WO2005093890A1 - 鉛蓄電池および鉛蓄電池の保管方法 - Google Patents

鉛蓄電池および鉛蓄電池の保管方法 Download PDF

Info

Publication number
WO2005093890A1
WO2005093890A1 PCT/JP2005/004821 JP2005004821W WO2005093890A1 WO 2005093890 A1 WO2005093890 A1 WO 2005093890A1 JP 2005004821 W JP2005004821 W JP 2005004821W WO 2005093890 A1 WO2005093890 A1 WO 2005093890A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode plate
lead
battery
negative electrode
positive electrode
Prior art date
Application number
PCT/JP2005/004821
Other languages
English (en)
French (fr)
Inventor
Hiroshi Yasuda
Tsunenori Yoshimura
Mitsuru Kurokawa
Sadao Furuya
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to EP05721008A priority Critical patent/EP1729364B1/en
Priority to JP2006511441A priority patent/JP5036304B2/ja
Priority to US10/588,849 priority patent/US7879490B2/en
Priority to DE602005022287T priority patent/DE602005022287D1/de
Publication of WO2005093890A1 publication Critical patent/WO2005093890A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • H01M4/16Processes of manufacture
    • H01M4/22Forming of electrodes
    • H01M4/23Drying or preserving electrodes after forming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/68Selection of materials for use in lead-acid accumulators
    • H01M4/685Lead alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • H01M10/128Processes for forming or storing electrodes in the battery container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/73Grids for lead-acid accumulators, e.g. frame plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0005Acid electrolytes
    • H01M2300/0011Sulfuric acid-based
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lead-acid battery and a method of storing the lead-acid battery, and more particularly, to regulation of the amount of the electrolyte during storage of the lead-acid battery.
  • lead storage batteries have been used for various purposes such as for starting an engine of a vehicle and for a backup power supply.
  • Lead storage batteries have a smaller amount of self-discharge than alkaline storage batteries.
  • self-discharge may progress, and supplementary charging may be required when the battery is used. Therefore, further suppression of self-discharge in lead-acid batteries remains an important technical issue.
  • Pb-Sb-based alloys and Pb-Ca-based alloys are often used mainly for the grid of the positive electrode plate and the negative electrode plate of a lead storage battery.
  • the self-discharge characteristics of the battery depend on the alloy system of the lattice.
  • Pb-Sb alloys are excellent in formability and strength, but the presence of Sb increases the amount of self-discharge.
  • the following storage method has been adopted for a lead-acid battery using a Pb-Sb-based alloy for the lattice body.
  • One of them is a method of storing a battery assembled by using a chemically converted electrode plate that has been subjected to a chemical conversion treatment and dried at a stage of manufacturing the electrode plate (see Patent Document 1).
  • the other is a method of pouring a battery assembled using an unformed electrode plate, forming the battery in a battery case, and then storing the battery discharged from the battery case.
  • the self-discharge amount of the lead-acid battery is reduced to about 1/2 to 1/3 of that when the Pb-Sb-based alloy is used for the grid. can do.
  • self-discharge is likely to occur when the ambient temperature during storage of the battery is high. Even with gold batteries, self-discharge proceeds during storage, and supplemental charging may be required when using batteries. For example, in Japan, if batteries are stored for a long time in a warehouse without air conditioning, the temperature in the warehouse often rises to 40 ° C or more in summer, and the batteries are recharged every few months. May need to be done.
  • Patent Document 1 JP-A-52-93930
  • an object of the present invention is to provide a low-cost lead-acid battery that can suppress self-discharge during long-term storage and reduce the frequency of supplementary charge work.
  • the present invention is a lead-acid battery usable by injecting an electrolytic solution, wherein the lead-acid battery includes a positive electrode grid body made of a Pb-Ca alloy alloy and the positive electrode in a battery case.
  • the concentration of the sulfuric acid is preferably 7 to 27% by weight.
  • the electrolyte contains a sulfate of an alkali metal or alkaline earth metal. It is preferable that the separator also has polyethylene power and contains oil.
  • the separator preferably contains 10 to 30% by weight of the oil.
  • the separator is in the shape of a bag and that the negative electrode plate be stored therein.
  • the positive electrode lattice body preferably has a lead alloy layer containing at least one of Sb and Sn on at least a part of the surface.
  • the gas phase inside the container is replaced with an inert gas.
  • the present invention provides a lead comprising an unformed positive electrode plate and a negative electrode plate provided with a lattice made of a Pb-Ca-based alloy, a separator for separating the two electrode plates, and an electrolytic solution comprising sulfuric acid.
  • the present invention relates to a method for storing a lead storage battery, characterized in that the amount of an electrolytic solution is adjusted so as to satisfy the condition, and the inside of the battery case is sealed and stored.
  • the present invention by suppressing self-discharge occurring during long-term storage, it is possible to reduce the frequency of auxiliary charging work and reduce the amount of electricity for auxiliary charging.
  • the battery weight is reduced due to the small amount of electrolyte during storage.
  • the risk of liquid leakage is reduced, the battery can be easily transported. Therefore, it is possible to reduce costs for distribution such as battery transportation costs and storage costs.
  • FIG. 1 is a partially cutaway perspective view of a lead storage battery in an embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view showing the inside of a cell of the lead storage battery of FIG. 1.
  • FIG. 3 is a front view of a positive electrode plate in the lead storage battery.
  • FIG. 4 is a front view of a negative electrode plate in the lead storage battery.
  • FIG. 5 is a view showing a step of obtaining a composite sheet for forming a lattice.
  • FIG. 6 is a longitudinal sectional view showing a part of a positive electrode plate using a positive electrode lattice having a lead alloy layer on the surface.
  • the lead-acid battery of the present invention basically uses a Pb-Ca-based alloy that does not contain Sb, which has a large amount of self-discharge, in the positive grid and the negative grid. Then, the amount of the electrolyte is reduced as compared with the time of use to reduce the contact between the positive electrode plate and the negative electrode plate and the electrolyte, and the battery case is closed, and the contact between the negative electrode plate and oxygen is reduced, so that the lead-acid battery is reduced. Store. This suppresses self-discharge when the unused battery is stored for a long time.
  • FIG. 1 is a perspective view in which a part of a lead storage battery of the present invention is cut away.
  • the lead storage battery of the present invention shown in FIG. 1 shows an example of a configuration in a case where an unused battery is stored for a long period of time.
  • the battery case 29 is partitioned into a plurality of cells by partition walls 30, and each cell accommodates one electrode group 28 one by one.
  • the electrode plate group 28 includes a positive electrode plate 21 including a positive electrode lattice member made of a Pb-Ca alloy and a positive electrode active material (lead dioxide) filled in the positive electrode lattice member, and a negative electrode lattice member made of a Pb—Ca alloy.
  • a negative electrode plate 22 containing a negative electrode active material (lead) filled in the body and the negative electrode lattice, and a separator 23 for separating the positive electrode plate 21 and the negative electrode plate 22 from each other.
  • Electrode group 28 further includes a shelf 24 connected to the ear of positive electrode plate 21 and a shelf 25 connected to the ear of negative electrode plate 22.
  • a connecting body 27 connected to a shelf 24 on the positive electrode side of the electrode plate group in one cell is connected to a cell in an adjacent cell via a through hole (not shown) provided in a partition wall 30. It is connected to a connecting body 27 provided continuously on a shelf 25 on the negative electrode side of the electrode plate group 28. Thereby, the electrode group 28 is connected in series with the electrode group 28 in the adjacent cell.
  • a positive pole (not shown) is formed on the positive side shelf at one end of the battery case 29, and a negative pole 26 is formed on the negative side shelf 25 at the other end. ing.
  • the positive pole and the negative pole 26 are connected to a positive terminal 33 and a negative terminal 34 provided on the lid 32, respectively.
  • FIG. 2 is a longitudinal sectional view showing the inside of the cell of the lead storage battery of FIG.
  • a predetermined amount of the electrolytic solution injected into the battery case 29 during chemical formation is discharged by turning over or sucking out the battery after the chemical formation.
  • FIG. 2 shows that a predetermined amount of the electrolyte is discharged as described above. The state at the time of storage is shown.
  • Each cell contains a certain amount of electrolytic solution, and a part (lower part) of the positive electrode plate 21 and the negative electrode plate 22 is immersed in the electrolytic solution.
  • the ratio of the positive electrode plate 21 and the negative electrode plate 22 immersed in the electrolytic solution (hereinafter referred to as immersion ratio) is determined by the height Y (excluding ears) shown in FIG.
  • the immersion rate the more preferable.
  • the electrolyte is not completely discharged from the battery case 29 but remains on the inner wall of the battery case 29 in the electrode group 28, so that the immersion rate becomes substantially less than 15%. It is difficult to drain the electrolyte.
  • the immersion rate exceeds 60%, the effect of suppressing the self-discharge described above becomes small.
  • the immersion rate is 30-50%.
  • the immersion rate is less than 50%, self-discharge is further suppressed.
  • the electrolytic solution remaining inside the battery forms a liquid film on the surfaces of the positive electrode plate 21 and the negative electrode plate 22.
  • the immersion rate is less than 30%, the liquid film formed on the surface of the negative electrode plate 22 breaks, and a three-phase interface of the oxygen 'electrolyte' active material is formed. At this interface, the active material tends to be rendered inactive, and the charge acceptability during use of the battery may decrease.
  • the concentration of sulfuric acid in the electrolyte during storage of the battery is preferably from 7 to 27% by weight.
  • the concentration of sulfuric acid in the electrolyte is more preferably 12 to 22% by weight in terms of self-discharge and charge acceptability.
  • the electrolyte during storage preferably contains a sulfate of an alkali metal or alkaline earth metal such as sodium sulfate.
  • the charge acceptability during auxiliary charging is improved, and the discharge capacity after auxiliary charging is increased.
  • the opening of the battery case 29 is covered with a lid 32 having an inlet 38 for injecting the electrolyte into the battery.
  • the inlet 38 is provided with an exhaust plug 35 having an exhaust port 36.
  • an adhesive tape 37 is attached so as to cover the exhaust plug 35, and the exhaust port 36 is closed. Thereby, the sealed state of the battery is maintained during long-term storage.
  • acid-resistant resin such as polypropylene resin or polyethylene resin can be used.
  • the exhaust plug 35 does not necessarily need to be attached.
  • Another method of sealing the battery is to attach a sealing plug that does not have an exhaust port to the inlet 38.
  • an inert gas containing no oxygen such as nitrogen gas or argon gas.
  • Step 1 an electrode plate group including an unformed positive electrode plate 21 and a negative electrode plate 22 in a battery case 29.
  • a lead-acid battery is constructed by storing 28 and a predetermined amount of electrolyte is injected into the battery case 29 from the injection port 38.
  • An unformed positive electrode plate is obtained, for example, by filling a positive electrode grid with a positive electrode paste obtained by mixing raw material lead powder (a mixture of lead and lead oxide), sulfuric acid, water and the like, and then aging and drying.
  • a negative electrode paste obtained by mixing a raw material lead powder (a mixture of lead and lead oxide), sulfuric acid, water, and a shrinkage inhibitor such as lignin or barium sulfate is added to the negative electrode grid. After filling, it is aged and dried.
  • Step 2 After step 1, a lead storage battery is formed.
  • Step 3 After step 2, the electrolyte is discharged from the liquid inlet 38 out of the battery by a method of inverting the lead-acid battery or a method of sucking out the battery so that the immersion rate is 15 to 60%.
  • Step 4 After step 3, attach the exhaust plug 35 to the liquid inlet 38, attach the adhesive tape 37 to cover the exhaust plug 35, and seal the lead storage battery.
  • the battery After the electrolyte is discharged, the battery is allowed to stand still for a while, and the electrolyte attached to the inner wall of the electrolyte tank 29 contained in the electrode group 28 moves downward in the battery case, and the positive electrode plate 21
  • the negative electrode plate 22 is immersed in the electrolyte at an immersion rate of 15-60%.
  • the sulfuric acid concentration of the electrolyte to be injected should be 7 to 27% by weight as described above. The concentration may be adjusted. By doing so, there is no need to adjust the sulfuric acid concentration in the subsequent process.
  • a lead-acid battery using a Pb-Ca-based alloy for the positive electrode grid and the negative electrode grid does not contain Sb that promotes self-discharge, so self-discharge is suppressed.
  • the present invention by further reducing the amount of the electrolytic solution to an appropriate amount, the portions where the positive electrode plate 21 and the negative electrode plate 22 are in contact with the electrolytic solution are reduced, and self-discharge during long-term storage is reduced. It can be further suppressed.
  • the electrolyte may be replenished until the whole of the positive electrode plate 21 and the negative electrode plate 22 is immersed in the electrolyte.
  • the entire electrode plate group 28 including the shelf 24 and the shelf 25 is Replenish the electrolyte up to the immersion position (X in Fig. 2).
  • the shelf 25 on the negative electrode side is Replenish the electrolyte up to the immersion position (X in Fig. 2).
  • the exposed portion of the shelf 25 may come into contact with oxygen in the atmosphere, thereby corroding the shelf 25 or the connection between the shelf 25 and the ear of the negative electrode plate 22. is there.
  • the separator 23 is in the form of a bag, and is made of a microporous sheet containing polyethylene resin as a main component and having a pore diameter of about 0.01-: Lm through which an electrolyte can pass. When the pore size exceeds 1 ⁇ m, the active material easily passes through the separator.
  • the negative electrode plate 22 is accommodated in the bag-shaped separator 23 arranged with the opening facing upward so that the ears of the negative electrode plate 22 are located on the opening side. Since the electrolytic solution and the separator 23 and the electrolytic solution and the negative electrode active material have an affinity, the electrolytic solution remains inside the separator 23 even after the electrolytic solution in the battery is discharged after the formation of the battery case. The liquid film of the remaining electrolytic solution covers a part of the surface of the negative electrode plate 22, and furthermore, the electrolytic solution makes the separator 23 and the negative electrode plate 22 adhere to each other, thereby suppressing the contact of the negative electrode plate 22 with oxygen. .
  • the negative electrode plate 22 holds the electrolytic solution.
  • the amount of the liquid is such that a liquid film is formed on the surface of the negative electrode plate 22, and the amount of the electrolytic solution is extremely small. Self-discharge generated by contact with the liquid is suppressed.
  • the separator 23 preferably contains 10 to 30% by weight of oil. Self-discharge during storage Can be further suppressed.
  • the oil is initially contained in the separator 23, but gradually the oil in the separator 23 flows out into the electrolyte. The spilled oil adheres to the surface of the negative electrode plate 22 and reduces the contact between the negative electrode plate 22 and the electrolytic solution or the contact between the negative electrode plate 22 and the oxygen gas remaining in the battery case 29. It is presumed that the self-discharge is suppressed.
  • oil for example, mineral oil obtained by removing volatile components and tar 'pitch from petroleum is used.
  • mineral oil for example, a paraffinic (straight chain saturated hydrocarbon) oil having a density of about 0.85 to 0.90 gZcm 3 is used.
  • the electrolyte is replenished until the electrolyte surface is located above the electrode plate, so that all the oil adhering to the surface of the electrode plate during storage moves above the electrode plate when the battery is used. Then, it spreads like a film on the electrolyte surface. Therefore, when the battery is used, the oil does not exist between the electrode plate and the electrolytic solution, so that the oil does not adversely affect the electrode reaction.
  • the oil that has flowed out of the bag-like separator 23 tends to remain in the electrolytic solution inside the bag-like separator 23. Accordingly, the amount of oil adhering to the surface of the negative electrode plate 22 increases as compared with the case where the negative electrode plate 22 is disposed outside the bag-shaped separator 23 when the negative electrode plate 22 is stored in the bag-shaped separator 23. Therefore, it is preferable.
  • the positive electrode lattice member made of a Pb—Ca based alloy contains 0.05 to 0.1% by weight of Ca in order to improve the mechanical strength of the positive electrode lattice member.
  • the Pb—Ca-based alloy preferably further contains 1.0 to 2.2% by weight of Sn in order to improve the corrosion resistance of the positive electrode grid.
  • the positive electrode grid body preferably has a lead alloy layer containing at least one of Sb and Sn on at least a part of the surface.
  • the passivation layer is an insulating layer of lead sulfate or oxidized lead formed on the surface of the positive electrode grid body, and when this layer is formed, the charge acceptability and the discharge capacity are rapidly reduced.
  • batteries using a Pb-Ca alloy for the positive electrode grid tend to have a passive layer.
  • the positive electrode grid has a lead alloy layer containing at least one of Sb and Sn on at least a part of its surface, it is possible to suppress a decrease in battery performance due to the passive layer.
  • Sn has the effect of improving the conductivity of the passive layer
  • Sb has the effect of suppressing the formation of the passive layer itself.
  • the lead alloy layer used for the above purpose is preferably a Pb-Sb alloy containing 1.0 to 10% by weight of Sb.
  • the adhesion between the positive electrode active material and the positive electrode lattice is improved, and a part of Sb is eluted into the positive electrode active material, the bonding force between the positive electrode active material particles is improved, and the charge acceptance of the positive electrode plate is improved.
  • Sb in the lead alloy layer is partially present only on the surface of the positive electrode lattice, and the amount of Sb is very small, so that Sb has little effect on self-discharge.
  • Another preferred lead alloy layer is a Pb-Sn alloy containing 3 to 7% by weight of Sn.
  • Sn content exceeds 7% by weight, the effect of Sn is the same as when 7% by weight is included, so that the Sn content in the lead alloy layer is 7% by weight or less for the purpose of restricting the amount of expensive Sn used. It is preferable that On the other hand, if the Sn content is less than 3% by weight, the effect of Sn decreases.
  • a positive electrode grid having a lead alloy layer on the surface is obtained as follows. For example, in the rolling process, a lead alloy foil containing at least one of Sb and Sn is placed between a pair of rolling rollers together with a base material sheet having the same Pb-Ca-based alloy material strength as the above-mentioned lattice body. Then, the lead alloy foil is pressed on the base material sheet to obtain a composite sheet including the base material layer and the lead alloy layer. Next, the composite sheet is expanded to obtain a positive electrode lattice.
  • the preferred thickness of the base material layer in the composite sheet is 0.7 to 1.3 mm, and the preferred thickness of the lead alloy layer is 0.01 to 20 m.
  • the negative electrode lattice body made of a Pb-Ca alloy contains 0.05 to 0.1% by weight of Ca.
  • the mechanical strength of the negative electrode grid can be improved without reducing the hydrogen overvoltage of the negative electrode grid.
  • the Pb—Ca-based alloy preferably further contains about 0.5% by weight of Sn in order to further improve the mechanical strength of the negative electrode lattice.
  • the lead storage battery of the present invention can suppress self-discharge occurring during long-term storage, reduce the frequency of supplementary charging performed during long-term storage, and reduce the cost of supplementary charging. be able to.
  • the lead storage battery of the present invention since the amount of the electrolyte is small, the weight of the battery is reduced. Since the lead storage battery of the present invention is in a sealed state, liquid leakage is suppressed. Therefore, the lead storage battery can be more easily transported.
  • the force in which the bag-shaped separator accommodates the negative electrode plate may be adopted.
  • the sheet-shaped separator may be folded in two (U-shape), and the negative electrode plate may be sandwiched therebetween.
  • the positive electrode plate 21 shown in FIG. 3 was manufactured as follows.
  • the Pb-0.06wt% Ca-l.30wt% Sn alloy sheet obtained by the assembling method is rolled to a thickness of 1.lmm and expanded to obtain a positive electrode grid 41 having ears 42 ( Vertical: 115 mm, horizontal: 137.5 mm).
  • a positive electrode paste 43 was obtained by kneading and kneading raw material lead powder (a mixture of lead and lead oxide), water and sulfuric acid in a weight ratio of 100: 15: 5.
  • the positive electrode grid 43 was filled with 100 g of the positive electrode paste 43 and then aged and dried to obtain an unformed positive electrode plate 21.
  • the negative electrode plate 22 shown in FIG. 4 was manufactured as follows.
  • the Pb-0.06wt% Ca-0.30wt% Sn alloy sheet obtained by the casting method was rolled to a thickness of 0.7mm and expanded to obtain a negative electrode grid body 51 having ears 52 ( Vertical: 115 mm, horizontal: 137.5 mm).
  • the negative electrode paste is obtained by kneading and kneading the raw material lead powder, water, sulfuric acid, and lignin and barium sulfate as additives in a weight ratio of 100: 15: 3.5: 2.5: 2.5. 53. Then, after filling the negative electrode grid 51 with 75 g of the negative electrode paste 53, aging and drying are performed. An unformed negative electrode plate 22 was obtained.
  • FIG. 1 is a perspective view in which a part of a lead storage battery is cut away.
  • the six negative electrode plates 22 obtained above are housed in bag-shaped separators 23, respectively, and the five positive electrode plates 21 obtained above are alternately laminated to form the positive electrode plate 21 and the negative electrode plate.
  • the plates 22 were laminated via the bag-like separator 23.
  • the lugs 42 and 52 of the poles of the same polarity were collectively welded, respectively, to form shelves 24 and 25, and a pole group 28 was obtained.
  • the bag-like separator 23 a microporous polyethylene having a pore diameter of 1 ⁇ m or less was used as the bag-like separator 23, a microporous polyethylene having a pore diameter of 1 ⁇ m or less was used.
  • the electrode group 28 is housed one by one in each of the six cells 31 partitioned by the partition 30 of the battery case 29, and the adjacent electrode group 28 is connected by the connecting body 27 connected to the shelf 24. Connected in series. In the present embodiment, the connection between the electrode groups was performed through a through-hole (not shown) provided in the partition
  • a positive pole (not shown) was formed on one side, and a negative pole 26 was formed on the other side.
  • the lid 32 was attached to the opening of the battery case 29, and the positive pole terminal 33 and the negative pole terminal 34 provided on the lid 32 were welded to the positive pole column and the negative pole column 26, respectively.
  • sulfuric acid having a concentration of 34% by weight as an electrolytic solution was injected in an amount of 700 ml per cell from an injection port 38 provided in the lid 32, and a battery case was formed.
  • a lead storage battery (hereinafter referred to as a battery) was manufactured.
  • the electrolytic solution was adjusted so that the sulfuric acid concentration of the electrolytic solution in each cell after the formation was 37% by weight and the amount of the electrolytic solution was 700ml per cell.
  • the electrolyte surface at this time is the position of X in FIG. 2, and the positive electrode plate 21, the negative electrode plate 22, the shelves 24 and 25
  • the sulfuric acid concentration was adjusted within the range of 5 to 37% by weight, and then a part of the electrolyte was discharged outside the battery to adjust the amount of the electrolyte to various values shown in Table 1.
  • the discharge of the electrolytic solution outside the battery was performed by inverting the battery, and the discharge time of the electrolytic solution was adjusted by changing the time for inverting the battery.
  • the electrolyte volumes of 350ml, 280ml, 245ml, 140ml and 70ml in Table 1 are 50% by weight, 40% by weight, 35% by weight, 20% by weight and 10% by weight of the predetermined electrolyte amount (700ml), respectively.
  • the immersion rate is 75%, 60%, 50%, 30% and 15%, respectively.
  • Immersion rate is the height of the electrode plate Y
  • Electrolyte level X from bottom of electrode plate to 0
  • Reversal times were 15, 20, 30, 80 and 180 seconds for immersion rates of 75%, 60%, 50%, 30% and 15%, respectively.
  • the position of the liquid surface X is where the electrolyte is discharged.
  • batteries A 'and D1'-D6 were prepared by further adding sodium sulfate to the electrolytes of batteries A and D1-D6.
  • the exhaust plugs 35 of all the batteries prepared above were covered with an adhesive tape 37 made of polypropylene resin, the exhaust port 36 was sealed, and the batteries were sealed.
  • the above-mentioned exhaust plug 35 having a splash-proof plate was used so that the electrolyte does not easily overflow from the battery even when the electrolyte surface fluctuates.
  • Batteries A, A and B1-B4 are comparative examples, and batteries C1-C4, D1-D6, D1, D6, El-E4 and F1-F4 are examples.
  • Each of the above batteries was left in a constant temperature room at 40 ° C for 3 months. After standing, peel off the adhesive tape and remove the exhaust plug so that the sulfuric acid concentration in the electrolyte is 37% by weight and the amount of electrolyte is 7 OOml per cell (the liquid level is X position in Fig. 2). Then, the electrolyte was replenished from the injection port.
  • each battery was discharged at a final voltage of 10.5 V at a rate of 20 hours (current value: 2.88 A) under a 25 ° C environment, and the remaining discharge duration was measured. After that, each battery was recovered and charged under a 25 ° C environment (constant voltage charging: set voltage 14.8V, maximum current 25A, charging time 12 hours), and then discharged again at a final voltage of 10.5V for 20 hours. The recovery discharge duration was measured. Table 1 shows the measurement results.
  • the sulfuric acid concentration in the electrolyte is preferably 7% by weight or more.
  • the self-discharge is suppressed by limiting the amount of the electrolytic solution and the concentration of sulfuric acid in the electrolytic solution, the amount of sulfate ions is limited, so that the charge acceptability of the battery and the duration of the recovery discharge tend to decrease. It is in. If sodium sulfate is added in such a state of a small amount of electrolyte, sulfate ions are replenished, so that a decrease in charge acceptability is suppressed and a recovery discharge duration is prolonged.
  • the sulfuric acid concentration exceeds 27% by weight, the amount of sulfuric acid increases and lead sulfate is easily generated, so that the remaining discharge duration time is shortened. From this, it was found that the sulfuric acid concentration was preferably 7 to 27% by weight. Batteries D3, D4, D3 with sulfuric acid concentration in the range of 12-22% by weight
  • the amount of the electrolyte during storage of the battery D3 of the example of the present invention is 245 ml per cell. Since the density of the electrolyte at a sulfuric acid concentration of 27% by weight is about 1.184gZml at 25 ° C, the weight of the electrolyte is about 1740g per battery.
  • the battery volume of the battery A of the comparative example during storage was 700 ml per cell, and the electrolyte solution density at 37% by weight of sulfuric acid was about 1.273 gZml at 25 ° C. Approximately 5350 g per battery.
  • the lead storage battery of the present invention can greatly reduce the battery weight during storage.
  • Example 2 Various amounts of oil shown in Table 2 were contained in the bag-shaped separator similar to that in Example 1.
  • the oil content in Table 2 indicates the ratio to the weight of the bag-like separator containing oil.
  • Mineral oil (Duff-I Oil CP manufactured by Idemitsu Kosan Co., Ltd.) was used for the oil.
  • Batteries G2-G6 were prepared in the same manner as battery A of Example 1, except that a bag-like separator containing oil was used.
  • a battery G1 (same configuration as battery A) using a bag-shaped separator not containing oil was produced.
  • Batteries H1 to H6 were produced in the same manner as in Battery A of Example 1.
  • batteries G1 to G6 were discharged, and the amount of the electrolyte solution was set to 245 ml per cell (immersion rate: 50%).
  • the electrolyte of the batteries HI-H6 was discharged, and the amount of the electrolyte was set to 245 ml per cell (immersion rate: 50%).
  • Batteries G1-1G6 and HI-H6 are comparative examples, and batteries II-116 and J1-1J6 are examples.
  • H2 700 100 Positive electrode plate 5 16.2
  • the drainage of the electrolyte causes the oil in the electrolyte to form a film on the exposed surface of the negative electrode plate, whereby the oil is present in the negative electrode plate, the electrolyte, and the battery. It is assumed that the contact with oxygen was reduced and the self-discharge was suppressed.
  • Example 2 the same effect as in Example 2 was obtained in the range of the force immersion rate of 15-60% with the immersion rate set to 50%.
  • a lead alloy foil 41b was supplied together with a base material sheet 41a between a pair of rolling rollers 45, and the base material sheet 41a and the lead alloy foil 41b were simultaneously rolled by the rolling rollers 45.
  • the lead alloy foil 41b was pressed on the base material sheet 41a, and a composite sheet having a base material layer having a thickness of 1.1 mm and a lead alloy layer having a thickness of 20 m on one surface was obtained.
  • a Pb-5.Owt% Sb alloy was used for the lead alloy foil 41b.
  • the same material as the positive electrode grid of Example 1 was used for the base material sheet 41a.
  • the composite sheet was subjected to an expansion force to obtain a positive electrode lattice. Then, a positive electrode plate was obtained in the same manner as in Example 1 using this positive electrode grid.
  • This positive electrode lattice body has a Pb-5wt% Sb alloy layer on one surface of a rhombic lattice as shown in FIG.
  • a battery K1 was produced in the same manner as in the battery A of Example 1.
  • Battery K2 was produced in the same manner as in Example 3, except that all the bag-shaped separators in the electrode plate group housed the positive electrode plate instead of the negative electrode plate.
  • Example 5 Battery K3 was produced in the same manner as in Example 3, except that the positive electrode grid of Example 3 was used instead of the positive electrode grid of Example 3.
  • Battery K4 was produced in the same manner as in Example 3, except that the gas phase inside the battery was replaced with nitrogen gas before the battery was sealed with an exhaust plug and an adhesive tape.
  • Battery K5 was produced in the same manner as in Example 3, except that the pressure-sensitive adhesive tape was not adhered, the exhaust plug was removed, and the system was opened.
  • Battery K6 was produced in the same manner as in Example 3, except that the amount of the electrolytic solution was changed to 700 ml per cell without discharging the electrolytic solution after the formation.
  • the remaining discharge duration time after leaving for 3 months was measured in the same manner as in Example 1.
  • the remaining discharge duration was measured in the same manner when left for 6 months.
  • Table 3 shows the measurement results. Further, the measurement results of Battery A are also shown as a comparative example.
  • Example 3 the force of using a Pb—Sb alloy for the lead alloy layer formed on the surface of the positive electrode grid Pb-5.
  • Pb—Sn alloy such as Owt% Sn or Pb—Sn alloy
  • Example 3 the same effects as in Examples 3, 4 and 6 were obtained when a Pb—Sn—Sb alloy such as —5 Owt% Sn—5Owt% Sb was used.
  • Example 3-6 the same effect as in Example 3-6 was obtained in the range of the force immersion rate of 15-60% with the immersion rate set to 40%.
  • the lead storage battery of the present invention suppresses self-discharge during long-term storage, and thus has excellent discharge characteristics after long-term storage, and is suitably used as a battery for starting a vehicle engine or as a backup power supply.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)

Description

明 細 書
鉛蓄電池および鉛蓄電池の保管方法
技術分野
[0001] 本発明は、鉛蓄電池および鉛蓄電池の保管方法に関し、更に詳しくは鉛蓄電池の 保管時における電解液量の規制に関する。
背景技術
[0002] 従来から、車両のエンジン始動用やバックアップ電源用などの様々な用途に鉛蓄 電池が用いられている。鉛蓄電池はアルカリ蓄電池と比較して自己放電量が小さい 。し力しながら、その流通過程で電池を長期間保管すると自己放電が進行して、電池 の使用時に補充電が必要となる場合がある。したがって、鉛蓄電池において自己放 電をさらに抑制することは、依然として重要な技術的課題である。
[0003] ところで、鉛蓄電池の正極板および負極板の格子体には、主に Pb— Sb系合金およ び Pb— Ca系合金がよく用いられる。電池の自己放電特性は格子体の合金系により 変わる。 Pb-Sb系合金は铸造性や強度に優れているが、 Sbの存在により自己放電 量が増大する。
[0004] このため、 Pb— Sb系合金を格子体に用いた鉛蓄電池では、次のような保管方法が 採られている。その一つは、極板を製造する段階で化成処理を施し乾燥させた化成 済み極板を用いて組み立てられた電池を保管する方法 (特許文献 1参照)である。他 の一つは、未化成の極板を用いて組み立てられた電池に注液し、電槽内で化成した 後、電槽内の電解液を排出した電池を保管する方法である。
[0005] Pb— Sb系合金を格子体に用いた鉛蓄電池では、上記の方法で保管し、電池を使 用する直前に電解液を注液する方式を採用すること〖こより、未使用状態の電池を長 期間保管する場合に起こる自己放電を防止することができる。しかしながら、一旦注 液した後の自己放電は抑制できないという問題が依然として残っている。
[0006] 一方、格子体に Pb— Ca系合金を用いると、鉛蓄電池の自己放電量を、格子体に P b—Sb系合金を用いた場合の 1/2— 1/3程度にまで低減することができる。しかし、 電池を保管する際の環境温度が高くなると自己放電しやすくなるため、 Pb-Ca系合 金を用いた電池でも、保管中に自己放電が進行し、電池を使用する際には、補充電 が必要となる場合がある。 日本国内を例にとると、空調設備のない倉庫内で電池を長 期間保管する場合、夏季には倉庫内の気温が 40°C以上となることがしばしば起こり、 数ケ月毎に電池を補充電することが必要な場合がある。
[0007] 補充電する場合には、電池を一旦開梱し、補充電した後、再度梱包する作業が必 要となる。このような作業は手作業とならざるを得ず、これにかかる費用、すなわち補 充電設備や補充電に必要な電力などにかかる費用および時間も膨大なものがあり、 電池の流通コストが増大してしまう。
特許文献 1:特開昭 52— 93930号公報
発明の開示
発明が解決しょうとする課題
[0008] そこで、本発明は、長期保管時の自己放電を抑制し、補充電作業の頻度を低減す ることが可能な低コストの鉛蓄電池を提供することを目的とする。
課題を解決するための手段
[0009] 本発明は、電解液を注液することにより使用可能な鉛蓄電池であって、前記鉛蓄電 池は、電槽内に、 Pb— Ca系合金カゝらなる正極格子体および前記正極格子体に保持 される正極活物質を含む正極板と、 Pb - Ca系合金からなる負極格子体および前記 負極格子体に保持される負極活物質を含む負極板と、前記正極板と負極板とを隔 離するセパレータと、硫酸からなる電解液とを収容し、前記電槽が密閉され、前記正 極板および負極板の一部が電解液中に浸漬され、前記正極板および負極板の高さ 寸法 Yと、前記正極板および負極板の底部から前記電解液の液面までの距離 Yと
0 1 力 関係式:
15≤Y /Y Χ 100≤60
1 ο
を満たすことを特徴とする。
前記正極板および負極板の高さ寸法 Υと、前記正極板および負極板の底部から
0
前記電解液の液面までの距離 Υ
1とが、関係式:
30≤Υ /Υ Χ 100≤50
1 0
を満たすのが好ましい。 [0010] 前記硫酸の濃度は 7— 27重量%であるのが好ましい。
前記電解液がアルカリ金属またはアルカリ土類金属の硫酸塩を含むのが好ましい。 前記セパレータがポリエチレン力もなり、オイルを含むのが好ましい。
前記セパレータは、前記オイルを 10— 30重量%含むのが好ましい。
前記セパレータが袋状であり、前記負極板を収納して!/、るのが好ま 、。 前記正極格子体は、表面の少なくとも一部に、 Sbおよび Snの少なくとも 1種を含む 鉛合金層を有するのが好まし 、。
前記電槽内部の気相が不活性ガスで置換されて 、るのが好ま 、。
[0011] また、本発明は、 Pb— Ca系合金カゝらなる格子体を備える未化成の正極板および負 極板、前記両極板を隔離するセパレータ、ならびに硫酸からなる電解液を具備する 鉛蓄電池を電槽化成した後、電解液量を減少させて保管する鉛蓄電池の保管方法 であって、前記正極板および負極板の高さ寸法 Y
0と、前記正極板および負極板の底 部から前記電解液の液面までの距離 Y
1とが、関係式:
15≤Y /Y Χ 100≤60
1 0
を満たすように電解液量を調整し、かつ電槽内部を密閉して保管することを特徴とす る鉛蓄電池の保管方法に関する。
発明の効果
[0012] 本発明によれば、長期保管時に生じる自己放電を抑制することにより、補充電作業 の頻度を低減するとともに、補充電の電気量を削減することができる。
また、保管時の電解液量が少ないことにより、電池重量が低減される。また、漏液の 恐れが少なくなるため、電池の運搬が容易になる。従って、電池の輸送コストや保管 コスト等の流通に力かるコストを低減することができる。
図面の簡単な説明
[0013] [図 1]本発明の実施例における鉛蓄電池の一部を切り欠いた斜視図である。
[図 2]図 1の鉛蓄電池のセル内部を示す縦断面図である。
[図 3]同鉛蓄電池における正極板の正面図である。
[図 4]同鉛蓄電池における負極板の正面図である。
[図 5]格子体を作るための複合シートを得る工程を示す図である。 [図 6]表面に鉛合金層を有する正極格子体を用いた正極板の一部を示す縦断面図 である。
発明を実施するための最良の形態
[0014] 本発明の鉛蓄電池は、基本的には、正極格子体および負極格子体に自己放電量 の多い Sbを含まない Pb— Ca系合金を用いる。そして、電解液量を使用時よりも減量 して正極板および負極板と電解液との接触を少なくするとともに、電槽を密閉状態に し、負極板と酸素との接触を少なくして鉛蓄電池を保管する。これにより、未使用状 態の電池を長期保管する場合の自己放電を抑制する。
[0015] 以下、本発明の実施の形態を詳細に説明する。図 1は、本発明の鉛蓄電池の一部 を切り欠いた斜視図である。図 1に示す本発明の鉛蓄電池は、未使用状態の電池を 長期保管する場合の構成の一例を示すものである。
電槽 29は隔壁 30により複数のセルに仕切られており、各セルには極板群 28が 1つ ずつ収納されている。極板群 28は、 Pb-Ca合金カゝらなる正極格子体および前記正 極格子体に充填された正極活物質 (二酸化鉛)を含む正極板 21と、 Pb— Ca合金か らなる負極格子体および前記負極格子体に充填された負極活物質 (鉛)を含む負極 板 22と、正極板 21と負極板 22とを隔離するセパレータ 23とから構成されている。極 板群 28は、さらに正極板 21の耳部と接続された棚部 24と、負極板 22の耳部と接続 された棚部 25とを有する。
[0016] 1つのセル内の極板群の正極側の棚部 24に連設された接続体 27は、隔壁 30に設 けられた透孔(図示せず)を介して隣接するセル内の極板群 28の負極側の棚部 25 に連設された接続体 27と接続されている。これにより、極板群 28は隣接するセル内 の極板群 28と直列に接続されている。電槽 29の一方の端部の正極側の棚部には正 の極柱(図示せず)が形成され、他方の端部の負極側の棚部 25には負の極柱 26が 形成されている。正の極柱および負の極柱 26は、蓋 32に設けられた正極端子 33お よび負極端子 34にそれぞれ接続されている。
[0017] ここで、図 2は図 1の鉛蓄電池のセル内部を示す縦断面図である。化成時に電槽 2 9内に注液した電解液は、化成終了後に電池を反転させたり吸い出したりする方法 により所定量が排出されている。図 2は、前記のようにして電解液を所定量排出して 保管するときの状態を示している。各セルには、ある量の電解液が含まれ、正極板 21 および負極板 22の一部(下部)が電解液中に浸漬されている。そして、正極板 21お よび負極板 22が電解液に浸漬される割合 (以下、浸漬率と表す)は、図 2に示す極 板 (耳部を除く)の高さ寸法 Y
0と極板底部から電解液面 Xまでの
1 距離 Y
1とを用いて Y
/Ύ X 100の式で表わされる。浸漬率(二 Y ZY X 100)が 15 60%のとき、極板
1 0 1 0
と電解液とが接触する割合が少なくなり、自己放電が抑制される。
[0018] 浸漬率は小さいほど好ましい。しかし、実際には、完全に電槽 29内から電解液は排 出されずに、極板群 28内ゃ電槽 29の内壁に残留するため、実質的に浸漬率が 15 %未満になるまで電解液を排出することが難しい。一方、浸漬率が 60%を超えると、 上記の自己放電を抑制する効果が小さくなる。
[0019] 浸漬率は 30— 50%であるのがより好ましい。浸漬率が 50%以下では自己放電が より抑制される。電池内部に残存する電解液は、正極板 21および負極板 22表面に 液膜を形成する。浸漬率が 30%未満になると、負極板 22の表面に形成された液膜 が途切れ、酸素 '電解液'活物質の三相界面が形成される。この界面において活物 質が不導態化しやすくなり、電池使用時の充電受入性が低下する場合がある。
[0020] 電池保管時における電解液中の硫酸の濃度は、 7— 27重量%であるのが好ましい 。硫酸濃度が 27重量%以下のとき、電池保管時の自己放電はそれより高濃度の場 合と比較して抑制される。しかし、硫酸濃度が 7重量%未満になると、補充電時の充 電受入性が低下する。電解液中の硫酸濃度は、自己放電および充電受入性の観点 力も 12— 22重量%であるのがより好ましい。
[0021] 保管時の電解液は、硫酸ナトリウム等のアルカリ金属またはアルカリ土類金属の硫 酸塩を含むのが好ましい。補充電時の充電受入性が改善され、補充電後の放電容 量が増加する。
硫酸ナトリウムは電解液中に 5— 20gZL程度添加するのが好ましい。硫酸ナトリウ ムの濃度が 5gZL未満であると、添加した効果がそれほど顕著に得られない。一方、 硫酸ナトリウムの濃度が 20gZLを超えると、放電特性が低下する。
[0022] 電槽 29の開口部は電池内部へ電解液を注液するための注液口 38を有する蓋 32 で覆われ、注液口 38には、排気口 36を有する排気栓 35が装着されている。長期保 管時には、排気栓 35を覆うように粘着テープ 37が貼付され、排気口 36が塞がれて いる。これにより、長期保管時において電池の密閉状態が保たれる。粘着テープ 37 には、ポリプロピレン榭脂ゃポリエチレン榭脂などの耐酸性榭脂を用いることができる 。粘着テープ 37を用いる場合、排気栓 35は必ずしも装着しなくてもよい。
[0023] これにより長期保管時における電池外部力 電池内部への空気 (酸素)の流入が 抑制され、負極活物質 (スポンジ状鉛)の酸化、およびこれにより生成する酸化鉛と電 解液中の硫酸との反応による硫酸鉛の生成を抑制することができる。
電池を密閉する他の方法は、注液口 38に排気口を有さな ヽ密閉栓を装着すること である。
上記のような密閉効果をより大きくするために、電池内の雰囲気を窒素ガスやアル ゴンガスなどの酸素を含まな 、不活性ガスで置換しておくのが好ま 、。
[0024] 上記の本発明の鉛蓄電池は、例えば、以下に示す工程 1一 4の方法により得られる 工程 1 :電槽 29内に未化成の正極板 21および負極板 22で構成した極板群 28を収 納して鉛蓄電池を構成し、注液口 38から電槽 29内に所定量の電解液を注液する。 未化成の正極板は、例えば、正極格子体に原料鉛粉 (鉛と鉛酸化物との混合物)、 硫酸、および水等を混合した正極ペーストを充填した後、熟成乾燥して得られる。ま た、未化成の負極板は、例えば、負極格子体に原料鉛粉 (鉛と鉛酸化物との混合物 )、硫酸、水、およびリグニンや硫酸バリウム等の防縮剤を混合した負極ペーストを充 填した後、熟成乾燥して得られる。
[0025] 工程 2:工程 1の後、鉛蓄電池を化成する。
工程 3 :工程 2の後、浸漬率が 15— 60%となるように、鉛蓄電池を反転させる力また は吸出し等の方法により注液口 38より電解液を電池外に排出する。
工程 4 :工程 3の後、注液口 38に排気栓 35を装着し、排気栓 35を覆うように粘着テ ープ 37を貼付し、鉛蓄電池を密閉状態にする。
[0026] 電解液を排出後、電池をしばらく静置すると、極板群 28内に含まれる電解液ゃ電 槽 29の内壁に付着した電解液が電槽内の下方に移動し、正極板 21および負極板 2 2は浸漬率 15— 60%の範囲で電解液中に浸漬された状態になる。 電池保管時の電解液中の硫酸濃度を 7— 27重量%とするには、上記において化 成終了時点の電解液の硫酸濃度が 7— 27重量%となるよう、注液する電解液の硫酸 濃度を調整すればよい。そのようにすると、後工程において硫酸濃度の調整作業が 要らない。
[0027] 正極格子体および負極格子体に Pb— Ca系合金を用いた鉛蓄電池は、自己放電を 促進する Sbを含まないため自己放電は抑制される。本発明では、上記のように、さら に電解液を適正な量に減らすことにより、正極板 21および負極板 22と電解液とが接 している部分が少なくなり、長期保存時の自己放電をさらに抑制できる。
電池を使用する際には、粘着テープ 37および排気栓 35を外し、注液口 38から所 定量の電解液を補充した後、再度排気栓 35を装着すればょ ヽ。
[0028] 電池使用時には、正極板 21および負極板 22全体が電解液に浸漬されるまで電解 液を補充すればよいが、好ましくは、棚部 24および棚部 25を含む極板群 28全体が 浸漬される位置(図 2中の X )まで電解液を補充する。特に、負極側の棚部 25が電解
0
液力も露出していると、その棚部 25の露出部分が大気中の酸素と接触することにより 、棚部 25または棚部 25と負極板 22の耳部との接続部分が腐食する場合がある。
[0029] セパレータ 23は袋状であり、ポリエチレン榭脂を主成分とした、電解液が透過可能 な孔径が 0. 01—: L m程度の微多孔性シートからなる。孔径が 1 μ mを超えると、活 物質がセパレータを通過し易くなる。
[0030] 開口部を上向きにして配された袋状のセパレータ 23には、開口部側に負極板 22 の耳部が位置するように、負極板 22が収納されている。電解液とセパレータ 23およ び電解液と負極活物質は親和性を有するため、電槽化成後に電池内の電解液を排 出した後においても、セパレータ 23内部には電解液が残存する。この残存した電解 液の液膜が負極板 22表面の一部を覆い、さらに電解液によりセパレータ 23と負極板 22とが密着することにより、負極板 22の酸素との接触を抑制することができる。
[0031] 上記のように負極板 22は電解液を保持するが、その液量は負極板 22の表面に液 膜を形成する程度であり、電解液量が著しく少ないため、負極活物質と電解液との接 触により生じる自己放電が抑制される。
[0032] セパレータ 23は、オイルを 10— 30重量%含むのが好ましい。保管時の自己放電 をさらに抑制することができる。初期においてオイルはセパレータ 23中に含まれるが 、しだいにセパレータ 23中のオイルは電解液中に流出する。この流出したオイルが 負極板 22の表面に付着し、負極板 22と電解液との接触、または負極板 22と電槽 29 内に滞留する酸素ガスとの接触が少なくなることにより、負極板 22の自己放電が抑 制されると推測される。
[0033] セパレータ 23中に含まれるオイル量は多 、ほど、自己放電を抑制する効果は大き くなる。しかし、セパレータ 23中のオイル含有量が 30重量%を超えると、電槽 29内壁 がオイルで汚れてしまい、電解液の液面の確認が困難となる場合がある。一方、セパ レータ 23中のオイル含有量が 10重量%未満であると、自己放電を抑制する効果が 不十分となる。
オイルとしては、例えば、石油から揮発分、タール'ピッチ分を除去した鉱物油が用 いられる。鉱物油には、例えば、密度 0. 85-0. 90gZcm3程度のパラフィン系(直 鎖状飽和炭化水素)のものが用いられる。
[0034] 電池使用時には電解液面が極板よりも上方に位置するまで電解液を補充するため 、保管時に極板の表面に付着していたオイルは電池使用時には全て極板よりも上方 に移動し、電解液面に膜状に広がる。したがって、電池使用時には、オイルは極板と 電解液との間には存在しな 、ため、電極反応に悪影響を及ぼさな 、。
袋状セパレータ 23の内側に流出したオイルは、袋状セパレータ 23内の電解液中 に留まりやすい。したがって、負極板 22を袋状セパレータ 23に収納した場合のほう 力 負極板 22を袋状セパレータ 23の外側に配置した場合と比較して、負極板 22表 面へのオイルの付着量が増大するため、好ましい。
[0035] Pb— Ca系合金力 なる正極格子体は、正極格子体の機械的強度が向上するため 、 Caを 0. 05—0. 1重量%含むのが好ましい。 Pb—Ca系合金は、正極格子体の耐 食性を改善するために、さらに Snを 1. 0-2. 2重量%含むのが好ましい。
正極格子体は、表面の少なくとも一部に、 Sbおよび Snの少なくとも 1種を含む鉛合 金層を有するのが好まし 、。
[0036] 正極板 21の電解液との接触が少ない状態で長期保管した電池を使用する際に、 電解液を補充して正極板全体を電解液中に浸漬した状態にすると、正極格子体と正 極活物質との界面で不働態層を形成しやすい。不働態層は、正極格子体表面に形 成される硫酸鉛あるいは酸ィ匕鉛の絶縁層であり、この層が形成されると急激に充電 受入性および放電容量が低下する。特に、正極格子体に Pb-Ca系合金を用いた電 池では、不働態層を生じやすい傾向にある。
[0037] 正極格子体が表面の少なくとも一部に Sbおよび Snの少なくとも 1種を含む鉛合金 層を有することにより、この不働態層による電池の性能低下を抑制することができる。 Snは不働態層の導電性を向上させる効果を有し、 Sbは不働態層自体の生成を抑制 する効果を有する。
[0038] 上記のような目的に用いられる鉛合金層は、 Sbを 1. 0— 10重量%含む Pb— Sb合 金であるのが好ましい。正極活物質と正極格子体との密着性が改善され、さらに Sb の一部が正極活物質中に溶出し、正極活物質粒子間の結合力が向上し、正極板の 充電受入性が向上する。鉛合金層中の Sbは正極格子体の表面のみに部分的に存 在し、 Sb量はごく微量であるため、 Sbによる自己放電への影響はほとんどない。
[0039] 他の好ましい鉛合金層は Snを 3— 7重量%含む Pb—Sn合金である。 Sn含有量が 7 重量%を超えると、 Snによる効果は 7重量%含む場合と同じであるため、高価な Sn の使用量を制限する目的で鉛合金層中の Sn含有量は 7重量%以下とするのが好ま しい。一方、 Sn含有量が 3重量%未満であると、 Snによる効果が小さくなる。
[0040] 鉛合金層を表面に有する正極格子体は次のようにして得られる。例えば、圧延ェ 程にぉ 、て、上述した格子体と同様の Pb— Ca系合金材料力もなる母材シートととも に Sbおよび Snの少なくとも 1種を含む鉛合金箔を一対の圧延ローラー間に供給して 、鉛合金箔を母材シート上に圧着させることにより、母材層と鉛合金層からなる複合 シートを得る。次に、この複合シートをエキスパンドカ卩ェすることにより正極格子体を 得る。複合シートにおける母材層の好ましい厚さは 0. 7-1. 3mmであり、鉛合金層 の好ましい厚さは 0. 01— 20 mである。
[0041] Pb— Ca系合金からなる負極格子体は、 Caを 0. 05— 0. 1重量%含むのが好ましい 。負極格子体の水素過電圧を低下させることなぐ負極格子体の機械的強度を向上 させることができる。 Pb— Ca系合金は、負極格子体の機械的強度をより向上させるた めに、さらに Snを 0. 5重量%程度含むのが好ましい。 [0042] 以上のように、本発明の鉛蓄電池は、長期保管時に生じる自己放電を抑制すること ができ、長期保管時に行われる補充電の頻度を少なくし、補充電にかかる費用を低 減することができる。
また、電解液量は少ないため、電池が軽量化される。本発明の鉛蓄電池は密閉さ れた状態であるため、液漏れが抑制される。従って、鉛蓄電池をより容易に輸送する ことができる。
[0043] 上記では、袋状セパレータが負極板を収納する構成とした力 それ以外にも、シー ト状セパレータを 2つ折り(U字状)にし、その間に負極板を挟み込む構成としてもよ い。
以下、本発明の実施例を詳細に説明する。
[0044] 実施例 1
(1)正極板の作製
図 3に示す正極板 21を以下のように作製した。
铸造法により得られた Pb— 0. 06wt%Ca-l. 30wt%Sn合金シートを厚さ 1. lm mまで圧延し、エキスパンドカ卩ェすることにより、耳部 42を有する正極格子体 41 (縦: 115mm、横: 137. 5mm)を得た。
一方、原料鉛粉 (鉛と鉛酸ィ匕物との混合物)と水と硫酸とを重量比 100 : 15 : 5の割 合でカ卩えて混練することにより、正極ペースト 43を得た。
そして、正極格子体 41に正極ペースト 43を lOOg充填した後、熟成乾燥して未化 成の正極板 21を得た。
[0045] (2)負極板の作製
図 4に示す負極板 22を以下のように作製した。
铸造法により得られた Pb— 0. 06wt%Ca-0. 30wt%Sn合金シートを厚さ 0. 7m mまで圧延し、エキスパンドカ卩ェすることにより、耳部 52を有する負極格子体 51 (縦: 115mm、横 137. 5mm)を得た。
一方、原料鉛粉、水、硫酸、ならびに添加剤としてリグニンおよび硫酸バリウムを重 量比 100 : 15 : 3. 5 : 2. 5 : 2. 5の割合でカ卩えて混練することにより、負極ペースト 53 を得た。そして、負極格子体 51に負極ペースト 53を 75g充填した後、熟成乾燥して 未化成の負極板 22を得た。
[0046] (3)鉛蓄電池の作製
以下の方法により、図 1に示す構造の鉛蓄電池を作製した。図 1は、鉛蓄電池の一 部を切り欠!、た斜視図である。
上記で得られた 6枚の負極板 22をそれぞれ袋状セパレータ 23内に収納し、これら と上記で得られた 5枚の正極板 21とを交互に積層することにより、正極板 21および負 極板 22を袋状セパレータ 23を介して積層した。その後、同極性の極板の耳部 42お よび 52をそれぞれ集合溶接して、棚部 24および 25を形成し、極板群 28を得た。こ のとき、袋状セパレータ 23には、孔径が 1 μ m以下の微多孔性のポリエチレン製のも のを用いた。極板群 28を、電槽 29の隔壁 30によって区画された 6つのセル 31にそ れぞれ 1つずつ収納し、棚部 24に連設された接続体 27により隣接する極板群 28を 直列に接続した。なお、本実施例では、極板群間の接続は、隔壁 30に設けられた透 孔(図示せず)を介して行った。
[0047] 直列に接続された両端に位置する極板群 28において、一方には正の極柱(図示 せず)を形成し、他方には負の極柱 26を形成した。そして、電槽 29の開口部に蓋 32 を装着するとともに、蓋 32に設けられた正極端子 33および負極端子 34と、正の極柱 および負の極柱 26とを溶接した。その後、蓋 32に設けられた注液口 38より、電解液 として濃度が 34重量%の硫酸を 1セル当たり 700ml注液し、電槽ィ匕成を行った。化 成後、電池内部で発生したガスを電池外に排出するための排気口 36を有する排気 栓 35を注液口 38に装着し、 JIS D5301に規定する 55D23形(12V— 48Ah)の始 動用鉛蓄電池 (以下、電池とする)を作製した。
[0048] 上記の電池作製時において、化成後の各セル内の電解液の硫酸濃度が 37重量 %となり、電解液量が 1セル当たり 700mlとなるように電解液を調整した。このときの 電解液面は図 2における Xの位置であり、正極板 21、負極板 22、棚部 24および 25
0
はすべて電解液に浸漬された状態であった。この電池を電池 A (比較例)とした。
[0049] 化成終了後、電解液の硫酸濃度や電解液量を表 1に示す種々の値に調整した。
化成後に硫酸濃度を 5— 37重量%の範囲で調整し、その後さらに電解液の一部を 電池外に排出することにより、電解液量を表 1に示す種々の値になるように調整した。 電池外への電解液の排出は、電池を反転させることにより行い、電池を反転させる時 間を変えて電解液の排出量を調整した。
[0050] なお、表 1中の電解液量 350ml、 280ml, 245ml, 140mlおよび 70mlは、所定電 解液量(700ml)のそれぞれ 50重量%、 40重量%、 35重量%、 20重量%および 10 重量%に相当する量であり、このときの浸漬率はそれぞれ 75%、 60%、 50%、 30% および 15%である。
浸漬率は、極板の高さ Y
0に対する極板底部から電解液面 X
1までの距離 Y
1の割合(
=Y /Y X 100)より求めた。
1 0
反転させる時間は、浸漬率 75%、 60%、 50%、 30%および 15%に対して、それ ぞれ 15、 20、 30、 80および 180秒間であった。液面 Xの位置は、電解液を排出した
1
後、 30分間経過した時点で目視により確認した。
[0051] [表 1]
Figure imgf000015_0001
上記のようにして硫酸濃度や電解液量の異なる電池 Bl— B4 C1 C4 Dl— D6 、 El— E4、 Fl— F4を作製した。
また、電池 Aおよび電池 D1— D6の電解液中にさらに硫酸ナトリウムを lOgZl添カロ した電池 A'および電池 D1 '— D6,を作製した。
上記で作製した全ての電池の排気栓 35をポリプロピレン榭脂からなる粘着テープ 3 7で覆い、排気口 36を封じ、電池を密封した。なお、上記の排気栓 35には、電解液 面の揺動によっても、容易に電解液が電池外に溢れないよう、防沫板を有するものを 用いた。なお、電池 A、 A,および電池 B1— B4は比較例であり、電池 C1一 C4、 D1 一 D6、 D1,一 D6,、 El— E4および F1— F4は実施例である。
[0053] [電池の評価]
上記の各電池を 40°C恒温室中で 3ヶ月間放置した。放置後、粘着テープを剥離し 、排気栓を取り外して、電解液中の硫酸濃度が 37重量%、電解液量が 1セル当たり 7 OOml (液面が図 2中の Xの位置)となるように、注液口より電解液を補充した。
0
そして、 25°C環境下、各電池を終止電圧 10. 5Vで 20時間率(電流値: 2. 88A) 放電し、残存放電持続時間を測定した。その後、各電池を 25°C環境下で回復充電( 定電圧充電:設定電圧 14. 8V、最大電流 25A、充電時間 12時間)した後、再び終 止電圧 10. 5Vで 20時間率放電し、回復放電持続時間を測定した。その測定結果を 表 1に示す。
[0054] 表 1から、浸漬率が 15— 60%の範囲である電池 C1一 C4、 D1— D6、 D1,一 D6, 、 El— E4、および F1— F4では、 40°Cで 3ヶ月放置後の残存放電持続時間が長い ことが分力つた。電解液量を制限することにより、電解液と活物質との接触面積が少 なくなり、自己放電が抑制されたためであると考えられる。浸漬率が 30— 50%の範 囲である電池 D1— D6、 D1 '— D6'および El— E4では、放置後の放電特性がさら に向上した。
[0055] 電解液中の硫酸濃度が 5重量%の場合では、自己放電が少ないため残存放電持 続時間は長くなつたが、回復放電持続時間が減少した。このため、電解液中の硫酸 濃度は 7重量%以上であるのが好ま 、。
電池 D1— D6および D1,一 D6,の結果より、電解液中の硫酸ナトリウムの添加は、 残存放電持続時間に対してはほとんど影響を与えな力つたが、回復放電持続時間の 増大をもたらすことがわかった。特に、保管時の電解液の硫酸濃度が 7重量%以上 では、硫酸濃度が低いほど、回復放電持続時間が増大する効果は大きくなることが わかった。
[0056] 電解液量と電解液中の硫酸濃度を制限することにより自己放電を抑制する場合、 硫酸イオン量が制限されるため、電池の充電受入性と、回復放電持続時間が低下す る傾向にある。このような電解液量が少ない状態で硫酸ナトリウムを添加すると、硫酸 イオンが補給されるため、充電受入性の低下が抑制され、回復放電持続時間が長く なる。
[0057] また、硫酸濃度が 27重量%を超えると、硫酸量が多くなり硫酸鉛が生成しやすくな るため、残存放電持続時間が短くなつた。このことから、硫酸濃度は 7— 27重量%が 好ましいことがわかった。硫酸濃度が 12— 22重量%の範囲である電池 D3、 D4、 D3
'および D4 'では、放置後の放電特性がさらに向上した。
[0058] また、本発明の実施例の電池 D3の保管時の電解液量は 1セル当たり 245mlであ る。硫酸濃度 27重量%の電解液密度は 25°Cにおいて約 1. 184gZmlであるため、 電解液重量は電池 1個当たり約 1740gとなる。
一方、比較例の電池 Aの保管時の電解液量は 1セル当たり 700mlであり、硫酸濃 度 37重量%の電解液密度は 25°Cにおいて約 1. 273gZmlであるため、電解液重 量は電池 1個当たり約 5350gとなる。
したがって、本発明の鉛蓄電池では、保管時における電池重量を大幅に低減でき
、輸送コストや保管コストと 、つた流通コストを削減することができる。
[0059] 実施例 2
実施例 1と同様の袋状セパレータに表 2に示す種々の量のオイルを含ませた。表 2 中のオイル含有量は、オイルを含む袋状セパレータの重量に対する割合を示す。ォ ィルには、鉱物油(出光興産 (株)製のダフ-一オイル CP)を用いた。オイルを含む 袋状セパレータを用いた以外は、実施例 1の電池 Aと同様の方法により電池 G2— G 6を作製した。比較例としてオイルを含ませない袋状セパレータを用いた電池 G1 (電 池 Aと同じ構成)を作製した。
[0060] また、上記のセパレータを、負極板に収納する代わりに正極板に収納した以外は、 実施例 1の電池 Aと同様の方法により電池 H 1一 H6を作製した。
さらに、電池 G1— G6の電解液を排出して、電解液量を 1セル当たり 245ml (浸漬 率 50%)としたものを電池 II一 16とした。電池 HI— H6の電解液を排出して、電解液 量を 1セル当たり 245ml (浸漬率 50%)としたものを電 1一 J6とした。なお、電池 G 1一 G6および HI— H6は比較例であり、電池 II一 16および J 1一 J6は実施例である。
[0061] [電池の評価]
上記の各電池について、実施例 1と同様の方法により、 6ヶ月間放置後における残 存放電持続時間を測定した。その測定結果を表 2に示す。
[0062] [表 2]
放置時の電解液 袋状セパレータ
残存放電
電池 電解液量 浸漬率 オイル含有量
収納する極板 持続時間 (hr)
(ml/セル) (%)
Gl 700 100 負極板 0 16.2
G2 700 100 負極板 5 16.2
G3 700 100 負極板 10 16.2
G4 700 100 負極板 15 16.3
G5 700 100 負極板 25 16.3
G6 700 100 負極板 30 16.4
HI 700 100 正極板 0 16.2
H2 700 100 正極板 5 16.2
H3 700 100 正極板 10 16.2
H4 700 100 正極板 15 16.2
H5 700 100 正極板 25 16.3
H6 700 100 正極板 30 16.3
11 245 50 負極板 0 16.3
12 245 50 負極板 5 17.4
13 245 50 負極板 10 18.4
14 245 50 負極板 15 18.6
15 245 50 負極板 25 18.6
16 245 50 負極板 30 18.6
Jl 245 50 正極板 0 16.3
J2 245 50 正極板 5 17.4
J3 245 50 正極板 10 17.6
J4 245 50 正極板 15 17.9
J5 245 50 正極板 25 18.0
J6 245 50 正極板 30 18.0 放置時に電池内の電解液を少なくし、かつセパレータ中にオイルを含ませた電池 I 2 16および J2— J6では、電池 IIおよび J1と比較して、自己放電が抑制され、残存 放電持続時間が長くなつた。特に、電池 13— 16および J3— J6において、放置後の放 電特性がさらに向上した。一方、電解液を排出しない電池 G2 G6および H2 H6 では、セパレータ中のオイル含有量により、残存放電持続時間が若干変化したが、 電解液を排出した電池ほどの効果は得られなかった。 [0064] このメカニズムについては定かではないが、電解液を排出することにより、露出した 負極板表面に電解液中のオイルが被膜を形成し、それにより負極板と電解液および 電池内に存在する酸素との接触が少なくなり、自己放電が抑制されたと推測される。
[0065] また、袋状セパレータが負極板を収納した電池の方力 袋状セパレータが正極板を 収納した電池よりも、優れた自己放電特性が得られた。
これについては以下のような理由が考えられる。袋状セパレータの外側から流出し たオイルは電槽内に拡散する一方で、袋状セパレータの内側力 流出したオイルが セパレータ内側に留まる。このため、袋状セパレータが負極板を収納した場合、負極 板表面にオイル皮膜が形成されやすくなる。
なお、上記の実施例 2では浸漬率を 50%とした力 浸漬率 15— 60%の範囲で実 施例 2と同様の効果が得られた。
[0066] 実施例 3
圧延工程において、図 5に示すように一対の圧延ローラー 45間に、母材シート 41a とともに鉛合金箔 41bを供給し、圧延ローラー 45により母材シート 41aおよび鉛合金 箔 41bが同時に圧延された。これにより、母材シート 41a上に鉛合金箔 41bが圧着さ れ、厚さ 1. 1mmの母材層の片面に厚さ 20 mの鉛合金層を有する複合シートが得 られた。鉛合金箔 41bには、 Pb— 5. Owt%Sb合金を用いた。母材シート 41aには、 実施例 1の正極格子体と同じ材料を用いた。
[0067] この複合シートにエキスパンド力卩ェを施すことにより正極格子体を得た。そして、こ の正極格子体を用いて実施例 1と同様の方法により正極板を得た。この正極格子体 は、図 6に示すように菱形の格子の一面に Pb— 5wt%Sb合金層を有する。
上記で得られた正極格子体を用い、化成後の電解液量を 1セル当たり 200ml (浸 漬率 40%) (電池 Aの電解液量の 28. 6重量%に相当する量)とした以外は、実施例 1の電池 Aと同様の方法により、電池 K1を作製した。
[0068] 実施例 4
極板群内の全ての袋状セパレータが、負極板を収納する代わりに正極板を収納し た以外は、実施例 3と同様の方法により電池 K2を作製した。
[0069] 実施例 5 実施例 3の正極格子体の代わりに実施例 1の正極格子体を用いた以外は、実施例 3と同様の方法により電池 K3を作製した。
[0070] 実施例 6
排気栓および粘着テープを用いて電池を密閉する前に、電池内部の気相を窒素 ガスで置換した以外は、実施例 3と同様の方法により電池 K4を作製した。
[0071] 比較例 1
粘着テープを貼付せず、排気栓を取り外し、開放系とした以外は実施例 3と同様の 方法により電池 K5を作製した。
[0072] 比較例 2
化成後に電解液を排出せずに電解液量を 1セル当たり 700mlとした以外は、実施 例 3と同様の方法により電池 K6を作製した。
[0073] 比較例 3
極板群内の全ての袋状セパレータカ s、負極板を収納する代わりに正極板を収納し た以外は、比較例 2と同様の方法により電池 K7を作製した。
[0074] [電池の評価]
上記で得られた電池 K1一 K7について、実施例 1と同様の方法により、 3ヶ月間放 置後における残存放電持続時間を測定した。また、 6ヶ月間放置した場合についても 残存放電持続時間を同様に測定した。その測定結果を表 3に示す。さらに、比較例と して電池 Aの測定結果も示す。
[0075] [表 3] 残存放電持続時間 (lir)
電池
3ヶ月放置後 6ヶ月放置後
K1 18.8 18.0
K2 18.2 17.0
K3 18.8 14.0
K4 19.0 18.4
K5 18.3 12.0
K6 18.0 16.2
K7 18.0 16.2
A 18,0 16.2 [0076] 3ヶ月放置後では、電解液量の少な!/、状態で放置した電池 K1一 K5では自己放電 が抑制されたため、通常の電解液量で放置した電池 K6および K7よりも残存放電持 続時間は長くなつた。しかし、 6ヶ月放置後では、電池 K3および K5のほうが、電池 6および K7よりも残存放電持続時間が若干短くなつた。従って、 6ヶ月程度放置する 場合には、電池 Kl、 Κ2、および Κ4の構成を採用することが好ましい。
[0077] 電池 Αおよび Κ6の結果より、電池放置時に電解液を減らさな!/ヽ場合は、正極格子 体表面の鉛合金層の有無による残存放電持続時間への影響はほとんどないことが わかった。電池 K1および K3の結果より、特に放置期間が 6ヶ月の場合には、鉛合金 層を正極格子体の表面に配することにより、放電特性が改善されることがわ力つた。
[0078] 電池 K2よりも電池 K1のほうが残存放電特性が良好であったことから、電解液量を 少なくした電池において、さらに負極板を袋状セパレータに収納することにより、残存 放電持続時間をより長くすることができることがわ力つた。また、電池 K6および K7の 結果より、この効果は従来の電池では得られないことがわ力つた。
[0079] 上記の実施例 3、 4および 6では、正極格子体の表面に形成する鉛合金層に Pb— S b合金を用いた力 Pb-5. Owt%Sn等の Pb— Sn合金や Pb— 5. Owt%Sn— 5. Owt %Sb等の Pb— Sn— Sb合金を用いた場合においても実施例 3、 4および 6と同様の効 果が得られた。また、上記実施例 3— 6では浸漬率を 40%とした力 浸漬率 15— 60 %の範囲において実施例 3— 6と同様の効果が得られた。
産業上の利用の可能性
[0080] 本発明の鉛蓄電池は、長期保管時の自己放電が抑制されるため、長期保管後の 放電特性が優れており、車両のエンジン始動用やバックアップ電源用の電池として 好適に用いられる。

Claims

請求の範囲
[I] 電解液を注液することにより使用可能な鉛蓄電池であって、
前記鉛蓄電池は、電槽内に、 Pb - Ca系合金からなる正極格子体および前記正極 格子体に保持される正極活物質を含む正極板と、 Pb— Ca系合金カゝらなる負極格子 体および前記負極格子体に保持される負極活物質を含む負極板と、前記正極板と 負極板とを隔離するセパレータと、硫酸からなる電解液とを収容し、
前記電槽が密閉され、
前記正極板および負極板の一部が電解液中に浸漬され、
前記正極板および負極板の高さ寸法 Y
0と、前記正極板および負極板の底部から 前記電解液の液面までの距離 Y
1とが、関係式:
15≤Y /Y Χ 100≤60
1 0
を満たすことを特徴とする鉛蓄電池。
[2] 前記正極板および負極板の高さ寸法 Υと、前記正極板および負極板の底部から
0
前記電解液の液面までの距離 Υ
1とが、関係式:
30≤Υ /Υ Χ 100≤50
1 0
を満たすことを特徴とする請求項 1記載の鉛蓄電池。
[3] 前記硫酸の濃度が 7— 27重量%である請求項 1記載の鉛蓄電池。
[4] 前記電解液がアルカリ金属またはアルカリ土類金属の硫酸塩を含む請求項 1記載 の鉛蓄電池。
[5] 前記セパレータがポリエチレン力 なる請求項 1記載の鉛蓄電池。
[6] 前記セパレータがオイルを含む請求項 5記載の鉛蓄電池。
[7] 前記セパレータは、前記オイルを 10— 30重量%含む請求項 6記載の鉛蓄電池。
[8] 前記セパレータが袋状であり、前記負極板を収納して!/、る請求項 5記載の鉛蓄電 池。
[9] 前記正極格子体は、表面の少なくとも一部に、 Sbおよび Snの少なくとも 1種を含む 鉛合金層を有する請求項 1記載の鉛蓄電池。
[10] 前記電槽内部の気相が不活性ガスで置換されている請求項 1記載の鉛蓄電池。
[II] Pb— Ca系合金カゝらなる格子体を備える未化成の正極板および負極板、前記両極 板を隔離するセパレータ、ならびに硫酸からなる電解液を具備する鉛蓄電池を化成 した後、電解液量を減少させて保管する鉛蓄電池の保管方法であって、
前記正極板および負極板の高さ寸法 Yと、前記正極板および負極板の底部から
0
前記電解液の液面までの距離 Y
1とが、関係式:
15≤Y /Y Χ 100≤60
1 0
を満たすように電解液量を調整し、かつ電槽内部を密閉して保管することを特徴とす る鉛蓄電池の保管方法。
PCT/JP2005/004821 2004-03-26 2005-03-17 鉛蓄電池および鉛蓄電池の保管方法 WO2005093890A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP05721008A EP1729364B1 (en) 2004-03-26 2005-03-17 Lead battery and lead battery storage method
JP2006511441A JP5036304B2 (ja) 2004-03-26 2005-03-17 鉛蓄電池および鉛蓄電池の保管方法
US10/588,849 US7879490B2 (en) 2004-03-26 2005-03-17 Lead battery and lead battery storage method
DE602005022287T DE602005022287D1 (de) 2004-03-26 2005-03-17 Bleibatterie und bleibatterie-speicherverfahren

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2004091479 2004-03-26
JP2004-091479 2004-03-26
JP2004-271084 2004-09-17
JP2004-271085 2004-09-17
JP2004271084 2004-09-17
JP2004271085 2004-09-17

Publications (1)

Publication Number Publication Date
WO2005093890A1 true WO2005093890A1 (ja) 2005-10-06

Family

ID=35056503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/004821 WO2005093890A1 (ja) 2004-03-26 2005-03-17 鉛蓄電池および鉛蓄電池の保管方法

Country Status (6)

Country Link
US (1) US7879490B2 (ja)
EP (1) EP1729364B1 (ja)
JP (1) JP5036304B2 (ja)
DE (1) DE602005022287D1 (ja)
TW (1) TWI362135B (ja)
WO (1) WO2005093890A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010113933A (ja) * 2008-11-06 2010-05-20 Panasonic Corp ペースト式鉛蓄電池
JP2013134957A (ja) * 2011-12-27 2013-07-08 Gs Yuasa Corp 鉛蓄電池の製造方法と鉛蓄電池
JP2015207386A (ja) * 2014-04-18 2015-11-19 パナソニックIpマネジメント株式会社 鉛蓄電池
US9601811B2 (en) 2012-09-21 2017-03-21 Gs Yuasa International Ltd. Nonaqueous electrolyte secondary cell

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5232880B2 (ja) * 2011-01-24 2013-07-10 三菱重工業株式会社 電池
CN103035957B (zh) * 2011-09-30 2014-10-29 松下蓄电池(沈阳)有限公司 储能用铅蓄电池
WO2014097522A1 (ja) 2012-12-21 2014-06-26 パナソニック株式会社 鉛蓄電池
JP6066109B2 (ja) * 2013-09-12 2017-01-25 株式会社Gsユアサ 制御弁式鉛蓄電池と二輪車
US20150132617A1 (en) * 2013-11-10 2015-05-14 J-J.A.D.E. Enterprise Llc Sealed battery with liquid crystal display
WO2018105067A1 (ja) * 2016-12-07 2018-06-14 日立化成株式会社 鉛蓄電池
CN111279527B (zh) 2017-06-09 2023-11-07 Cps科技控股有限公司 铅酸电池
US11936032B2 (en) * 2017-06-09 2024-03-19 Cps Technology Holdings Llc Absorbent glass mat battery

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5293930A (en) 1976-01-31 1977-08-08 Shin Kobe Electric Machinery Method of discharging electrolyte in wet type dry charged lead battery
JPS63244568A (ja) * 1987-03-30 1988-10-12 Shin Kobe Electric Mach Co Ltd 鉛蓄電池
JPS6460969A (en) * 1987-08-31 1989-03-08 Shin Kobe Electric Machinery Lead storage battery
DE3928468A1 (de) * 1989-08-29 1991-03-14 Grace Gmbh Blei/schwefelsaeure-akkumulator, separator fuer blei/schwefelsaeure-akkumulatoren und verfahren zur verringerung der bildung von gefaerbten ablagerungen in einem blei/schwefelsaeure-akkumulator
JPH1031991A (ja) * 1996-07-12 1998-02-03 Nippon Muki Co Ltd 蓄電池用セパレータ
JP2000195524A (ja) 1998-12-24 2000-07-14 Matsushita Electric Ind Co Ltd 密閉形鉛蓄電池
JP2003142151A (ja) * 2001-10-31 2003-05-16 Japan Storage Battery Co Ltd 即用式鉛蓄電池およびその使用方法
JP2003142150A (ja) * 2001-11-06 2003-05-16 Japan Storage Battery Co Ltd 即用式鉛蓄電池
JP2003346790A (ja) * 2002-05-24 2003-12-05 Matsushita Electric Ind Co Ltd 鉛蓄電池
JP2004014283A (ja) * 2002-06-06 2004-01-15 Matsushita Electric Ind Co Ltd 制御弁式鉛蓄電池

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1699850A (en) * 1926-01-21 1929-01-22 Lyndon Edward Storage-battery container
JPS547135A (en) * 1977-06-16 1979-01-19 Matsushita Electric Ind Co Ltd Method of making lead storage battery
JPH0666144B2 (ja) * 1984-04-16 1994-08-24 松下電器産業株式会社 渦巻式鉛蓄電池の製造法
US4743270A (en) * 1987-05-27 1988-05-10 General Motors Corporation Filling mat-immobilized-electrolyte batteries
CN2069172U (zh) 1990-06-22 1991-01-09 南京晨光电脑控制技术公司 矿灯蓄电池
JPH08321328A (ja) * 1995-05-23 1996-12-03 Japan Storage Battery Co Ltd 蓄電池状態検出装置
RU2142179C1 (ru) 1996-04-03 1999-11-27 Акционерное общество "Балтэлектро" Способ повышения электрических и эксплуатационных характеристик свинцовых аккумуляторов
US6514639B2 (en) * 1998-03-20 2003-02-04 Ensci Inc Negative plate element for a lead acid battery containing efficiency improving additives
JP2001143744A (ja) * 1999-11-12 2001-05-25 Yuasa Corp 鉛蓄電池
JP4686808B2 (ja) * 2000-04-05 2011-05-25 パナソニック株式会社 鉛蓄電池
ES2239115T3 (es) * 2001-01-22 2005-09-16 SOCIEDAD ESPAñOLA DEL ACUMULADOR TUDOR, S.A. Bateria de acumuladores electricos.

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5293930A (en) 1976-01-31 1977-08-08 Shin Kobe Electric Machinery Method of discharging electrolyte in wet type dry charged lead battery
JPS63244568A (ja) * 1987-03-30 1988-10-12 Shin Kobe Electric Mach Co Ltd 鉛蓄電池
JPS6460969A (en) * 1987-08-31 1989-03-08 Shin Kobe Electric Machinery Lead storage battery
DE3928468A1 (de) * 1989-08-29 1991-03-14 Grace Gmbh Blei/schwefelsaeure-akkumulator, separator fuer blei/schwefelsaeure-akkumulatoren und verfahren zur verringerung der bildung von gefaerbten ablagerungen in einem blei/schwefelsaeure-akkumulator
JPH1031991A (ja) * 1996-07-12 1998-02-03 Nippon Muki Co Ltd 蓄電池用セパレータ
JP2000195524A (ja) 1998-12-24 2000-07-14 Matsushita Electric Ind Co Ltd 密閉形鉛蓄電池
JP2003142151A (ja) * 2001-10-31 2003-05-16 Japan Storage Battery Co Ltd 即用式鉛蓄電池およびその使用方法
JP2003142150A (ja) * 2001-11-06 2003-05-16 Japan Storage Battery Co Ltd 即用式鉛蓄電池
JP2003346790A (ja) * 2002-05-24 2003-12-05 Matsushita Electric Ind Co Ltd 鉛蓄電池
JP2004014283A (ja) * 2002-06-06 2004-01-15 Matsushita Electric Ind Co Ltd 制御弁式鉛蓄電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1729364A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010113933A (ja) * 2008-11-06 2010-05-20 Panasonic Corp ペースト式鉛蓄電池
JP2013134957A (ja) * 2011-12-27 2013-07-08 Gs Yuasa Corp 鉛蓄電池の製造方法と鉛蓄電池
US9601811B2 (en) 2012-09-21 2017-03-21 Gs Yuasa International Ltd. Nonaqueous electrolyte secondary cell
JP2015207386A (ja) * 2014-04-18 2015-11-19 パナソニックIpマネジメント株式会社 鉛蓄電池

Also Published As

Publication number Publication date
DE602005022287D1 (de) 2010-08-26
JP5036304B2 (ja) 2012-09-26
EP1729364B1 (en) 2010-07-14
TWI362135B (en) 2012-04-11
TW200541139A (en) 2005-12-16
US7879490B2 (en) 2011-02-01
JPWO2005093890A1 (ja) 2008-02-14
EP1729364A1 (en) 2006-12-06
US20070184349A1 (en) 2007-08-09
EP1729364A4 (en) 2008-09-17

Similar Documents

Publication Publication Date Title
WO2005093890A1 (ja) 鉛蓄電池および鉛蓄電池の保管方法
EP1742289B1 (en) Lead storage battery
JP2014157703A (ja) 鉛蓄電池
JP5061451B2 (ja) 鉛蓄電池用負極集電体
JP5138391B2 (ja) 制御弁式鉛蓄電池
JP4752365B2 (ja) 鉛蓄電池
WO2013114822A1 (ja) 鉛蓄電池
TWI285972B (en) Valve regulated lead acid battery
JP6244801B2 (ja) 鉛蓄電池
JP5116331B2 (ja) 鉛蓄電池
JP2010205572A (ja) 鉛蓄電池
JPH08329975A (ja) 密閉型鉛蓄電池
JP4857894B2 (ja) 鉛蓄電池
JP2006318658A (ja) 鉛蓄電池
KR870000967B1 (ko) 무 보수 밀폐형 납산-전지
JPH0729595A (ja) リテーナ式密閉型鉛蓄電池
RU2343598C2 (ru) Свинцовая аккумуляторная батарея и способ хранения свинцовой аккумуляторной батареи
JP6006429B2 (ja) 鉛蓄電池
JP3511858B2 (ja) 鉛蓄電池
JP2008103180A (ja) 制御弁式鉛蓄電池
JPS58158874A (ja) 鉛蓄電池
JP3163510B2 (ja) 密閉形鉛蓄電池
JP2006066252A (ja) 鉛蓄電池
JP2005268061A (ja) 鉛蓄電池
JP4802903B2 (ja) 鉛蓄電池

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006511441

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10588849

Country of ref document: US

Ref document number: 2007184349

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 12006501683

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 2005721008

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580007457.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2006137725

Country of ref document: RU

Ref document number: 3923/CHENP/2006

Country of ref document: IN

WWP Wipo information: published in national office

Ref document number: 2005721008

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 12006501683

Country of ref document: PH

WWP Wipo information: published in national office

Ref document number: 10588849

Country of ref document: US