WO2005082650A1 - スタビライザ制御装置 - Google Patents

スタビライザ制御装置 Download PDF

Info

Publication number
WO2005082650A1
WO2005082650A1 PCT/JP2005/002925 JP2005002925W WO2005082650A1 WO 2005082650 A1 WO2005082650 A1 WO 2005082650A1 JP 2005002925 W JP2005002925 W JP 2005002925W WO 2005082650 A1 WO2005082650 A1 WO 2005082650A1
Authority
WO
WIPO (PCT)
Prior art keywords
stabilizer
roll
vehicle
wheel stroke
control
Prior art date
Application number
PCT/JP2005/002925
Other languages
English (en)
French (fr)
Inventor
Yoshiyuki Yasui
Original Assignee
Aisin Seiki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Kabushiki Kaisha filed Critical Aisin Seiki Kabushiki Kaisha
Priority to EP05719433A priority Critical patent/EP1719643A4/en
Priority to US10/587,716 priority patent/US20070150144A1/en
Publication of WO2005082650A1 publication Critical patent/WO2005082650A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G21/00Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces
    • B60G21/02Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected
    • B60G21/04Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically
    • B60G21/05Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically between wheels on the same axle but on different sides of the vehicle, i.e. the left and right wheel suspensions being interconnected
    • B60G21/055Stabiliser bars
    • B60G21/0551Mounting means therefor
    • B60G21/0553Mounting means therefor adjustable
    • B60G21/0555Mounting means therefor adjustable including an actuator inducing vehicle roll
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/016Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
    • B60G17/0162Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input mainly during a motion involving steering operation, e.g. cornering, overtaking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/016Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
    • B60G17/0165Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input to an external condition, e.g. rough road surface, side wind
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/10Type of spring
    • B60G2202/13Torsion spring
    • B60G2202/135Stabiliser bar and/or tube
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/05Attitude
    • B60G2400/052Angular rate
    • B60G2400/0523Yaw rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/10Acceleration; Deceleration
    • B60G2400/104Acceleration; Deceleration lateral or transversal with regard to vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/10Acceleration; Deceleration
    • B60G2400/106Acceleration; Deceleration longitudinal with regard to vehicle, e.g. braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/20Speed
    • B60G2400/202Piston speed; Relative velocity between vehicle body and wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/20Speed
    • B60G2400/208Speed of wheel rotation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/25Stroke; Height; Displacement
    • B60G2400/252Stroke; Height; Displacement vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/40Steering conditions
    • B60G2400/41Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/80Exterior conditions
    • B60G2400/82Ground surface
    • B60G2400/822Road friction coefficient determination affecting wheel traction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/90Other conditions or factors
    • B60G2400/91Frequency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/02Retarders, delaying means, dead zones, threshold values, cut-off frequency, timer interruption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/18Automatic control means
    • B60G2600/187Digital Controller Details and Signal Treatment
    • B60G2600/1877Adaptive Control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/60Signal noise suppression; Electronic filtering means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/01Attitude or posture control
    • B60G2800/012Rolling condition
    • B60G2800/0122Roll rigidity ratio; Warping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/24Steering, cornering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/90System Controller type
    • B60G2800/91Suspension Control
    • B60G2800/912Attitude Control; levelling control
    • B60G2800/9122ARS - Anti-Roll System Control

Definitions

  • the present invention relates to a stabilizer control device for a vehicle, and more particularly, to a stabilizer control device that variably controls the torsional rigidity of a stabilizer disposed between left and right wheels.
  • a stabilizer control device for a vehicle is configured to externally apply an appropriate roll moment by the use of a stabilizer during turning of the vehicle to reduce or suppress roll motion of the vehicle body.
  • Patent Document 1 discloses the following matters. That is, in the rigidity control structure of the stabilizer, it is described that it is preferable to increase the rigidity to alleviate the roll phenomenon without causing the body to sway, and to reduce the rigidity in terms of ride comfort. And, when necessary, the force to exert the rigidity of the stabilizer is unnecessary.In the realization of the rigidity control of the stabilizer, which reduces the rigidity of the stabilizer when it is unnecessary, it is possible to reduce the number of parts, thereby reducing the product cost and improving the versatility.
  • a stiffness control structure for the stabilizer that is most suitable for the expectation is proposed. Specifically, a stabilizer having an intermediate portion connected to the vehicle body side and both ends connected to the axle side, an actuator capable of reducing the rigidity of the stabilizer, and a switching valve for selecting operation / non-operation of the actuator.
  • the switching valve is configured to be switched by an inertial force in a lateral direction of the vehicle body caused by a roll phenomenon in the vehicle body.
  • Patent Document 2 proposes a roll stabilization device that actively suppresses rolling of a vehicle. That is, it has at least one sensor for measuring the rolling value (rolling) and at least one swivel actuator provided between the front and / or rear chassis stabilizer halves. Prestressing of the stabilizer halves to reduce or suppress motion and a resistance moment to the vehicle body during roll as a function of the sensor output signal are to be provided.
  • Patent Document 3 a wheel acceleration is calculated from a wheel speed, and a high-pass filter is calculated.
  • a method is disclosed in which the high-frequency component is extracted using, the variance value of the wheel acceleration is calculated, and the rough road is determined using the variance value.
  • Patent Document 4 discloses that the variance of the differential value of the acceleration sensor output at a small steering angle on a reference flat road and the variance of the differential value of the acceleration sensor output at a small steering angle on the currently running road surface are described.
  • a method is disclosed in which an F test is performed and a rough road is determined according to the result.
  • Patent Document 5 discloses a spin value indicating a spin state amount and a drift value indicating a drift-out state amount as indices used for vehicle stability control.
  • Patent Document 1 JP-A-8-268027
  • Patent Document 2 Japanese Patent Application Publication No. 2002-518245
  • Patent Document 3 Japanese Patent Application Laid-Open No. 9-20223
  • Patent Document 4 JP 2001-63544 A
  • Patent Document 5 JP-A-9-193776
  • the torsional rigidity of the stabilizer is set to a high state with respect to the input of sprung (vehicle) inertia, thereby suppressing the roll angle of the vehicle body and controlling the vehicle posture. It is going to be stabilized. On the other hand, it is said that it is necessary to improve the ride comfort by setting the torsional rigidity of the stabilizer low for the input from the unsprung part (wheel). And since these events are contradictory, an apparatus as shown in Patent Document 1 has been proposed.
  • an object of the present invention is to provide a stabilizer control device capable of actively suppressing vehicle body roll motion, in which a stabilizer is actively controlled even for an input from a road surface to improve ride comfort.
  • Another object of the present invention is to provide a stabilizer control device that can control not only the torsional rigidity of the stabilizer but also the damping of the stabilizing wheel, thereby improving the riding comfort.
  • the present invention provides a stabilizer provided between left and right wheels of a vehicle.
  • the stabilizer control device controls the torsional rigidity of the vehicle and actively controls the roll motion of the vehicle body in accordance with the turning state of the vehicle.
  • a wheel stroke detecting means for detecting a relative displacement of the left and right wheels, a wheel stroke difference calculating means for calculating at least one of a wheel stroke left / right difference and a wheel stroke speed left / right difference based on a detection result of the wheel stroke detecting means;
  • external applying force setting means for setting an external applying force for controlling the torsional rigidity of the stabilizer based on the calculation result of the wheel stroke difference calculating means is provided. is there.
  • the externally applied force can be determined based on a roll rigidity reduction target value determined based on the wheel stroke difference. Further, the externally applied force may be determined based on a roll damping force target value determined based on the wheel stroke speed difference. Alternatively, the external applied force may be determined based on a roll stiffness reduction target value determined based on the wheel stroke difference and a roll damping force target value determined based on the wheel stroke speed difference.
  • the external applied force is a roll stiffness reduction target value determined based on the wheel stroke difference, a roll damping force target value determined based on the wheel stroke speed difference, and a vehicle active (active). ) It can also be determined based on the roll moment target value.
  • the external applied force can be calculated by the following equation.
  • Rt Rm-K5 -Rr (St) + K6 -Rd (dSt)
  • the present invention provides a stabilizer having a stabilizer bar disposed between left and right wheels of a vehicle.
  • a stabilizer control device for controlling the torsional rigidity of the stabilizer and actively controlling the roll motion of the vehicle body in accordance with the turning state of the vehicle.
  • a wheel stroke detecting means for detecting a relative displacement between the vehicle body and the left and right wheels on the axle; a wheel stroke left / right difference calculating means for calculating a wheel stroke left / right difference based on a detection result of the wheel stroke detecting means; Externally applied force setting means for setting an externally applied force for controlling the torsional rigidity of the stabilizer based on a calculation result of a stroke left / right difference calculating means, and turning index setting means for setting a turning index indicating a turning state of the vehicle. And the externally applied force set by the externally applied force setting means according to the turning index set by the turning index setting means.
  • the torsional rigidity of Tavira Izaba, the stabilizer bar may be configured to reduce than the value inherent.
  • the roll angle of the vehicle body when the vehicle turns is reliably suppressed, and the roll control is performed in response to the input from the road surface when the vehicle is traveling straight.
  • the external applied force set by the external applied force setting means including the control for the damping, the stabilizer can be actively controlled to secure an appropriate riding comfort.
  • the stabilizer control device provided with the turning index setting means, when the vehicle is in a straight-ahead state, the stabilizer is actively reduced so as to reduce the torsional rigidity of the stabilizer in response to input from wheels. By controlling the stabilizer, an appropriate riding comfort can be ensured.
  • FIG. 1 is a configuration diagram showing an outline of a vehicle provided with a stabilizer control device according to an embodiment of the present invention.
  • FIG. 2 is a configuration diagram showing an example of a stabilizer control unit according to one embodiment of the present invention.
  • FIG. 3 is a block diagram showing a control configuration according to one embodiment of the present invention.
  • FIG. 4 is a control block diagram of one embodiment of the active roll suppression control of FIG. 3.
  • FIG. 5 is a graph showing a relationship between a control gain and an actual lateral acceleration related to a calculated lateral acceleration in one embodiment of the present invention.
  • FIG. 6 is a block diagram showing an example of a mode in which the control gain is set based on a turning index.
  • 5 is a graph showing an example of a map to be set.
  • Garden 7] is a graph showing an example of a map for setting a control gain related to a calculated lateral acceleration change amount and a control gain related to an actual lateral acceleration change amount based on a turning index in the embodiment of the present invention.
  • Garden 8 is a graph showing an example of a map for setting a non-linear control gain characteristic with respect to a control gain relating to a calculated lateral acceleration and a control gain relating to an actual lateral acceleration in an embodiment of the present invention.
  • Garden 9 is a graph showing an example of a map for setting a non-linear control gain characteristic with respect to a control gain related to a calculated lateral acceleration change and a control gain related to an actual lateral acceleration change in an embodiment of the present invention.
  • FIG. 10 is a block diagram showing an example of a mode in which a control gain related to a calculated lateral acceleration and a control gain related to an actual lateral acceleration are set based on a road surface condition or the like in an embodiment of the present invention.
  • Garden 11 is a graph showing an example of a map for setting a control gain related to a calculated lateral acceleration and a control gain related to an actual lateral acceleration based on a bad road determination result in one embodiment of the present invention.
  • Garden 12 is a graph showing an example of a map for setting a control gain related to a calculated lateral acceleration change amount and a control gain related to an actual lateral acceleration change amount based on a rough road determination result in one embodiment of the present invention.
  • Garden 13 is a graph showing an example of a map for determining an upper limit value of a calculated lateral acceleration based on a road surface friction coefficient in one embodiment of the present invention.
  • FIG. 14 is a graph showing an example of a map for setting a control gain related to a calculated lateral acceleration and a control gain related to an actual lateral acceleration in one embodiment of the present invention based on a road surface friction coefficient.
  • control gain and the actual lateral 9 is a graph showing an example of a map for setting a control gain related to an acceleration change amount based on a road surface friction coefficient.
  • Garden 16 is a graph showing an example of a map for setting a control gain related to a calculated lateral acceleration and a control gain related to an actual lateral acceleration based on a spin state amount or a drift-out state amount in one embodiment of the present invention.
  • FIG. 19 is a block diagram showing one form of a stabilizer-free control block according to an embodiment of the present invention.
  • FIG. 20 is a block diagram showing one mode of a roll attenuation control block according to an embodiment of the present invention.
  • FIG. 21 is a block diagram showing one mode of a stabilizer applying force target value calculation block according to an embodiment of the present invention.
  • 22 is a graph showing an example of a map for setting the contribution of the stabilizer-free control to the entire control in the embodiment of the present invention.
  • FIG. 23 is a graph showing an example of a map for setting the contribution of the roll damping control to the entire control in one embodiment of the present invention.
  • FIG. 24 is a control block diagram of one mode of motor control according to an embodiment of the present invention. Explanation of symbols
  • FIG. 1 the entire configuration of a vehicle including a stabilizer control device according to an embodiment of the present invention is configured as a torsion spring when a movement in the direction of a portal is input to a vehicle body (not shown).
  • a front wheel stabilizer SBf and a rear wheel stabilizer SBr are provided.
  • the front stabilizer SBf and the rear stabilizer SBr are designed so that the torsional rigidity is variably controlled by the stabilizer actuators FT and RT in order to suppress the roll angle of the vehicle caused by the roll motion of the vehicle. It is configured.
  • the stabilizer actuators FT and RT are controlled by a stabilizer control unit ECU1 in the electronic control unit ECU.
  • each wheel WHxx is provided with a wheel speed sensor WSxx (subscript XX means each wheel, fr means front right wheel, fl left front wheel, rr means right rear wheel, and rl means left side
  • a wheel speed sensor WSxx (subscript XX means each wheel, fr means front right wheel, fl left front wheel, rr means right rear wheel, and rl means left side
  • XX means each wheel
  • fr front right wheel
  • rr means right rear wheel
  • rl means left side
  • a steering angle sensor SA that detects the steering angle (hand angle) 5f according to the operation of the steering wheel SW, a longitudinal acceleration sensor XG that detects the longitudinal acceleration Gx of the vehicle, and a lateral acceleration that detects the actual lateral acceleration Gya of the vehicle
  • a sensor YG, a rate sensor YR for detecting a rate Yr of the vehicle, and the like are connected to the electronic control unit ECU.
  • the electronic control unit ECU includes a power control unit for the stabilizer control unit ECU1, a brake control unit ECU2, a steering control unit ECU3, and the like.
  • These control units ECU1 to ECU3 each include: It is connected to a communication bus via a communication unit (not shown) equipped with a communication CPU, ROM and RAM. Thus, information necessary for each control system can be transmitted from another control system.
  • FIG. 2 shows a specific configuration example (similar configuration of RT) of the stabilizer actuator FT.
  • the front-wheel-side stabilizer SBf is divided into a pair of left and right stabilizer bars SBfr and SBfl, one end of which is connected to the left and right wheels, and the other end of which is connected to the rotor of the electric motor M via a speed reducer RD.
  • RO and the other side are connected to the stator SR of the electric motor M.
  • the stabilizer bars SBfr and SBfl are held on the vehicle body by holding means HLfr and HLfl.
  • a torsional force is generated on each of the two-part stabilizer bars SBfr and SBfl, and the apparent torsional spring characteristics of the front-wheel-side stabilizer SBf are changed.
  • the roll rigidity of the vehicle body is controlled.
  • a rotation angle sensor RS is provided in the stabilizer actuator FT as rotation angle detection means for detecting the rotation angle of the electric motor M.
  • a pump (not shown) driven by a motor or an engine may be used instead of the electric motor M, and the hydraulic control may be performed by the pump. Good.
  • FIG. 3 shows a control configuration according to the present embodiment.
  • the vehicle running state detecting means Ml2 detects the vehicle motion state quantity including the vehicle speed, the lateral acceleration, and the yaw rate. Based on these detection results, the roll suppression control block M14 performs roll suppression control for suppressing the vehicle body roll angle during turning.
  • the stroke of the suspension spring SPxx is detected by the suspension stroke detection means M13, and based on the detection result, the stabilizer free control block M15 that reduces the torsional rigidity of the stabilizers SBf and SBr and improves the riding comfort against uneven road surfaces And a roll damping control block M16 for controlling the damping force in the roll direction of the vehicle based on the detection result of the suspension stroke detecting means M13.
  • the stabilizer free control and the roll damping control improve the riding comfort when traveling straight.
  • conflicting events such as stabilizing the vehicle attitude when turning and improving the riding comfort when driving straight ahead are both achieved.
  • the front and rear wheels The applied force to the arranged stabilizer actuators FT and RT is calculated.
  • the target value of the control force applied to the stabilizer actuators FT and RT is set in consideration of the running state of the vehicle.
  • the servo control of the actuator is performed based on the target value, and the stabilizer actuators FT and RT are driven and controlled.
  • the stabilizer is used.
  • the control target amount from the roll suppression control (M14), which is controlled according to the vehicle turning state is set small, and the stabilizer free control (Ml 5) and the roll damping control (M16)
  • the target control amount of force is set large.
  • the torsional stiffness of the stabilizer bar is higher than the original torsional stiffness (the torsional stiffness of the stabilizer bar in a fixed state) in order to improve ride comfort.
  • the power applied to the stabilizer actuators FT and RT is set so as to decrease. This applied force acts to reduce the roll moment transmitted to the vehicle body due to unevenness of the road surface, and to reduce the torsional rigidity of the stabilizer. Will be applied in the opposite direction.
  • a control target amount is set in roll damping control block M16 based on roll damping control.
  • the control target amounts of the stabilizer-free control and the roll damping control are reduced, and the control target amount of the roll suppression control is increased, so that the roll movement during turning can be reliably suppressed. It becomes.
  • FIG. 4 shows a specific example of the roll suppression control block M14 shown in FIG. 3, which is obtained from the signal of the lateral acceleration sensor YG at the vehicle active roll moment target value calculation unit M21.
  • the actual lateral acceleration Gya, the actual lateral acceleration change dGya that differentiates it over time, the handle angle ⁇ f and the vehicle speed (vehicle speed) Vx force The computed lateral acceleration Gye that is computed, and the computed lateral acceleration change dGye that differentiates it over time
  • the vehicle active (active) roll moment target value Rmv required to suppress roll motion in the entire vehicle is calculated based on the vehicle.
  • the calculated lateral acceleration Gye is obtained by the following equation (1).
  • Gye (Vx 2 - 5 f ) / ⁇ LN- (1 + Kh-Vx) ⁇ ⁇ ⁇ ⁇ (1)
  • L is the wheelbase
  • N is the steering gear ratio
  • Kh is the stapity factor
  • the target active roll moment value Rmv to be applied to the entire vehicle in order to achieve suitable roll characteristics is obtained by the following equation (2).
  • a calculated lateral acceleration Gye calculated based on an actual lateral acceleration Gya detected by an actual lateral acceleration sensor and a steering wheel angle ⁇ f and a vehicle speed Vx according to a driver's steering (noodle) operation.
  • the actual lateral acceleration Gya is affected by road surface irregularities and is the result of steering operation in accordance with steering (handle) operation, so a delayed signal is obtained.
  • the value reflects the effect of On the other hand, since the calculated lateral acceleration Gye is not affected by the road surface irregularities and is obtained based on the steering input (the steering wheel angle ⁇ f and the vehicle speed Vx), the signal has a small delay, but the road surface condition (road surface friction coefficient) Is not reflected, for example, in a turning state exceeding the friction limit, accuracy is lacking.
  • the road surface condition road surface friction coefficient
  • the control gains Kl, ⁇ 2, ⁇ 3, and ⁇ 4 of the above equation (2) are adjusted according to the running state of the vehicle and the like as described later, and the actual lateral acceleration Gya and the calculated lateral acceleration are calculated.
  • the task of acceleration Gye is to complement each other. For example, when the vehicle is traveling in a straight running state and a small turning state, only the information on the calculated lateral acceleration Gye or the contribution of the calculated lateral acceleration Gye to the stabilizer control is set to be large, and the active roll suppression control is performed. I'm going to run.
  • FIG. 5 shows the calculated lateral acceleration Gye in order to eliminate the influence of lateral acceleration caused by road surface irregularities.
  • the control gains Kl and K2 according to the above and the control gains K3 and K4 according to the actual lateral acceleration Gya are set based on the turning index TC, and the turning index TC is an index indicating the magnitude of the turning state.
  • this turning index TC is an index that is not affected by road surface unevenness, whichever of the calculated lateral acceleration Gye, steering wheel angle ⁇ f, and Yorate Yr It is desirable to use an index that combines two or more of the above.
  • G represents gravitational acceleration
  • a map for setting the control gain K1 related to the calculated lateral acceleration Gye and the control gain K3 related to the actual lateral acceleration Gya may be set based on the turning index TC as shown in FIG.
  • the turning index TC is small (TC ⁇ TC1)
  • a setting map for the control gain K2 related to the calculated lateral acceleration change amount dGye and the control gain K4 related to the actual lateral acceleration change amount dGya may be set based on the turning index TC as shown in FIG.
  • the control gain K4 related to the actual lateral acceleration change dGya is set to 0, and the calculated lateral acceleration change dGye calculated based on the steering wheel angle ⁇ f is It is advisable to execute the corresponding control.
  • the influence of the lateral acceleration due to the road surface unevenness can be suppressed by increasing the control gain of the calculated lateral acceleration change amount dGye that is not easily affected by the road surface unevenness. , The ride comfort can be improved.
  • the force for executing the stabilizer control based only on the calculated lateral acceleration Gye and the calculated lateral acceleration change amount dGye is not limited to this. Even if the calculated lateral acceleration information, which is not easily affected by the rough road surface, includes either Gye or dGye), the following settings may be used. That is, when the degree of turning is small, the ride comfort can be improved by setting the degree of influence of the calculated lateral acceleration information to be large. In this case, the influence of the actual lateral acceleration information (including at least one of Gya and dGya) that does not necessarily have to be 100% may be retained. It is possible. Further, as shown in the maps of FIGS.
  • a control gain is determined based on a bad road determination result, a road surface friction coefficient, a spin state quantity (spin value) representing a turning state of the vehicle, a drift out state quantity (drift value), and the like.
  • the means for determining a bad road include a means based on the wheel speed described in Patent Document 3 mentioned above and a means based on the detection result of the acceleration sensor described in Patent Document 4. Since these determination results are generally used for anti-skid control (ABS), they are processed by the brake control unit ECU2.
  • the spin state quantity (spin value) and the drift-out state quantity (drift value) are state quantities necessary for vehicle stability control.
  • the brake control unit ECU2 uses the method described in Patent Document 5 described above. Calculation processing is performed. Further, the road surface friction coefficient is obtained by various methods conventionally known by the brake control unit ECU2 or the steering control unit ECU3. Then, these determination results and state quantities are input to the stabilizer control unit ECU1 via the communication bus.
  • FIGS. 11 and 12 show an example of a map set based on the above-described rough road determination result.
  • the control gains K1 and K2 related to the calculated lateral acceleration Gye are determined. Is changed so as to be larger than the normal time when the road is not determined to be a bad road. Then, the contribution ratios of the control gains K3 and K4 related to the actual lateral acceleration Gya are changed so as to be smaller than the normal time when it is determined that the road is rough.
  • the calculated lateral acceleration Gye is corrected based on FIG. 13 by the road surface friction coefficient max). That is, since the road surface friction coefficient / max determines the maximum lateral acceleration that can be generated on the road surface, the upper limit (Gyemax) of the calculated lateral acceleration Gye is determined based on the road surface friction coefficient ⁇ max. For example, as shown in the upper part of FIG.
  • the accuracy of the calculated lateral acceleration can be improved in accordance with the actual road surface condition.
  • the road surface friction coefficient can be compensated by adjusting the control gain.
  • FIGS. 14 and 15 show maps for setting the control gain according to the road surface friction coefficient.
  • the control gains Kl and K2 related to the calculated lateral acceleration Gye are determined.
  • the control gains K1 and K2 may be relatively increased, and the contribution of the control gains K3 and K4 may be reduced.
  • FIGS. 16 and 17 show a map for setting the control gain with respect to the spin state quantity (spin value) or the drift-out state quantity (drift value).
  • spin value spin value
  • drift value drift value
  • the map is output. It is preferable to increase the contribution of the control gains K3 and K4 related to the actual lateral acceleration Gya and decrease the contribution of the control gains K1 and K2 related to the calculated lateral acceleration Gye.
  • the front / rear wheel roll rigidity ratio target value calculation unit M23 sets the front / rear roll rigidity ratio target value as follows. First, based on the vehicle speed (vehicle speed) Vx, the initial values Rsrfo and Rsrro of the roll rigidity ratio on the front wheel side and the rear wheel side are set. As shown in FIG. 18, the initial value Rsrfo of the front wheel roll rigidity ratio is set to be low when the vehicle speed Vx is low and to be high when the vehicle speed Vx is high, and is set so as to increase the understeer tendency at high speeds. Then, the initial value Rsrro of the rear wheel roll rigidity distribution ratio is set to (1 ⁇ Rsrfo).
  • the target yaw rate Yre is calculated from the steering wheel angle ⁇ f and the vehicle speed Vx, and is compared with the actual yaw rate Yr, and the yaw rate deviation A Yr is calculated.
  • a roll rigidity ratio correction value Rsra is calculated based on the calculated rate deviation ⁇ Yr.
  • FIG. 3 a control block diagram on the front wheel side is shown, but the same applies to the control on the rear wheel side.
  • Each wheel is detected from the stroke sensor HSxx provided for each wheel.
  • the wheel stroke Stxx which is the relative displacement between the body and the wheel at the position, is determined.
  • Stf Stfr-Stfl
  • Str Strr-Strl
  • the control target value is calculated according to the stroke left-right difference Stf and Str so as to reduce or eliminate the generation of the torsional spring force of the stabilizer bar (M33).
  • Sgf and Sgr are coefficients for converting the torsion spring force of the stabilizer into a moment about the roll axis (roll moment), and are values set according to the arm length of the stabilizer bar, the mounting position, and the like.
  • Sbsf and Sbsr are the torsional stiffness of the stabilizer bars of the front and rear wheels
  • K7 and K8 are coefficients for setting the reduction amount of the torsional spring force. If the torsional stiffness of the stabilizer bar is non-linear, it is possible to set the target values Rrf and Rrr based on a map of the stroke left-right difference and the roll stiffness reduction amount experimentally obtained in advance.
  • FIG. 20 shows a control block on the front wheel side of one embodiment of the roll damping control block M16 shown in FIG. 3 (the control on the rear wheel side is the same, and is omitted).
  • the wheel stroke Stxx which is the relative displacement between the vehicle body and the wheel at each wheel position detected by the stroke sensor HSxx provided for each wheel
  • And Str Stn ⁇ Strl.
  • the stroke speed left / right difference dS tf and dStr of the wheel (the front wheel in FIG. 20), which are the time change amounts of the stroke left / right difference Stf and Str, are calculated (M41).
  • the control target value is calculated in accordance with the stroke speed left / right difference dStf and dStr. That is, front and rear wheels
  • K9 and K10 are coefficients for setting the applied amount of the roll damping force.
  • the torsional rigidity of the stabilizer bar is non-linear, it is possible to set the target values Rdf and Rdr based on a map of the wheel stroke speed left / right difference and the roll damping force obtained experimentally in advance. is there.
  • the front wheel active roll moment target of the roll suppression control set in FIG. Based on the value Rmf, the target value Rrf for reducing the stiffness of the front wheel in the stabilizer-free control set in FIG. 19, and the target value Rdf in the roll damping force set in FIG. 20, the final stabilizer actuator The target value Rtf of the applied force is set. Since the same applies to the control of the front wheels, which is related to the control of the front wheels, the following description focuses on the controls of the front wheels.
  • K5 and K6 are control gains for setting the contribution of the stabilizer free control and the roll damping control to the entire control, and are set as shown in FIGS. 22 and 23.
  • the roll suppression control aims to suppress the roll motion during turning, and the stabilizer free control and the roll damping control mainly aim at improving the riding comfort when traveling straight. Accordingly, in the roll suppression control, as shown in FIGS. 6 and 7, when the degree of the turning state is small, the control gains K1 and K2 related to the calculated lateral acceleration Gye are changed to the control gains K3 related to the actual lateral acceleration Gya. And set it larger than K4 so that it is not affected by road surface irregularities.
  • the control gains K5 and K6 are set to be large, and the control gain is set to decrease as the degree of turning increases.
  • the turning index TC indicating the turning state in Figs. 22 and 23 can also use the control gain map for the actual lateral acceleration Gya, the steering angle ⁇ f, or the yoke rate Yr, in addition to the calculated lateral acceleration Gye, as described above. It is.
  • the calculated lateral acceleration Gye , The actual lateral acceleration Gya, the steering wheel angle ⁇ f, and the information about two or more of Yorre Yr can be used in combination.
  • the ride comfort improvement control includes both the stabilizer free control and the roll damping control.
  • Table 1 the symbol “ ⁇ ” means “equipped” (having the top function), and X means “equipped” (having no top function).
  • Nos. 1 to 15 represent embodiments formed by combining the requirements indicated by triangles.
  • the output target value of the electric motor M is set as shown in FIG. 24 (M51). That is, the motor output target value calculated as described above is compared with the actual motor output value, and the motor output deviation is calculated (M52). In addition, the electric motor The PWM output to the motor M is set (M53), and the switching element of the motor drive circuit CT is controlled by this PWM output, so that the electric motor M is drive-controlled.
  • the torsional rigidity of the stabilizer is reduced in order to reduce the roll input to the vehicle body due to unevenness of the road surface when traveling straight and when the degree of turning is small.
  • the roll moment caused by the unevenness of the road surface is reduced by applying an external force to the stabilizer.
  • the control gain of the stabilizer-free control and the roll damping control is reduced, and the control gain of the active roll suppression control is increased. be able to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

 路面からの入力に対しても能動的にスタビライザを制御し、車両の直進走行中における路面凹凸に起因する変化に対しては乗り心地を確保し、車両の旋回時には車体ロール角を確実に抑制する。車両の左右車輪間に配設されるスタビライザのねじり剛性を制御し、旋回状態に応じて車体のロール運動を能動的に制御するスタビライザ制御装置において、車体と左右車輪の相対変位の車輪ストロークを検出し(M13)、車輪ストローク左右差及び車輪ストローク速度左右差の少なくとも一方に基づき、スタビライザフリー制御(M15)及びロール減衰制御(M16)の少なくとも一方を介して、スタビライザのねじり剛性を制御するための外部付与力を設定する(M17)。

Description

明 細 書
スタビライザ制御装置
技術分野
[0001] 本発明は、車両のスタビライザ制御装置に関し、特に、左右車輪間に配設するスタ ビライザのねじり剛性を可変制御するスタビライザ制御装置に係る。
背景技術
[0002] 一般的に、車両のスタビライザ制御装置は、車両の旋回走行中にスタビライザの作 用により適切なロールモーメントを外部から付与し、車体のロール運動を低減または 抑制するように構成されている。例えば特許文献 1には、以下の事項が開示されてい る。即ち、スタビライザの剛性制御構造において、ロール現象の緩和には剛性を大き くし車体に揺れを生じさせず、乗り心地の上からは、その剛性を小さくすることが好ま しいと記載されている。そして、必要時にはスタビライザの剛性を発揮させる力 不要 時にはスタビライザの剛性を減殺するスタビライザの剛性制御の具現化にあって、部 品点数の削減を可能にして、製品コストの低廉化と汎用性の向上を期待するに最適 となるスタビライザの剛性制御構造が提案されてレ、る。具体的には、中間部が車体側 に連結され両端が車軸側に連結されるスタビライザと、該スタビラィザにおける剛性 の減殺を可能にするァクチユエータと、該ァクチユエータの作動不作動を選択する切 換バルブとを有してなるスタビライザの剛性制御構造において、切換バルブが車体 におけるロール現象に起因する車体横方向の慣性力で切り換えられるように構成さ れている。
[0003] また、下記の特許文献 2には、能動的に車両のローリングを抑制する横揺れ安定化 装置について提案されている。即ち、横揺れ値 (ローリング)を測定するための少なく とも 1つのセンサと、前方および/または後方車台スタビライザの半部分間に設けら れた少なくとも 1つの旋回ァクチユエ一タとを有し、横揺れ運動を低減または抑制する ためにスタビライザ半部分に予緊張を与え、および横揺れ時にセンサの出力信号の 関数として車両ボディーに抵抗モーメントを与えることとしている。
[0004] 尚、下記の特許文献 3には、車輪速度から車輪加速度を演算し、ハイパスフィルタ を用いて、その高周波成分を取り出し、車輪加速度の分散値を算出し、その分散値 を用いて悪路判定を行う方法が開示されている。また、特許文献 4には、基準となる 平坦路における小さい舵角での加速度センサ出力の微分値の分散と、現在走行中 の路面における小さい舵角での加速度センサ出力の微分値の分散とによる F検定を 行レ、、その結果にしたがって悪路判定を行う方法が開示されている。更に、特許文献 5には、車両安定性制御に供される指標として、スピン状態量を表すスピンバリュー、 及びドリフトアウト状態量を表すドリフトバリューが開示されている。
[0005] 特許文献 1 :特開平 8— 268027号公報
特許文献 2:特表 2002 - 518245号公報
特許文献 3:特開平 9 - 20223号公報
特許文献 4 :特開 2001— 63544号公報
特許文献 5:特開平 9 - 193776号公報
発明の開示
発明が解決しょうとする課題
[0006] 然し乍ら、前掲の特許文献 1のスタビライザの剛性制御構造においては、スタビラィ ザのねじれ剛性は、ばね上(車体)慣性の入力に対しては高い状態とし車体ロール 角を抑制し車両姿勢を安定化することとしている。一方、ばね下(車輪)からの入力に 対してはスタビライザねじれ剛性を低い状態として乗り心地を向上させる必要があると している。そして、これら事象は相反するため、特許文献 1に示されるような装置が提 案されている。
[0007] そこで、本発明は、能動的に車体ロール運動を抑制可能なスタビライザ制御装置に おいて、路面からの入力に対しても能動的にスタビライザを制御し乗り心地を向上さ せることを課題とする。
[0008] また、本発明の別の課題は、スタビライザのねじり剛性を制御し得るだけでなぐ口 ール減衰をも制御し、乗り心地を向上させ得るスタビライザ制御装置を提供すること にある。
課題を解決するための手段
[0009] 上記の課題を解決するため、本発明は、車両の左右車輪間に配設されるスタビラィ ザのねじり剛性を制御し、前記車両の旋回状態に応じて車体のロール運動を能動的 に制御するスタビライザ制御装置におレ、て、前記車両前方及び後方の少なくとも一 方の車軸で前記車体と前記左右車輪の相対変位を検出する車輪ストローク検出手 段と、該車輪ストローク検出手段の検出結果に基づき車輪ストローク左右差及び車輪 ストローク速度左右差の少なくとも一方を演算する車輪ストローク差演算手段と、前記 車両が直進走行状態にある場合には前記車輪ストローク差演算手段の演算結果に 基づき前記スタビライザのねじり剛性を制御するための外部付与力を設定する外部 付与力設定手段とを備えることとしたものである。
[0010] 前記外部付与力は、前記車輪ストローク差に基づいて定められるロール剛性低減 目標値に基づいて定めることができる。また、前記外部付与力は、前記車輪ストロー ク速度差に基づいて定められるロール減衰力目標値に基づいて定めることもできる。 あるいは、前記外部付与力は、前記車輪ストローク差に基づいて定められるロール剛 性低減目標値及び、前記車輪ストローク速度差に基づいて定められるロール減衰力 目標値に基づレ、て定めることとしてもよレ、。
[0011] 更に、前記外部付与力は、前記車輪ストローク差に基づいて定められるロール剛性 低減目標値、前記車輪ストローク速度差に基づいて定められるロール減衰力目標値 、及び、車両のアクティブ(能動的)ロールモーメント目標値に基づいて定めることも できる。例えば、前記外部付与力は、以下の式により算出することができる。
Rt=Rm-K5 -Rr (St) +K6 -Rd (dSt)
ここで、
Rt :外部付与力
Rm:車両のアクティブ(能動的)ロールモーメント目標値
Rr (St):車輪ストローク差に基づレ、て定められるロール剛性低減目標値
Rd (dSt):車輪ストローク速度差に基づいて定められるロール減衰力目標値
K5、 Κ6 :制御ゲイン
St :車輪ストローク差
dSt:車輪ストローク速度差である。
[0012] また、本発明は、車両の左右車輪間に配設されるスタビライザバーを有するスタビラ ィザに対し、該スタビラィザのねじり剛性を制御し、前記車両の旋回状態に応じて車 体のロール運動を能動的に制御するスタビライザ制御装置におレ、て、前記車両前方 及び後方の少なくとも一方の車軸で前記車体と前記左右車輪の相対変位を検出す る車輪ストローク検出手段と、該車輪ストローク検出手段の検出結果に基づき車輪ス トローク左右差を演算する車輪ストローク左右差演算手段と、該車輪ストローク左右 差演算手段の演算結果に基づき前記スタビライザのねじり剛性を制御するための外 部付与力を設定する外部付与力設定手段と、前記車両の旋回状態を表す旋回指標 を設定する旋回指標設定手段とを備え、該旋回指標設定手段が設定した旋回指標 に応じて、前記外部付与力設定手段が設定した外部付与力によって、前記スタビラ ィザバーのねじり剛性を、前記スタビライザバーが本来有する値より低下させるように 構成してもよい。
発明の効果
[0013] 而して、本発明のスタビライザ制御装置によれば、車両旋回時の車体ロール角を確 実に抑制すると共に、車両が直進状態にあるときの路面からの入力に対しても、ロー ル減衰に対する制御を含め、外部付与力設定手段が設定した外部付与力によって 、能動的にスタビライザを制御して適切な乗り心地を確保することができる。尚、外部 付与力の設定手段としては、上記のように種々の態様がある。
[0014] また、前記旋回指標設定手段を備えたスタビライザ制御装置によれば、車両が直 進状態にあるときに、車輪からの入力に対してスタビライザのねじり剛性を低下させる ように、能動的にスタビライザを制御して、適切な乗り心地を確保することができる。 図面の簡単な説明
[0015] [図 1]本発明の一実施形態に係るスタビライザ制御装置を備えた車両の概要を示す 構成図である。
[図 2]本発明の一実施形態におけるスタビライザ制御ユニットの一例を示す構成図で ある。
[図 3]本発明の一実施形態における制御構成を示すブロック図である。
[図 4]図 3のアクティブロール抑制制御の一態様の制御ブロック図である。
[図 5]本発明の一実施形態において演算横加速度に係る制御ゲインと実横加速度に 係る制御ゲインを旋回指標に基づいて設定する態様の一例を示すブロック図である 園 6]本発明の一実施形態において演算横加速度に係る制御ゲインと実横加速度に 係る制御ゲインを旋回指標に基づいて設定するマップの一例を示すグラフである。 園 7]本発明の一実施形態において演算横加速度変化量に係る制御ゲインと実横加 速度変化量に係る制御ゲインを旋回指標に基づいて設定するマップの一例を示す グラフである。
園 8]本発明の一実施形態において演算横加速度に係る制御ゲインと実横加速度に 係る制御ゲインに対して非線形な制御ゲイン特性を設定するマップの一例を示すグ ラフである。
園 9]本発明の一実施形態において演算横加速度変化量に係る制御ゲインと実横加 速度変化量に係る制御ゲインに対して非線形な制御ゲイン特性を設定するマップの 一例を示すグラフである。
園 10]本発明の一実施形態において演算横加速度に係る制御ゲインと実横加速度 に係る制御ゲインを路面状態等に基づいて設定する態様の一例を示すブロック図で ある。
園 11]本発明の一実施形態において演算横加速度に係る制御ゲインと実横加速度 に係る制御ゲインを悪路判定結果に基づいて設定するマップの一例を示すグラフで ある。
園 12]本発明の一実施形態において演算横加速度変化量に係る制御ゲインと実横 加速度変化量に係る制御ゲインを悪路判定結果に基づいて設定するマップの一例 を示すグラフである。
園 13]本発明の一実施形態において路面摩擦係数に基づき演算横加速度の上限 値を決定するマップの一例を示すグラフである。
園 14]本発明の一実施形態において演算横加速度に係る制御ゲインと実横加速度 に係る制御ゲインを路面摩擦係数に基づいて設定するマップの一例を示すグラフで ある。
園 15]本発明の一実施形態において演算横加速度変化量に係る制御ゲインと実横 加速度変化量に係る制御ゲインを路面摩擦係数に基づいて設定するマップの一例 を示すグラフである。
園 16]本発明の一実施形態において演算横加速度に係る制御ゲインと実横加速度 に係る制御ゲインをスピン状態量又はドリフトアウト状態量に基づいて設定するマップ の一例を示すグラフである。
園 17]本発明の一実施形態において演算横加速度変化量に係る制御ゲインと実横 加速度変化量に係る制御ゲインをスピン状態量又はドリフトアウト状態量に基づいて 設定するマップの一例を示すグラフである。
園 18]本発明の一実施形態における前輪ロール剛性比率の初期値設定用マップの 一例を示すグラフである。
園 19]本発明の一実施形態におけるスタビライザフリー制御ブロックの一態様を示す ブロック図である。
園 20]本発明の一実施形態におけるロール減衰制御ブロックの一態様を示すブロッ ク図である。
園 21]本発明の一実施形態におけるスタビライザ付与力目標値演算ブロックの一態 様を示すブロック図である。
園 22]本発明の一実施形態において制御全体に対するスタビライザフリー制御の寄 与度を設定するマップの一例を示すグラフである。
[図 23]本発明の一実施形態において制御全体に対するロール減衰制御の寄与度を 設定するマップの一例を示すグラフである。
園 24]本発明の一実施形態におけるモータ制御の一態様の制御ブロック図である。 符号の説明
SBf 前輪側スタビライザ, SBfr, SBfl 前輪側スタビライザバー,
SBr 後輪側スタビライザ, FT, RT スタビラィザァクチユエータ,
SW ステアリングホイール, SA 操舵角センサ,
WHfr, WHfl, WHrr, WHrl 車輪,
WSfr, WSfl, WSrr, WSrl 車輪速度センサ,
HSfr, HSfl, HSrr, HSrl ストロークセンサ, YR ョーレイトセンサ, XG 前後加速度センサ,
YG 横加速度センサ, ECU 電子制御装置
発明を実施するための最良の形態
[0017] 以下、本発明の望ましい実施形態を説明する。本発明の一実施形態に係るスタビ ライザ制御装置を備えた車両の全体構成を図 1に示すように、車体(図示せず)に口 ール方向の運動が入力された場合に、ねじりばねとして作用する前輪側スタビライザ SBfと後輪側スタビライザ SBrが配設される。これら前輪側スタビライザ SBf及び後輪 側スタビライザ SBrは、車体のロール運動に起因する車体ロール角を抑制するため に、各々のねじり剛性がスタビラィザァクチユエータ FT及び RTによって可変制御さ れるように構成されている。尚、これらスタビラィザァクチユエータ FT及び RTは電子 制御装置 ECU内のスタビライザ制御ユニット ECU1によって制御される。
[0018] 図 1に示すように各車輪 WHxxには車輪速度センサ WSxxが配設され(添字 XXは各 車輪を意味し、 frは右側前輪、 fl左側前輪、 rrは右側後輪、 rlは左側後輪を示す)、こ れらが電子制御装置 ECUに接続されており、各車輪の回転速度、即ち車輪速度に 比例するパルス数のパルス信号が電子制御装置 ECUに入力されるように構成され ている。また、各車輪のサスペンションスプリング SPxx近傍にはサスペンションスト口 ークセンサ HSxx (車高センサともレ、い、以下、単にストロークセンサという)が設けられ ており、各車輪での車体と車輪の相対的変位が電子制御装置 ECUに入力されるよう に構成されている。更に、ステアリングホイール SWの操作に応じた操舵角(ハンドノレ 角) 5 fを検出する操舵角センサ SA、車両の前後加速度 Gxを検出する前後加速度 センサ XG、車両の実横加速度 Gyaを検出する横加速度センサ YG、車両のョーレイ ト Yrを検出するョーレイトセンサ YR等が電子制御装置 ECUに接続されている。
[0019] 尚、電子制御装置 ECU内には、上記のスタビライザ制御ユニット ECU1のほ力 \ブ レーキ制御ユニット ECU2、操舵制御ユニット ECU3等が構成されており、これらの 制御ユニット ECU1乃至 3は夫々、通信用の CPU、 ROM及び RAMを備えた通信 ユニット(図示せず)を介して通信バスに接続されている。而して、各制御システムに 必要な情報を他の制御システムから送信することができる。
[0020] 図 2は、スタビラィザァクチユエータ FTの具体的構成例 (RTも同様の構成)を示す もので、前輪側スタビライザ SBfは左右一対のスタビライザバー SBfr及び SBflに二分 割されており、夫々の一端が左右の車輪に接続され、他端の一方側が減速機 RDを 介して電気モータ Mのロータ RO、その他方側が電気モータ Mのステータ SRに接続 されている。尚、スタビライザバー SBfr及び SBflは保持手段 HLfr及び HLflにより車 体に保持される。
[0021] 而して、電気モータ Mが通電されると、二分割のスタビライザバー SBfr及び SBflの 夫々に対しねじり力が生じ、前輪側スタビライザ SBfの見掛けのねじりばね特性が変 更されるので、車体のロール剛性が制御されることになる。また、電気モータ Mの回 転角を検出する回転角検出手段として、回転角センサ RSがスタビラィザァクチユエ ータ FT内に配設されている。尚、スタビラィザァクチユエータのパワー源としては、電 気モータ Mに代えて、モータ又はエンジンによって駆動されるポンプ(図示せず)を 用レ、、このポンプによって油圧制御を行う構成としてもよい。
[0022] 図 3は、本実施形態の制御構成を示すもので、運転者のステアリング操作 (ハンド ル操作)に関し、運転者操作検出手段 Mi lにより操舵角(ハンドル角) δ fを含む情 報が検出され、車両の走行状態検出手段 Ml 2により車両速度、横加速度及びョー レイトを含む車両運動状態量が検出される。これらの検出結果に基づき、ロール抑制 制御ブロック M14にて、車両旋回時の車体ロール角を抑制するロール抑制制御が 行われる。一方、サスペンションストローク検出手段 M13にてサスペンションスプリン グ SPxxのストロークが検出され、その検出結果に基づきスタビライザ SBf及び SBrの ねじり剛性を低下させ路面凹凸に対して乗り心地を向上させるスタビライザフリー制 御ブロック M15、及びサスペンションストローク検出手段 M13の検出結果に基づき 車両のロール方向の減衰力を制御するロール減衰制御ブロック M16を有する。
[0023] 前述のロール抑制制御は車両旋回時の車両姿勢を安定化するものであるのに対し 、スタビラィザフリー制御及びロール減衰制御は直進時の乗り心地を向上させるもの である。つまり、車両旋回時の車両姿勢安定と直進時の乗り心地向上といった相反 する事象を両立させるものである。このため、乗り心地向上のためのスタビライザフリ 一制御ブロック M15とロール減衰制御ブロック M16の何れか一方を省略した構成と することも可能である。各制御ブロック M14, Ml 5及び Ml 6では、前輪及び後輪に 配置されたスタビラィザァクチユエータ FT及び RTへの付与力が演算される。そして、 次のスタビライザ付与力目標値演算ブロック M17において、車両の走行状態を加味 して、スタビラィザァクチユエータ FT及び RTに与えられる制御力の目標値が設定さ れる。この目標値にもとづきァクチユエータのサーボ制御が実行されスタビライザァク チユエータ FT及び RTが駆動制御されるように構成されてレ、る。
[0024] スタビライザ付与力目標値演算ブロック M17における演算処理の詳細については 後述するが、例えば、車両旋回状態の程度が小さいとき、つまり、車両が略直進走行 に近い状態にあるときは、スタビラィザァクチユエータ FT及び RTへの付与力に関し て、車両旋回状態に応じて制御されるロール抑制制御(M14)からの制御目標量は 小さく設定され、スタビライザフリー制御(Ml 5)及びロール減衰制御(M16)力 の 制御目標量が大きく設定される。スタビライザフリー制御(M15)では、乗り心地を向 上させるために、スタビライザバーが本来のねじり剛性(二分割されたスタビラィザバ 一が固定された状態で有するねじり剛性をいう)に比べ、更にねじり剛性が低下する ように、スタビラィザァクチユエータ FT及び RTへの付与力が設定される。この付与力 は路面凹凸に起因して車体に伝達されるロールモーメントを低減するように作用し、 スタビライザのねじり剛性を弱めるためのものであるから、車両旋回時にロール抑制 を行う際の力の向きとは逆の方向に付与することとなる。
[0025] また、車体ロール運動に対して減衰力を発生させるために、ロール減衰制御ブロッ ク M16においては、ロール減衰制御に基づき制御目標量が設定される。そして、車 両が旋回状態となると、スタビライザフリー制御及びロール減衰制御の制御目標量は 低減され、ロール抑制制御の制御目標量が大きくなるため、確実に旋回中のロール 運動を抑制することが可能となる。
[0026] 図 4は、図 3に記載のロール抑制制御ブロック M14の具体的態様を示すもので、車 両アクティブロールモーメント目標値演算部 M21におレ、て横加速度センサ YGの信 号から得られる実横加速度 Gya、これを時間微分する実横加速度変化量 dGya、ハ ンドル角 δ f及び車両速度(車速) Vx力 演算される演算横加速度 Gye、これを時間 微分する演算横加速度変化量 dGyeに基づき車両全体でロール運動を抑制するた めに必要な車両アクティブ (能動的)ロールモーメント目標値 Rmvが演算される。尚、 演算横加速度 Gyeは次の式(1)により求められる。
Gye = (Vx2- 5 f) /{L-N- (1 +Kh-Vx ) } · · · (1)
ここで、 Lはホイールベース、 Nはステアリングギア比、 Khはスタピリティファクタである
[0027] 而して、好適なロール特性を達成するために車両全体に付与すべきアクティブロー ルモーメント目標値 Rmvは、次の式(2)により求められる。
Rmv =Kl -Gye + K2 - dGye + K3 -Gya + K4- dGya …(2)
上記の Kl、 Κ2、 Κ3、 Κ4は制御ゲインであり、下記の背景下で、後述するように設 定される。
[0028] 先ず、実際の横加速度センサにより検出される実横加速度 Gyaと、運転者のステア リング (ノヽンドル)操作に応じてハンドル角 δ fと車速 Vxに基づいて演算される演算横 加速度 Gyeとを比較すると、実横加速度 Gyaは路面凹凸の影響を受けると共に、ス テアリング (ハンドル)操作に応じた操舵作動の結果であるので、遅延した信号となる 、確実に路面状態(路面摩擦係数)の影響を反映した値となる。これに対し、演算 横加速度 Gyeは路面凹凸の影響を受けず、操舵入力(ハンドル角 δ f及び車速 Vx) に基づいて求められるので、遅延が少ない信号となるが、路面状態(路面摩擦係数) が反映されていないので、例えば摩擦限界を超えた旋回状態においては正確性を 欠くことになる。
[0029] そこで、本実施形態においては、上記式(2)の制御ゲイン Kl、 Κ2、 Κ3、 Κ4を車 両の走行状態等に応じて後述するように調整し、実横加速度 Gyaと演算横加速度 G yeにおける課題を相互補完することとしている。例えば、車両が直進状態及び旋回 状態が小さい走行状態では、演算横加速度 Gyeの情報のみ、もしくは、演算横加速 度 Gyeのスタビライザ制御への寄与度が大きくなるように設定し、能動的ロール抑制 制御を実行することとしている。これにより、車両旋回に起因する横加速度と路面凹 凸による横加速度が峻別され、乗り心地が向上するとともに、旋回時のロールを確実 に抑制することができる。以下、上記式(2)の制御ゲイン Kl、 Κ2、 Κ3、 Κ4の設定例 を順次説明する。
[0030] 図 5は、路面凹凸に起因する横加速度の影響を排除するため、演算横加速度 Gye に係る制御ゲイン Kl及び K2と実横加速度 Gyaに係る制御ゲイン K3及び K4を旋回 指標 TCに基づいて設定する態様を示すもので、旋回指標 TCは旋回状態の大小を 示す指標である。路面凹凸の影響を補償するためには、この旋回指標 TCを、路面 凹凸に影響されない指標とすることが必要であり、演算横加速度 Gye、ハンドル角 δ f及びョーレイト Yrの何れ力 \もしくは、これらの 2以上を組み合わせた指標とすること が望ましい。また、路面凹凸に起因する横加速度は最大でも 0. 1G (Gは重力加速度 を表す)程度であるため、路面凹凸の影響を受ける実横加速度 Gyaであっても、これ を旋回指標 TCとして用いることも可能である。
[0031] 例えば、演算横加速度 Gyeに係る制御ゲイン K1と実横加速度 Gyaに係る制御ゲイ ン K3の設定用マップとして、図 6に示すように、旋回指標 TCに基づいて設定すると よい。特に、旋回指標 TCが小さい場合 (TC≤TC1)には、実横加速度 Gyaに係る制 御ゲイン K3を 0として、ハンドル角 δ fに基づいて演算される演算横加速度 Gyeに応 じた制御を実行するとよい。また、演算横加速度変化量 dGyeに係る制御ゲイン K2と 実横加速度変化量 dGyaに係る制御ゲイン K4の設定用マップも、図 7に示すように、 旋回指標 TCに基づいて設定するとよい。この場合も、旋回指標 TCが小さい場合 (T C≤TC2)には、実横加速度変化量 dGyaに係る制御ゲイン K4を 0として、ハンドル 角 δ fに基づいて演算される演算横加速度変化量 dGyeに応じた制御を実行すると よい。このように、旋回指標 TCが小さい場合には、路面凹凸の影響を受けにくい演 算横加速度変化量 dGyeの制御ゲインを高めることにより、路面凹凸に起因する横加 速度の影響を抑制することができ、乗り心地を向上させることができる。
[0032] 上記の図 6及び図 7のマップにおいては、演算横加速度 Gye及び演算横加速度変 化量 dGyeのみに基づいてスタビライザ制御を実行することとしている力 本発明はこ れに限定するものではなぐ路面凹凸の影響を受けにくい演算横加速度情報沙なく とも Gye及び dGyeの何れか一方を含む)を利用し、例えば次のように設定することと してもよレ、。即ち、旋回の程度が小さいときには、演算横加速度情報の影響度を大き く設定することにより、乗り心地を向上させることができる。この場合において、演算横 加速度情報の影響度を必ずしも 100%にする必要はなぐ実横加速度情報 (少なくと も Gya及び dGyaの何れか一方を含む)の影響度が残存してレ、る構成も可能である。 また、図 8及び図 9のマップに示すように、演算横加速度情報に対して非線形な制御 ゲイン特性や、更にはこれに近似した多段折れ特性とすることも可能である。旋回の 程度が増大するに従い、演算横加速度情報の影響度を減少させ、実横加速度情報 の影響度を増加させることにより、直進時の路面凹凸の影響を抑制し、旋回時には確 実に車体ロール角を抑制することができる。
[0033] 更に、旋回指標 TCに基づいて制御ゲインを設定することにより、後述の路面摩擦 状態に対する補償にも効果を奏する。路面摩擦状態を反映して演算横加速度 Gye を求めるためには、路面摩擦係数 μ maxの情報が必要となる。この路面摩擦係数情 報は推定値であるので、実際は低摩擦係数路面であるにもかかわらず、高摩擦係数 路面とされる場合もあり得る。このような場合には、アクティブロール制御量が過剰と なるので、逆ロールが発生し、運転者に対し違和感を与えることになる。これに対し、 旋回指標 TCで表される旋回状態の増加に伴い、実横加速度 Gyaについての制御 に対する寄与度を増加させると共に、演算横加速度 Gyeの影響度を小さくすることに より、逆ロールの問題も解決される。
[0034] 上記の旋回指標に加えて、悪路判定結果、路面摩擦係数、車両の旋回状態を表 すスピン状態量 (スピンバリュー)及びドリフトアウト状態量 (ドリフトバリュー)等に基づ いて制御ゲインを設定することも可能であり、その一態様を図 10に示す。ここで、悪 路判定手段としては、前掲の特許文献 3に記載の車輪速度に基づく手段、特許文献 4に記載の加速度センサの検出結果に基づく手段がある。これらの判定結果は、一 般的に、アンチスキッド制御 (ABS)に利用されるため、ブレーキ制御ユニット ECU2 で演算処理される。また、スピン状態量 (スピンバリュー)及びドリフトアウト状態量(ドリ フトバリュー)は、車両安定性制御で必要な状態量であり、例えば前掲の特許文献 5 に記載の方法でブレーキ制御ユニット ECU2にて演算処理される。更に、路面摩擦 係数は、ブレーキ制御ユニット ECU2又は操舵制御ユニット ECU3におレ、て従来周 知の種々の方法で求められる。そして、これらの判定結果及び状態量は通信バスを 介してスタビライザ制御ユニット ECU1に入力される。
[0035] 図 11及び図 12は、上記の悪路判定結果に基づいて設定するマップの一例を示す もので、悪路と判定されたときには、演算横加速度 Gyeに係る制御ゲイン K1及び K2 の寄与割合を、悪路と判定されない通常時に比較して大きくなるように変更される。 そして、実横加速度 Gyaに係る制御ゲイン K3及び K4の寄与割合は、悪路と判定さ れたときには、通常時に比較して小さくなるように変更される。この制御ゲインの変更 により、路面凹凸が大きい悪路での走行と判定された場合には、演算横加速度 Gye に係る制御ゲイン Kl及び K2の寄与割合が増加し、実横加速度 Gyaに係る制御ゲイ ン K3及び K4の寄与割合が低下するため、乗り心地の悪化を抑止することができる。 更に、悪路と判定されると、図 4の実横加速度 Gyaフィルタのパラメータが変更され、 実横加速度 Gyaのノイズ低減処理が行われる。このノイズ低減処理の背反として信 号の遅れを惹起するが、悪路と判定された場合には、演算横加速度 Gyeに係る制御 ゲイン K1及び K2の寄与割合が増加するため、当該信号の遅れは補償されることに なる。
[0036] 次に、路面摩擦状態に応じて正確に演算横加速度 Gyeを求めるベぐブレーキ制 御ユニット ECU2又は操舵制御ユニット ECU3で演算される路面摩擦係数( a max) 力 通信バスを介してスタビライザ制御ユニット ECU1に入力される。この路面摩擦係 数 max)によって、演算横加速度 Gyeは図 13に基づいて補正される。即ち、路面 摩擦係数/ maxは、その路面で発生可能な最大横加速度を定めるものであるため、 路面摩擦係数 μ maxに基づき演算横加速度 Gyeの上限値 (Gyemax)を決定する。 例えば、図 13の上方に示すように、路面摩擦係数 i maxの値が/ i maxl (例えば 0. 4 )で、これに基づき演算横加速度の上限値 Gyemaxが Gyemaxl ( = 0. 4G)と設定さ れている場合には、上記式(1)から演算横加速度 Gyeが 0. 6Gと演算されていても、 図 13の下方に示すように Gyemaxl ( = 0. 4G)として出力される。これにより、実際の 路面状態に即して演算横加速度の精度を向上させることができる。
[0037] また、路面摩擦係数の補償は制御ゲインの調整によっても可能である。例えば、図 14及び図 15に示すように、路面摩擦係数(μ max)が相対的に低い場合には演算横 加速度 Gyeの寄与度を低下させ、実横加速度 Gyaの寄与度を増加させればょレ、。 図 14及び図 15は路面摩擦係数に応じた制御ゲイン設定用のマップを示すもので、 路面摩擦係数( μ max)が低レ、場合には演算横加速度 Gyeに係る制御ゲイン Kl及 び K2を低く設定し、実横加速度 Gyaに係る制御ゲイン K3及び K4を相対的に高く設 定する。そして、路面摩擦係数 max)が高い場合には、制御ゲイン K1及び K2を 相対的に高くすると共に、制御ゲイン K3及び K4の寄与度を低下させればよい。
[0038] 更に、上記の路面摩擦係数の影響を、車両安定性制御で求められる状態量によつ て補償することも可能である。図 16及び図 17は、スピン状態量 (スピンバリュー)又は ドリフトアウト状態量(ドリフトバリュー)に対する制御ゲイン設定用のマップを示すもの で、スピンバリュー SV又はドリフトバリュー DVが大きく出力されている場合には、実 横加速度 Gyaに係る制御ゲイン K3及び K4の寄与度を増加させ、演算横加速度 Gy eに係る制御ゲイン K1及び K2の寄与度を減少させるとよい。
[0039] 前述の図 4に戻り、前後輪ロール剛性比率目標値演算部 M23においては、ロール 剛性の前後比率目標値が以下のように設定される。先ず、車両速度(車速) Vxに基 づき前輪側及び後輪側のロール剛性比率の初期値 Rsrfo、 Rsrroが設定される。前輪 ロール剛性比率の初期値 Rsrfoは、図 18に示すように車両速度 Vxが低い状態では 低ぐ高い状態では高くなるように設定され、高速走行においてはアンダステア傾向 が強くなるように設定される。そして、後輪ロール剛性配分比率の初期値 Rsrroは(1- Rsrfo)で設定される。次に、車両挙動判定演算部 M22において、車両ステア特性を 判別するために、ハンドル角 δ fと車両速度 Vxから目標ョーレイト Yreが演算され、実 際のョーレイト Yrと比較されてョーレイト偏差 A Yrが演算され、このョーレイト偏差 Δ Yrに基づき、ロール剛性比率補正値 Rsraが演算される。
[0040] この結果、車両がアンダステア傾向にある場合には前輪側ロール剛性比率を低め 、後輪側のそれを高める補正が行われる。逆に、オーバステア傾向にある場合には 前輪側ロール剛性比率を高め、後輪側のそれを低める補正が行われる。そして、前 輪及び後輪アクティブロールモーメント目標値演算部 M24において、車両アクティブ ロールモーメント目標値 Rmv、並びに前後輪ロール剛性比率目標値 Rsrf及び Rsrrに 基づき、前輪及び後輪アクティブロールモーメント目標値 Rmf及び Rmr力 夫々 Rm f = Rmv · Rsrf、 Rmr = Rmv · Rsrrとして設定される。
[0041] 次に、前述の図 3に記載のスタビライザフリー制御ブロック Ml 5の一態様について 、図 19を参照して説明する。ここでは、前輪側の制御ブロック図が示されるが、後輪 側の制御もこれと同様である。各車輪に設けられたストロークセンサ HSxxから各車輪 位置での車体と車輪の相対変位である車輪ストローク Stxxが求められる。これらの車 輪ストローク情報に基づき、前輪及び後輪のストローク左右差 stf及び Strが、夫々 S tf = Stfr-Stfl,及び Str=Strr— Strlとして求められる(M31)。スタビライザフリー制 御においては 1一 3Hzの路面入力においてその効果が顕著であるため、ストローク 左右差 Stf及び Strが周波数フィルタ M32にてフィルタ処理される。
[0042] そして、乗り心地を向上させるため、スタビライザバーのねじりばね力の発生を低減 又はゼロとするように、ストローク左右差 Stf及び Strに応じてその制御目標値が演算 される(M33)。而して、前輪及び後輪のロール剛性低減目標値 Rrf及び Rrrは、夫 々、Rrf = Sgf'K7 ' Sbsf' Stf、及び Rrr = Sgr'K8 ' Sbsr' Strとして演算される。ここ で、 Sgf及び Sgrはスタビライザのねじりばね力をロール軸回りのモーメント(ロールモ ーメント)に変換する係数で、スタビライザバーのアーム長、取付け位置などによって 設定される値である。また、 Sbsf及び Sbsrは前輪及び後輪のスタビライザバー本来の ねじり剛性、 K7及び K8はねじりばね力の低減量を設定する係数である。尚、スタビ ライザバーのねじり剛性が非線形である場合などには、予め実験的に求めたストロー ク左右差とロール剛性低減量のマップに基づき目標値 Rrf及び Rrrを設定することも 可能である。
[0043] また、図 3に記載のロール減衰制御ブロック M16の一態様について、図 20に前輪 側の制御ブロックを示す (後輪側の制御も同様であるので省略)。各車輪に設けられ たストロークセンサ HSxxで検出された各車輪位置での車体と車輪の相対変位である 車輪ストローク Stxxから、前輪及び後輪のストローク左右差 Stf及び Strが、夫々 Stf = Stfr-Stfl、及び Str= Stn^Strlとして求められる。そして、これらのストローク左右 差 Stf及び Strの時間変化量である車輪(図 20では前輪)のストローク速度左右差 dS tf及び dStrが演算される(M41)。ロール減衰を与える場合、 1一 3Hzの路面入力に おいてその効果がある反面、それ以上の周波数については乗り心地が悪化すること がある。このため、ストローク速度左右差 dStf及び dStrはローパスフィルタ処理され( M42)、 4一 5Hz以上の周波数領域の成分が遮断される。
[0044] そして、ロール減衰力を与えることにより乗り心地を向上させるため、ストローク速度 左右差 dStf及び dStrに応じてその制御目標値が演算される。即ち、前輪及び後輪 のロール減衰力目標値 Rdf、 Rdrは、 Rdf=Sgf'K9 ' Sbsf' dStf、 Rdr=Sgr-K10 - Sbsr' dStrとして演算される。ここで、 K9及び K10はロール減衰力の付与量を設定 する係数である。尚、スタビライザバーのねじり剛性が非線形である場合などには、予 め実験的に求めた車輪のストローク速度左右差とロール減衰力のマップにもとづき目 標値 Rdf、 Rdrを設定することも可能である。
[0045] 而して、図 3に示すスタビライザ付与力目標値演算ブロック M17の一態様として、 図 21に示すように、前述の図 4にて設定されるロール抑制制御の前輪アクティブロー ルモーメント目標値 Rmf、図 19にて設定されるスタビライザフリー制御の前輪ロール 剛性低減目標値 Rrf、及び、図 20にて設定されるロール減衰力目標値 Rdfに基づき 、最終的なスタビラィザァクチユエータの付与力の目標値 Rtfが設定される。これらは 前輪側の制御に係るものである力 後輪側の制御も同様であるので、以下、前輪側 の制御を中心に説明する。
[0046] 図 21において、前輪ァクチユエータ付与力目標値 Rtfは、 Rtf =Rmf-K5 -Rrf + K6 'Rdfとして設定される。尚、 K5及び K6は、制御全体に対するスタビライザフリー 制御及びロール減衰制御の寄与度を設定する制御ゲインであり、図 22及び図 23に 示すように設定される。前述のように、ロール抑制制御は旋回時のロール運動の抑制 をねらいとし、スタビライザフリー制御及びロール減衰制御は主に直進時の乗り心地 向上を目的とする。従って、ロール抑制制御においては、前述の図 6及び図 7に示す ように旋回状態の程度が小さい場合には演算横加速度 Gyeに係る制御ゲイン K1及 び K2を実横加速度 Gyaに係る制御ゲイン K3及び K4より大きく設定して路面凹凸の 影響を受けなレ、ようにしてレ、る。
[0047] 一方、乗り心地向上を目的としたスタビライザフリー制御及びロール減衰制御にお いては、夫々図 22及び図 23に示すように、旋回状態の程度が小さい場合 (旋回指 標 TC力 TC3及び TC4より小で、直進走行状態に近い場合)には制御ゲイン K5及 び K6を大きく設定し、旋回の程度が増加するに従い制御ゲインを低下させるように 設定されている。尚、図 22及び図 23における旋回状態を表す旋回指標 TCも前述と 同様、演算横加速度 Gyeのほか、実横加速度 Gya、ハンドル角 δ f、あるいはョーレ イト Yrに対する制御ゲインマップを用いることも可能である。また、演算横加速度 Gye 、実横加速度 Gya、ハンドル角 δ f及びョーレイト Yrの何れか二以上の情報を組み合 わせて用いることもできる。
尚、図 21の実施形態では、乗り心地向上制御として、スタビライザフリー制御とロー ル減衰制御の双方を含んでいるが、何れか一方を含む態様とすることも可能であり、 前後車輪にぉレ、てこれらの有無を組み合わせることも可能となる。これをまとめると、 下記の表 1に示すような組み合わせから成る実施形態を構成することができる。表 1 中では、〇印は「具備する」(最上段の機能を有する)、 Xは「具備しなレ、」(最上段の 機能を有しない)を意味する。また、 No. 1乃至 15は、〇印の要件を組み合わせて成 る実施形態を表す。
[表 1]
Figure imgf000019_0001
そして、図 21に示すように設定された前輪及び後輪のァクチユエータ付与力目標 値 Rtf及び Rtrに基づき、図 24に示すように、電気モータ Mの出力目標値が設定さ れる(M51)。即ち、上記のように演算されたモータ出力目標値と実モータ出力値が 比較され、モータ出力偏差が演算される(M52)。更に、この偏差に応じて電気モー タ Mへの PWM出力が設定され(M53)、この PWM出力によってモータ駆動回路 C Tのスイッチング素子が制御され、電気モータ Mが駆動制御される。
以上のように、本発明においては、直進時及び旋回の程度が小さい場合に、路面 凹凸による車体へのロール入力を低減するためにスタビライザのねじり剛性を低下さ せることとしてレ、る。つまり、路面凹凸に起因するロールモーメントを、スタビライザに 対し外部より力を付与することによって低減することとしている。また、ロール運動に対 する減衰力を与えることも可能であるため、乗り心地が向上する。そして、旋回状態が 大きくなると、スタビライザフリー制御及びロール減衰制御の制御ゲインを低下させ、 能動的なロール抑制制御の制御ゲインを高めるように構成されているため、確実に口 ール運動を抑制することができる。

Claims

請求の範囲
[1] 車両の左右車輪間に配設されるスタビライザのねじり剛性を制御し、前記車両の旋 回状態に応じて車体のロール運動を能動的に制御するスタビライザ制御装置におい て、前記車両前方及び後方の少なくとも一方の車軸で前記車体と前記左右車輪の 相対変位を検出する車輪ストローク検出手段と、該車輪ストローク検出手段の検出結 果に基づき車輪ストローク左右差及び車輪ストローク速度左右差の少なくとも一方を 演算する車輪ストローク差演算手段と、前記車両が直進走行状態にある場合には、 前記車輪ストローク差演算手段の演算結果に基づき前記スタビライザのねじり剛性を 制御するための外部付与力を設定する外部付与力設定手段とを備えたことを特徴と するスタビライザ制御装置。
[2] 前記外部付与力設定手段は、前記車輪ストローク差に基づいて定められるロール 剛性低減目標値に基づき前記外部付与力を設定することを特徴とする請求項 1記載 のスタビライザ制御装置。
[3] 前記外部付与力設定手段は、前記車輪ストローク速度差に基づいて定められる口 ール減衰力目標値に基づき前記外部付与力を設定することを特徴とする請求項 1記 載のスタビライザ制御装置。
[4] 前記外部付与力設定手段は、前記車輪ストローク差に基づいて定められるロール 剛性低減目標値及び、前記車輪ストローク速度差に基づいて定められるロール減衰 力目標値に基づき前記外部付与力を設定することを特徴とする請求項 1記載のスタ ビライザ制御装置。
[5] 前記外部付与力設定手段は、前記車輪ストローク差に基づいて定められるロール 剛性低減目標値、前記車輪ストローク速度差に基づいて定められるロール減衰力目 標値、及び、車両のアクティブロールモーメント目標値に基づき前記外部付与カを設 定することを特徴とする請求項 1記載のスタビライザ制御装置。
[6] 請求項 5に記載のスタビライザ制御装置において、前記外部付与力設定手段は、 以下の式により前記外部付与力を設定することを特徴とする。
Rt=Rm-K5 -Rr (St) +K6 -Rd (dSt)
ここで、 Rt :外部付与力
Rm:車両のアクティブロールモーメント目標値
Rr (St):車輪ストローク差に基づレ、て定められるロール剛性低減目標値
Rd (dSt):車輪ストローク速度差に基づいて定められるロール減衰力目標値
K5、 Κ6 :制御ゲイン
St :車輪ストローク差
dSt:車輪ストローク速度差である。
車両の左右車輪間に配設されるスタビライザバーを有するスタビライザに対し、該ス タビラィザのねじり剛性を制御し、前記車両の旋回状態に応じて車体のロール運動を 能動的に制御するスタビライザ制御装置におレ、て、前記車両前方及び後方の少なく とも一方の車軸で前記車体と前記左右車輪の相対変位を検出する車輪ストローク検 出手段と、該車輪ストローク検出手段の検出結果に基づき車輪ストローク左右差を演 算する車輪ストローク左右差演算手段と、該車輪ストローク左右差演算手段の演算 結果に基づき前記スタビライザのねじり剛性を制御するための外部付与力を設定す る外部付与力設定手段と、前記車両の旋回状態を表す旋回指標を設定する旋回指 標設定手段とを備え、該旋回指標設定手段が設定した旋回指標に応じて、前記外 部付与力設定手段が設定した外部付与力によって、前記スタビライザバーのねじり 剛性を、前記スタビライザバーが本来有する値より低下させるように構成したことを特 徴とするスタビライザ制御装置。
PCT/JP2005/002925 2004-02-26 2005-02-23 スタビライザ制御装置 WO2005082650A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05719433A EP1719643A4 (en) 2004-02-26 2005-02-23 STABILIZER CONTROL
US10/587,716 US20070150144A1 (en) 2004-02-26 2005-02-23 Stabilizer control apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-051295 2004-02-26
JP2004051295A JP2005238971A (ja) 2004-02-26 2004-02-26 スタビライザ制御装置

Publications (1)

Publication Number Publication Date
WO2005082650A1 true WO2005082650A1 (ja) 2005-09-09

Family

ID=34908629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/002925 WO2005082650A1 (ja) 2004-02-26 2005-02-23 スタビライザ制御装置

Country Status (5)

Country Link
US (1) US20070150144A1 (ja)
EP (1) EP1719643A4 (ja)
JP (1) JP2005238971A (ja)
CN (1) CN1922043A (ja)
WO (1) WO2005082650A1 (ja)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4285343B2 (ja) 2004-07-07 2009-06-24 トヨタ自動車株式会社 車輌のロール剛性制御装置
JP4696983B2 (ja) * 2006-03-15 2011-06-08 トヨタ自動車株式会社 車輌振動に応じてアクティブスタビライザが制御される車輌
JP4438763B2 (ja) 2006-03-20 2010-03-24 トヨタ自動車株式会社 車両用スタビライザシステム
JP4655993B2 (ja) * 2006-05-10 2011-03-23 トヨタ自動車株式会社 車両用スタビライザシステム
JP4670800B2 (ja) * 2006-11-30 2011-04-13 トヨタ自動車株式会社 車両のロール剛性制御装置
FR2912083B1 (fr) * 2007-02-01 2009-03-20 Renault Sas Systeme et procede de commande en boucle ouverte d'un systeme antiroulis actif par typage de la vitesse en lacet d'un vehicule base sur un modele non lineaire deux roues
JP2008265565A (ja) * 2007-04-20 2008-11-06 Toyota Motor Corp スタビライザ装置
JP4882848B2 (ja) * 2007-04-23 2012-02-22 アイシン精機株式会社 統合車体挙動制御装置
JP2008285006A (ja) 2007-05-17 2008-11-27 Advics:Kk 車両駆動輪荷重制御装置
JP5046827B2 (ja) * 2007-09-21 2012-10-10 本田技研工業株式会社 車両用電動ダンパ装置
JP4333792B2 (ja) 2007-10-17 2009-09-16 トヨタ自動車株式会社 車体ロール抑制システム
EP2065295A1 (en) * 2007-11-27 2009-06-03 TNO Bedrijven B.V. Suspension assembly for suspending a cabin of a truck or the like vehicle
JP5291950B2 (ja) * 2008-02-25 2013-09-18 本田技研工業株式会社 減衰力可変ダンパの制御装置および制御方法
FR2934814B1 (fr) * 2008-08-06 2010-09-10 Renault Sas Procede et systeme de commande des actionneurs d'un dispositif antiroulis bi-train.
WO2010092687A1 (ja) 2009-02-16 2010-08-19 トヨタ自動車株式会社 車両のスタビライザ制御装置
CN103209844B (zh) * 2010-11-15 2016-01-13 丰田自动车株式会社 车辆控制装置
DE102013207385A1 (de) * 2012-05-16 2013-11-21 Ford Global Technologies, Llc Radaufhängung für ein Fahrzeug
JP6154167B2 (ja) * 2013-03-28 2017-06-28 株式会社Subaru サスペンション装置
DE102013223424B4 (de) * 2013-07-17 2021-03-04 Schaeffler Technologies AG & Co. KG Verfahren für den Betrieb eines Kraftfahrzeugs zur Erkennung einer Überbeanspruchung eines Wankstabilisators
DE102013110953A1 (de) * 2013-10-02 2015-04-02 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zum Betreiben einer Stabilisatoranordnung
DE102014203388A1 (de) * 2014-02-25 2015-08-27 Zf Friedrichshafen Ag Stabilisator zur Wankstabilisierung eines Fahrzeugs und Verfahren zum Betreiben eines solchen Stabilisators
KR20160044362A (ko) * 2014-10-15 2016-04-25 현대자동차주식회사 현가시스템의 제어방법
JP6002200B2 (ja) * 2014-12-04 2016-10-05 Kyb株式会社 信号処理装置
KR101916537B1 (ko) * 2016-11-14 2018-11-07 현대자동차주식회사 통합샤시 시스템 협조제어 방법 및 차량
EP3548318B1 (en) * 2016-11-29 2020-10-21 Volvo Truck Corporation A method for controlling wheel axle suspension of a vehicle
JP6583255B2 (ja) * 2016-12-27 2019-10-02 トヨタ自動車株式会社 車両走行制御装置
JP2018165060A (ja) * 2017-03-28 2018-10-25 Ntn株式会社 車両制御装置
DE102017209144A1 (de) * 2017-05-31 2018-12-06 Zf Friedrichshafen Ag Vorrichtung und Verfahren zur Wankstabilisierung
JP6638707B2 (ja) * 2017-07-27 2020-01-29 トヨタ自動車株式会社 サスペンション制御システム
US10940735B2 (en) * 2018-06-08 2021-03-09 Mando Corporation Vehicle control apparatus and vehicle control method
KR102589031B1 (ko) * 2018-12-06 2023-10-17 현대자동차주식회사 액티브 서스펜션 제어유닛 및 액티브 서스펜션 제어방법
US11279195B2 (en) * 2019-07-30 2022-03-22 Honda Motor Co., Ltd. Individual active torsional springs
DE102019213272A1 (de) * 2019-09-03 2021-03-04 Zf Friedrichshafen Ag Verfahren zum Betreiben eines verstellbaren Wankstabilisators
US11383575B2 (en) * 2020-02-25 2022-07-12 GM Global Technology Operations LLC Variable tire lateral load transfer distribution
CN111746537B (zh) * 2020-06-22 2022-05-17 重庆长安汽车股份有限公司 基于路面平整度的自适应巡航车速控制系统、方法及车辆
JP7264126B2 (ja) * 2020-07-28 2023-04-25 トヨタ自動車株式会社 スタビライザシステム
US11865891B2 (en) 2020-10-30 2024-01-09 GM Global Technology Operations LLC Method and system for active roll control
GB2618367A (en) * 2022-05-05 2023-11-08 Jaguar Land Rover Ltd Vehicle roll control

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6064016A (ja) * 1983-09-20 1985-04-12 Nissan Motor Co Ltd 車両におけるスタピライザ制御装置
JPS60157911A (ja) * 1984-01-27 1985-08-19 Nissan Motor Co Ltd 車両におけるサスペンシヨン制御装置
JPS60191802A (ja) * 1984-03-13 1985-09-30 Nissan Motor Co Ltd 車両用サスペンシヨン制御装置
JPH0398105U (ja) * 1990-01-29 1991-10-11
JPH03231018A (ja) * 1990-02-07 1991-10-15 Mazda Motor Corp ロールダンパ装置
JPH08132844A (ja) * 1994-11-08 1996-05-28 Toyota Motor Corp 車両用スタビライザ制御装置
JPH08268027A (ja) 1995-03-31 1996-10-15 Kayaba Ind Co Ltd スタビライザの剛性制御構造
JPH0920223A (ja) 1995-07-07 1997-01-21 Nippondenso Co Ltd 路面状態識別装置
JPH09193776A (ja) 1996-01-16 1997-07-29 Toyota Motor Corp 車輌の挙動制御装置
JP2001047839A (ja) * 1999-08-06 2001-02-20 Toyota Motor Corp 車両のサスペンション装置
JP2001063544A (ja) 1999-08-27 2001-03-13 Hino Motors Ltd 悪路判定装置
JP2002518245A (ja) 1998-06-25 2002-06-25 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 車両の横揺れ安定化装置および方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060024A (ja) * 1983-09-09 1985-04-06 Nissan Motor Co Ltd 車両におけるロ−ル剛性制御装置
GB9304570D0 (en) * 1993-03-05 1993-04-21 Jaguar Cars Vehicle suspension systems
EP1425209B8 (en) * 2001-09-12 2009-04-08 Hendrickson International Corporation Direction/distance sensing vehicle function control system
US6684140B2 (en) * 2002-06-19 2004-01-27 Ford Global Technologies, Llc System for sensing vehicle global and relative attitudes using suspension height sensors
US7237785B2 (en) * 2002-10-25 2007-07-03 Schaeffler Kg Roll stabilizer for the chassis of a motor vehicle
KR20080040058A (ko) * 2003-03-28 2008-05-07 아이신세이끼가부시끼가이샤 차량용 스태빌라이저 제어 장치

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6064016A (ja) * 1983-09-20 1985-04-12 Nissan Motor Co Ltd 車両におけるスタピライザ制御装置
JPS60157911A (ja) * 1984-01-27 1985-08-19 Nissan Motor Co Ltd 車両におけるサスペンシヨン制御装置
JPS60191802A (ja) * 1984-03-13 1985-09-30 Nissan Motor Co Ltd 車両用サスペンシヨン制御装置
JPH0398105U (ja) * 1990-01-29 1991-10-11
JPH03231018A (ja) * 1990-02-07 1991-10-15 Mazda Motor Corp ロールダンパ装置
JPH08132844A (ja) * 1994-11-08 1996-05-28 Toyota Motor Corp 車両用スタビライザ制御装置
JPH08268027A (ja) 1995-03-31 1996-10-15 Kayaba Ind Co Ltd スタビライザの剛性制御構造
JPH0920223A (ja) 1995-07-07 1997-01-21 Nippondenso Co Ltd 路面状態識別装置
JPH09193776A (ja) 1996-01-16 1997-07-29 Toyota Motor Corp 車輌の挙動制御装置
JP2002518245A (ja) 1998-06-25 2002-06-25 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 車両の横揺れ安定化装置および方法
JP2001047839A (ja) * 1999-08-06 2001-02-20 Toyota Motor Corp 車両のサスペンション装置
JP2001063544A (ja) 1999-08-27 2001-03-13 Hino Motors Ltd 悪路判定装置

Also Published As

Publication number Publication date
EP1719643A1 (en) 2006-11-08
JP2005238971A (ja) 2005-09-08
CN1922043A (zh) 2007-02-28
US20070150144A1 (en) 2007-06-28
EP1719643A4 (en) 2007-12-05

Similar Documents

Publication Publication Date Title
WO2005082650A1 (ja) スタビライザ制御装置
JP4421330B2 (ja) スタビライザ制御装置
JP4285343B2 (ja) 車輌のロール剛性制御装置
US6505108B2 (en) Damper based vehicle yaw control
JP4336217B2 (ja) スタビライザ制御装置
JP4511815B2 (ja) サスペンション制御装置
EP1714809B1 (en) Stabilizer controller
JP6273059B1 (ja) 車両制御装置、および、車両
JP6279121B1 (ja) 制御装置、および、ステアリング装置
JP4333660B2 (ja) ロール角制御とロール剛性前後配分比制御を組み合わせた車輌
JP4303140B2 (ja) スタビライザ制御装置
JP6543393B1 (ja) ステアリング制御装置及びステアリング装置
JP4045445B2 (ja) スタビライザ制御装置
WO2019130600A1 (ja) 車両制御装置、および、車両
JP2008143259A (ja) 制駆動力制御装置、自動車及び制駆動力制御方法
JP4876924B2 (ja) 車両のロール制御装置
US20080073864A1 (en) Method for the Operation of a Single-Axle Roll Stabilization System of a Two-Axle, Double-Track Vehicle
JP4706832B2 (ja) 車輪のタイヤグリップ度推定装置
JP2009173169A (ja) 車両制御装置
JP6553256B1 (ja) ステアリング制御装置及びステアリング装置
JP4457842B2 (ja) 車輌のロール運動制御装置
JP2009179088A (ja) 減衰力可変ダンパの制御装置
JP2003154830A (ja) 車両のスタビライザ装置および横加速度検出装置
JP2007030832A (ja) 車輌の走行運動制御装置
JP2020001692A (ja) ラック軸力推定装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005719433

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007150144

Country of ref document: US

Ref document number: 10587716

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580005750.7

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2005719433

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10587716

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2005719433

Country of ref document: EP