WO2005081393A1 - 作業機械の動力源装置 - Google Patents

作業機械の動力源装置 Download PDF

Info

Publication number
WO2005081393A1
WO2005081393A1 PCT/JP2005/000183 JP2005000183W WO2005081393A1 WO 2005081393 A1 WO2005081393 A1 WO 2005081393A1 JP 2005000183 W JP2005000183 W JP 2005000183W WO 2005081393 A1 WO2005081393 A1 WO 2005081393A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
engine
storage device
battery
actuator
Prior art date
Application number
PCT/JP2005/000183
Other languages
English (en)
French (fr)
Inventor
Masayuki Kagoshima
Toshio Sora
Masayuki Komiyama
Original Assignee
Kobelco Construction Machinery Co., Ltd.
Kabushiki Kaisha Kobe Seiko Sho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Construction Machinery Co., Ltd., Kabushiki Kaisha Kobe Seiko Sho filed Critical Kobelco Construction Machinery Co., Ltd.
Priority to EP05703422A priority Critical patent/EP1720244A4/en
Priority to US10/588,704 priority patent/US7525206B2/en
Publication of WO2005081393A1 publication Critical patent/WO2005081393A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/08Prime-movers comprising combustion engines and mechanical or fluid energy storing means
    • B60K6/12Prime-movers comprising combustion engines and mechanical or fluid energy storing means by means of a chargeable fluidic accumulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/25Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by controlling the electric load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B23/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01B23/10Adaptations for driving, or combinations with, electric generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/246Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/40Special vehicles
    • B60Y2200/41Construction vehicles, e.g. graders, excavators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present invention relates to a power source device for a hybrid working machine that uses both engine power and electric power.
  • a parallel type driving machine for example, an excavator having a parallel driving mode is known (see Japanese Patent Application Laid-Open No. 10-42587).
  • a hydraulic pump and a power machine that performs a generator operation and an electric motor operation are connected in parallel to an engine as a common power source. Then, the hydraulic pump is driven by the hydraulic pump, and the power storage device is charged by the generator function of the power machine. In addition, when necessary, the discharge power of the power storage device causes the power machine to perform a motor action to assist the engine.
  • a power storage device such as a battery (secondary battery) such as a lithium-ion battery and a capacitor (electric double layer capacitor) depend on the charge amount. The larger the maximum discharge power, the smaller the power.
  • the known technology adopts a configuration in which the power distribution between the engine and the power storage device is determined regardless of the charge amount of the power storage device. For this reason, depending on the load condition, the power of the power storage device becomes too small or exceeds the capacity and becomes too large.
  • the present invention provides a power source device for a working machine that determines the power distribution between the engine and the power machine according to the charge amount of the power storage device and can keep the charge amount of the power storage device in an appropriate range. is there.
  • the present invention employs the following configuration.
  • a hydraulic pump that drives a hydraulic actuator and a power machine that performs a generator function and a motor function are connected in parallel to an engine as a common power source, and the power storage device is charged by the generator function of the power machine.
  • a power source device of a working machine configured such that the power machine is driven by the discharge power of the power storage device to perform an electric motor operation includes the following units.
  • (C) power storage device power setting means for setting charge power and discharge power in accordance with a change in the amount of charge in a direction in which the amount of charge of the power storage device is maintained within a certain range;
  • Power machine control means for controlling the power of the power machine based on the power distribution determined by the power distribution means.
  • the charge / discharge power and the engine power of the power storage device are set according to the charge amount of the power storage device. That is, when the charge amount decreases, the discharge power, which increases the charging power, is reduced, and the engine power is increased. Then, the power distribution between the engine and the power unit is performed based on the set value and the required power of the actuator. For this reason, the charge amount of the power storage device can be maintained within a certain range, that is, a range where the capacity of the power storage device can be effectively used, and the deterioration of the power storage device can be suppressed by preventing overcharge and overdischarge.
  • FIG. 1 is a system configuration diagram showing a first embodiment of the present invention.
  • FIG. 2 is a block diagram showing a configuration of a controller in FIG. 1.
  • FIG. 3 is a diagram showing characteristics of discharge power with respect to a charge amount and a temperature of a battery.
  • FIG. 4 is a diagram showing characteristics of charging power with respect to a charging amount and a temperature of a battery.
  • FIG. 5 is a diagram showing characteristics of engine power 1 (lower limit) with respect to battery charge.
  • FIG. 6 is a graph showing characteristics of engine power 2 (upper limit value) with respect to the amount of battery charge.
  • FIG. 7 is a diagram showing a power distribution flow in power distribution means.
  • FIG. 8 is a diagram showing a power distribution flow continued from FIG. 7.
  • FIG. 9 is a diagram showing a flow of responsiveness correction for engine power.
  • FIG. 10 is a system configuration diagram showing a second embodiment of the present invention.
  • FIG. 11 is a block diagram showing a configuration of a controller.
  • a battery a secondary battery such as a lithium ion battery
  • a power storage device a case where a battery (a secondary battery such as a lithium ion battery) is used as a power storage device will be exemplified.
  • a hydraulic pump 3 is connected to an engine 1 via a power divider 2, and a generator / motor 4 as a power machine that performs a generator action and a motor action by one unit is connected in parallel. , These are driven by the engine 1.
  • the hydraulic pump 3 is provided with a hydraulic actuator (not shown) (for example, a boom, Arms, bucket cylinders, traveling hydraulic motors, etc.) are connected, and these hydraulic actuators are driven by hydraulic oil supplied from the hydraulic pump 3.
  • a hydraulic actuator for example, a boom, Arms, bucket cylinders, traveling hydraulic motors, etc.
  • FIG. 1 shows a case where only one hydraulic pump 3 is connected, a plurality of hydraulic pumps 3 may be connected in series or in parallel.
  • a battery 7 as a power storage device is connected to the generator / motor 4 via an inverter 6 as power motor control means.
  • the inverter 6 switches between the generator operation and the motor operation of the generator / motor 4, controls the generated power and the current or torque as the motor, and controls the power generation of the generator / motor 4.
  • the charge / discharge of the battery 7 is controlled according to the output of the machine.
  • the following information is input to the controller 8.
  • FIG. 2 shows the configuration of the controller 8 in detail.
  • the controller 8 includes, as described above, a battery charge amount detecting means 9 for obtaining a battery charge amount from a battery current, a battery temperature detecting means 10 for obtaining a battery temperature, and an engine in accordance with the battery charge amount and temperature.
  • a battery charge amount detecting means 9 for obtaining a battery charge amount from a battery current
  • a battery temperature detecting means 10 for obtaining a battery temperature
  • an engine in accordance with the battery charge amount and temperature (1) an engine power setting means (11) for setting the power of the battery (1), a battery power setting means (12) for setting the power of the battery (charge request power and discharge request pulse) according to the battery charge amount and the temperature,
  • An actuator required power detecting means 13 for obtaining the power required by the actuator for the discharge amount and the number of rotations, and a power distribution means 14 for determining the power distribution between the engine 1 and the battery 7 are provided.
  • the required charging power and required discharging power are tabulated with respect to the battery charge of charge and temperature, and the values corresponding to the detected battery charge and temperature are selected and set.
  • the engine power setting means 11 for example, as shown in Figs. 5 and 6, the relationship between the engine power and the battery charge amount (the engine power increases as the charge amount decreases) is tabulated in advance. Then, the engine power corresponding to the detected battery charge is selected and set.
  • the set value of the engine power is defined as a range within which the engine 1 can be operated with high efficiency, and includes a lower limit (battery power 1) shown in FIG. 5 and an upper limit (battery power 2) shown in FIG. It is defined as a value between them.
  • the required power of the actuator the required power of the battery charge, the required power of the battery discharge, and the required power of the engine determined or set as described above. Based on the above, power distribution between the engine 1 and the battery 7 is performed.
  • PWbd Required battery discharge power ( ⁇ 0)
  • PWb Battery power
  • PWegmax is a constant determined by the performance of the engine.
  • the discharge of the battery 7 is defined as +, and the charge is defined as one.
  • step S 1 of FIG. 7 the required actuator power PWpws is compared with the lower limit value PWegl of the engine power.
  • the required actuator power PWpws is smaller than the engine power lower limit PWegl (in the case of YES)
  • the battery power PWb the actuator required power PWpws—engine power.
  • the engine power is set to 0 (steps S5 and S6).
  • the setting is made such that the required power of the actuator is handled by the engine 1 (step S8).
  • step S9 of FIG. 8 when it is determined that engine power 2 ⁇ actuator required power ⁇ (engine power 2 + battery discharge required power), that is, the required actuator power is engine power 2 and (engine power 2 + Battery discharge required power) in step S10.
  • step S11 If it is determined in step S11 that (engine power 2PWeg2 + battery discharge request power PWbd) ⁇ actuator request power PWpws (engine maximum power PWegmax + battery discharge request power PWbd), that is, the actuator request power is If it is determined that it is between (engine power 2 + required battery discharge power) and (engine maximum power + required battery discharge power), in step S12,
  • Engine power PWeg 7 Required power PWpws—Battery power PWb.
  • the battery 7 takes charge of only the required battery discharge power, and the remainder takes charge of engine 1.
  • step S11 If (engine maximum power PWegmax + battery discharge required power PWbd) ⁇ actuator required power PWpws (NO in step S11), that is, if the actuator required power exceeds the capacity of engine 1 and battery 7,
  • Engine power PWeg engine maximum power PWegmax (Step SI 3).
  • the power of the generator / motor 4 is obtained by the following equation.
  • the generator torque power thus determined is transmitted from the power distribution means 14 to the inverter 6 in FIG. 1 as a generator torque command value. Then, based on this, the generator / motor 4 is controlled so as to have the output torque according to the command value.
  • the charge / discharge power of the battery 7 and the engine power are set according to the charge amount of the battery 7. Then, the power distribution between the engine 1 and the power unit 4 is performed based on the set value and the required power of the actuator. For this reason, the charge amount of the battery 7 is kept within a certain range, that is, a range where the battery capacity can be used effectively and the deterioration of the battery 7 can be suppressed by preventing overcharge and overdischarge.
  • the charge / discharge power is set according to the temperature of the notch 7, the charge / discharge power can be set to an appropriate value corresponding to the battery temperature.
  • a lower limit (PWegl) and an upper limit (PWeg2) of the engine power are determined by the engine power setting means 11, and between the lower limit and the upper limit, the engine power is changed according to the charge amount of the battery 7.
  • Set the gin power Therefore, by setting this set range as a range in which the engine can be operated with high efficiency, the operating efficiency of the engine 1 can be increased.
  • the power distribution means 14 corrects the engine power set value so that the engine power changes according to the dynamic characteristics of the engine. For this reason, it is possible to prevent a decrease in the engine speed or engine stall due to a sudden increase in the power burden on the engine.
  • a capacitor 15 is used as a power storage device.
  • the converter 16 is provided as a controller.
  • a DC circuit connecting the inverter 6 and the converter 16 is provided with a voltage sensor 17 for detecting a DC voltage.
  • controller 18 differs from the controller 8 of the first embodiment (FIGS. 1 and 2) only in that a DC voltage control means 19 is added as shown in FIG.
  • Capacitor charge amount detection means 20, capacitor temperature detection means 21, and capacitor power setting means 22 in FIG. 11 correspond to battery charge amount detection means 9, battery temperature detection means 10, It corresponds to the battery power setting means 12.
  • the operation is basically the same as that of the first embodiment. That is, the charge / discharge characteristics similar to those in FIGS. 3 and 4 are set by the capacitor power setting means 22 according to the charge amount and the temperature of the capacitor 15. Then, the engine power setting means 11 sets the engine power in the same manner as in FIGS.
  • power distribution between engine 1 and capacitor 15 is performed according to the same distribution flow as in Figs.
  • the DC voltage control means 19 outputs a current command to the converter 16 so that the DC voltage is constant by feeding back the voltage of the DC circuit connecting the inverter 6 and the converter 16.
  • the same effect as that of the first embodiment (maintaining the charge amount of the capacitor 15 within a certain range while operating the engine 1 with high efficiency) can be obtained.
  • the generator and the motor are configured integrally with the generator and the motor.
  • the generator and the electric motor may be provided separately.
  • both a battery and a capacitor may be used together as a power storage device.
  • the present invention sets the charge / discharge power of the power storage device and the engine power in accordance with the charge amount of the power storage device, and sets the power of the engine and the power machine based on the set value and the required power of the actuator. Power distribution is performed.
  • the required power of the actuator is determined based on the discharge pressure, the discharge amount, and the rotation speed of the hydraulic pump.
  • the power storage device is configured such that when the temperature of the power storage device decreases, both the charging power and the discharge power of the power storage device decrease. is there. By doing so, the charge / discharge power can be set to an appropriate value corresponding to the power storage device temperature.
  • an upper limit value and a lower limit value of the engine power are determined, and the upper limit value and the lower limit value are determined.
  • the engine power is set between the lower limit and the lower limit. In this way, the operating efficiency of the engine can be increased by setting the set range as a range in which the engine can be operated in the high efficiency range.
  • the invention of claim 5 corrects the engine power set value so that the engine power changes according to the dynamic characteristics of the engine. In this way, it is possible to prevent a decrease in engine speed or engine stall due to a sudden increase in the power load on the engine.
  • the hybrid working machine has a useful effect of maintaining the charge amount of the power storage device within an appropriate range.

Abstract

蓄電装置の充電量に応じてエンジンと蓄電装置のパワー配分を決め、蓄電装置の充電量を適正範囲に保つ。 油圧ポンプ3と発電機兼電動機4とを共通の動力源としてのエンジン1にパラレルに接続し、発電機兼電動機4の発電機作用によって蓄電装置としてのバッテリ7を充電するとともに、このバッテリ7の放電力により発電機兼電動機4を駆動して電動機作用を行なう作業機械の動力源装置において、コントローラ8により、アクチュエータ要求パワーと、バッテリ充電量が一定範囲内に保たれる方向でバッテリ充電量に応じて設定されるバッテリの充電パワー及び放電パワーと、設定されたエンジンパワーとに基づいてエンジン1と発電機兼電動機4のパワー配分を決定するようにした。

Description

明 細 書
作業機械の動力源装置
技術分野
[0001] 本発明はエンジン動力と電力を併用するハイブリッド式作業機械の動力源装置に 関するものである。
背景技術
[0002] ノ、イブリツド式の作業機械 (たとえばショベル)にお 、て、パラレル方式の駆動形態を とるものが公知である (特開平 10— 42587号公報参照)。
[0003] このパラレル方式では、油圧ポンプと、発電機作用と電動機作用を行なう動力機と を共通の動力源としてのエンジンにパラレルに接続する。そして、油圧ポンプによつ て油圧ァクチユエータを駆動するとともに、動力機の発電機作用によって蓄電装置に 充電する。また、適時、この蓄電装置の放電力により動力機に電動機作用を行なわ せてエンジンをアシストする。
[0004] なお、動力機としては、一台で発電機作用と電動機作用の双方を行なう兼用機 (発 電機兼電動機)を用いる場合と、別々の発電機と電動機を併用する場合とがある。
[0005] このようなハイブリッド式の作業機械によると、エンジンの負荷を軽減し、エンジンを 高効率範囲で運転することによって省エネルギーを実現することができる。
発明の開示
[0006] ところが、公知技術によると次のような問題があった。
[0007] リチウムイオン蓄電器等のバッテリ (二次電池)やキャパシタ (電気二重層コンデンサ) 等の蓄電装置の充放電特性は、その充電量に依存しており、充電量が低くなるほど 最大充電力は大きぐ最大放電力は小さくなる。
[0008] この場合、公知技術では、このような蓄電装置の充電量に関係なくエンジンと蓄電 装置のパワー配分を決める構成をとつている。このため、負荷状況によっては蓄電装 置パワーが小さ過ぎる、あるいは能力を超えて大き過ぎる状態となる。
[0009] この結果、蓄電装置の能力を有効に利用できないとともに、蓄電装置の劣化を招く [0010] そこで本発明は、蓄電装置の充電量に応じてエンジンと動力機のパワー配分を決 め、蓄電装置の充電量を適正範囲に保つことができる作業機械の動力源装置を提 供するものである。
[0011] 上記問題を解決するため、本発明は次のような構成を採用した。
[0012] すなわち、油圧ァクチユエータを駆動する油圧ポンプと、発電機作用と電動機作用 を行なう動力機とが共通の動力源としてのエンジンにパラレルに接続され、上記動力 機の発電機作用によって蓄電装置が充電されるとともに、この蓄電装置の放電力に より上記動力機が駆動されて電動機作用を行なうように構成された作業機械の動力 源装置において、次の各手段を具備するものである。
[0013] (A) 上記油圧ァクチユエータが要求するパワーであるァクチユエータ要求パワーを 求めるァクチユエータ要求パワー検出手段、
(B) 上記蓄電装置の充電量を求める充電量検出手段、
(C) 上記蓄電装置の充電量が一定範囲内に保たれる方向で、充電量の変化に応 じて充電パワー及び放電パワーを設定する蓄電装置パワー設定手段、
(D) 上記蓄電装置の充電量に応じて上記エンジンのパワーを設定するエンジンパ ヮー設定手段、
(E) 上記ァクチユエータ要求パワーと、設定された蓄電装置の充電パワー及び放 電パワーと、設定されたエンジンパワーとに基づ!/、てエンジンと上記動力機のパワー 配分を決定するパワー配分手段、そして
(F) このパワー配分手段によって決定されたパワー配分に基づ!/、て動力機のパヮ 一を制御する動力機制御手段。
[0014] 本発明によると、蓄電装置の充放電パワー及びエンジンパワーを蓄電装置の充電 量に応じて設定する。すなわち、充電量が低下すると充電パワーを大きぐ放電パヮ 一を小さくするとともにエンジンパワーを大きする。そして、この設定値と、ァクチユエ ータ要求パワーとに基づいてエンジンと動力機のパワー配分を行なう。このため、蓄 電装置の充電量を一定範囲、つまり蓄電装置の能力を有効利用でき、かつ、過充電 、過放電を防止して蓄電装置の劣化を抑制し得る範囲に保つことができる。
図面の簡単な説明 [0015] [図 1]本発明の第 1実施形態を示すシステム構成図である。
[図 2]図 1のコントローラの構成を示すブロック図である。
[図 3]バッテリの充電量及び温度に対する放電電力の特性を示す図である。
[図 4]バッテリの充電量及び温度に対する充電電力の特性を示す図である。
[図 5]バッテリ充電量に対するエンジンパワー 1(下限値)の特性を示す図である。
[図 6]ノ ッテリ充電量に対するエンジンパワー 2(上限値)の特性を示す図である。
[図 7]パワー配分手段におけるパワー配分フローを示す図である。
[図 8]図 7の続きのパワー配分フローを示す図である。
[図 9]エンジンパワーに関する応答性補正のフローを示す図である。
[図 10]本発明の第 2実施形態を示すシステム構成図である。
[図 11]コントローラの構成を示すブロック図である。
発明を実施するための最良の形態
[0016] 第 1実施形態 (図 1一図 9参照)
第 1実施形態においては、蓄電装置としてバッテリ (リチウムイオン蓄電器等の二次 電池)を用いた場合を例示して ヽる。
[0017] 図 1に示すように、エンジン 1にパワーデバイダ 2を介して油圧ポンプ 3と、 1台で発 電機作用と電動機作用を行なう動力機としての発電機兼電動機 4とがパラレルに接 続され、これらがエンジン 1によって駆動される。
[0018] 油圧ポンプ 3には、制御弁 (ァクチユエータごとに設けられている力 ここでは複数の 制御弁の集合体として示す) 5を介して図示しない油圧ァクチユエータ (たとえばショべ ルでいうとブーム、アーム、バケツト各シリンダや走行用油圧モータ等)が接続され、油 圧ポンプ 3から供給される圧油によってこれら油圧ァクチユエータが駆動される。なお
、図 1では油圧ポンプ 3がー台のみ接続された場合を示しているが、複数台が直列ま たは並列に接続される場合もある。
[0019] 一方、発電機兼電動機 4には、動力機制御手段としてのインバータ 6を介して蓄電 装置としてのバッテリ 7が接続されて 、る。
[0020] インバータ 6は、発電機兼電動機 4の発電機作用と電動機作用の切換え、発電電 力、電動機としての電流またはトルクを制御するとともに、発電機兼電動機 4の発電 機出力に応じてバッテリ 7の充'放電を制御する。
[0021] コントローラ 8には、次の情報が入力される。
i. 図示しない電流センサによって検出されるノ ッテリ 7の電流 (これを積算することに よってバッテリ充電量が求められる)。
ii. 図示しないバッテリ温度センサによって検出されるバッテリ 7の温度。
iii. ァクチユエータ要求パワーを求めるためのパラメータである、油圧ポンプ 3の圧力 (吐出圧)と吐出量、それに回転数 (ここでは発電機兼電動機 4の回転数)。
[0022] このコントローラ 8の構成内容を図 2に詳しく示す。
[0023] コントローラ 8には、前記のようにバッテリ電流からバッテリ充電量を求めるノ ッテリ充 電量検出手段 9と、バッテリ温度を求めるバッテリ温度検出手段 10と、バッテリ充電量 と温度とに応じてエンジン 1のパワーを設定するエンジンパワー設定手段 11と、バッ テリ充電量と温度とに応じてバッテリ 7のパワー (充電要求パワー及び放電要求パヮ 一)を設定するバッテリパワー設定手段 12と、ポンプ圧力、吐出量、回転数カもァクチ ユエータが要求しているパワーを求めるァクチユエータ要求パワー検出手段 13と、ェ ンジン 1とバッテリ 7のパワー配分を決定するパワー配分手段 14とが設けられている。
[0024] ノ ッテリパワー設定手段 12においては、たとえば、図 3,4に示すように予めバッテリ 充電量 (充電状態 SOC = State
of Charge) 及び温度に対して充電要求パワー及び放電要求パワーをテーブル化し ておき、検出されるバッテリ充電量及び温度に対応する数値を選択して設定する。
[0025] エンジンパワー設定手段 11では、たとえば、図 5,6に示すように、予めバッテリ充電 量に対するエンジンパワーの関係 (充電量が低いほどエンジンパワーを高くする)をテ 一ブル化しておく。そして、検出されるバッテリ充電量に対応するエンジンパワーを選 択'設定する。
[0026] ここで、エンジンパワーの設定値は、エンジン 1を高効率で運転し得る範囲として、 図 5に示す下限値 (バッテリパワー 1)と図 6に示す上限値 (バッテリパワー 2)との間の数 値として定められる。
[0027] 一方、パワー配分手段 14では、上記のように求められ、または設定されたァクチュ エータ要求パワー、バッテリ充電要求パワー、バッテリ放電要求パワー、エンジンパヮ 一に基づ 、て、エンジン 1とバッテリ 7のパワー配分を行なう。
[0028] この配分フローを図 7,8に示す。
[0029] 両図において、
PWpws :ァクチユエータ要求パワー
PWbc :バッテリ充電要求パワー (≤0)
PWbd :バッテリ放電要求パワー (≥0)
PWegl :エンジンパワー 1(エンジンパワー下限値) (≥0)
PWeg2 :エンジンパワー 2(エンジンパワー上限値) (≥0)
PWegmax:エンジン最大パワー (≥0)
PWeg :エンジンパワー
PWb :バッテリパワー
ただし、 PWegmaxはエンジンの性能によって決まる定数である。
[0030] また、図 7, 8において、バッテリ 7の放電を +、充電を一としている。
[0031] まず、図 7のステップ S1において、ァクチユエータ要求パワー PWpwsとエンジンパ ヮー下限値 PWeglとが比較される。ここで、ァクチユエータ要求パワー PWpwsがェン ジンパワー下限値 PWeglよりも小さい場合 (YESの場合)は、ステップ S 2でエンジン パワー PWeg =エンジンパワー下限値 PWegl、バッテリパワー PWb =ァクチユエータ 要求パワー PWpws—エンジンパワー PWegとする。
[0032] ただし、ここでバッテリパワー PWbくバッテリ充電要求パワー PWbcとなった場合 (バ ッテリパワーが充電能力を超える設定となる場合)は、
バッテリパワー PWb =バッテリ充電要求パワー PWbc、
エンジンパワー PWeg=
ァクチユエータ要求パワー PWpws—バッテリパワー PWb
とする (ステップ S3,S4)。
[0033] なお、エンジンパワーく 0の場合はエンジンパワー =0とする (ステップ S5,S6)。
[0034] ステップ SIで NOで、かつ、エンジンパワー 1≤ァクチユエータ要求パワー PWpws くエンジンパワー 2の場合、つまりァクチユエータ要求パワーがエンジンパワー 1とェ ンジンパワー 2の間にある場合 (ステップ S7で YESの場合)は、 エンジンパワー PWeg=7クチユエータ要求パワー PWpws
バッテリパワー PWb = 0
とする。すなわち、ァクチユエータ要求パワーをエンジン 1ですベて受け持つ設定と する (ステップ S8)。
[0035] 図 8のステップ S9において、エンジンパワー 2≤ァクチユエータ要求パワー < (ェン ジンパワー 2+バッテリ放電要求パワー)と判断された場合、すなわちァクチユエータ 要求パワーが、エンジンパワー 2と、(エンジンパワー 2+バッテリ放電要求パワー)の 間にあると判断された場合、ステップ S 10で、
エンジンパワー PWeg=エンジンパワー 2PWeg2
バッテリパワー PWb =
ァクチユエータ要求パワー PWpws—エンジンパワー PWeg
とする。エンジン 1はエンジンパワー 2だけを受け持ち、残りはバッテリ 7が受け持つ
[0036] 一方、ステップ S11で、(エンジンパワー 2PWeg2+バッテリ放電要求パワー PWbd) ≤ァクチユエータ要求パワー PWpwsく(エンジン最大パワー PWegmax+バッテリ放 電要求パワー PWbd)と判断された場合、すなわちァクチユエータ要求パワーが (ェン ジンパワー 2+バッテリ放電要求パワー)と (エンジン最大パワー +バッテリ放電要求 パワー)の間にあると判断された場合、ステップ S12で、
バッテリパワー PWb=バッテリ放電要求パワー PWbd
エンジンパワー PWeg=7クチユエータ要求パワー PWpws—バッテリパワー PWb とする。これにより、ノ ッテリ 7はバッテリ放電要求パワーだけ受け持ち、残りはェン ジン 1が受け持つ。
[0037] これに対し、
(エンジン最大パワー PWegmax+バッテリ放電要求パワー PWbd)≤ァクチユエータ 要求パワー PWpwsの場合 (ステップ S 11で NOの場合)、つまりァクチユエータ要求パ ヮ一がエンジン 1とバッテリ 7の能力を超えるパワーとなる場合は、
バッテリパワー PWb=バッテリ放電要求パワー PWbd
エンジンパワー PWeg=エンジン最大パワー PWegmax とする (ステップ SI 3)。
[0038] ところで、エンジンパワー PWegについては、その動特性から急激なパワー変動に 対して応答遅れが発生する。そこで、パワー配分フローの中で、エンジンパワー設定 値の変化量が予め定めた値を超える場合に、図 9に示すように、ローノ スフィルタ等 を用いた補正処理により、エンジン出力の立ち上がりが動特性に応じたものとなる (た とえば段階的に上げる)ように補正エンジンパワー PWeg'を算出し設定する。
[0039] また、この補正エンジンパワー PWeg こ基づいて新たに補正バッテリパワー PWb' を、
PWb' =PWpws-PWeg'
で算出する。
[0040] ただし、補正バッテリパワー PWtTがバッテリ充電要求パワー PWbcより小さ!/、場合 は、
PWb' =PWbc
とし、補正バッテリパワー PWb'がバッテリ放電要求パワー PWbdよりも大きい場合 は、
PWb' =PWbd
とする。このとき、 PWeg' =PWpws— PWb こよりエンジンパワーを算出し直す。
[0041] さらに、上記パワー配分に基づき、発電機兼電動機 4のパワーを以下の式で求める
[0042] PWmg = PWpws-PWeg
PWmg:発電機パワー
fqmg = PWpws/ o mg
Tqmg:発電機兼電動機 4のトルク (発電機トルク)
ω mg:発電機兼電動機 4の角速度 (発電機兼電動機 4の回転数から
求める)
こうして求められた発電機トルク力 パワー配分手段 14から図 1のインバータ 6に発 電機トルク指令値として送られる。そして、これに基づいて発電機兼電動機 4が上記 指令値通りの出力トルクとなるように制御される。 [0043] 以上の制御により、バッテリ 7の充放電パワー及びエンジンパワーがバッテリ 7の充 電量に応じて設定される。そして、この設定値と、ァクチユエータ要求パワーとに基づ いてエンジン 1と動力機 4のパワー配分が行なわれる。このため、バッテリ 7の充電量 が一定範囲、つまりバッテリ能力を有効利用できるとともに、過充電、過放電を防止し てバッテリ 7の劣化を抑制し得る範囲に保たれる。
[0044] また、ノ ッテリ 7の温度に応じて充放電パワーが設定されるため、この充放電パワー をバッテリ温度に対応した適正値とすることができる。
[0045] さらに、エンジンパワー設定手段 11においてエンジンパワーの下限値 (PWegl)と上 限値 (PWeg2)を定め、この下限値と上限値の間で、ノ ッテリ 7の充電量に応じてェン ジンパワーを設定する。このため、この設定範囲をエンジンを高効率で運転し得る範 囲として定めておくことにより、エンジン 1の運転効率を高めることができる。
[0046] また、パワー配分手段 14において、エンジンの動特性に応じてエンジンパワーが 変化するようにエンジンパワー設定値を補正する。このため、エンジンのパワー負担 が急激に増加することによるエンジン回転数の低下やエンストを防止することができ る。
[0047] 以上の点により、エンジン 1の高効率運転を行いつつバッテリ 7の充電量をコント口 ールして、ノ、イブリツドシステムの動力源の性能を有効に利用することができる。
[0048] 第 2実施形態 (図 10, 11参照)
第 2実施形態では、蓄電装置としてキャパシタ 15を用いている。
[0049] この装置の基本システム構成は、次の点以外、第 1実施形態と同じである。
ィ) 図 1のバッテリ 7がキャパシタ 15に置き換えられている点。
口) その制御器としてコンバータ 16が設けられている点。
ハ) インバータ 6とコンバータ 16とを結ぶ直流回路に直流電圧を検出する電圧セン サ 17が設けられている点。
[0050] また、コントローラ 18の構成において、図 11に示すように直流電圧制御手段 19が 付加されている点のみが第 1実施形態 (図 1,2)のコントローラ 8と異なる。図 11中のキ ャパシタ充電量検出手段 20、キャパシタ温度検出手段 21、キャパシタパワー設定手 段 22は、それぞれ図 2中のバッテリ充電量検出手段 9、 ノ ッテリ温度検出手段 10、バ ッテリパワー設定手段 12に相当する。
[0051] さらに、作用も基本的には第 1実施形態と同じである。すなわち、キャパシタ 15の充 電量及び温度に応じて、キャパシタパワー設定手段 22で図 3,4と同様な充放電特性 が設定される。そして、エンジンパワー設定手段 11において図 5,6と同様なエンジン パワーの設定が行なわれる。
[0052] パワー配分手段 14においても、図 7,8と同様の配分フローによってエンジン 1とキヤ パシタ 15のパワー配分が行なわれる。
[0053] 直流電圧制御手段 19では、インバータ 6とコンバータ 16とを結ぶ直流回路の電圧 をフィードバックすることにより、直流電圧が一定となるようにコンバータ 16に電流指 令を出力する。
[0054] この第 2実施形態によっても、第 1実施形態と同様の効果 (エンジン 1を高効率で運 転しながらキャパシタ 15の充電量を一定範囲に保つ)を得ることができる。
[0055] ところで、上記実施形態では発電機と電動機が一体に構成された発電機兼電動機
4を用いたが、発電機と電動機を別体として設けてもよい。
[0056] また、上記実施形態では蓄電装置 (バッテリまたはキャパシタ)の充電量と温度の双 方を検出する構成をとつたが、充電量のみを検出する構成をとつてもよい。あるいは、 双方を検出する場合と充電量のみを検出する場合とに切換えるようにしてもょ ヽ。
[0057] さらに、蓄電装置としてバッテリとキャパシタの両者を併用してもよい。
[0058] 以上のように、本発明は、蓄電装置の充放電パワー及びエンジンパワーを蓄電装 置の充電量に応じて設定し、この設定値と、ァクチユエータ要求パワーとに基づいて エンジンと動力機のパワー配分を行なうものである。
[0059] この場合、請求項 2の発明においては、油圧ポンプの吐出圧力、吐出量、回転数 に基づ!/、てァクチユエータ要求パワーを求める。
[0060] また、請求項 3の発明にお 、ては、蓄電装置の温度が低下すると蓄電装置の充電 ノ ヮ一及び放電パワーが小さくなる方向で両パワーを設定するように構成されたもの である。こうすれば、充放電パワーを蓄電装置温度に対応した適正な値とすることが できる。
[0061] 請求項 4の発明においては、エンジンパワーの上限値と下限値を定め、この上限値 と下限値の間でエンジンパワーを設定するものである。こうすれば、エンジンを高効 率範囲で運転し得る範囲として設定範囲を定めておくことにより、エンジンの運転効 率を高めることができる。
[0062] 請求項 5の発明は、エンジンの動特性に応じてエンジンパワーが変化するようにェ ンジンパワー設定値を補正するものである。こうすれば、エンジンのパワー負担が急 激に増加することによるエンジン回転数の低下やエンストを防止することができる。 産業上の利用可能性
[0063] 本発明によれば、ハイブリッド式の作業機械にお!、て蓄電装置の充電量を適正範 囲に保つという有用な効果を奏するものである。

Claims

請求の範囲
[1] 油圧ァクチユエータを駆動する油圧ポンプと、発電機作用と電動機作用を行なう動 力機とが共通の動力源としてのエンジンにパラレルに接続され、上記動力機の発電 機作用によって蓄電装置が充電されるとともに、この蓄電装置の放電力により上記動 力機が駆動されて電動機作用を行なうように構成された作業機械の動力源装置にお
Vヽて、次の各手段を具備することを特徴とする作業機械の動力源装置。
(A) 上記油圧ァクチユエータが要求するパワーであるァクチユエータ要求パワーを 求めるァクチユエータ要求パワー検出手段、
(B) 上記蓄電装置の充電量を求める充電量検出手段、
(C) 上記蓄電装置の充電量が一定範囲内に保たれる方向で、充電量の変化に応じ て充電パワー及び放電パワーを設定する蓄電装置パワー設定手段、
(D) 上記蓄電装置の充電量に応じて上記エンジンのパワーを設定するエンジンパヮ 一設定手段、
(E) 上記ァクチユエータ要求パワーと、設定された蓄電装置の充電パワー及び放電 パワーと、設定されたエンジンパワーとに基づ!/、てエンジンと上記動力機のパワー配 分を決定するパワー配分手段、そして
(F) このパワー配分手段によって決定されたパワー配分に基づ!/、て動力機のパワー を制御する動力機制御手段。
[2] ァクチユエータ要求パワー検出手段は、油圧ポンプの吐出圧力、吐出量、回転数 に基づ!/ヽてァクチユエータ要求パワーを求めるように構成されたことを特徴とする請 求項 1記載の作業機械の動力源装置。
[3] 蓄電装置の温度を検出する温度検出手段を備え、蓄電装置パワー設定手段は、 蓄電装置の温度が低下すると蓄電装置の充電パワー及び放電パワーが小さくなる方 向で両パワーを設定するように構成されたことを特徴とする請求項 1または 2記載の 作業機械の動力源装置。
[4] エンジンパワー設定手段は、エンジンパワーの上限値と下限値を定め、この上限値 と下限値の間でエンジンパワーを設定するように構成されたことを特徴とする請求項
1乃至 3のいずれか 1項に記載の作業機械の動力源装置。 パワー配分手段は、エンジンの動特性に応じてエンジンパワーが変化するようにェ ンジンパワー設定値を補正するように構成されたことを特徴とする請求項 1乃至 4の いずれか 1項に記載の作業機械の動力源装置。
PCT/JP2005/000183 2004-02-23 2005-01-11 作業機械の動力源装置 WO2005081393A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05703422A EP1720244A4 (en) 2004-02-23 2005-01-11 POWER SOURCE DEVICE FOR A WORK MACHINE
US10/588,704 US7525206B2 (en) 2004-02-23 2005-01-11 Power source device for working machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004046832A JP2005237178A (ja) 2004-02-23 2004-02-23 作業機械の動力源装置
JP2004-046832 2004-02-23

Publications (1)

Publication Number Publication Date
WO2005081393A1 true WO2005081393A1 (ja) 2005-09-01

Family

ID=34879452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/000183 WO2005081393A1 (ja) 2004-02-23 2005-01-11 作業機械の動力源装置

Country Status (5)

Country Link
US (1) US7525206B2 (ja)
EP (1) EP1720244A4 (ja)
JP (1) JP2005237178A (ja)
CN (1) CN100468951C (ja)
WO (1) WO2005081393A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007060297A1 (en) * 2005-11-28 2007-05-31 Ponsse Oyj Method and arrangement in power transmission of forest machine
EP2084336A1 (en) * 2006-10-06 2009-08-05 Volvo Construction Equipment AB A method for operating a working machine and a working machine
US7973499B2 (en) * 2006-06-01 2011-07-05 Takeuchi Mfg. Co., Ltd. Working vehicle
CN102152782A (zh) * 2011-03-24 2011-08-17 江苏柳工机械有限公司 移动作业机械的功率分配控制方法及系统
US8214110B2 (en) 2007-03-29 2012-07-03 Komatsu Ltd. Construction machine and method of controlling construction machine

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112006002887B4 (de) * 2005-10-31 2017-11-16 Komatsu Ltd. Steuergerät für eine Arbeitsmaschine
JP4563302B2 (ja) * 2005-11-25 2010-10-13 三菱重工業株式会社 電力配分制御装置およびハイブリッド建設機械
US8100210B2 (en) * 2006-02-07 2012-01-24 Takeuchi Mfg. Co., Ltd Electrically driven industrial vehicle
JP4524679B2 (ja) * 2006-03-15 2010-08-18 コベルコ建機株式会社 ハイブリッド建設機械
JP4725406B2 (ja) * 2006-04-26 2011-07-13 コベルコ建機株式会社 ハイブリッド式作業機械の動力源装置
JP4678353B2 (ja) * 2006-09-29 2011-04-27 コベルコ建機株式会社 ハイブリッド式作業機械
JP2008121659A (ja) * 2006-10-20 2008-05-29 Kobelco Contstruction Machinery Ltd ハイブリッド作業機械
JP5055948B2 (ja) * 2006-10-20 2012-10-24 コベルコ建機株式会社 ハイブリッド作業機械
JP5000430B2 (ja) * 2007-08-28 2012-08-15 東芝機械株式会社 ハイブリッド型作業機械の運転制御方法および同方法を用いた作業機械
US20090091301A1 (en) * 2007-10-08 2009-04-09 Sauer-Danfoss Inc. Load lowering regenerative energy system with capacitor charge and discharge circuit and method of operating the same
EP2228492A4 (en) 2007-12-28 2017-02-22 Sumitomo Heavy Industries, LTD. Hybrid construction machine
JP5314906B2 (ja) 2008-02-29 2013-10-16 ニチユ三菱フォークリフト株式会社 作業用車両の制御方法および作業用車両
US7900724B2 (en) * 2008-03-20 2011-03-08 Terex-Telelect, Inc. Hybrid drive for hydraulic power
KR101572288B1 (ko) * 2008-03-26 2015-11-26 카야바 고교 가부시기가이샤 하이브리드 건설기계의 제어장치
US8744654B2 (en) * 2008-11-28 2014-06-03 Sumitomo Heavy Industries, Ltd. Method of controlling hybrid working machine and method of controlling pump output of hybrid working machine
KR101270715B1 (ko) * 2008-12-01 2013-06-03 스미토모 겐키 가부시키가이샤 하이브리드형 건설기계
JP5401992B2 (ja) * 2009-01-06 2014-01-29 コベルコ建機株式会社 ハイブリッド作業機械の動力源装置
JP2010193630A (ja) * 2009-02-18 2010-09-02 Sumitomo Heavy Ind Ltd 蓄電制御装置及び作業機械
JP5448472B2 (ja) * 2009-01-28 2014-03-19 住友重機械工業株式会社 ハイブリッド型作業機械
US9000716B2 (en) 2009-01-28 2015-04-07 Sumitomo Heavy Industries, Ltd. Hybrid working machine and electric power accumulation controller
CA2760846A1 (en) * 2009-05-12 2010-11-18 El-Forest Ab Energy system for a hybrid vehicle
JP5355260B2 (ja) * 2009-07-03 2013-11-27 住友重機械工業株式会社 ハイブリッド型作業機械及びその効率係数の算出方法
KR101112137B1 (ko) * 2009-07-29 2012-02-22 볼보 컨스트럭션 이큅먼트 에이비 하이브리드식 건설기계의 엔진회전수 변화저감 제어시스템 및 방법
JP5703587B2 (ja) 2010-04-14 2015-04-22 コベルコ建機株式会社 ハイブリッド作業機械
US8718844B2 (en) * 2010-07-19 2014-05-06 General Motors Llc Charge notification method for extended range electric vehicles
JP5600274B2 (ja) 2010-08-18 2014-10-01 川崎重工業株式会社 作業機械の電液駆動システム
JP5764311B2 (ja) * 2010-10-27 2015-08-19 ヤンマー株式会社 動力伝達装置
JP5764310B2 (ja) * 2010-10-27 2015-08-19 ヤンマー株式会社 動力伝達装置
US8606444B2 (en) * 2010-12-29 2013-12-10 Caterpillar Inc. Machine and power system with electrical energy storage device
JP5690604B2 (ja) * 2011-02-01 2015-03-25 日立建機株式会社 作業機械
JP5585488B2 (ja) * 2011-02-17 2014-09-10 コベルコ建機株式会社 ハイブリッド建設機械の動力源装置
JP5562272B2 (ja) * 2011-03-01 2014-07-30 日立建機株式会社 ハイブリッド式建設機械
KR101776965B1 (ko) * 2011-08-26 2017-09-08 두산인프라코어 주식회사 하이브리드 전원 장치 및 그 제어 방법
JP5970898B2 (ja) 2012-03-26 2016-08-17 コベルコ建機株式会社 動力伝達装置及びこれを備えたハイブリッド建設機械
JP5954054B2 (ja) * 2012-08-30 2016-07-20 コベルコ建機株式会社 ハイブリッド式建設機械の蓄電装置暖機装置
JP6019956B2 (ja) * 2012-09-06 2016-11-02 コベルコ建機株式会社 ハイブリッド建設機械の動力制御装置
JP2014083908A (ja) * 2012-10-22 2014-05-12 Kobe Steel Ltd 建設機械
JP6232795B2 (ja) * 2013-07-18 2017-11-22 コベルコ建機株式会社 ハイブリッド建設機械
JP6318496B2 (ja) * 2013-08-07 2018-05-09 コベルコ建機株式会社 ハイブリッド建設機械の旋回電動機速度制御装置
JP6355347B2 (ja) * 2014-01-30 2018-07-11 日立建機株式会社 ハイブリッド式建設機械
JP6091444B2 (ja) * 2014-02-03 2017-03-08 日立建機株式会社 ハイブリッド建設機械
CN105939913B (zh) * 2014-03-06 2019-09-17 住友建机株式会社 挖土机
CN105940161B (zh) * 2014-03-31 2019-02-12 住友建机株式会社 挖土机
JP6159681B2 (ja) * 2014-05-07 2017-07-05 日立建機株式会社 ハイブリッド作業機械
JP6247617B2 (ja) * 2014-09-12 2017-12-13 日立建機株式会社 建設機械
JP6243857B2 (ja) * 2015-01-23 2017-12-06 日立建機株式会社 ハイブリッド建設機械
WO2016151965A1 (ja) * 2015-03-25 2016-09-29 日立建機株式会社 ハイブリッド式作業車両
JP6419063B2 (ja) * 2015-12-24 2018-11-07 日立建機株式会社 ハイブリッド式作業機械
CN109665470B (zh) * 2018-12-29 2020-11-03 徐州海伦哲特种车辆有限公司 一种电动高空作业车节能控制系统及控制方法
US11472308B2 (en) 2019-04-05 2022-10-18 Oshkosh Corporation Electric concrete vehicle systems and methods
EP4041583A1 (en) 2019-10-11 2022-08-17 Oshkosh Corporation Operational modes for hybrid fire fighting vehicle
GB2592237B (en) * 2020-02-20 2022-07-20 Terex Gb Ltd Material processing apparatus with hybrid power system
CN113147720B (zh) * 2021-05-08 2022-08-26 湖南三一路面机械有限公司 混合动力设备、混合动力系统、混合动力系统的控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000226183A (ja) * 1999-02-04 2000-08-15 Komatsu Ltd ハイブリッド式作業車両
JP2001268714A (ja) * 2000-03-22 2001-09-28 Hitachi Ltd ハイブリッド車両の制御装置
JP2002242234A (ja) * 2001-02-19 2002-08-28 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd ハイブリッドショベル
JP2003087901A (ja) * 2001-09-10 2003-03-20 Honda Motor Co Ltd 車両駆動装置
JP2004011256A (ja) * 2002-06-06 2004-01-15 Shin Caterpillar Mitsubishi Ltd ハイブリッド式建設機械
JP2004056962A (ja) * 2002-07-23 2004-02-19 Honda Motor Co Ltd 二次電池の充放電制御装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1042587A (ja) 1996-07-22 1998-02-13 Daikin Ind Ltd 油圧駆動装置
JP3775012B2 (ja) * 1997-08-29 2006-05-17 アイシン・エィ・ダブリュ株式会社 車両用ハイブリッド駆動装置
DE19804204C2 (de) * 1998-02-03 2001-03-22 Tax Technical Consultancy Gmbh Fahrzeug zum Bewegen von Lasten
US6276472B1 (en) * 1998-04-01 2001-08-21 Denso Corporation Control system for hybrid vehicle
US6349543B1 (en) * 1998-06-30 2002-02-26 Robert Moshe Lisniansky Regenerative adaptive fluid motor control
KR100466766B1 (ko) * 1999-06-25 2005-01-24 코벨코 겐키 가부시키가이샤 하이브리드 건설 기계 및 그 제어 장치
JP4520649B2 (ja) * 2001-02-06 2010-08-11 株式会社小松製作所 ハイブリッド式建設機械
JP4512283B2 (ja) * 2001-03-12 2010-07-28 株式会社小松製作所 ハイブリッド式建設機械
JP2002330554A (ja) * 2001-04-27 2002-11-15 Kobelco Contstruction Machinery Ltd ハイブリッド車両の電力制御装置および当該電力制御装置を備えたハイブリッド建設機械
JP2002359935A (ja) 2001-05-31 2002-12-13 Komatsu Ltd ハイブリッド作業機械の蓄電部充放電制御装置
JP2003328397A (ja) 2002-05-08 2003-11-19 Hitachi Constr Mach Co Ltd ハイブリッド建設機械
JP4047110B2 (ja) * 2002-09-11 2008-02-13 株式会社小松製作所 建設機械
JP2004340055A (ja) * 2003-05-16 2004-12-02 Honda Motor Co Ltd ハイブリッド方式の駆動装置
JP5055972B2 (ja) * 2006-01-12 2012-10-24 株式会社豊田自動織機 産業車両の荷役装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000226183A (ja) * 1999-02-04 2000-08-15 Komatsu Ltd ハイブリッド式作業車両
JP2001268714A (ja) * 2000-03-22 2001-09-28 Hitachi Ltd ハイブリッド車両の制御装置
JP2002242234A (ja) * 2001-02-19 2002-08-28 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd ハイブリッドショベル
JP2003087901A (ja) * 2001-09-10 2003-03-20 Honda Motor Co Ltd 車両駆動装置
JP2004011256A (ja) * 2002-06-06 2004-01-15 Shin Caterpillar Mitsubishi Ltd ハイブリッド式建設機械
JP2004056962A (ja) * 2002-07-23 2004-02-19 Honda Motor Co Ltd 二次電池の充放電制御装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007060297A1 (en) * 2005-11-28 2007-05-31 Ponsse Oyj Method and arrangement in power transmission of forest machine
US8556008B2 (en) 2005-11-28 2013-10-15 Ponsse Oyj Method and arrangement in power transmission of forest machine
US7973499B2 (en) * 2006-06-01 2011-07-05 Takeuchi Mfg. Co., Ltd. Working vehicle
EP2084336A1 (en) * 2006-10-06 2009-08-05 Volvo Construction Equipment AB A method for operating a working machine and a working machine
EP2084336A4 (en) * 2006-10-06 2010-02-17 Volvo Constr Equip Ab METHOD FOR OPERATING A WORKING MACHINE AND WORKING MACHINE
US9032725B2 (en) 2006-10-06 2015-05-19 Volvo Construction Equipment Ab Method for operating a working machine and a working machine
US8214110B2 (en) 2007-03-29 2012-07-03 Komatsu Ltd. Construction machine and method of controlling construction machine
CN102152782A (zh) * 2011-03-24 2011-08-17 江苏柳工机械有限公司 移动作业机械的功率分配控制方法及系统

Also Published As

Publication number Publication date
EP1720244A1 (en) 2006-11-08
US7525206B2 (en) 2009-04-28
CN1922782A (zh) 2007-02-28
CN100468951C (zh) 2009-03-11
US20070187180A1 (en) 2007-08-16
JP2005237178A (ja) 2005-09-02
EP1720244A4 (en) 2012-05-16

Similar Documents

Publication Publication Date Title
WO2005081393A1 (ja) 作業機械の動力源装置
US8468816B2 (en) Hybrid working machine
EP2441894B1 (en) Hybrid excavator and method of controlling hybrid excavator
US9203261B2 (en) Excavator
JP4725406B2 (ja) ハイブリッド式作業機械の動力源装置
EP1834854B1 (en) Hybrid construction machine
EP2479058B1 (en) Hybrid-type construction machine
JP5715047B2 (ja) ハイブリッド型作業機械
EP2314848A1 (en) Hybrid construction machine
JP5591354B2 (ja) ハイブリッド作業機械及びハイブリッド作業機械の制御方法
EP2270285A2 (en) Hybrid operating machine for a construction machine
WO2012032909A1 (ja) ハイブリッド建設機械
JP2008101440A (ja) ハイブリッド作業機械
JP5225779B2 (ja) 充放電制御方法
JP6325032B2 (ja) ショベル
JP4563302B2 (ja) 電力配分制御装置およびハイブリッド建設機械
JP2008255699A (ja) ハイブリッド作業機械の制御装置
CN103661359A (zh) 混合动力式工程机械
US9441345B2 (en) Hybrid excavator and method of controlling hybrid excavator
JP5037555B2 (ja) ハイブリッド型建設機械
JP4678353B2 (ja) ハイブリッド式作業機械
JP2005233164A (ja) 作業機械の動力源装置
JP6245828B2 (ja) 作業機械及び作業機械の制御方法
EP2918464B1 (en) Hybrid shovel and hybrid shovel control method
JP2012017676A (ja) ハイブリッド型建設機械における制御システム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10588704

Country of ref document: US

Ref document number: 2007187180

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005703422

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580005737.1

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2005703422

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10588704

Country of ref document: US