WO2005093809A1 - 単位層ポスト処理触媒化学蒸着装置及びその成膜方法 - Google Patents

単位層ポスト処理触媒化学蒸着装置及びその成膜方法 Download PDF

Info

Publication number
WO2005093809A1
WO2005093809A1 PCT/JP2005/005566 JP2005005566W WO2005093809A1 WO 2005093809 A1 WO2005093809 A1 WO 2005093809A1 JP 2005005566 W JP2005005566 W JP 2005005566W WO 2005093809 A1 WO2005093809 A1 WO 2005093809A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
unit layer
surface treatment
film
thin film
Prior art date
Application number
PCT/JP2005/005566
Other languages
English (en)
French (fr)
Inventor
Makiko Kitazoe
Hiromi Itou
Shin Asari
Kazuya Saitou
Original Assignee
Ulvac, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac, Inc. filed Critical Ulvac, Inc.
Priority to JP2006511534A priority Critical patent/JPWO2005093809A1/ja
Priority to US10/593,444 priority patent/US20080050523A1/en
Publication of WO2005093809A1 publication Critical patent/WO2005093809A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02277Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition the reactions being activated by other means than plasma or thermal, e.g. photo-CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/318Inorganic layers composed of nitrides
    • H01L21/3185Inorganic layers composed of nitrides of siliconnitrides

Definitions

  • the present invention relates to a unit layer post-processing catalytic chemical vapor deposition apparatus using a catalytic chemical vapor deposition method in which a thin film is formed by performing a surface treatment after forming a film for each unit layer, and a film forming method thereof.
  • Various semiconductor devices, liquid crystal displays (LCDs), and the like are manufactured by forming a predetermined thin film on a substrate.
  • a CVD method such as a CVD method, a chemical vapor deposition method, or the like
  • the law is also used !!).
  • the catalytic CVD method can form a film at a lower temperature than the thermal CVD method, and has no problems such as damage to a substrate due to generation of plasma unlike the plasma CVD method. It is attracting attention as a film formation method for next generation semiconductor devices and display devices (such as LCDs).
  • a mixed gas containing silane gas (SiH) and ammonia gas (NH) is used as a source gas in a reaction vessel.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-367991
  • a silicon nitride film formed by a conventional catalytic CVD method as described in Patent Document 1 described above is used.
  • the oxide film has insufficient step coverage (step coverage) to improve the in-plane uniformity of the film thickness, and does not have good current-voltage (IV) withstand voltage characteristics, so there is room for improvement.
  • the present invention can improve the in-plane uniformity of a silicon nitride film or the like, improve the step coverage, and improve the film quality such as the IV withstand voltage characteristics, and can improve the film quality for each unit layer. It is an object of the present invention to provide a unit layer post-processing catalyst vapor deposition apparatus capable of forming a thin film by performing surface treatment after film formation, and a method of forming the same.
  • the invention according to claim 1 of the unit layer post-treatment catalytic chemical vapor deposition apparatus of the present invention is characterized in that a catalytic action of an exothermic catalyst body that is resistance-heated in a reaction vessel capable of evacuating.
  • the surface treatment may be a surface treatment with a thin-film component-containing gas other than silicon containing active species and a surface treatment with hydrogen gas containing active species. , Or both.
  • the invention according to claim 3 is characterized in that the exothermic catalyst is irradiated with hydrogen gas to regenerate the catalytic ability.
  • the invention according to claim 4 is characterized in that the surface treatment is a shift of or a combination of a pull-out process of an excessive thin film component and a direct addition process of the thin film component.
  • the invention according to claim 5 is characterized in that one of a nitrogen gas and a rare gas is used instead of the hydrogen gas.
  • the invention according to claim 6 is characterized in that the thin-film component-containing gas is any one of silicon hydride and silicon halide, and one or both of nitrogen and nitrogen hydride.
  • the invention according to claim 7 is characterized in that the gas containing the thin film component containing the active species in the surface treatment is nitrogen and / or hydride of nitrogen.
  • the invention according to claim 8 of the unit layer post-processing film forming method of the present invention forms a thin film on a substrate by utilizing the catalytic action of an exothermic catalyst that is resistance-heated in a vacuum-evacuable reaction vessel.
  • a catalytic chemical vapor deposition method wherein a flow rate of a thin film component-containing gas and a hydrogen gas is introduced in a pulsed manner and brought into contact with an exothermic catalyst to generate active species;
  • a process of performing a surface treatment irrespective of whether it is before or after another surface treatment process of performing a surface treatment. Is repeated to form a laminated thin film. To have.
  • the invention according to claim 9 is characterized in that, in addition to the above-described configuration, the process is repeated a plurality of times during one cycle to determine whether one of the surface treatment steps and the other surface treatment steps are! / ⁇ . It is a thing.
  • one or both of the one surface treatment step and the other surface treatment step and the film formation step of forming a thin film for each unit layer on the substrate are continuously processed. It is characterized by being performed.
  • An eleventh aspect of the present invention is characterized in that a residual gas is evacuated after a shift in a film forming process, one surface treatment process, and another surface treatment process.
  • the invention according to claim 12 is characterized in that one surface treatment step is a step of extracting excess thin film components and another surface treatment step is a step of adding thin film components. is there.
  • the invention described in claim 13 is characterized in that it is a step of performing a surface treatment with a thin-film component-containing gas other than silicon containing active species in the final process force of one cycle.
  • the invention according to claim 14 is characterized in that one of a nitrogen gas and a rare gas is used instead of the hydrogen gas.
  • the invention according to claim 15 is characterized in that the thin film component-containing gas is any one of silicon hydride and silicon halide, and one of or both nitrogen and nitrogen hydride. .
  • the invention according to claim 16 is characterized in that the thin film component-containing gas containing active species in the surface treatment is nitrogen gas and / or hydride of nitrogen.
  • the thin film component-containing gas is a monosilane gas and an ammonia gas, the film forming process forms a silicon nitride film for each unit layer on the substrate, and the other surface treatment process forms the active species. It is characterized in that the surface treatment of the silicon nitride film for each unit layer is carried out with ammonia gas containing.
  • the invention according to claim 18 is characterized in that the final step of one cycle is a step of performing a surface treatment with ammonia gas which is a thin-film component-containing gas containing active species.
  • the unit layer post-processing catalyst vapor deposition apparatus of the present invention can switch the gas introduction instantaneously, so that film formation can be performed for each unit layer, and surface treatment can be performed for each unit layer formed. It is possible to improve the uniformity of the in-plane film thickness, the step coverage, and the film quality.
  • the unit layer post-processing film forming method of the present invention since the surface treatment is performed after forming the film for each unit layer, a laminated thin film having improved in-plane uniformity of film thickness, improved step coverage, and improved film quality characteristics. Can be formed.
  • FIG. 1 is a schematic configuration diagram showing a unit layer post-processing catalytic chemical vapor deposition apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of a gas supply timing chart of the unit layer post-processing film forming method according to the present embodiment.
  • FIG. 3 is a view showing a gas supply timing chart.
  • FIG. 4 is a view showing a gas supply timing chart.
  • FIG. 5 is a view showing a gas supply timing chart.
  • FIG. 6 is a view showing a gas supply timing chart.
  • FIG. 7 is a view showing a gas supply timing chart.
  • FIG. 8 is a view showing a step coverage change when only NH supply is changed.
  • FIG. 10 is a graph showing pressure dependence of in-situ post treatment.
  • FIG. 11 is a view showing a hydrogen treatment effect at the time of composite post treatment.
  • FIG. 12 is a diagram showing gas atmosphere dependency during composite post processing.
  • FIG. 13 is a diagram showing the unit film thickness dependence of a stacked Cat-SiN film.
  • FIGS. 3A and 3B show a case in which a hydrogen gas surface treatment is prioritized, and FIG. 3B shows a case in which an ammonia gas surface treatment is prioritized.
  • FIG. 15 is a diagram showing the composition ratio of SiN formed on a 50A SiN film on a silicon substrate, where (a) shows a case where hydrogen gas surface treatment was performed first, and (b) shows an ammonia gas surface treatment. Indicates the case in which
  • FIG. 16 is a diagram showing gas introduction order dependence during post processing.
  • FIG. 17 is a diagram showing the hydrogen content of a single-layer film made of standard Cat-SiN, a laminated film formed by post-processing of a unit-formed Cat-SiN unit, and a single-layer film made of PECVD-SiN.
  • FIG. 18 is a diagram comparing the hydrogen content of each Cat-SiN film.
  • FIG. 19 is a view showing film forming conditions of a film forming method according to Example 1 and a conventional film forming method.
  • FIG. 20 is a view showing film forming conditions of a film forming method according to Example 2 and a conventional film forming method.
  • FIG. 21 is a view showing the results of measuring coverage and I-V electric breakdown voltage characteristics of each silicon nitride film formed by the film forming method according to Example 2 and the conventional film forming method.
  • FIG. 22 is a view showing film forming conditions of a film forming method according to Example 3 and a conventional film forming method.
  • FIG. 23 shows the measurement results of the in-plane uniformity of the film thickness and the corrosion resistance (etching rate) to an etching solution for each silicon nitride film formed by the film forming method according to Example 3 and the conventional film forming method.
  • FIG. 23 shows the measurement results of the in-plane uniformity of the film thickness and the corrosion resistance (etching rate) to an etching solution for each silicon nitride film formed by the film forming method according to Example 3 and the conventional film forming method.
  • the unit layer post-processing catalytic chemical vapor deposition apparatus of the present invention is used in a reaction vessel capable of evacuating.
  • a catalytic chemical vapor deposition system that forms a thin film on a substrate by utilizing the catalytic action of a resistively heated exothermic catalyst.
  • a gas supply that can introduce the thin film component-containing gas and hydrogen gas into the reaction vessel in a pulsed manner.
  • System and an exhaust system capable of vacuum evacuation and pressure control.
  • the thin film component-containing gas and hydrogen gas introduced in pulse form come into contact with the heat generating catalyst and decompose, forming a thin film for each unit layer on the substrate. Then, a thin film is formed by performing a surface treatment on the thin film for each unit layer.
  • FIG. 1 is a schematic configuration diagram showing a unit layer post-processing catalytic chemical vapor deposition apparatus according to an embodiment of the present invention.
  • the unit layer post-treatment catalyzing device 1 includes a reaction system 10, a gas supply system 11, and an exhaust system 13.
  • a gas introduction part 4 for introducing the raw material gas 3 into the reaction vessel 2 is provided.
  • a substrate holder 6 for mounting a substrate 5 is provided at a position facing the gas introduction part 4.
  • a heater 7 for heating the substrate 5 mounted on the substrate holder 6 to a predetermined temperature is provided.
  • the gas introduction section 4 between the gas introduction section 4 and the substrate holder 6 in the reaction vessel 2 has a catalytic action for heating and decomposing the source gas introduced from the gas introduction section 4.
  • a medium 8 is provided.
  • a gas outlet 15 is provided on the catalyst body 8 side of the gas introduction part 4 so that the ejected raw material gas 3 comes into contact with the catalyst body 8 immediately!
  • a high melting point metal wire such as a tungsten wire wound in a coil shape is used as the catalyst body 8.
  • the force is not limited to this.
  • iridium, rhenium, indium, molybdenum, tantalum, niobium, etc. can be used. And further, these alloys may be used.
  • the gas supply manifold 9 connected to the gas introduction unit 4 has a silane gas (Si H), ammonia gas (NH) and hydrogen gas (H), respectively.
  • SiH disilane
  • SiH trisilane
  • SiF silicon tetrafluoride
  • SiCl silicon tetrachloride
  • SiH C1 dichlorosilane
  • Nitrogen hydrides of compounds containing nitrogen such as H 2) can be used.
  • the thin-film component-containing gas contains steam.
  • a gas that is liquid at room temperature is a carrier gas used as a thin-film component-containing gas whose vapor pressure has been adjusted by publishing.
  • the mass flow rate of the source gas can be set and controlled instantaneously by the valve 34 and the second pneumatic operation valve 35 and supplied to the gas supply manifold 9.
  • the first pneumatic operation valve 34 and the second pneumatic operation valve 35 switch the rectangular pulse-shaped mass flow rate to the reaction vessel side while minimizing the fluctuation of the set flow rate.
  • the nitrogen gas introduction line 27 is connected to the purge of the reaction system 10 and the normal pressure after the film formation. Supply nitrogen gas used for recovery and the like.
  • the exhaust system 13 includes an auxiliary exhaust pump 41, a turbo molecular pump 43, a pressure control main knob 45, a sub-valve 47, and a vacuum gauge 49, and the reaction vessel 2 can be evacuated.
  • 51 indicates a relief valve
  • 53 indicates a manual valve
  • this line is a vent line at the time of normal pressure return.
  • the pressure control main valve 45 controls the degree of vacuum in the reaction vessel 2 by controlling the opening of the valve so as to reach a set pressure.
  • the reaction system 10, the gas supply system 11, and the exhaust system 13 are controlled by a computer, and the process sequence of opening / closing valves, setting the mass flow rate, supplying current to the catalyst, and the like in accordance with evacuation and gas introduction is not shown.
  • the user can set recipes such as operation panel power, process conditions and sequence processing.
  • 55 indicates a gate valve
  • 57 indicates a load lock chamber
  • the substrate 5 is carried into the reaction container 2 via the gate valve 55 and placed on the substrate holder 6.
  • the inside of the reaction vessel 2 is evacuated and purged with a hydrogen gas or a nitrogen gas, and then the pressure is controlled to a predetermined pressure with these purge gases.
  • the heater 7 is energized to perform resistance heating
  • the substrate 5 on the substrate holder 6 is heated to a predetermined temperature (for example, about 200 ° C. to 600 ° C.), and the catalyst body (such as a thin tungsten wire) 8 is energized.
  • the catalyst body 8 is heated to a predetermined temperature (for example, about 1600 ° C. to about 1800 ° C.).
  • the first pneumatic operation valve 34 is opened, and the second pneumatic operation valve 35 is closed to flow a predetermined set flow rate to the vent side to obtain a stable mass flow rate. Keep it. Then, the opening and closing of the first pneumatic operating valve 34 and the second pneumatic operating valve 35 are instantaneously switched, and the raw material gas (mixed gas of silane gas and ammonia gas, The gas (mass) is introduced in a rectangular pulse shape, and the raw material gas is ejected toward the catalyst 8 from a plurality of gas ejection ports 15 formed on the lower surface of the gas introduction unit 4.
  • the raw material gas is catalytically thermally decomposed by the heated catalyst 8, and a silicon nitride film is formed on the substrate 5, for example, with a monolayer as a unit layer (hereinafter, this film formation is performed). Process).
  • the film formation conditions at this time are as follows: a flow rate of silane gas (SiH 4) is 7 sccm, and an ammonia gas (NH 3)
  • the temperature of the catalyst body 8 is 1700 ° C., and in this embodiment, an ultra-thin silicon nitride film having a thickness of 1 nm is obtained in a single film-forming step of, for example, 10 seconds.
  • hydrogen gas is introduced into the gas introduction unit 4 through the gas supply manifold 9 for, for example, 15 seconds, and the hydrogen gas ejected from the gas ejection port 15 is heated.
  • the hydrogen gas ejected from the gas ejection port 15 is heated.
  • the surface of the silicon nitride film formed on the substrate 5 is exposed to the activated hydrogen gas, and the composition of the surface of the silicon nitride film is increased. Is improved (hereinafter, this step is referred to as one surface treatment step).
  • ammonia gas is introduced into the gas introduction unit 4 through the gas supply manifold 9 for, for example, 15 seconds, and the ammonia gas ejected from the gas ejection port 15 is heated. It is activated and supplied onto the substrate 5 via the catalyst 8.
  • instantaneous switching of gas introduction, pressure control, and high-speed vacuum evacuation can be performed, so that a thin-film component-containing gas and hydrogen gas can be introduced in a rectangular pulse shape. It can be decomposed by contact with the exothermic catalyst to form a thin film for each unit layer on the substrate, and the thin film for each unit layer can be surface-treated to form a laminated thin film.
  • This unit layer post-processing film formation method is a method in which resistive heating is performed in a reaction vessel that can be evacuated. This is a catalytic chemical vapor deposition method for forming a thin film on a substrate by utilizing the catalytic action of a thermal catalyst.
  • An active dangling process for generating a thin film for generating a thin film, a film forming process for forming a thin film for each unit layer on a substrate, a surface treatment process for performing a surface treatment of the thin film for each unit layer with hydrogen gas containing an active species, and an active species
  • the surface treatment of the thin film of each unit layer with the gas containing the thin film component containing is defined as one cycle, and a plurality of cycles are repeated to form a laminated thin film.
  • the process conditions are as follows: the temperature of the catalyst (Cat) wire, W (tungsten), is 1700 ° C, the substrate heater temperature is 100-300 ° C, and an 8-inch Si wafer is used as the substrate.
  • a silicon nitride film will be described as an example.
  • FIG. 2 is a diagram showing an example of a gas supply timing chart of the unit layer post-processing film forming method according to the present embodiment.
  • the unit layer post-processing film forming method according to the present embodiment is a SiH ZNH
  • the film forming process is continuously performed, and the post process and the film forming process are performed in one process.
  • Figures 3 to 7 show other examples of gas supply timing charts.
  • the common process conditions are as follows: the temperature of the heating catalyst is 1700 ° C and the pressure is lOPa.
  • Fig. 3 is a diagram showing film formation ⁇ hydrogen surface treatment ⁇ ammonia surface treatment ⁇ film formation ⁇ ' ⁇ ⁇
  • Fig. 4 shows film formation ⁇ ammonia surface treatment ⁇ hydrogen surface treatment ⁇ film formation ⁇ '
  • Figure 5 shows film formation ⁇ hydrogen surface treatment ⁇ ammonia surface treatment ⁇ hydrogen surface treatment ⁇ film formation ⁇ '
  • Fig. 6 shows film formation-> ammonia surface treatment-> hydrogen surface treatment-> ammonia surface treatment-> film formation-> Fig. 7 shows film formation-> vacuum evacuation-> hydrogen surface treatment-> ammonia surface treatment-> vacuum evacuation-> It is a figure which shows a film ⁇ ' ⁇ ⁇ ⁇ .
  • the introduction of hydrogen gas in the film formation process and the subsequent hydrogen surface treatment are performed continuously, and after the ammonia surface treatment, the introduction of ammonia gas in the film formation process is performed continuously.
  • the gas memory effect is extinguished by evacuating the atmosphere before and after the film forming process to remove the residual gas in the atmosphere.
  • the presence / absence of gas supply can be ensured.
  • film formation can be performed for each monolayer.
  • Figure 8 shows that the process conditions maintained the SiH / H supply constant ([7ZlO] sccm),
  • step coverage improvement is not gradual
  • the step coverage deteriorates again.
  • the step coverage improvement tends to disappear.
  • Figure 9 shows H and N as additive gases for improving step coverage under NH supply suppression.
  • the step coverage is much better when the added gas is hydrogen gas than nitrogen.
  • H is preferred as a type of additive gas for improving step coverage.
  • FIGS 8 and 9 show that the NH-derived Cat radical (Cat-NH) and the H-derived Cat radical
  • SiN film Cat One of the roles played by added H in the CVD system is Si-rich SiN
  • this is supposed to be nothing but the inhibition of the surface process of SiN during the deposition, and also contributes to the improvement of the step coverage through the shift of the system to the surface process rate-limiting side.
  • SiH C1 (dichlorosilane; DCS), Si CI (hexachlorodisilane; HCD), SiCl (four
  • saturated hydrogenated Si such as SiH and SiH is used as the Si source gas.
  • FIG. 10 shows the refractive index and unit layer of lOOnm-thick SiN in which about 100 lnm-thick SiN unit layers are stacked.
  • FIG. 6 is a graph showing the in-situ post-processing pressure dependence of a film forming rate per unit thickness and an 8-inch substrate in-plane film thickness distribution.
  • the refractive index, the film formation rate, and the in-plane film thickness uniformity hardly depend on the processing pressure, but the post-processing atmosphere (gas type), that is, the ammonia gas and hydrogen gas Differences have been shown to be affected.
  • the post-processing atmosphere is, for example, [A (20 seconds) ⁇ exhaust (5 seconds) ⁇ NH (10 seconds)]
  • the refractive index, the film formation rate per unit layer, and the film thickness distribution in the plane of the 8-inch substrate are significantly lower.
  • Figure 12 shows the gas atmosphere during "combined post-treatment" using both Cat-H irradiation and Cat-NH irradiation.
  • FIG. 13 shows the results of Cat-CVD by unit layer applying “composite post-processing” with optimized process conditions.
  • FIG. 9 is a diagram showing the dependence of the leakage current of a stacked SiN film on the unit layer thickness.
  • the leak current decreases as the unit layer thickness decreases! / Puru. Therefore, the smaller the deposited film thickness per cycle is, the more preferably the post-processing is performed for each unit layer in a unit of a monomolecular layer, the more the leak current is reduced and the electrical characteristics are improved.
  • FIG. 14 is a diagram showing the surface treatment depending on the gas type and the elemental profile in the thickness direction of the SiN film.
  • SiH and H are introduced at the same time 30 seconds after the introduction.
  • the film composition depends not only on the [Si substrate deposited film] interface but also on the type of gas introduced in advance. It is significantly different over the entire thickness direction.
  • Figures 15 (a) and (b) show the case where a Si substrate with a 5-nm-thick SiN film formed on the surface was used as the substrate, but it did not depend on the underlying SiN composition. The tendency is the same as in the case of direct film formation.
  • the properties of the entire deposited film are determined insensitively to the modification state and the material of the substrate surface.
  • the “surface” involved in the system is not only the substrate surface, which is the adsorbent for the generated radicals, but also the surface of the Cat wire, which is where radicals are produced. It has been suggested that the origin of this should be found in the process on the Cat line surface rather than the process on the substrate surface.
  • FIG. 16 is a diagram showing the dependence of the order of gas introduction during post processing.
  • the effect on the step coverage of the laminated SiN is that the step coverage changes completely depending on the order even if the refractive index is the same.To achieve a high step coverage, it is extremely effective to introduce ammonia as a post-process after forming a unit film. It is.
  • FIG. 17 shows a single-layer film made of standard Cat-SiN and a post-process of unit-layer Cat-SiN unit layer.
  • FIG. 4 is a diagram showing the hydrogen content of a laminated film and a single-layer film made of PECVD-SiN.
  • the film is formed by Cat-CVD, it will further decrease to about 2.2 x 10 21 cm- 3 .
  • FIG. 18 shows the effect of the addition of H, the suppression of NH supply, and the effect of the laminated film structure on the hydrogen content.
  • FIG. 1 A first figure.
  • the hydrogen content in the laminated SiN film with the Si-rich SiN film as the unit layer is determined by adding [H] and adding sufficient NH to the [SiH / NH] raw material.
  • VDSiN Rather less than in VDSiN, regardless of whether it is a laminated or single layer film.
  • the surface treatment process using hydrogen gas is a surplus Si bow I punching process and an addition process for supplementing the surface treatment power with ammonia gas.
  • the uniformity of the film thickness and the film quality can be improved by the process of compounding the above.
  • the final process of one cycle is treated with ammonia gas to make the step coverage much better.
  • the unit layer post-process film forming method according to the present embodiment can form a thin film having good in-plane film thickness uniformity, step coverage, and film quality.
  • Example 1 referring to FIG. 1, the heater 7 was energized and heated by resistance under a reduced pressure of lOPa to heat the substrate 5 on the substrate holder 6 to, for example, 200 ° C. (Electrical wire, etc.) 8 is heated by resistance, and the catalyst 8 is heated to 1700 ° C.
  • the film formation conditions are as follows: a flow rate of silane gas (SiH) is 7 sccm,
  • the flow rate of gas (NH 2) is 10 sccm
  • the flow rate of hydrogen gas (H 2) is 10 sccm
  • the force is 10 Pa
  • the temperature of the catalyst body 8 is 1700 ° C.
  • a thin film of silicon nitride having a thickness of lnm is obtained by one film forming process for 10 seconds.
  • the film forming step, one and other surface treatment steps are one cycle, and this one cycle of the film formation step, one and other surface treatment steps are continuously performed in this embodiment.
  • a silicon nitride film having a total thickness of 50 nm was finally formed.
  • the hydrogen concentration (hydrogen content) in the silicon nitride film measured by Fourier transform infrared spectrophotometer (FTIR) was 2 ⁇ 10 21 atomZcm 3 o
  • a silicon nitride film having a thickness of 50 nm formed in a single film forming step as in the conventional method was measured by a Fourier transform infrared spectrophotometer (FTIR).
  • FTIR Fourier transform infrared spectrophotometer
  • the hydrogen concentration in the silicon nitride film was 7 ⁇ 10 21 atomZcm 3 .
  • the conventional film forming conditions at this time are, as shown in FIG. 19, the flow rate of silane gas (SiH).
  • the pressure in the reaction vessel 2 is 10 Pa, and the temperature of the catalyst body 8 is 1700 ° C. (these conditions are the same as those of the film forming method in the embodiment of the present invention).
  • a silicon nitride film with a thickness of 50 nm is obtained in the film forming process.
  • the film forming step, one and other surface treatment steps of the present invention are defined as one cycle, and this one cycle of the film forming step, one and other surface treatment steps are continuously repeated a plurality of times. Therefore, according to the film forming method of the present invention for finally obtaining a silicon nitride film having a desired film thickness, the hydrogen concentration of the silicon nitride film obtained by the conventional film forming method is greatly reduced. Lower. Therefore, it is possible to provide a high-quality silicon nitride film having high reliability over a long period without increasing the leakage current when a high electric field is applied.
  • Example 1 a silicon nitride film having a thickness of lnm was formed in one film forming step, and this film forming step, one surface treatment step, and one cycle of another surface treatment step were continuously performed. A silicon nitride film having a thickness of 50 nm was finally formed by repeating 50 times.
  • a silicon nitride film having a thickness of 1 nm was formed in one cycle by the same deposition method as in the first embodiment. The film was formed, and this one cycle processing step was continuously repeated 100 times to finally form a silicon nitride film having a thickness of 10 Onm.
  • the flow rate of the silane gas (SiH 4) was 7 seconds.
  • ammonia gas (NH) flow rate is 10sccm
  • hydrogen gas (H) flow rate is 10sccm
  • the pressure in the reaction vessel 2 was 10 Pa, and the temperature of the catalyst body 8 was 1700 ° C (these conditions were the same as those in Example 1). Obtain a lnm silicon nitride film.
  • Example 2 As in Example 1, hydrogen gas was introduced in one surface treatment step, and ammonia gas was introduced in the other surface treatment steps.
  • the step coverage (%) and the current-voltage (IV) withstand voltage characteristics (MV / cm) of the silicon nitride film having a total film thickness of 100 nm obtained by the film forming method according to Example 2 were measured.
  • the side coverage of the silicon nitride film was 72%
  • the bottom force coverage was 90%
  • the withstand voltage of the IV electric characteristics was 4.8 MVZcm.
  • the coverage (%) and the current were compared for a 100 nm thick silicon nitride film formed in a single film forming process as in the conventional method.
  • the voltage (IV) withstand voltage (MV / cm) was measured, as shown in Fig. 21, the side coverage of the silicon nitride film was 72%, the bottom coverage was 90%, and the IV withstand voltage was 0.1mVZcm. It was obtained as follows.
  • the flow rate of the silane gas (SiH 4) was 7 sccm.
  • the flow rate of ammonia gas (NH) is 10 sccm
  • the flow rate of hydrogen gas (H) is 10 sccm
  • the pressure inside the reaction vessel 2 was 10 Pa and the temperature of the catalyst 8 was 1700 ° C (these conditions Under the same conditions as in the case of the film forming method in Example 2), a silicon nitride film having a thickness of ⁇ m is obtained in one film forming step.
  • the above-mentioned film forming step, one and other surface treatment steps are regarded as one cycle, and this one cycle of the film forming step, one surface treatment step and other surface treatment steps are continuously performed.
  • the film formation method according to the present invention in which a silicon nitride film having a desired film thickness is finally obtained by repeating a plurality of times, has improved step coverage over the silicon nitride film obtained by the conventional film formation method.
  • the IV withstand voltage characteristics have also been improved.
  • a silicon nitride film having a thickness of lnm is formed in one film forming step by the same film forming method as the second embodiment, and this film forming step, one surface treatment step, and other The surface treatment process was continuously repeated 100 times to finally form a silicon nitride film having a thickness of 100 nm.
  • the film formation conditions were such that the flow rate of silane gas (SiH) was 7 sccm,
  • the flow rate of ammonia gas (NH) is 10sccm
  • the flow rate of hydrogen gas (H) is 10sccm
  • Example 3 An extremely thin silicon nitride film having a thickness of 1 nm is obtained.
  • a silicon nitride film having a film thickness of 100 nm in a single film forming process as in the conventional method was compared with a silicon nitride film having a film thickness of 100 nm.
  • the measurement results shown in FIG. 6, that is, ⁇ 10% in-plane uniformity and an etching rate of 6 nm Zmin were obtained.
  • the film formation conditions were such that the flow rate of silane gas (SiH) was 7 sccc.
  • the flow rate of ammonia gas (NH) is 100 sccm
  • the flow rate of hydrogen gas (H) is Osccm
  • the pressure in the reaction vessel 2 is 10 Pa
  • the temperature of the catalyst body 8 is 1700 ° C.
  • a silicon nitride film having a thickness of 100 nm is obtained in one film forming step.
  • the film forming step, one surface treatment step, and another surface treatment step One cycle is performed, and the process of the one cycle is repeated a plurality of times continuously to finally obtain a silicon nitride film having a desired film thickness.
  • the in-plane uniformity of the film thickness of the silicon nitride film can be improved, and the corrosion resistance to the etchant can be improved.
  • the pressure in the reaction vessel 2 may be arbitrarily adjusted during the transition between the film forming step, one surface treatment step, and another surface treatment step in this one cycle.
  • one surface treatment step and another surface treatment step after the film formation step in this one cycle may be alternately repeated a plurality of times.
  • a stacked film can be formed in units of monomolecular layers, and the in-plane uniformity of the film thickness can be obtained. It is useful for forming a thin film with good step coverage and film quality.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

 シリコン窒化膜などの面内均一性、ステップカバレッジ及び膜質の向上を図ることができるとともに、単位層ごとに成膜後、表面処理して薄膜を形成することができる単位層ポスト処理触媒蒸着装置及び単位層ポスト処理成膜方法を提供する。  反応容器2内にシランガスとアンモニアガスを含む混合ガスを原料ガスとして矩形パルス状に導入し、触媒体8により原料ガスを接触熱分解して基板5にシリコン窒化膜を成膜する成膜工程と、アンモニアガスを触媒体8に接触させた後に基板5上のシリコン窒化膜表面に晒す一の表面処理工程と、水素ガスを触媒体8に接触させた後に基板5上のシリコン窒化膜表面に晒す他の表面処理工程とを1サイクルとして、この一サイクルの工程を繰り返して単位層ごとにポスト処理した薄膜を積層する。

Description

単位層ポスト処理触媒化学蒸着装置及びその成膜方法
技術分野
[0001] 本発明は、単位層ごとに成膜後、表面処理して薄膜を積層形成する触媒化学蒸着 法による単位層ポスト処理触媒化学蒸着装置及びその成膜方法に関する。
背景技術
[0002] 各種半導体デバイスや液晶ディスプレイ (LCD)等は、基板上に所定の薄膜を成膜 して製造されるが、その成膜方法として例えば CVD法 (ィ匕学気相成長法、化学蒸着 法とも!ヽぅ)が従来より用いられて!/ヽる。
[0003] CVD法としては、熱 CVD法、プラズマ CVD法などが従来より知られて!/、るが、近 年、加熱したタングステン等の素線 (以下、触媒体という)を触媒として利用し、反応 室内に供給される原料ガスを触媒体に接触させ分解することによって基板に堆積膜 を形成させる触媒 CVD法 (Cat— CVD法又はホットワイヤ CVD法とも呼ばれて ヽる) が実用化されている。
[0004] 触媒 CVD法は、熱 CVD法に比べて低温で成膜を行うことができ、また、プラズマ C VD法のようにプラズマの発生によって基板にダメージが生じる等の問題もないので、 次世代の半導体デバイスや表示デバイス (LCDなど)等の成膜方法として注目され ている。
このような触媒 CVD法によりシリコン窒化膜を成膜する場合、従来ではシランガス ( SiH )およびアンモニアガス (NH )を含む混合ガスを原料ガスとして反応容器内に
4 3
導入し、タングステンフィラメント等の触媒体を加熱して導入した原料ガスを接触させ 分解することによって、基板上に一度の成膜工程で必要膜厚のシリコン窒化膜を成 膜していた (例えば、特許文献 1参照)。
特許文献 1:特開 2002-367991号公報
発明の開示
発明が解決しょうとする課題
[0005] しカゝしながら、上記特許文献 1のような従来の触媒 CVD法で成膜されるシリコン窒 化膜は、膜厚の面内均一性がよくなぐステップカバレッジ (段差被覆性)も不十分で あり、電流 電圧 (I V)耐圧特性もよいものが得られておらず、改善の余地がある。 そこで、本発明は、このような課題にかんがみ、シリコン窒化膜などの面内均一性の 向上、ステップカバレッジの向上及び I V耐圧特性などの膜質の向上を図ることがで きるとともに、単位層ごとに成膜後、表面処理して薄膜を積層形成することができる単 位層ポスト処理触媒蒸着装置及びその成膜方法を提供することを目的とする。
課題を解決するための手段
[0006] 上記目的を達成するために本発明の単位層ポスト処理触媒化学蒸着装置のうち請 求項 1記載の発明は、真空排気可能な反応容器内で抵抗加熱した発熱触媒体の触 媒作用を利用して基板上に薄膜を形成する触媒化学蒸着装置であって、薄膜成分 含有ガス及び水素ガスの流量をパルス状に反応容器内に導入可能なガス供給系と 、真空排気かつ圧力制御可能な排気系とを備え、パルス状に導入された薄膜成分 含有ガス及び水素ガスが発熱触媒体に接触し分解し、基板上で単位層ごとの薄膜を 形成し、単位層ごとの薄膜に表面処理して積層薄膜を形成する構成を有して!/ヽる。
[0007] また請求項 2記載の発明は、上記構成に加え、表面処理が、活性種を含むシリコン を除く薄膜成分含有ガスによる表面処理及び活性種を含む水素ガスによる表面処理 の!、ずれか、或いは両方であることを特徴とするものである。
さらに請求項 3記載の発明は、発熱触媒体に水素ガスを照射して触媒能を再生さ せたことを特徴とするものである。
請求項 4記載の発明は、表面処理が、余剰薄膜成分の引き抜き処理及び薄膜成 分の直接的な添加処理の 、ずれか、或 、は両方であることを特徴とする。
請求項 5記載の発明は、水素ガスに代えて、窒素ガス及び希ガスのいずれかを用 いたことを特徴とする。
請求項 6記載の発明は、薄膜成分含有ガスが、シリコンの水素化物及びシリコンの ハロゲン化物のいずれかと、窒素及び窒素の水素化物のいずれか、或いは両方とで あることを特徴とする。
請求項 7記載の発明は、表面処理における活性種を含む薄膜成分含有ガスが窒 素及び窒素の水素化物の 、ずれか、或 、は両方であることを特徴とする。 [0008] 本発明の単位層ポスト処理成膜方法のうち請求項 8記載の発明は、真空排気可能 な反応容器内で抵抗加熱した発熱触媒体の触媒作用を利用して基板上に薄膜を形 成する触媒化学蒸着法であって、薄膜成分含有ガス及び水素ガスの流量をパルス 状に導入して発熱触媒体に接触させて活性種を発生させる活性ィ匕過程と、基板上で 単位層ごとの薄膜を形成する成膜過程と、活性種を含む水素ガスで単位層ごとの薄 膜の表面処理をする一の表面処理過程及び活性種を含む薄膜成分含有ガスで単 位層ごとの薄膜の表面処理をする他の表面処理過程の先後を問わず表面処理をす る過程とを備え、成膜後に表面処理をして単位層の薄膜を形成する一連の過程を一 サイクルとして、複数のサイクルを繰り返して積層された薄膜を形成する構成を有して いる。
[0009] また請求項 9記載の発明は、上記構成に加え、一の表面処理過程及び他の表面 処理過程の!/ヽずれかを一サイクル中に複数回の処理を繰り返すことを特徴とするも のである。
さらに請求項 10記載の発明は、一の表面処理過程及び他の表面処理過程のいず れか、或いは両方と、基板上で単位層ごとの薄膜を形成する成膜過程とが連続して 処理されることを特徴とするものである。
請求項 11記載の発明は、成膜過程、一の表面処理過程及び他の表面処理過程 の 、ずれかの後に残留ガスを真空排気することを特徴とする。
請求項 12記載の発明は、一の表面処理過程が、余剰薄膜成分の引き抜き処理を する過程であり、他の表面処理過程が薄膜成分の添加処理をする過程であることを 特徴とするものである。
[0010] 請求項 13記載の発明は、一サイクルの最終過程力 活性種を含むシリコンを除く 薄膜成分含有ガスで表面処理する過程であることを特徴とする。
請求項 14記載の発明は、水素ガスに代えて、窒素ガス及び希ガスのいずれかを用 いたことを特徴とする。
請求項 15記載の発明は、薄膜成分含有ガスが、シリコンの水素化物及びシリコン のハロゲン化物のいずれかと、窒素及び窒素の水素化物のいずれか、或いは両方と であることを特徴とするものである。 請求項 16記載の発明は、表面処理における活性種を含む薄膜成分含有ガスが窒 素ガス及び窒素の水素化物の 、ずれか、或いは両方であることを特徴とする。 請求項 17記載の発明は、薄膜成分含有ガスがモノシランガス及びアンモニアガス であり、成膜過程がシリコン窒化膜を基板上で単位層ごとに形成するものであり、他 の表面処理過程が活性種を含むアンモニアガスで単位層ごとのシリコン窒化膜の表 面処理をするものであることを特徴とする。
請求項 18記載の発明は、一サイクルの最終過程が、活性種を含む薄膜成分含有 ガスであるアンモニアガスで表面処理する過程であることを特徴とする。
発明の効果
[0011] 本発明の単位層ポスト処理触媒蒸着装置は、瞬時のガス導入の切り換えが可能で あるので、単位層ごとの成膜を行うことができるとともに、成膜した単位層ごとに表面 処理を行うことができ、面内膜厚均一性、ステップカバレジ及び膜質の向上を図るこ とができると!、う効果を有する。
また本発明の単位層ポスト処理成膜方法では、単位層ごとに成膜後、表面処理し ているので、膜厚の面内均一性の向上、ステップカバレッジの向上及び膜質特性の 向上した積層薄膜を形成することができるという効果を有する。
図面の簡単な説明
[0012] [図 1]本発明の実施形態に係る単位層ポスト処理触媒化学蒸着装置を示す概略構 成図である。
[図 2]本実施形態に係る単位層ポスト処理成膜方法のガス供給タイミングチャートの 一例を示す図である。
[図 3]ガス供給タイミングチャートを示す図。
[図 4]ガス供給タイミングチャートを示す図。
[図 5]ガス供給タイミングチャートを示す図。
[図 6]ガス供給タイミングチャートを示す図。
[図 7]ガス供給タイミングチャートを示す図。
[図 8]NH供給のみを変化させた時のステップカバレジ変化を示す図である。
3
[図 9]NH供給抑制下でのステップカバレジ改善用添加ガスとしての Hと Nの効果 を比較した図である。
[図 10]in— situポスト処理圧依存性を示す図である。
[図 11]複合ポスト処理時の水素処理効果を示す図である。
[図 12]複合ポスト処理時のガス雰囲気依存性を示す図である。
[図 13]積層された Cat- SiN膜の単位膜厚依存性を示す図である。
[図 14]アンモニア抑制の SiH ZNH ZH によるシリコン基板上の SiN膜の組成比
4 3 2
を示す図であり、(a)は水素ガス表面処理を先行させた場合を示し、(b)はアンモ- ァガス表面処理を先行させた場合を示す。
[図 15]シリコン基板上 50Aの SiN膜上に形成された SiNの組成比を示す図であり、 ( a)は水素ガス表面処理を先行させた場合を示し、 (b)はアンモニアガス表面処理を 先行させた場合を示す。
[図 16]ポスト処理時のガス導入順番依存性を示す図である。
[図 17]標準 Cat-SiNによる単層膜、適合ィ匕 Cat-SiN単位層単位ポスト処理による 積層膜及び PECVD— SiNによる単層膜の水素含有量を示す図である。
[図 18]各 Cat-SiN膜の水素含有量を比較する図である。
[図 19]実施例 1に係る成膜方法と従来の成膜方法との成膜条件を示す図である。
[図 20]実施例 2に係る成膜方法と従来の成膜方法との成膜条件を示す図である。
[図 21]実施例 2に係る成膜方法と従来の成膜方法とによって形成された各シリコン窒 化膜に対する、カバレッジと I-V電気耐圧特性の測定結果を示す図である。
[図 22]実施例 3に係る成膜方法と従来の成膜方法との成膜条件を示す図である。
[図 23]実施例 3に係る成膜方法と従来の成膜方法とによって形成された各シリコン窒 化膜に対する、膜厚の面内均一性とエッチング液に対する耐食性 (エッチング速度) の測定結果を示す図である。
符号の説明
1 単位層ポスト処理触媒化学蒸着装置
2 反応容器
3 原料ガス
4 ガス導入部 5 基板
6 基板ホルダー
8 触媒体
9 ガス供給多岐管
10 反応系
11 ガス供給系
13 排気系
15 ガス噴出口
21 シランガス導人ライン
23 アンモニアガス導人ライン
25 水素ガス導入ライン
27 窒素ガス導入ライン
31、 53 手動弁
33 マスフローコントローラ
34 第 1空圧式操作弁
35 第 2空圧式操作弁
37 逆止弁
39 ベントライン
41 補助ポンプ
43 ターボ分子ポンプ
45 圧力制御メインバルブ
47 サブバルブ
49 真空ゲージ
51 リリーフバルブ
55 ゲートパノレブ
57 ロード、口、ソク室 発明を実施するための最良の形態
本発明の単位層ポスト処理触媒化学蒸着装置は、真空排気可能な反応容器内で 抵抗加熱した発熱触媒体の触媒作用を利用して基板上に薄膜を形成する触媒化学 蒸着装置であって、薄膜成分含有ガス及び水素ガスの流量をパルス状に反応容器 内に導入可能なガス供給系と、真空排気かつ圧力制御可能な排気系とを備え、パル ス状に導入された薄膜成分含有ガス及び水素ガスが発熱触媒体に接触し分解し、 基板上で単位層ごとの薄膜を形成し、単位層ごとの薄膜を表面処理して積層薄膜を 形成するものである。
[0015] 以下、図 1一図 18に基づき、実質的に同一又は対応するものには同一符号を用い て、本発明による単位層ポスト処理触媒化学蒸着装置の好適な実施の形態を説明 する。
図 1は、本発明の実施形態に係る単位層ポスト処理触媒化学蒸着装置を示す概略 構成図である。
本実施形態にカゝかる単位層ポスト処理触媒ィ匕学蒸着装置 1は、反応系 10と、ガス 供給系 11と、排気系 13とを備える。
この単位層ポスト処理触媒ィ匕学蒸着装置 1における反応系 10の反応容器 2内の上 部には、反応容器 2内に原料ガス 3を導入するためのガス導入部 4が設けられており 、反応容器 2内の下部には、ガス導入部 4と対向する位置に基板 5を載置する基板ホ ルダー 6が設けられて!/、る。
[0016] 基板ホルダー 6内には、基板ホルダー 6上に載置される基板 5を所定温度に加熱す るためのヒータ 7が設けられて!/、る。
また、反応容器 2内のガス導入部 4と基板ホルダー 6との間のガス導入部 4側には、 ガス導入部 4から導入される原料ガスを加熱して分解するための触媒作用を有する 触媒体 8が設けられている。
ガス導入部 4の触媒体 8側にはガス噴出口 15が設けられており、噴出した原料ガス 3が触媒体 8に直ぐに接触するようになって!/、る。
触媒体 8として、本実施形態ではコイル状に巻かれたタングステン細線などの高融 点金属細線を用いている力 これに限らず、例えばイリジウム、レニウム、インジウム、 モリブデン、タンタル及びニオブ等が使用可能であり、さらにこれらの合金でもよい。
[0017] ガス導入部 4に接続されたガス供給多岐管 9には、原料ガスとしてのシランガス(Si H )、アンモニアガス (NH )及び水素ガス (H )をそれぞれ供給するガス供給系 11
4 3 2
が接続されており、シランガスとアンモニアガスは混合されてガス供給多岐管 9を介し てガス導入部 4に供給される。
薄膜成分としてシリコンを含む薄膜成分含有ガスとしてはシランガスの他に、ジシラ ン(Si H )、トリシラン(Si H ) ,四フッ化シリコン(SiF )、四塩化シリコン(SiCl )及
2 6 3 8 4 4 びジクロロシラン(SiH C1 )等の Siの水素化物やハロゲン元素含有 Si原料ガスが使
2 2
用可能である。
[0018] また窒素成分を含有するガスとしてはアンモニアの他に、窒素(N )やヒドラジン (N
2
H )などの窒素を含む化合物の窒素水素化物が使用可能である。
2 4
水素ガスの他にアルゴンやヘリウムなどの希ガス及び窒素ガスが使用可能である。 ここで、薄膜成分含有ガスは蒸気を含むものであり、例えば室温で液体のものはキ ャリアガスでパブリングにより蒸気圧が調整された薄膜成分含有ガスとして使用される ガス供給系 11は、原料ガス 3を供給するシランガス導入ライン 21、アンモニアガス 導入ライン 23、水素ガス導入ライン 25及び窒素ガス導入ライン 27を有しており、それ ぞれのラインは手動弁 31、マスフローコントローラ 33、第 1空圧式操作弁 34及び第 2 空圧式操作弁 35により原料ガスの質量流量を設定かつ制御して瞬時に切り換え可 能で、ガス供給多岐管 9に供給されるようになって 、る。
[0019] 第 1空圧式操作弁 34及び第 2空圧式操作弁 35は設定流量の変動を最小限に抑 えて矩形パルス状の質量流量を反応容器側へ切り換えるものである。
矩形パルス状の質量流量を反応容器 2側へ流すときは、ガス導入前に第 1空圧式 操作弁 34を開、第 2空圧式操作弁 35を閉にして所定設定流量をベント側へ流して 安定的な質量流量にしてから、第 1空圧式操作弁 34と第 2空圧式操作弁 35との開 閉を瞬時に切り換えることにより矩形状のステップパルス状の質量流量を可能にして いる。
ベント側ラインに原料ガスが流されるとき、これに対応して窒素ガスが流されるように なっている。図 1中、ベントライン 39の 37は逆止弁を示す。
なお、この窒素ガス導入ライン 27は、反応系 10のパージ及び成膜終了後の常圧 復帰等で使用される窒素ガスを供給する。
排気系 13は、補助排気ポンプ 41と、ターボ分子ポンプ 43と、圧力制御メインノ レ ブ 45と、サブバルブ 47と、真空ゲージ 49とを備え、反応容器 2は真空排気可能にな つている。
[0020] なお、 51はリリーフバルブ、 53は手動弁を示し、このラインは常圧復帰の際のベン トラインである。
圧力制御メインバルブ 45は真空ゲージ 49の検出信号に基づ 、て設定圧力になる ようにバルブの開度を制御して反応容器 2内の真空度を制御するようになっている。 反応系 10、ガス供給系 11及び排気系 13は、真空排気やガスの導入に伴うバルブ の開閉や質量流量の設定、触媒体への電流供給等のプロセスシーケンスは図示し な 、コンピュータで制御され、例えば操作パネル力 プロセス条件及びシーケンス処 理などのレシピを設定できるようになつている。
[0021] なお、図 1中、 55はゲートバルブ、 57はロードロック室を示す。
次に単位層ポスト処理触媒ィ匕学蒸着装置 1の使用方法を説明する。
先ず、ロードロック室 57に基板を搬送後、ゲートバルブ 55を介して反応容器 2内に 基板 5を搬入して基板ホルダー 6上に載置する。
次に、反応容器 2内を真空排気しつつ、水素ガスや窒素ガスでパージ後、これらの パージガスで所定圧力に制御する。
このとき、ヒータ 7に通電して抵抗加熱し、基板ホルダー 6上の基板 5を所定温度( 例えば 200°C— 600°C程度)に加熱すると共に、触媒体 (タングステン細線など) 8に 通電して抵抗加熱し、触媒体 8を所定温度 (例えば 1600°C— 1800°C程度)に加熱 しておく。
[0022] さらに、薄膜成分含有ガスを導入前に第 1空圧式操作弁 34を開に、第 2空圧式操 作弁 35閉にして所定設定流量をベント側へ流して安定的な質量流量にしておく。 そして、第 1空圧式操作弁 34と第 2空圧式操作弁 35との開閉を瞬時に切り換えて、 ガス供給管 9を通してガス導入部 4に原料ガス (シランガスとアンモニアガスの混合ガ ス、及び水素ガス)の質量流量を矩形パルス状に導入し、ガス導入部 4の下面に形 成した複数のガス噴出口 15からこの原料ガスが触媒体 8に向けて噴出する。 これにより、原料ガスが加熱されている触媒体 8によって接触熱分解されて、基板 5 上にシリコン窒化膜が例えば単分子層ごとを単位層として成膜される(以下、このェ 程を成膜工程という)。
[0023] このときの成膜条件は、シランガス (SiH )の流量が 7sccm、アンモニアガス(NH )
4 3 の流量が 10sccm、水素ガス(H )の流量が 10sccm、反応容器 2内の圧力が lOPa
2
、触媒体 8の温度が 1700°Cであり、このときの 1回の例えば 10秒間の成膜工程で、 本実施形態では膜厚が lnmの極薄のシリコン窒化膜を得る。
そして、引き続きこの 1回の単位層の成膜工程後にガス供給多岐管 9を通してガス 導入部 4に水素ガスを例えば 15秒間導入し、ガス噴出口 15から噴出される水素ガス 力 加熱されている触媒体 8を経由することにより活性化されて基板 5上に供給される これにより、基板 5上に形成されているシリコン窒化膜表面が活性化された水素ガス に晒され、シリコン窒化膜表面の組成が改善される(以下、この工程を一の表面処理 工程という)。
[0024] そして、引き続きこの一の表面処理工程後にガス供給多岐管 9を通してガス導入部 4にアンモニアガスを例えば 15秒間導入し、ガス噴出口 15から噴出されるアンモ- ァガスが、加熱されている触媒体 8を経由することにより活性化されて基板 5上に供給 される。
この一連のサイクルを繰り返すことにより単位層ごとに表面処理された積層薄膜が 堆積する。
このように本実施形態では、瞬時のガス導入の切り換え、圧力制御及び高速真空 排気処理が可能なので、矩形パルス状に薄膜成分含有ガス及び水素ガス等を導入 することができ、例えば 1700°Cの発熱触媒体に接触し分解し、基板上で単位層ごと の薄膜を形成し、その単位層ごとの薄膜に表面処理して積層薄膜を形成することが できる。
[0025] 次に、単位層ポスト処理触媒ィ匕学蒸着装置 1を用いた単位層ごとの単位層ポスト処 理成膜方法について説明する。
この単位層ポスト処理成膜方法は、真空排気可能な反応容器内で抵抗加熱した発 熱触媒体の触媒作用を利用して基板上に薄膜を形成する触媒化学蒸着法であって 、薄膜成分含有ガス及び水素ガスの流量をパルス状に導入して発熱触媒体に接触 させて活性種を発生させる活性ィ匕過程と、基板上で単位層ごとの薄膜を形成する成 膜過程と、活性種を含む水素ガスで単位層ごとの薄膜の表面処理をする一の表面 処理過程及び活性種を含む薄膜成分含有ガスで単位層ごとの薄膜の表面処理をす る他の表面処理過程の先後を問わず両方の表面処理をする過程とを備え、成膜後 に表面処理した単位層の薄膜を形成する一連の過程を一サイクルとして、複数のサ イタルを繰り返して、積層された薄膜を形成するものである。
[0026] 以下、詳細に説明する。
プロセス条件は 触媒 (Cat)線である W (タングステン)の温度を 1700°C、基板カロ 熱ヒータ温度を 100— 300°Cとし、 8インチ Siウェハを基板として用いる。
例としてシリコン窒化膜について説明する。
図 2は本実施形態に係る単位層ポスト処理成膜方法のガス供給タイミングチャート の一例を示す図である。
図 2を参照して、本実施形態にカゝかる単位層ポスト処理成膜方法は、 SiH ZNH
4 3
ZH = [7/10/10] sccm, lOPaの条件で単位層 SiNを成膜後に 5秒間排気処
2
理し、 Hでその場 (in— situ)ポスト処理を行う。
2
その後再び 5秒間排気処理し、さらに NHで in— situポスト処理を行うことを 1サイク
3
ノレとして!/、る。
[0027] このタイミングチャートではシリコン窒化膜の成分ガスである NHでのポスト処理に
3
引き続 ヽて連続して成膜処理を行 ヽ、ポスト処理及び成膜処理を一処理で行って ヽ る。
図 3—図 7はガス供給タイミングチャートの他の例を示す。各共通プロセス条件は発 熱触媒体の温度が 1700°C、圧力が lOPaである。
図 3は、成膜→水素表面処理→アンモニア表面処理→成膜→' · ·を示す図である また図 4は、成膜→アンモニア表面処理→水素表面処理→成膜→' · ·を示し、 図 5は成膜→水素表面処理→アンモニア表面処理→水素表面処理→成膜→' · ·を 示し、図 6は成膜→アンモニア表面処理→水素表面処理→アンモニア表面処理→ 成膜→· · ·を示し、図 7は成膜→真空排気→水素表面処理→アンモニア表面処理→ 真空排気→成膜→' · ·を示す図である。
図 3に示す例では、成膜処理における水素ガス導入と、その後の水素表面処理を 連続して処理し、さらにアンモニア表面処理後、成膜処理におけるアンモニアガス導 入とを連続して処理して 、る。
[0028] このように成膜処理及び表面処理における原料ガスの導入を一処理で行うと流量 及び圧力の変動を小さく抑えることができる。
図 7に示す例では、成膜処理の前後に真空排気して雰囲気残留ガスを一掃するこ とにより、ガスメモリ効果を消滅させている。
このように成膜の前後で真空排気することによりガス供給の有無を確実にでき、例 えば単分子層ごとの成膜が可能になる。
図 8は、プロセス条件が SiH /H供給を一定([7ZlO] sccm)に保持したまま、 N
4 2
H供給のみを変化させた時のステップカバレジ変化を示したものである。
3
図 8に示すように、ステップカバレジ改善が NH供給抑制に対して漸進的ではなく
3
、ある限界([SiH /NH ]供給比率 =一 1Z2程度)を超えて極端に抑制されると破
4 3
滅的に突然もたらされるが、 NH供給を完全に遮断した [SiH /H ]原料だけによる
3 4 2
成膜系(すなわち Cat— CVDによる a— Si成膜系)では再びステップカバレジが劣化 する。
[0029] また、基板温度設定を上昇させるとステップカバレジ改善が消失する傾向にある。
図 9は、 NH供給抑制下でのステップカバレジ改善用添加ガスとしての Hと Nの
3 2 2 効果を比較した図である。
図 9で明らかなように、ステップカバレジは添加ガスが窒素よりも水素ガスの方が極 めて良好である。
したがって、ステップカバレジの改善のためには、添加ガスの種類として Hが好まし
2 い。
図 8及び図 9から、 NH由来の Catラジカル(Cat— NH )と H由来の Catラジカル
3 3 2
又は H原子 (Cat— H )の競争吸着過程中に介在すると推定される堆積中の表面過 程阻害が、顕著に Siリッチな SiN表面にぉ 、てのみ発生することが示されて 、る様に 見える。
[0030] SiN膜 Cat— CVD系において添加 Hの果たす役割のひとつは、 Siリッチな SiN
2
が成膜される [SiH ZNH ]供給条件下でのバックエッチ種の可能性を指摘できる。
4 3
堆積中の Siリッチ SiN膜表面に発生する余剰 Siは、共存する Cat— H〖こ SiHn(n
2
≤ 4)気相シリルラジカルを生成するエッチング反応の攻撃サイトをただちに提供し、 母層である SiNの堆積にこれと競争的なバックエッチ過程が重畳すると考えられる。
[0031] このことは一面では堆積中 SiNの表面過程阻害の発生にほかならず、系の表面過 程律速側への移行を通したステップカバレジ改善の一因になっていると推察される。
SiH C1 (ジクロロシラン; DCS)、 Si CI (へキサクロロジシラン; HCD)、 SiCl (四
2 2 2 6 4 塩化シリコン; TCS)、 SiH F (ジフロロシラン; DFS)、 SiF (四フッ化シリコン; TF
2 2 4
S)等のハロゲン元素含有 Si原料ガスの使用によって酸ィ匕性バックエッチ種を堆積中 に関与させ得る熱 CVD系と異なり、 SiH , Si H等の飽和水素化 Siを Si原料ガスと
4 2 6
して使用する熱 CVD系では HC1, HFガス等のハロゲン元素含有ガスを別途添カロし ない限り一般に良好なカバレジは得にくいと考えられる。
[0032] NH供給を極端に抑制した [SiH ZNH /H ]原料による Siリッチ SiN膜 Cat—
3 4 3 2
CVD系は、 H力 ^還元性バックエッチ種」として機能できる希少かつ貴重な CVD系
2
と言える。
このことは、堆積にかかわるラジカルの発生場所を基板から遠く離れた触媒体上に 局在させる、 t 、う Cat-CVDの基本原理と密接に結びつ ヽて 、る様にも見える。
Cat— H2ラジカルの発生にとっては理想的な 2000°C近い超高温を利用できるに もかかわらず発生ラジカルの吸着媒である基板の温度は、膜堆積の表面過程制御に 最適なそれに独立に超低温に設定できることと、 Cat— Hラジカルの基板への輸送
2
媒質である [触媒体 基板]間の気相を放電が存在しな!、「静かな (かつ衝突による 輸送中失活機会の少ない超低圧の)気相」にできるということとがあいまって、堆積中 基板表面で高濃度で安定な Hサーファタタントの形成が促進されるのだろうと推定し ている。
図 10は lnm厚の SiN単位層を約 100層積層した lOOnm厚 SiNの屈折率、単位層 当たりの成膜速度、及び 8インチ基板面内膜厚分布の in— situポスト処理圧依存性を 示す図である。
[0033] 図 10に示すように、屈折率、成膜速度及び面内膜厚均一性は、処理圧にはほとん ど依存しないもののポスト処理雰囲気(ガス種)、即ちアンモニアガスと水素ガスとの 差異には影響されることが示されて 、る。
ここで、ポスト処理雰囲気とは、例えば [A(20秒)→排気(5秒)→NH (10秒) ]で
3
表記される連続的なポスト処理手順のうち「雰囲気 A」に相当するものである。つまり「 雰囲気 A」でのガス種選択にかかわらず NH処理は必ず受けて!/、る。
3
「雰囲気 A」を NHとすることで Cat— NH照射のみで構成される in— situポスト処理
3 3
を適用した時よりも、「雰囲気 A」を Hとして Cat— H照射される期間も設定した複合
2 2
的内容のポスト処理を適用した時の方が、屈折率、単位層当たりの成膜速度及び 8ィ ンチ基板面内膜厚分布とも有意に低くなつている。
実際、これらの SiN膜を誘電体とする MIS構造キャパシタで測定されたリーク電流 は、図 11に示すように、 Cat— H照射される期間も設定した複合的なポスト処理を施
2
して積層した Cat— CVDSiNの方が Cat— NH照射のみのポスト処理によるそれより
3
も少ない。
[0034] Siリッチな SiNCat— CVD系における表面過程阻害的なサーファタタントとしての C at— Hの可能性に言及した力 この時の堆積中、表面の余剰 Siの気相シリルラジカ
2
ルへの水素化バックエッチングは、 "余剰 Siの引き抜き"という意味でポスト処理期間 中の SiN組成矯正剤としての Cat-Hの可能性を示唆する。
2
上記の結果は、不足して!/、る Nを補填する「ポスト窒化」だけでなく過剰な Siを除去 する「Si引き抜き」も Siリッチ SiN膜の組成矯正手段として有効であることを示して 、る 様に見える。
図 12は Cat-H照射と Cat— NH照射を併用する"複合ポスト処理"時のガス雰囲
2 3
気の照射順番カ^ーク電流に与える影響を示す図である。
図 12に示すように、順番の影響がほとんどないことよりも(Cat— NH照射を関与さ
3
せず) Cat - H照射のみで構成されるポスト処理の場合は、組成矯正効果が不十分
2
であることを示している。 したがって、化学量論組成化には「Si引き抜き」と「ポスト窒化」を併用すべきである 図 13は、プロセス条件が最適化された"複合ポスト処理"を施す単位層ごとの Cat— CVDによる積層 SiN膜のリーク電流の単位層膜厚依存を示す図である。
図 13に示すように、単位層膜厚が薄くなるにつれてリーク電流が低減して!/ヽる。 したがって、一サイクル当たりの堆積膜厚を薄ぐ好ましくは単分子層を単位として 単位層ごとにポスト処理するほどリーク電流が低減され、電気的特性が良好になる。
[0035] 次に本実施形態におけるガス導入の順番にっ 、て説明する。
CVD開始時の原料ガスの導入順番は、基板表面上の初期核発生プロセスへの影 響を通して [基板 堆積膜]界面の特性に決定的な影響を与えることが広く知られて いる。
図 14はガス種の違いによる表面処理と SiN膜の膜厚方向元素プロファイルを示す 図である。
図 14に示した例は、 30nm厚の単層 SiN膜を [SiH /NH /H ]原料の Cat— CV
4 3 2
Dで成膜する際、成膜開始直前に NH又は Hのみを 30秒間、先行導入させるステ
3 2
ップを設けたもので、成膜時の各ガス流量は [SiH /NH ZH ] = [7/10/10] SC
4 3 2
cmであり、顕著に Siリッチではあるが良好なステップカバレジが得られる条件である。 30秒間先行導入時の NH又は H流量も成膜時のそれと同一である。
3 2
[0036] NH先行導入時には、導入後 30秒が経過した時点で SiHと Hを同時に導入する
3 4 2
ことで SiN— CVDが開始し、一方、 H先行導入時には 30秒後に SiHと NHを同時
2 4 3 導入することで SiN— CVDが開始する。
なお、単層 SiN の Cat— CVDでは" 30秒間 NH先行導入"を標準にしている。
3
図 14 (a)及び (b)に示すように、成膜時のガス条件が同一であるにもかかわらず、 先行導入するガスの種類によって膜組成が [Si基板 堆積膜]界面付近のみならず 膜厚方向全体にわたって大幅に異なっている。
[0037] さら〖こ、 "H2先行導入"の Cat— CVDでは、成膜時の NH供給を極端に抑制して!/ヽ
3
るのにもかかわらず、 NHを十分に供給した Cat— CVD 時と類似したステップカバ
3
レジの不十分な SiNが堆積し、屈折率の大幅な低下と堆積速度の顕著な (本例では 2倍程度)増大も観測されていて、 NHの分解効率が向上している様に見える。
3
図 15 (a)及び (b)は、基板として表面に予め 5nm厚の SiNを成膜した Si基板を使 用した場合を示すが、この下敷き SiNの組成にも依存せず、 Si基板上に直接成膜し た場合と同じ傾向になっている。
[0038] したがって、基板表面の修飾状態や材質には鈍感に堆積膜全体の性質が決定さ れて 、る。 系に関与する「表面」としては生成ラジカルの吸着媒である基板表面の ほかにラジカル生成場所である Cat線表面もある、 t ヽぅ Cat— CVD特有の状況を勘 案するならば、上記現象の起源は基板表面での過程よりも Cat線表面での過程に求 めるべきことが示唆されて 、る。
[0039] ところで Cat— CVDにお!/、てはこれまで、化学量論組成の SiNを堆積するためには 、例えばプラズマ CVD系に比較して、異常に大きな [NH /SiH ]供給比率 (通常
3 4
は 20以上程度)にする必要があった力 これは SiHと NHの Cat線上共存時の NH
4 3
3分解効率の不可避的低下、ということに帰せられてきた。
しかし H先行導入時に NHの分解効率が大きく向上するということは、多元ガス系
2 3
使用プロセス時の自己被毒によって低下した Cat線の触媒能が、直前の H被曝によ
2 つて再生できることを示唆して 、る。
[0040] この観点からは、循環的な成膜プロセスである単位層ごとの(Layer~by— Layer) C VD系にお 、て、ある単位層成膜直後のポスト処理には次の単位層成膜の前処理の 役割も同時にある、という点に注意が必要である。
したがって Cat— H及び Cat— NH導入による連続的なポスト処理は、高ステップ力
2 3
バレジを得るためには Cat— NH導入処理で終了するのが望ましい。
3
図 16はポスト処理時のガス導入順番依存性を示す図である。
図 16に示すように、 "in— situポスト処理"中の Cat— Hと Cat— NHの照射順番が
2 3
積層 SiNのステップカバレジに与える影響は、屈折率が同一でも順番によりステップ カバレジは一変しており、高ステップカバレジを得るためには単位膜成膜後に後処理 としてアンモニアを導入するのが極めて効果的である。
[0041] 次に本実施形態による膜質について説明する。
図 17は標準 Cat-SiNによる単層膜、適合ィ匕 Cat-SiN単位層単位ポスト処理によ る積層膜及び PECVD-SiNによる単層膜の水素含有量を示す図である。
SiN膜中の水素含有量を FTIR ^ベクトルによって評価した結果、図 17に示すよう に本実施形態の Layer— by— LayerCVDプロセスでは、膜中水素含有量が減少する 十分に NHを供給する従来標準条件の単層 Cat— CVDSiN膜にぉ 、ても含有水
3
素量が PECVD によるものより少ないことは以前より知られている力 本実施形態の ように各単位層毎に Cat— H照射と Cat— NH照射を併用する" in— situ複合ポスト処
2 3
理" Cat-CVDで成膜すると、さらに減少し、 2. 2 X 1021cm— 3程度にまでなる。
[0042] 図 18は H添加や NH供給抑制及び積層膜構造が含有水素量に与える影響を比
2 3
較した図である。
図 18から、 Hを添加し、かつ、極端に NH供給を抑制した [SiH /NH /H ]原
2 3 4 3 2 料の Cat— CVDでは、 Siリッチ SiN膜を単位層とする積層 SiN膜中の水素含有量は 、 Hを添加せず、かつ、 NHを十分供給した [SiH /NH ]原料を使用する Cat— C
2 3 4 3
VDSiN中のそれより、積層膜か単層膜かを問わずむしろ少ない。
また、原料ガスに H
2添加がない場合、積層膜ィ匕によっても含有水素量低減効果は でない。
さらに、 Hを添加し、かつ、極端に NH供給を抑制した [SiH /NH ZH ]原料の
2 3 4 3 2
Cat— CVDでは、 Siリッチ SiN膜であっても単層厚膜では水素含有量が逆に増大し 最も多くなる。
[0043] 以上の説明から明らかなように水素ガスによる表面処理過程が余剰 Siの弓 Iき抜き 処理であり、アンモニアガスによる表面処理力 を補填する添加処理であるといえ、こ のような処理を複合ィ匕したプロセスにより膜厚の均一性及び膜質の向上を図ることが できる。
また一サイクルの最終過程をアンモニアガスによる表面処理をすることによりステツ プカバレジが格段によくなる。
このように本実施形態にカゝかる単位層ポスト処理成膜方法では、面内膜厚均一性、 ステップカバレジ及び膜質の良好な薄膜を形成することができる。
実施例 [0044] 次に、実施例について説明する。
(実施例 1)
実施例 1では、図 1を参照して、 lOPaの減圧下、ヒータ 7に通電して抵抗加熱し、基 板ホルダー 6上の基板 5を例えば 200°Cに加熱すると共に、触媒体 (タングステン細 線など) 8に通電して抵抗加熱し、触媒体 8を 1700°Cに加熱している。
成膜条件は、図 19に示すように、シランガス(SiH )の流量が 7sccm、アンモニア
4
ガス(NH )の流量が 10sccm、水素ガス(H )の流量が 10sccm、反応容器 2内の圧
3 2
力が 10Pa、触媒体 8の温度が 1700°Cであり、このときの 1回の 10秒間の成膜工程 で、本実施例では膜厚が lnmの極薄のシリコン窒化膜を得る。
図 2に示したタイミングチャートで、成膜工程、一及び他の表面処理工程を 1サイク ルとし、この 1サイクルの成膜工程、一及び他の表面処理工程を連続して本実施例で は 50回繰り返して、最終的に総膜厚が 50nmのシリコン窒化膜を形成した。
総膜厚が 50nmのシリコン窒化膜に対して、フーリエ変換赤外分光光度計 (FTIR) で測定したシリコン窒化膜中の水素濃度 (水素含有量)は 2 X 1021atomZcm3であ つた o
[0045] これに対し、従来の方法のように一度の成膜工程で成膜された膜厚が 50nmのシリ コン窒化膜に対して、フーリエ変換赤外分光光度計 (FTIR)で測定したこのシリコン 窒化膜中の水素濃度は 7 X 1021atomZcm3であった。
なお、このときの従来の成膜条件は、図 19に示すように、シランガス(SiH )の流量
4 が 7sccm、アンモニアガス(NH )の流量が 10sccm、水素ガス(H )の流量が lOscc
3 2
m、反応容器 2内の圧力が 10Pa、触媒体 8の温度: 1700°Cであり(これらの条件は、 本発明の実施形態における成膜方法の場合と同じ条件)、このときの 1回の成膜工程 で膜厚が 50nmのシリコン窒化膜を得る。
この結果から明らかなように、本発明の成膜工程、一及び他の表面処理工程を 1サ イタルとし、この 1サイクルの成膜工程、一及び他の表面処理工程を連続して複数回 繰り返して、最終的に所望の膜厚のシリコン窒化膜を得る本願発明に係る成膜方法 によれば、従来の成膜方法で得られるシリコン窒化膜の水素濃度水素濃度の値に対 して大幅に低くなる。 したがって、高電界印加時のリーク電流が増加することもなぐ長期にわたって信頼 性の高い高品位なシリコン窒化膜を提供することができる。
[0046] 〈実施例 2〉
実施例 1では、 1回の成膜工程で膜厚が lnmのシリコン窒化膜を成膜し、この成膜 工程、一の表面処理工程及び他の表面処理工程の一サイクルの工程を連続して 50 回繰り返して最終的に膜厚が 50nmのシリコン窒化膜を形成したが、実施例 2では、 実施例 1と同様の成膜方法で、一サイクルの工程で膜厚が lnmのシリコン窒化膜を 成膜し、この一サイクルの処理工程を連続して 100回繰り返して最終的に膜厚が 10 Onmのシリコン窒化膜を形成した。
このときのプロセス成膜条件は、図 20に示すように、シランガス(SiH )の流量が 7s
4
ccm、アンモニアガス(NH )の流量が 10sccm、水素ガス(H )の流量が 10sccm、
3 2
反応容器 2内の圧力が 10Pa、触媒体 8の温度が 1700°Cであり(これらの条件は、実 施例 1の場合と同じ条件)、このときの 1回の成膜工程で膜厚が lnmのシリコン窒化 膜を得る。
[0047] また、実施例 2においても、実施例 1と同様に一の表面処理工程では水素ガスを導 入し、他の表面処理工程ではアンモニアガスを導入した。
実施例 2による成膜方法で得られた総膜厚が lOOnmのシリコン窒化膜の、ステップ カバレッジ(%)と電流 電圧 (I-V)電気耐圧特性 (MV/cm)を測定したところ、図 2 1に示すような測定結果、即ち、シリコン窒化膜のサイドカバレッジが 72%,ボトム力 バレッジが 90%、 I V電気特性耐圧が 4. 8MVZcmと得られた。
また、実施例 2の成膜方法に対する比較のために、従来の方法のように一度の成 膜工程で成膜された膜厚が lOOnmのシリコン窒化膜に対して、カバレッジ(%)と電 流 電圧 (I-V)電気特性耐圧 (MV/cm)を測定したところ、図 21に示すような測定 結果、シリコン窒化膜のサイドカバレッジが 72%,ボトムカバレッジが 90%、 I V電気 特性耐圧が 0. lMVZcm以下と得られた。
[0048] なお、このときの成膜条件は、図 20に示すように、シランガス(SiH )の流量が 7scc
4
m、アンモニアガス(NH )の流量が 10sccm、水素ガス(H )の流量が 10sccm、反
3 2
応容器 2内の圧力が 10Pa、触媒体 8の温度が 1700°Cであり(これらの条件は、実施 例 2における成膜方法の場合と同じ条件)、このときの 1回の成膜工程で膜厚が ΙΟΟη mのシリコン窒化膜を得る。
この結果力も明らかなように、上記した成膜工程、一及び他の表面処理工程を 1サ イタルとし、この 1サイクルの成膜工程、一の表面処理工程、他の表面処理工程を連 続して複数回繰り返して、最終的に所望の膜厚のシリコン窒化膜を得る本願発明に 係る成膜方法による方が、従来の成膜方法で得られるシリコン窒化膜に対して、ステ ップカバレッジが向上し、かつ、 I V電気耐圧特性も向上した。
[0049] 〈実施例 3〉
実施例 3では、実施例 2と同様の成膜方法で、 1回の成膜工程で膜厚が lnmのシリ コン窒化膜を成膜し、この成膜工程、一の表面処理工程、他の表面処理工程を連続 して 100回繰り返して最終的に膜厚が lOOnmのシリコン窒化膜を形成した。
このときの成膜条件は、図 22に示すように、シランガス(SiH )の流量が 7sccm、ァ
4
ンモユアガス(NH )の流量が 10sccm、水素ガス(H )の流量が 10sccm、反応容器
3 2
2内の圧力が 10Pa、触媒体 8の温度が 1700°Cであり(これらの条件は、実施例 2に おける成膜方法の場合と同じ条件)、このときの 1回の 10秒間の成膜工程で、実施例 3では膜厚が lnmの極薄のシリコン窒化膜を得る。
そして、成膜されたこの膜厚が lOOnmのシリコン窒化膜の、膜厚の面内均一性とバ ッファード弗酸によるエッチング速度を測定したところ、図 23に示すような測定結果、 即ち、面内均一性が ±4%、エッチング速度が 2nmZminと得られた。
[0050] また、実施例 3の成膜方法に対する比較のために、従来の方法のように一度の成 膜工程で成膜された膜厚が lOOnmのシリコン窒化膜に対して、膜厚の面内均一性と ノ ッファード弗酸によるエッチング速度を測定したところ、図 6に示すような測定結果 、即ち、面内均一性が ± 10%、エッチング速度が 6nmZminが得られた。
なお、このときの成膜条件は、図 22に示すように、シランガス(SiH )の流量が 7scc
4
m、アンモニアガス(NH )の流量が 100sccm、水素ガス(H )の流量が Osccm、反
3 2
応容器 2内の圧力が 10Pa、触媒体 8の温度が 1700°Cであり、このときの 1回の成膜 工程で膜厚が lOOnmのシリコン窒化膜を得る。
[0051] この結果から明らかなように、成膜工程、一の表面処理工程、他の表面処理工程を 1サイクルとし、この 1サイクルの工程を連続して複数回繰り返して、最終的に所望の 膜厚のシリコン窒化膜を得る本願発明に係る成膜方法による方が、従来の成膜方法 で得られるシリコン窒化膜に対して、膜厚の面内均一性の向上を図ることができ、ま た、エッチング液に対する耐食性の向上も図ることができた。
なお、上記した本発明に係るシリコン窒化膜の成膜方法において、 1サイクルの成 膜工程、一の表面処理工程、他の表面処理工程を連続して複数回繰り返して行なう 際に、 1サイクルでの成膜工程、一の表面処理工程、他の表面処理工程の各処理時 間、及びこの 1サイクルの繰り返し回数は任意に設定して行なうことができる。
[0052] また、この 1サイクルでの成膜工程、一の表面処理工程、他の表面処理工程との間 の移行時に反応容器 2内の圧力を任意に調整するようにしてもよい。
さらに、この 1サイクルでの成膜工程後の一の表面処理工程、他の表面処理工程を 交互に複数回繰り返すようにしてもょ 、。
産業上の利用可能性
[0053] 本発明の単位層ポスト処理触媒化学蒸着装置及び単位層ポスト処理成膜方法で は、単分子層を単位とする積層された成膜を形成することができ、膜厚面内均一性、 ステップカバレジ及び膜質の良好な薄膜を形成するのに有用である。

Claims

請求の範囲
[1] 真空排気可能な反応容器内で抵抗加熱した発熱触媒体の触媒作用を利用して基 板上に薄膜を形成する触媒ィ匕学蒸着装置であって、
薄膜成分含有ガス及び水素ガスの流量をパルス状に上記反応容器内に導入可能 なガス供給系と、真空排気かつ圧力制御可能な排気系とを備え、
上記パルス状に導入された薄膜成分含有ガス及び水素ガスが上記発熱触媒体に 接触し分解し、上記基板上で単位層ごとの薄膜を形成し、その単位層ごとの薄膜に 表面処理して積層薄膜を形成する単位層ポスト処理触媒化学蒸着装置。
[2] 前記表面処理が、活性種を含むシリコンを除く薄膜成分含有ガスによる表面処理 及び活性種を含む水素ガスによる表面処理の 、ずれか、或!、は両方であることを特 徴とする請求項 1記載の単位層ポスト処理触媒ィヒ学蒸着装置。
[3] 前記発熱触媒体に水素ガスを照射して触媒能を再生させたことを特徴とする請求 項 1記載の単位層ポスト処理触媒ィヒ学蒸着装置。
[4] 前記表面処理が、余剰薄膜成分の引き抜き処理及び薄膜成分の直接的な添加処 理のいずれか、或いは両方であることを特徴とする請求項 1記載の単位層ポスト処理 触媒化学蒸着装置。
[5] 前記水素ガスに代えて、窒素ガス及び希ガスのいずれかを用いたことを特徴とする 請求項 1に記載の単位層ポスト処理触媒ィ匕学蒸着装置。
[6] 前記薄膜成分含有ガスが、シリコンの水素化物及びシリコンのハロゲンィ匕物のいず れかと、窒素及び窒素の水素化物のいずれか、或いは両方とであることを特徴とする 請求項 1記載の単位層ポスト処理触媒化学蒸着装置。
[7] 前記表面処理における活性種を含む薄膜成分含有ガスが窒素及び窒素の水素化 物のいずれか、或いは両方であることを特徴とする請求項 1記載の単位層ポスト処理 触媒化学蒸着装置。
[8] 真空排気可能な反応容器内で抵抗加熱した発熱触媒体の触媒作用を利用して基 板上に薄膜を形成する触媒化学蒸着法であって、
薄膜成分含有ガス及び水素ガスの流量をパルス状に導入して上記発熱触媒体に 接触させて活性種を発生させる活性ィ匕過程と、基板上で単位層ごとの薄膜を形成す る成膜過程と、活性種を含む水素ガスで単位層ごとの薄膜の表面処理をする一の表 面処理過程及び活性種を含む薄膜成分含有ガスで単位層ごとの薄膜の表面処理を する他の表面処理過程の先後を問わず表面処理をする過程とを備え、
成膜後に表面処理をして単位層の薄膜を形成する一連の過程を一サイクルとして 、複数のサイクルを繰り返して積層された薄膜を形成する単位層ポスト処理成膜方法
[9] 前記一の表面処理過程及び他の表面処理過程の!/ヽずれかを一サイクル中に複数 回の処理を繰り返すことを特徴とする請求項 8記載の単位層ポスト処理成膜方法。
[10] 前記一の表面処理過程及び他の表面処理過程の!/ヽずれか、或いは両方と、基板 上で単位層ごとの薄膜を形成する成膜過程とが連続して処理されることを特徴とする 請求項 8記載の単位層ポスト処理成膜方法。
[11] 前記成膜過程、前記一の表面処理過程及び他の表面処理過程の!/ヽずれかの後に 残留ガスを真空排気することを特徴とする請求項 8記載の単位層ポスト処理成膜方 法。
[12] 前記一の表面処理過程が、余剰薄膜成分の引き抜き処理をする過程であり、前記 他の表面処理過程が薄膜成分の添加処理をする過程であることを特徴とする請求項
8記載の単位層ポスト処理成膜方法。
[13] 前記一サイクルの最終過程が、活性種を含むシリコンを除く薄膜成分含有ガスで表 面処理する過程であることを特徴とする請求項 8記載の単位層ポスト処理成膜方法。
[14] 前記水素ガスに代えて、窒素ガス及び希ガスのいずれかを用いたことを特徴とする 請求項 8に記載の単位層ポスト処理成膜方法。
[15] 前記薄膜成分含有ガスが、シリコンの水素化物及びシリコンのハロゲンィ匕物のいず れかと、窒素及び窒素の水素化物のいずれか、或いは両方とであることを特徴とする 請求項 8記載の単位層ポスト処理成膜方法。
[16] 前記表面処理における活性種を含む薄膜成分含有ガスが、窒素及び窒素の水素 化物のいずれか、或いは両方であることを特徴とする請求項 8記載の単位層ポスト処 理成膜方法。
[17] 前記薄膜成分含有ガスがモノシランガス及びアンモニアガスであり、前記成膜過程 がシリコン窒化膜を基板上で単位層ごとに形成するものであり、前記他の表面処理 過程が活性種を含むアンモニアガスで単位層ごとのシリコン窒化膜の表面処理をす るものであることを特徴とする請求項 8に記載の単位層ポスト処理成膜方法。
前記一サイクルの最終過程が、活性種を含む薄膜成分含有ガスであるアンモニア ガスで表面処理する過程であることを特徴とする請求項 15— 17のいずれかに記載 の単位層ポスト処理成膜方法。
PCT/JP2005/005566 2004-03-26 2005-03-25 単位層ポスト処理触媒化学蒸着装置及びその成膜方法 WO2005093809A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006511534A JPWO2005093809A1 (ja) 2004-03-26 2005-03-25 単位層ポスト処理触媒化学蒸着装置及びその成膜方法
US10/593,444 US20080050523A1 (en) 2004-03-26 2005-03-25 Unit-Layer Post-Processing Catalyst Chemical-Vapor-Deposition Apparatus and Its Film Forming Method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004091987 2004-03-26
JP2004-091987 2004-03-26

Publications (1)

Publication Number Publication Date
WO2005093809A1 true WO2005093809A1 (ja) 2005-10-06

Family

ID=35056469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/005566 WO2005093809A1 (ja) 2004-03-26 2005-03-25 単位層ポスト処理触媒化学蒸着装置及びその成膜方法

Country Status (6)

Country Link
US (1) US20080050523A1 (ja)
JP (2) JPWO2005093809A1 (ja)
KR (1) KR100882174B1 (ja)
CN (1) CN100444332C (ja)
TW (1) TW200603287A (ja)
WO (1) WO2005093809A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278497A (ja) * 2005-03-28 2006-10-12 Tokyo Electron Ltd シリコン窒化膜の形成方法、シリコン窒化膜の形成装置及びプログラム
US7727590B2 (en) * 2006-05-18 2010-06-01 California Institute Of Technology Robust filament assembly for a hot-wire chemical vapor deposition system
JP2011168881A (ja) * 2010-01-25 2011-09-01 Hitachi Kokusai Electric Inc 半導体装置の製造方法及び基板処理装置
JP2013102200A (ja) * 2007-04-02 2013-05-23 Hitachi Kokusai Electric Inc 基板処理装置、基板処理方法及び半導体装置の製造方法
JP2014179607A (ja) * 2013-03-14 2014-09-25 Asm Ip Holding B V 低温でのSiNの蒸着用Si前駆体

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008114363A1 (ja) * 2007-03-16 2010-06-24 富士通マイクロエレクトロニクス株式会社 半導体装置の製造装置、および半導体装置の製造方法
JPWO2012014992A1 (ja) * 2010-07-30 2013-09-12 学校法人東海大学 不揮発性半導体メモリ装置及びその製造方法、並びに電荷蓄積膜
US8778816B2 (en) * 2011-02-04 2014-07-15 Applied Materials, Inc. In situ vapor phase surface activation of SiO2
KR101220480B1 (ko) * 2011-12-01 2013-01-21 주식회사 케이씨텍 원자층 증착방법
JP2014004700A (ja) * 2012-06-22 2014-01-16 Kyushu Institute Of Technology 金属表面の加飾加工方法
US9564309B2 (en) 2013-03-14 2017-02-07 Asm Ip Holding B.V. Si precursors for deposition of SiN at low temperatures
WO2014174805A1 (ja) * 2013-04-22 2014-10-30 パナソニック株式会社 El表示装置の製造方法
US9576792B2 (en) 2014-09-17 2017-02-21 Asm Ip Holding B.V. Deposition of SiN
KR101576639B1 (ko) * 2014-09-18 2015-12-10 주식회사 유진테크 절연막 증착 방법
US10410857B2 (en) 2015-08-24 2019-09-10 Asm Ip Holding B.V. Formation of SiN thin films
US11154903B2 (en) * 2016-05-13 2021-10-26 Jiangsu Favored Nanotechnology Co., Ltd. Apparatus and method for surface coating by means of grid control and plasma-initiated gas-phase polymerization
JP6789257B2 (ja) * 2018-02-28 2020-11-25 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置、およびプログラム
US10580645B2 (en) 2018-04-30 2020-03-03 Asm Ip Holding B.V. Plasma enhanced atomic layer deposition (PEALD) of SiN using silicon-hydrohalide precursors
KR20220081905A (ko) 2020-12-09 2022-06-16 에이에스엠 아이피 홀딩 비.브이. 실리콘 질화물 증착용 실리콘 전구체

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000216163A (ja) * 1999-01-20 2000-08-04 Fujitsu Ltd 半導体装置の製造方法
JP2000216165A (ja) * 1999-01-21 2000-08-04 Fujitsu Ltd 半導体装置の製造方法
JP2002203855A (ja) * 2001-01-05 2002-07-19 Sony Corp 半導体装置の製造方法
JP2002294451A (ja) * 2001-03-30 2002-10-09 Sony Corp 多結晶性半導体薄膜の形成方法、半導体装置の製造方法、並びにこれらの方法の実施に使用する装置
JP2003309119A (ja) * 2002-04-15 2003-10-31 Mitsubishi Electric Corp シリコン窒化膜の成膜方法、成膜装置、及び半導体装置の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2789587B2 (ja) * 1988-01-08 1998-08-20 日本電気株式会社 絶縁薄膜の製造方法
JP2515408B2 (ja) * 1989-10-31 1996-07-10 株式会社東芝 バイポ−ラ型半導体装置
JP3046643B2 (ja) * 1991-06-10 2000-05-29 富士通株式会社 半導体装置の製造方法
US5719065A (en) * 1993-10-01 1998-02-17 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device with removable spacers
JP3440291B2 (ja) * 1995-05-25 2003-08-25 独立行政法人産業技術総合研究所 微結晶シリコン薄膜トランジスタ
JP3737221B2 (ja) * 1996-09-06 2006-01-18 英樹 松村 薄膜作成方法及び薄膜作成装置
WO2000063956A1 (fr) * 1999-04-20 2000-10-26 Sony Corporation Procede et dispositif pour realiser un depot de couches minces, et procede pour la production d'un dispositif a semiconducteur a couches minces
DE10049257B4 (de) * 1999-10-06 2015-05-13 Samsung Electronics Co., Ltd. Verfahren zur Dünnfilmerzeugung mittels atomarer Schichtdeposition
US6348420B1 (en) * 1999-12-23 2002-02-19 Asm America, Inc. Situ dielectric stacks
JP4710187B2 (ja) * 2000-08-30 2011-06-29 ソニー株式会社 多結晶シリコン層の成長方法および単結晶シリコン層のエピタキシャル成長方法
US6689220B1 (en) * 2000-11-22 2004-02-10 Simplus Systems Corporation Plasma enhanced pulsed layer deposition
US7172792B2 (en) * 2002-12-20 2007-02-06 Applied Materials, Inc. Method for forming a high quality low temperature silicon nitride film
US7468311B2 (en) * 2003-09-30 2008-12-23 Tokyo Electron Limited Deposition of silicon-containing films from hexachlorodisilane

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000216163A (ja) * 1999-01-20 2000-08-04 Fujitsu Ltd 半導体装置の製造方法
JP2000216165A (ja) * 1999-01-21 2000-08-04 Fujitsu Ltd 半導体装置の製造方法
JP2002203855A (ja) * 2001-01-05 2002-07-19 Sony Corp 半導体装置の製造方法
JP2002294451A (ja) * 2001-03-30 2002-10-09 Sony Corp 多結晶性半導体薄膜の形成方法、半導体装置の製造方法、並びにこれらの方法の実施に使用する装置
JP2003309119A (ja) * 2002-04-15 2003-10-31 Mitsubishi Electric Corp シリコン窒化膜の成膜方法、成膜装置、及び半導体装置の製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278497A (ja) * 2005-03-28 2006-10-12 Tokyo Electron Ltd シリコン窒化膜の形成方法、シリコン窒化膜の形成装置及びプログラム
JP4607637B2 (ja) * 2005-03-28 2011-01-05 東京エレクトロン株式会社 シリコン窒化膜の形成方法、シリコン窒化膜の形成装置及びプログラム
US7727590B2 (en) * 2006-05-18 2010-06-01 California Institute Of Technology Robust filament assembly for a hot-wire chemical vapor deposition system
JP2013102200A (ja) * 2007-04-02 2013-05-23 Hitachi Kokusai Electric Inc 基板処理装置、基板処理方法及び半導体装置の製造方法
JP2011168881A (ja) * 2010-01-25 2011-09-01 Hitachi Kokusai Electric Inc 半導体装置の製造方法及び基板処理装置
US8691708B2 (en) 2010-01-25 2014-04-08 Hitachi Kokusai Electric Inc. Method of manufacturing semiconductor device and substrate processing apparatus
JP2014179607A (ja) * 2013-03-14 2014-09-25 Asm Ip Holding B V 低温でのSiNの蒸着用Si前駆体

Also Published As

Publication number Publication date
CN1938834A (zh) 2007-03-28
CN100444332C (zh) 2008-12-17
JPWO2005093809A1 (ja) 2008-02-14
TWI363384B (ja) 2012-05-01
KR20070004780A (ko) 2007-01-09
US20080050523A1 (en) 2008-02-28
JP2010067993A (ja) 2010-03-25
KR100882174B1 (ko) 2009-02-06
TW200603287A (en) 2006-01-16

Similar Documents

Publication Publication Date Title
WO2005093809A1 (ja) 単位層ポスト処理触媒化学蒸着装置及びその成膜方法
KR101661104B1 (ko) 반도체 장치의 제조 방법, 기판 처리 장치 및 기록 매체
US10026607B2 (en) Substrate processing apparatus for forming film including at least two different elements
KR101537189B1 (ko) 반도체 장치의 제조 방법, 기판 처리 장치 및 기록 매체
JP5947417B2 (ja) 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
KR101827620B1 (ko) 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램
JP4396547B2 (ja) 成膜方法、成膜装置及び記憶媒体
TWI612561B (zh) 半導體裝置之製造方法、基板處理裝置及記錄媒體
US8784951B2 (en) Method for forming insulation film using non-halide precursor having four or more silicons
JP5864503B2 (ja) 半導体装置の製造方法、基板処理装置、プログラム及び記録媒体
KR101434116B1 (ko) 반도체 장치의 제조 방법, 기판 처리 방법, 기판 처리 장치 및 컴퓨터 판독가능한 기록 매체
KR20170018343A (ko) 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램
US20160097126A1 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
JP2011238894A (ja) 半導体装置の製造方法、基板処理方法及び基板処理装置
JP2006054432A (ja) 成膜方法、成膜装置及び記憶媒体
US8734901B2 (en) Film deposition method and apparatus
KR101858345B1 (ko) 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램
JP2011216846A (ja) 半導体装置の製造方法、基板処理方法及び基板処理装置
CN107240563B (zh) 衬底处理装置及半导体器件的制造方法
JP5841222B2 (ja) 半導体装置の製造方法、基板処理方法及び基板処理装置
Park et al. Stability of plasma posttreated TiN films prepared by alternating cyclic pulses of tetrakis-dimethylamido-titanium and ammonia
JP2016128606A (ja) 半導体装置の製造方法、基板処理装置、プログラムおよび記録媒体
TW202325887A (zh) 使用電漿選擇性沉積含矽及氧之材料
JP2014158019A (ja) 半導体装置の製造方法、基板処理装置およびプログラム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006511534

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580009704.4

Country of ref document: CN

Ref document number: 1020067019946

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 1020067019946

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10593444

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10593444

Country of ref document: US