WO2005087406A1 - 連続鋳造ノズル - Google Patents

連続鋳造ノズル Download PDF

Info

Publication number
WO2005087406A1
WO2005087406A1 PCT/JP2005/004428 JP2005004428W WO2005087406A1 WO 2005087406 A1 WO2005087406 A1 WO 2005087406A1 JP 2005004428 W JP2005004428 W JP 2005004428W WO 2005087406 A1 WO2005087406 A1 WO 2005087406A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
cao
clinker
less
content
Prior art date
Application number
PCT/JP2005/004428
Other languages
English (en)
French (fr)
Inventor
Koji Ogata
Saeko Koga
Shinichi Fukunaga
Original Assignee
Krosakiharima Corporation
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosakiharima Corporation, Nippon Steel Corporation filed Critical Krosakiharima Corporation
Priority to EP05720699A priority Critical patent/EP1736258A4/en
Priority to JP2006511021A priority patent/JP4410796B2/ja
Priority to US10/592,658 priority patent/US7591976B2/en
Priority to BRPI0508726-0B1A priority patent/BRPI0508726B1/pt
Publication of WO2005087406A1 publication Critical patent/WO2005087406A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles
    • B22D41/52Manufacturing or repairing thereof
    • B22D41/54Manufacturing or repairing thereof characterised by the materials used therefor
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/6262Milling of calcined, sintered clinker or ceramics

Definitions

  • the present invention relates to a continuous production nozzle such as an immersion nozzle, a long nozzle, a lower nozzle, an upper nozzle, an SN plate, an open nozzle, etc., which is used when a tundish force is also injected into a mold in a continuous production, and in particular, comes into contact with molten steel.
  • the present invention relates to a continuous structure nozzle in which a refractory compounded with a dolomite clinker having an alumina adhesion preventing function is disposed at a site.
  • Alumina inclusions in molten steel adhere to the inner surface of a nozzle used for continuous fabrication, and combine to form large inclusions, which are taken into the piece together with the molten steel flow. ⁇ Defects in the piece, resulting in poor quality. This adhesion of alumina is particularly remarkable in the continuous production of aluminum-killed steel deoxidized with aluminum.
  • One of the countermeasures is to physically prevent adhesion of alumina by blowing argon gas into the molten steel into the inner surface of the nozzle.
  • argon gas if the amount of argon gas blown is too large, bubbles are taken into the piece and become pinholes, resulting in defects. Therefore, the amount of gas blown is limited, and it cannot always be a sufficient measure to prevent the adhesion of alumina.
  • the refractory material constituting the nozzle is made to contain CaO, and a reaction with the adhered alumina produces a CaO-AlO-based low-melting material, thereby preventing the adherence of alumina to the refractory material itself.
  • CaO-containing materials having an alumina adhesion preventing function examples include lime clinker, dolomite clinker, and calcium zirconate.
  • the surface layer of a runner is composed of 20-97% by mass of lime clinker and 318% by mass of carbonaceous material, and the outer layer is 50-95% by mass of alumina, 5-50%.
  • a nozzle for producing molten steel that also has a carbonaceous power of 1% by mass. It is also disclosed that part of the lime clinker can be replaced by dolomite clinker or calcium zirconia clinker containing 20% by weight or more of CaO.
  • Patent Document 2 discloses a continuous fabrication nozzle in which a coating layer having a predetermined thickness is formed on the inner wall of a lime material containing 50 to 100% by mass of CaO. It is dolomite clinker 80 mass 0/0 and magnesia clinker also disclosed that is formed from 20 wt 0/0 as a coating layer of that. Although the amount of erosion has been reduced to some extent by the application of this coating layer, it is necessary to further reduce the amount of erosion in terms of use.
  • the refractory to be disposed in the inner hole has a wall thickness of at least lmm and at most about 20mm, and that the refractory material used generally has a particle size of lmm or less.
  • Patent Document 3 states that it is desirable that the average particle size force be 4 ⁇ m or less in order to have good surface properties.
  • the refractory containing CaO such as dolomite clinker reacts with the adhering alumina to generate a low-melting CaO-AlO-based material, and the low-melting material is converted into a low-melting material by the flow of molten steel.
  • Patent Document 1 JP-A-61-53150
  • Patent Document 2 JP-A-63-132755
  • Patent Document 3 JP-A-5-200508
  • dolomite clinker when used as a CaO source as a refractory of at least a portion of a continuous production nozzle in contact with molten steel, CaO in the dolomite clinker is consumed by reacting with the attached AlO during use. MgO in dolomite clinker becomes operational
  • this finding will be described with reference to FIG. 1 by taking as an example a case where the finding is applied to the inner body of a submerged nozzle.
  • FIGS. 1 (a) to 1 (e) show how the dolomite clinker particles in the bore arranged in the bore of the immersion nozzle change.
  • FIG. 1 (a) shows the initial stage of the inner body, in which the dolomite clinker is in a state in which MgO particles are scattered in CaO crystals.
  • FIG. 1 (b) shows the stage in which the deposition of Al 2 O is repeated, and the dolomite clinker is shown.
  • a CaO—Al O reaction layer indicated as 23 23 is formed.
  • the CaO-AlO reaction layer is formed.
  • the CaO component in the dolomite tarinka is continuously dissolved until the CaO saturation concentration composition is reached. As a result, low melting and flow Thus, a CaO—Al O-based liquid layer with improved properties is formed.
  • the MgO particles move away from the working surface. Moreover, the MgO particles become coarse due to repeated movement and aggregation in the CaO-AlO reaction layer.
  • an MgO-rich layer (B in the figure) is continuously formed on the working surface.
  • the thickness of the CaO-AlO reaction layer formed is governed by the penetration distance of AlO into the dolomite clinker.
  • the liquid phase including the MgO-rich layer frequently contains Al 2 O 3.
  • Fig. 1 (e) shows the final stage
  • Fig. 2 showing a microscopic photograph thereof shows the structure of the working surface of the inner body by collecting the used immersion nozzle.
  • MgO particles agglomerate in the direction parallel to the working surface
  • each particle is integrated and a continuous reaction layer is formed, and is spread over the entire inner hole. It is thought to go. Therefore, it is important that this reaction layer be stably present for a long time during the production.
  • the first solution means in the present application is that the composition also has a dolomite clinker force with an average particle size of 0.8 mm or less and a CaO content of 50% by mass or less, and the CaO content is W1.
  • the components are mixed so that the ratio of W1ZW2 is 0.33 or more, and a binder is added to the compound, and the refractory obtained by kneading, molding, and heat-treating is at least.
  • the basic configuration is that it is arranged at a position in contact with molten steel.
  • the average particle size as referred to in the present invention is a median size, and the result of measuring the particle size is shown on a mass integration graph, and means a particle size having a mass ratio of 50%.
  • a sieve can be used for the measurement of the particle size.
  • a dolomite clinker having a CaO content of 50% by mass or less besides the dolomite clinker having a CaO content of 50% by mass or less, a dolomite clinker having a CaO content of more than 50% by mass may be used together! May be used together! / ,.
  • Dolomite clinker having a CaO content of 50% by mass or less has an average particle size of 0.8 mm or less. If the average particle size exceeds 0.8 mm, the adhesion of alumina increases, which is not preferable.
  • a synthetic dolomite clinker prepared to an arbitrary composition by an artificial raw material is appropriate, and the lower limit of the CaO content is not particularly limited. It is necessary to select an appropriate content according to usage conditions and usage results.
  • the CaO content is increased.When corrosion resistance is emphasized, the CaO content is reduced.However, in order to effectively exhibit the alumina adhesion prevention function and the effect of forming a magnesium rich layer, other factors are required.
  • the mass ratio W1ZW2 of the content W1 of the CaO component and the content W2 of the MgO component as a whole, including the aggregates, must be 0.33 or more. Further, the upper limit of the mass ratio W1ZW2 is more preferably 3.0 or less. Generally, the CaO content in the dolomite clinker is preferably 20% or more.
  • the composition may be composed only of clinker having a CaO content of 50% by mass or less.
  • a general dolomite clinker having a CaO content of more than 50% by mass may be used in combination.
  • a common dolomite clinker having a high CaO content has excellent adhesion to alumina, and therefore, a combination with a synthetic dolomite clinker having a low CaO content provides a good balance with corrosion resistance.
  • magnesia clinker can be used together to improve corrosion resistance. In this case, it is preferable to apply to the fine powder portion so as not to impair the adhesion to alumina.
  • an inorganic binder or an organic binder generally used as a refractory can be used, and an organic binder is more preferable.
  • the organic binder is used to form a carbon bond, and a thermosetting organic resin is more preferable.
  • phenol resin, furan resin and the like can be used. Since carbon bond is excellent in hot strength, its durability is improved when it is applied to a part that comes into contact with molten steel, such as a bore.
  • dolomite clinker may be used as a refractory raw material, or dolomite clinker and magnesia clinker may be combined.
  • refractory raw materials such as alumina, silica, zirconia, silicon carbide, silicon nitride, carbon black, pitch, tar, graphite, etc .; metal powders such as A1 and Si; anti-oxidation agents such as B4C; Or), frit etc.
  • a small amount, for example, 5% by mass or less, can be used.
  • the refractory to be placed at the portion in contact with the molten steel can be obtained by adding a binder to a mixture of the refractory raw materials, kneading, forming, and heat-treating.
  • the mass ratio W1ZW2 of the weight W1 to the content W2 of the MgO component W2 is preferably 0.33 or more, more preferably 0.33 to 3.0.
  • the ratio W1ZW2 of CaO to MgO can be controlled by controlling the content of MgO and CaO in the dolomite clinker used and the ratio of Z or dolomite clinker to magnesia clinker. . If W1ZW2 is less than 0.33, the amount of CaO supplied to the working surface is insufficient, and a sufficient CaO-AlO-based liquid phase cannot be formed. others
  • the refractory disposed at the portion that comes into contact with the molten steel can absorb and reduce the thermal expansion distortion of the refractory at the portion that comes into contact with the molten steel. Can be enhanced.
  • the use amount is preferably 10% by mass or less, more preferably 5% by mass or less. If it exceeds 10% by mass, the carbon component is oxidized by oxygen in the molten steel, and the dissolution in the molten steel is increased, resulting in an increase in erosion.
  • carbonaceous raw material pitch, tar, carbon black, scaly graphite or the like can be used.
  • organic binders such as thermosetting organic resins are not included! / ⁇ .
  • the second solution in the present application is dolomite clinker as a CaO source for refractories.
  • dolomite clinker as a CaO source for refractories.
  • the mass of particles less than lmm in the particle size configuration of dolomite clinker using both dolomite clinker and magnesia clinker. /. Is 1 ⁇ , and when the mass% of particles of lmm or less in the magnesia clinker particle size composition is WM, the ratio of WDZWM is 0.5 or more and 15 or less, and furthermore, the CaO component in the dolomite clinker Content mass. /.
  • ⁇ ⁇ is the content of the MgO component in the magnetic clinker.
  • the ratio of W1ZW2 is 0.33-3.0, the refractory obtained by kneading, forming, and heat-treating the mixture was placed at least at the site in contact with the molten steel. This is a continuous fabrication nozzle with improved corrosion resistance while maintaining low alumina adhesion.
  • the magnesia-rich layer is formed by concentrating MgO in the dolomite clinker.
  • a portion where fine powder having a particle size of 1 mm or less is aggregated is a portion where coarse particles are present.
  • the erosion is accelerated due to the large number of grain boundaries.
  • magnesia clinker fine powder is appropriately dispersed in dolomite clinker fine powder to reinforce the grain boundaries between dolomite clinkers, and the magnesia rich layer formed from dolomite clinker and the dispersed magnesia clinker are integrated. It is possible to form a layer having excellent corrosion resistance by shading.
  • the ratio of WDZWM is set to 0.5 or more and 15 or less to maintain low alumina adhesion. While improving corrosion resistance. If the ratio of WDZWM is less than 0.5, the corrosion resistance is improved, but the CaO content is reduced and the alumina adhesion preventing effect S is small, which is inappropriate. If it exceeds 15, the amount of magnesia clinker is relatively small and the effect of reinforcing the grain boundaries between the dolomite clinkers S becomes small, so that the effect of improving the corrosion resistance becomes small, which is inappropriate.
  • a more preferred ratio of WDZWM is 1 or more and 10 or less.
  • the dolomite clinker is a refractory raw material containing CaO and MgO as main components, and any raw material generally used as a raw material for refractory materials such as dolomite-based bricks can be used without any problem. be able to.
  • dolomite-crine power of heat-treated natural dolomite First, a synthetic dolomite clinker prepared to an arbitrary composition using artificial raw materials can be used. Further, a material which has been surface-treated to prevent digestion by CaO, for example, a raw material having calcium phosphate formed on the surface can be used.
  • magnesia clinker for example, a sintered magnesia clinker, an electrofused magnesia clinker, and the like, which are generally used as a refractory material, can be used.
  • an inorganic binder or an organic binder generally used as a refractory can be used, and an organic binder is more preferable.
  • the organic binder is used to form a carbon bond, and a thermosetting organic resin such as a phenol resin or a furan resin can be used. Since carbon bond is excellent in hot strength, when it is applied to a portion that comes into contact with molten steel, such as a bore, the durability is improved.
  • the refractory to be placed at the site in contact with the molten steel is used as a refractory raw material with the expectation that the raw materials other than the dolomite clinker and the magnesia clinker will not adversely affect the raw materials, as long as it is within the range. It is possible.
  • refractory raw materials such as alumina, silica, zirconia, silicon carbide, silicon nitride, carbon black, pitch, tar, graphite, metal powders such as Al and Si, anti-oxidation agents such as B4C, or frits Can be used if the amount is small, for example, 5% by mass or less.
  • the refractory to be placed at the site in contact with the molten steel is obtained by adding a binder to a mixture of refractory raw materials, kneading, molding, and heat-treating.
  • the mass ratio W1ZW2 between the amount W1 and the content W2 of the MgO component is preferably 0.33 to 3.0.
  • the ratio of CaO to MgO can be controlled by adjusting the content of MgO and CaO in the dolomite clinker used or the ratio of dolomite clinker to magnesia clinker. If the ratio of W1ZW2 is less than 0.33, the amount of CaO supplied to the working surface is insufficient, and a sufficient CaO—AlO-based liquid phase cannot be formed.
  • Inhibition of formation leads to severe erosion. In addition, it may fall off due to liquid phase components or erosion. Aggregates of the bored body are mixed into the molten steel, which deteriorates the quality of the piece.
  • the refractory disposed at the portion in contact with the molten steel can absorb and reduce the thermal expansion distortion of the refractory at that portion, and can provide stability as a structure. Can be increased. Its use amount is preferably 10% by mass or less, more preferably 5% by mass or less. If the content exceeds 10% by mass, the carbon component is oxidized by oxygen in the molten steel and dissolution into the molten steel is increased, resulting in an increase in erosion.
  • pitch, tar, carbon black, Z or scale graphite can be used, but an organic binder such as a thermosetting organic resin is not included in the carbonaceous raw material.
  • the effect of improving the durability can be obtained when a graphite material such as scaly graphite is not used among the carbonaceous materials. Therefore, when the durability is more important, it is more preferable not to use the graphitic raw material or to use the added syrup of 3% by mass or less.
  • the composition of the nozzle body and the composition of the inner hole body are separately kneaded.
  • an organic binder such as phenol resin is used.
  • a cylindrical partition is inserted into the molding frame of the nozzle to divide it into an inner hole portion and a main body portion.
  • the inner hole portion is filled with a kneaded material of the compound for the inner hole body, and the main body portion is mixed with the compound for the nozzle body.
  • remove the partition and press-mold with CIP After molding, heat treatment is performed to obtain a nozzle in which a refractory compounded with dolomite clinker is arranged on a surface in contact with molten steel.
  • This embodiment is an embodiment of the invention according to the first solving means.
  • Table 1 shows the mixing ratio when dolomite clinker A whose main component is 40% by mass of CaO and 60% by mass of MgO is used. An appropriate amount of phenolic resin was added to each of the blends, and uniformly mixed kneaded earth was press-molded, and a sample obtained by heat-treating the obtained molded body was used as a specimen.
  • the specimen was immersed in molten steel while rotating while giving a peripheral speed of 1.5 mZsec. After a predetermined time, the specimen was lifted up and the erosion rate was measured.
  • the erosion rate is represented by an index with Comparative Example 1 being 100. The smaller the index, the better the corrosion resistance.
  • the average particle size of the dolomite clinker having a CaO content of 50% or less is preferably 0.8 mm or less.
  • Table 2 shows the composition of dolomite clinker A containing 40% by mass of CaO, dolomite clinker B containing 20% by mass of CaO, dolomite clinker C containing 60% by mass of CaO, magnesium clinker, and carbon black. Indicates the ratio. These blends were mixed, an appropriate amount of phenol resin was added to the kneaded mixture, and the uniformly kneaded embryo was press-molded. A sample obtained by heat-treating the obtained molded body was used as a test sample, and the corrosion resistance and the adhesion to alumina were evaluated in the same manner as in Table 1.
  • a cylindrical sleeve having a thickness of 10 mm was formed and heat-treated as an inner hole body by using the earth soil of Example 2 and the earth soil of Comparative Example 1 shown in Table 1 and heat-treated.
  • a magnesia-based mortar was placed in the area, and an actual test was performed.
  • the TD capacity was 50 tons
  • the TD piece had a withdrawal speed of 1.0-1.3 mZ minutes
  • the fabrication time was about 280 minutes.
  • the immersion nozzle was cut and the cross section of the inner hole was observed.
  • the alumina of the material of Example 2 was almost completely absent, whereas the material of Comparative Example 1 was partially removed. Specifically, alumina having a maximum thickness of 4 mm was adhered, and the nozzle using the material of Example 2 clearly obtained better results.
  • This embodiment is an embodiment of the invention according to the second solving means.
  • Table 3 shows the types of dolomite clinker and magnesia clinker used in the examples, the particle size composition, the blending ratio, the WDZWM and W1ZW2 ratios in the blend, and the refractories using each blend. The erosion rate and the adhesion rate of the sample are shown together with comparative examples.
  • the synthetic dolomite clinker used had a CaO content of 60% by mass and a MgO content of 40% by mass.
  • the test piece was immersed in molten steel of low-carbon aluminum-killed steel at 1550 ° C in a high-frequency furnace in a stationary state, and aluminum was removed every 30 minutes.
  • Alumina was suspended in the molten steel by adding .5%, and after 4 hours, the alumina was suspended and the rate of erosion of alumina on the specimen was measured.
  • the adhesion rate was represented by an index with Comparative Example 2-1 being 100. The smaller the index, the better the poor alumina adhesion.
  • a cylindrical sleeve having a thickness of 10 mm was formed as an inner hole body by using the soil of Example 2-6 and the soil of Comparative Example 2-1 shown in Table 3, heat-treated, and immersed. It was placed in the inner hole of the nozzle via a magnesium mortar.
  • the present invention can be applied to immersion nozzles, long nozzles, lower nozzles, upper nozzles, sliding nozzle plates, open nozzles, and the like used in continuous production of steel.
  • the present invention is most effective for application to an immersion nozzle, since it has a large amount of alumina attached among continuous production nozzles.
  • FIG. 1 is an explanatory view of a mechanism presumed when the present invention is applied as an inner body of a submerged nozzle.
  • FIG. 2 is a schematic view of a microscopic photograph showing a structure of a working surface of the immersion nozzle according to the present invention after use of the bore.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Continuous Casting (AREA)

Abstract

 ドロマイトクリンカーを配合した耐火物を溶鋼と接する面に配置した連続鋳造ノズルにおいて、溶鋼を鋳造する際に長時間の鋳造や溶鋼中のアルミナによる稼動面への優れたアルミナ付着防止機能とともに耐食性を改善する。  配合物が平均粒度が0.8mm以下でCaOの含有量が50質量%以下のドロマイトクリンカーからなり、しかもCaOの質量含有量をW1とし、同じくMgOの質量含有量をW2としたときのW1/W2の比が0.33以上になるように配合バインダーを添加して混練、成形、熱処理して得られる耐火物である。また、配合物がドロマイトクリンカーとマグネシアクリンカーからなり、ドロマイトクリンカーの粒度構成における1mm以下の粒子の質量%をWDとし、マグネシアクリンカーの粒度構成における1mm以下の粒子の質量%をWMとしたとき、WD/WMの比が0.5以上15以下であり、CaO成分の含有質量%をW1とし、MgO成分の含有質量%をW2としたとき、W1/W2の比が0.33~3.0である。

Description

明 細 書
連続铸造ノズル
技術分野
[0001] 本発明は、連続铸造においてタンディッシュ力もモールドに注入する際に使用する 浸漬ノズル、ロングノズル、下部ノズル、上部ノズル、 SNプレート、オープンノズル等 の連続铸造ノズル、とくに、溶鋼と接触する部位にアルミナ付着防止機能を有するド ロマイトクリンカーを配合した耐火物を配置した連続铸造ノズルに関する。
背景技術
[0002] 連続铸造に使用するノズルの内孔面には、溶鋼中のアルミナ介在物が付着し、こ れが合体して大形の介在物になり、溶鋼流と共に铸片内に取り込まれて铸片の欠陥 となり品質を低下させる。このアルミナの付着は、アルミニウムで脱酸されたアルミキ ルド鋼の連続铸造にぉ 、てはとくには顕著である。
[0003] 近年、とくに薄板等の高級鋼は鋼材品質の厳格ィヒに伴!、、連続铸造ノズルのアル ミナ付着を防止することに多くの努力が払われて 、る。
[0004] その対策の一つは、ノズルの内孔面力 アルゴンガスを溶鋼中に吹き込んで物理 的にアルミナの付着を防止することである。し力し、この方法はアルゴンガスの吹き込 み量が多すぎると気泡が铸片内に取り込まれてピンホールとなり欠陥となる。従って、 ガスの吹き込み量には制約があり、アルミナの付着防止には必ずしも十分な対策と はなり得ない。
[0005] また、ノズルを構成する耐火材に CaOを含有せしめて、付着したアルミナとの反応 によって CaO— Al O系の低融物を生成させるという耐火材自体にアルミナ付着防止
2 3
機能を持たせる手法もある。し力しながら、 CaOの含有によってノズル全体の熱膨張 率が大きくなり、割れ易くなつたり、また、耐火物自体の CaO消化の問題がある。
[0006] このアルミナ付着防止機能を持たせた耐火物による欠点を抑え、そのアルミナ付着 防止機能を生かすために、この耐火物をノズルの溶鋼と接する面のみに配置するこ とも提案された。例えば、浸漬ノズルの内孔に CaOを含有する耐火物成形体を配置 する方法が知られている。この内孔へ配置する方法としては、浸漬ノズル本体の成形 と同時に一体成形する方法、ノズル本体のみを成形した後、ノズル本体の内孔の表 面にコーティングしたり流し込み成形する方法、さらには、内孔体を別に製造してお V、て、モルタル等を介してノズル本体に配置する方法等さまざまな方法がある。
[0007] また、アルミナ付着防止機能を有する CaO含有材料としては、石灰クリンカー、ドロ マイトクリンカー、カルシウムジルコネート等がある。
[0008] 例えば、特許文献 1には、湯道表層部が 20— 97質量%の石灰クリンカーおよび 3 一 80質量%の炭素質からなり、外層が 50— 95質量%のアルミナ質、 5— 50質量% の炭素質力もなる溶鋼铸造用ノズルが開示されている。また、石灰クリンカーの一部 をドロマイトクリンカーあるいは CaOを 20wt%以上含有するカルシウムジルコニアクリ ンカーなどで置換できることも開示されている。しかしながら、このようなノズルを適用 した場合、長時間铸造の場合や溶鋼中に懸濁したアルミナの量が多い場合には、鋼 中の Al Oとの反応によって耐火物中の CaOが低融点物を生成し溶出することによ
2 3
る溶損が大きくなり、つまりは耐食性に問題が生じる。
[0009] また、特許文献 2には、内孔壁に CaOを 50— 100質量%含有する石灰材質によつ て所定の厚さのコーティング層を形成した連続铸造ノズルが開示され、さら〖こは、そ のコーティング層としてドロマイトクリンカーが 80質量0 /0とマグネシアクリンカーが 20 質量0 /0から形成されたものも開示されている。このコーティング層の適用によって溶 損量はある程度低減しているが、使用面では、さらには、溶損量を低減する必要があ る。
さらに、このように内孔へ配置する耐火物は、肉厚は小さくとも lmm、大きくとも 20 mm程度で、使用する耐火物原料の粒度は一般的に lmm以下の物が良いとされて いる。例えば、特許文献 3においては、良好な表面性状を有するためには平均粒径 力 4 μ m以下であることが望まし 、とされて 、る。
[0010] このように、ドロマイトクリンカー等の CaOを含有した耐火物は付着してくるアルミナ と反応して CaO— Al O系の低融物を生成し、低融物は溶鋼流によって耐火物の表
2 3
面力も流出するためアルミナ付着防止機能に優れている。しかしながら、耐食性との 両立が難し 、問題があり、ほとんど実用化されて 、な 、のが現状である。
特許文献 1 :特開昭 61-53150号公報 特許文献 2:特開昭 63— 132755号公報
特許文献 3:特開平 5— 200508号公報
発明の開示
発明が解決しょうとする課題
[0011] 本発明の課題は、ドロマイトクリンカーを配合した耐火物を溶鋼と接する面に配置し た連続铸造ノズルにぉ ヽて、溶鋼を铸造する際に長時間の铸造ゃ溶鋼中のアルミナ による稼動面へのアルミナ付着を防止するとともに耐食性を改善することにある。 課題を解決するための手段
[0012] 本発明は、連続铸造ノズルの少なくとも溶鋼と接する部位の耐火物として CaO源 としてドロマイトクリンカーを使用した場合、使用中にドロマイトクリンカー中の CaOは 付着した Al Oと反応して消費される力 ドロマイトクリンカー中の MgOは稼働面に
2 3
残留して濃縮し、 MgO含有量が 50%以上の MgOリッチな層を形成し、この MgOリ ツチ層の形成によって耐食性が改善されるという知見に基づいて完成した。
[0013] 以下、この知見を、浸漬ノズルの内孔体に適用した場合を例に挙げて図 1によって 説明する。
[0014] 同図(a)— (e)は、浸漬ノズルの内孔へ配置した内孔体中のドロマイトクリンカー粒 子の変化の様子を示す。
[0015] 図 1の(a)は、内孔体の初期の段階を示すもので、ドロマイトクリンカーは、 CaOの 結晶中に、 MgO粒子が散在した状態になっている。内孔体の内側に溶鋼を通過さ せた場合、溶鋼中の Al Oは内孔体の稼動面に付着する。稼動面に付着した Al O
2 3 2 3 はドロマイトクリンカーより十分小さいため、ドロマイトクリンカー中の CaOと反応し、 Ca O— Al O系化合物を生成しドロマイトクリンカー中へ吸収される。
2 3
[0016] 図 1の (b)は、引き続き Al Oの付着が繰り返される段階を示し、ドロマイトクリンカー
2 3
中の Al O成分が増えてくると、ドロマイトクリンカーの表面に Al Oを多く含む図中 A
2 3 2 3 として示す CaO— Al O反応層が形成される。この CaO— Al O反応層において、稼
2 3 2 3
動面付近ほど Al Oの濃度が高い状態となり、 CaO-Al O系液層になっている。こ
2 3 2 3
の液層は CaOの飽和濃度組成になるまでドロマイトタリンカ一中の CaO成分を継続 して溶解させていく。その結果、ドロマイトクリンカーの稼動面側には、低融化し流動 性が向上した CaO— Al O系液層が形成されることになる。
2 3
[0017] そのとき、図 1の(c)に示すように、 CaO-Al O系液相は、粘性が低下して溶鋼の
2 3
流れにより、 MgO粒子を残して稼動面力も流出する。ドロマイト中の MgO粒子はもと もとクラスター状に繋がっている部分もあると考えられ、周囲が液相になっても凝集力 のためにあまり流出しないと推定される。つまり、稼動面とは反対側に存在する MgO 粒子によって引き付けられているので、粘性の低い CaO— Al O系液相のみ流出し、
2 3
MgO粒子は、稼動面カゝら離れる方向へ移動してゆくと考えられる。しかも、 MgO粒 子は CaO— Al O反応層中での移動と凝集が繰り返されることにより粗大化する。こ
2 3
のため、稼動面に MgOリッチな層(図中 B)が連続して形成される。なお、形成される CaO-Al O反応層の厚みは、ドロマイトクリンカー中の Al Oの侵入距離により支配
2 3 2 3
されると解される。
[0018] さらに、図 1の(d)に示すように、 MgOリッチな層を含む液相には、頻繁に Al Oが
2 3 付着するため CaOの濃度が低下してくる力 MgOリッチな層の背部に存在する反応 層中においては、ドロマイトクリンカー中の CaOが MgOリッチな層を介して稼動面側 へ拡散することで CaOが供給される。このためドロマイトクリンカーの稼動面には CaO -Al O系液相がほぼ連続して形成されるようになる。そして、溶鋼中の Al Oが稼動
2 3 2 3 面に付着するのが防止される。さらには、稼動面側には MgOリッチな層が形成される ことで、 CaOは MgO粒子間を通っての移動となるため、過剰な CaOの溶出を防止す ることになり、稼動面側の溶出は防止されて耐食性が向上することになる。
[0019] 図 1の (e)は、その最終段階を示し、その検鏡写真を示す図 2は、使用後の浸漬ノ ズルを回収して内孔体の稼動面の組織を示す。これらの図に見られるように、稼動面 と平行方向に MgO粒子が凝集し、この凝集した MgO粒子の周囲には CaO— Al O
2 3 化合物を形成した組織状態が存在することが観察される。
[0020] それぞれのドロマイトクリンカー粒子中では上記の反応層が形成されるが、稼動面 にお ヽてはそれぞれの粒子どうしは一体化し連続した反応層が形成されて、内孔全 面に広がって行くものと考えられる。従って、铸造中にこの反応層を安定して長時間 存在させることが重要になってくる。
[0021] このように、ドロマイトクリンカーを使用した連続铸造ノズルの耐食性の改善にはマ グネシァリッチ層の形成が有効であることから、マグネシア含有量が天然ドロマイトタリ ンカーよりも多い合成ドロマイトクリンカーの適用について検討した。その結果、マグ ネシァ含有量が多いドロマイトクリンカーを使用した場合には、耐食性の改善という点 では有利である力 相対的に CaO含有量が減少するため難アルミナ付着性の点で は不利となる。稼働面での MgOリッチな層の形成と難アルミナ付着性が両立可能な 方法を検討した結果、クリンカーの平均粒度が 0. 8mm以下であるときに効果的であ ることが分かった。
[0022] 本願における第 1の解決手段は、配合物が平均粒度が 0. 8mm以下で CaOの含 有量が 50質量%以下のドロマイトクリンカー力もなり、し力も CaOの含有量を W1とし
、同じく MgOの含有量を W2としたとき、 W1ZW2の比が 0. 33以上になるように配 合し、この配合物にバインダーを添加して混練、成形、熱処理して得られる耐火物を 少なくとも溶鋼と接する部位に配置したことを基本構成とする。
[0023] 本発明で言う平均粒度とは、メジアン径であり、粒度を測定した結果を質量積算グ ラフに表示し、その質量の割合が 50%である粒度のことを意味する。そして粒度の測 定は、例えば篩いを使用することができる。
この本願の第 1の発明においては、 CaOの含有量が 50質量%以下のドロマイトタリ ンカー以外には、 CaO含有量が 50質量%を超えるドロマイトクリンカーを併用しても 良!ヽし、マグネシアクリンカーを併用したものでもよ!/、。
[0024] CaO含有量が 50質量%以下のドロマイトクリンカーは、その平均粒度が 0. 8mm以 下のものを使用する。その平均粒度が 0. 8mmを越えるとアルミナの付着が多くなり 好ましくない。
[0025] これは、アルミナが粒径の大きなクリンカーに付着しやすいためであり、付着したタリ ンカーを基点にアルミナの付着範囲が広がるので、平均粒度の大小がアルミナの付 着に影響する。つまり、 CaOの含有量が少ないドロマイトクリンカーにおいては、 Mg Oの割合が高くなるので付着したアルミナが溶融しにくくなり、アルミナ付着に強く影 響を及ぼすためと考えられる。他方、平均粒径力 、さい場合には、粒界が多いため、 この粒界を通ってアルミナの拡散あるいは浸透が進行するために、付着は少ないも のと考えられる。 [0026] このために、適用可能な CaO含有量が 50質量%以下のクリンカーとしては、人工 原料によって任意の組成に調合した合成ドロマイトクリンカーが適当で、 CaO含有量 の下限は特に限定されないが、使用条件や使用結果に応じて適切な含有量を選択 する必要がある。アルミナ付着防止効果を重視する場合は CaO含有量を多ぐ耐食 性を重視する場合は CaO含有量を少なくするが、アルミナ付着防止機能とマグネシ ァリッチ層の形成効果を効果的に発現するには他の骨材を含めた全体として CaO成 分の含有量 W1と MgO成分の含有量 W2との質量比 W1ZW2が 0. 33以上である 必要がある。また、質量比 W1ZW2の上限は、 3. 0以下がより好ましい。一般的には 、ドロマイトクリンカー中の CaO含有量は 20%以上が好ましい。
[0027] この際、配合物を CaO含有量が 50質量%以下のクリンカーのみで構成しても良い 力 CaO含有量が 50質量%を越える一般的なドロマイトクリンカーを併用しても良い 。 CaO含有量が多 、一般的なドロマイトクリンカーは難アルミナ付着性に優れて!/、る ので、 CaO含有量が少ない合成ドロマイトクリンカーと組み合わせることによって耐食 性とのバランスが良好となる。さらには、耐食性改善のためマグネシアクリンカーも併 用することが可能である。この場合は難アルミナ付着性を損なわないように微粉部に 適用することが好ましい。
また、使用するバインダーとしては、一般的に耐火物として使用される無機バインダ 一や有機バインダーを使用することができるが、より好ましくは有機ノインダーである 。有機ノインダ一は、炭素ボンドを形成するために使用し、熱硬化性有機榭脂がより 好ましく例えば、フエノール榭脂、フラン榭脂等を使用することができる。炭素ボンド は、熱間強度に優れるため内孔体などの溶鋼と接触する部位に適用すると耐用性が 向上する。
[0028] 溶鋼と接触する部位に配置する耐火物は、耐火原料としてドロマイトクリンカーのみ を使用しても良いし、ドロマイトクリンカーとマグネシアクリンカーを組合わせることもで きる。ただし、その他の原料でも悪影響を与えない範囲であれば、それぞれの原料特 有の効果を期待して使用することが可能である。例えば、アルミナ、シリカ、ジルコ- ァ、炭化珪素、窒化珪素、カーボンブラック、ピッチ、タール、黒鉛等の耐火原料、 A1 、 Si等の金属粉、 B4C等の酸ィ匕防止剤、あるいは(および Zまたは)、フリット類等は 少量、例えば 5質量%以下であれば使用可能である。
[0029] この溶鋼と接触する部位に配置する耐火物は、耐火原料を配合した配合物にバイ ンダーを添加して、混練、成形、熱処理して得られるが、その配合組成は、 CaOの含 有量 W1と MgO成分の含有量 W2との質量比 W1ZW2力 0. 33以上が好ましぐよ り好ましくは 0. 33-3. 0である。
[0030] この CaOと MgOの比 W1ZW2をコントロールするためには、使用するドロマイトタリ ンカ一中の MgOと CaO含有量、及び Zまたはドロマイトクリンカーとマグネシアクリン カーの使用割合によつて行なうことができる。 W1ZW2が 0. 33未満では、稼動面 に供給される CaO量が不足して十分な CaO— Al O系液相が形成されない。このた
2 3
め、稼動面側にアルミナ系介在物が付着し易くなる。
[0031] さらに、内孔体中の MgO量が多くなり過ぎると、スポーリングや割れ等が発生し易く なる。他方、 W1ZW2が 3. 0を超えると、稼動面に供給される CaO量が過多になつ て過剰な CaO— Al O系液相が形成され、保護層となり得る MgOリッチな層の形成
2 3
が阻害されるために溶損が激しくなる。また、液相成分や、溶損により脱落した内孔 体の骨材が溶鋼中に混入して铸片の品質を低下させることになる。
[0032] 溶鋼と接触する部位に配置する耐火物は、炭素質原料を使用することにより、溶鋼 と接触する部位の耐火物の熱膨張歪みを吸収、緩和することができ、構造体としての 安定性を高めることができる。その使用量は 10質量%以下が好ましぐより好ましくは 5質量%以下である。 10質量%を超えると、炭素成分の溶鋼中の酸素による酸化や 、溶鋼中への溶解が増大して溶損が大きくなる。
[0033] 炭素質原料としては、ピッチ、タール、カーボンブラック、あるいは、鱗状黒鉛等が 使用できる。
[0034] しカゝしながら、熱硬化性有機榭脂等の有機バインダーは含まれな!/ヽ。
[0035] 他方において、ドロマイトクリンカーを配合した耐火物において、炭素質原料の中で も鱗状黒鉛等の黒鉛質原料を使用しない場合には耐用性が向上する効果が得られ る。従って、耐用性をより重視する場合には黒鉛質原料を使用しないか、使用しても 3質量%以下の添カ卩量であることが好まし 、。
[0036] また、本願における第 2の解決手段は、耐火物の CaO源としてドロマイトクリンカー を使用した場合の稼働面に MgOリッチな層を形成し易 ヽ方法を検討した結果、ドロ マイトクリンカーとマグネシアクリンカーを併用し、ドロマイトクリンカーの粒度構成にお ける lmm以下の粒子の質量。/。を1^^^とし、マグネシアクリンカーの粒度構成におけ る lmm以下の粒子の質量%を WMとしたとき、 WDZWMの比が 0. 5以上 15以下 であり、さらに、ドロマイトクリンカー中の CaO成分の含有質量。/。を^^丄とし、マグネシ ァクリンカー中の MgO成分の含有質量。/c^W2としたとき、 W1ZW2の比が 0. 33— 3. 0である配合物に、バインダーを添加して混練、成形、熱処理して得られる耐火物 を少なくとも溶鋼と接する部位に配置したことによって、難アルミナ付着性を維持しつ つ耐食性を改善した連続铸造ノズルである。
[0037] マグネシアリッチ層は、ドロマイトクリンカー中の MgOが濃縮されて形成される力 ド ロマイトクリンカーの内、 lmm以下の粒度の微粉が集合している部分は、粗粒が存 在する部分と比較して粒界が多いため溶損が早くなり、マグネシアリッチ層を形成す る前に粒界力 溶損して脱落するという現象が発生する。この対策として、マグネシア クリンカーの微粉をドロマイトクリンカーの微粉中に適度に分散させることでドロマイト クリンカー間の粒界を補強すると共に、ドロマイトクリンカーから形成されるマグネシア リッチ層と分散させたマグネシアクリンカーが一体ィ匕して耐食性に優れた層を形成さ せることができる。
[0038] 粒度 lmm以下のドロマイトクリンカーの割合を WD、粒径が lmm以下のマグネシア クリンカーの割合を WMとした時に、 WDZWMの比を 0. 5以上 15以下にすることで 難アルミナ付着性を維持しつつ耐食性が改善された。 WDZWMの比が 0. 5未満の 場合、耐食性は改善されるものの、 CaO量が少なくなるためアルミナ付着防止効果 力 S小さくなり不適当である。 15を越えると、相対的にマグネシアクリンカーの量が少な すぎてドロマイトクリンカー間の粒界を補強する効果力 S小さくなるため耐食性改善の 効果が小さくなり不適当である。より好ましい WDZWMの比は、 1以上 10以下であ る。
[0039] ドロマイトクリンカーとしては、 CaOと MgOとを主成分とする耐火原料であって、一 般的にドロマイト系れんが等の耐火物の原料として使用されている原料であれば問 題なく使用することができる。例えば、天然のドロマイトを熱処理したドロマイトクリン力 一、人工原料によって任意の組成に調合した合成ドロマイトクリンカーも使用可能で ある。また、 CaOによる消化防止のために表面処理したもの、例えば表面に燐酸カル シゥムを形成させた原料等も使用可能である。
[0040] マグネシアクリンカーとしては、耐火物原料として一般的に使用されている例えば、 焼結マグネシアクリンカー、電融マグネシアクリンカー等を使用することができる。
[0041] また、バインダーとしては、一般的に耐火物として使用される無機バインダーや有 機バインダーを使用することができるが、より好ましくは有機ノインダーである。有機 ノインダ一は、炭素ボンドを形成するために使用し、熱硬化性有機榭脂、例えば、フ エノール榭脂、フラン榭脂等を使用することができる。炭素ボンドは、熱間強度に優れ るため内孔体などの溶鋼と接触する部位に適用すると耐用性が向上する。
[0042] 溶鋼と接触する部位に配置する耐火物は、耐火原料として、ドロマイトクリンカーと マグネシアクリンカー以外の原料でも悪影響を与えな 、範囲であれば、それぞれの 原料特有の効果を期待して使用することが可能である。例えば、アルミナ、シリカ、ジ ルコユア、炭化珪素、窒化珪素、カーボンブラック、ピッチ、タール、黒鉛等の耐火原 料、 Al、 Si等の金属粉、 B4Cのような酸ィ匕防止剤、あるいはフリット類等は少量、例え ば 5質量%以下であれば使用可能である。
[0043] 溶鋼と接触する部位に配置する耐火物は、耐火原料を配合した配合物にバインダ 一を添カ卩して、混練、成形、熱処理して得られるが、その配合中の CaOの含有量 W1 と MgO成分の含有量 W2との質量比 W1ZW2力 0. 33-3. 0であることが好まし い。この CaOと MgOの比をコントロールするためには、使用するドロマイトクリンカー 中の MgOと CaO含有量、あるいはドロマイトクリンカーとマグネシアクリンカーの使用 割合を調整することによって行なうことができる。 W1ZW2の比が 0. 33未満では、稼 動面に供給される CaO量が不足して十分な CaO— Al O系液相が形成されない。こ
2 3
のため、稼動面側にアルミナ系介在物が付着し易くなる。
[0044] さらに、内孔体中の MgO量が多くなり過ぎると、スポーリングや割れ等が発生し易く なる。また、 W1ZW2の比が 3. 0を超えると、稼動面に供給される CaO量が過多に なって過剰な CaO— Al O系液相が形成されて、保護層となり得る MgOリッチな層の
2 3
形成が阻害されるために溶損が激しくなる。さらには、液相成分や、溶損により脱落し た内孔体の骨材が溶鋼中に混入して铸片の品質を低下させることになる。
[0045] 上記の溶鋼と接触する部位に配置する耐火物は、炭素質原料を使用することにより 、その部位の耐火物の熱膨張歪みを吸収、緩和することができ、構造体としての安定 性を高めることができる。その使用量は 10質量%以下が好ましぐより好ましくは 5質 量%以下である。 10質量%を超えると、炭素成分の溶鋼中の酸素による酸化や、溶 鋼中への溶解が増大して溶損が大きくなる。この炭素質原料としては、ピッチ、ター ル、カーボンブラック、及び Zまたは鱗状黒鉛等が使用できるが熱硬化性有機榭脂 等の有機バインダーは炭素質原料には含まないこととする。
[0046] 一方、本発明のドロマイトクリンカーを配合した耐火物において、炭素質原料の中 でも鱗状黒鉛等の黒鉛質原料を使用しない場合には耐用性が向上する効果が得ら れる。従って、耐用性をより重視する場合には黒鉛質原料については使用しないか あるいは 3質量%以下の添カ卩量であることがより好ま U、。
[0047] 本発明の連続铸造ノズルに、耐火物を溶鋼と接触する部位に配置する手段として、 成形時に連続铸造用ノズルの内孔と一体的に成形する方法、内孔面に吹き付ける 方法、内孔内に铸込む方法、さらには、別に内孔体として製造する方法のいずれの 方法も採用できる。
例えば一体成形を適用する場合には、ノズル本体の配合物と内孔体の配合物を別 々に混練する。混練する際にはフエノール榭脂等の有機バインダーを使用する。そし て、ノズルの成形枠に円筒状の仕切りを入れて内孔部と本体部とに分け、内孔部に は内孔体用配合物の混練物を充填し本体部にはノズル本体用配合物の混練物を充 填し、その後仕切りを取り除き CIPで加圧成形する。成形後、熱処理することでドロマ イトクリンカーを配合した耐火物を溶鋼と接する面に配置したノズルが得られる。 発明の効果
[0048] 少なくとも溶鋼に接触する面にドロマイトを使用した耐火物を配置した連続铸造ノズ ルにおいて、耐食性を向上することができ、連続铸造ノズルの寿命を著しく延長する ことができる。このため連続铸造ノズル自体及び連続铸造ノズルの交換に要するコス トを大幅に低減することが可能になる。
発明を実施するための最良の形態 [0049] 発明の実施の形態を実施例によって説明する。
実施例 1
[0050] この実施例は第 1の解決手段に係る発明の実施例である。
[0051] CaOを 40%含有するドロマイトクリンカーを連続铸造ノズルの溶鋼と接する部位に 配置した場合にお!ヽて、その平均粒度が耐食性および難アルミナ付着性に及ぼす 影響を調査した。
[0052] 表 1は、主成分が CaOが 40質量%と MgOが 60質量%カ なるドロマイトクリンカー Aを使用した場合の配合割合を示す。それぞれの配合物に、適量のフエノールレジ ンを添加し、均一に混練したはい土をプレス成形し、得られた成形体を熱処理したサ ンプルを供試体とした。
[表 1]
Figure imgf000014_0002
*比較例 1一 1の溶損速度を 1 00として指数表示。数字が小さいほど耐食性良好。 * *比較例 1一 1の付着速度を" 1 00として指数表示。数字が小さいほど難付着性良好
Figure imgf000014_0001
試体を 1. 5mZsecの周速を与えながら回転しつつ、溶鋼中に浸漬し、所定の時間 後に引き上げて溶損速度を測定した。溶損速度は比較例 1を 100とした指数で表示 するもので、指数は小さ 、ほど耐食性が良好であることを示す。
[0054] また、難アルミナ付着性の調査は、同様に、 1550°Cの低炭アルミキルド溶鋼中に、 供試体を静止したまま溶鋼中に浸漬し、 30分毎にアルミニウムを 0. 5%添加して溶 鋼中にアルミナを懸濁させ、 4時間後に弓 Iき上げて供試体へのアルミナ付着速度を 測定した。付着速度は比較例 1-1を 100とした指数で表示した。指数は小さいほど 難アルミナ付着性が良好であることを示す。
[0055] 耐食性を評価した結果では、実施例と比較例との間には顕著な差は見られなかつ たが、難アルミナ付着性に関しては実施例 1 1一 1—3が比較例 1 1、 1 2と比べて 明らかに良好な結果となった。この結果より、 CaOの含有量が 50%以下のドロマイト クリンカーの平均粒度は 0. 8mm以下が好ま ヽことが分かる。
[0056] 表 2は、 CaOを質量 40%含有するドロマイトクリンカー Aと、 CaOを 20質量%含有 するドロマイトクリンカー Bと、 CaOを 60質量%含有するドロマイトクリンカー Cと、マグ ネシァクリンカー、カーボンブラックの配合割合を示す。これらの配合物を混合し、適 量のフエノールレジンを添カ卩し、均一に混練したはい土をプレス成形した。得られた 成形体を熱処理したサンプルを供試体として耐食性と難アルミナ付着性を表 1の場 合と同様に行った。
[表 2]
0057
Figure imgf000016_0002
好。
Figure imgf000016_0001
性良好
一 Aと Bの平均粒度が 0. 8mm以下であれば、 CaO含有量が 50質量%以上のドロマ イトクリンカー Cやマグネシアクリンカーを併用しても良好な結果となることが明らかで ある。
[0058] 次に、表 1に示す実施例 2のはい土と比較例 1のはい土を使用して、内孔体として 厚さ 10mmの円筒状スリーブを成形 ·熱処理し、浸漬ノズルの内孔にマグネシア系モ ルタルを配置し、実試験を行った。
[0059] これらの浸漬ノズルを、アルミキルド鋼の铸造に適用した。铸造条件は、鍋容量が 2
50ton、 TD容量が 45ton、铸片の引き抜き速度は 1. 0-1. 3mZ分、铸造時間は 約 280分であった。
[0060] 铸造が終わった後に浸漬ノズルをカットして内孔体の断面を観察した結果、実施例 2の材質のアルミナ付着がほぼ皆無であつたのに対して、比較例 1の材質は部分的 に最大 4mmのアルミナが付着しており、明らかに実施例 2の材質を適用したノズルの 方が良好な結果を得た。
実施例 2
[0061] この実施例は第 2の解決手段に係る発明の実施例である。
[0062] 表 3は、実施例に使用したドロマイトクリンカーとマグネシアクリンカーの種類と、粒 度構成と、配合割合と、配合物中の WDZWM、 W1ZW2比、それに、それぞれの 配合物を使用した耐火物の溶損速度と付着速度を、比較例とともに示す。
[0063] 使用した合成ドロマイトクリンカーの CaO含有量は 60質量%、 MgO含有量は 40質 量%であった。
[0064] 表 3に示す配合割合で混合し、適量のフエノールレジンを添加し、均一に混練した は!ヽ土をプレス成形した。得られた成形体を 1000°Cで熱処理したサンプルを供試体 として耐食性および難アルミナ付着性の調査を行った。
[0065] 溶損速度による耐食性の調査は、高周波炉によって低炭アルミキルド鋼を溶解し、 1550°Cに維持した溶鋼中に、供試体を 1. 5mZsecの周速で回転させながら 4時間 浸漬した後に引き上げて溶損速度を測定した。溶損速度は比較例 1を 100とした指 数で表示した。指数は小さ 、ほど耐食性が良好であることを示す。
[表 3] 比較例 比較例 実施例 実施例 実施例 実施例 実施例 実施例 実施例 実施例 実施例 実施例 比較例 比較例 実施例
2-1 2-2 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-10 2-3 2-4 2-1 1 配合割合(重量%)
天然ドロマイトクリンカー
3—1 mm 20 20 20 20 25 20 20 20 20 15 15
1 -0. 2mm 20 20 20 20 30 20 20 20 30 30 20 10 10 10 30
0. 2— 0mm 35 35 35 35 35 35 35 35 35 30 30 15 10 5 30 電融マグネシアクリン力一
3—1 mm 24 22 21 19 15 10 5 15 15
1 - 0. 2mm 5 10 20 20 30 30 30 30 20
0. 2— 0mm 1 3 4 6 10 10 10 15 15 20 20 20 20 25 20 ピッチ粉 4 フエノールレジン 適量 適量 適量 適量 適里 適星 適 S 適量 m Mm. 適虽 適 適量 適里 適 S ドロマイトクリン力一の
55 55 55 55 65 55 55 55
1 mm以下の割合; WD 65 60 50 25 20 15 60 マグネシアクリン力一の
1 3 4 6
1 mm以下の割合; 10 10
WM 15 25 35 40 50 50 50 55 40
WD/WM 55.0 18.3 13.8 9.2 6.5 5.5 3.7 2.2 1.9 1.5 1.0 0.50 0.40 0.27 1.5
W1/W2 0.82 0.82 0.82 0.82 1.17 0.82 0.82 0.82 0.64 0.56 0.43 0.37 0.27 0.22 0.56 溶損速度 * 100 98 92 81 75 62 51 46 41 38 35 33 32 30 43 付着速度 * * 100 98 97 98 85 96 97 97 102 106 109 1 15 134 175 107
*比較例 2— 1の溶損速度を 1 00として指数表示。数字が小さいほど耐食性良好。
* *比較例 2—1の付着速度を 1 00として指数表示。数字が小さいほど難付着性良好
[0066] 難アルミナ付着性は、耐食性の調査と同様に、高周波炉中の 1550°Cの低炭アルミ キルド鋼の溶鋼中に、供試体を静止状態で浸漬し、 30分毎にアルミニウムを 0. 5% 添加することで溶鋼中にアルミナを懸濁させて、 4時間後に引き上げて供試体へのァ ルミナ付着溶損速度を測定した。付着速度は比較例 2-1を 100とした指数で表示し た。指数は小さ!、ほど難アルミナ付着性が良好であることを示す。
[0067] 耐食性を評価した結果、 WDZWMが小さくなるに従って耐食性が改善されること が明らかになった。 WDZWMの値が 15を越えると耐食性改善の効果がほとんど発 現されないので、 WDZWMは 15以下である必要がある。さらに、 10以下であると改 善の効果が顕著に表れるのでさらに好ま 、。
[0068] 難アルミナ付着性を評価した結果、 WDZWMが 2以下の値を示すとアルミナ付着 速度が徐々に大きくなつた。とくに 0. 5未満ではアルミナの付着が著しく増加するの で WDZWMは 0. 5以上である必要がある。さらに、 1. 0以上ではアルミナ付着は軽 微でかつ耐食性改善の効果が大きくより好ましいことが分力る。
[0069] 次に、表 3に示す実施例 2— 6のはい土と比較例 2— 1のはい土を使用して、内孔体 として厚さ 10mmの円筒状スリーブを成形 ·熱処理し、浸漬ノズルの内孔にマグネシ ァ系モルタルを介して配置した。
[0070] これらの浸漬ノズルを、アルミキルド鋼の lOOOtの連続铸造に適用した。铸造が終 わった後に浸漬ノズルをカットして断面を観察した結果、両ノズル共内孔体へのアル ミナの付着は非常に軽微で良好な結果となった。内孔体の溶損については、実施例 2— 6の材質の溶損が lmm未満であつたのに対して、比較例 2— 1の材質は、部分的 に 5mm程度溶損するなど明らかに実施例 2— 6の材質を適用したノズルよりも溶損が 大きかった。
産業上の利用可能性
[0071] 本発明は、鋼の連続铸造に使用する浸漬ノズル、ロングノズル、下部ノズル、上部ノ ズル、スライディングノズルプレート、オープンノズル等に適用できる。
[0072] 本発明は連続铸造ノズルの中でも、アルミナ付着が多!、浸漬ノズルへの適用が最 も有効である。
図面の簡単な説明 [図 1]本発明を浸漬ノズルの内孔体として適用した場合に推定される機構の説明図 である。
[図 2]本発明の浸漬ノズルの内孔体の使用後の稼動面の組織を示す検鏡写真の模 図を示す。

Claims

請求の範囲
[1] 配合物が平均粒度が 0. 8mm以下で CaOの含有量が 50質量%以下のドロマイトク リンカ一からなり、し力も CaOの質量含有量を W1とし、同じく MgOの質量含有量を W2としたときの W1ZW2の比が 0. 33以上になるように配合し、この配合物にバイン ダーを添加して混練、成形、熱処理して得られる耐火物を少なくとも溶鋼と接する部 位に配置した連続铸造ノズル。
[2] CaO含有量が 50質量%を超えるドロマイトクリンカーを併用した請求項 1に記載の 連続铸造ノズル。
[3] マグネシアクリンカーを併用した請求項 1または請求項 2に記載の連続铸造ノズル。
[4] 配合物がドロマイトクリンカーとマグネシアクリンカー力もなり、ドロマイトクリンカーの 粒度構成における lmm以下の粒子の質量。/。を1^^^とし、マグネシアクリンカーの粒 度構成における lmm以下の粒子の質量%を WMとしたとき、 WDZWMの比が 0. 5 以上 15以下であり、さらに、 CaO成分の含有質量%を W1とし、 MgO成分の含有質 量%を W2としたとき、 W1ZW2の比が 0. 33—3. 0である配合物に、バインダーを 添加して混練、成形、熱処理して得られる耐火物を少なくとも溶鋼と接する部位に配 置した連続铸造ノズル。
[5] バインダーが熱硬化性有機榭脂である請求項 1または請求項 4に記載の連続铸造 ノズル。
[6] 炭素質原料を配合物に対して、外掛けで、 10質量%以下で添加してなる請求項 1 または請求項 4に記載の連続铸造ノズル。
[7] 耐火物を浸漬ノズルの内孔体として配置した請求項 1から請求項 7の 、ずれかに記 載の連続铸造ノズル。
PCT/JP2005/004428 2004-03-15 2005-03-14 連続鋳造ノズル WO2005087406A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP05720699A EP1736258A4 (en) 2004-03-15 2005-03-14 TIP FOR CONTINUOUS CASTING
JP2006511021A JP4410796B2 (ja) 2004-03-15 2005-03-14 連続鋳造ノズル
US10/592,658 US7591976B2 (en) 2004-03-15 2005-03-14 Nozzle for use in continuous casting
BRPI0508726-0B1A BRPI0508726B1 (pt) 2004-03-15 2005-03-14 bocal de lingotamento contÍnuo

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-073578 2004-03-15
JP2004-073580 2004-03-15
JP2004073580 2004-03-15
JP2004073578 2004-03-15

Publications (1)

Publication Number Publication Date
WO2005087406A1 true WO2005087406A1 (ja) 2005-09-22

Family

ID=34975395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/004428 WO2005087406A1 (ja) 2004-03-15 2005-03-14 連続鋳造ノズル

Country Status (6)

Country Link
US (1) US7591976B2 (ja)
EP (1) EP1736258A4 (ja)
JP (1) JP4410796B2 (ja)
KR (1) KR100971260B1 (ja)
BR (1) BRPI0508726B1 (ja)
WO (1) WO2005087406A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008000816A (ja) * 2006-05-26 2008-01-10 Nippon Steel Corp 鋼の連続鋳造方法
JP2008055452A (ja) * 2006-08-30 2008-03-13 Kurosaki Harima Corp 難付着性連続鋳造用ノズル
JP2010167481A (ja) * 2009-01-26 2010-08-05 Kurosaki Harima Corp 連続鋳造用ノズル

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007045106A1 (de) * 2007-09-20 2009-04-02 Refractory Intellectual Property Gmbh & Co. Kg Basisches feuerfestes Bauteil
JP4801222B1 (ja) * 2010-12-03 2011-10-26 黒崎播磨株式会社 スライディングノズルプレート
TWI466844B (zh) * 2011-12-01 2015-01-01 Krosakiharima Corp Refractory and casting nozzles
JP6228524B2 (ja) * 2013-09-27 2017-11-08 日新製鋼株式会社 連続鋳造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05154628A (ja) * 1991-12-06 1993-06-22 Kurosaki Refract Co Ltd 連続鋳造用ノズル内孔体
WO2004018127A1 (ja) 2002-08-22 2004-03-04 Krosakiharima Corporation 薄板用溶鋼の連続鋳造方法
WO2004082868A1 (ja) 2003-03-14 2004-09-30 Krosakiharima Corporation 連続鋳造ノズル
JP2004322208A (ja) * 2003-04-07 2004-11-18 Nippon Steel Corp 品質特性に優れた鋳片の連続鋳造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153150A (ja) 1984-08-24 1986-03-17 ハリマセラミック株式会社 溶鋼鋳造用ノズル
JPS63132755A (ja) 1986-11-25 1988-06-04 Kawasaki Refract Co Ltd 連続鋳造用ノズル
FR2648066B1 (fr) * 1989-04-12 1994-04-01 Daussan Cie Procede pour revetir un recipient metallurgique par un revetement epurant et composition s'y rapportant
US5124288A (en) * 1991-08-15 1992-06-23 Quigley Company Inc. Refractory material containing calcium carbonate-stabilized synthetic dolomite
JPH0747197B2 (ja) 1992-01-27 1995-05-24 東京窯業株式会社 溶鋼の連続鋳造用ノズル
TW362053B (en) * 1996-07-09 1999-06-21 Baker Refractories Nozzle co-molded with slagline sleeve, method for marking the same, and slagline sleeve composition
US5908577A (en) * 1996-08-26 1999-06-01 Shinagawa Refractories Co., Ltd. Nozzle for continuous casting
DE19828511C5 (de) * 1998-06-26 2004-12-02 Didier-Werke Ag Basischer, feuerfester keramischer Hohlkörper
US6537486B1 (en) * 2000-03-17 2003-03-25 Yesuvius Crucible Company Anti-buildup liner
US7506564B2 (en) * 2002-02-12 2009-03-24 Weatherford/Lamb, Inc. Gripping system for a tong
AU2003212638A1 (en) * 2002-03-13 2003-09-22 Adjungo Networks Ltd. Accessing cellular networks from non-native local networks
JP4249940B2 (ja) * 2002-04-30 2009-04-08 黒崎播磨株式会社 アルミキルド鋼の鋳造方法
JP2006082133A (ja) * 2004-09-17 2006-03-30 Sumitomo Electric Ind Ltd 金属体の接合方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05154628A (ja) * 1991-12-06 1993-06-22 Kurosaki Refract Co Ltd 連続鋳造用ノズル内孔体
WO2004018127A1 (ja) 2002-08-22 2004-03-04 Krosakiharima Corporation 薄板用溶鋼の連続鋳造方法
JP2004082133A (ja) * 2002-08-22 2004-03-18 Kurosaki Harima Corp 薄板用溶鋼の連続鋳造方法
EP1541260A1 (en) 2002-08-22 2005-06-15 Krosakiharima Corporation Method for continuous casting of molten steel for thin sheet
WO2004082868A1 (ja) 2003-03-14 2004-09-30 Krosakiharima Corporation 連続鋳造ノズル
JP2004322208A (ja) * 2003-04-07 2004-11-18 Nippon Steel Corp 品質特性に優れた鋳片の連続鋳造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1736258A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008000816A (ja) * 2006-05-26 2008-01-10 Nippon Steel Corp 鋼の連続鋳造方法
JP2008055452A (ja) * 2006-08-30 2008-03-13 Kurosaki Harima Corp 難付着性連続鋳造用ノズル
JP4751277B2 (ja) * 2006-08-30 2011-08-17 黒崎播磨株式会社 難付着性連続鋳造用ノズル
JP2010167481A (ja) * 2009-01-26 2010-08-05 Kurosaki Harima Corp 連続鋳造用ノズル

Also Published As

Publication number Publication date
JP4410796B2 (ja) 2010-02-03
JPWO2005087406A1 (ja) 2008-01-24
BRPI0508726B1 (pt) 2013-07-23
US7591976B2 (en) 2009-09-22
KR20070004031A (ko) 2007-01-05
US20080032882A1 (en) 2008-02-07
KR100971260B1 (ko) 2010-07-20
BRPI0508726A (pt) 2007-08-14
EP1736258A4 (en) 2007-09-26
EP1736258A1 (en) 2006-12-27

Similar Documents

Publication Publication Date Title
WO2005087406A1 (ja) 連続鋳造ノズル
JPWO2009096550A1 (ja) ジルコニアムライト耐火原料及びプレートれんが
JP2009221031A (ja) ジルコニア−炭素含有耐火物及びその製造方法
AU2010320042B2 (en) Refractory material, continuous casting nozzle using the refractory material, production method for the continuous casting nozzle, and continuous casting method using the continuous casting nozzle
JP4431111B2 (ja) 連続鋳造ノズル
CA2295083C (en) Refractory composition for the prevention of alumina clogging
JP5166302B2 (ja) 連続鋳造用ノズル
WO2022215727A1 (ja) キャスタブル耐火物
JPH05200508A (ja) 溶鋼の連続鋳造用ノズル
JP4456443B2 (ja) ピッチ含有難付着性連続鋳造ノズル
JP2008055452A (ja) 難付着性連続鋳造用ノズル
JP2006068805A (ja) ジルコニア含有難付着性連続鋳造ノズル
JP4533052B2 (ja) 難付着性連続鋳造ノズル
TWI762076B (zh) 耐火物
JP4589151B2 (ja) 連続鋳造用ノズルおよび連続鋳造方法
JPH11246265A (ja) 高耐食性溶融シリカ含有耐火物
JP4629461B2 (ja) 連続鋳造用ノズル
JPH11114659A (ja) 連続鋳造用ノズル
KR100367647B1 (ko) 연속주조용 노즐 및 그 제조방법
JP2004066251A (ja) 鋼の連続鋳造耐火部材用耐火物、および、該耐火物を用いた鋼の連続鋳造用ノズル
JP2002068833A (ja) 連続鋳造用耐火物及び連続鋳造用ノズル
JPH11147761A (ja) ジルコニア−黒鉛質耐火物
JPH05319916A (ja) 連続鋳造用ノズルの製造方法
JPH10118749A (ja) 連続鋳造用ノズル
JP2002035902A (ja) アルミナ付着防止連続鋳造用耐火物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580012752.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006511021

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2005720699

Country of ref document: EP

Ref document number: 1020067021140

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10592658

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005720699

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067021140

Country of ref document: KR

ENP Entry into the national phase

Ref document number: PI0508726

Country of ref document: BR

WWP Wipo information: published in national office

Ref document number: 10592658

Country of ref document: US