WO2005090922A1 - 位置検出器および被検出体 - Google Patents

位置検出器および被検出体 Download PDF

Info

Publication number
WO2005090922A1
WO2005090922A1 PCT/JP2004/013557 JP2004013557W WO2005090922A1 WO 2005090922 A1 WO2005090922 A1 WO 2005090922A1 JP 2004013557 W JP2004013557 W JP 2004013557W WO 2005090922 A1 WO2005090922 A1 WO 2005090922A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
detected
color
sensor
detection
Prior art date
Application number
PCT/JP2004/013557
Other languages
English (en)
French (fr)
Inventor
Nobuharu Hama
Original Assignee
Tamagawa Seiki Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamagawa Seiki Co., Ltd. filed Critical Tamagawa Seiki Co., Ltd.
Priority to EP04773203A priority Critical patent/EP1729095A4/en
Priority to US10/593,203 priority patent/US7952065B2/en
Publication of WO2005090922A1 publication Critical patent/WO2005090922A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/3473Circular or rotary encoders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/34776Absolute encoders with analogue or digital scales
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/90Two-dimensional encoders, i.e. having one or two codes extending in two directions

Definitions

  • the present invention relates to a position detector and an object to be detected, and in particular, enables detection of an absolute angle of a rotating object, an absolute position on an XY plane, etc., thereby facilitating assembly, miniaturizing the apparatus, and reducing costs.
  • the present invention relates to a novel position detector and an object to be detected.
  • FIGS. 12 (a) to 12 (c) are explanatory diagrams showing an example of a strong absolute angle detection method in the related art.
  • (a) is a side view of the main part of the encoder
  • (b) is a plan view of the disk of the absolute encoder
  • (c) is an enlarged view of a portion A in (b).
  • a binary n-bit code power is formed on an absolute position detection disk 61 by a slit S and a pattern 62 coded for each angle is formed.
  • a one-turn detection pattern 69 for detecting the origin is provided.
  • the formation of a pattern coded for each angle is performed using a considerably advanced manufacturing technique.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-215239. "Rotating body detection device”. Abstract, claims, Figure 3.
  • Patent Document 2 JP-A-1-277704. "Rotary shaft displacement detector”. Summary, Scope of Patent Claim, Figure 1.
  • the problem to be solved by the present invention is to make it possible to detect the absolute angle of a rotating object, the absolute position on the XY plane, and the like by a simpler configuration and an easier method, except for the above-described problems of the conventional technology.
  • Another object of the present invention is to provide a position detector and an object to be detected which enable easy assembling, miniaturization, and cost reduction of the device.
  • the object to be tested such as a rotating body is configured to be able to reflect electromagnetic waves having a wavelength that continuously changes depending on the position, and the like.
  • the invention claimed or disclosed at least as a means for solving the above-mentioned problem is as follows.
  • a position detector comprising a sensor, wherein the pattern is formed in a gradation form so as to be capable of continuously transmitting electromagnetic waves having different wavelengths depending on the position on the object to be detected to the sensor side.
  • a position detector characterized in that it is formed in a position detector.
  • the sensor has a wavelength separation unit such as a vector spectroscope or a primary color filter for separating the electromagnetic wave from the object to be detected into each wavelength, and based on the wavelength obtained by the separation.
  • a wavelength separation unit such as a vector spectroscope or a primary color filter for separating the electromagnetic wave from the object to be detected into each wavelength, and based on the wavelength obtained by the separation.
  • the object to be detected has a disk shape so that position detection in the rotation direction can be performed, and generates electromagnetic waves of different wavelengths to be transmitted to the sensor side in the rotation direction.
  • the position detector according to any one of (1) to (3), wherein a pattern is formed, and the rotational position of the object to be detected can be detected by a small configuration.
  • the object to be detected has a shape of a parallelogram so that position detection on a coordinate plane can be performed, and generates an electromagnetic wave having a different wavelength to be transmitted to the sensor side in a quadrant thereof.
  • the position detector according to any one of (1) to (3), wherein the pattern is formed, and the coordinate position of the object to be detected can be detected by a small configuration.
  • the object to be detected has a spherical shape so that position detection on a spherical surface can be performed, and a pattern for generating electromagnetic waves of different wavelengths to be transmitted to the sensor side is formed on the spherical surface.
  • the position detector according to any one of (1) to (3), wherein the position detector is formed and is capable of detecting an upper position of a spherical surface of the object to be detected by a small structure.
  • the detection object is provided with an origin for position detection by a part of the pattern or by a separately provided pattern, whereby an absolute position can be detected.
  • the position detector according to (6) is provided with an origin for position detection by a part of the pattern or by a separately provided pattern, whereby an absolute position can be detected.
  • the pattern is composed of a plurality of basic colors provided at different positions on the detected position, and respective colors based on a color mixing ratio of the two, which are continuously arranged between two adjacent basic colors.
  • the pattern is formed in a gradation shape by a color or a color that continuously changes depending on a position, and has a disk shape so that position detection in a rotation direction can be performed.
  • the pattern is formed in a gradation by a color or a color that continuously changes depending on the position, and has a shape of a parallelogram so that the position on the coordinate plane can be detected.
  • the pattern is formed in a gradation shape by a color or a color that continuously changes depending on a position, and has a spherical shape so that position detection on a spherical surface can be performed.
  • the object to be detected according to (1) is formed in a gradation shape by a color or a color that continuously changes depending on a position, and has a spherical shape so that position detection on a spherical surface can be performed.
  • the pattern is formed in a gradation shape by a color or a color that continuously changes depending on a position, and is in the form of a strip so that position detection in a certain direction can be performed.
  • the pattern is formed in a gradation shape by a color or a color that continuously changes depending on a position, and has a cylindrical shape so that position detection in a rotational direction can be performed.
  • the position detector and the object to be detected of the present invention are configured as described above, according to this, the absolute angle of the rotating object, the absolute position on the XY plane, and the like can be more easily configured. It can be detected by an easy method. In addition, easy assembly, miniaturization, and cost Can be reduced.
  • FIG. 1 is an explanatory diagram showing a basic configuration of a position detector of the present invention.
  • FIG. 2 (a) is an explanatory view and a side view of a position detector of the present invention for detecting a rotational position.
  • FIG. 2 (b) is an explanatory view of a position detector of the present invention for detecting a rotational position, and is a plan view.
  • FIG. 2 (c) is an explanatory diagram of a position detector of the present invention for detecting a rotational position, and is a graph showing an example of a rotational position of an object to be detected and an electromagnetic wave generation state associated therewith.
  • FIG. 3 is an explanatory diagram showing a side configuration of the position detector of the present invention for position detection on the XY plane.
  • FIG. 4 is an explanatory view showing an example of a method for forming a pattern on a spherical surface according to the position detector of the present invention for detecting a position on a spherical surface.
  • FIG. 5 is an explanatory diagram showing an example of a pattern configuration on a detected object for detecting a position on a spherical surface according to another example.
  • FIG. 6 is a diagram showing an example of a configuration of an object to be detected of a position detector for detecting a rotational position.
  • FIG. 7 is a diagram showing another configuration example of a detected object of a position detector for detecting a rotational position.
  • FIG. 8 is a diagram illustrating an example of a configuration of a detected object of a position detector for detecting a ⁇ coordinate plane position
  • FIG. 4 is a plan view showing an example of a pattern of a position detector at a position on the flat surface shown in FIG.
  • FIG. 9- ⁇ is a diagram showing another configuration example of the detected object of the position detector for detecting the position of the ⁇ coordinate plane.
  • FIG. 9- ⁇ is a diagram showing another configuration example of the detected object of the position detector for detecting the position of the ⁇ coordinate plane.
  • FIG. 9-C is a diagram showing another configuration example of the detected object of the position detector for detecting the position on the XY coordinate plane.
  • FIG. 10 is a diagram showing another configuration example of a detected object of a position detector for detecting a coordinate position in a fixed direction.
  • FIG. 11 is a diagram showing an example of a configuration of a detected object of a position detector for detecting a rotational position.
  • FIG. 12 (a) is an explanatory view showing an example of a conventional absolute angle detection method, and is a side view of a main part of an encoder.
  • FIG. 12 (b) is an explanatory diagram showing an example of a conventional absolute angle detection method, and is a plan view of a disc of an absolute type encoder.
  • FIG. 12 (c) is an explanatory view showing an example of a conventional absolute angle detection method, and is an enlarged view of a portion A in FIG. 12 (b).
  • FIG. 1 is an explanatory diagram showing a basic configuration of the position detector of the present invention.
  • the figures are conceptually structured for ease of explanation. In the following figures, such cases may occur.
  • a position detector 10 of the present invention receives an object 1 on which a pattern 2 for generating a position signal is formed, and receives an electromagnetic wave generated on the object 1 by irradiating light. And a sensor 3 for detecting a position signal based on the pattern 2.
  • the main configuration of the sensor 2 is that it is formed in a visible or invisible gradation so that electromagnetic waves of different wavelengths can be continuously transmitted to the sensor 3 depending on the position on the detection target 1.
  • a light emitting element 4A is provided in the position detector 10 as a part of the sensor 3 or independently of the sensor 3, and as a part of the sensor 3, A light receiving element 5 is provided.
  • the pattern 2 receives the light of the light emitting element 4A and reflects an electromagnetic wave having a different wavelength depending on the position of the detection target 1 to the light receiving element 5 forming a part of the sensor 3. Is configured.
  • the light emitted from the light-emitting element 4A is reflected by the pattern 2 by virtue of the strong configuration.
  • the pattern 2 has a visible or invisible gradation-like configuration. Electromagnetic waves having different wavelengths continuously depending on the position on the detection target 1 are transmitted to the sensor 3 and detected.
  • the position of the detection target in the sensor 3 can be detected.
  • the absolute position of the object 1 can be easily detected by specifying the specific position of the object 1 in advance based on the wavelength of the electromagnetic wave and storing the information.
  • the detected object 1 is shown as a rotating body, but the present invention is not limited to this, and can be used for position detection on the XY plane as described later.
  • the surface or the position to be detected whether in the rotational direction position (angle) or the position on the XY plane, is formed into a visible or invisible gradation pattern, so that it can be applied to the pattern. Any method that achieves position-dependent electromagnetic wave generation by light irradiation and obtains position information by detecting the electromagnetic wave is within the scope of the present invention. Therefore, the position detection method of the present invention can be used not only for a plane or a part to be detected but also for a curved surface such as a spherical surface.
  • the pattern 2 can transmit electromagnetic waves having different wavelengths continuously depending on the position on the detection target 1” means that the pattern 2 is irradiated from an external light source (4A or the like). In response to this, it generates reflected light or transmitted light, or emits fluorescence or the like excited by fluorescence. At this time, the detected color is detected so that a specific color (visible light) or invisible light is generated at that position. Pattern 2 on body 1 is formed!
  • the visible or invisible gradation state means that the pattern 2 generates an electromagnetic wave having a wavelength peculiar to a position due to the irradiation, and the electromagnetic wave is continuously generated along with the position on the detection target 1. It refers to a pattern of strategic change.
  • the position detector 10 is provided with a light emitting element 4B which forms a part of the sensor 3 or is independent of the sensor 3, and the sensor 3 receives light as a part thereof.
  • a configuration in which the element 5 is provided can also be adopted.
  • the pattern 2 receives the light of the light emitting element 4B and transmits an electromagnetic wave having a different wavelength depending on the position of the detection target 1 to the light receiving element 5 which forms a part of the sensor 3. Is configured.
  • the light emitted from the light emitting element 4B is transmitted through the pattern 2 due to the powerful structure.
  • the visible or invisible gradation-like structure of the pattern 2 causes Electromagnetic waves having different wavelengths continuously depending on the position on the detection target 1 are transmitted to the sensor 3 and detected.
  • the position detector 10 is provided with a light emitting element 4A or 4B which forms a part of the sensor 3 or independently of the sensor 3, and the sensor 3 has a part thereof.
  • the pattern 2 receives light from the light emitting element 4A or 4B and generates an electromagnetic wave having a different wavelength depending on the position of the detection target 1 by fluorescence excitation or the like.
  • the light receiving element 5 forming a part of the sensor 3 may be configured to emit light.
  • the light emitted from the light emitting element 4A or 4B also emits fluorescent light in the pattern 2, and at this time, the pattern 2 is visible or invisible.
  • electromagnetic waves having different wavelengths are continuously transmitted to the sensor 3 side and detected depending on the position on the detection target 1.
  • the sensor 3 has a wavelength separating section for separating the electromagnetic wave from the detection target 1 into each wavelength, and the position is detected based on the wavelength obtained by the separation. It is possible to use a spectrum spectroscope or a primary color filter as the wavelength separation unit.
  • FIG. 2 is an explanatory diagram of the position detector of the present invention for detecting a rotational position.
  • FIG. 2 (a) is a side view thereof. Also,
  • FIG. 2B is a plan view thereof. Also,
  • FIG. 2 (c) is a graph showing an example of the rotational position of the object to be detected and the state of electromagnetic wave generation associated therewith.
  • the position detector 30 has a disc-like form so that the position of the detection target 31 in the rotation direction can be detected, and the position of the detection target 31 is transmitted to the sensor 33 in the rotation direction.
  • the main configuration is that a pattern 32 for generating electromagnetic waves having different wavelengths to be formed is formed.
  • the arrangement relationship of the light emitting element and the light receiving element is not limited, and the transmission of the electromagnetic wave from the pattern 32 to the light receiving element of the sensor 33 is not limited to the illustrated reflection method, but also the transmission and the fluorescence. Either method can be used. The same applies to the following examples.
  • the position detector 30 in the pattern 32 that has received light from the light emitting element, the pattern 32 is based on a specific pattern provided according to the rotational position of the object 31 to be detected. An electromagnetic wave is generated, transmitted to the sensor 33, and the rotational position of the detection target 31 is detected.
  • the position detector for detecting a rotational position according to the present invention can be used in, for example, an encoder.
  • the electromagnetic waves transmitted from the object 31 are separated and detected for each wavelength by a wavelength separation unit such as a primary color filter or a spectral prism, and the electromagnetic waves are specified.
  • a wavelength separation unit such as a primary color filter or a spectral prism
  • information on the rotational position specified by the electromagnetic wave can be obtained.
  • the arrangement position of the sensor 33 with respect to the detection object 31 does not require the accuracy as in the past, and can be installed in a rough manner. And cost reduction is possible.
  • FIG. 3 is an explanatory diagram showing a side configuration of the position detector of the present invention for detecting a position on the XY plane.
  • the position detector 20 has a parallelogram shape so that the position of the object 11 to be detected on the coordinate plane can be detected.
  • a pattern 12 for generating electromagnetic waves having different wavelengths to be transmitted to the side is formed.
  • the shape of the parallelogram includes a rectangle, a square, and a rhyme.
  • a reflective type 14A, a transmissive type 14B, or a fluorescent excitation type can be used as appropriate.
  • the position detector 20 in the pattern 12 that has received light from the light emitting element, the position of the object 11 in the XY direction (+ X, + Y, 1X, 1 ⁇ ) An electromagnetic wave is generated based on a specific pattern provided according to the above, is transmitted to the sensor 13, and the coordinate position of the detection target 11 is detected.
  • the position detector for detecting a position on a plane according to the present invention can be used, for example, for a table or the like.
  • FIG. 4 is an explanatory diagram showing an example of a method of forming a pattern on a spherical surface according to the position detector of the present invention for detecting a position on a spherical surface.
  • FIG. 5 is an explanatory diagram showing an example of a pattern configuration on a detected object for detecting a position on a spherical surface according to another example.
  • (A), (b)-(d), and (e) are examples observed from the upper surface direction, the three side surface directions, and the lower surface direction, respectively.
  • the detection object 201 has a spherical shape so that position detection on a spherical surface can be performed, and a pattern 202 for generating electromagnetic waves of different wavelengths to be transmitted to the sensor side on the spherical surface. Is formed, so that the upper position of the spherical surface of the detection target 201 can be detected by a strong configuration.
  • a pattern that continuously changes hue, saturation, and / or intensity on the spherical surface in the equator (latitude) or meridian direction is synthesized to form the pattern 202 on the spherical surface.
  • the pattern 202 which receives light from the light emitting element has a strong configuration based on a specific pattern 202 provided according to the spherical position of the object 201 to be detected.
  • an electromagnetic wave is generated and transmitted to the sensor (not shown), and the position of the object 201 on the spherical surface is detected.
  • the position detector for detecting a position on a spherical surface according to the present invention can be used, for example, in controlling joint motion in the field of robots.
  • an origin for position detection can be provided on the object to be detected by a part of the pattern or by a separately provided pattern. This makes it easier to detect the absolute position.
  • the position detector 30 of the present invention forms the pattern 32 with a color that continuously changes depending on the position. I can do it. Further, the pattern 32 can be formed by a color that continuously changes depending on the position.
  • the present invention is not limited to this drawing, and is used for detecting the position on the XY plane, the position on the spherical surface, the coordinate position in a certain direction, the rotational position on the outer periphery of the cylinder, and other positions as described above. Needless to say, this can also be applied.
  • the pattern 32 is continuously arranged between a plurality of basic colors provided at different positions 3201, 3202, and 3203 on the detected position and two adjacent basic colors. Then, each color can be configured based on the color mixture ratio of the two.
  • the present invention is not limited to this figure, and may be used to detect the position on the XY plane, the position on the spherical surface, the coordinate position in a certain direction, the rotational position on the outer periphery of the cylinder, and other position detection as described later. It goes without saying that it can be applied.
  • a color that continuously changes depending on the position is a single color as a hue, and a change caused by continuous color mixture between the pure color and the gray, that is, a color having a continuously different saturation.
  • Groups can be used.
  • a hue it is possible to use a single color, a change caused by continuous color mixture between the pure color and white, and the pure color and black, that is, a color group having continuously different lightness.
  • a pattern of a mixed color of two different hues or a mixed color of three or more hues can be used.
  • the graph in Fig. 2 (c) shows the peaks 3201, 3202, and 3203 in Fig. 2 (b), red (R), green (G), and blue.
  • the basic colors may be two or more primary colors, and further, three primary colors of color light, red (R) 'green (G) ⁇ blue (B), or Cyan (C), yellow (Y), and magenta (M), which are the three primary colors of the colorant, can be used.
  • FIG. 6 is a diagram showing an example of a configuration of a detected object of a position detector for detecting a rotational position.
  • the detection target 41 has a disk-like shape in which the pattern 42 is formed in a gradation by a color or color that continuously changes depending on the position, and the position in the rotation direction is detected.
  • a configuration may be used. That is, the detection target 41 of the present invention can be provided with different colors that change continuously in the rotation direction, and by detecting each color, position information specified by each color can be obtained. For example, basic colors such as three primary colors of color light and colorants can be arranged at circumferential positions divided at intervals of 120 ° or the like, and a gradation pattern between them can be formed.
  • FIG. 7 is a diagram showing another configuration example of the detected object of the position detector for detecting the rotational position.
  • the detected object 411 can be provided with two types of patterns 412 and 422 concentrically on a disk.
  • one of the patterns is a pattern as shown in FIG. 6 (412), and a different pattern 422 is provided on the inside, for example, a pattern having a different chromaticity from the pattern 412 at the same angular position, or in addition, A pattern in which adjacent colors are not discontinuous in at least one of lightness, saturation, and hue instead of gradation is possible.
  • it is possible to detect a plurality of types of angular positions.
  • FIG. 8 is a diagram showing an example of the configuration of a detected object of the position detector for detecting the position on the XY coordinate plane, and is a plan view showing an example of a pattern of the position detector at the position on the XY plane shown in FIG. is there.
  • the detection target 21 has a pattern in which the pattern 22 is formed in a gradation with a color or a color that changes continuously depending on the position, and a parallelogram is formed so that the position on the coordinate plane can be detected. Configuration can be adopted.
  • the appropriate position of the pattern 22 (the peaks 2201, 2202, 2203) By setting, a gradation pattern can be formed.
  • FIGS. 9A, 9B, and 9C are diagrams each showing another configuration example of the detected object of the position detector for detecting the position on the XY coordinate plane.
  • the detected objects 251—A, 251B, and 251—C have patterns (252—A, 252—) in which three basic colors are used and arranged at appropriate positions on the XY plane. B).
  • a pattern (252-C) in which the hue is arranged in the left and right direction and the saturation or the intensity or both are arranged in the up and down direction can be used.
  • the pattern is formed in a gradation by a color or a color that continuously changes depending on the position, and the position on the spherical surface can be detected. It may be of a spherical shape to be made.
  • FIG. 10 is a diagram showing another configuration example of the detected object of the position detector for detecting the coordinate position in a certain direction.
  • the detection object 261-A and the like have the pattern 262-A and the like formed in a gradation with a color or color that continuously changes depending on the position, so that the position in a certain direction can be detected.
  • a configuration in the form of a band can be adopted.
  • a pattern (262-A, 262-A, 262-A, 262-A, 262-A, — B, 262—C).
  • a pattern with two basic colors (262-D, 262-E) can be used.
  • As a method of arranging the basic colors when three colors are used, for example, it is possible to appropriately arrange the same basic color at both ends of the band and other two colors therein. In the case where two colors are used, the same applies to the case where basic colors are arranged at both ends.
  • FIG. 11 is a diagram showing an example of a configuration of a detected object of a position detector for detecting a rotational position.
  • the object to be detected 271 has a color in which the pattern 272 changes continuously depending on the position. Alternatively, it may be formed in a gradation shape by color, and may be in a cylindrical shape for detecting a position in the rotation direction. In the figure, two patterns are formed.
  • the color arrangement method can be configured, for example, in the same manner as the above-described disk-shaped object to be detected.
  • the object to be detected 271 can be provided, for example, on a motor shaft and used for detecting the rotational position of the motor.
  • the position detector and the object to be detected according to the present invention are configured as described above, according to this, the absolute angle of the rotating object, the absolute position on the XY plane, and the like can be determined with a simpler configuration and a simpler method. Can be detected by In addition, it is possible to easily assemble the device, reduce the size, and reduce the cost. Therefore, it is an invention with high industrial value, especially in the FA and OA fields.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

 本発明の位置検出器10は、図1の通り、位置信号発生のためのパターン2が形成された被検出体1と、光照射により被検出体1上で発生する電磁波を受けることによって、パターン2に基づく位置信号を検出するためのセンサ3とからなり、パターン2は、被検出体1上の位置によって連続的に異なる波長の電磁波をセンサ3側に送出し得るよう、可視的にもしくは不可視的にグラデーション状に形成された構成とする。 これにより回転物体の絶対角度やXY平面上の絶対位置をより簡易な構成によって検出でき、装置の組み立て容易化、小型化が可能となる。  

Description

位置検出器および被検出体
技術分野
[0001] 本発明は位置検出器および被検出体に係り、特に、回転物体の絶対角度や、 XY 平面上の絶対位置等を検出可能とし、組み立ての容易化、装置の小型化およびコス ト削減を可能とする、新規なる位置検出器および被検出体に関する。
背景技術
[0002] 回転物の絶対的な角度を得るために、従来は、アブソリュート型エンコーダのように 、コード化されたパターンを高度な分解能を持つセンサにて検出する方式が用いら れてきた。
[0003] 図 12 (a)—(c)は、力かる従来の絶対角度検出方法例を示す説明図である。このう ち、(a)はエンコーダ要部の側面図、(b)はアブソリュート型エンコーダのディスクの平 面図、(c)は (b)図中の A部分の拡大図である。これらに図示するように、アブソリュ ート型エンコーダ 60では、絶対位置検出用ディスク 61上には、二進 nビットのコード 力 Sスリットに切られて角度ごとにコード化されたパターン 62が形成されており、さらに、 原点検出のための 1回転検出用パターン 69が設けられている。特に、角度ごとにコ ード化されたパターンの形成は、相当に高度な製造技術をもって行われている。
[0004] さて、回転数や回転角度等の検出に関する先行技術としては、次のようなものも存 在する。すなわち、 NMR装置において性質の異なる光を照射する複数の光源を用 いて回転数検出を行う方法 (後掲特許文献 1)、軸外周上の単色の色彩度を変化さ せることにより軸方向上の変位を知る方法 (特許文献 2)などである。
特許文献 1 :特開 2001— 215239号公報。「回転体検出装置」。要約、特許請求の範 囲、図 3。
特許文献 2 :特開平- 1-277704号公報。「回転軸の変位検出装置」。要約、特許請 求の範囲、図 1。
発明の開示
発明が解決しょうとする課題 [0005] 上述したように従来の絶対角度検出方法においては、角度ごとにコード化されたパ ターンの形成に相当高度な製造技術を要するため、回転体のサイズはある程度以上 の大きさを有することが必要となる。また、構成されるセンサや光源の位置等に検出 の特性が影響されるため、これらの位置調整には精度の高さが要求され、製造には 相当の困難を伴うものである。したがって、検出装置の小型化やコスト削減は難しか つた。し力も、 XY平面上における位置検出は不可能だった。
[0006] かかる技術的な限界は、上述の各特許文献に示された提案においても、基本的に 解決されていない。
本発明が解決しょうとする課題は、上記従来技術の問題点を除き、回転物体の絶 対角度や、 XY平面上の絶対位置等を、より簡易な構成、より容易な方法によって検 出可能とし、装置の組み立て容易化、小型化、コスト削減を可能にする、位置検出器 および被検出体を提供することである。
課題を解決するための手段
[0007] 本願発明者は上記課題について検討した結果、回転体等の被検物体を、位置に より連続的に変化する波長の電磁波を反射等することが可能な構成とするにより、上 記課題の解決が可能であることを見出し、本発明に至った。すなわち、上記課題を解 決するための手段として本願で特許請求される、もしくは少なくとも開示される発明は 、以下のとおりである。
[0008] (1) 位置信号発生のためのパターンが形成された被検出体と、光照射により該 被検出体上で発生する電磁波を受けることによって、該パターンに基づく位置信号 を検出するためのセンサとからなる位置検出器であって、該パターンは、該被検出体 上の位置によって連続的に異なる波長の電磁波を該センサ側に送出し得るよう、可 視的にもしくは不可視的にグラデーション状に形成されていることを特徴とする、位置 検出器。
(2) 前記パターンは、
(2-1)前記センサの一部を成す、もしくは該センサとは独立して設けられた発光素子 力もの光を受けて、前記被検出体の位置によって異なる波長の電磁波を、該センサ の一部を成す受光素子に対して反射するもの、 (2— II)前記センサの一部を成す、もしくは該センサとは独立して設けられた発光素子 力もの光を受けて、前記被検出体の位置によって異なる波長の電磁波を、該センサ の一部を成す受光素子に対して透過するもの、または、
(2— III)前記センサの一部を成す、もしくは該センサとは独立して設けられた発光素 子からの光を受けて、蛍光励起等により前記被検出体の位置によって異なる波長の 電磁波を発生し、該センサの一部を成す受光素子に対して照射するもの、 のいずれかであることを特徴とする、 (1)に記載の位置検出器。
(3) 前記センサは、前記被検出体からの電磁波を各波長に分離するための、ス ベクトル分光器もしくは原色フィルタ等の波長分離部を有し、これにより分離され得ら れた波長に基づき位置検出がなされることを特徴とする、(1)または(2)に記載の位 置検出器。
(4) 前記被検出体は、回転方向上の位置検出がなされるべく円板状の形態を 有し、その回転方向上に、前記センサ側に送出されるべき異なる波長の電磁波を発 生させるパターンが形成されており、カゝかる構成により該被検出体の回転位置を検出 できることを特徴とする、 (1)な 、し (3)の 、ずれかに記載の位置検出器。
(5) 前記被検出体は、座標平面上の位置検出がなされるべく平行四辺形の形 態を有し、その象限内に、前記センサ側に送出されるべき異なる波長の電磁波を発 生させるパターンが形成されており、カゝかる構成により該被検出体の座標位置を検出 できることを特徴とする、 (1)な 、し (3)の 、ずれかに記載の位置検出器。
(6) 前記被検出体は、球面上の位置検出がなされるべく球形の形態を有し、そ の球面上に、前記センサ側に送出されるべき異なる波長の電磁波を発生させるバタ ーンが形成されており、カゝかる構成により該被検出体の球面上位位置を検出できるこ とを特徴とする、(1)な 、し (3)の 、ずれかに記載の位置検出器。
(7) 前記被検出体には、前記パターンの一部により、または別途設けられたバタ ーンにより、位置検出用の原点が設けられ、それにより絶対位置の検出が可能である ことを特徴とする、(4)な 、し (6)の 、ずれかに記載の位置検出器。
(8) 前記パターンは、位置により連続的に変化する色または色彩により形成され て 、ることを特徴とする、(4)な 、し (7)の 、ずれかに記載の位置検出器。 (9) 前記パターンは、被検出位置上の異なる位置に設けられた複数の基礎色と 、隣接する二の該基礎色間に連続的に配された、両者の混色比率に基づく各色とか らなることを特徴とする、 (8)に記載の位置検出器。
(10) 前記基礎色は、色光の三原色または色料の三原色である場合を含む、二 色以上の原色であることを特徴とする、 (9)に記載の位置検出器。
[0010] (11) 光照射により電磁波を発生させる位置信号発生用パターンが形成された 被検出体であって、該パターンは、該被検出体上の位置によって連続的に異なる波 長の電磁波を発生し得るよう、可視的にもしくは不可視的にグラデーション状に形成 されていることを特徴とする、被検出体。
(12) 前記パターンは位置により連続的に変化する色または色彩によりグラデー シヨン状に形成されており、回転方向上の位置検出がなされるべく円板状の形態をな していることを特徴とする、(11)に記載の被検出体。
(13) 前記パターンは位置により連続的に変化する色または色彩によりグラデー シヨン状に形成されており、座標平面上の位置検出がなされるべく平行四辺形の形 態をなしていることを特徴とする、 (11)に記載の被検出体。
(14) 前記パターンは位置により連続的に変化する色または色彩によりグラデー シヨン状に形成されており、球面上の位置検出がなされるべく球形の形態をなしてい ることを特徴とする、(11)に記載の被検出体。
(15) 前記パターンは位置により連続的に変化する色または色彩によりグラデー シヨン状に形成されており、一定方向上の位置検出がなされるべく帯状体の形態をな していることを特徴とする、(11)に記載の被検出体。
(16) 前記パターンは位置により連続的に変化する色または色彩によりグラデー シヨン状に形成されており、回転方向上の位置検出がなされるべく円筒形の形態をな していることを特徴とする、(11)に記載の被検出体。
発明の効果
[0011] 本発明の位置検出器および被検出体は上述のように構成されるため、これによれ ば、回転物体の絶対角度や、 XY平面上の絶対位置等を、より簡易な構成、より容易 な方法によって検出することができる。そして、装置の組み立て容易化、小型化、コス ト削減を可能とすることができる。
図面の簡単な説明
[図 1]本発明の位置検出器の基本的な構成を示す説明図である。
[図 2(a)]回転位置検出のための本発明位置検出器についての説明図であり、側面図 である。
[図 2(b)]回転位置検出のための本発明位置検出器についての説明図であり、平面図 である。
[図 2(c)]回転位置検出のための本発明位置検出器についての説明図であり、被検出 体の回転位置とそれに伴う電磁波発生状況の例を示すグラフである。
[図 3]XY平面上の位置検出のための、本発明位置検出器の側面構成を示す説明図 である。
[図 4]球面上の位置検出のための本発明位置検出器に係る、球面上のパターン構成 方法例を示す説明図である。
[図 5]別の例による球面上位置検出のための被検出体上パターン構成例を示す説明 図である。
[図 6]回転位置検出用の位置検出器の被検出体構成例を示す図である。
[図 7]回転位置検出用の位置検出器の別の被検出体構成例を示す図である。
[図 8]ΧΥ座標平面位置検出用の位置検出器の被検出体構成例を示す図であり、図
3に示した ΧΥ平面上位置の位置検出器のパターン例を示す平面図である。
[図 9-Α]ΧΥ座標平面位置検出用の位置検出器の別の被検出体構成例を示す図で ある。
[図 9-Β]ΧΥ座標平面位置検出用の位置検出器の別の被検出体構成例を示す図で ある。
[図 9-C]XY座標平面位置検出用の位置検出器の別の被検出体構成例を示す図で ある。
[図 10]—定方向上の座標位置検出用の位置検出器の別の被検出体構成例を示す 図である。
[図 11]回転位置検出用の位置検出器の被検出体構成例を示す図である。 [図 12(a)]従来の絶対角度検出方法例を示す説明図であり、エンコーダ要部の側面 図である。
[図 12(b)]従来の絶対角度検出方法例を示す説明図であり、アブソリユート型ェンコ一 ダのディスクの平面図である。
[図 12(c)]従来の絶対角度検出方法例を示す説明図であり、(b)図中の A部分の拡大 図である。
符号の説明
[0013] 1、 11、 21、 31、 41、 201、 271、 411· ··被検出体
251— A、 251— B、 251— C、 261— A、 261— B、 261— C、 261— D、 261— Ε· ··被検 出体
2、 12、 22、 32、 42、 202、 272、 412、 422· ··位置信号発生のためのノターン
252— A、 252— B、 252— C、 262— A、 262— B、 262— C、 262-D, 262— Ε· ··位置 信号発生のためのパターン
3、 13、 33· ··センサ、 4Α、 14Α· ··発光素子、 4Β、 14Β· ··発光素子、 5、 15· ··受 光素子、 6、 36· ··回転軸、 10、 20、 30…位置検出器
2201、 2202、 2203· ··基礎色のピーク位置
3201、 3202、 3203· ··基礎色のピーク位置
60…アブソリュート型エンコーダ、 61 · ··絶対位置検出用ディスク、 62· ··コードィ匕さ れたパターン、 63· ··センサ、 64· ··光源、 66· ··回転軸、 69· ·· 1回転検出用パタ ーン
発明を実施するための最良の形態
[0014] 以下、本発明を図面により詳細に説明する。
図 1は、本発明の位置検出器の基本的な構成を示す説明図である。図は、説明し やすくするために概念的に構成されている。以下の図においても、そのような場合が ある。
図において本発明位置検出器 10は、位置信号発生のためのパターン 2が形成さ れた被検出体 1と、光照射により該被検出体 1上で発生する電磁波を受けることによ つて、該パターン 2に基づく位置信号を検出するためのセンサ 3とからなり、該パター ン 2は、該被検出体 1上の位置によって連続的に異なる波長の電磁波を該センサ 3 側に送出し得るよう、可視的にもしくは不可視的にグラデーション状に形成されてい ることを、主たる構成とする。
[0015] 図において本位置検出器 10には、前記センサ 3の一部を成して、もしくは該センサ 3とは独立して発光素子 4Aが設けられるとともに、該センサ 3にはその一部として受 光素子 5が設けられる。ここで前記パターン 2は、該発光素子 4A力 の光を受けて、 前記被検出体 1の位置によって異なる波長の電磁波を、該センサ 3の一部を成す受 光素子 5に対して反射するように構成される。
[0016] 力かる構成により本発明位置検出器 10では、該発光素子 4Aから発せられた光が 該パターン 2において反射され、その際、該パターン 2の可視的もしくは不可視的グ ラデーシヨン状構成により、該被検出体 1上の位置によって連続的に異なる波長の電 磁波が該センサ 3側に送出され、検出される。
[0017] すなわち、検出される該異なる波長の電磁波は、該被検出体 1の位置情報を有す るものであるため、該センサ 3における該被検出体の位置検出が可能となる。該被検 出体 1の特定位置を予め電磁波の波長により特定しその情報を保存しておくことによ つて、該被検出体 1の絶対位置の検出は容易に可能となる。
[0018] 図では、該被検出体 1は回転体で示されているが、本発明はこれに限定されず、後 述するように XY平面上の位置検出にも用いることができる。要するに、回転方向位 置 (角度)であれ、 XY平面上位置であれ、位置検出対象となる面または部位を、可 視的もしくは不可視的グラデーション状のパターンに構成することによって、該パター ンへの光照射作用による位置依存性の電磁波生成をなさしめ、該電磁波の検出によ り位置情報を得る方式であれば、すべて本発明の範囲内である。したがって、位置検 出対象となる面または部位は平面に限らず、たとえば球面などの曲面であっても、本 発明の位置検出の方式を用いることができる。
[0019] ここで、該パターン 2が、該被検出体 1上の位置によって連続的に異なる波長の電 磁波を送出し得る、とは、該パターン 2が、外部光源 (4A等)からの照射を受けて反 射光や透過光を生じること、ある 、はまた蛍光励起された蛍光等を発することを 、う。 その際に、その位置に特有の色 (可視光)もしくは不可視光が生じるように、該被検出 体 1上のパターン 2は形成されて!、る。
[0020] また、可視的もしくは不可視的グラデーション状とは、該パターン 2が、かかる照射 によって位置特有の波長を有する電磁波が生じ、その電磁波は該被検出体 1上の位 置に伴 、、連続的変化のパターンとなって 、ることを指す。
[0021] 図において本位置検出器 10は、前記センサ 3の一部を成して、もしくは該センサ 3 とは独立して発光素子 4Bが設けられるとともに、該センサ 3にはその一部として受光 素子 5が設けられる構成とすることもできる。ここで前記パターン 2は、該発光素子 4B 力もの光を受けて、前記被検出体 1の位置によって異なる波長の電磁波を、該セン サ 3の一部を成す受光素子 5に対して透過するように構成される。
[0022] 力かる構成により本発明位置検出器 10では、該発光素子 4Bから発せられた光が 該パターン 2において透過され、その際、該パターン 2の可視的もしくは不可視的グ ラデーシヨン状構成により、該被検出体 1上の位置によって連続的に異なる波長の電 磁波が該センサ 3側に送出され、検出される。
[0023] 図において本位置検出器 10は、前記センサ 3の一部を成して、もしくは該センサ 3 とは独立して発光素子 4Aまたは 4Bが設けられるとともに、該センサ 3にはその一部と して受光素子 5が設けられ、前記パターン 2は、該発光素子 4Aまたは 4Bからの光を 受けて、蛍光励起等により前記被検出体 1の位置によって異なる波長の電磁波を発 生し、該センサ 3の一部を成す受光素子 5に対して照射するように構成することもでき る。
[0024] 力かる構成によれば、本発明位置検出器 10では、該発光素子 4Aまたは 4B力も発 せられた光によって該パターン 2において蛍光発光し、その際、該パターン 2の可視 的もしくは不可視的グラデーション状構成により、該被検出体 1上の位置によって連 続的に異なる波長の電磁波が該センサ 3側に送出され、検出される。
[0025] 前記センサ 3は、前記被検出体 1からの電磁波を各波長に分離するための波長分 離部を有し、これにより分離され得られた波長に基づき位置検出がなされるように構 成でき、該波長分離部としては、スペクトル分光器力、または原色フィルタを用いるこ とがでさる。
[0026] 図 2は、回転位置検出のための本発明位置検出器についての説明図であり、このう ち、
図 2 (a)はその側面図である。また、
図 2 (b)はその平面図である。また、
図 2 (c)は被検出体の回転位置とそれに伴う電磁波発生状況の例を示すグラフで ある。
[0027] これらの図において、本位置検出器 30は、被検出体 31が回転方向上の位置検出 されるべく円板状の形態を有し、その回転方向上に、前記センサ 33側に送出される べき異なる波長の電磁波を発生させるパターン 32が形成されて 、ることを、主たる構 成とする。ここで、発光素子、受光素子の配設関係は限定されず、また、該パターン 3 2から該センサ 33の受光素子への電磁波送出は、図示された反射の方式の他、透 過、蛍光のいずれの方式も用いることができる。以下の例でも同様である。
[0028] 力かる構成により本位置検出器 30では、発光素子からの光を受けたパターン 32に おいて、その被検出体 31の回転位置に応じて設けられている特有のパターンに基 づいて電磁波が発生し、これが該センサ 33へと送出され、該被検出体 31の回転位 置検出がなされる。本発明の回転位置検出のための位置検出器は、たとえばェンコ ーダ等において利用することができる。
[0029] 該センサ 33における検出では、原色フィルタもしくは分光プリズムのような波長分離 部により、該被検出体 31から送出された電磁波が各波長ごとに分光されて検出され 、もってその電磁波が特定され、電磁波により特定される回転位置の情報を得ること ができる。
[0030] 力かる方式によるため、該被検出体 31に対する該センサ 33の配設位置決定には、 従来ほどの精度は不要となりラフな設置が可能であるため、装置の小型化、製造容 易化、コスト低減が可能である。
[0031] 該センサにおける、力かる波長分光 ·検出処理の方法は、本図で説明した回転位 置検出の場合のみならず、本発明全体において用いられるものである。
[0032] 図 3は、 XY平面上の位置検出のための、本発明位置検出器の側面構成を示す説 明図である。図において本位置検出器 20は、前記被検出体 11が座標平面上の位 置検出がなされるべく平行四辺形の形態を有し、その座標象限内に、前記センサ 13 側に送出されるべき異なる波長の電磁波を発生させるパターン 12が形成されている 構成をとる。平行四辺形の形態には、長方形、正方形、ひしがたも含まれることはいう までもない。発光素子は、反射型の 14A、透過型の 14B、あるいはまた蛍光励起型 のものを、適宜用いることができる。
[0033] 力かる構成により本位置検出器 20では、発光素子からの光を受けたパターン 12に おいて、その被検出体 11の XY方向位置(+X、 +Y、 一 X、 一 Υ)に応じて設けられて いる特有のパターンに基づいて電磁波が発生し、これが該センサ 13へと送出され、 該被検出体 11の座標位置が検出される。本発明の ΧΥ平面上位置検出のための位 置検出器は、たとえば ΧΥテーブル等にぉ 、て利用できる。
[0034] 図 4は、球面上の位置検出のための本発明位置検出器に係る、球面上のパターン 構成方法例を示す説明図であり、また、
図 5は、別の例による球面上位置検出のための被検出体上パターン構成例を示す 説明図である。(a)、(b)—(d)、(e)はそれぞれ、上面方向、側面 3方向、下面方向 から観察した例である。これらの図において前記被検出体 201は、球面上の位置検 出がなされるべく球形の形態を有し、その球面上に、前記センサ側に送出されるべき 異なる波長の電磁波を発生させるパターン 202が形成されており、力かる構成により 該被検出体 201の球面上位位置を検出できるよう、構成することができる。
[0035] 図 4に例示するように、たとえば球面上において色相、彩度もしくは強度またはその 双方を、赤道 (緯線)や経線方向に連続的に変化させるパターンを合成させて球面 上のパターン 202を形成することができる。この場合、緯線方向 360° に色光の三原 色等に基づく色相のパターン、経線方向 180° に明暗 ·彩度のパターンを配すること とした合成パターン等も用いることができる。
[0036] 力かる構成により本位置検出器では、発光素子からの光を受けたパターン 202に おいて、その被検出体 201の球面上位置に応じて設けられている特有のパターン 20 2に基づいて電磁波が発生し、これが前記センサ(図示せず)へと送出され、該被検 出体 201の球面上位置が検出される。本発明の球面上位置検出のための位置検出 器は、たとえばロボット分野における関節運動の制御等において利用することができ る。 [0037] 以上説明した本発明の位置検出器では、前記被検出体に、前記パターンの一部 により、または別途設けられたパターンにより、位置検出用の原点を設けることができ る。それにより、絶対位置の検出が容易となる。
[0038] 図 2 (b)の回転位置検出用の位置検出器に例示されるように、本発明の位置検出 器 30は、前記パターン 32を、位置により連続的に変化する色により形成することがで きる。また、パターン 32は、位置により連続的に変化する色彩により形成することがで きる。本図に限定されず、これが、上述したような XY平面上位置、球面上の位置、ま た後述するような一定方向上の座標位置、円筒の外周上の回転位置、その他の位 置検出にも適用できることはいうまでもない。
[0039] 図 2 (b)において、前記パターン 32は、被検出位置上の異なる位置 3201、 3202、 3203に設けられた複数の基礎色と、隣接する二の該基礎色間に連続的に配された 、両者の混色比率に基づく各色とから構成できる。本図に限定されず、これが、上述 したような XY平面上位置、球面上の位置、また後述するような一定方向上の座標位 置、円筒の外周上の回転位置、その他の位置検出にも適用できることはいうまでもな い。
[0040] つまり、位置により連続的に変化する色としては、色相としては単一色で、その純色 とグレーとの間の連続的な混色により生じる変化、すなわち彩度の連続的に相違す る色群を用いることができる。また、色相としては単一色で、その純色と白色、純色と 黒色との間の連続的な混色により生じる変化、すなわち明度の連続的に相違する色 群を用いることができる。また、二の異なる色相の混色、三以上の色相の混色による パターンも用いることができる。
[0041] 図 2 (c)のグラフは、図 2 (b)の各ピーク 3201、 3202、 3203力 赤(R)、緑(G)、青
(B)である場合の、回転位置 (角度)と色濃度の関係を示すグラフである。回転位置 は、各色の混色により生じる色により特定されるため、絶対位置検出が可能である。
[0042] 以上説明した本発明位置検出器において、前記基礎色を二色以上の原色とするこ と、さらには色光の三原色である赤 (R) '緑 (G) ·青 (B)、または色料の三原色である シアン(C) 'イェロー(Y) 'マジェンタ(M)を用いることができる。
[0043] 以上述べた位置検出器に係る各被検出体もまた、本願にお!ヽて特許請求される発 明である。その具体的な構成例について、以下説明する。
[0044] 図 6は、回転位置検出用の位置検出器の被検出体構成例を示す図である。図示す るように本被検出体 41は、前記パターン 42が位置により連続的に変化する色または 色彩によりグラデーション状に形成されており、回転方向上の位置検出がなされるベ く円板状の形態をなす構成とすることができる。つまり、本発明の被検出体 41は、回 転方向上に、連続して変化する異なる色を設けることができ、各色を検出することに よって、各色により特定される位置情報が得られる。たとえば、 120° ごとなどに分割 された円周上位置に、色光や色料の三原色等の基礎色を配置して、それらの間のグ ラデーシヨンのパターンを形成することができる。
[0045] 図 2、 6で説明した例に示すように、本発明を回転検出器に応用した場合、 120° ごとに分割された円周上位置に三原色のピークを配置し、これらの間で三色の混合 比をリニアに変化させて配色するパターン 42を形成する。そして、発光素子からの照 射を受けて生じる反射光等を、原色フィルタもしくは分光プリズム等によって波長ごと に分光し、各色の濃度を測定'検出することにより、受光された色を検出することがで き、もって回転位置の絶対位置検出を得ることができる。
[0046] 図 7は、回転位置検出用の位置検出器の別の被検出体構成例を示す図である。図 示するように本被検出体 411は、円板上に二種のパターン 412、 422を同心円状に 設けることもできる。図示するようにその一方は図 6のようなパターンとし (412)、内側 にはこれとは異なるパターン 422、たとえば同じ角度位置においてはパターン 412と は異なる色力もなるパターン、あるいはこれに加えて、グラデーション状ではなく隣接 する色同士が明度 ·彩度.色相の少なくともいずれかにおいて非連続でもあるパター ンとすることができる。力かる構成により、複数種類の角度位置検出が可能となる。
[0047] 図 8は、 XY座標平面位置検出用の位置検出器の被検出体構成例を示す図であり 、図 3に示した XY平面上位置の位置検出器のパターン例を示す平面図である。図 示するように本被検出体 21は、前記パターン 22が位置により連続的に変化する色ま たは色彩によりグラデーション状に形成されており、座標平面上の位置検出がなされ るべく平行四辺形の形態をなしている構成とすることができる。図示するように、角の 位置や辺の中^ (など、該ノターン 22の適宜の位置【こピーク 2201、 2202、 2203を 設定し、グラデーションのパターンを形成することができる。
[0048] 図 9 A、 9 B、 9 Cはそれぞれ、 XY座標平面位置検出用の位置検出器の別の 被検出体構成例を示す図である。これらに図示するように本被検出体 251— A、 251 B、 251— Cは、基礎色を三色としてこれを XY平面上の適宜の位置に配置したパタ ーン(252— A、 252— B)とすることができる。この場合たとえば、各色を四つの角のう ち三の角にそれぞれ配置したり、あるいは全周を三等分などして、その周上位置に 配置するなどのことは、適宜行える。
[0049] あるいはまた、色相を左右方向に、彩度もしくは強度またはその双方を上下方向に 配置したパターン(252— C)とすることもできる。この場合たとえば、三色のうちの一色 を左右方向両端部に配置し、他の二色は昼間部に適宜間隔で配置するなどのこと は、適宜行える。
[0050] 図 4、 5を用いて説明したように、本被検出体は、前記パターンが位置により連続的 に変化する色または色彩によりグラデーション状に形成されており、球面上の位置検 出がなされるべく球形の形態をなしているものとすることができる。
[0051] 図 10は、一定方向上の座標位置検出用の位置検出器の別の被検出体構成例を 示す図である。図示するように本被検出体 261— A等は、前記パターン 262— A等が 位置により連続的に変化する色または色彩によりグラデーション状に形成されており 、一定方向上の位置検出がなされるべく帯状体の形態をなしている構成とすることが できる。
[0052] ここで、被検出体 261— A、 261— B、 261— Cのように、基礎色を三色としてこれを帯 状体上の適宜の位置に配置したパターン(262— A、 262— B、 262— C)とすることが できる。あるいはまた、基礎色を二色としたパターン(262-D、 262-E)とすることもで きる。基礎色の配置方法としては、三色用いる場合はたとえば、該帯状体の両端部 に同一の基礎色、内部に他の二色を適宜配置するなどのことは、適宜行える。また 二色用いる場合について、両端部にそれぞれの基礎色を配置するなどのことも同様 である。
[0053] 図 11は、回転位置検出用の位置検出器の被検出体構成例を示す図である。図示 するように本被検出体 271は、前記パターン 272が位置により連続的に変化する色 または色彩によりグラデーション状に形成されており、回転方向上の位置検出がなさ れるベく円筒形の形態をなしている構成とすることができる。図では 2のパターンが形 成されている力 もちろん単一でもよい。また、色の配置方法は、たとえば先に述べた 円板状の被検出体同様に構成することができる。本被検出体 271は、たとえばモー タ軸上にこれを設け、モータ回転位置の検出に用いることができる。
産業上の利用可能性
本発明の位置検出器および被検出体は上述のように構成されるため、これによれ ば、回転物体の絶対角度や、 XY平面上の絶対位置等を、より簡易な構成、より容易 な方法によって検出することができる。そして、装置の組み立て容易化、小型化、コス ト削減を可能とすることができる。したがって、 FA、 OA分野を始めとして産業上利用 価値が高い発明である。

Claims

請求の範囲
[1] 位置信号発生のためのパターンが形成された被検出体と、光照射により該被検出体 上で発生する電磁波を受けることによって、該パターンに基づく位置信号を検出する ためのセンサとからなる位置検出器であって、該パターンは、該被検出体上の位置 によって連続的に異なる波長の電磁波を該センサ側に送出し得るよう、可視的にもし くは不可視的にグラデーション状に形成されていることを特徴とする、位置検出器。
[2] 前記パターンは、
(I)前記センサの一部を成す、もしくは該センサとは独立して設けられた発光素子か らの光を受けて、前記被検出体の位置によって異なる波長の電磁波を、該センサの 一部を成す受光素子に対して反射するもの、
(II)前記センサの一部を成す、もしくは該センサとは独立して設けられた発光素子か らの光を受けて、前記被検出体の位置によって異なる波長の電磁波を、該センサの 一部を成す受光素子に対して透過するもの、または、
(III)前記センサの一部を成す、もしくは該センサとは独立して設けられた発光素子か らの光を受けて、蛍光励起等により前記被検出体の位置によって異なる波長の電磁 波を発生し、該センサの一部を成す受光素子に対して照射するもの、
の!、ずれかであることを特徴とする、請求項 1に記載の位置検出器。
[3] 前記センサは、前記被検出体からの電磁波を各波長に分離するための、スペクトル 分光器もしくは原色フィルタ等の波長分離部を有し、これにより分離され得られた波 長に基づき位置検出がなされることを特徴とする、請求項 1または 2に記載の位置検 出器。
[4] 前記被検出体は、回転方向上の位置検出がなされるべく円板状の形態を有し、その 回転方向上に、前記センサ側に送出されるべき異なる波長の電磁波を発生させるパ ターンが形成されており、カゝかる構成により該被検出体の回転位置を検出できること を特徴とする、請求項 1な 、し 3の 、ずれかに記載の位置検出器。
[5] 前記被検出体は、座標平面上の位置検出がなされるべく平行四辺形の形態を有し、 その象限内に、前記センサ側に送出されるべき異なる波長の電磁波を発生させるパ ターンが形成されており、カゝかる構成により該被検出体の座標位置を検出できること を特徴とする、請求項 1な 、し 3の 、ずれかに記載の位置検出器。
[6] 前記被検出体は、球面上の位置検出がなされるべく球形の形態を有し、その球面上 に、前記センサ側に送出されるべき異なる波長の電磁波を発生させるパターンが形 成されており、カゝかる構成により該被検出体の球面上位位置を検出できることを特徴 とする、請求項 1ないし 3のいずれかに記載の位置検出器。
[7] 前記被検出体には、前記パターンの一部により、または別途設けられたパターンによ り、位置検出用の原点が設けられ、それにより絶対位置の検出が可能であることを特 徴とする、請求項 4な 、し 6の 、ずれかに記載の位置検出器。
[8] 前記パターンは、位置により連続的に変化する色または色彩により形成されているこ とを特徴とする、請求項 4な ヽし 7の ヽずれかに記載の位置検出器。
[9] 前記パターンは、被検出位置上の異なる位置に設けられた複数の基礎色と、隣接す る二の該基礎色間に連続的に配された、両者の混色比率に基づく各色とからなるこ とを特徴とする、請求項 8に記載の位置検出器。
[10] 前記基礎色は、色光の三原色または色料の三原色である場合を含む、二色以上の 原色であることを特徴とする、請求項 9に記載の位置検出器。
[11] 光照射により電磁波を発生させる位置信号発生用パターンが形成された被検出体で あって、該パターンは、該被検出体上の位置によって連続的に異なる波長の電磁波 を発生し得るよう、可視的にもしくは不可視的にグラデーション状に形成されているこ とを特徴とする、被検出体。
[12] 前記パターンは位置により連続的に変化する色または色彩によりグラデーション状に 形成されており、回転方向上の位置検出がなされるべく円板状の形態をなしているこ とを特徴とする、請求項 11に記載の被検出体。
[13] 前記パターンは位置により連続的に変化する色または色彩によりグラデーション状に 形成されており、座標平面上の位置検出がなされるべく平行四辺形の形態をなして いることを特徴とする、請求項 11に記載の被検出体。
[14] 前記パターンは位置により連続的に変化する色または色彩によりグラデーション状に 形成されており、球面上の位置検出がなされるべく球形の形態をなしていることを特 徴とする、請求項 11に記載の被検出体。
[15] 前記パターンは位置により連続的に変化する色または色彩によりグラデーション状に 形成されており、一定方向上の位置検出がなされるべく帯状体の形態をなしているこ とを特徴とする、請求項 11に記載の被検出体。
[16] 前記パターンは位置により連続的に変化する色または色彩によりグラデーション状に 形成されており、回転方向上の位置検出がなされるべく円筒形の形態をなしているこ とを特徴とする、請求項 11に記載の被検出体。
PCT/JP2004/013557 2004-03-22 2004-09-16 位置検出器および被検出体 WO2005090922A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04773203A EP1729095A4 (en) 2004-03-22 2004-09-16 POSITION DETECTOR AND OBJECT TO BE DETECTED
US10/593,203 US7952065B2 (en) 2004-03-22 2004-09-16 Position detector and a detected element having a pattern for generating a position signal formed thereon

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004083540 2004-03-22
JP2004-083540 2004-03-22
JP2004-218265 2004-07-27
JP2004218265A JP4876233B2 (ja) 2004-03-22 2004-07-27 位置検出器および被検出体

Publications (1)

Publication Number Publication Date
WO2005090922A1 true WO2005090922A1 (ja) 2005-09-29

Family

ID=34993811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013557 WO2005090922A1 (ja) 2004-03-22 2004-09-16 位置検出器および被検出体

Country Status (4)

Country Link
US (1) US7952065B2 (ja)
EP (1) EP1729095A4 (ja)
JP (1) JP4876233B2 (ja)
WO (1) WO2005090922A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4772540B2 (ja) * 2006-03-10 2011-09-14 株式会社東芝 超音波診断装置
DE102006014361B3 (de) * 2006-03-28 2007-05-31 Rsg Rombold System Gmbh & Co. Kg Vorrichtung und Verfahren zur Überwachung eines auf einer Fadenspule aufgewickelten Fadens
JP2008140077A (ja) 2006-11-30 2008-06-19 Tamagawa Seiki Co Ltd 球体の絶対角度検出システム、球体アクチュエータおよびポインティングデバイス
JP5131177B2 (ja) * 2008-12-15 2013-01-30 パナソニック株式会社 光学式角度センサ
JP5796295B2 (ja) * 2011-01-19 2015-10-21 株式会社大林組 変位計測装置
KR101903743B1 (ko) * 2012-05-22 2018-10-04 삼성디스플레이 주식회사 표시 장치, 표시 장치의 캘리브레이션 방법, 및 표시 장치의 표시 방법
JP6292759B2 (ja) * 2013-03-12 2018-03-14 住友重機械工業株式会社 マークセンサ及び光検出素子によるマーク判定方法
JP6279935B2 (ja) * 2014-03-05 2018-02-14 大成建設株式会社 変位計測装置
KR101997558B1 (ko) * 2017-05-12 2019-07-09 국방과학연구소 유무인 시스템의 구동기 절대위치 인식장치 및 방법
CN108279032B (zh) * 2018-01-17 2023-09-15 歌尔科技有限公司 一种产品性能测试方法和系统
CN113439318A (zh) * 2019-02-18 2021-09-24 Ls电气株式会社 真空断路器用触头监测装置及包括该装置的真空断路器
KR102186756B1 (ko) * 2019-02-18 2020-12-04 엘에스일렉트릭(주) 진공차단기용 접점 감시 장치 및 이를 갖는 진공차단기
KR102169247B1 (ko) * 2019-04-05 2020-10-23 엘에스일렉트릭(주) 진공차단기용 접점 감시 장치 및 그에 따른 보정 방법
CN113711326A (zh) 2019-04-05 2021-11-26 Ls电气株式会社 真空断路器用触点监控装置以及该触点监控装置的补正方法
EP3964133A1 (en) * 2020-09-04 2022-03-09 Agfa Nv Method and system for encoding a surface position of an x-ray positioning device
DE102022209227A1 (de) 2022-09-06 2024-03-07 Siemens Healthcare Gmbh Positionsbestimmungssystem, medizinisches Bildgebungssystem, Verfahren zur Positionsbestimmung und Referenzanordnung

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855802A (ja) * 1981-09-30 1983-04-02 Kawasaki Steel Corp 回転変位並びに直線移動変位検出装置
JPS61140967U (ja) * 1985-02-21 1986-09-01
JPS6367521A (ja) * 1985-09-06 1988-03-26 ザ ユニバ−シテイ− オブ リバプ−ル 変位を測定する装置及び方法
JPH01117716U (ja) * 1988-01-27 1989-08-09
JPH05312514A (ja) * 1992-05-11 1993-11-22 Yashima Denki Co Ltd 光反射・吸収性ボールを備えたエンコーダ
JP2002005620A (ja) * 2000-06-27 2002-01-09 Seiko Epson Corp 位置検出方法および位置検出機構

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5796217A (en) * 1980-12-05 1982-06-15 Mitsubishi Electric Corp Contactless travel recorder for switch gear
JPS61140967A (ja) 1984-12-13 1986-06-28 Canon Inc 現像装置の現像剤担持体
GB8519384D0 (en) * 1985-08-01 1985-09-04 Lucas Ind Plc Position encoder
AU6215186A (en) * 1985-09-06 1987-03-12 University Of Liverpool, The Displacement measurement
JPH01117716A (ja) 1987-10-28 1989-05-10 Iseki & Co Ltd 排稈カッターの伝動装置
JPH01189518A (ja) * 1988-01-26 1989-07-28 Fanuc Ltd インクリメンタル型ロータリーエンコーダ
JPH04331319A (ja) * 1991-05-07 1992-11-19 Seiko Epson Corp エンコーダ
US5216245A (en) * 1991-10-04 1993-06-01 General Motors Corporation Multi-color optical shaft position sensor
US5936236A (en) * 1997-11-26 1999-08-10 Renco Encoders, Inc. Method for generating a synthetic reference signal for comparison with scanning signals of a position measuring device
JPH11264743A (ja) * 1998-03-17 1999-09-28 Seiko Precision Inc 回転角度検出装置
US20050094159A1 (en) * 2003-10-29 2005-05-05 Wen-Wei Su Angle detecting sensor and vehicular controlling system using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855802A (ja) * 1981-09-30 1983-04-02 Kawasaki Steel Corp 回転変位並びに直線移動変位検出装置
JPS61140967U (ja) * 1985-02-21 1986-09-01
JPS6367521A (ja) * 1985-09-06 1988-03-26 ザ ユニバ−シテイ− オブ リバプ−ル 変位を測定する装置及び方法
JPH01117716U (ja) * 1988-01-27 1989-08-09
JPH05312514A (ja) * 1992-05-11 1993-11-22 Yashima Denki Co Ltd 光反射・吸収性ボールを備えたエンコーダ
JP2002005620A (ja) * 2000-06-27 2002-01-09 Seiko Epson Corp 位置検出方法および位置検出機構

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1729095A4 *

Also Published As

Publication number Publication date
US20080232215A1 (en) 2008-09-25
JP4876233B2 (ja) 2012-02-15
EP1729095A1 (en) 2006-12-06
US7952065B2 (en) 2011-05-31
JP2005308706A (ja) 2005-11-04
EP1729095A4 (en) 2007-11-14

Similar Documents

Publication Publication Date Title
WO2005090922A1 (ja) 位置検出器および被検出体
US10042240B2 (en) Projection system, light source system and light source assembly
CN102854728B (zh) 光源系统及投影装置
KR100219016B1 (ko) 복수 파장의 광을 분리 또는 합성하는 광학 장치
EP2749943B1 (en) Projection system and light emitting device thereof
CN104613418B (zh) 用于产生波长转换的光的光模块
US8261988B2 (en) Phase locked IR encoding for peened 2D barcodes
US20080285056A1 (en) Compact 3D scanner with fixed pattern projector and dual band image sensor
EP1430281A1 (en) Color photosensor
US10984516B2 (en) Image inspection device and illumination device
KR20050014795A (ko) 복사 인코딩 및 분석을 위한 방법 및 장치
US7000840B2 (en) Dual mode data imaging product
CN107850468A (zh) 用于在计数工具和多级式的旋转编码器中测量转角的装置以及从属的传感器
US20140320640A1 (en) Optical system for measuring orientation and position comprising a point source and corner cubes with a polychromatic entry face
KR20020079902A (ko) 표시장치
US5726442A (en) Opto-electronic scale reading apparatus having light-transmissive phase-encoding array of elongate spectral encoding elements
WO2013083192A1 (en) Optical angle encoder
JP6439359B2 (ja) 光源装置及びこの光源装置を備えたプロジェクタ
JP2007208908A (ja) スキャナー装置
JP6110175B2 (ja) カラーフィルタの色認識方法
JP2009069519A (ja) 波長フィルタ及び光学装置
JPH0339736Y2 (ja)
JP2010032321A (ja) 2方向移動検出方法、2方向移動検出装置、および2方向移動検出用ターゲット部材
WO2022216328A1 (en) Spinning lidar with one dimensional mems scanner
JP2007306154A (ja) 画像読取装置および画像形成装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004773203

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2004773203

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10593203

Country of ref document: US