する。ただし、図 2と同じ部分は同じ符号を付すことにより説明を省略 する。なお、図 3の説明では、前述の「容器 30」を「受け容器 30」と呼ぶことにする。
[0082] 図 3では、基板 20上のパッド電極 22の図示を略している。まず、図 3 [1]に示すよう に、受け容器 30に基板 20を入れる。そして、注ぎ容器 31中で必要に応じはんだ組 成物 10を撹拌した後、注ぎ口 32からはんだ組成物 10を基板 20上に滴下させる。す ると、はんだ組成物 10が自重で広がって均一な厚みになる。このときは、常温でよぐ し力も、はんだ組成物 10の自然落下を利用できる。なお、印刷機や吐出機を用いて はんだ組成物 10を基板 20上に塗布してもよい。
[0083] なお、受け容器 30は、リフロー工程で基板 20とともに加熱するので、耐熱性があつ て熱伝導が良ぐかつはんだ粒子 11によるはんだ濡れが生じな 、金属例えばアルミ ニゥムからなる。また、受け容器 30は、平板状の基板 20を載置する平らな底面 33と、 はんだ組成物 10の横溢を防止する周壁 34とを有する。この場合は、受け容器 30の 底面 33上に基板 20が密接するので、熱伝導が向上する。なお、図 2及び図 4では受 け容器 30の図示を略して 、る。
[0084] また、滴下工程の途中又は後に、基板 10を水平に回転させることによって、基板 2 0上のはんだ組成物 10を均一な厚みにしてもよい。基板 10を水平に回転させるには
、巿販のスピンコート装置を用いればよい。
[0085] 滴下工程の終了は、はんだ組成物 10中に基板 20が浸漬されるまで、はんだ組成 物 10を滴下する力否かによって二通りに分かれる。図 3 [2]は、はんだ組成物 10中 に基板 20を浸漬しない場合である。この場合、基板 20上のはんだ組成物 10の厚み tlは、はんだ組成物 10の主に表面張力及び粘性によって決まる値である。一方、図 3 [3]は、はんだ組成物 10中に基板 20を浸漬する場合である。この場合、基板 20上 のはんだ組成物 10の厚み t2は、滴下するはんだ組成物 10の量に応じた所望の値 に設定できる。
[0086] 以上の滴下工程によって、図 2に示すように、複数のパッド電極 22が離間して設け られた基板 20上に、はんだ組成物 10がベタ塗りによって載置されたことになる。この とき、複数のバンプ電極 22上及びこれらの間隙の保護膜 27上を含む面に、全体的 にはんだ組成物 10が載置される。はんだ組成物 10は、ちょうどインクのような状態で ある。
[0087] 続 、て、リフロー工程で、基板 20及びはんだ組成物 10の加熱が始まると、液状体 1 2の粘性が更に低下する。すると、図 4[1]に示すように、はんだ粒子 11は、液状体 1 2よりも比重が大きいので、沈降してパッド電極 22上及び保護膜 27上に積み重なる。
[0088] 続いて、図 4[2]に示すように、はんだ組成物 10がはんだ粒子 11の融点以上に加 熱される。ここで、基板 20上のはんだ組成物 10を基板 20側から加熱しているので、 はんだ組成物 10は表面になるほど温度が低く基板 20側になるほど温度が高くなる。 すると、パッド電極 22に近い下方のはんだ粒子 11は、先に溶融し始め、溶融すれば パッド電極 22に濡れ広がる。その時、パッド電極 22から遠い上方のはんだ粒子 11は 、まだ十分に溶融していない。したがって、はんだ粒子 11同士で合一する機会を減 少させることができるので、はんだブリッジの発生も抑制される。換言すると、リフロー 工程では、最初にノ¾ /ド電極 22をはんだ粒子 11の融点以上に加熱し、パッド電極 2 2に接触しているはんだ粒子 11を溶融して、パッド電極 22に濡れ広がったはんだ皮 膜 23 'を形成し、はんだ皮膜 23'に更にはんだ粒子 11を合一させる。
[0089] また、このとき、液状体 12に含まれる有機酸の作用によって、次のような状態が引き 起こされる。まず、はんだ粒子 11同士は合一が抑えられる。ただし、図 4 [2]では図 示していないが、一部のはんだ粒子 11同士は合一して大きくなる。つまり、はんだ粒 子 11同士は合一しても一定の大きさ以下であれば問題ない。一方、はんだ粒子 11 は、パッド電極 20上に広がって界面に合金層を形成する。その結果、パッド電極 20 上にはんだ皮膜 23'が形成され、はんだ皮膜 23'に更にはんだ粒子 11が合一する。 すなわち、はんだ皮膜 23'は成長して、図 8 [3]に示すようなはんだバンプ 23となる。
[0090] なお、図 4[3]において、はんだバンプ 23の形成に使用されなかったはんだ粒子 1 1は、残った液状体 12とともに後工程で洗い落とされる。
[0091] また、リフロー工程では、はんだ組成物 10にその表面側が低く基板 20側が高くなる ような温度差を設けることにより、基板 20側に近いはんだ粒子 11から先に沈降させて もよい。はんだ組成物 10の表面側が低くはんだ組成 10物の基板 20側が高くなるよう な温度差を設けると、液状体 12は温度が高いほど粘度が低下するので、パッド電極 22に近い下方のはんだ粒子 11は、先に沈降かつ溶融し始め、パッド電極 22に接触 すると濡れ広がる。その時、ノッド電極 22から遠い上方のはんだ粒子 11は、まだ十 分に沈降かつ溶融していない。したがって、はんだ粒子 11同士で合一する機会をよ り減少させることができるので、はんだブリッジの発生もより抑制される。また、このよう な加熱状態は、例えば基板 20上のはんだ組成物 10を基板 20側から加熱するととも にはんだ組成物 10の表面側力も温調したり、液状体 12の粘度の温度依存性とはん だ粒子 11の融点との関係を調整したりすることにより、実現される。
[0092] 更に、リフロー工程では、液状体 12の対流を利用してはんだ粒子 11をパッド電極 2 2へ供給するようにしてもよい。はんだ組成物 10を基板 20側から加熱すると、液状体 12に対流が発生し、これによりはんだ粒子 11が液状体 12中を動く。そのため、パッド 電極 22上に載置されな力つたはんだ粒子 11もパッド電極 22上へ移動してはんだバ ンプ 23の一部になる。したがって、はんだ粒子 11が有効に利用される。
[0093] 以上の説明では、はんだ組成物に対して温調手段 60の冷却機能を発揮させて、 はんだバンプを形成する場合を説明した力 これに限られるものではない。はんだ糸且 成物に対して温調手段 60の加熱機能を発揮させて、はんだバンプを形成してもよ!/ヽ 。さら〖こは、温調手段 60の冷却機能と加熱機能とを切り替えて発揮させてはんだバ ンプを形成するようにしてもょ 、。
[0094] 図 5は本発明に係る加熱装置の第二実施形態を示し、図 5 [1]は部分平面図、図 5
[2]は図 5 [1]における V—V線断面図である。以下、この図面に基づき説明する。た だし、図 1と同じ部分は、同じ符号を付すことにより又は図示しないことにより説明を省 略する。
[0095] 本実施形態では、基板 20を載置台 51に固定する押さえ機構 55を備えている。押 さえ機構 55は、プランジャー型のソレノイド 56a, 56b、独楽状の押さえカム 57a, 57 b等力もなる。ソレノイド 56aは、一端 561が載置台 51に回動自在に取り付けられ、他 端 562が押さえカム 57aの外周付近に回動自在に取り付けられて 、る。押さえカム 5 7aは、中心軸 571を介して載置台 51に回動自在に取り付けられている。ソレノイド 56 b及び押さえカム 57bも同じ構成である。
[0096] 図では、ソレノイド 56a, 56bが縮んだ状態であり、押さえカム 57a, 57bは基板 20を 押さえる角度に回動している。ここで、図中に矢印で示すように、ソレノイド 56a, 56b が伸びると、押さえカム 57a, 57bは基板 20を緩める角度に回動する。
[0097] 基板 20の重さや熱風 41の圧力によっては、基板 20が熱風 41で吹き飛ばされたり ずれたりするおそれがある。そのような場合は、押さえ機構 55を設けて基板 20を固 定する。なお、押さえ機構 55は、本実施形態では基板 20を押さえるものとしたが、も ちろん容器 30 (図 1)を押さえるものとしてもよい。
[0098] 次に、本発明の実施形態に係る加熱装置をリフロー装置に適用した場合の例を図 6及び図 7に基づいて説明する。図 6及び図 7は本発明に係るリフロー装置の実施形 態を示す平面図であり、図 6は加熱中の状態であり、図 7は搬送中の状態である。以 下、これらの図面に基づき説明する。ただし、図 1と同じ部分は同じ符号を付すことに より説明を省略する。 [0099] 本実施形態のリフロー装置 70は、予備加熱部 71とリフロー部 72と冷却部 73とがこ の順に同心円上に配列して設けられ、容器 30をこの順に搬送する搬送機構 80を備 えている。また、予備加熱部 71と冷却部 73との間には入出口部 74が付設されている 。予備加熱部 71及びリフロー部 72には、上述した加熱装置 10を用いている。図 8に 示すリフロー装置 70は、温調手段 60を備えていない加熱装置 10を用いている力 こ れに限られるものではない。予備加熱部 71及びリフロー部 72に、図 1に示す温調手 段 60を備えた加熱装置 10を用いてもよい。冷却部 73としては、図 1の加熱装置 10 の加熱手段 40の構成を流用している。この場合、加熱手段 40で供給する媒体 61〖こ 代えて、冷却媒体 61を用いている。そして、この冷却媒体 61を開口部 67に通して容 器 30の下側から当てることにより、基板を徐冷している。
[0100] 図 8及び図 9は図 6のリフロー装置における搬送機構を示し、図 8は全体の概略断 面図、図 9は容器保持部の斜視図である。以下、図 6乃至図 9に基づき説明する。た だし、図 3及び図 4において、図 1と同じ部分は同じ符号を付すことにより説明を省略 する。
[0101] 図 8に示すように、搬送機構 80は、中心の駆動部 81と、駆動部 81に取り付けられ た四本の腕部 82と、腕部 82の先端に形成された容器保持部 83とからなる。駆動部 8 1は、四本の腕部 82を支持する中心板 84と、中心板 84を上下動させるエアシリンダ 85と、中心板 84及びエアシリンダ 85をともに回転させるリング状モータ 86と力もなる
[0102] 図 9に示すように、容器保持部 83は、円環状を呈し、上面に三つの凸部 831〜83 3が形成されている。凸部 831〜833は、容器 30の底面に形成された凹部(図示せ ず)に係合する。凸部 831〜833が凹部と係合することにより、容器 30が容器保持部 83に着脱自在に固定される。
[0103] 図 10は、図 6のリフロー装置における制御系を示すブロック図である。以下、この図 面に基づき説明する。ただし、図 6と同じ部分は同じ符号を付すことにより説明を省略 する。
[0104] リフロー装置 70は、予備加熱部 71、リフロー部 72、冷却部 73及び搬送機構 80の 各動作を制御する制御手段 75を更に備えている。制御手段 75は、例えばマイクロコ ンピュータ及びそのプログラム力もなる。制御手段 75の制御対象は、予備加熱部 71 、リフロー部 72及び冷却部 73の温度及び風量、搬送機構 80の搬送動作等である。
[0105] 次に、図 6乃至図 10に基づき、リフロー装置 70の動作を説明する。なお、動作を制 御するのは制御手段 75である。
[0106] まず、容器 30に基板 20を入れて、その上力ゝらデイスペンサを用いてはんだ組成物 10を垂らす。そして、この容器 30を入出口部 74で容器保持部 83に載置する。ここま での動作は、自動化してもよいし、作業員が行ってもよい。続いて、リング状モータ 86 を回転させて、容器 30を次の予備加熱部 71まで搬送する。この時、予備加熱部 71、 リフロー部 72及び冷却部 73に位置していた容器 30も、それぞれリフロー部 72、冷却 部 73及び入出口部 74へ搬送される。なお、搬送の始めと終わりには、図示しない電 磁バルブを介してエアシリンダ 85を動作させ、容器 30を容器保持部 83ごと上下させ る。
[0107] 予備加熱部 71において容器 30は、一定時間加熱されることにより、ある一定温度 まで加熱される。続いて、リング状モータ 86を回転させて、容器 30を次のリフロー部 7 2まで搬送する。リフロー部 72において、容器 30は、一定時間加熱されることにより、 はんだ組成物 10がリフローされる。続いて、リング状モータ 86を回転させて、容器 30 を次の冷却部 73まで搬送する。冷却部 73において、容器 30は、一定時間加熱され ることにより、一定温度まで冷却される。続いて、リング状モータ 86を回転させて、容 器 30を次の入出口部 74まで搬送する。ここで、容器 30を容器保持部 83から取り外 すことにより、リフロー工程が終了する。
[0108] リフロー装置 70によれば、予備加熱部 71及びリフロー部 72に加熱手段 40を用い ることにより、熱風 41を用いて加熱するものでありながら、はんだ組成物 10ではんだ バンプを形成できる。その第一の理由は、熱風 41の回り込みがないので、はんだ組 成物 10の酸ィ匕が抑えられるからである。第二の理由は、はんだ組成物 10の表面側 が低く基板 20側が高い温度分布になるからである。
[0109] また、予備加熱部 71及びリフロー部 72は、制御手段 75からの指令に基づいて、図 7に示すように開口部 47が容器 30によって塞がれていない時に、熱風発生部 52か らの熱風の供給を停止するようにしてもよい。この場合、例えば、ブロワ 44の動作を 停止させたり、図示しない遮蔽板を使って熱風 41の吹き出しを抑えたりする。このよう にすると、開口部 47が容器 30によって塞がれていない時に、熱風 41が開口部 47か ら吹き出してしまうことを防止できる。
[0110] 更に、リフロー装置 70を用いて、複数の容器 30を連続的に流して処理する際に、 複数の容器 30の前、後又は途中にダミー容器(図示せず)を流すようにしてもよ!/、。 ダミー容器は、開口部 47が容器 30によって塞がれていない時の開口部 47からの熱 風 41の吹き出しを抑制するとともに、加熱手段 40から見た熱容量の変動を抑える。 なお、ダミー容器を容器 30と同じ形状とした場合は、加熱手段 40から見た熱容量の 変動をより抑えることができる。また、冷却部 73は省略してもよい。
[0111] なお、本発明は、言うまでもないが、上記実施形態に限定されるものではない。例 えば、シリコンウェハ(FC)の代わりに、微細ピッチのサブストレートやインターポーザ 、更に配線板 (BGA)を用いてもよい。また、電極材料は、アルミニウムに限らず、 A1- Si、 Al- Si- Cu、 Al-Cu, Cuなどを用いてもよい。
[0112] 図 11は、本発明の実施形態に係るはんだバンプ形成方法を示す断面図である。
以下、この図面に基づき説明する。なお、図 11は、基板上にはんだ組成物を塗布し た状態であり、上下方向は左右方向よりも拡大して示している。
[0113] 本実施形態で使用するはんだ組成物 10は、多数のはんだ粒子 11と脂肪酸エステ ルからなる液状体 (液体材料) 12との混合物カゝらなり、パッド電極 22にはんだバンプ を形成するために用いられる。そして、液状体 12は、常温の状態で基板 20に滴下す ると自重で広がって均一な厚みになる粘度と、はんだ粒子 11の融点以上に加熱され た状態ではんだ粒子 11によるはんだ濡れをパッド電極 22に引き起こすフラックス作 用とを有する。はんだ粒子 11は、液状体 12とともに基板 20に滴下した際に液状体 1 2とともに広がって均一に分散する、混合比及び粒径を有する。
[0114] また、はんだ粒子 11の表面酸ィ匕膜には自然酸ィ匕膜 (図示せず)のみを有する。液 状体 12は、脂肪酸エステルであるので、有機酸の一種である遊離脂肪酸を元々含 んでいる。遊離脂肪酸は、はんだ粒子 11の融点以上に加熱された状態で、その反 応生成物によりはんだ粒子 11同士の合一を抑制しつつ、はんだ粒子 11とパッド電極 22とのはんだ付けを促進するとともに、パッド電極上 22に形成されたはんだ皮膜とは んだ粒子 11との合一を促進する作用を有する。
[0115] 液状体 12に含まれる有機酸は、必要に応じて添加しても良い。つまり、はんだ粒子 11の酸化度合いや分量に応じて、液状体 12の有機酸含有量を調整する。例えば、 多量のはんだバンプを形成する場合は、はんだ粒子 11も多量になるので、全てのは んだ粒子 11の酸化膜を還元するのに十分な有機酸を含有する必要がある。一方、 バンプ形成に使用される以上の過剰なはんだ粒子 11を加える場合は、有機酸の含 有量を少なくして液状体 12の活性力を落とすことにより、はんだ粉末粒度分布で!/、う ところの微細な側のはんだ粒子 11を溶力さないようにして、比較的大きなはんだ粒子 11のみで最適なバンプ形成を行うことも可能である。この際、溶けずに残った微細な はんだ粒子 11は、はんだ粒子 11同士の合一を防ぐことにより、ノ ッド電極 22のショ ートを低減させる効果も持つ。
[0116] はんだ粒子 11は液状体 12中に均一に分散している必要があるので、はんだ組成 物 10は使用直前に攪拌しておくことが望ましい。はんだ粒子 11の材質は、錫鉛系は んだ又は鉛フリーはんだ等を使用する。隣接するパッド電極 22同士の周端間の最短 距離 aよりも、はんだ粒子 11の直径 bを小さくするとよい。
[0117] はんだ組成物 10は、ノ¾ /ド電極 22を有する基板 20上に、常温において自然落下 により滴下させる。これだけで、基板 20上に均一な厚みのはんだ組成物 10を塗布で きる。つまり、スクリーン印刷ゃデイスペンサを用いることなぐ均一な膜厚のはんだ組 成物 10の塗布膜を基板 20上に形成することができる。塗布の均一性ははんだバン プのばらつきに影響を及ぼすため、できる限り均一に塗布する。その後、基板 20全 体を均一に加熱することにより、はんだバンプの形成が可能となる。加熱は短時間で はんだ融点以上まで昇温する。短時間で昇温することにより、プロセス中での有機酸 活性力の低下を抑えることができる。
[0118] 次に、本実施形態で使用する基板 20について説明する。基板 20はシリコンウェハ である。基板 20の表面 21には、パッド電極 22が形成されている。パッド電極 22上に は、本実施形態の形成方法によってはんだバンプが形成される。基板 20は、はんだ バンプを介して、他の半導体チップや配線板に電気的及び機械的に接続される。パ ッド電極 22は、形状が例えば円であり、直径 cが例えば 40 /z mである。隣接するパッ ド電極 22の中心間の距離 dは、例えば 80 /z mである。はんだ粒子 14の直径 bは、例 えば 3〜15 πιである。
[0119] パッド電極 22は、基板 20上に形成されたアルミニウム電極 24と、アルミニウム電極 24上に形成されたニッケル層 25と、ニッケル層 25上に形成された金層 26と力もなる 。 -ッケノレ層 25及び金層 26は UBM (under barrier metal又は under bump metallurgy)層である。基板 20上のパッド電極 22以外の部分は、保護膜 27で覆われ ている。
[0120] 次に、パッド電極 22の形成方法について説明する。まず、基板 20上にアルミニウム 電極 24を形成し、アルミニウム電極 24以外の部分にポリイミド榭脂又はシリコン窒化 膜によって保護膜 27を形成する。これらは、例えばフォトリソグラフィ技術及びエッチ ング技術を用いて形成される。続いて、アルミニウム電極 24表面にジンケート処理を 施した後に、無電解めつき法を用いてアルミニウム電極 24上にニッケル層 25及び金 層 26を形成する。この UBM層を設ける理由は、アルミニウム電極 24にはんだ濡れ 性を付与するためである。
[0121] はんだ粒子 11の材質としては、例えば Sn— Pb (融点 183°C)、 Sn— Ag— Cu (融 点 218°C)、 Sn— Ag (融点 221°C)、 Sn— Cu (融点 227°C)等を使用する。
[0122] 加熱手段 40は、例えばブロワと電熱ヒータとからなり、熱風 41を当てて基板 20側( 下側)からはんだ組成物 10を加熱する。
[0123] 図 12及び図 13は、本発明に係るはんだバンプ形成方法の第一実施形態を示す 断面図である。図 12は塗布工程の一例である滴下工程であり、図 12[1]〜図 12[3] の順に工程が進行する。図 13は、リフロー工程であり、図 13 [1]〜図 13 [3]の順に 工程が進行する。以下、これらの図面に基づき説明する。ただし、図 11と同じ部分は 同じ符号を付すことにより説明を省略する。
[0124] 図 12では、基板 20上のパッド電極 22の図示を略している。まず、図 12[1]に示す ように、受け容器 30に基板 20を入れる。そして、注ぎ容器 31中で必要に応じはんだ 組成物 10を撹拌した後、注ぎ口 32からはんだ組成物 10を基板 20上に滴下させる。 すると、はんだ組成物 10が自重で広がって均一な厚みになる。このときは、常温でよ ぐし力も、はんだ組成物 10の自然落下を利用できる。なお、印刷機や吐出機を用い てはんだ組成物 10を基板 20上に塗布してもよ ヽ。
[0125] なお、受け容器 30は、リフロー工程で基板 20とともに加熱するので、耐熱性があつ て熱伝導が良ぐかつはんだ粒子 11によるはんだ濡れが生じな 、金属例えばアルミ ニゥムからなる。また、受け容器 30は、平板状の基板 20を載置する平らな底面 33と、 はんだ組成物 10の横溢を防止する周壁 34とを有する。この場合は、受け容器 30の 底面 33上に基板 20が密接するので、熱伝導が向上する。なお、図 1及び図 3では受 け容器 30の図示を略して 、る。
[0126] また、滴下工程の途中又は後に、基板 10を水平に回転させることによって、基板 2 0上のはんだ組成物 10を均一な厚みにしてもよい。基板 10を水平に回転させるには
、巿販のスピンコート装置を用いればよい。
[0127] 滴下工程の終了は、はんだ組成物 10中に基板 20が浸漬されるまで、はんだ組成 物 10を滴下する力否かによって二通りに分かれる。図 12[2]は、はんだ組成物 10中 に基板 20を浸漬しない場合である。この場合、基板 20上のはんだ組成物 10の厚み tlは、はんだ組成物 10の主に表面張力及び粘性によって決まる値である。一方、図 12 [3]は、はんだ組成物 10中に基板 20を浸漬する場合である。この場合、基板 20 上のはんだ組成物 10の厚み t2は、滴下するはんだ組成物 10の量に応じた所望の 値に設定できる。
[0128] 以上の滴下工程によって、図 11に示すように、複数のパッド電極 22が離間して設 けられた基板 20上に、はんだ組成物 10がベタ塗りによって載置されたことになる。こ のとき、複数のバンプ電極 22上及びこれらの間隙の保護膜 27上を含む面に、全体 的にはんだ組成物 10が載置される。はんだ組成物 10は、ちょうどインクのような状態 である。
[0129] 続いて、リフロー工程で、基板 20及びはんだ組成物 10の加熱が始まると、液状体 1 2の粘性が低下する。すると、図 13 [1]に示すように、はんだ粒子 11は、液状体 12よ りも比重が大き!/、ので、沈降してパッド電極 22上及び保護膜 27上に積み重なる。
[0130] 続いて、図 13 [2]に示すように、はんだ組成物 10がはんだ粒子 11の融点以上に 加熱される。ここで、基板 20上のはんだ組成物 10を基板 20側から加熱しているので 、はんだ組成物 10は表面になるほど温度が低く基板 20側になるほど温度が高くなる 。すると、ノッド電極 22に近い下方のはんだ粒子 11は、先に溶融し始め、溶融すれ ばパッド電極 22に濡れ広がる。その時、パッド電極 22から遠い上方のはんだ粒子 11 は、まだ十分に溶融していない。したがって、はんだ粒子 11同士で合一する機会を 減少させることができるので、はんだブリッジの発生も抑制される。換言すると、リフロ 一工程では、最初にノ¾ /ド電極 22をはんだ粒子 11の融点以上に加熱し、パッド電極 22に接触しているはんだ粒子 11を溶融して、ノッド電極 22に濡れ広がったはんだ 皮膜 23 'を形成し、はんだ皮膜 23'に更にはんだ粒子 11を合一させる。
[0131] また、このとき、液状体 12に含まれる有機酸の作用によって、次のような状態が引き 起こされる。まず、はんだ粒子 11同士は合一が抑えられる。ただし、図 13 [2]では図 示していないが、一部のはんだ粒子 11同士は合一して大きくなる。つまり、はんだ粒 子 11同士は合一しても一定の大きさ以下であれば問題ない。一方、はんだ粒子 11 は、パッド電極 20上に広がって界面に合金層を形成する。その結果、パッド電極 20 上にはんだ皮膜 23'が形成され、はんだ皮膜 23'に更にはんだ粒子 11が合一する。 すなわち、はんだ皮膜 23'は成長して、図 12 [3]に示すようなはんだバンプ 23となる
[0132] なお、図 13 [3]において、はんだバンプ 23の形成に使用されなかったはんだ粒子 11は、残った液状体 12とともに後工程で洗 ヽ落とされる。
[0133] また、リフロー工程では、はんだ組成物 10にその表面側が低く基板 20側が高くなる ような温度差を設けることにより、基板 20側に近いはんだ粒子 11から先に沈降させて もよい。はんだ組成物 10の表面側が低くはんだ組成 10物の基板 20側が高くなるよう な温度差を設けると、液状体 12は温度が高いほど粘度が低下するので、パッド電極 22に近い下方のはんだ粒子 11は、先に沈降かつ溶融し始め、パッド電極 22に接触 すると濡れ広がる。その時、ノッド電極 22から遠い上方のはんだ粒子 11は、まだ十 分に沈降かつ溶融していない。したがって、はんだ粒子 11同士で合一する機会をよ り減少させることができるので、はんだブリッジの発生もより抑制される。また、このよう な加熱状態は、例えば基板 20上のはんだ組成物 10を基板 20側から加熱するととも にはんだ組成物 10の表面側力も温調したり、液状体 12の粘度の温度依存性とはん だ粒子 11の融点との関係を調整したりすることにより、実現される。 [0134] 更に、リフロー工程では、液状体 12の対流を利用してはんだ粒子 11をパッド電極 2 2へ供給するようにしてもよい。はんだ組成物 10を基板 20側から加熱すると、液状体 12に対流が発生し、これによりはんだ粒子 11が液状体 12中を動く。そのため、パッド 電極 22上に載置されな力つたはんだ粒子 11もパッド電極 22上へ移動してはんだバ ンプ 23の一部になる。したがって、はんだ粒子 11が有効に利用される。
[0135] 図 14は、本発明の実施形態に係るはんだバンプ形成装置を示す概略断面図であ る。以下、この図面に基づき説明する。ただし、図 11乃至図 13と同一部分は同一符 号を付すことにより説明を省略する。なお「受け容器 30」は「容器 30」と略称する。
[0136] 本実施形態のはんだバンプ形成装置 50Aは、基板 20上のはんだ組成物 10をカロ 熱及びリフローしてはんだバンプを形成するものであり、はんだ組成物 10を基板 20 側から加熱する加熱手段 40と、はんだ組成物 10の温度を調節する温調手段 60とを 備えている。
[0137] 加熱手段 40は、主加熱源 42、副加熱源 43、ブロワ 44、蓄熱部材 45、熱風循環ダ タト 46、開口部 47等力もなる。主加熱源 42及び副加熱源 43は、例えば電熱ヒータで ある。蓄熱部材 45は、例えばアルミニウム力もなり、熱風 41を通過させる多数の透孔 48が形成されている。熱風 41はブロワ 44によって循環されている。すなわち、熱風 4 1は、主加熱源 42→蓄熱部材 45→開口部 47 (容器 30を加熱)→循環ダクト 46→副 加熱源 43→熱風循環ダクト 46→ブロワ 44→主加熱源 42の循環路を循環する。この 加熱手段 40は、熱風 41を容器 30に当てて加熱するので、熱伝導を利用するものに 比べて、基板 20全体をより均一に加熱できる。
[0138] 温調手段 60は、主温調源 62、副温調源 63、ブロワ 64、蓄冷 (又は蓄熱)部材 65、 循環ダクト 66、開口部 67、熱吸収板 (又は輻射板) 68等力 なる。そして、温調手段 60は温調媒体 61として冷風を用いている。主温調源 62及び副温調源 63は、例え ば冷却水クーラである。蓄冷部材 65は、例えばアルミニウム材カもなり、冷風 61を通 過させる多数の透孔 69が形成されている。熱吸収板 68は、例えばアルミニウム材か らなり、はんだ組成物 10側を黒体に近い状態とすることが望ましい。冷風 61はブロワ 64によって循環されている。すなわち、冷風 61は、主温調源 62→蓄冷 (又は蓄熱) 部材 65→開口部 67 (熱吸収板 68を冷却)→循環ダクト 66→副温調源 63→冷風循 環ダクト 66→ブロワ 64→主温調源 62の循環路を循環する。熱吸収板 68は、はんだ 組成物 10の熱を吸熱する機能を有しており、温調手段 60の熱吸収板 68以外の構 成は、熱吸収板 68の熱を吸熱することにより、熱吸収板 68の吸熱機能を継続して発 揮させる吸熱部を構成している。この場合、主温調源 62、副温調源 63は、温調媒体 61を冷却する機能として作用する。以上の説明では、温調手段 60は、はんだ組成 物 10の熱を奪ってはんだ組成物の表面側と基板側とに温度差を持たせる構成のも のとして説明したが、これに限られるものではない。すなわち、温調手段 60としては、 はんだ組成物 10に輻射熱により加熱する構成としてもよいものである。この場合、熱 吸収板 68は、はんだ組成物 10を輻射熱により加熱する輻射板として機能し、この輻 射板 68以外の構成は、輻射板 68を加熱することにより、輻射板 68の加熱機能を継 続して発揮させる加熱部を構成している。なお、温調手段 60によりはんだ組成物 10 を加熱する場合、その加熱温度は、加熱手段 40による加熱温度と同一或いは、それ 以上に加熱するようにしてもよい。いずれの温調手段 60も、はんだ組成物 10に対し て、冷風或いは熱風の温調媒体 61を直接接触させない方式であるため、層状に堆 積したはんだ組成物 10に悪影響を与えることはない。
[0139] 次に、はんだバンプ形成装置 50Aの動作を説明する。はんだ組成物 10を基板 20 側から加熱手段 40で加熱するとともに、はんだ組成物 10の温度をその表面側力も温 調手段 60で温調する。すると、はんだ組成物 10は、基板 20側ほど温度が高く表面 側ほど温度が低い温度分布となる。このとき、前述したように、はんだ粒子同士で合 体する機会を減少させることができるので、はんだブリッジの発生も抑制される。した がって、高密度かつ微細なはんだバンプを容易に形成できる。
[0140] 図 15は、本発明に係るはんだバンプ形成装置の第二実施形態を示す概略断面図 である。以下、この図面に基づき説明する。ただし、図 14と同一部分は同一符号を付 すことにより説明を省略する。
[0141] 本実施形態のはんだバンプ形成装置 50Bでは、図 14における熱風 41を利用する 加熱手段 40に代えて、熱伝導を利用する加熱手段 71を用いている。加熱手段 71は 、例えばパネルヒータなどの電熱ヒータであり、容器 30を直接載置し、熱伝導によつ て容器 30を加熱する単純な構成である。バンプ形成装置 70によれば、第一実施形 態に比べて構成を簡略化できる。
[0142] なお、本発明は、言うまでもないが、上記実施形態に限定されるものではない。例 えば、シリコンウェハ(FC)の代わりに、配線板 (BGA)を用いてもよい。また、電極材 料は、アルミニウムに限らず、 Al-Si、 Al-Si-Cu、 Al-Cu、 Cuなどを用いてもよい。 実施例 1
[0143] 以下、本実施形態を更に具体ィ匕した実施例 1について説明する。
[0144] はんだ粒子は、組成が 96. 5wt%Sn- 3. Owt%Ag— 0. 5wt%Cu (融点 218°C) であり、直径が平均 6 m (粒度分布 2〜: L 1 m)のものを使用した。液状体には、脂 肪酸エステルの一種(トリメチールプロパントリオレエート)を使用した。この脂肪酸ェ ステルの主な性状は、 40°Cでの動粘度が 48. 3mm Vs, 100°Cでの動粘度が 9. 2 mmVs,酸価が 2. 4である。有機酸は添加せずに、脂肪酸エステルに元々含まれ る遊離脂肪酸を利用した。また、脂肪酸エステルは水分の影響を極力抑えるため〖こ 水の蒸気圧以下での真空脱泡を行った。
[0145] はんだバンプ形成用の基板には、 10mm口のシリコンチップを使用した。シリコンチ ップ上には、 80 mピッチのパッド電極が二次元アレイ状に形成されていた。パッド 電極の形状は 40 m口であった。パッド電極表面の材質は、無電解ニッケルめっき 上に形成されたコンマ数ミクロンの膜厚の金めつきであった。保護膜の材質はシリコ ン窒化物であった。
図面の簡単な説明
[0146] [図 1]本発明に係る加熱装置の第一実施形態を示す概略断面図である。
[図 2]図 1の加熱装置を用いたはんだバンプ形成方法の一例を示す断面図である。
[図 3]図 1の加熱装置を用いたはんだバンプ形成方法の一例示す断面図 (滴下工程 )であり、図 3 [1]〜図 3 [3]の順に工程が進行する。
[図 4]図 1の加熱装置を用いたはんだバンプ形成方法の一例を示す断面図(リフロー 工程)であり、図 4[1]〜図 4[3]の順に工程が進行する。
[図 5]本発明に係る加熱装置の第二実施形態を示し、図 5 [1]は部分平面図、図 5 [2 ]は図 5 [1]における V— V線断面図である。
[図 6]本発明に係るリフロー装置の第一実施形態 (加熱中)を示す平面図である。
圆 7]本発明に係るリフロー装置の第一実施形態 (搬送中)を示す平面図である。 圆1—
〇 8]図 5のリフロー装置における搬送機構の全体を示す概略断面図である。
圆 9]図 5のリフロー装置における搬送機構の容器保持部を示す斜視図である。
[図 10]図 5のリフロー装置における制御系を示すブロック図である。
圆 11]本発明に係るはんだバンプ形成方法の第一実施形態を示す断面図である。 圆 12]本発明に係るはんだバンプ形成方法の第一実施形態を示す断面図 (滴下ェ 程)であり、図 12 [ 1 ]〜図 12 [3]の順に工程が進行する。
圆 13]本発明に係るはんだバンプ形成方法の第一実施形態を示す断面図(リフロー 工程)であり、図 13 [ 1 ]〜図 13 [3]の順に工程が進行する。
圆 14]本発明に係るはんだバンプ形成装置の第一実施形態を示す概略断面図であ る。
圆 15]本発明に係るはんだバンプ形成装置の第二実施形態を示す概略断面図であ る。
符号の説明
はんだ組成物
11 はんだ粒子
12 液状体 (液体材料)
20 基板
21 基板の表面
22 パッド電極
23 はんだバンプ
23, はんだ皮膜
30 受け容器 (容器)
31 注ぎ容器
32 注ぎ口
40, 71 加熱手段
41 熱風
50A, 50B はんだバンプ形成装置 温調手段 冷風 リフロー装置

Claims

請求の範囲
[1] 基板又は基板を保持した治具が搭載される載置台と、
前記載置台に形成され、前記基板又は前記治具を載置することにより、閉塞される 開口部と、
前記開口部を通して前記基板又は前記治具の下側に熱風を当てて加熱する加熱 手段とを有することを特徴とする加熱装置。
[2] 前記基板又は前記治具に当てた熱風を前記加熱手段側に帰還させる熱風循環路 を備えたことを特徴とする請求項 1に記載の加熱装置。
[3] 前記載置台の上方に位置し、前記基板の温度制御を行う温調手段を備えたことを 特徴とする請求項 1に記載の加熱装置。
[4] 前記温調手段は、前記基板を輻射熱で加熱する輻射板と、前記輻射板を加熱する 加熱部とを有することを特徴とする請求項 3に記載の加熱装置。
[5] 前記温調手段は、前記基板の熱を奪う熱吸収板と、前記熱吸収板を冷却する吸熱 部とを有することを特徴とする請求項 3に記載の加熱装置。
[6] 前記基板又は前記治具を前記載置台に固定する押え機構を備えたことを特徴とす る請求項 1に記載の加熱装置。
[7] 前記治具は、液状はんだ組成物中に浸漬して基板を保持する容器であることを特 徴とする請求項 1に記載の加熱装置。
[8] 基板又は基板を保持した治具を予熱する少なくとも 1つの予備加熱部と、
前記予熱された基板又は前記治具を本加熱する少なくとも 1つのリフロー部と、 前記予備加熱部と前記リフロー部とに通して前記基板又は前記治具を搬送する搬 送機構とを有し、
前記予備加熱部及び前記リフロー部は、
基板又は基板を保持した治具が搭載される載置台と、
前記載置台に形成され、前記基板又は前記治具を載置することにより、閉塞される 開口部と、
前記開口部を通して前記基板又は前記治具の下側に熱風を当てて加熱する加熱 手段とを有することを特徴とするリフロー装置。
[9] 前記基板又は前記治具に当てた熱風を前記加熱手段側に帰還させる熱風循環路 を備えたことを特徴とする請求項 8に記載のリフロー装置。
[10] 前記載置台の上方に位置し、前記基板の温度制御を行う温調手段を備えたことを 特徴とする請求項 8に記載のリフロー装置。
[11] 前記温調手段は、前記はんだ組成物を輻射熱で加熱する輻射板と、前記輻射板 を加熱する加熱部とを有することを特徴とする請求項 10に記載のリフロー装置。
[12] 前記温調手段は、前記はんだ組成物の熱を奪う熱吸収板と、前記熱吸収板を冷却 する吸熱部とを有することを特徴とする請求項 10に記載のリフロー装置。
[13] 前記基板又は前記治具を前記載置台に固定する押え機構を備えたことを特徴とす る請求項 8に記載のリフロー装置。
[14] 前記治具は、液状はんだ組成物中に浸漬して基板を保持する容器であることを特 徴とする請求項 8に記載のリフロー装置。
[15] 前記予備加熱部および前記リフロー部に加えて、前記基板又は前記治具を徐冷す る少なくとも 1つの冷却部を設置したことを特徴とする請求項 8に記載のリフロー装置
[16] 前記予備加熱部と前記リフロー部と前記リフロー部とが同心円上に配列され、
前記搬送機構は、回転運動により前記基板又は前記治具を前記予備加熱部及び 前記リフロー部並びに前記冷却部に搬入'搬出することを特徴とする請求項 15に記 載のリフロー装置。
[17] 前記搬送機構は、前記基板又は前記治具を昇降させて前記載置台に対して搭載' 離脱させる上下動機構を有する請求項 8に記載のリフロー装置。
[18] 前記加熱手段は、前記基板又は前記治具が前記載置台に載置されて!、な!、状態 で熱風の供給を停止する機能を有することを特徴とする請求項 8に記載のリフロー装 置。
[19] 前記搬送機構は、前記基板又は前記治具を連続して前記予備加熱部及び前記リ フロー部並びに搬送することを特徴とする請求項 16に記載のリフロー装置。
[20] 前記搬送機構は、ダミーワークを混在して前記基板又は前記治具を搬送することを 特徴とする請求項 19に記載のリフロー装置。
[21] 複数のパッド電極が設けられた基板上のはんだ組成物を加熱及びリフローしては んだバンプを形成するはんだバンプ形成装置において、
前記はんだ組成物は、はんだ粒子と、フラックス成分を含むとともに常温又は加熱 により液状になる液体材料との混合物力もなるものであり、
前記基板側から前記はんだ組成物を加熱する加熱手段を有することを特徴とする はんだバンプ形成装置。
[22] 前記載置台の上方に位置し、前記はんだ組成物の温度制御を行う温調手段を備 えたことを特徴とする請求項 21に記載のはんだバンプ形成装置。
[23] 前記温調手段は、前記はんだ組成物を輻射熱で加熱する輻射板と、前記輻射板 を加熱する加熱部とを有することを特徴とする請求項 22に記載のはんだバンプ形成 装置。
[24] 前記温調手段は、前記はんだ組成物の熱を奪う熱吸収板と、前記熱吸収板を冷却 する吸熱部とを有することを特徴とする請求項 22に記載のはんだバンプ形成装置。
[25] 前記加熱手段は、前記基板の下側に熱風を当てて加熱することを特徴とする請求 項 21に記載のはんだバンプ形成装置。
[26] 前記加熱手段は、前記基板の下側を熱伝導により加熱することを特徴とする請求 項 21に記載のはんだバンプ形成装置。
[27] 前記基板は、容器内のはんだ組成物の中に浸漬され、
前記加熱手段は、前記容器を通して前記基板側から前記はんだ組成物を加熱す る請求項 21に記載のはんだバンプ形成装置。
[28] はんだ粒子と、フラックス成分を含むとともに常温又は加熱により液状になる液体材 料との混合物力もなるはんだ組成物を、複数のパッド電極を備えた基板に層状に堆 積する塗布工程と、
前記基板側力 前記はんだ組成物を加熱してリフローするリフロー工程とを有する ことを特徴とするはんだバンプ形成方法。
[29] 前記塗布工程では、
前記複数のパッド電極及びこれらの間隙を含む面に全体的に前記はんだ組成物を 堆積する請求項 28に記載のはんだバンプ形成方法。
[30] 前記リフロー工程では、
前記はんだ組成物の表面側と基板側との加熱温度に温度差を持たせて、前記は んだ組成物を加熱する請求項 28に記載のはんだバンプ形成方法。
[31] 前記リフロー工程では、
前記はんだ組成物の表面側と基板側との加熱温度をほぼ同一にして、前記はんだ 組成物を加熱する請求項 28に記載のはんだバンプ形成方法。
[32] 前記リフロー工程では、
前記パッド電極を前記はんだ粒子の融点以上に加熱し、当該パッド電極に接触し て ヽる前記はんだ粒子を溶融して、当該パッド電極に濡れ広がったはんだ皮膜を形 成し、このはんだ皮膜に更に前記はんだ粒子を合一させる請求項 28に記載のはん だバンプ形成方法。
[33] 前記リフロー工程では、
前記はんだ糸且成物の基板側の加熱温度がその表面側の加熱温度より高くなるよう に温度差を持たせて、前記基板側に近い前記はんだ粒子から先に沈降させる請求 項 28に記載のはんだバンプ形成方法。
[34] 前記リフロー工程では、
前記はんだ糸且成物の基板側の加熱温度がその表面側の加熱温度より高くなるよう に温度差を持たせて、前記液体材料に対流を生じさせ、この対流により前記はんだ 粒子の沈降を促進する請求項 28に記載のはんだバンプ形成方法。
[35] 前記リフロー工程では、
容器内の前記はんだ組成物中に前記基板を浸漬した状態で加熱する請求項 28に 記載のはんだバンプ形成方法。
PCT/JP2005/005909 2004-03-30 2005-03-29 加熱装置及びリフロー装置,はんだバンプ形成方法及び装置 WO2005096367A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05727854A EP1732118B1 (en) 2004-03-30 2005-03-29 Heater, reflow apparatus with such heater
US10/598,142 US8042727B2 (en) 2004-03-30 2005-03-29 Heater, reflow apparatus, and solder bump forming method and apparatus
JP2006511680A JP4759509B2 (ja) 2004-03-30 2005-03-29 はんだバンプ形成方法及び装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004099888 2004-03-30
JP2004-099888 2004-03-30
JP2004102407 2004-03-31
JP2004-102407 2004-03-31

Publications (2)

Publication Number Publication Date
WO2005096367A1 true WO2005096367A1 (ja) 2005-10-13
WO2005096367A8 WO2005096367A8 (ja) 2005-11-17

Family

ID=35064072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/005909 WO2005096367A1 (ja) 2004-03-30 2005-03-29 加熱装置及びリフロー装置,はんだバンプ形成方法及び装置

Country Status (6)

Country Link
US (1) US8042727B2 (ja)
EP (1) EP1732118B1 (ja)
JP (1) JP4759509B2 (ja)
KR (1) KR100772306B1 (ja)
TW (1) TWI258197B (ja)
WO (1) WO2005096367A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007055149A1 (ja) * 2005-11-09 2007-05-18 Tamura Corporation リフロー装置用ワーク保持容器およびワーク取り出し方法
JP2007208108A (ja) * 2006-02-03 2007-08-16 Tamura Seisakusho Co Ltd 材料供給装置及び方法
JP2008300808A (ja) * 2007-06-04 2008-12-11 Tamura Seisakusho Co Ltd はんだバンプ形成装置およびはんだバンプの形成方法
JP2009123846A (ja) * 2007-11-13 2009-06-04 Tamura Seisakusho Co Ltd はんだバンプ形成装置
JP2009200188A (ja) * 2008-02-21 2009-09-03 Fuji Mach Mfg Co Ltd リフロー加熱方法及びリフロー加熱装置
JP2010075934A (ja) * 2008-09-24 2010-04-08 Tamura Seisakusho Co Ltd はんだ組成物

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7350686B2 (en) * 2002-12-06 2008-04-01 Tamura Corporation Method for supplying solder
WO2006098268A1 (ja) * 2005-03-16 2006-09-21 Matsushita Electric Industrial Co., Ltd. 導電性粒子を用いたフリップチップ実装方法およびバンプ形成方法
KR101175482B1 (ko) * 2005-04-06 2012-08-20 파나소닉 주식회사 플립 칩 실장 방법 및 범프 형성 방법
JP4685992B2 (ja) * 2007-01-23 2011-05-18 株式会社タムラ製作所 はんだ付け装置及びはんだ付け方法並びにはんだ付け用プログラム
KR100984322B1 (ko) 2008-08-20 2010-09-30 삼성전기주식회사 리플로우 장치
CN101797985A (zh) * 2010-03-15 2010-08-11 北京大森长空包装机械有限公司 用于包装机的板式薄膜预热装置和相应的包装机
US8196799B2 (en) 2010-06-28 2012-06-12 Illinois Tool Works Inc. Compression box for reflow oven heating with a pressurizing plate
TWI552824B (zh) * 2011-10-18 2016-10-11 千住金屬工業股份有限公司 焊料凸塊形成方法及裝置
US9170051B2 (en) 2012-04-02 2015-10-27 Illinois Tool Works Inc. Reflow oven and methods of treating surfaces of the reflow oven
US8940099B2 (en) 2012-04-02 2015-01-27 Illinois Tool Works Inc. Reflow oven and methods of treating surfaces of the reflow oven
US9538582B2 (en) 2012-07-26 2017-01-03 Taiwan Semiconductor Manufacturing Company, Ltd. Warpage control in the packaging of integrated circuits
US8851655B2 (en) * 2012-07-30 2014-10-07 Hewlett-Packard Development Company, L.P. Producing a hot-air flow in a printer to heat a print media
CN103769713B (zh) 2012-10-19 2016-02-03 台达电子电源(东莞)有限公司 预热模组、使用该预热模组的预热区及预热段
US9198300B2 (en) 2014-01-23 2015-11-24 Illinois Tool Works Inc. Flux management system and method for a wave solder machine
US9161459B2 (en) 2014-02-25 2015-10-13 Illinois Tool Works Inc. Pre-heater latch and seal mechanism for wave solder machine and related method
US10362720B2 (en) 2014-08-06 2019-07-23 Greene Lyon Group, Inc. Rotational removal of electronic chips and other components from printed wire boards using liquid heat media
JP6335777B2 (ja) * 2014-12-26 2018-05-30 株式会社荏原製作所 基板ホルダ、基板ホルダで基板を保持する方法、及びめっき装置
KR101879424B1 (ko) * 2016-09-21 2018-07-17 한국컴퓨터주식회사 쉴드캔 결합용 지그장치 및 이를 이용한 쉴드캔 결합방법
CN111108584A (zh) * 2017-08-01 2020-05-05 株式会社新川 框架馈入器
CN114256711B (zh) * 2021-12-23 2024-02-09 深圳市航连通连接器科技有限公司 一种用于电子连接器锡膏封装用焊接系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5092257A (ja) 1973-12-18 1975-07-23
JPH1168303A (ja) * 1997-08-25 1999-03-09 Nihon Dennetsu Keiki Co Ltd リフローはんだ付け装置
JPH11251737A (ja) * 1998-02-27 1999-09-17 Matsushita Electric Ind Co Ltd リフロー加熱装置
JP2000094179A (ja) 1998-09-22 2000-04-04 Harima Chem Inc ソルダペースト及びその製造方法並びにはんだプリコート方法
JP2001068848A (ja) * 1999-08-24 2001-03-16 Furukawa Electric Co Ltd:The 半田組成物およびそれを用いた半田供給方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE627126A (ja) * 1962-01-15 1900-01-01
US4334646A (en) * 1980-04-17 1982-06-15 Harris Corporation Method of solder reflow assembly
US4561584A (en) * 1983-10-17 1985-12-31 Storage Technology Partners Integrated circuit package removal
JPH0747233B2 (ja) 1987-09-14 1995-05-24 古河電気工業株式会社 半田析出用組成物および半田析出方法
JPH0739483Y2 (ja) * 1990-11-15 1995-09-13 千住金属工業株式会社 リフロー炉
JPH0592257A (ja) 1990-12-15 1993-04-16 Tamura Seisakusho Co Ltd 加熱装置
JP2871899B2 (ja) 1991-06-21 1999-03-17 古河電気工業株式会社 クリーム半田
JP2924888B2 (ja) * 1997-05-08 1999-07-26 松下電器産業株式会社 電子ユニットの半田付け装置
JP2002261109A (ja) * 2001-03-01 2002-09-13 Seiko Instruments Inc 半導体装置の製造方法
JP2002353612A (ja) * 2001-05-28 2002-12-06 Sony Corp 部品のリワーク装置及び方法
JP2002374063A (ja) * 2001-06-14 2002-12-26 Taichiro Sato ハンダ吸い取り装置付噴流槽

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5092257A (ja) 1973-12-18 1975-07-23
JPH1168303A (ja) * 1997-08-25 1999-03-09 Nihon Dennetsu Keiki Co Ltd リフローはんだ付け装置
JPH11251737A (ja) * 1998-02-27 1999-09-17 Matsushita Electric Ind Co Ltd リフロー加熱装置
JP2000094179A (ja) 1998-09-22 2000-04-04 Harima Chem Inc ソルダペースト及びその製造方法並びにはんだプリコート方法
JP2001068848A (ja) * 1999-08-24 2001-03-16 Furukawa Electric Co Ltd:The 半田組成物およびそれを用いた半田供給方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1732118A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007055149A1 (ja) * 2005-11-09 2007-05-18 Tamura Corporation リフロー装置用ワーク保持容器およびワーク取り出し方法
JPWO2007055149A1 (ja) * 2005-11-09 2009-04-30 株式会社タムラ製作所 リフロー装置用ワーク保持容器およびワーク取り出し方法
JP2007208108A (ja) * 2006-02-03 2007-08-16 Tamura Seisakusho Co Ltd 材料供給装置及び方法
JP2008300808A (ja) * 2007-06-04 2008-12-11 Tamura Seisakusho Co Ltd はんだバンプ形成装置およびはんだバンプの形成方法
JP2009123846A (ja) * 2007-11-13 2009-06-04 Tamura Seisakusho Co Ltd はんだバンプ形成装置
JP2009200188A (ja) * 2008-02-21 2009-09-03 Fuji Mach Mfg Co Ltd リフロー加熱方法及びリフロー加熱装置
JP2010075934A (ja) * 2008-09-24 2010-04-08 Tamura Seisakusho Co Ltd はんだ組成物

Also Published As

Publication number Publication date
KR100772306B1 (ko) 2007-11-02
EP1732118A1 (en) 2006-12-13
JP4759509B2 (ja) 2011-08-31
WO2005096367A8 (ja) 2005-11-17
US8042727B2 (en) 2011-10-25
TW200605245A (en) 2006-02-01
EP1732118A4 (en) 2009-04-15
US20070158387A1 (en) 2007-07-12
TWI258197B (en) 2006-07-11
EP1732118B1 (en) 2011-05-11
KR20070006785A (ko) 2007-01-11
JPWO2005096367A1 (ja) 2008-02-21

Similar Documents

Publication Publication Date Title
JP4759509B2 (ja) はんだバンプ形成方法及び装置
JP4892340B2 (ja) はんだ組成物及びこれを用いたバンプ形成方法
US7799607B2 (en) Process for forming bumps and solder bump
JP5112856B2 (ja) 加熱装置、リフロー装置、加熱方法及びバンプ形成方法
CN101303989B (zh) 焊料隆起形成方法及装置
JP4372690B2 (ja) はんだバンプの形成方法及び装置
JP2007208108A (ja) 材料供給装置及び方法
JPH07114205B2 (ja) はんだバンプの形成方法
JP4276550B2 (ja) はんだ供給方法並びにこれを用いたはんだバンプの形成方法及び装置
KR100823433B1 (ko) 땜납 조성물 및 이것을 이용한 범프 형성 방법
JPWO2006057394A1 (ja) はんだバンプの形成方法及び装置
Lee et al. Soldering technology for area array packages
JP2006043737A (ja) はんだ材料供給方法及び装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

CFP Corrected version of a pamphlet front page

Free format text: UNDER (57) PUBLISHED ABSTRACT REPLACED BY CORRECT ABSTRACT

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005727854

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007158387

Country of ref document: US

Ref document number: 10598142

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020067019271

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006511680

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580009885.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005727854

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067019271

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10598142

Country of ref document: US