WO2005085191A1 - クメンハイドロパーオキサイドの製造方法 - Google Patents

クメンハイドロパーオキサイドの製造方法 Download PDF

Info

Publication number
WO2005085191A1
WO2005085191A1 PCT/JP2005/003599 JP2005003599W WO2005085191A1 WO 2005085191 A1 WO2005085191 A1 WO 2005085191A1 JP 2005003599 W JP2005003599 W JP 2005003599W WO 2005085191 A1 WO2005085191 A1 WO 2005085191A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
oxygen
mol
producing
gas
Prior art date
Application number
PCT/JP2005/003599
Other languages
English (en)
French (fr)
Inventor
Keiji Kuma
Takanori Suzuki
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Priority to KR1020067017680A priority Critical patent/KR101168875B1/ko
Priority to US10/591,439 priority patent/US7439404B2/en
Priority to EP05719903A priority patent/EP1721895A4/en
Priority to CN2005800063989A priority patent/CN1926101B/zh
Publication of WO2005085191A1 publication Critical patent/WO2005085191A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/02Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring monocyclic with no unsaturation outside the aromatic ring
    • C07C39/04Phenol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/001Feed or outlet devices as such, e.g. feeding tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/26Nozzle-type reactors, i.e. the distribution of the initial reactants within the reactor is effected by their introduction or injection through nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/001Feed or outlet devices as such, e.g. feeding tubes
    • B01J4/002Nozzle-type elements
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/08Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by decomposition of hydroperoxides, e.g. cumene hydroperoxide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C407/00Preparation of peroxy compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C409/00Peroxy compounds
    • C07C409/02Peroxy compounds the —O—O— group being bound between a carbon atom, not further substituted by oxygen atoms, and hydrogen, i.e. hydroperoxides
    • C07C409/04Peroxy compounds the —O—O— group being bound between a carbon atom, not further substituted by oxygen atoms, and hydrogen, i.e. hydroperoxides the carbon atom being acyclic
    • C07C409/08Compounds containing six-membered aromatic rings
    • C07C409/10Cumene hydroperoxide

Definitions

  • the present invention relates to a method for producing tamenno and peroxide at an opening, and more particularly, to an oxygen-containing gas having a high oxygen concentration when producing a peroxide at a mouth opening at a liquid phase of cumene.
  • the present invention relates to a method for producing a cumenehydride-peroxide in which the amount of cumenehydride-peroxide produced per reaction liquid amount is significantly increased by supplying the solution to a reactor.
  • Tamenodide peroxide (hereinafter sometimes abbreviated as "CHP") is a precursor in a method for producing phenol by the cumene method, and is produced by liquid phase oxidation of cumene.
  • Patent Document 1 Japanese Patent No. 3107409
  • Patent Document 2 Japanese Patent No. 3061394
  • reaction conditions temperature, residence time, pressure
  • Patent Document 1 Setting of pH conditions (for example, see Patent Document 2), and the like, there is a demand for further improvement over the power of studies on techniques for increasing the yield of CHP.
  • increasing the amount of CHP produced per reaction solution volume in the reactor to reduce the size of the reactor This is what is strongly desired in industrial production.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for producing CHP by liquid phase oxidation of cumene, in which the amount of CHP produced per reaction liquid in a reactor is reduced. It is an object of the present invention to provide a method for increasing the production volume of an existing reactor by increasing the size of the reactor to obtain the required production amount.
  • the present inventors have conducted intensive studies and as a result, by devising an oxygen-containing gas supply means, even if an oxygen-containing gas having a higher oxygen concentration than air is supplied,
  • the cost increase due to the use of oxygen-containing gas with a higher oxygen concentration is largely offset by the significant increase in the amount of CHP produced per reactor volume in the reactor, rather than the yield effect. And completed the present invention.
  • a first gist of the present invention relates to a method for continuously producing cumene hydride peroxide by subjecting cumene to liquid phase oxidation in the presence of an oxygen-containing gas in a reactor.
  • the present invention relates to a method for producing a peroxide of a tamennoid mouth.
  • a second aspect of the present invention relates to a method for continuously producing cumene hydride peroxide by subjecting cumene to liquid phase oxidation in the presence of an oxygen-containing gas in a reactor.
  • the oxygen concentration in the total amount of gas supplied to the phase is 22 mol% or more and 50 mol% or less, and the oxygen concentration in the exhaust gas of the reactor is 2 mol% or more and 10 mol% or less.
  • the present invention relates to a method for producing a peroxide.
  • a third gist of the present invention is that cumene is subjected to liquid phase oxidation in the presence of an oxygen-containing gas in a reactor.
  • the oxygen concentration in the total amount of gas supplied to the liquid phase of the reactor is set to 22 mol% or more and 50 mol% or less, and the pore pitch is set to 2
  • the present invention resides in a method for producing peroxide at a cumenehide port, comprising supplying an oxygen-containing gas into a reactor by using a sparger twice or more times.
  • a fourth aspect of the present invention is a method for producing phenol by acid-decomposing tamenno and peridot peroxide, which is obtained by the production method according to any one of the above-mentioned eleventh aspects.
  • the present invention relates to a method for producing phenol, which comprises using a peroxide of tamenoid.
  • the production amount of CHP per reaction liquid amount in the reactor is increased to obtain the required production amount. It is possible to reduce the size of the reactor in order to increase the production volume of existing reactors.
  • the method for producing CHP according to the thirteenth aspect of the present invention is a method for producing tamenno and idoperoxide continuously by subjecting cumene to liquid phase oxidation in the presence of an oxygen-containing gas in a reactor. It is. Then, the oxygen concentration in the total amount of gas supplied into the liquid phase of the reactor is set to 22 mol% or more and 50 mol% or less. That is, in the present invention, the oxygen concentration of the total gas supplied into the liquid phase of the reactor is higher than the oxygen concentration of air.
  • a common description will be given in the thirteenth gist of the present invention.
  • reaction initiator for the liquid phase oxidation of cumene is not particularly limited, but usually CHP is used.
  • the liquid phase oxidation reaction is preferably performed in multiple stages using a plurality of reactors arranged in series.
  • the number of reactors is not particularly limited, but is preferably 2-5.
  • Cumene is preferably continuously supplied to the first reactor, and the reaction solution of the first reactor is continuously supplied to the second reactor.
  • the reaction liquid in the n-th reactor is (n + 1) It is continuously fed to the reactor.
  • the oxygen-containing gas is preferably supplied continuously to each reactor.
  • the reactor is generally a bubble column type, but may be a stirred tank / stirred bubble column type.
  • the temperature of each reactor is usually 50 to 120 ° C, and an optimum temperature can be adopted for each reactor.
  • the pressure in each reactor is usually 0-lMPaG (gauge pressure) and the total residence time in the reactor is usually 3-20 hours.
  • DMPC dimethylphenylcarbinol
  • AP acetophenone
  • concentration of CHP and unreacted cumene in the reaction solution from which the final reactor power is also withdrawn is usually 20-50% by weight and 50-80% by weight, respectively.
  • the above liquid phase oxidation reaction may be performed in the absence of a catalyst or in the presence of a catalyst.
  • the type is not particularly limited, and an alkaline substance is usually used. Specific examples include compounds such as carbonates such as alkali metals such as lithium, sodium and potassium, alkaline earth metals such as calcium and magnesium, and hydroxides. These compounds may be used alone or in combination of two or more.
  • the use form of the alkaline substance is not particularly limited, and is usually in the form of an aqueous solution.
  • the amount of the catalyst (in terms of metal) to be added is generally 10 g equivalent or less, preferably 0.1 to 16 g equivalent, per tonne of cumene.
  • an oxygen-containing gas is supplied to a reactor (such as a first reactor) together with the raw material cumene so that the oxygen concentration in the total gas amount is 22 mol% to 50 mol%.
  • the supply of the oxygen-containing gas is preferably performed using a sparger.
  • a sparger is a pipe having a plurality of holes, and is a device installed for uniformly dispersing and supplying an oxygen-containing gas in a reactor.
  • the shape of the sparger is not particularly limited, and the arrangement of the pipes is usually a ring, a grid, a radial, or a combination thereof.
  • the method for supplying the oxygen-containing gas is limited. There is no.
  • Two or more spargers may be used in combination. That is, an oxygen-containing gas with an oxygen concentration of 22 mol% or more and 50 mol% or less is supplied using one type of sparger.
  • two or more spargers are used to supply oxygen-containing gas or non-oxygen-containing gas with different oxygen concentrations, and supply them so that the oxygen concentration in the total supplied gas is 22 mol% or more and 50 mol% or less. Can also be adopted.
  • a plurality of gas pipes to be supplied to the sparger are used, and the gas is mixed in the reactor so that the oxygen concentration becomes 22 mol% or more and 50 mol% or less. It may be ejected from the hole of the sparger.
  • the oxygen concentration in the total gas supplied to the reactor is less than 22 mol%, the effect of improving the CHP production amount according to the present invention cannot be obtained.
  • the oxygen concentration in the total gas supplied to the reactor exceeds 50 mol%, the flow rate of the exhaust gas tends to be remarkably reduced.
  • the reaction conditions fluctuate, such as a slight decrease in the reaction temperature, the risk of detonation formation due to an increase in the oxygen concentration of the exhaust gas increases, and this is not preferable because it involves handling danger.
  • the lower limit of the oxygen concentration in the total gas supplied to the reactor is preferably 24 mol%, more preferably 26 mol%, and the upper limit is preferably It is 45 mol%, more preferably 40 mol%.
  • the inside of the reaction system becomes an explosive gas composition, which may cause an explosion.
  • This explosive gas composition tends to be formed particularly when large oxygen bubbles are present in the reaction system. Therefore, the force due to the supply flow rate of the oxygen-containing gas is usually relatively small, and the hole pitch (the distance between the centers of the holes in the sparger) is relatively large (with a hole interval) between the sparger and the system. It is preferable that large oxygen gas bubbles are not formed. Since the oxygen supplied to the reactor is consumed from the moment it enters the reaction field, the gas spent for a certain amount of time in the reaction field contains less oxygen and increases safety. .
  • the above sparger it is preferable to use a sparger having a hole pitch of 2 times or more, preferably 4 times or more of the hole diameter.
  • the upper limit of the hole pitch is not particularly limited, but is preferably 15 times or less the hole diameter.
  • the pore size is usually at least 1. Omm, preferably at least 2. Omm, usually at most 8. Omm, preferably at most 6. Omm.
  • the total gas flow rate per reaction liquid amount supplied to the reactor is usually in the range of 8-30 NlZhrZl.
  • the method for producing the oxygen-containing gas (oxygen-enriched gas) to be supplied to the reactor is not particularly limited.
  • two or more gases are mixed to produce the oxygen-enriched gas.
  • Production method two or more gases are separately supplied to the reactor and mixed inside, pressure fluctuation adsorption (PSA type), oxygen-enriched membrane type, etc.
  • PSA type pressure fluctuation adsorption
  • oxygen-enriched membrane type etc.
  • a method for enriching oxygen in a suitable manner may be used.
  • the method of mixing the two or more gases may be premixed outside the reactor or mixed before being discharged from the sparger in the reactor, but the former embodiment is preferred.
  • the oxygen-containing gas supplied to the reactor is preferably a mixed gas obtained by mixing two or more gases.
  • the gas to be mixed include a gas inert to a reaction such as nitrogen, neon, argon, krypton, xenon, and water vapor, a reactive gas such as air and oxygen, and a mixed gas thereof.
  • a combination of gases to be mixed a combination of air and an oxygen-containing gas having an oxygen concentration of more than 22 mol%, more preferably an oxygen-enriched air obtained by mixing air and oxygen is preferably used for the reaction.
  • the oxygen-containing gas supplied into the reactor is oxygen-enriched air obtained by mixing air and oxygen compressed by a compressor
  • the ambient temperature, humidity, etc. Due to fluctuations, the gas density changes, the absolute amount of oxygen in the oxygen-enriched gas fed to the reactor fluctuates, and as a result, the amount of generated CHP fluctuates, and stable production may not be maintained. is there.
  • the oxygen concentration in the oxygen-enriched gas can be stabilized, and fluctuations in the amount of CHP generated due to external factors such as outside temperature and humidity can be reduced. You can do it.
  • the method of controlling the supply amount of air, oxygen, or the like is not particularly limited, and a generally used gas flow rate control method can be used.
  • the supply is controlled using a compressor. If so, a method of changing the supply amount by changing the supply power, installing a valve in the middle of the gas supply line, and manually or automatically setting the valve And a method of opening and closing them.
  • the method for automatically opening and closing the valve is not particularly limited.
  • a device such as gas chromatography or an oxygen sensor may be used to measure the oxygen concentration in the oxygen-enriched gas before being fed to the reactor.
  • the first gist is characterized in that the oxygen concentration in the total gas supplied to the liquid phase of the reactor is 22 mol% or more and 50 mol% or less, and the cumenehydride peroxide per reaction liquid in the reactor is used.
  • the point is that the production volume should be 22 kgZm 3 Zhr or more.
  • the liquid-phase oxidation reaction and the method for adjusting the oxygen concentration in the total gas amount supplied to the liquid phase of the reactor to 22 mol% or more and 50 mol% or less are common to the eleventh aspect of the present invention.
  • the gas is supplied into the liquid phase using one or more spargers whose pitch is at least twice the pore diameter, preferably at least four times the pore diameter.
  • the supply amount of the oxygen-containing gas be controlled based on the oxygen concentration of the exhaust gas of the power reactor depending on the oxygen concentration of the oxygen-containing gas used.
  • the exhaust gas from the reactor means a gas that is discharged from the reaction system without being consumed in the reaction system among the gases supplied to the reactor.
  • it refers to gas in the gas phase of the reactor or gas discharged from the reactor.
  • the lower limit of the oxygen concentration in the exhaust gas of the reactor is usually 2 mol%, preferably 3 mol%, and the upper limit is usually 10 mol%, preferably 8 mol%. It is effective in terms of safety and economy. If the oxygen concentration in the exhaust gas of the reactor is less than 2 mol%, the reaction rate tends to decrease significantly, and if it exceeds 10 mol%, the risk of forming explosive gas tends to increase.
  • the method for controlling the oxygen concentration in the exhaust gas from the reactor is not particularly limited, and includes a method of adjusting the supply amount of the oxygen-containing gas supplied to the reactor, and a method of adjusting the temperature of the reactor to reduce the consumption of oxygen. There is a method of changing the elementary amount.
  • the method of adjusting the temperature of the reactor can control the responsiveness to the oxygen concentration in the exhaust gas of the reactor, and achieve a higher safety. ⁇ Preferred because you can establish the production method.
  • the applicant of the present invention analyzes the composition of the reactant in the reactor or at the outlet of the reactor using a mid-infrared spectrum, and controls the operating conditions based on the result (for example, JP-A-2003-340270). And the near-infrared spectroscopic spectrum of the cumene oxidizing process is continuously measured, and the obtained spectroscopic spectral properties are analyzed. Based on the analyzed physical properties, the oxidizing process is performed based on the analyzed physical properties.
  • a method for controlling the reaction conditions see, for example, Japanese Patent Application Laid-Open No. 2000-53641) has been previously proposed.
  • CHP production per reaction volume in the reactor 22 kg Zm 3 ZHR or more, preferably 23kgZm 3 Zhr more.
  • a reactor for a liquid phase reaction usually has a gas phase part and a liquid phase part.
  • the amount of CHP produced per unit volume of the reaction solution in the reactor means the amount of CHP produced per unit time per unit volume of liquid phase.
  • the second feature is that the oxygen concentration in the total amount of gas supplied to the liquid phase of the reactor is 22 mol% or more and 50 mol% or less, and the oxygen concentration in the exhaust gas of the reactor is 2 mol% or more and 10 mol% or less. %.
  • the liquid-phase oxidation reaction and the method of setting the oxygen concentration in the total gas amount supplied to the liquid phase of the reactor to 22 mol% or more and 50 mol% or less are common to the eleventh aspect of the present invention.
  • the gas is supplied into the liquid phase using one or more spargers whose pitch is at least twice the pore diameter, preferably at least four times the pore diameter.
  • the lower limit of the oxygen concentration in the exhaust gas from the reactor is 2 mol%, preferably 3 mol%, and the upper limit is 10 mol%, preferably 8 mol%. Maintaining the enclosure is effective in terms of safety and economy. If the oxygen concentration in the exhaust gas of the reactor is less than 2 mol%, the reaction rate tends to decrease significantly, and if it exceeds 10 mol%, the risk of forming explosive gas tends to increase.
  • control of operating conditions and acid It is preferable to control the reaction conditions in the conversion step from the viewpoint of improving the yield or improving the safety.
  • the feature of the third gist is that the oxygen concentration in the total amount of gas supplied to the liquid phase of the above-mentioned reactor is 22 mol% or more and 50 mol% or less, and a sparger having a pore pitch of at least twice the pore diameter is used. The point is to supply an oxygen-containing gas into the reactor.
  • the method of the liquid phase oxidation reaction is as described in the common description in the thirteenth aspect of the present invention.
  • one or more spargers having a pitch of at least two times, preferably at least four times the pore diameter are used, and oxygen in the total gas supplied to the liquid phase of the reactor is used. Make the concentration between 22 mol% and 50 mol%.
  • controlling the operating conditions and controlling the reaction conditions in the oxidation process can improve the yield or improve the safety. It is preferable from the viewpoint of improvement in the quality. In this case, it is particularly preferable to monitor the CHP concentration of the product and adjust the temperature or the residence time so that the CHP concentration becomes constant.
  • a method for producing phenol according to a fourth aspect of the present invention is a method for producing phenol by acid-decomposing CHP, wherein the CHP obtained by the production method according to any one of the above-mentioned aspects is used. It is characterized by doing.
  • CHP obtained by the production method described in the thirteenth aspect of the present invention is usually decomposed by an acid catalyst such as sulfuric acid (hereinafter sometimes referred to as "acid decomposition"), and reacted with acetone.
  • an acid catalyst such as sulfuric acid (hereinafter sometimes referred to as "acid decomposition")
  • acetone can be independently used as raw materials for producing bisphenol A.
  • the method for acid-decomposing CHP is not particularly limited, and a known method or a combination thereof can be employed.
  • the CHP mixture obtained by the CHP production method of the present invention is concentrated so that the CHP concentration becomes 70 to 90% by mass, and then sulfuric acid is present in an amount of 100 to 2,000% by mass relative to the acid decomposition raw material mixture.
  • the method of acid degradation of CHP After acid decomposition treatment, neutralize with an aqueous solution of a basic compound such as sodium hydroxide. Separation and purification by operations such as distillation give phenol and acetone, respectively.
  • Each reactor was equipped with a ring-shaped sparger having a hole diameter of 2 mm, a hole pitch of 10 mm, and 25 holes.
  • the first reactor at a feed rate of LOOmlZhr, cumene: 99.0 wt 0/0, CHP: 1. was continuously fed raw materials also made the composition 0 wt 0/0 power. And air 4.96NlZhr and oxygen 0.64N1
  • An oxygen-containing gas having an oxygen concentration of 30 mol% prepared by mixing Zhr with a mixer was used, and was continuously supplied into each reactor from a sparger.
  • reaction pressure in each reactor was controlled at 0.4 MPa (gauge pressure), and the residence time was controlled at 4 hours (total residence time 12 hours).
  • the reaction temperature was 105.5 ° C for the first reactor, 103.0 ° C for the second reactor, and 103.0 ° C for the third reactor. ° C
  • the product composition at the outlet of the reactor is as shown in Table 1, and it is possible to produce CHP with the oxidation efficiency and the amount of CHP produced per amount of the reaction solution in the reactor shown in Table 1. done.
  • the oxidation efficiency is calculated by the following equation. Table 1 shows the flow rate of the exhaust gas, the amount of leakage of the dam into the exhaust gas, and the amount of the oxygen leak into the exhaust gas. Under the above conditions, stable operation was possible for two consecutive weeks.
  • Oxidation efficiency (%) —— X 100
  • Comparative Example 1 In Example 1, air (oxygen concentration: 2 lmol%) was used as the oxygen-containing gas, and the total amount of oxygen was supplied at a flow rate of ONlZhr so that the supply amount was the same as in Example 1. The reaction temperature was adjusted to 104.5 ° C for the first reactor, 102.0 ° C for the second reactor, and 101.5 ° C for the third reactor so that the oxygen concentration in the exhaust gas was 5 mol%. CHP was produced in the same manner as in Example 1 except that the amount of product withdrawn was 88 gZhr.
  • Table 1 shows the product composition, oxidation efficiency, CHP production amount per reaction liquid amount in the reactor, exhaust gas flow rate, cumene leak amount to the exhaust gas, and oxygen leak amount to the exhaust gas in this case. .
  • stable operation could be performed for two consecutive weeks.However, compared to Example 1, the production efficiency of CHP was inferior due to the decrease in the liquid residence time and the increase in the amount of oxygen leaked into the exhaust gas. there were.
  • Example 1 an oxygen-containing gas having an oxygen concentration of 60 mol% was obtained by mixing 1.42 NlZhr of air and 1.38 NlZhr of oxygen in a mixer so that the total oxygen supply amount as the oxygen-containing gas was the same as in Example 1.
  • the reaction temperature was set to 106.0 ° C for the first reactor, 103.5 ° C for the second reactor, 103.5 ° C for the third reactor, and 103.0 ° for the third reactor so that the oxygen concentration in the exhaust gas from each reactor was 5 mol%.
  • C was manufactured in the same manner as in Example 1 except that the amount was adjusted to C and the amount of extracted product was set to 92 gZhr.o
  • Table 1 shows the product composition, oxidation efficiency, CHP production amount per reaction liquid amount in the reactor, exhaust gas flow rate, amount of cumene leaked to the exhaust gas, and amount of oxygen leaked to the exhaust gas.
  • the production efficiency of CHP was improved with an increase in the liquid residence time and a decrease in the amount of oxygen leaked into the exhaust gas.
  • the operation was stopped because the exhaust gas oxygen concentration exceeded 10% due to the decrease in the temperature of the first reactor by about 1 ° C.

Abstract

 反応器内でクメンを酸素含有ガス存在下に液相酸化して連続的にクメンハイドロパーオキサイド(CHP)を製造する方法において、上記反応器の液相中に供給される全ガス量中の酸素濃度を22mol%以上50mol%以下とし、且つ、(1)上記反応器中の反応液量当たりのCHP生産量を22kg/m3/hr以上、(2)上記反応器の排ガス中の酸素濃度を2mol%以上10mol%以下、または、(3)孔ピッチが孔径の2倍以上のスパージャーを使用して反応器内への酸素含有ガスの供給を行うCHPの製造方法。斯かる方法により、反応器中の反応液量当たりのCHP生産量を高め、必要生産量を得るための反応器の小型化、ないしは既存の反応器における生産量の増大を図ることが出来る。

Description

明 細 書
クメンハイド口パーオキサイドの製造方法
技術分野
[0001] 本発明は、タメンノ、イド口パーオキサイドの製造方法に関するものであり、詳しくは、 クメンの液相酸ィ匕によりクメンハイド口パーオキサイドを製造する際に、酸素濃度の高 い酸素含有ガスを反応器に供給して反応液量当たりのクメンハイド口パーオキサイド 生産量を大幅に高めたクメンハイド口パーオキサイドの製造方法に関する。
背景技術
[0002] タメンノヽイド口パーオキサイド (以下「CHP」と略記することがある)は、クメン法による フエノールの製造方法における前駆体であり、クメンの液相酸ィ匕により製造されてい る。
[0003] クメンの液相酸ィ匕による CHPの製造方法には、触媒の不存在下で行う方法 (例え ば特許文献 1参照)と触媒の存在下で行う方法 (例えば特許文献 2参照)とがあり、何 れの場合にも、反応器に供給する酸化剤として酸素含有ガスを使用する。酸素含有 ガスとしては、反応器に供給する酸素含有ガスの酸素濃度が高!ヽと爆発などの危険 性があるという安全性の面およびコスト的な面から、通常、工業的には空気 (酸素濃 度 21mol%程度)が使用されている。また、酸素を使用する場合であっても、これを 希釈して酸素濃度の低い酸素含有ガス (空気と同程度またはそれ以下の酸素濃度) として反応器に供給して 、るのが現状である。
特許文献 1:特許第 3107409号公報
特許文献 2:特許第 3061394号公報
発明の開示
発明が解決しょうとする課題
[0004] 上記の CHPの製造方法において、その反応条件 (温度、滞留時間、圧力)の設定
(例えば特許文献 1参照)や、 pH条件の設定 (例えば特許文献 2参照)等により、 CH Pの収率を高める技術についての検討がなされている力 より一層の改良が望まれて いる。特に、反応器中の反応液量当たりの CHP生産量を高めて反応器の小型化を 図ることは工業生産において強く望まれるところである。
[0005] 反応器中の反応液量当たりの CHP生産量を高める方法としては、反応器に供給 する酸化剤として、空気より酸素濃度の高い酸素含有ガスを使用する方法も考えら れるが、上述の様に爆発の危険性およびコストの面から、現実的ではないと考えられ ていた。
[0006] 本発明は、上記の実情に鑑みなされたものであり、その目的は、クメンの液相酸ィ匕 により CHPを製造する方法において、反応器中の反応液量当たりの CHP生産量を 高め、必要生産量を得るための反応器の小型化、ないしは既存の反応器における生 産量の増大を図る方法を提供することにある。
課題を解決するための手段
[0007] 上記課題を解決するために、本発明者らは鋭意検討した結果、酸素含有ガスの供 給手段に工夫を加えることにより、空気よりも酸素濃度が高い酸素含有ガスを供給し ても爆発の危険性を十分に回避できること、反応器に空気よりも酸素濃度の高 、酸 素含有ガスを供給することにより反応器中の反応液量当たりの CHP生産量が大幅に 向上すること、空気よりも酸素濃度の高い酸素含有ガスを使用することによるコストア ップは、反応器中の反応液量当たりの CHP生産量の大幅な向上で十分に相殺され 、むしろ収率面における効果が勝ることを見出し、本発明を完成させるに至った。
[0008] 本発明の第 1の要旨は、反応器内でクメンを酸素含有ガス存在下に液相酸化して 連続的にクメンハイド口パーオキサイドを製造する方法にぉ ヽて、上記反応器の液相 中に供給される全ガス量中の酸素濃度を 22mol%以上 50mol%以下とし、且つ上 記反応器中の反応液量当たりのタメンノ、イド口パーオキサイド生産量を 22kgZm3Z hr以上とすることを特徴とするタメンノヽイド口パーオキサイドの製造方法に存する。
[0009] 本発明の第 2の要旨は、反応器内でクメンを酸素含有ガス存在下に液相酸化して 連続的にクメンハイド口パーオキサイドを製造する方法にぉ ヽて、上記反応器の液相 中に供給される全ガス量中の酸素濃度を 22mol%以上 50mol%以下とし、且つ上 記反応器の排ガス中の酸素濃度を 2mol%以上 10mol%以下とすることを特徴とす るタメンノヽイド口パーオキサイドの製造方法に存する。
[0010] 本発明の第 3の要旨は、反応器内でクメンを酸素含有ガス存在下に液相酸化して 連続的にクメンハイド口パーオキサイドを製造する方法にぉ ヽて、上記反応器の液相 中に供給される全ガス量中の酸素濃度を 22mol%以上 50mol%以下とし、且つ孔 ピッチが孔径の 2倍以上のスパージヤーを使用して反応器内への酸素含有ガスの供 給を行うことを特徴とするクメンハイド口パーオキサイドの製造方法に存する。
[0011] 本発明の第 4の要旨は、タメンノ、イド口パーオキサイドを酸分解してフエノールを製 造する方法において、上記第 1一 3の要旨の何れかに記載の製造方法によって得ら れたタメンノヽイド口パーオキサイドを使用することを特徴とするフエノールの製造方法 に存する。
発明の効果
[0012] 本発明の CHPの製造方法によれば、クメンの液相酸ィ匕により CHPを製造する方法 において、反応器中の反応液量当たりの CHP生産量を高め、必要生産量を得るた めの反応器の小型化、ないしは既存の反応器における生産量の増大を図ることが出 来る。
発明を実施するための最良の形態
[0013] 以下、本発明を詳細に説明するが、以下に記載する構成要件の説明は、本発明の 実施態様の代表例であり、これらの内容に本発明は限定されるものではない。本発 明の第 1一 3の要旨に係わる CHPの製造方法は、反応器内でクメンを酸素含有ガス 存在下に液相酸ィ匕して連続的にタメンノ、イド口パーオキサイドを製造する方法である 。そして、上記反応器の液相中に供給される全ガス量中の酸素濃度を 22mol%以上 50mol%以下とする。すなわち、本発明において、反応器の液相中に供給される全 ガス量の酸素濃度は空気の酸素濃度よりも高い。以下に、本発明の第 1一 3の要旨 において共通の説明を行う。
[0014] クメンの液相酸ィ匕の反応開始剤は、特に制限されないが、通常 CHPが使用される
[0015] 液相酸化反応は、直列に配置された複数基の反応器を使用して多段階に行うのが 好ましい。本発明において、反応器の数は、特に制限されないが、好ましくは 2— 5基 である。クメンは好ましくは第 1反応器に連続的に供給され、第 1反応器の反応液は 第 2反応器に連続的に供給される。以下同様に、第 n反応器の反応液は第 (n+ 1) 反応器に連続的に供給される。酸素含有ガスは、好ましくは各反応器に連続的に供 給される。反応器は、気泡塔タイプが一般的であるが、撹拌槽ゃ撹拌気泡塔タイプで あってもよい。
[0016] 上記の液相酸ィ匕工程において、各反応器の温度は、通常 50— 120°Cであり、各反 応器毎に最適温度を採用することも出来る。各反応器の圧力は、通常 0— lMPaG ( ゲージ圧)、反応器の全滞留時間は、通常 3— 20時間である。上記の酸化反応によ り、 CHPの他、ジメチルフエ-ルカルビノール(DMPC)、ァセトフエノン (AP)等が副 生する。最終反応器力も抜出される反応液中の CHP及び未反応クメンの濃度は、通 常、それぞれ 20— 50重量%及び 50— 80重量%である。
[0017] 上記の液相酸化反応は、触媒の不存在下で行っても触媒の存在下で行ってもよい 。触媒を使用して酸化反応を行う場合、その種類は特に制限されず、通常アルカリ性 物質が使用され。具体的には、リチウム、ナトリウム、カリウム等のアルカリ金属、カル シゥム、マグネシウム等のアルカリ土類金属などの炭酸塩、水酸ィ匕物などの化合物が 挙げられる。これらの化合物は単独で使用しても、 2種以上併合して使用してもよい。 アルカリ性物質の使用形態は、特に制限されず、通常、水溶液の形態である。これら 触媒 (金属換算)の添加量は、クメン 1トン当たり、通常 10g当量以下、好ましくは 0. 1 一 6g当量がよい。
[0018] 本発明の製造方法において、反応器 (第 1反応器など)に原料のクメンと共に、全ガ ス量中の酸素濃度が 22mol%以上 50mol%以下となる様に酸素含有ガスを供給す る。酸素含有ガスの供給は、スパージヤーを使用して行うのが好ましい。スパージャ 一とは、複数の孔を有する配管であり、酸素含有ガスを反応器中に均一に分散させ 供給するために設置する装置である。スパージヤーの形状は、特に制限されず、通 常、配管の配置をリング状、格子状、放射状またはそれらを組合せた形状が使用さ れる。
[0019] 本発明において、反応器内に供給される全ガス量中の酸素濃度が 22mol%以上 5 Omol%以下となって 、るのであれば、酸素含有ガスの供給方法につ!、て制限が無 い。スパージヤーは、 2種以上を組合せて使用してもよい。すなわち、 1種のスパージ ヤーを使用して酸素濃度が 22mol%以上 50mol%以下の酸素含有ガスを供給する 方法以外に、 2種以上のスパージヤーで異なる酸素濃度の酸素含有ガス又は酸素 非含有ガスを供給し、供給された全ガス量中の酸素濃度が 22mol%以上 50mol% 以下となる様に供給する方法も採用できる。また、 1種のスパージヤーを使用する場 合でも、スパージヤーに供給するガス管を複数使用し、反応器内で酸素濃度が 22m ol%以上 50mol%以下となる様にー且ガスを混合した後、スパージヤーの孔より噴 出させてもよい。
[0020] 反応器内に供給される全ガス量中の酸素濃度が 22mol%未満では、本発明による CHP生産量の向上効果を得ることが出来ない。一方、反応器内に供給される全ガス 量中の酸素濃度が 50mol%を超えると、排ガスの流量低下が著しくなる傾向にある。 例えば、反応温度のわずかな低下などの反応条件変動時、排ガスの酸素濃度の上 昇による爆鳴気形成のリスクが高くなり、また、取扱い上の危険を伴うため好ましくな い。安全性および CHP生産量の観点から、反応器内に供給される全ガス量中の酸 素濃度の下限値は、好ましくは 24mol%、更に好ましくは 26mol%であり、その上限 値は、好ましくは 45mol%、更に好ましくは 40mol%である。
[0021] 高い酸素濃度で炭化水素を酸ィ匕すると、反応系内が爆発ガス組成となり爆発の危 険を伴うおそれがある。この爆発ガス組成は、特に、反応系内に大きな酸素の気泡が 存在する場合に形成され易い。従って、酸素含有ガスの供給流量にもよる力 通常、 スパージヤーの孔径を比較的小さぐまた孔ピッチ (スパージヤーの孔の中心間距離 )を比較的大きくし (孔間隔をあけて)、系内に大きな酸素ガス気泡を形成させな 、様 にすることが好ましい。なお、反応器内に供給された酸素は、反応場に入った瞬間か ら消費されることから、ある程度の時間を反応場で過ごしたガスには、酸素は少なくな り、安全性は高くなる。
[0022] 上記のスパージヤーは、孔ピッチが孔径の 2倍以上、好ましくは 4倍以上のスパージ ヤーを使用することが好ましい。この様なスパージヤーを使用することにより、酸素濃 度の高い酸素含有ガスを反応器に供給する場合において、反応系が爆発範囲のガ ス組成となることを防止して、安全性を高めることが出来る。孔ピッチの上限は、特に 制限されないが、孔径の 15倍以下が好ましい。孔径は、通常 1. Omm以上、好ましく は 2. Omm以上、通常 8. Omm以下、好ましくは 6. Omm以下である。 [0023] 反応器に供給される反応液量当たりの全ガス流量は、通常 8— 30NlZhrZlの範 囲にある。
[0024] 本発明にお ヽて反応器に供給する酸素含有ガス (酸素富化ガス)を製造する方法 としては、特に制限されず、例えば、 2以上のガスを混合して酸素富化ガスを製造す る方法、 2以上のガスを別々に反応器に供給して内部で混合する方法、圧力変動吸 着 (PSA式)、酸素富化膜式などにより酸素含有ガスをィ匕学的 ·物理的に酸素富化 する方法などが挙げられる。なお、上述の様に、 2以上のガスの混合方法は、反応器 外で予め混合しても、反応器内でスパージヤーカゝら放出する前に混合してもよいが、 前者の態様が好ましい。
[0025] 反応器に供給する酸素含有ガスは、 2以上のガスを混合して成る混合ガスであるこ とが好ましい。混合するガスとしては、例えば、窒素、ネオン、アルゴン、クリプトン、キ セノン、水蒸気などの反応に不活性なガス、空気、酸素と等の反応性のガス、これら の混合されたガス等が挙げられる。混合するガスの組合せとしては、好ましくは空気と 酸素濃度 22mol%を超える酸素含有ガスとの組合せ、更に好ましくは空気と酸素と を混合して成る酸素富化空気が好適に反応に使用される。
[0026] 反応器内へ供給する酸素含有ガスがコンプレッサーで圧縮した空気と酸素とを混 合して成る酸素富化空気である場合、長期間の連続運転の間に、外気温'湿度など の変動によりガス密度などが変化し、反応器にフィードされる酸素富化ガス中の酸素 の絶対量が変動し、その結果生成する CHPの量が変動し、安定した生産が維持で きなくなる虞がある。そのため、酸素富化ガスの酸素濃度を分析し、その分析値の変 動を小さくする様に、酸素富化ガスの製造に使用される空気、酸素などの供給量を 制御することが好ましい。空気、酸素などの供給量を制御することにより、酸素富化ガ ス中の酸素濃度を安定ィ匕することが出来、外気温や湿度などの外的要因による CH Pの生成量の変動を小さくすることが出来る。
[0027] 空気、酸素などの供給量の制御方法としては、特に限定されず、一般的に使用さ れているガスの流量制御方法を使用することが出来、例えば、コンプレッサーを使用 して供給を行っている場合は、その供給電力を変化させることにより供給量を変化さ せる方法、ガス供給ラインの途中にバルブを設置し、そのバルブを手動もしくは自動 的に開閉させる方法などが挙げられる。
[0028] バルブを自動的に開閉させる方法としては、特に限定されず、例えば、反応器にフ イードされる前の酸素富化ガス中の酸素濃度をガスクロマトグラフィー、酸素センサー 等の装置を使用して測定し、得られた濃度値をコンピュータ一等により解析 ·制御を 行い、混合前の空気、酸素のフィードラインに設置されているバルブを即時的 ·自動 的に遠隔操作で開閉する方法が挙げられる。
[0029] 次に、本発明の第 1の要旨の特徴について説明する。第 1の要旨の特徴は、上記 反応器の液相中に供給される全ガス量中の酸素濃度を 22mol%以上 50mol%以下 とし、且つ上記反応器中の反応液量当たりのクメンハイド口パーオキサイド生産量を 2 2kgZm3Zhr以上とする点にある。
[0030] 液相酸化反応および反応器の液相中に供給される全ガス量中の酸素濃度を 22m ol%以上 50mol%以下にする方法は、本発明の第 1一 3の要旨における共通の説 明で述べた通りである。ピッチが孔径の 2倍以上、好ましくは 4倍以上の 1つ又は複数 のスパージヤーを使用して液相中にガスを供給することが好まし 、。
[0031] 本発明の第 1の要旨において、酸素含有ガスの供給量は、使用する酸素含有ガス の酸素濃度などにもよる力 反応器の排ガスの酸素濃度に基づいて制御することが 好ましい。なお、反応器の排ガスとは、反応器に供給されたガスのうち、反応系で消 費されることなく反応系から排出されたガスを意味する。例えば、反応器気相部のガ ス又は反応器力 排出されるガスを指す。
[0032] 反応器の排ガス中の酸素濃度の下限は、通常 2mol%、好ましくは 3mol%であり、 上限は、通常 10mol%、好ましくは 8mol%であり、この濃度範囲に維持することによ り、安全性および経済性の面で効果がある。反応器の排ガス中の酸素濃度が 2mol %未満では反応速度が著しく低下する傾向があり、 10mol%を超えると爆鳴気を形 成するリスクが高くなる傾向がある。
[0033] 反応器の排ガス中の酸素濃度の制御方法としては、特に限定されず、反応器へ供 給される酸素含有ガスの供給量を調節する方法、反応器の温度を調節して消費酸 素量を変化させる方法などが挙げられる。特に、反応器の温度を調節する方法は、 反応器の排ガス中の酸素濃度に対する即応性の制御が可能であり、より安全性の高 ヽ生産方法を確立できるため好ま 、。
[0034] なお、本出願人は、反応器内または反応器出口の反応物を中赤外線スペクトルで 組成分析し、この結果に基 、て運転条件の制御を行う方法 (例えば特開 2003— 340 270号公報参照)や、クメンの酸ィ匕工程の近赤外分光スペクトルを連続的に測定し、 得られた分光スペクトルカゝら物性を解析し、解析された物性に基 ヽて酸ィ匕工程の反 応条件を制御する方法 (例えば特開 2000— 53641号公報参照)を先に提案して 、 る。本発明においても、これらの方法を採用して反応条件や運転条件の制御を行うこ とが収率の向上または安全性の向上の面で好ましい。この場合、特に生成物の CHP 濃度をモニターし、 CHP濃度が一定となる様に温度または滞留時間を調節すること が好ましい。
[0035] 本発明の第 1の要旨において、反応器中の反応液量当たりの CHP生産量は 22kg Zm3Zhr以上、好ましくは 23kgZm3Zhr以上である。液相反応の反応器は通常 気相部と液相部とを有する。反応器中の反応液量当たりの CHP生産量とは、液相部 の単位体積当たり、単位時間当たりの CHP生産量を意味する。
[0036] 次に、本発明の第 2の要旨の特徴について説明する。第 2の要旨の特徴は、上記 反応器の液相中に供給される全ガス量中の酸素濃度を 22mol%以上 50mol%以下 とし、且つ上記反応器の排ガス中の酸素濃度を 2mol%以上 10mol%以下にする点 にある。
[0037] 液相酸化反応および反応器の液相中に供給される全ガス量中の酸素濃度を 22m ol%以上 50mol%以下にする方法は、本発明の第 1一 3の要旨における共通の説 明で述べた通りである。ピッチが孔径の 2倍以上、好ましくは 4倍以上の 1つ又は複数 のスパージヤーを使用して液相中にガスを供給することが好まし 、。
[0038] 本発明の第 2の要旨において、反応器の排ガス中の酸素濃度の下限は、 2mol%、 好ましくは 3mol%であり、上限は、 10mol%、好ましくは 8mol%であり、この濃度範 囲に維持することにより、安全性および経済性の面で効果がある。反応器の排ガス中 の酸素濃度が 2mol%未満では反応速度が著しく低下する傾向があり、 10mol%を 超えると爆鳴気を形成するリスクが高くなる傾向がある。
[0039] 本発明の第 2の要旨において、第 1の要旨で説明した様に、運転条件の制御や酸 化工程の反応条件を制御を行うことが収率の向上または安全性の向上の面で好まし い。この場合、特に生成物の CHP濃度をモニターし、 CHP濃度が一定となる様に温 度または滞留時間を調節することが好ま 、。
[0040] 次に、本発明の第 3の要旨の特徴について説明する。第 3の要旨の特徴は、上記 反応器の液相中に供給される全ガス量中の酸素濃度を 22mol%以上 50mol%以下 とし、且つ孔ピッチが孔径の 2倍以上のスパージヤーを使用して反応器内への酸素 含有ガスの供給を行う点にある。
[0041] 液相酸化反応の方法は、本発明の第 1一 3の要旨における共通の説明で述べた通 りである。第 3の要旨の発明においては、ピッチが孔径の 2倍以上、好ましくは 4倍以 上の 1つ又は複数のスパージヤーを使用し、反応器の液相中に供給される全ガス量 中の酸素濃度を 22mol%以上 50mol%以下にする。
[0042] 本発明の第 3の要旨においては、第 1の要旨の発明で説明した様に、運転条件の 制御や酸ィ匕工程の反応条件を制御を行うことが収率の向上または安全性の向上の 面で好ましい。この場合、特に生成物の CHP濃度をモニターし、 CHP濃度が一定と なる様に温度または滞留時間を調節することが好ましい。
[0043] 次に、本発明の第 4の要旨であるフエノールの製造方法について説明する。本発明 の第 4の要旨のフエノールの製造方法は、 CHPを酸分解してフエノールを製造する 方法において、上記第 1一 3の要旨の何れかに記載の製造方法によって得られた C HPを使用することを特徴とする。
[0044] 本発明の第 1一 3の要旨に記載の製造方法で得られた CHPは、通常、硫酸などの 酸触媒により分解 (以下、「酸分解」と称することがある)され、アセトンとフエノールとを 与える。アセトンとフエノールとは各々独立に、ビスフエノール Aの製造原料とすること が出来る。
[0045] CHPを酸分解する方法は、特に限定されず、公知の方法またはその組合せを採 用することが出来る。例えば、本発明の CHPの製造方法により得られた CHP混合物 に対し、 CHP濃度が 70— 90質量%となるように濃縮した後、酸分解原料混合物に 対して硫酸を 100— 2000質量 ppm存在させ、 CHPを酸分解する方法が挙げられる 。酸分解処理の後、水酸化ナトリウム等の塩基性化合物の水溶液で中和し、油水分 離し、蒸留などの操作により精製してフエノールとアセトンとをそれぞれ得る。
実施例
[0046] 以下、本発明を実施例により更に詳細に説明するが、本発明は、その要旨を超え ない限り、以下の実施例に限定されるものではない。
[0047] 実施例 1 :
直径 100mm、高さ 200mm、容量 1Lのオートクレーブ型反応器 3基を直列に配置 し、 CHPの製造を行った。各反応器内には、孔径 2mm、孔ピッチ 10mm、孔数 25 個のリング状スパージヤーを装備した。
[0048] 第 1反応器に、 lOOmlZhrの供給量で、クメン: 99. 0重量0 /0、 CHP : 1. 0重量0 /0 力も成る組成の原料を連続的に供給した。そして、空気 4. 96NlZhrと酸素 0. 64N1
Zhrとを混合器で混合して調製した酸素濃度 30mol%の酸素含有ガスを使用し、ス パージヤーより各反応器内に連続的に供給した。
[0049] 各反応器の反応圧力を 0. 4MPa (ゲージ圧)、滞留時間を 4hr (全滞留時間 12hr) に制御した。各反応器の排ガスの酸素濃度が 5mol%となる様に制御した結果、反応 温度は、第 1反応器 105. 5°C、第 2反応器 103. 0°C、第 3反応器 102. 0°Cであった
[0050] 反応器出口の生成物組成を中赤外線スペクトルで連続的にモニターしながら、各 反応器の反応液量が 400ml (全反応液量 1200ml)となる様に生成物を 90gZhrで 連続的に抜出した。
[0051] その結果、反応器出口の生成物組成は表 1に示す通りであり、表 1に示す酸化効 率および反応器中の反応液量当たりの CHP生産量で CHPの製造を行うことが出来 た。なお、酸化効率は下記式で算出される。また、排ガス流量、排ガスへのタメンのリ ーク量および排ガスへの酸素のリーク量は表 1に示す。上記条件で 2週間連続して 安定運転を行うことが出来た。
[0052] [数 1]
CHP生成量 (モル)
酸化効率 (%) = —— X 1 0 0
CHP生成量 (モル) +DMPC生成量 (モル) +AP生成量 (モル)
[0053] 比較例 1 : 実施例 1において、酸素含有ガスとして空気 (酸素濃度 2 lmol%)を使用し、総酸 素供給量が実施例 1と同量となる様に 8. ONlZhrの流量で供給し、各反応器の排ガ スの酸素濃度が 5mol%となる様に、反応温度を第 1反応器 104. 5°C、第 2反応器 1 02. 0°C、第 3反応器 101. 5°Cに調節し、生成物抜出量を 88gZhrとしたこと以外は 、実施例 1と同様にして CHPの製造を行った。
[0054] この場合の生成物組成、酸化効率、反応器中の反応液量当たりの CHP生産量、 排ガス流量、排ガスへのクメンのリーク量および排ガスへの酸素のリーク量を表 1に示 す。上記条件で 2週間連続して安定運転を行うことが出来たが、実施例 1に比べて液 滞留時間の減少および排ガスへの酸素のリーク量の増加に伴い、 CHPの製造効率 は劣るものであった。
[0055] 比較例 2 :
実施例 1において、酸素含有ガスとして総酸素供給量が実施例 1と同量となる様に 、空気 1. 42NlZhrと酸素 1. 38NlZhrとを混合器で混合した酸素濃度 60mol%の 酸素含有ガスを供給し、各反応器の排ガスの酸素濃度が 5mol%となる様に、反応 温度を第 1反応器 106. 0°C、第 2反応器 103. 5°C、第 3反応器 103. 0°Cに調節し、 生成物抜出量を 92gZhrとしたこと以外は、実施例 1と同様にして CHPの製造を行 つた o
[0056] 生成物組成、酸化効率、反応器中の反応液量当たりの CHP生産量、排ガス流量、 排ガスへのクメンのリーク量および排ガスへの酸素のリーク量を表 1に示す。実施例 1 に比べて液滞留時間の増加および排ガスへの酸素リーク量の減少に伴い CHPの製 造効率は向上した。し力しながら、運転開始から 2日目に、第 1反応器の温度が約 1 °C低下したことに伴い、排ガス酸素濃度が 10%を超えたので運転を停止した。
[0057] [表 1] 例 実施例 1 比較例 1 比較例 2 生 C H P 32.6 30.4 34.8 成
組 D M P C 1.86 1.63 2.14 成
A P 0.19 0.16 0.22 クメン 65.35 67.81 62.84 酸化効率 (%) 93.2 93.6 92.7 全反応液量当りの C H P生産量
23.6 21.6 26.0 (kg/m 3 /hr)
排ガス流量 (Nl/hr) 12.9 20.8 3.68 排ガスへのクメンのリーク量 (Nl/hr) 0.52 0.82 0.15 排ガスへの酸素のリーク量 (Nl/hr) 0.65 1.04 0.18
[0058] 以上の結果から、本発明の製造方法によれば、反応器中の反応液量当たりの CH P生産量を高めた上で、安定な CHPの製造を行うことが出来る。特に、酸素濃度 22 mol%以上 50mol%以下という、反応器に供給する全ガス量中の酸素濃度を空気よ りも高くすることにより、液滞留時間の増加ゃ排ガスへの酸素リーク量が減少し、酸ィ匕 剤として空気を使用する場合に比べて 9%以上も CHP生産量を高めることが出来る
[0059] 以上、現時点において、最も実践的であり、且つ、好ましいと思われる実施形態に 関連して本発明を説明したが、本発明は、本願明細書中に開示された実施形態に 限定されるものではなぐ請求の範囲および明細書全体力 読みとれる発明の要旨 或いは思想に反しない範囲で適宜変更可能であり、その様な変更を伴う場合も本発 明の技術的範囲であると理解されなければならない。なお、本出願は、 2004年 3月 4 日付で出願された日本特許出願 (特願 2004— 60904号)に基づ 、ており、その全体 が引用により援用される。

Claims

請求の範囲
[1] 反応器内でクメンを酸素含有ガス存在下に液相酸化して連続的にクメンハイドロバ 一オキサイドを製造する方法にぉ ヽて、上記反応器の液相中に供給される全ガス量 中の酸素濃度を 22mol%以上 50mol%以下とし、且つ上記反応器中の反応液量当 たりのタメンノ、イド口パーオキサイド生産量を 22kgZm3Zhr以上とすることを特徴と するタメンノヽイド口パーオキサイドの製造方法。
[2] 反応器の液相中に供給されるガスが 2以上のガスを混合して成る混合ガスである請 求項 1に記載のタメンノヽイド口パーオキサイドの製造方法。
[3] 反応器の液相中に供給されるガスが空気と酸素とを混合して成る酸素富化空気で ある請求項 1又は 2に記載のクメンハイド口パーオキサイドの製造方法。
[4] 反応器の排ガスの酸素濃度が 2mol%以上 10mol%以下である請求項 1一 3の何 れかに記載のタメンノヽイド口パーオキサイドの製造方法。
[5] 孔ピッチが孔径の 2倍以上のスパージヤーを使用して反応器内への酸素含有ガス の供給を行う請求項 1一 4の何れかに記載のクメンハイド口パーオキサイドの製造方 法。
[6] 反応器内でクメンを酸素含有ガス存在下に液相酸化して連続的にクメンハイドロバ 一オキサイドを製造する方法にぉ ヽて、上記反応器の液相中に供給される全ガス量 中の酸素濃度を 22mol%以上 50mol%以下とし、且つ上記反応器の排ガス中の酸 素濃度を 2mol%以上 10mol%以下とすることを特徴とするタメンノヽイド口パーォキサ イドの製造方法。
[7] 反応器の液相中に供給されるガスが 2以上のガスを混合して成る混合ガスである請 求項 6に記載のタメンノヽイド口パーオキサイドの製造方法。
[8] 反応器の液相中に供給されるガスが空気と酸素とを混合して成る酸素富化空気で ある請求項 6又は 7に記載のクメンハイド口パーオキサイドの製造方法。
[9] 孔ピッチが孔径の 2倍以上のスパージヤーを使用して反応器内への酸素含有ガス の供給を行う請求項 6— 8の何れかに記載のタメンノヽイド口パーオキサイドの製造方 法。
[10] 反応器内でクメンを酸素含有ガス存在下に液相酸ィ匕して連続的にクメンハイドロバ 一オキサイドを製造する方法にぉ ヽて、上記反応器の液相中に供給される全ガス量 中の酸素濃度を 22mol%以上 50mol%以下とし、且つ孔ピッチが孔径の 2倍以上の スパージヤーを使用して反応器内への酸素含有ガスの供給を行うことを特徴とするク メンハイド口パーオキサイドの製造方法。
[11] 反応器の液相中に供給されるガスが 2以上のガスを混合して成る混合ガスである請 求項 10に記載のタメンノヽイド口パーオキサイドの製造方法。
[12] 反応器の液相中に供給されるガスが空気と酸素とを混合して成る酸素富化空気で ある請求項 10又は 11に記載のタメンノヽイド口パーオキサイドの製造方法。
[13] クメンハイド口パーオキサイドを酸分解してフエノールを製造する方法において、請 求項 1、 6、 10の何れかに記載の製造方法によって得られたタメンノ、イド口パーォキ サイドを使用することを特徴とするフエノールの製造方法。
PCT/JP2005/003599 2004-03-04 2005-03-03 クメンハイドロパーオキサイドの製造方法 WO2005085191A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020067017680A KR101168875B1 (ko) 2004-03-04 2005-03-03 쿠멘 하이드로퍼옥사이드의 제조 방법
US10/591,439 US7439404B2 (en) 2004-03-04 2005-03-03 Process for production of cumene hydroperoxide
EP05719903A EP1721895A4 (en) 2004-03-04 2005-03-03 PROCESS FOR THE PRODUCTION OF CUMENHYDROPEROXIDE
CN2005800063989A CN1926101B (zh) 2004-03-04 2005-03-03 氢过氧化异丙苯的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-060904 2004-03-04
JP2004060904 2004-03-04

Publications (1)

Publication Number Publication Date
WO2005085191A1 true WO2005085191A1 (ja) 2005-09-15

Family

ID=34918034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/003599 WO2005085191A1 (ja) 2004-03-04 2005-03-03 クメンハイドロパーオキサイドの製造方法

Country Status (6)

Country Link
US (1) US7439404B2 (ja)
EP (1) EP1721895A4 (ja)
KR (1) KR101168875B1 (ja)
CN (1) CN1926101B (ja)
TW (1) TW200602300A (ja)
WO (1) WO2005085191A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009002735A1 (en) * 2007-06-27 2008-12-31 H R D Corporation High shear process for the production of cumene hydroperoxide
US9586898B2 (en) 2010-09-14 2017-03-07 Exxonmobil Chemical Patents Inc. Oxidation of cyclohexylbenzene

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1932583A1 (en) * 2006-11-28 2008-06-18 Shell Internationale Researchmaatschappij B.V. Reactor vessel
US8575398B2 (en) 2009-10-30 2013-11-05 Illa International, Llc Non-barbotage method for oxidation of hydrocarbons by forming and utilizing liquid phase thin film
IT1396221B1 (it) * 2009-11-09 2012-11-16 Polimeri Europa Spa Procedimento per la preparazione di fenolo da cumene.
RU2566504C1 (ru) * 2014-08-08 2015-10-27 Общество с ограниченной ответственностью "Научно-производственное объединение ЕВРОХИМ" Способ окисления алкилароматических углеводородов и реактор для его осуществления
CN104447629B (zh) * 2014-12-01 2017-01-04 中石化上海工程有限公司 环氧丙烷装置氧化单元副产蒸汽的方法
CN104876845B (zh) * 2015-05-28 2017-01-04 南京红宝丽股份有限公司 一种过氧化羟基异丙苯的制备方法
CN106554298B (zh) * 2015-09-28 2019-04-23 万华化学集团股份有限公司 一种乙苯氧化制备乙苯氢过氧化物的方法
CN112830865A (zh) * 2019-11-25 2021-05-25 南京延长反应技术研究院有限公司 一种基于微界面强化异丙苯制备苯酚的系统及工艺

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08511030A (ja) * 1993-08-06 1996-11-19 ローヌ−プーラン シミ クメンヒドロペルオキシドの製造方法
EP0816335A1 (en) 1996-06-27 1998-01-07 General Electric Company Cumene oxidation process
JP2000053641A (ja) 1998-08-10 2000-02-22 Mitsubishi Chemicals Corp 有機ハイドロパーオキサイド及びフェノールの製造方法
JP2000063352A (ja) * 1998-08-12 2000-02-29 Mitsui Chemicals Inc 芳香族アルキルヒドロペルオキシドの製造方法
US6043399A (en) 1994-08-08 2000-03-28 Rhodia Chimie Process for the preparation of cumene hydroperoxide
JP2003231674A (ja) * 2002-02-07 2003-08-19 Sumitomo Chem Co Ltd クメンの酸化方法
JP2003327576A (ja) * 2002-03-06 2003-11-19 Sumitomo Chem Co Ltd クメンハイドロパーオキサイドを含む溶液の加熱システム
JP2004060904A (ja) 2002-07-24 2004-02-26 Noritz Corp 浴室暖房装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2619510A (en) * 1948-05-06 1952-11-25 Hercules Powder Co Ltd Manufacture of isopropyl benzene hydroperoxide
US3907901A (en) * 1969-07-14 1975-09-23 Allied Chem Continuous process for preparing cumene hydroperoxide
ID19133A (id) * 1996-12-12 1998-06-18 Praxair Technology Inc Pengisian oksigen langsung kedalam reaktor-reaktor ruang gelembung

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08511030A (ja) * 1993-08-06 1996-11-19 ローヌ−プーラン シミ クメンヒドロペルオキシドの製造方法
US6043399A (en) 1994-08-08 2000-03-28 Rhodia Chimie Process for the preparation of cumene hydroperoxide
EP0816335A1 (en) 1996-06-27 1998-01-07 General Electric Company Cumene oxidation process
JPH1087609A (ja) * 1996-06-27 1998-04-07 General Electric Co <Ge> クメン酸化プロセス
JP2000053641A (ja) 1998-08-10 2000-02-22 Mitsubishi Chemicals Corp 有機ハイドロパーオキサイド及びフェノールの製造方法
JP2000063352A (ja) * 1998-08-12 2000-02-29 Mitsui Chemicals Inc 芳香族アルキルヒドロペルオキシドの製造方法
JP2003231674A (ja) * 2002-02-07 2003-08-19 Sumitomo Chem Co Ltd クメンの酸化方法
JP2003327576A (ja) * 2002-03-06 2003-11-19 Sumitomo Chem Co Ltd クメンハイドロパーオキサイドを含む溶液の加熱システム
JP2004060904A (ja) 2002-07-24 2004-02-26 Noritz Corp 浴室暖房装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1721895A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009002735A1 (en) * 2007-06-27 2008-12-31 H R D Corporation High shear process for the production of cumene hydroperoxide
EA015238B1 (ru) * 2007-06-27 2011-06-30 ЭйчАДи КОПЭРЕЙШН Система и способ получения гидроперекиси кумола
US9586898B2 (en) 2010-09-14 2017-03-07 Exxonmobil Chemical Patents Inc. Oxidation of cyclohexylbenzene

Also Published As

Publication number Publication date
CN1926101A (zh) 2007-03-07
TWI343910B (ja) 2011-06-21
CN1926101B (zh) 2010-11-24
TW200602300A (en) 2006-01-16
US7439404B2 (en) 2008-10-21
EP1721895A1 (en) 2006-11-15
EP1721895A4 (en) 2008-02-27
US20070260093A1 (en) 2007-11-08
KR101168875B1 (ko) 2012-07-30
KR20070001985A (ko) 2007-01-04

Similar Documents

Publication Publication Date Title
WO2005085191A1 (ja) クメンハイドロパーオキサイドの製造方法
KR101087931B1 (ko) 메탄올 생산 방법 및 시스템
CN109534999B (zh) 一种碳酸二甲酯的合成工艺及装置
KR102505464B1 (ko) 에틸벤젠을 산소 함유 가스와 접촉시켜 에틸벤젠 하이드로퍼옥사이드를 제조하는 방법
EP1674449B1 (en) Process for producing cyclohexanone oxime
CN105646316B (zh) 一种制备低水含量高浓度过氧乙酸的乙酸溶液的方法及连续化生产装置
CN103896210A (zh) 一种ch4-co2催化重整反应装置及其工艺
JP4770200B2 (ja) クメンハイドロパーオキサイドの製造方法
JP2006199685A (ja) シクロヘキサノンオキシムの製造方法
KR20140120443A (ko) 수소가스 제조 반응장치 및 이를 이용한 수소가스 제조방법
WO2019176745A1 (ja) メタン製造装置及び方法
CN111606805B (zh) 煤制乙二醇装置联产碳酸二甲酯的生产工艺及装置
JP3089106B2 (ja) メタノール製造方法
CN103562168A (zh) 异丙苯醇的制备方法和苯酚、丙酮及α-甲基苯乙烯的制备方法
CN220056681U (zh) 一种异壬醛氧化制备异壬酸的系统
CN102911100B (zh) 双-(过氧化氢异丙基)苯的制备方法
EP2695875A1 (en) Improved method for the oxidation of alkyl aromatic hydrocarbons
JPS6148428A (ja) 炭酸ナトリウム水溶液の製造法及びその製造装置
CN102911097B (zh) 一过氧化氢二异丙苯的生产方法
CN102911101B (zh) 一步法生产双-(过氧化氢异丙基)苯的方法
CN114634399A (zh) 用于由亚化学计量合成气生产甲醇的方法和设备
Buzzoni et al. DISY. The direct synthesis of hydrogen peroxide, a bridge for innovative applications
JP2003137836A (ja) ジアセトキシブテンの製造方法
CN113498404A (zh) 一种抑制atr或pox反应器中烟灰形成的方法
CN114515549A (zh) 一种预加氢反应系统、预加氢反应方法和应用

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580006398.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020067017680

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2005719903

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005719903

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067017680

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10591439

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10591439

Country of ref document: US