WO2005091056A1 - 光変調器および光変調方法 - Google Patents

光変調器および光変調方法 Download PDF

Info

Publication number
WO2005091056A1
WO2005091056A1 PCT/JP2005/004958 JP2005004958W WO2005091056A1 WO 2005091056 A1 WO2005091056 A1 WO 2005091056A1 JP 2005004958 W JP2005004958 W JP 2005004958W WO 2005091056 A1 WO2005091056 A1 WO 2005091056A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric signal
control circuit
optical
optical modulator
reflection control
Prior art date
Application number
PCT/JP2005/004958
Other languages
English (en)
French (fr)
Inventor
Hiroki Nakajima
Takayuki Yamanaka
Hideki Fukano
Yuichi Akage
Munehisa Tamura
Tadashi Saitoh
Original Assignee
Nippon Telegraph And Telephone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph And Telephone Corporation filed Critical Nippon Telegraph And Telephone Corporation
Priority to EP05726681A priority Critical patent/EP1734399A4/en
Priority to JP2006516884A priority patent/JP4184405B2/ja
Priority to US10/547,906 priority patent/US7345803B2/en
Publication of WO2005091056A1 publication Critical patent/WO2005091056A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/017Structures with periodic or quasi periodic potential variation, e.g. superlattices, quantum wells
    • G02F1/01708Structures with periodic or quasi periodic potential variation, e.g. superlattices, quantum wells in an optical wavequide structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0305Constructional arrangements
    • G02F1/0316Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
    • G02F1/0356Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure controlled by a high-frequency electromagnetic wave component in an electric waveguide structure

Definitions

  • the present invention relates to an optical modulator that modulates an input optical signal with an electric signal and outputs a modulated optical signal.
  • Optical modulators generally have the strength, phase, polarization state, wavelength Z, and the like of an optical signal that carries information by external electrical, magnetic, mechanical, acoustic, and optical means. This element changes (modulates) the frequency, traveling direction, etc. Among these, from the viewpoints of operating speed (operating band) and controllability, an element that modulates the intensity or phase of an optical signal using an electric means has been widely used.
  • an electric field is applied to the element to control the light absorption coefficient of a material constituting the element, thereby modulating the intensity of light guided in the material (transmitting light).
  • Some ⁇ absorbs) the Mach-Zehnder interferometer, which measures the change in the refractive index of the element material due to the application of an electric field and the resulting change in the phase of the optical signal.
  • a representative example is a Mach-Zehnder modulator that replaces the intensity with an interference effect.
  • Electroelectric absorption type optical modulators and Mach-Zehnder type optical modulators are viewed as elements that input a modulated electric signal and output a modulated optical signal, although the physical phenomena used as the operation mechanism of the element are different from each other.
  • both are elements having both a side surface as an optical element having an input terminal and an output terminal of an optical signal and a side surface as an electric element having an input terminal and an output terminal of an electric signal.
  • the above-mentioned modulation ratio of the intensity of the optical signal that is, the extinction ratio, is one of the important ones as a performance index from the aspect of the optical modulator as an optical element.
  • the electrode structure is simple.
  • the structure was such that the operating band of the element was limited by the lumped constant element capacitance (C) and the time constant (CR time constant) determined by the load resistance (R) force.
  • C lumped constant element capacitance
  • R load resistance
  • the electrodes for electric signals are configured to be distributed-type transmission lines, such as coplanar lines and microstrip lines, and the structure in which this transmission line and the optical signal waveguide run in parallel is a traveling-wave type. It is called an electrode structure.
  • the operating band of the device is determined by the phase velocity difference between the electric signal and the optical signal propagating in the device, and an extremely wide band characteristic can be expected.
  • the traveling-wave-type electrode structure element realizes an ultra-wideband characteristic of, for example, 50 GHz or more in a 3-dB-down bandwidth of the EZO (electrical input Z optical output) response.
  • each transmission line has a characteristic impedance (Z)
  • the standard drive system for electric signals is a 50 ⁇ system (that is, the termination resistance is 50 ⁇ ).
  • traveling-wave-type electrode-structured optical modulator when viewed as an electric element composed of a transmission line, its characteristic impedance is typically about Z-25 ⁇ .
  • an impedance mismatch occurs, for example, when a modulated electric signal, which is a microwave, is input to the optical modulator, a part thereof is reflected, and the modulated electric signal is externally applied to the electric Z-optical interaction region in the optical modulator. Input microwave is not supplied efficiently, resulting in deterioration of the flatness in the frequency characteristic of the EZO response and a decrease in the 3 dB band.
  • FIG. 30 shows a method for improving the impedance mismatch problem in an optical modulator.
  • the electric signal line 3 connecting the electric Z optical interaction region 11 in the optical modulator section 10 to the input terminating resistor 81, and the electric Z optical interaction region 11 and the output terminating resistor 91 are connected. Connect the electric signal line 4 to the high impedance
  • High impedance line (Z-100 ⁇ ) connected in a row as one element as a whole
  • the effective characteristic impedance can be regarded as the average value of the characteristic impedance of each line, so that impedance matching with the 50 ⁇ drive system becomes possible.
  • the input reflection coefficient (S11) and output reflection coefficient (S22) for the microphone mouth wave are reduced, and the microwave input to the input terminal side (driver circuit) optical modulator of the electric signal drive system is Since the light is efficiently transmitted to the output terminal side of the signal drive system, the efficiency of applying the microwave voltage to the electric Z optical interaction region in the optical modulator is improved. As a result, it is possible to improve the flatness of the frequency characteristics of the EZO response.
  • the impedance matching technology based on the serial connection of high impedance lines has a problem that there is a lower limit to the wavelength of an applicable electric signal, in other words, there is an upper limit to the frequency of an applicable electric signal. is there.
  • the improvement of the EZO response characteristics due to the series connection of high impedance lines is seen in the region where the frequency of the input microwave is up to about 25 GHz, and the EZO response characteristics for input microwaves with higher frequencies are It deteriorates rapidly.
  • a main object of the present invention is to provide an optical modulator that can increase the upper limit frequency of the EZO response characteristic of the optical modulator.
  • an optical modulator is an optical modulator, comprising: an optical signal input / output terminal; an electric signal input / output terminal; An optical modulation element having an interaction area; an electric signal line connected to the electric signal output terminal; and a reflection control circuit connected to the electric signal line.
  • An impedance element configured to positively reflect the electric signal output from the interaction region is provided.
  • an impedance element that promotes reflection of a modulated electric signal is connected to an electric signal line that electrically connects the electric Z optical interaction region and the output terminating resistor.
  • the reactance component X is connected in parallel to the electric signal line connecting the electric-optical interaction region of the optical modulator and the output terminal resistance of the electric signal drive system to the electric signal line.
  • the electric signal input to the optical modulator and the electric signal output from the optical modulator can be connected.
  • the degree of freedom for controlling the reflection is increased. This greatly expands the design flexibility in the response characteristics of the output (modulated) optical signal to the input (modulated) electrical signal.
  • the degree of freedom for controlling the reflection of an electric signal is limited only to the characteristic impedance value and line length of the electric signal line connecting the electric Z optical interaction area of the optical modulator and the terminating resistor.
  • the degree of freedom for controlling the reflection of the electric signal is limited only to the value of the output terminating resistor connected in series with the electric signal line. there were. That is, the degree of freedom for controlling the reflection of an electric signal in the prior art is limited only to elements in series with the electric signal line connecting the electric Z light interaction area of the optical modulator and the terminating resistor. there were.
  • the degree of freedom for controlling the reflection of an electric signal is increased by using an element connected in parallel to the electric signal line.
  • the control of the reflection of an electric signal refers to the mere suppression of the reflection of the electric signal, that is, beyond the category of impedance matching, and the promotion of the reflection of the electric signal, that is, the mismatch of impedance.
  • an electric signal line connecting the electric Z optical interaction region of the optical modulator and the output terminating resistor is connected in parallel.
  • the present invention aims to improve the response characteristics of an output (modulated) optical signal with respect to an input (modulated) electric signal by utilizing the promotion of reflection of an electric signal (generation of a reflected electric signal).
  • the parallel impedance (parallel reactance, parallel electric resistance) in the present invention performs a function different from that in ordinary impedance matching (suppression of reflection of an electric signal).
  • FIG. 1 is a diagram showing a configuration of a first embodiment of an optical modulator according to the present invention.
  • FIG. 2 is a perspective view showing a specific structure of FIG. 1.
  • FIG. 3A is a view showing a stub structure with an open end.
  • FIG. 3B is a diagram showing a grounded capacitor.
  • FIG. 3C is a diagram showing a grounded inductor.
  • FIG. 4 is a diagram showing the frequency dependence of the EZO response of the optical modulator according to the first embodiment.
  • Figure 5 shows the frequency dependence of the reflection coefficient of the electrical signal of the optical modulator when the reflection control circuit of circuit configuration B is connected and when the reflection control circuit is connected! /, Na! / FIG.
  • FIG. 6 is a diagram showing the frequency dependence of the transmission coefficient of the electric signal of the optical modulator in the case where the reflection control circuit of the circuit configuration B is connected and in the case where the reflection control circuit is connected. is there.
  • FIG. 7 is a diagram showing a configuration of an optical modulator to which a reflection control circuit having a circuit configuration C is connected.
  • Figure 8 shows the case where the reflection control circuit of circuit configuration C is connected and the case where the reflection control circuit is connected.
  • FIG. 7 is a diagram showing the frequency dependence of the EZO response of the optical modulator in a case where the above is not the case.
  • FIG. 9 is a diagram showing a configuration of an optical modulator according to a second embodiment.
  • FIG. 10 is a diagram showing the frequency dependence of the reflection coefficient of the electric signal of the optical modulator when the reflection control circuit of the circuit configuration D is connected and when the reflection control circuit is connected; It is.
  • FIG. 11 is a diagram showing the frequency dependence of the ⁇ response of the optical modulator when the reflection control circuit of the circuit configuration D is connected and when the reflection control circuit is connected.
  • FIG. 12 is a diagram showing a configuration of an optical modulator according to a third embodiment.
  • FIG. 13 is a perspective view showing a specific example of the third embodiment.
  • FIG. 14 is a diagram showing the frequency dependence of the ⁇ response of the optical modulator when the reflection control circuits of the circuit configurations ⁇ and F are connected and when the reflection control circuit is connected. .
  • FIG. 15 is a schematic diagram of a circuit having reactance elements in a multi-stage configuration.
  • FIG. 16 is a diagram showing a configuration of an optical modulator to which a reflection control circuit having a circuit configuration G is connected.
  • FIG. 17 is a diagram showing the frequency dependence of the ⁇ response of the optical modulator when the reflection control circuit of the circuit configuration G is connected and when the reflection control circuit is connected.
  • FIG. 18 is a diagram showing the frequency dependence of the reflection coefficient of the electric signal of the optical modulator when the reflection control circuit of the circuit configuration G is connected and when the reflection control circuit is connected. It is.
  • FIG. 19 is a diagram showing the frequency dependence of the transmission coefficient of the electric signal of the optical modulator in the case where the reflection control circuit of the circuit configuration G is connected and in the case where the reflection control circuit is connected. It is.
  • FIG. 20 is a diagram showing a configuration of an optical modulator to which a reflection control circuit of a circuit configuration 2 is connected.
  • FIG. 21 is a diagram showing the frequency dependence of the ⁇ response of the optical modulator when the reflection control circuit having the circuit configuration ⁇ is connected and when the reflection control circuit is connected.
  • FIGS. 22A and 22B are diagrams each showing a configuration of an optical modulator to which the reflection control circuit of the circuit configuration I is connected.
  • FIG. 22B is a diagram showing a configuration of each of the optical modulators to which a reflection control circuit having a circuit configuration is connected.
  • FIG. 22C is a diagram illustrating a configuration of each of the optical modulators to which the reflection control circuit having the circuit configuration K is connected.
  • FIG. 23 is a diagram showing the frequency dependence of the EZO response of the optical modulator in the case where the reflection control circuit of the circuit configuration I is connected and in the case where the reflection control circuit is connected.
  • FIG. 24 is a diagram showing the frequency dependence of the reflection coefficient of the electric signal of the optical modulator in the case where the reflection control circuit of the circuit configuration I is connected and the case where the reflection control circuit is connected; It is.
  • FIG. 25 is a diagram showing the frequency dependence of the EZO response of the optical modulator in the case where the reflection control circuit is connected and the case where the reflection control circuit is connected to the circuit structure K.
  • FIG. 26 is a diagram showing a configuration of an optical modulator to which a reflection control circuit having a circuit configuration M is connected.
  • FIG. 27 is a diagram showing the frequency dependence of the EZO response of the optical modulator in the case where the reflection control circuit of the circuit configuration M is connected and in the case where the reflection control circuit is connected.
  • FIG. 28 is a diagram showing a configuration of an optical modulator according to a fifth embodiment.
  • FIG. 29 is a diagram showing the frequency dependence of the EZO response of the optical modulator in the case where the reflection control circuit of the circuit configuration N is connected and in the case where the reflection control circuit is connected.
  • FIG. 30 is a diagram showing a configuration of a conventional optical modulator.
  • a reflection control circuit is connected to the second electric signal line 4a connected to the electric signal output side of the optical modulation element 10 in FIG.
  • FIG. 1 shows a first embodiment of the optical modulator of the present invention.
  • the optical modulator comprises an optical signal input terminal la, an optical signal output terminal lb, an electric signal input terminal 2a, an electric signal output terminal 2b, and an input.
  • the optical modulator 10 includes an electric Z optical interaction region 11 where the optical signal and the electric signal interact with each other.
  • a first electric signal line 3 is connected to the electric signal input terminal 2a of the light modulation element 10, and a part of the reflection control circuit RCNT is formed at the electric signal output terminal 2b.
  • the second electric signal line 4a is connected.
  • the first electric signal line 3 is connected to an (equivalent) input terminating resistor 81 on the input terminating side 8 of the electric signal driving system.
  • the reflection control circuit RCNT is arranged between the light modulation element 10 and the output terminating resistor 91, and is configured to positively reflect an electric signal output from the light modulation element 10.
  • the reflection control circuit includes an impedance element 5 in parallel with the second electric signal line 4a. In each embodiment described below, signal lines will be described as needed.
  • the impedance element 5 of the reflection control circuit RCNT characterized by the present invention is connected to the second electric signal line 4a, and the output terminal resistance of the electric signal drive system output terminal 9 through the electric signal line 4b. Connected to 91.
  • the specific structure of an electro-absorption type optical modulator having a traveling-wave type electrode structure is shown in FIG. 2, in which the electric signal lines 4a and 4b are arranged on a semi-insulating InP substrate with V and deviation. It is constituted by the formed coplanar line.
  • the light modulation element 10 and the reflection control circuit RCNT are integrally formed.
  • the electric Z light interaction region 11 constituting the light modulating element 10 modulates the optical signal supplied from the optical signal input terminal la in accordance with the electric signal supplied to the electric signal input terminal 2a.
  • the electric-Z optical interaction region 11 has, for example, a laminated structure of n-InP / MQW / p-InP (MQW is a multiple quantum well structure of InGaAlAsZlnAlAs) formed on a semi-insulating InP substrate.
  • the impedance element 5 of the reflection control circuit RCNT is connected to the second electric signal line 4a.
  • this reflection control circuit RCNT is configured by an impedance component.
  • the impedance component is a reactance component connected between the line and the ground.
  • a modulated electric signal generated on the input terminal side 8 of the electric signal drive system is input to the optical modulation element 10 via the first electric signal line 3, and the electric In the optical interaction area 11, the optical signal input from the optical signal input terminal la is modulated, and the modulated optical signal is Is output from the optical signal output terminal lb.
  • the modulated electric signal is sent to the electric signal drive system output terminal side 9 via the second electric signal line 4a and the impedance element 5 of the reflection control circuit RCNT.
  • the above-described reactance component is based on the assumption of an open-end stub (open stub) structure that also has a transmission line force, and is an impedance when viewed from the side of the second electric signal line 4a as the main line.
  • Z is the characteristic impedance of the line constituting the stub and Z is the electrical length
  • j is an imaginary unit.
  • the impedance of the open-end stub viewed from the main line side is a pure imaginary number, and the open-end stub has a pure reactance component.
  • the reactance component of the open-end stub is a periodic function of the electric length ⁇ , it becomes negative (capacitive) or positive (inductive) depending on the frequency of the electric signal. Also. Therefore, according to the frequency to be used or the microwave reflection characteristics of the optical modulator, instead of the open-end stub (Fig. 3A), a capacitor is a lumped constant element having a pure reactance component as shown in Figs. 3B and 3C. And an inductor may be connected in parallel. Alternatively, a short-end stub (short 'stub) structure may be used instead of the open-end stub structure.
  • a DC blocking capacitor may be inserted as necessary.
  • FIG. 1 The configuration shown in FIG. 1, ie, a reflection control circuit for controlling the reflection of an electric signal, EZO (electrical input) when the impedance element 5 of the RCNT is connected to the electric signal output side of the optical modulation element 10
  • Figure 4 shows the results of the frequency characteristic simulation of the response (Z light output).
  • FIG. 4 shows the frequency dependence of the EZO response of the optical modulator of this embodiment.
  • an electro-absorption optical modulator having a traveling-wave-type electrode structure having a length of 100 ⁇ m in the electric Z-light interaction region 11 is assumed as the optical modulation element 10, and the input terminal resistance 81
  • the value of the output termination resistor 91 was set to 50 ⁇ .
  • circuits having the electric signal lines 4a and 4b having the respective line lengths and impedance components are referred to as circuit configurations A and B, respectively.
  • the electric signal line 4a having coplanar line force and the reactance element 5 (open stub) can be monolithically integrated on the same substrate as the semi-insulating InP substrate on which the light modulation element 10 is formed.
  • the signal line 4a is directly connected to the electric signal output terminal 2b of the optical modulator 10 shown in FIG. 2 which is a coplanar line.
  • the first electric signal line 3 was a simple electric connection in this simulation.
  • the EZO response characteristics shown in FIG. 4 show the results when the frequency of the input microwave is 5 ⁇ ⁇ ⁇ ⁇ to 100 GHz.
  • the reflection control circuit RCNT of the electric signal When the reflection control circuit RCNT of the electric signal is not connected in the open state, that is, the EZO response of the optical modulation element 10 itself decreases monotonically as the input microwave frequency increases, as shown by the white square in FIG.
  • the 3dB band is about 67GHz.
  • the EZO response characteristic can be largely changed as shown in FIG.
  • circuit configuration A indicated by a black circle in Fig. 4
  • the flatness of the EZO response characteristics is improved in the region around 20 to 45 GHz.
  • circuit configuration B black triangles in Fig. 4
  • the absolute value of the EZO response in the high frequency range of about 35 to 80 GHz is greatly improved.
  • the frequency dependence of the input reflection coefficient S11 and the output reflection coefficient S22 of the electric signal is determined by the case where the reflection control circuit RCNT is connected.
  • Figure 5 shows the reflection coefficient.
  • FIG. 5 shows the frequency dependence of the reflection coefficient of the electric signal of the optical modulator when the reflection control circuit RCNT of the circuit configuration B is connected and when the reflection control circuit RCNT is connected.
  • S11 S22 because the element structure is input / output symmetric.
  • the reflection coefficient is based on the input terminal and the output terminal as reference planes.
  • an input reflection coefficient is obtained although a reflection control circuit RCNT is connected only to an output side of an electric signal. It is also possible to control S11. As is well shown in Figure 5, when the input microwave frequency is in the range of about 25 to 50 GHz, the values of S11 and S22 when the reflection control circuit RCNT (circuit configuration B) is connected are determined by the reflection control circuit RCNT Is lower than the reflection coefficient when not connected. Reflecting this, the EZO response of the circuit configuration B shown in Fig. 4 shows a tendency to increase as the frequency increases in the 25 to 50 GHz region.
  • the improvement of the EZO response characteristics can be achieved by simply utilizing the impedance mismatch, that is, the promotion of the reflection of the electric signal, beyond the simple impedance matching.
  • the electric signal output from the light modulation element 10 is reflected to the light modulation element 10 side by the reflection control circuit RCNT (to generate a reflected signal), and therefore, the electric signal drive system input terminal 8
  • the signal is superimposed on the modulated electric signal generated in the above, and as a result, the efficiency of applying the signal voltage to the electric Z optical interaction region is improved, and peaking is realized by the EZO response on the high frequency side.
  • the conventional output termination resistor described above It is not possible to improve the EZO response (including the absolute magnitude) on the high-frequency side using impedance mismatching technology by reducing the resistance value.
  • FIG. 8 shows the frequency characteristic simulation results of the EZO response when the line length is the circuit configuration C shown below.
  • FIG. 8 shows the frequency dependence of the ⁇ ⁇ and ⁇ responses of the optical modulator when the reflection control circuit RCNT of the circuit configuration is connected and when the reflection control circuit RCNT is not connected.
  • the factor that makes it possible to significantly change the EZO response characteristic in the present embodiment is a parallel component of the impedance of the reflection control circuit RCNT.
  • a reflected electric signal is generated by connecting an impedance component in parallel to the electric signal output side of the optical modulation unit.
  • a reflected electric signal is generated in series with the electric signal output side of the optical modulation unit.
  • a reflection control circuit generates an electric reflection signal by connecting an inductive reactance as RCNT.
  • FIG. 9 shows the configuration of an optical modulator according to the present embodiment.
  • Components equivalent to those of the optical modulator shown in FIG. 1 are denoted by the same reference numerals as in FIG. .
  • the element 71 connected in series to the second electric signal line 4 is an inductor. If the inductance value is L and the angular frequency is ⁇ , the element 71 has + co L It has an inductive reactance component.
  • a circuit configuration in which the elements 71 are connected in this manner is referred to as a circuit configuration D.
  • the inductor can be easily realized by a bonding wire.
  • FIG. 10 shows the frequency dependence of the reflection coefficient of the electric signal of the optical modulator when the reflection control circuit RCNT of the circuit configuration D is connected and when the reflection control circuit RCNT is not connected.
  • S11 S22 because the element structure is input / output symmetric.
  • FIG. 10 shows the reflection control circuit RCNT of the circuit configuration D, that is, when an inductive reactance is connected in series to the electrical signal output side of the optical modulation element 10, the reflection control Compared to the case where the circuit RCNT is not connected, it is possible to increase the output reflection coefficient S22 in the frequency region of about 30 GHz or more.
  • Figure 11 shows the frequency characteristic simulation result of the EZO response at this time.
  • FIG. 11 shows the frequency dependence of the EZO response of the optical modulator when the reflection control circuit RCNT of the circuit configuration D is connected and when the reflection control circuit RCNT is not connected V.
  • This embodiment has a configuration in which a reactance is connected as a reflection control circuit RCNT in parallel to the electric signal output side of the optical modulation unit and an element 71 (inductive reactance) is connected in series, that is, the first embodiment described above. This corresponds to a combination of the example and the second embodiment.
  • FIG. 12 shows the configuration of an optical modulator according to the present embodiment. Components equivalent to those of the optical modulator shown in FIG. 1 are denoted by the same reference numerals as in FIG. Is omitted.
  • Figure 13 shows a specific example.
  • the optical modulator 10 and the reflection control circuit RCNT are separated from each other, and are connected to each other by bonding wires 71 la-711c.
  • the series transmission lines 4a and 4b and the open-ended stub structure 5 are formed by coplanar lines on a semi-insulating InP substrate. It can be said that the light modulation element 10 and the reflection control circuit RCNT of FIG. 2 are monolithically integrated, while the light modulation element 10 and the reflection control circuit RCNT of the present embodiment have a no-oblique connection.
  • the element 71 is directly connected to the electric signal output side of the electric Z light interaction area 11 of the optical modulator, and its inductance value is L and its angular frequency is ⁇ .
  • circuits having the second electric signal line 4a of each line length and an impedance component (reactance element) are referred to as circuit configurations E and F.
  • FIG. 14 shows a frequency characteristic simulation result of the EZO response at this time.
  • FIG. 14 shows the frequency dependence of the ⁇ ⁇ and ⁇ responses of the optical modulator in the case where the reflection control circuit RCNT of the circuit configuration F and F is connected and the case where the reflection control circuit RCNT is connected!
  • This embodiment is different from the first embodiment and the second embodiment in that it is connected to the electric signal line connecting the electric-optical interaction region 11 of the optical modulation element 10 and the output terminating resistor. Since the number of elements increases to two elements connected in parallel and two elements connected in series, the degree of freedom for controlling the reflection of electric signals increases, so the improvement effect on the response characteristics is more remarkable. It is.
  • the flatness is improved up to a frequency region of about 40 GHz without deteriorating the absolute magnitude of the EZO response.
  • the EZO response is greatly improved even in an ultra-high frequency region of about 100 GHz, and the ⁇ 3 dB band in this case reaches 100 GHz.
  • the improvement in the EZO response characteristic is caused by the enhancement of the output reflection coefficient of the electric signal, as in the first and second embodiments.
  • the impedance component as the reflection control circuit connected in parallel is designed to increase the degree of freedom of design of the force-response characteristic, which is a single reactance element.
  • a multistage configuration in which the number of elements connected in parallel is two or more as shown in FIG. 15 is also effective.
  • FIG. 15 schematically shows a circuit in which the reactance elements have a multi-stage configuration.
  • the parallel reactance element as the reflection control circuit RCNT is connected to the electric signal output side of the optical modulator. Therefore, an optical modulator in which a reflection control circuit RCNT having a circuit configuration G having a parallel reactance element is connected to an electric signal input side is examined.
  • FIG. 16 shows the configuration of an optical modulator to which the reflection control circuit RCNT of the circuit configuration G is connected.
  • FIG. 16 the same components as those in the optical modulator shown in FIG. 1 are denoted by the same reference numerals as in FIG. 1, and the description will be appropriately omitted.
  • Figure 17 shows the frequency characteristic simulation results of the EZO response when the line lengths of the electrical signal line 3 and the reactance element (open-end stub) as the reflection control circuit RCNT are as follows.
  • FIG. 17 shows the frequency dependence of the EZO response of the optical modulator when the reflection control circuit RCNT of the circuit configuration G is connected and when the reflection control circuit RCNT is connected.
  • FIG. 18 is a diagram showing the frequency dependence of the reflection coefficient of the electric signal of the optical modulator when the reflection control circuit RCNT of the circuit configuration G is connected and when the reflection control circuit RCNT is not connected. Shows the frequency dependence of the transmission coefficient of the electric signal of the optical modulator when the reflection control circuit RCNT of the circuit configuration G is connected and when the reflection control circuit RCNT is connected.
  • the technology for improving the EZO response using impedance matching suppresses the reflection of the modulated electric signal at the input and output ends, and efficiently transmits the electric signal input to the optical modulator to the output side. By doing so, the signal voltage is efficiently supplied to the electric Z optical interaction region in the optical modulator, and as a result, the EZO response characteristic is improved. Therefore, the design concept is to suppress the reflection of the electric signal at the input end and the output end to suppress the transmission coefficient S21 of the electric signal from the input side to the output side. This is essentially the same design philosophy as impedance matching in ordinary electric circuits using transistors, etc., to improve the gain, and focuses only on electric signals that travel (transmit) through the optical modulator. I can say.
  • the technology for improving the EZO response using impedance mismatch is based on the superposition of the transmitted (incident) electric signal in the optical modulator and the reflected electric signal generated by the impedance mismatch. Since it controls the application of signal voltage to the circuit, there is the advantage that the degree of freedom in its design is greatly increased compared to the technology using impedance matching. In fact, in the configuration using impedance matching as shown in Fig. 16 (circuit configuration G), the EZO response could only be improved to the extent shown in Fig. 17. On the other hand, in the configuration using the impedance mismatch shown in Fig. 1 (Circuit Configuration A and Circuit Configuration B), it is possible to drastically change the EZO response characteristic as well shown in Fig. 4.
  • FIG. 20 shows the configuration of an optical modulator to which the reflection control circuit RCNT of the circuit configuration H is connected.
  • FIG. 20 the same components as those of the optical modulator shown in FIG. 9 are denoted by the same reference numerals as those in FIG. 9, and the description will be appropriately omitted.
  • FIG. 21 shows the frequency dependence of the EZO response of the optical modulator when the reflection control circuit RCNT of the circuit configuration H is connected and when the reflection control circuit RCNT is not connected V.
  • a parallel electric resistor is connected as a reflection control circuit RCNT to an electric signal line 4 connected to an electric signal output terminal 2b of the light modulation element 10.
  • FIGS. 22A, 22B, and 22C show configurations of the optical modulator to which the reflection control circuits RCNT having the circuit configurations I, J, and K are connected, respectively.
  • the same components as those in the optical modulator shown in FIG. 1 are denoted by the same reference numerals as in FIG. 1, and the description will be appropriately omitted.
  • the values of the input terminating resistor 81 and the output terminating resistor 91 are both 50 ⁇ .
  • the parallel electric resistance as the reflection control circuit RCNT is connected to the second electric signal line 4 between the second electric signal line 4 and the ground.
  • the series electric resistance 7 is connected to the electric signal line 4 on the light modulation element 10 side from the parallel electric resistance as the reflection control circuit 5. ing.
  • a series electric resistance 7 is connected to the electric signal line 4 on the output termination resistance side of the parallel electric resistance.
  • FIG. 23 shows the frequency characteristic simulation result of the EZO response characteristic in the case of the circuit configuration I shown in FIG. 22A, together with the EZO response characteristic of the light modulation element itself to which the reflection control circuit RCNT is connected.
  • FIG. 23 shows the frequency dependence of the EZO response of the optical modulator when the reflection control circuit RCNT of the circuit configuration I is connected and when the reflection control circuit RCNT is connected.
  • the same light-modulating element 10 as in the first embodiment was assumed, and the value of the parallel electric resistance of the reflection control circuit RCNT was 67 ⁇ .
  • FIG. 24 shows the frequency dependence of the input / output reflection coefficient S11 and the output reflection coefficient S22 of the electric signal together with the reflection coefficient in the case where the reflection control circuit RCNT is connected.
  • FIG. 24 shows the frequency dependence of the reflection coefficient of the electric signal of the optical modulator when the reflection control circuit RCNT of the circuit configuration I is connected and when the reflection control circuit RCNT is connected.
  • S11 S22 because the element structure is input / output symmetric.
  • the input reflection coefficient S is obtained even though the reflection control circuit RCNT is connected only to the output side of the electric signal. It is possible to control 11.
  • the value of S11 is determined by the reflection control circuit RCNT. When connected, they tend to be the opposite, ie, decrease with increasing frequency. In particular, in the region up to about 25 GHz, reflection of the electric signal on the input side is promoted by connecting the reflection control circuit RCNT.
  • the EZO response when the reflection control circuit (circuit configuration I) is connected tends to increase as the frequency increases in a region up to about 40 GHz as shown in FIG. Is shown.
  • the flatness in the frequency characteristic of the EZO response is Improvements are possible, but the absolute magnitude of the EZO response decreases at lower frequencies.
  • FIG. 25 shows the EZO response simulation results for the circuit configuration and K. Shown in FIG. 25 shows the frequency dependence of the EZO response of the optical modulator in the case where the circuit structure is connected to the reflection control circuit RCNT of K and in the case where the reflection control circuit RCNT is connected.
  • the value of the parallel electric resistance as the reflection control circuit RCNT was 67 ⁇ as in the circuit configuration I
  • the value of the series electric resistance 7 in the circuit configuration was 5 ⁇
  • the value of the series electric resistance 7 of the configuration ⁇ is 25 ⁇ .
  • the EZO response characteristic As well shown in FIG. 25, by using a series electric resistance 7 in addition to the parallel electric resistance as the reflection control circuit RCNT, the EZO response characteristic, particularly The flatness can be improved including the absolute magnitude of the EZO response, and the -3dB band can be expanded.
  • FIG. 26 shows a configuration of the optical modulator to which the reflection control circuit RCNT of the circuit configuration M is connected.
  • the same components as those in the optical modulator shown in FIG. 22 are denoted by the same reference numerals as in FIG. 22, and description thereof will be omitted as appropriate.
  • Fig. 27 shows the frequency characteristic simulation result of the EZO response when the value of the parallel electric resistance as the reflection control circuit RCNT is 67 ⁇ .
  • FIG. 27 shows the frequency dependence of the ⁇ ⁇ and ⁇ responses of the optical modulator when the reflection control circuit RCNT of the circuit configuration M is connected and when the reflection control circuit RCNT is not connected.
  • This embodiment has a configuration in which an electric resistance is connected in parallel to the electric signal output side of the optical modulation unit and an inductive reactance is connected in series, that is, a combination of the second embodiment and the fourth embodiment. Equivalent to.
  • FIG. 28 shows a configuration of an optical modulator according to the present embodiment.
  • the same components as those in FIGS. 9 and 22 and the optical modulator shown in FIG. 22 are denoted by the same reference numerals as those in FIGS. 9 and 22, and description thereof will be omitted as appropriate.
  • element 71 connected in series to second electric signal line 4 is an inductor. If its inductance value is L and its angular frequency is ⁇ , element 71 is a + co L inductive reactor. It has a closet component. Further, a parallel electric resistance and a series electric resistance 7 as a reflection control circuit RCNT are connected to the output terminal resistance side of the element 71 of the second electric signal line 4.
  • a circuit configuration N such a circuit configuration is referred to as a circuit configuration N.
  • Figure 29 shows the simulation results of the frequency characteristics of the EZO response when 67 ⁇ and 25 ⁇ were used.
  • FIG. 29 shows the frequency dependence of the EZO response of the optical modulator when the reflection control circuit RCNT of the circuit configuration N is connected and when the reflection control circuit RCNT is connected.
  • the EZO response characteristic including its absolute size can be greatly improved, and an extremely wide frequency region centering around 40GHz is possible.
  • the peaking effect of the EZO response can be seen over a long period.
  • the EZO response characteristic increases with increasing frequency in the low frequency region. This tendency is primarily due to the profile of the input reflection coefficient S11 of the electric signal as in the fourth embodiment.
  • an electro-absorption type is described as an example of a light modulation element, but the present invention utilizes a light modulation element based on another operation mechanism, for example, a change in the refractive index of a material. It is also applicable to Mach-Zehnder type light modulation elements.
  • the present invention relates to the control of the electric signal supplied to the electric Z light interaction region, not to the operation mechanism of the light modulation element in the electric Z light interaction region.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Ceramic Engineering (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)

Abstract

 電気/光相互作用領域(11)を有する光変調素子(10)において、電気信号入力端(2a)には電気信号線(3)が接続され、電気信号出力端(2b)には他の電気信号線(4a)が接続され、この他の電気信号線(4a)に反射制御回路(5)が接続される。この反射制御回路(5)は、光変調素子(10)の相互作用領域(11)から出力された電気信号を積極的に反射するようにしたインピーダンス素子から構成される。これにより、E/O(電気入力/光出力)応答特性の改善可能な上限周波数の拡大、また、E/O応答の絶対的な値を劣化させることなくその周波数特性の平坦性の向上が可能となる。

Description

明 細 書
光変調器および光変調方法
技術分野
[0001] 本発明は、入力された光信号に対して電気信号による変調を加え、変調された光 信号を出力する光変調器に関するものである。
背景技術
[0002] 光変調器 (Optical Modulators)は、一般に、外部からの電気的、磁気的、機械的、 音響的、光学的手段等により、情報を担う光信号の強度、位相、偏光状態、波長 Z 周波数、進行方向などを変化 (変調)させる素子である。このうち、動作速度 (動作帯 域)や制御性の観点から、電気的手段を用いて光信号の強度や位相を変調する素 子が従来から広く用いられて ヽる。
[0003] 光の強度を変調する素子としては、素子に電界を印加することにより素子を構成す る材料の光吸収係数を制御して材料内を導波する光の強度を変調 (光を透過ある ヽ は吸収)する電界吸収型光変調器 (Electroabsorption modulator)や、電界印加による 素子材料の屈折率変化およびこれに伴う光信号の位相変化をマッハ ·ツェンダー干 渉計 (Mach- Zehnder interferometer)の干渉効果を利用して強度変化に置き換えるマ ッハ ·ツェンダー型光変調器 (Mach- Zehinder modulator)などが代表例として挙げられ る。
[0004] 電界吸収型光変調器やマッハ ·ツェンダー型光変調器は、素子の動作機構として 用いる物理現象はそれぞれ異なるものの、変調電気信号を入力して被変調光信号 を出力する素子として見た場合、両者とも、光信号の入力端および出力端を備えた 光素子としての側面と、電気信号の入力端および出力端を備えた電気素子としての 側面とを併せ持つ素子であると 、うことができる。上述した光信号の強度の変調の比 、すなわち消光比 (extinction ratio)は、光変調器の光素子としての側面から見た性能 指標として重要なものの一つに挙げられる。
[0005] 一方、光変調器の性能のうち動作帯域を考える場合は、電気素子としての側面に 注目する必要がある。電界吸収型光変調器を例にとると、従来、その電極構造は、素 子の動作帯域が、集中定数である素子容量 (C)と負荷抵抗 (R)力 決まる時定数 (C R時定数)で制限されるような構造であった。この場合、素子の動作帯域を拡大する ためには素子容量の低減が必要である。し力しながら、素子容量の低減のために例 えば素子長 (光信号が導波する方向の長さ)を短くすると消光比が劣化し、また、例 えば、素子の厚み (電気信号による電界が力かる方向の長さ)を大きくすると駆動電 圧が大きくなつてしまう。
[0006] そこで、近年、素子の電極構造を集中定数型から進行波型 (分布定数型)に変更 することによって、上述した CR時定数による帯域制限を大幅に緩和することが提案さ れている。電気信号 (マイクロ波)に対する電極をコプレーナ線路やマイクロストリップ 線路と ヽつた分布定数型の伝送線路となるように構成し、この伝送線路と光信号の導 波路とを並走させる構造を進行波型電極構造という。この構造では、理想的な条件 の下では、素子の動作帯域は素子内を伝搬する電気信号と光信号との位相速度差 で決まるとされ、極めて広帯域な特性が期待できる。実際、進行波型電極構造素子 により EZO (電気入力 Z光出力)応答の— 3dB帯域 (3- dB- down bandwidth)が例え ば 50GHz以上の超広帯域特性が実現されて 、る。
[0007] 上述したように、進行波型電極構造素子は電気信号を伝送線路上で伝搬させるも のであるが、一般に伝送線路はそれぞれ特性インピーダンス (Z )を有しており、電気
0
信号の効率的な伝送には線路の特性インピーダンスと電気信号駆動系の終端抵抗 とのインピーダンス整合が必須である。そして電気信号の駆動系は 50 Ω系(すなわ ち、終端抵抗は 50 Ω )が標準である。
[0008] ところが、進行波型電極構造光変調器を伝送線路からなる電気素子として見ると、 その特性インピーダンスは典型的には Z— 25 Ω程度であるので、 50 Ω駆動系から
0
は低インピーダンス線路として見えてしまい、インピーダンス不整合が生じてしまう。ィ ンピーダンス不整合が生じると、例えば、マイクロ波である変調電気信号が光変調器 に入力される際にその一部が反射されてしまい、光変調器内の電気 Z光相互作用 領域に外部からの入力マイクロ波が効率的に供給されず、結果として EZO応答の 周波数特性における平坦性の劣化や 3dB帯域の低下を招くことになる。
[0009] 光変調器におけるインピーダンス不整合の問題を改善する方法として、図 30に示 すように、光変調器部 10内の電気 Z光相互作用領域 11と入力終端抵抗 81とを接続 する電気信号線 3、および、電気 Z光相互作用領域 11と出力終端抵抗 91とを接続 する電気信号線 4を、それぞれ特性インピーダンス Z— 100 Ω程度の高インピーダン
0
ス線路とする構成が提案されている(Electronic Letters 1st May 2003, Vol.39 No.9, pp733- 735参照。 )0
[0010] この構成によれば、光変調器部 10の低インピーダンス線路 (Z— 25 Ω )とこれに直
0
列に接続された高インピーダンス線路 (Z— 100 Ω )を全体として一つの素子として
0
見ると、実効的な特性インピーダンスを個々の線路の特性インピーダンスの平均的な 値とみなせるため、 50 Ω駆動系とのインピーダンス整合が可能となる。これにより、マ イク口波に対する入力反射係数 (S 11)および出力反射係数 (S22)が低減され、電 気信号駆動系入力終端側 (ドライバー回路)力 光変調器に入力されるマイクロ波は 電気信号駆動系出力終端側へと効率的に透過するため、光変調器内の電気 Z光相 互作用領域へのマイクロ波電圧の印加効率が改善される。この結果、 EZO応答の 周波数特性における平坦性を向上させることが可能となる。
[0011] また、 EZO応答の周波数特性における平坦性を向上させる別の方法として、出力 終端抵抗 (負荷抵抗)の値を光変調器の特性インピーダンスの値よりも小さくする構 成が提案されている (例えば、特開平 11— 183858号公報参照。;)。出力終端抵抗の 値と光変調器の特性インピーダンスの値とを異なる値とするこの方法は、電気信号の 出力終端側において意図的にインピーダンス不整合を生じさせ、光変調器内の電気 Z光相互作用領域に印加する電気信号としてドライバー回路力 の入射電気信号の みならず、出力終端側のインピーダンス不整合によって発生した反射電気信号をも 利用するものである。これより、 EZO応答の周波数特性におけるプロファイル (形状) の制御が可能となり、その平坦性、さらには— 3dB帯域が向上する。
発明の開示
発明が解決しょうとする課題
[0012] 上述した高インピーダンス線路の直列接続によるインピーダンス整合技術にお!、て は、入力される電気信号の波長が、低インピーダンス線路である光変調器部と高イン ピーダンス線路とを合わせた素子全体の物理長より長 、ことが必要条件である。これ は、電気信号波長が素子全体の物理長と同程度あるいはそれより短くなると、素子全 体の実効的な特性インピーダンスを個々の線路の特性インピーダンスの平均的な値 とみなせなくなる力 である。
[0013] したがって、高インピーダンス線路の直列接続によるインピーダンス整合技術には、 適用可能な電気信号の波長に下限が存在する、換言すれば、適用可能な電気信号 の周波数に上限が存在するという問題がある。実際、高インピーダンス線路の直列接 続による EZO応答特性の改善が見られるのは入力マイクロ波の周波数が一 25GH z程度までの領域であり、これより高い周波数の入力マイクロ波に対する EZO応答特 性は急激に劣化してしまう。
[0014] また、出力終端抵抗値の低減によるインピーダンス不整合技術においては、 EZO 応答の周波数特性における平坦性は向上するものの、これは、低周波側での EZO 応答の絶対的な値を減少させることによって高周波側での EZO応答の絶対的な値 との相対的な差を小さくすることによるものである。 EZO応答の絶対的な値の低下は 動的消光比の劣化を意味するものであり、望ま 、ものではな 、。
[0015] そこで、本発明の主目的は、光変調器の EZO応答特性の上限周波数を拡大する ことができる光変調器を提供することにある。
また、本発明の他の目的は、 EZO応答の絶対的な値を劣化させることなく周波数 特性の平坦ィ匕を可能とする光変調器を提供することにある。
課題を解決するための手段
[0016] このような目的を達成するために、本発明にかかる光変調器は、光信号入出力端と 電気信号入出力端と入力された光信号と電気信号とが相互作用する電気 Z光相互 作用領域とを有する光変調素子と、上記電気信号出力端に接続された電気信号線 と、この電気信号線に接続された反射制御回路とを備え、上記反射制御回路は、光 変調素子の前記相互作用領域から出力された前記電気信号を積極的に反射するよ うにしたインピーダンス素子を含むことを特徴とする。
発明の効果
[0017] 本発明によれば、電気 Z光相互作用領域と出力終端抵抗とを電気的に接続する 電気信号線に、変調電気信号の反射を助長するインピーダンス素子を接続すること により、 EZO (電気入力 Z光出力)応答特性の改善可能な上限周波数の拡大、また 、EZO応答の絶対的な値を劣化させることなくその周波数特性の平坦性の向上が 可能となる。
[0018] 従来では、例えば、電界吸収型光変調器の動作帯域を拡大するためには、素子容 量低減を目的とした素子長の短縮が必須であつたが、素子長の短縮は必然的に消 光比の低下を招来するものであった。し力しながら、本発明によれば、このようなトレ ードオフ関係を解消し、光変調器の動作帯域と消光比を独立に制御、設計すること が可能となる。
[0019] 本発明によれば、光変調器の電気 Ζ光相互作用領域と電気信号駆動系の出力終 端抵抗とを接続する電気信号線に、この電気信号線に対して並列にリアクタンス成分 Xまたは電気抵抗成分 R (より一般的にはインピーダンス Z=R+jX、 jは虚数単位)を 接続することにより、光変調器に入力される電気信号や光変調器から出力される電 気信号の反射を制御するための自由度が増大する。これにより入力(変調)電気信号 に対する出力 (被変調)光信号の応答特性における設計自由度が大幅に拡大する。
[0020] 上述した高インピーダンス線路の直列接続によるインピーダンス整合技術にお!、て は、電気信号の反射を制御するための自由度は、光変調器の電気 Z光相互作用領 域と終端抵抗とを接続する電気信号線の特性インピーダンス値および線路長につい てのみであった。また、上述した終端抵抗値の低減によるインピーダンス不整合技術 においては、電気信号の反射を制御するための自由度は、電気信号線に対して直 列に接続された出力終端抵抗の値についてのみであった。すなわち、従来技術にお ける電気信号の反射を制御するための自由度は、光変調器の電気 Z光相互作用領 域と終端抵抗とを接続する電気信号線に対して直列な要素についてのみであった。 これに対し本発明においては、電気信号線に対して並列に接続された要素をも利用 することによって電気信号の反射を制御するための自由度を増大させる。
[0021] そして、本発明における電気信号の反射の制御とは、電気信号の反射の単なる抑 制、すなわちインピーダンスの整合、という範疇を超えて、電気信号の反射の助長、 すなわちインピーダンスの不整合をも包含するものである。より具体的には、光変調 器の電気 Z光相互作用領域と出力終端抵抗とを接続する電気信号線に対して並列 にインピーダンスを接続することにより、少なくともある周波数領域において、当該イン ピーダンスを接続しない場合と比較して電気信号の反射係数の増大が実現される。 本発明は、このような電気信号の反射の助長 (反射電気信号の生成)を利用して入 力 (変調)電気信号に対する出力 (被変調)光信号の応答特性における改善を図るも のであって、本発明における並列インピーダンス(並列リアクタンス、並列電気抵抗) は、通常のインピーダンス整合 (電気信号の反射の抑制)におけるそれとは異なる機 能を果たすものである。
[0022] なお、光変調器の電気 Z光相互作用領域と出力終端抵抗とを接続する電気信号 線に対して直列に誘導性リアクタンスを接続しても、少なくともある周波数領域におい て、誘導性リアクタンスを直列接続しな!ヽ場合と比較して電気信号の出力反射係数 の増大が実現される。
図面の簡単な説明
[0023] [図 1]図 1は、本発明にかかる光変調器の第 1の実施例の構成を示す図である。
[図 2]図 2は、図 1の具体的構造を示す斜視図である。
[図 3A]図 3Aは、先端開放スタブ構造を示す図である。
[図 3B]図 3Bは、接地されたコンデンサを示す図である。
[図 3C]図 3Cは、接地されたインダクタを示す図である。
[図 4]図 4は、第 1の実施例に力かる光変調器の EZO応答の周波数依存性を示す図 である。
[図 5]図 5は、回路構成 Bの反射制御回路が接続された場合と反射制御回路が接続 されて!/、な!/、場合の光変調器の電気信号の反射係数の周波数依存性を示す図であ る。
[図 6]図 6は、回路構成 Bの反射制御回路が接続された場合と反射制御回路が接続 されて ヽな 、場合の光変調器の電気信号の透過係数の周波数依存性を示す図であ る。
[図 7]図 7は、回路構成 Cの反射制御回路が接続された光変調器の構成を示す図で ある。
[図 8]図 8は、回路構成 Cの反射制御回路が接続された場合と反射制御回路が接続 されて ヽな 、場合の光変調器の EZO応答の周波数依存性を示す図である。
[図 9]図 9は、第 2の実施例にカゝかる光変調器の構成を示す図である。
[図 10]図 10は、回路構成 Dの反射制御回路が接続された場合と反射制御回路が接 続されて 、な 、場合の光変調器の電気信号の反射係数の周波数依存性を示す図 である。
[図 11]図 11は、回路構成 Dの反射制御回路が接続された場合と反射制御回路が接 続されて 、な 、場合の光変調器の ΕΖΟ応答の周波数依存性を示す図である。
[図 12]図 12は、第 3の実施例にカゝかる光変調器の構成を示す図である。
[図 13]図 13は、第 3実施例の具体例を示す斜視図である。
[図 14]図 14は、回路構成 Ε, Fの反射制御回路が接続された場合と反射制御回路が 接続されて 、な 、場合の光変調器の ΕΖΟ応答の周波数依存性を示す図である。
[図 15]図 15は、リアクタンス素子を多段構成とする回路の模式図である。
[図 16]図 16は、回路構成 Gの反射制御回路が接続された光変調器の構成を示す図 である。
[図 17]図 17は、回路構成 Gの反射制御回路が接続された場合と反射制御回路が接 続されて 、な 、場合の光変調器の ΕΖΟ応答の周波数依存性を示す図である。
[図 18]図 18は、回路構成 Gの反射制御回路が接続された場合と反射制御回路が接 続されて 、な 、場合の光変調器の電気信号の反射係数の周波数依存性を示す図 である。
[図 19]図 19は、回路構成 Gの反射制御回路が接続された場合と反射制御回路が接 続されて 、な 、場合の光変調器の電気信号の透過係数の周波数依存性を示す図 である。
[図 20]図 20は、回路構成 Ηの反射制御回路が接続された光変調器の構成を示す図 である。
[図 21]図 21は、回路構成 Ηの反射制御回路が接続された場合と反射制御回路が接 続されて 、な 、場合の光変調器の ΕΖΟ応答の周波数依存性を示す図である。 圆 22Α]図 22Αは、回路構成 Iの反射制御回路が接続された光変調器の構成をそれ ぞれ示す図である。 [図 22B]図 22Bは、回路構 の反射制御回路が接続された光変調器の構成をそれ ぞれ示す図である。
[図 22C]図 22Cは、回路構成 Kの反射制御回路が接続された光変調器の構成をそ れぞれ示す図である。
[図 23]図 23は、回路構成 Iの反射制御回路が接続された場合と反射制御回路が接 続されて 、な 、場合の光変調器の EZO応答の周波数依存性を示す図である。
[図 24]図 24は、回路構成 Iの反射制御回路が接続された場合と反射制御回路が接 続されて 、な 、場合の光変調器の電気信号の反射係数の周波数依存性を示す図 である。
[図 25]図 25は、回路構 、 Kの反射制御回路が接続された場合と反射制御回路が 接続されて 、な 、場合の光変調器の EZO応答の周波数依存性を示す図である。
[図 26]図 26は、回路構成 Mの反射制御回路が接続された光変調器の構成を示す図 である。
[図 27]図 27は、回路構成 Mの反射制御回路が接続された場合と反射制御回路が接 続されて 、な 、場合の光変調器の EZO応答の周波数依存性を示す図である。
[図 28]図 28は、第 5の実施例にカゝかる光変調器の構成を示す図である。
[図 29]図 29は、回路構成 Nの反射制御回路が接続された場合と反射制御回路が接 続されて 、な 、場合の光変調器の EZO応答の周波数依存性を示す図である。
[図 30]図 30は、従来の光変調器の構成を示す図である。
発明を実施するための最良の形態
[0024] 以下、図面を参照して、本発明の実施例について詳細に説明する。
ここで、本発明において特徴づけられるのは、図 1の光変調素子 10の電気信号出 力側に接続された第 2の電気信号線 4aに反射制御回路を接続したことにある。
[0025] [第 1の実施例]
図 1は、本発明の光変調器の第 1の実施例を示し、光変調器は、光信号入力端 la 、光信号出力端 lb、電気信号入力端 2a、電気信号出力端 2b、入力された光信号と 電気信号とが相互作用する電気 Z光相互作用領域 11とから構成された光変調素子 10を有する。 [0026] また、上述した光変調素子 10の電気信号入力端 2aには、第 1の電気信号線 3が接 続され、電気信号出力端 2bには、反射制御回路 RCNTの一部を構成する第 2の電 気信号線 4aが接続されて 、る。
[0027] 第 1の電気信号線 3には、電気信号駆動系入力終端側 8の (等価)入力終端抵抗 8 1が接続されている。
[0028] 反射制御回路 RCNTは、光変調素子 10と出力終端抵抗 91との間に配置され、光 変調素子 10から出力される電気信号を積極的に反射させる構成となっている。反射 制御回路は、第 2の電気信号線 4aに対して並列なインピーダンス素子 5を含む。以 下に説明する各実施例では必要に応じて信号線について説明することとする。
[0029] 第 2の電気信号線 4aには、本発明によって特徴づけられる反射制御回路 RCNTの インピーダンス素子 5が接続され、電気信号線 4bを介して電気信号駆動系出力終端 側 9の出力終端抵抗 91に接続されている。進行波型電極構造を有する電界吸収型 光変調器の場合の具体的な構造は、図 2に示され、この場合、電気信号線 4a、 4bは 、 V、ずれも半絶縁性 InP基板上に形成されたコプレーナ線路によって構成されて 、 る。本実施例では、光変調素子 10と反射制御回路 RCNTとは一体に構成されてい る。
[0030] さらに、光変調素子 10を構成する電気 Z光相互作用領域 11は、電気信号入力端 2aに供給される電気信号に応じて、光信号入力端 laから供給される光信号を変調 する。この電気 Z光相互作用領域 11は、例えば、半絶縁 InP基板上に形成された n -InP/MQW/p-InP (MQWは InGaAlAsZlnAlAsの多量子井戸構造)の積層 構造からなる。
[0031] また、第 2の電気信号線 4aには、前述したとおり、反射制御回路 RCNTのインピー ダンス素子 5が接続される。一般に、この反射制御回路 RCNTは、インピーダンス成 分によって構成される。この実施例では、インピーダンス成分は線路と接地との間に 接続されたリアクタンス成分である。
[0032] このような光変調器にぉ ヽて、電気信号駆動系入力終端側 8で発生した変調電気 信号は、第 1の電気信号線 3を介して光変調素子 10に入力され、電気 Z光相互作用 領域 11にお 、て光信号入力端 laから入力された光信号を変調して、被変調光信号 として光信号出力端 lbから出力される。変調電気信号は、第 2の電気信号線 4a、反 射制御回路 RCNTのインピーダンス素子 5を介して電気信号駆動系出力終端側 9へ と送出される。
[0033] 前述したリアクタンス成分は、伝送線路力もなる先端開放スタブ (オープン 'スタブ) 構造を想定したものであり、主線路である第 2の電気信号線 4a側カゝら見たときのイン ピーダンス Zは、スタブを構成する線路の特性インピーダンスを Z、電気長を Θとする
0
と下式(1)で表される。
[0034] Z=-jZ cot θ · · · (1)
ο
[0035] ここで、 jは虚数単位である。式(1)から明らかなように、主線路側から見た先端開放 スタブのインピーダンスは純虚数であり、先端開放スタブは純リアクタンス成分を有す る。
[0036] なお、先端開放スタブのリアクタンス成分は、電気長 Θの周期関数となっていること からわかるように、電気信号の周波数によって負(容量性)にもなるし、正 (誘導性)に もなる。したがって、使用する周波数やあるいは光変調器のマイクロ波反射特性に応 じて、先端開放スタブ(図 3A)に替えて、図 3B, 3Cに示すように純リアクタンス成分 を有する集中定数素子であるコンデンサやインダクタを並列に接続するようにしても よい。あるいは、先端開放スタブ構造に替えて先端短絡スタブ (ショート 'スタブ)構造 を用いるようにしてもよい。
ここで、インダクタや先端短絡スタブ構造を用いる場合、必要に応じて直流阻止用 のコンデンサを挿入するようにしてもょ ヽ。
[0037] 図 1に示す構成、すなわち電気信号の反射を制御するための反射制御回路 RCN Tのインピーダンス素子 5を光変調素子 10の電気信号出力側に接続した場合につい ての、 EZO (電気入力 Z光出力)応答の周波数特性シミュレーションの結果を図 4に 示す。図 4は本実施例の光変調器の EZO応答の周波数依存性を示す。
[0038] 本シミュレーションでは、光変調素子 10として電気 Z光相互作用領域 11の長さが 1 00 μ mの進行波型電極構造を有する電界吸収型光変調器を仮定し、入力終端抵 抗 81および出力終端抵抗 91の値はともに 50 Ωとした。また、電気信号線 4a、 4bお よび反射制御回路 RCNTを構成するインピーダンス成分 (先端開放スタブ) 5は、す ベて特性インピーダンスが Z = 50 Ωのコプレーナ線路とし、これらの線路長を以下
0
の 2通りに変化させた。以下、それぞれの線路長の電気信号線 4a, 4bおよびインピ 一ダンス成分を有する回路を回路構成 A、 Bという。
[0039] (Ll、 L2、 Lstub) = (650 μ m、 100 μ m、 100 μ m):回路構成 A
(Ll、 L2, Lstub) = (390 μ m、 100 μ m、 230 μ m):回路構成 B
[0040] ここで、コプレーナ線路力もなる電気信号線 4aとリアクタンス素子 5 (先端開放スタブ )は、光変調素子 10が形成されている半絶縁性 InP基板と同一の基板上にモノリシッ ク集積が可能であり、この場合、信号線 4aは図 2に示す光変調素子 10のコプレーナ 線路からなる電気信号出力端 2bに直接接続される。
なお、第 1の電気信号線 3は、本シミュレーションでは単なる電気的結線とした。
[0041] 図 4に示す EZO応答特性は、入力マイクロ波の周波数力 5ΜΗζ— 100GHzのと きの結果を示すものである。
電気信号の反射制御回路 RCNTがー切接続されて ヽな ヽ場合、すなわち光変調 素子 10自体の EZO応答は、図 4において白四角印で示したとおり、入力マイクロ波 周波数の増加とともに単調に減少し、— 3dB帯域は約 67GHzである。
[0042] これに対し、インピーダンス成分を含む反射制御回路 RCNTを接続すると、図 4〖こ よく示されるように EZO応答特性を大幅に変化させることが可能となる。例えば回路 構成 A (図 4にお 、て黒丸印)では、 20— 45GHz付近の領域で EZO応答特性の平 坦性が向上している。また、回路構成 B (図 4において黒三角印)では、おおよそ 35— 80GHzの高 、周波数領域で EZO応答の絶対的な値が大幅に改善されて 、る。
[0043] EZO応答特性において顕著なピーキング効果が見られる回路構成 Bについて、 電気信号の入力反射係数 S11および出力反射係数 S22の周波数依存性を、反射 制御回路 RCNTが接続されて 、な 、場合の反射係数とともに図 5に示す。図 5は、 回路構成 Bの反射制御回路 RCNTが接続された場合と反射制御回路 RCNTが接 続されて 、な 、場合の光変調器の電気信号の反射係数の周波数依存性を示す。こ こで、反射制御回路 RCNTが接続されていない場合は、素子構造が入出力対称な ので、 S11 = S22となる。なお、反射係数は入力終端部および出力終端部を基準面 とするちのである。 [0044] トランジスタ等を用いた通常の電気回路の場合とは異なり、光変調器を用いた回路 では、電気信号の出力側にのみ反射制御回路 RCNTを接続しているにもかかわら ず入力反射係数 S 11をも制御することが可能である。図 5によく示されるように、入力 マイクロ波周波数が約 25— 50GHzの領域において、反射制御回路 RCNT (回路構 成 B)が接続された場合の S 11および S22の値は、反射制御回路 RCNTが接続され ていない場合の反射係数より低減している。これを反映して、図 4に示す回路構成 B の EZO応答は、 25— 50GHzの領域で周波数の増加とともに増大する傾向を示し ている。
[0045] ところが、回路構成 Bが接続された場合に EZO応答でピーキングが生じている 55 GHz近傍の周波数では、図 5に示されるように、回路構成 Bが接続された場合の S1 1は反射制御回路 RCNTが接続されていない場合とほぼ同じである。また、 S22に ついては、回路構成 Bが接続された場合の値は、反射制御回路 RCNTが接続され ていない場合よりも大きくなつている。これは、 EZO応答におけるピーキングが生じ る周波数近傍では、特に出力側において、電気的にインピーダンス不整合状態とな つていることを意味する。このことは、図 6に示す電気信号の透過係数 S21の周波数 依存性にも明確に現れている。図 6は、回路構成 Bの反射制御回路 RCNTが接続さ れた場合と反射制御回路 RCNTが接続されて 、な 、場合の光変調器の電気信号の 透過係数の周波数依存性を示す。
[0046] 図 6によく示されるように、回路構成 Bが接続されている場合の S21の値は、上述し たインピーダンス不整合状態を反映して 55GHz近傍で反射制御回路 RCNTが接続 されて 、な 、場合の S21の値より明らかに低下して!/、る。
[0047] このように、 EZO応答特性の改善は、単なるインピーダンス整合と 、う枠組みを超 えて、インピーダンス不整合、すなわち電気信号の反射の助長を積極的に利用する こと〖こより可能となる。回路構成 Bの場合、光変調素子 10から出力された電気信号を 反射制御回路 RCNTによって光変調素子 10側へ反射させる (反射信号を生成する )こと〖こよって、電気信号駆動系入力終端側 8で発生した変調電気信号と重ね合わさ れ、電気 Z光相互作用領域への信号電圧の印加効率が結果的に改善され、高周波 側における EZO応答でピーキングが実現されている。前述した従来の出力終端抵 抗値の低減によるインピーダンス不整合技術では、高周波側での(絶対的な大きさを 含めた) EZO応答を向上させることは不可能である。
[0048] (比較例 1)
次に、本実施例に力かる並列のインピーダンス成分の役割を明らかにするため、図 7に示すように回路構成 Bからリアクタンス成分のみを取り除いた構成、すなわち反射 制御回路 RCNTを構成する各線路の線路長を以下に示す回路構成 Cとした場合の EZO応答の周波数特性シミュレーション結果を図 8に示す。図 8は、回路構成じの 反射制御回路 RCNTが接続された場合と反射制御回路 RCNTが接続されて ヽな 、 場合の光変調器の Ε,Ο応答の周波数依存性を示す。
[0049] (Ll、 L2、 Lstub) = (390 μ m、 100 m、 0 m):回路構成 C
[0050] なお、図 7に示す光変調器において、図 1に示した光変調器と同等の構成要素に は図 1と同じ符号を付して、適宜説明を省略する。
[0051] 図 8によく示されるように、特性インピーダンス Z = 50 Ωの線路を直列に接続した回
0
路構成 Cの場合は、反射制御回路 RCNTが接続されて ヽな ヽ場合と比較して EZO 応答に何の変ィ匕も生じない。これは、電気信号の駆動系が 50 Ω系となっているため 、この駆動系に特性インピーダンス Z = 50 Ωの線路を直列に接続したとしてもマイク
0
口波の反射には何ら影響がないからである。
[0052] このシミュレーション結果から、本実施例において EZO応答特性を大幅に変化さ せることが可能となる要因は反射制御回路 RCNTのインピーダンスの並列成分であ ることがゎカゝる。
[0053] [第 2の実施例]
次に、本発明の第 2の実施例について図 9を用いて説明する。
第 1の実施例では、光変調部の電気信号出力側に並列にインピーダンス成分を接 続することにより反射電気信号を生成したが、本実施例は、光変調部の電気信号出 力側に直列に反射制御回路 RCNTとして誘導性リアクタンスを接続することにより反 射電気信号を生成するものである。
図 9は、本実施例にカゝかる光変調器の構成を示し、図 1に示す光変調器と同等の 構成要素には図 1の場合と同じ符号を付して、適宜説明を省略する。 [0054] 図 9に示すように、第 2の電気信号線 4に直列に接続された素子 71はインダクタで あり、そのインダクタンス値を L、角周波数を ωとすると、素子 71は + co Lの誘導性リ ァクタンス成分を有する。以下、このように素子 71が接続された回路構成を回路構成 Dという。
なお、インダクタはボンディング 'ワイヤ等により容易に実現することができる。
[0055] 図 9において、素子 71のインダクタンス値を L = 0. 04nHとしたときの電気信号の 入力反射係数 S11および出力反射係数 S22の周波数依存性を、素子 71が接続さ れていない場合の反射係数とともに図 10に示す。図 10は、回路構成 Dの反射制御 回路 RCNTが接続された場合と反射制御回路 RCNTが接続されて ヽな ヽ場合の光 変調器の電気信号の反射係数の周波数依存性を示す。ここで、反射制御回路 RCN Tが接続されていない場合は、素子構造が入出力対称なので、 S11 = S22となる。
[0056] 図 10によく示されるように、回路構成 Dの反射制御回路 RCNTを光変調器に接続 する、すなわち光変調素子 10の電気信号出力側に直列に誘導性リアクタンスを接続 すると、反射制御回路 RCNTが接続されていない場合と比較して、約 30GHz以上 の周波数領域において出力反射係数 S22を増大させることが可能となる。このときの EZO応答の周波数特性シミュレーション結果を図 11に示す。図 11は、回路構成 D の反射制御回路 RCNTが接続された場合と反射制御回路 RCNTが接続されていな V、場合の光変調器の EZO応答の周波数依存性を示す。
[0057] 図 11によく示されるように、回路構成 Dの反射制御回路 RCNTが接続された場合 は、図 10で出力反射係数 S22が増大 (反射電気信号が増大)して!、る周波数領域 で EZO応答が改善されて 、ることがわ力る。
[0058] [第 3の実施例]
次に、本発明の第 3の実施例について図 12を用いて説明する。
本実施例は、光変調部の電気信号出力側に並列に反射制御回路 RCNTとして、リ ァクタンスを接続するとともに、直列に素子 71 (誘導性リアクタンス)を接続する構成、 すなわち上述した第 1の実施例と第 2の実施例とを組み合わせたものに相当する。
[0059] 図 12は、本実施例にカゝかる光変調器の構成を示し、図 1に示す光変調器と同等の 構成要素には図 1の場合と同じ符号を付して、適宜説明を省略する。具体例は図 13 に示され、光変調素子 10と反射制御回路 RCNTは分離され、両者の間はボンディン グワイヤ 71 la— 711cで接続されている。この図 13の具体例の場合、直列伝送線路 4 a, 4bおよび先端開放スタブ構造 5は半絶縁性 InP基板上のコプレーナ線路によって 形成されて!、る。図 2の光変調素子 10と反射制御回路 RCNTはモノリシック集積で あるのに対し、本実施例の光変調素子 10と反射制御回路 RCNTはノ、イブリツド接続 であるといえる。
[0060] 図 12において、光変調器の電気 Z光相互作用領域 11の電気信号出力側に素子 71が直接接続され、そのインダクタンス値を L、角周波数を ωとすると、素子 71は + ω Lの誘導性リアクタンス成分を有する。
[0061] 素子 71のインダクタンス値を L = 0. 04nHで固定し、特性インピーダンス Z = 50 Ω
0 のコプレーナ線路で構成される第 2の電気信号線 4aおよびインピーダンス成分として のリアクタンス素子 (先端開放スタブ)の線路長を、以下の 2通りに変化させた。以下、 それぞれの線路長の第 2の電気信号線 4aおよびインピーダンス成分 (リアクタンス素 子)を有する回路を回路構成 E、 Fという。
[0062] (LI, L2, Lstub) = (650 μ m, 100 μ m, 70 ^ m) : 0{¾ j¾¾E
(LI, L2, Lstub) = ( 30 m、 100 μ m、 210 μ m):回路構成 F
[0063] このときの EZO応答の周波数特性シミュレーション結果を図 14に示す。図 14は、 回路構成 Ε, Fの反射制御回路 RCNTが接続された場合と反射制御回路 RCNTが 接続されて!、な!、場合の光変調器の Ε,Ο応答の周波数依存性を示す。
[0064] 本実施例は、第 1の実施例および第 2の実施例と比較して、光変調素子 10の電気 Ζ光相互作用領域 11と出力終端抵抗を接続する電気信号線に接続される要素が、 並列に接続された要素と直列に接続された要素の 2つに増えるため、電気信号の反 射を制御するための自由度が増加するので、 ΕΖΟ応答特性における改善効果がよ り顕著である。
[0065] 例えば、回路構成 Ε (図 14において黒丸印)では、 40GHz程度の周波数領域まで EZO応答の絶対的な大きさを劣化させることなぐ平坦性が向上している。また、回 路構成 F (図 14にお 、て黒三角印)では、 100GHz程度の超高周波領域にぉ 、ても EZO応答を大幅に改善させ、この場合の— 3dB帯域は 100GHzにも達する。 このように EZO応答特性が改善されたのは、第 1および第 2の実施の形態と同様、 電気信号の出力反射係数が助長されたことに起因する。
[0066] なお、第 1および第 3の実施例において、並列に接続される反射制御回路としての インピーダンス成分は、リアクタンス素子一つだけであった力 ΕΖΟ応答特性の設 計自由度を拡大するためには、図 15に示すように並列に接続される素子数を 2っ以 上とする多段構成も有効である。図 15は、リアクタンス素子を多段構成とする回路を 模式的に示す。
[0067] 図 15に示すように並列に接続されるリアクタンス成分を増やすと、電気信号の反射 を制御 (助長)するための自由度がリアクタンス成分を増やした分増大するので、 ΕΖ Ο応答特性の設計自由度が拡大する。
[0068] (比較例 2)
上述した第 1および第 3の実施例では、反射制御回路 RCNTとしての並列リアクタ ンス素子は光変調器の電気信号出力側に接続されていた。そこで、並列リアクタンス 素子を有する回路構成 Gの反射制御回路 RCNTが電気信号入力側に接続された 光変調器について検討する。図 16は、回路構成 Gの反射制御回路 RCNTが接続さ れた光変調器の構成を示す。
なお、図 16において図 1に示す光変調器と同等の構成要素については図 1と同じ 符号を付して、適宜説明を省略する。
[0069] 図 16において、特性インピーダンス Z = 50 Ωのコプレーナ線路で構成される第 1
0
の電気信号線 3および反射制御回路 RCNTとしてのリアクタンス素子 (先端開放スタ ブ)の線路長をそれぞれ以下の通りにしたときの EZO応答の周波数特性シミュレ一 シヨン結果を図 17に示す。図 17は、回路構成 Gの反射制御回路 RCNTが接続され た場合と反射制御回路 RCNTが接続されて 、な 、場合の光変調器の EZO応答の 周波数依存性を示す。
[0070] (L3、 L4、 Lstub) = (130 m、 100 m、 210 m):回路構成 G
[0071] 図 17によく示されるように、並列リアクタンス素子が光変調素子 10の電気信号入力 側に接続された場合も EZO応答を改善することが可能であり、回路構成 Gの場合で は、およそ 40— 70GHzの周波数領域で EZO応答の改善効果が得られることがわ かる。
[0072] 回路構成 Gの反射制御回路 RCNTにつ 、て、電気信号の入力反射係数 S 11およ び出力反射係数 S22の周波数依存性および透過係数 S21の周波数依存性をそれ ぞれ図 18および図 19に示す。図 18は、回路構成 Gの反射制御回路 RCNTが接続 された場合と反射制御回路 RCNTが接続されて ヽな ヽ場合の光変調器の電気信号 の反射係数の周波数依存性を示す図、図 19は、回路構成 Gの反射制御回路 RCN Tが接続された場合と反射制御回路 RCNTが接続されて 、な 、場合の光変調器の 電気信号の透過係数の周波数依存性を示す。
[0073] 図 18によく示されるように、図 17において EZO応答の改善効果が見られたおよそ 40— 70GHzの周波数領域に注目すると、回路構成 Gの反射制御回路 RCNTが接 続された場合は、反射制御回路 RCNTが接続されていない場合と比較して、 S11お よび S22の値がともに低減されており、この周波数領域においてはインピーダンス整 合状態となって 、ることがわ力る。
[0074] また、これに対応して、図 19によく示されるように、回路構成 Gの反射制御回路 RC NTが接続された場合の S 21の値は、およそ 40— 70GHzの周波数領域にぉ 、て反 射制御回路 RCNTが接続されて ヽな 、場合よりも増大して 、ることがわ力る。したが つて、 EZO応答の改善と電気信号の透過係数 S21の改善は、ほぼ完全な対応関係 にあるといる。
[0075] この現象は、インピーダンス不整合により EZO応答の改善を図る回路構成 Bの反 射制御回路 RCNTを接続した場合 (第 1の実施例)とは極めて対照的である。回路構 成 Bの場合は、 EZO応答特性にぉ 、て顕著なピーキングが見られる周波数領域で は、電気信号の透過係数 S21は明らかに劣化して ヽた(図 4および図 6参照)。
[0076] インピーダンス整合を用いた EZO応答の改善技術は、変調電気信号の入力端お よび出力端における反射を抑制して、光変調器に入力される電気信号を出力側に効 率的に透過させることによって光変調器内の電気 Z光相互作用領域に効率的に信 号電圧を供給するものであり、この結果として EZO応答特性の改善を得るものであ る。したがって、その設計思想は、入力端および出力端における電気信号の反射を 抑制することによって入力側から出力側への電気信号の透過係数 S21、すなわち利 得を改善するという、トランジスタ等を用いた通常の電気回路におけるインピーダンス 整合と本質的には同じ設計思想であり、光変調器内を進行 (透過)する電気信号の みに着目したものであると言うことができる。
[0077] 一方、インピーダンス不整合を用いた EZO応答の改善技術は、光変調器内の透 過 (入射)電気信号と、インピーダンス不整合によって発生する反射電気信号との重 畳により、光変調器への信号電圧の印加を制御するものであるから、その設計自由 度はインピーダンス整合を用いた技術より大幅に拡がるという利点がある。実際、図 1 6に示すようなインピーダンス整合を用いた構成(回路構成 G)では、 EZO応答の改 善は図 17に示す程度しか行えな力つた。これに対して、図 1 (回路構成 A、回路構成 B)に示すインピーダンス不整合を用いた構成では、図 4によく示されるように大幅に EZO応答特性を変化させることが可能となる。
[0078] (比較例 3)
上述した第 2の実施例では、反射制御回路 RCNTとしての誘導性リアクタンスは光 変調素子 10の電気信号出力側に直列に接続されている。そこで、誘導性リアクタン スを有する回路構成 Hが光変調素子 10の電気信号入力側に接続された光変調器 について検討する。図 20は、回路構成 Hの反射制御回路 RCNTが接続された光変 調器の構成を示す。
なお、図 20において、図 9に示す光変調器と同等の構成要素については図 9と同 じ符号を付して、適宜説明を省略する。
[0079] 図 20において、素子 71 (インダクタ)のインダクタンス値を L = 0. 04nHとしたときの EZO応答の周波数特性シミュレーション結果を図 21に示す。図 21は、回路構成 H の反射制御回路 RCNTが接続された場合と反射制御回路 RCNTが接続されていな V、場合の光変調器の EZO応答の周波数依存性を示す。
[0080] 図 21によく示されるように、光変調素子 10の電気信号入力側に直列に誘導性リア クタンスを接続すると、入力マイクロ波周波数が増加するにつれて EZO応答が劣化 することがわ力る。これは、光変調素子 10の電気信号入力側に周波数の増加ととも に増大する Z= +j coLのインピーダンス成分が接続されるため、電気信号駆動系で 発生したマイクロ波が光変調素子 10内の電気 Z光相互作用領域 11に達するまでに 減衰してしまうからである。
[0081] [第 4の実施例 }
次に、本発明の第 4の実施例について図 22A-22Cを用いて説明する。 本実施例は、光変調素子 10の電気信号出力端 2bに接続された電気信号線 4に対 して反射制御回路 RCNTとして並列電気抵抗が接続されたものである。
図 22A, 22B, 22Cは、それぞれ回路構成 I, J, Kの反射制御回路 RCNTが接続 された光変調器の構成を示す。なお、図 22において、図 1に示す光変調器と同等の 構成要素には図 1の場合と同じ符号を付して、適宜説明を省略する。また、図 22〖こ おいて、入力終端抵抗 81および出力終端抵抗 91の値はともに 50 Ωである。
[0082] 図 22Aに示す回路構成 Iの反射制御回路 RCNTの場合、第 2の電気信号線 4に反 射制御回路 RCNTとしての並列電気抵抗が接地との間に接続されている。
図 22Bに示す回路構 の反射制御回路 RCNTの場合、反射制御回路 5として並 列電気抵抗に加えて、並列電気抵抗より光変調素子 10側の電気信号線 4に直列電 気抵抗 7が接続されている。
図 22Cに示す回路構成 Kの制御回路の場合、反射制御回路 RCNTとしての並列 電気抵抗に加えて、並列電気抵抗より出力終端抵抗側の電気信号線 4に直列電気 抵抗 7が接続されている。
[0083] 図 22Aに示す回路構成 Iの場合の EZO応答特性の周波数特性シミュレーション結 果を、反射制御回路 RCNTが接続されて ヽな ヽ光変調素子自体の EZO応答特性 とともに図 23に示す。図 23は、回路構成 Iの反射制御回路 RCNTが接続された場合 と反射制御回路 RCNTが接続されて 、な 、場合の光変調器の EZO応答の周波数 依存性を示す。なお、本シミュレーションでは、光変調素子 10として第 1の実施例と 同じものを仮定し、反射制御回路 RCNTの並列電気抵抗の値は 67 Ωとした。
[0084] 図 23によく示されるように、光変調素子 10の電気信号出力側に、反射制御回路 R CNTとして、並列電気抵抗を接続すると、終端抵抗の値を 50 Ωに維持したまま、低 周波数側での EZO応答の絶対的な値を低下させるとともに高周波数側での EZO 応答の絶対的な値を改善して、周波数特性における平坦性を大幅に改善することが できる。従来技術では、 EZO応答の周波数特性における平坦性を向上させるため に出力終端抵抗 (負荷抵抗)自体の値を低減する必要があった。しカゝしながら、本実 施の形態では、並列抵抗を付加することにより、電気信号駆動系のインピーダンスを 標準的な値である 50 Ω力も変更する必要がな!、。
[0085] 回路構成 Iについて、電気信号の入反射係数 S11および出力反射係数 S22の周 波数依存性を、反射制御回路 RCNTが接続されて 、な 、場合の反射係数とともに 図 24に示す。図 24は、回路構成 Iの反射制御回路 RCNTが接続された場合と反射 制御回路 RCNTが接続されて 、な 、場合の光変調器の電気信号の反射係数の周 波数依存性を示す。ここで、反射制御回路 RCNTが接続されていない場合は、素子 構造が入出力対称なので、 S11 = S22となる。
[0086] トランジスタ等を用いた通常の電気回路の場合とは異なり、光変調部を用いた回路 では電気信号の出力側にのみ反射制御回路 RCNTを接続しているにもかかわらず 入力反射係数 S 11を制御することが可能である。図 24によく示されるように、入力マ イク口波周波数がおよそ 40GHzまでの領域では、反射制御回路(回路構成 I)が接続 されて 、る場合の S 11の値は、反射制御回路 RCNTが接続されて 、な 、場合とは逆 、すなわち周波数の増加に対して減少する傾向を有する。特に、およそ 25GHzまで の領域において、反射制御回路 RCNTを接続することにより入力側の電気信号の反 射が助長されている。
[0087] これに対応して、反射制御回路(回路構成 I)が接続されている場合の EZO応答 は、図 23に示したように、およそ 40GHzまでの領域で周波数の増加とともに増大す る傾向を示す。
[0088] このように、反射制御回路 RCNTとして光変調素子 10の電気信号出力側に並列電 気抵抗のみを接続する回路構成 Iの場合によれば、 EZO応答の周波数特性におけ る平坦性の改善が可能であるが、 EZO応答の絶対的な大きさは低周波側で低下し てしまう。
[0089] 反射制御回路 RCNTとして光変調素子 10の電気信号出力側に並列電気抵抗の みを接続する回路構成 I〖こ対して、回路構 , Kのように並列電気抵抗に加えて直 列電気抵抗 7を接続することにより、 EZO応答特性の絶対的な大きさを含めた特性 の改善が可能となる。回路構 , Kの場合の EZO応答シミュレーション結果を図 25 に示す。図 25は、回路構 、 Kの反射制御回路 RCNTが接続された場合と反射制 御回路 RCNTが接続されて 、な 、場合の光変調器の EZO応答の周波数依存性を 示す。
なお、図 25に示すシミュレーションにおいて、反射制御回路 RCNTとしての並列電 気抵抗の値は回路構 、 Kともに回路構成 Iと同じく 67 Ω、回路構 の直列電気抵 抗 7の値は 5 Ω、回路構成 Κの直列電気抵抗 7の値は 25 Ωとする。
[0090] 図 25によく示されるように、反射制御回路 RCNTとして並列電気抵抗に加えて直 列電気抵抗 7も用いることにより、終端抵抗の値を 50 Ωに維持したまま、 EZO応答 特性、特にその平坦性を EZO応答の絶対的な大きさを含めて改善することができ、 かつ、—3dB帯域も拡大することが可能となる。
[0091] (比較例 4)
上述した第 4の実施例では、電気抵抗は光変調素子 10の電気信号出力側に並列 に接続されていた。そこで、電気抵抗を有する回路構成 Mの反射制御回路 RCNT が光変調素子 10の電気信号入力側に接続された光変調器について検討する。図 2 6は、回路構成 Mの反射制御回路 RCNTが接続された光変調器の構成を示す。 なお、図 26において、図 22に示す光変調器と同等の構成要素については図 22と 同じ符号を付して、適宜説明を省略する。
[0092] 図 26において、反射制御回路 RCNTとしての並列電気抵抗の値を 67 Ωとしたとき の EZO応答の周波数特性シミュレーション結果を図 27に示す。図 27は、回路構成 Mの反射制御回路 RCNTが接続された場合と反射制御回路 RCNTが接続されて ヽ な 、場合の光変調器の Ε,Ο応答の周波数依存性を示す。
[0093] 図 27によく示されるように、光変調素子 10の電気信号入力側に反射制御回路 RC NTとしての並列電気抵抗を接続すると、 EZO応答の絶対的な値が大幅に劣化す るため、実際のシステムへの応用には適さない。このような EZO応答の劣化は、光 変調素子 10の電気信号入力側に電気抵抗成分が接続されるため、電気信号駆動 系で発生したマイクロ波が光変調素子 10内の電気 Z光相互作用領域 11に達するま でに減衰してしま ヽ、電気 Z光相互作用領域 11に信号電圧が有効に印加されな 、 ことに起因する。 [0094] [第 5の実施例]
次に、本発明の第 5の実施例について図 28を用いて説明する。
本実施例は、光変調部の電気信号出力側に並列に電気抵抗を接続するとともに、 直列に誘導性リアクタンスを接続する構成、すなわち第 2の実施例と第 4の実施例を 組み合わせたものに相当する。
図 28は、本実施例にカゝかる光変調器の構成を示す。なお、図 28において、図 9お よび図 22および示す光変調器と同等の構成要素には図 9および図 22の場合と同じ 符号を付して、適宜説明を省略する。
[0095] 図 28において、第 2の電気信号線 4に直列に接続された素子 71はインダクタであり 、そのインダクタンス値を L、角周波数を ωとすると、素子 71は + co Lの誘導性リアク タンス成分を有する。また、第 2の電気信号線 4の素子 71より出力終端抵抗側には、 反射制御回路 RCNTとしての並列電気抵抗および直列電気抵抗 7が接続されてい る。以下、このような回路構成を回路構成 Nという。
[0096] 図 28に示す回路構成 Nが接続された光変調器において、素子 71のインダクタンス 値を L = 0. 04nH、反射制御回路 RCNTとしての並列電気抵抗および直列電気抵 抗 7の値をそれぞれ 67 Ω、 25 Ωとしたときの EZO応答の周波数特性シミュレーショ ン結果を図 29に示す。図 29は、回路構成 Nの反射制御回路 RCNTが接続された場 合と反射制御回路 RCNTが接続されて 、な 、場合の光変調器の EZO応答の周波 数依存性を示す。
[0097] 図 29によく示されるように、回路構成 Nの場合は、 EZO応答特性をその絶対的な 大きさを含めて大幅な改善が可能であり、 40GHz近傍を中心として極めて広い周波 数領域にわたり EZO応答のピーキング効果が見られる。このようなピーキングが実 現可能となると、例えば、光変調器を電気的に駆動するドライバー回路の出力電圧 振幅が周波数の増加とともに低下するようなものであっても、光変調器からの光出力 を 40GHz程度の周波数領域まで等化できるという利点がある。
[0098] なお、図 28に示す回路構成 Nでは直列電気抵抗 7が接続されているが、この直列 電気抵抗がなくても同等の効果が得られる。
また、図 29において、低周波領域で EZO応答特性が周波数の増加とともに増大 する傾向を示すのは、第一義的には、第 4の実施例と同じく電気信号の入力反射係 数 S 11のプロファイルによる。
以上、第 1一第 5の実施例を通じて本発明を説明したが、それぞれの実施例を任意 に組み合わせて良いことはいうまでもない。また、第 1一第 5の実施例においては、光 変調素子として電界吸収型を例に説明したが、本発明は他の動作機構に基づく光 変調素子、例えば、材料の屈折率変化を利用したマッハ'ツェンダー型光変調素子 に対しても適用可能である。これは、本発明は光変調素子の電気 Z光相互作用領域 における動作機構についてのものではなぐ電気 Z光相互作用領域に供給される電 気信号の制御に関するものだ力 である。

Claims

請求の範囲
[1] 光信号入出力端と電気信号入出力端と入力された光信号と電気信号とが相互作 用する電気 Z光相互作用領域とを有する光変調素子と、
前記電気信号出力端に接続された電気信号線と、
この電気信号線に接続された反射制御回路と
を備え、
前記反射制御回路は、光変調素子の前記相互作用領域から出力された前記電気 信号を積極的に反射するようにしたインピーダンス素子を含む
ことを特徴とする光変調器。
[2] 前記インピーダンス素子は、前記電気信号線と接地との間に接続されたリアクタン ス素子である
ことを特徴とする請求項 1記載の光変調器。
[3] 前記リアクタンス素子は、スタブ構造の素子である
ことを特徴とする請求項 2記載の光変調器。
[4] 前記反射制御回路は、前記光変調素子から延在する前記電気信号線に直列に接 続された他のインピーダンス成分をさらに含む
ことを特徴とする請求項 2記載の光変調器。
[5] 前記反射制御回路のインピーダンス成分は、前記電気信号線に直列に接続された 誘導性リアクタンスである
ことを特徴とする請求項 1記載の光変調器。
[6] 前記反射制御回路のインピーダンス成分は、前記電気信号線と接地との間に接続 された電気抵抗である
ことを特徴とする請求項 1記載の光変調器。
[7] 前記反射制御回路は、前記光変調素子から延在する前記電気信号線に直列に接 続された他の電気抵抗をさらに含む
ことを特徴とする請求項 6記載の光変調器。
[8] 前記電気信号線に直列に接続されたインピーダンス成分は誘導性リアクタンスであ る ことを特徴とする請求項 4記載の光変調器。
[9] 前記電気信号線は、出力終端抵抗に接続される
ことを特徴とする請求項 2記載の光変調器。
[10] 前記電気信号線は、出力終端抵抗に接続される
ことを特徴とする請求項 6記載の光変調器。
[11] 前記電気信号線に接続される出力終端抵抗の抵抗値は 50 Ωである
ことを特徴とする請求項 9記載の光変調器。
[12] 前記電気信号線に接続される出力終端抵抗の抵抗値は 50 Ωである
ことを特徴とする請求項 10記載の光変調器。
[13] 電気信号を前記相互作用領域に入力する電気信号線に接続された電気信号駆動 系の入力終端抵抗と前記出力終端抵抗の抵抗値は等しい
ことを特徴とする請求項 9記載の光変調器。
[14] 電気信号を前記相互作用領域に入力する電気信号線に接続された電気信号駆動 系の入力終端抵抗と前記出力終端抵抗の抵抗値は等しい
ことを特徴とする請求項 10記載の光変調器。
[15] 光信号入出力端と電気信号入出力端と入力された光信号と電気信号とが相互作 用する電気 Z光相互作用領域とを有する光変調素子と、
前記電気信号出力端に接続された電気信号線と、
この電気信号線に接続された反射制御回路と
を用い、
光変調素子の前記相互作用領域から出力された前記電気信号をインピーダンス素 子からなる前記反射制御回路により積極的に反射するようにし、生成された反射電気 信号と前記入力された電気信号とを重畳させて、この重畳された電気信号により前記 入力された光信号を変調する
ことを特徴とする光変調方法。
[16] 前記反射制御回路のインピーダンス素子は、前記電気信号線と接地との間に接続 されたリアクタンス素子である
ことを特徴とする請求項 15記載の光変調方法。
PCT/JP2005/004958 2004-03-18 2005-03-18 光変調器および光変調方法 WO2005091056A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05726681A EP1734399A4 (en) 2004-03-18 2005-03-18 OPTICAL MODULATOR AND OPTICAL MODULATION PROCESS
JP2006516884A JP4184405B2 (ja) 2004-03-18 2005-03-18 光変調器および光変調方法
US10/547,906 US7345803B2 (en) 2004-03-18 2005-03-18 Optical modulator and optical modulating method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-077704 2004-03-18
JP2004077704 2004-03-18

Publications (1)

Publication Number Publication Date
WO2005091056A1 true WO2005091056A1 (ja) 2005-09-29

Family

ID=34993857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/004958 WO2005091056A1 (ja) 2004-03-18 2005-03-18 光変調器および光変調方法

Country Status (6)

Country Link
US (1) US7345803B2 (ja)
EP (1) EP1734399A4 (ja)
JP (1) JP4184405B2 (ja)
KR (1) KR20060059863A (ja)
CN (1) CN100383610C (ja)
WO (1) WO2005091056A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7936495B2 (en) 2008-12-16 2011-05-03 Mitsubishi Electric Corporation Optical modulation device
JP2012078759A (ja) * 2010-10-06 2012-04-19 Mitsubishi Electric Corp 光変調器
JP2015125153A (ja) * 2013-12-25 2015-07-06 日本電信電話株式会社 光モジュール
JP2015215555A (ja) * 2014-05-13 2015-12-03 日本電信電話株式会社 光送信器及び光送信器の制御方法
WO2016104551A1 (ja) * 2014-12-26 2016-06-30 住友大阪セメント株式会社 光変調器
WO2021025158A1 (ja) * 2019-08-08 2021-02-11 住友大阪セメント株式会社 光変調器及びそれを用いた光送信装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5313730B2 (ja) * 2009-03-16 2013-10-09 日本オクラロ株式会社 光送信機及び光送信モジュール
US8426798B2 (en) * 2009-08-19 2013-04-23 Jds Uniphase Corporation Electrical termination circuit for a traveling-wave optoelectronic device
CN101650478A (zh) * 2009-09-10 2010-02-17 上海华魏光纤传感技术有限公司 一种实现稳定消光比的电光调制器组件及其方法
JP7091969B2 (ja) * 2018-09-25 2022-06-28 日本電信電話株式会社 光変調器モジュール
JP7095583B2 (ja) * 2018-12-11 2022-07-05 日本電信電話株式会社 光送信機
CN110311735B (zh) * 2019-07-02 2021-05-07 上海交通大学 一种光发射器
WO2021146382A1 (en) * 2020-01-16 2021-07-22 Lightmatter, Inc. Pin sharing for photonic processors
US11927839B2 (en) 2020-09-14 2024-03-12 Ii-Vi Delaware, Inc. Broadband electro-absorption optical modulator using on-chip RF input signal termination
CN112394546B (zh) * 2020-11-13 2024-06-18 联合微电子中心有限责任公司 行波电极调制器集成端接电阻的调控方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11183858A (ja) * 1997-12-24 1999-07-09 Sumitomo Osaka Cement Co Ltd 進行波型光変調器及び光変調方法
JP2000156612A (ja) * 1998-11-18 2000-06-06 Sharp Corp 周波数逓倍器
JP2003115719A (ja) * 2001-10-03 2003-04-18 Murata Mfg Co Ltd 高周波発振回路、高周波モジュールおよび通信機装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1046074A (fr) * 1951-12-01 1953-12-03 Csf Dispositif de détection électromagnétique d'obstacles
SE457253B (sv) * 1987-04-14 1988-12-12 Ericsson Telefon Ab L M Elektrodanordning foer optoelektroniska organ
JPH0798442A (ja) 1993-06-15 1995-04-11 Nec Corp 導波路型光デバイス
US5886807A (en) * 1997-01-24 1999-03-23 California Institute Of Technology Traveling-wave reflective electro-optic modulator
JP2885218B2 (ja) * 1997-03-17 1999-04-19 日本電気株式会社 光制御デバイス
JP3885528B2 (ja) * 2001-07-04 2007-02-21 株式会社日立製作所 光変調器
JP3947406B2 (ja) * 2002-02-15 2007-07-18 株式会社ルネサステクノロジ 半導体レーザモジュール
CN100334483C (zh) * 2002-06-03 2007-08-29 松下电器产业株式会社 光调制元件及通信系统
JP3847668B2 (ja) * 2002-06-13 2006-11-22 日本オプネクスト株式会社 進行波型光変調装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11183858A (ja) * 1997-12-24 1999-07-09 Sumitomo Osaka Cement Co Ltd 進行波型光変調器及び光変調方法
JP2000156612A (ja) * 1998-11-18 2000-06-06 Sharp Corp 周波数逓倍器
JP2003115719A (ja) * 2001-10-03 2003-04-18 Murata Mfg Co Ltd 高周波発振回路、高周波モジュールおよび通信機装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1734399A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7936495B2 (en) 2008-12-16 2011-05-03 Mitsubishi Electric Corporation Optical modulation device
JP2012078759A (ja) * 2010-10-06 2012-04-19 Mitsubishi Electric Corp 光変調器
JP2015125153A (ja) * 2013-12-25 2015-07-06 日本電信電話株式会社 光モジュール
JP2015215555A (ja) * 2014-05-13 2015-12-03 日本電信電話株式会社 光送信器及び光送信器の制御方法
WO2016104551A1 (ja) * 2014-12-26 2016-06-30 住友大阪セメント株式会社 光変調器
JP2016126054A (ja) * 2014-12-26 2016-07-11 住友大阪セメント株式会社 光変調器
US10162201B2 (en) 2014-12-26 2018-12-25 Sumitomo Osaka Cement Co., Ltd. Optical modulator
WO2021025158A1 (ja) * 2019-08-08 2021-02-11 住友大阪セメント株式会社 光変調器及びそれを用いた光送信装置
JP2021026165A (ja) * 2019-08-08 2021-02-22 住友大阪セメント株式会社 光変調器及びそれを用いた光送信装置
JP7263972B2 (ja) 2019-08-08 2023-04-25 住友大阪セメント株式会社 光変調器及びそれを用いた光送信装置
US11953767B2 (en) 2019-08-08 2024-04-09 Sumitomo Osaka Cement Co., Ltd. Optical modulator and optical transmission apparatus using same

Also Published As

Publication number Publication date
US20060171011A1 (en) 2006-08-03
EP1734399A1 (en) 2006-12-20
KR20060059863A (ko) 2006-06-02
JPWO2005091056A1 (ja) 2007-08-09
CN1764862A (zh) 2006-04-26
CN100383610C (zh) 2008-04-23
US7345803B2 (en) 2008-03-18
JP4184405B2 (ja) 2008-11-19
EP1734399A4 (en) 2007-12-26

Similar Documents

Publication Publication Date Title
WO2005091056A1 (ja) 光変調器および光変調方法
JP4899356B2 (ja) 光変調器
JP7283180B2 (ja) 光変調器
JP5056040B2 (ja) 光変調器
US8655116B2 (en) Optical modulator
JP6032270B2 (ja) 光変調器
US7031558B2 (en) Low-pass filter transmission line with integral electroabsorption modulator
JP3885528B2 (ja) 光変調器
US8559768B2 (en) Traveling wave optical modulator
US6356673B1 (en) Low loss coplanar waveguide horn for low drive LiNbO3 modulators
JP4430114B2 (ja) 光導波路素子モジュール
US20050201653A1 (en) System for reducing the electrical return loss of a lithium niobate traveling wave optical modulator with low characteristic impedance
JP2006003507A (ja) 光変調器および特性制御方法
JP5532038B2 (ja) 光変調器
JP5303072B2 (ja) 光変調器
US6735010B2 (en) Resonator-type semiconductor optical modulator with asymmetrical electrode structure
WO2023095261A1 (ja) マッハツェンダ変調器
US20230194904A1 (en) Optical modulator and optical transmitter
JP2024064871A (ja) 光変調器及び光送信装置
JP2009145695A (ja) 光変調器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006516884

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2006171011

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2005726681

Country of ref document: EP

Ref document number: 10547906

Country of ref document: US

Ref document number: 1020057016574

Country of ref document: KR

Ref document number: 20058000689

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1020057016574

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10547906

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2005726681

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1020057016574

Country of ref document: KR