WO2005080957A1 - 水素ガスセンサー - Google Patents

水素ガスセンサー Download PDF

Info

Publication number
WO2005080957A1
WO2005080957A1 PCT/JP2005/002642 JP2005002642W WO2005080957A1 WO 2005080957 A1 WO2005080957 A1 WO 2005080957A1 JP 2005002642 W JP2005002642 W JP 2005002642W WO 2005080957 A1 WO2005080957 A1 WO 2005080957A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen gas
electrode
gas sensor
electromotive force
hydrogen
Prior art date
Application number
PCT/JP2005/002642
Other languages
English (en)
French (fr)
Inventor
Tsuyoshi Suda
Shuji Harada
Original Assignee
Niigata Tlo Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata Tlo Corporation filed Critical Niigata Tlo Corporation
Priority to CA2507428A priority Critical patent/CA2507428C/en
Priority to JP2006510256A priority patent/JP4048444B2/ja
Priority to US10/534,644 priority patent/US8097136B2/en
Priority to EP05719311A priority patent/EP1717579A4/en
Publication of WO2005080957A1 publication Critical patent/WO2005080957A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4073Composition or fabrication of the solid electrolyte
    • G01N27/4074Composition or fabrication of the solid electrolyte for detection of gases other than oxygen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/005H2
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0062General constructional details of gas analysers, e.g. portable test equipment concerning the measuring method or the display, e.g. intermittent measurement or digital display
    • G01N33/0063General constructional details of gas analysers, e.g. portable test equipment concerning the measuring method or the display, e.g. intermittent measurement or digital display using a threshold to release an alarm or displaying means

Definitions

  • the present invention relates to a hydrogen gas sensor suitable for detecting hydrogen gas leaking into the atmosphere or detecting the amount of hydrogen concentration.
  • a hydrogen gas sensor of the above-described type is used for electrochemical processing.
  • Hydrogen gas sensors classified by law have been developed and put to practical use.
  • This hydrogen gas sensor is classified into an electromotive force measurement type and a current detection type.
  • the type of hydrogen gas sensor is
  • one electrode is a hydrogen electrode formed at a hydrogen reference gas pressure
  • the other electrode is a detection gas (measurement hydrogen). It is used as a detection electrode (working electrode) for examining the gas partial pressure, and the potential difference between the electrodes is used as the output of the sensor to detect the hydrogen concentration of the detected gas.
  • the electrode potential in this state is a standard potential.
  • the hydrogen gas is dissociated into atoms depending on the hydrogen concentration, so that a potential depending on the hydrogen concentration is exhibited.
  • a hydrogen gas sensor is obtained by detecting a potential difference between the hydrogen electrode and the detection electrode based on the potential as a function of the hydrogen concentration.
  • the structure of these sensors requires that each electrode be separated and insulated into the reference hydrogen gas and the detection gas in order to measure the detected hydrogen gas pressure in comparison with the reference hydrogen gas pressure.
  • a separate "hydrogen gas pressure chamber” was required.
  • the shape of the element itself needed to be "large” to some extent, and the method of use and the conditions of use were limited.
  • a current value is classified into a physical quantity as a physical quantity, and a high-accuracy measurement requires a large area or volume.
  • Patent Document 1 JP 2003-270200 A
  • Patent Document 2 Japanese Patent Publication No. 5-663
  • the present invention is a hydrogen gas sensor using the above-described electromotive force measurement type electrochemical method, which simplifies its structure and detects hydrogen gas with high accuracy and instantaneously. It is an object of the present invention to provide a novel hydrogen gas sensor capable of performing the above.
  • the present invention that achieves the above object is: A first electrode and a second electrode, and an electrolyte that comes into contact with these electrodes, wherein the first electrode and the second electrode are made of materials having different chemical potentials for hydrogen gas from each other;
  • the first electrode includes a material having a relatively high chemical potential
  • the second electrode includes a material having a relatively low chemical potential
  • the first electrode serves as a detection electrode for the hydrogen gas.
  • the present invention relates to a hydrogen gas sensor, wherein the hydrogen gas sensor is caused to function and the second electrode is made to function as a reference electrode for the hydrogen gas, and the hydrogen gas is detected based on an electromotive force generated between the electrodes.
  • the two electrodes constituting the hydrogen gas sensor are configured to include materials having different chemical potentials with respect to hydrogen gas, and include a material having a relatively high chemical potential.
  • One electrode is used as a detection electrode, and a second electrode containing a material having a relatively low chemical potential is used as a reference electrode. Therefore, even when the hydrogen gas sensor is placed in the same atmosphere, even when the atmosphere contains hydrogen gas, the hydrogen gas sensor can perform a predetermined operation between electrodes containing materials having different chemical potentials. Is generated. Therefore, even when the first electrode and the second electrode of the hydrogen gas sensor are in the same atmosphere, the electromotive force is generated between these electrodes, and by detecting this, the electromotive force in the atmosphere is reduced. Hydrogen gas can be detected.
  • the hydrogen gas sensor of the present invention unlike the above-described conventional electromotive force measurement type hydrogen gas sensor, there is no need to provide a reference hydrogen gas pressure chamber or the like, so that the configuration is extremely simplified. It can be downsized. Further, since the hydrogen gas concentration is detected based on the chemical potential, the hydrogen gas can be detected instantaneously.
  • represents the electrostatic potential of the first electrode
  • ⁇ II represents the electrostatic potential of the second electrode
  • the hydrogen gas sensor of the present invention derives the difference in the chemical potential caused by the difference in the concentration of atomic hydrogen with respect to both electrodes, the electromotive force, and based on the electromotive force, determines the hydrogen gas It detects the concentration.
  • the first electrode is used as a detection electrode to contain a material having a relatively high chemical potential with respect to hydrogen gas
  • the second electrode is used as a reference electrode with respect to the chemical potential with respect to hydrogen gas. It contains low-cost materials. Therefore, the change in the electromotive force ⁇ ⁇ ⁇ due to the hydrogen gas detection is mainly caused by the change in the electrostatic potential of the first electrode.
  • the electromotive force value depends only on the type of the electrode material regardless of the physical size of the sensor or the electrode structure, it is possible to make the sensor element extremely small and to simplify the structure. Can be.
  • the above-described reaction occurs instantaneously when the hydrogen gas comes into contact with the first electrode serving as the detection electrode, so that the detection of the hydrogen gas can be performed instantaneously.
  • the hydrogen gas sensor of the present invention is a sensor having a unique spontaneous electromotive force in the absence of the detection gas (hydrogen). Can be.
  • the chemical potential may mean the degree of adsorption and dissociation activity of hydrogen gas. That is, the first electrode and the second electrode constituting the hydrogen gas sensor are different from each other in the hydrogen gas adsorption / dissociation activity.
  • Material may be included.
  • the first electrode may include a material having a relatively high adsorption / dissociation activity for hydrogen gas
  • the second electrode may include a material having a relatively low adsorption / dissociation activity for hydrogen gas.
  • the first electrode to include a material having a relatively high chemical potential
  • the second electrode to include a material having a relatively low chemical potential.
  • the first electrode is H (—)
  • the first electrode material has a standard electromotive force value of 0.8 V or more in the formed cell
  • the second electrode has a standard electromotive force of less than 0.8 V in the cell having the same configuration. It may include a second electrode material exhibiting a value.
  • the first electrode material include platinum, a platinum alloy, palladium, and palladium alloy.
  • the first electrode material can be composed of the exemplified material itself, or can be used in a state where the exemplified material is supported on a predetermined base. Further, the first electrode material can be used in any mode as long as the first electrode functions as a detection electrode for hydrogen gas without departing from the scope of the present invention.
  • the second electrode material include nickel, nickel alloy, titanium, titanium alloy, copper, copper alloy, iron, iron alloy, aluminum, aluminum alloy, and organic conductive material. it can.
  • the second electrode material can be composed of the exemplified material itself, but can be used in any manner as long as it functions as a reference electrode for hydrogen gas without departing from the scope of the present invention.
  • Non-Patent Document 1 discloses a hydrogen gas sensor in which a hydrogen gas detection electrode is composed of Pd—H gas, but such a detection electrode uses the hydrogen gas detection electrode during use. The problem was that the H could not be fully utilized if the H was lost over time. On the other hand, in the above-described example, since such an electrode containing hydrogen is not used, the conventional problem described above does not occur.
  • Non-patent Document 1 A. Macker et al., ASTM Spec Tech Publ. No. 962 (1998/06), p90-97
  • the electrolyte may be in the form of a liquid or a solid electrolyte, preferably a solid electrolyte.
  • handling of the hydrogen gas sensor becomes easier and In particular, it can be reliably used in a temperature range from around room temperature (0 ° C) to about 120 ° C.
  • temperature control is performed, and hydrogen gas can be easily detected in a low temperature range of 0 ° C. or less.
  • Examples of the solid electrolyte include phosphotungstic acid / phosphorus modebulinic acid. Note that these substances are extremely excellent as electrolyte materials for the hydrogen gas sensor of the present invention, which have good adhesion to the above-described first and second electrodes.
  • the above-mentioned phosphotungstic acid and the above-mentioned phosphomodervulinic acid are usually powders, when they are used as the above-mentioned solid electrolyte, it is necessary to compress them, pelletize them, and use them in a solid state.
  • compression molded samples are very brittle and cannot withstand long-term use.
  • glass wool or the like as a structural reinforcing material, pour a powder of the above-mentioned phosphorous tungsten or the like with a solvent (ion-exchanged water), and solidify the solid electrolyte to form the desired solid electrolyte.
  • the procedure of the production is as follows. This production method is also effective from the viewpoint of the adhesion between the electrode and the electrolyte.
  • the operation of (2) can be replaced by dissolving the solid electrolyte in a solvent and mixing the solid electrolyte with a structural reinforcing material.
  • a hydrogen gas leak alarm device can be configured by combining the above-described hydrogen gas sensor and a voltage comparator. In this case, the hydrogen gas Then, the generated electromotive force is compared with a reference voltage of the voltage comparator, and when the electromotive force is higher than the reference voltage, an alarm can be issued from a predetermined alarm device.
  • a plurality of the hydrogen gas sensors described above can be prepared and arranged on the same substrate to form a hydrogen gas sensor array.
  • the distribution of hydrogen gas leakage such as hydrogen gas leakage in a piping system of a hydrogen gas plant or the like, can be detected.
  • By connecting multiple sensors in a dense array in series It is possible to obtain a sensor output voltage.
  • the above-described hydrogen gas sensor and an electric circuit for detecting an electromotive force from the hydrogen gas sensor are provided, and the electric circuit depends on the magnitude of the electromotive force.
  • a hydrogen gas concentration meter is configured to detect the hydrogen gas concentration.
  • the constituent electrodes thereof are also constituted by material forces having different chemical potentials with respect to hydrogen gas, and the detection of hydrogen gas is based on the chemical potential of hydrogen on both electrodes. Since the hydrogen gas is detected as a difference, that is, a difference in electromotive force, the hydrogen gas detection speed is very high, and the detection capability is high in a hydrogen concentration region. Furthermore, since the chemical potential and the electromotive force are “intensifying physical quantities” and do not depend on the size of the electrode, it is possible to produce a sensor of extremely small size. Further, since the hydrogen gas sensor including the two electrodes can be arranged in the same atmosphere, a reference hydrogen gas pressure chamber or the like is not required.
  • the structure of the hydrogen gas sensor can be simplified and the size can be reduced.
  • the sensor since the sensor has a unique spontaneous electromotive force in the absence of the detection gas (hydrogen), a self-diagnosis function can be provided for the operability of the sensor element.
  • FIG. 1 is a configuration diagram showing one example of a hydrogen gas sensor of the present invention.
  • FIG. 2 shows a change in electromotive force generated between electrodes 11 and 12 when the hydrogen gas sensor shown in FIG. 1 is placed in an atmosphere containing hydrogen gas.
  • FIG. 3 is a graph showing a correlation between an electrostatic potential at a first electrode and a hydrogen gas concentration in the hydrogen gas sensor shown in FIG. 1.
  • FIG. 4 is a configuration diagram showing another example of the hydrogen gas sensor of the present invention.
  • FIG. 4 (a) is a top view
  • FIG. 4 (b) is a side view.
  • FIG. 5 is a configuration diagram showing another example of the hydrogen gas sensor of the present invention.
  • FIG. 6 is a configuration diagram showing still another example of the hydrogen gas sensor of the present invention.
  • FIG. 7 is a configuration diagram showing another example of the hydrogen gas sensor of the present invention.
  • FIG. 8 is a view showing a state in which the hydrogen gas sensor shown in FIG. 7 is integrated.
  • FIG. 9 is a configuration diagram showing one example of a hydrogen gas sensor array of the present invention.
  • FIG. 10 is a diagram showing a state where each hydrogen gas sensor in the array shown in FIG. 9 is connected in series.
  • FIG. 11 is a block diagram showing an example of a hydrogen leak warning system using the hydrogen gas sensor of the present invention.
  • FIG. 12 is a block diagram showing an example of a hydrogen leak control system using the hydrogen gas sensor of the present invention.
  • FIG. 13 is a block diagram showing an example of a hydrogen leak information transmission system using the hydrogen gas sensor of the present invention.
  • FIG. 14 is a diagram schematically illustrating the configuration and operation of a voltage comparator in the system shown in FIGS. 11 and 13.
  • FIG. 15 is a block diagram showing an example of a hydrogen gas concentration meter using the hydrogen gas sensor of the present invention.
  • FIG. 16 is a block diagram when a hydrogen leak alarm system is provided with a Fan-Safe function.
  • FIG. 17 is a schematic configuration diagram of a hydrogen gas sensor element having a Fan-Safe function.
  • FIG. 1 is a configuration diagram showing an example of the hydrogen gas sensor of the present invention.
  • the same reference numerals are used for the same or similar components.
  • the hydrogen gas sensor 10 shown in FIG. 1 includes a plate-like first electrode 11 and a second electrode 12 provided to face each other, and a solid electrolyte 13 is interposed between these electrodes. Such a configuration is adopted.
  • the first electrode 11 functions as a detection electrode for hydrogen gas, and its electrostatic potential changes significantly when it comes into contact with hydrogen gas.
  • the second electrode 12 functions as a reference electrode for the hydrogen gas, and its electrostatic potential hardly changes or is extremely small, if at all, by contact with the hydrogen gas.
  • the first electrode 11 can also constitute a first electrode material having a relatively high chemical potential.
  • the first electrode 11 is made of a relatively hydrogen gas such as platinum, a platinum alloy, palladium, and a noradium alloy. It is possible to constitute a material having a high adsorption activity to the material.
  • the first electrode 11 can be composed of these materials themselves, but can be used by supporting these materials on a predetermined substrate. However, it can be used in any mode as long as it functions as a detection electrode for hydrogen gas without departing from the scope of the present invention.
  • the second electrode 12 can also constitute a material force having a relatively low chemical potential.
  • nickel, a nickel alloy, titanium, a titanium alloy, copper, a copper alloy, iron, an iron alloy It can be made of a material having a relatively low degree of adsorption activity to hydrogen gas, such as aluminum, an aluminum alloy, and an organic conductive material. However, it can be used in any mode as long as it functions as a reference electrode for hydrogen gas without departing from the scope of the present invention.
  • the first electrode 11 and the second electrode 12 have a plate shape, and the specific shape can be various shapes such as a linear shape, a tubular shape, a disk shape, and a rectangular shape.
  • the solid electrolyte 13 can be made of a solid electrolyte such as phosphotungstic acid having excellent adhesion to the first electrode 11 and the second electrode 12, as described above.
  • the solid electrolyte 13 can include a structural reinforcing material such as glass wool in addition to an electrolyte material such as tungsten tungsten. In this case, the strength of the solid electrolyte 13 can be increased, and the adhesion to the electrodes 11 and 12 can be further increased.
  • FIG. 2 shows a change in electromotive force generated between the electrodes 11 and 12 when the hydrogen gas sensor 10 shown in FIG. 1 is placed in an atmosphere containing hydrogen gas.
  • the first electrode 11 also constituted a platinum force
  • the second electrode 12 constituted a nickel force.
  • FIG. 2 it can be seen that the hydrogen gas sensor 10 shown in FIG. 1 changes its electromotive force instantaneously when it comes into contact with hydrogen gas, specifically, within a few seconds of less than 1 second (electromotive force decreases). . Therefore, it can be seen that the hydrogen gas sensor 10 shown in FIG. 1 can detect hydrogen gas instantaneously.
  • FIG. 3 is a graph showing a correlation between the electrostatic potential of the first electrode 11 of the hydrogen gas sensor 10 shown in FIG.
  • the electrostatic potential of the first electrode 1 changes (decreases) uniformly depending on the hydrogen gas concentration.
  • the electrostatic potential of the second electrode 12 of the hydrogen gas sensor 10 hardly depends on the hydrogen gas concentration. Therefore, the electromotive force generated in the hydrogen gas sensor 10 changes with the change in the hydrogen gas concentration, and the change power can also detect the hydrogen gas concentration. In this case, as the hydrogen gas concentration increases, the electromotive force generated by the hydrogen gas sensor 10 decreases.
  • the hydrogen gas sensor 10 of the present invention shown in FIG. 1 is particularly excellent in detecting a hydrogen gas having a very small concentration (about several percent of comma).
  • FIG. 4 is a configuration diagram showing another example of the hydrogen gas sensor of the present invention.
  • a rod-shaped first electrode 11 and a second electrode 12 are provided on an insulating substrate 15 so as to face each other. These electrodes can be manufactured by a method such as sputtering.
  • the solid electrolyte 13 is provided on the insulating substrate 15 between the first electrode 11 and the second electrode 12 so as to be in contact with these electrodes.
  • the first electrode 11 and the second electrode 12 are made to contain materials having different chemical potentials from each other with respect to hydrogen gas, so that the hydrogen gas shown in FIG. The same operation and effects as those of the gas sensor are exhibited.
  • the first electrode 11 When the first electrode 11 is used as a detection electrode, a material having a relatively high chemical potential is included, and when the second electrode is used as a reference electrode, the material is relatively chemically. Low potential, including material.
  • the specific material system used is the same as the hydrogen gas sensor shown in FIG. Also, the solid electrolyte 13 can have the same material strength as the hydrogen gas sensor shown in FIG.
  • FIG. 5 is a configuration diagram showing another example of the hydrogen gas sensor of the present invention.
  • a first electrode member 11 and a solid electrolyte 13 are disposed in a tubular member 12 such as stainless steel, which is also strong.
  • the solid electrolyte 13 is divided by a gas permeable membrane 16 at a substantially central portion, and a drawing process 13A is performed at a rear portion.
  • the tubular member 12 also functions as a second electrode, functions as a reference electrode for hydrogen gas, and the first electrode member 11 functions as a detection electrode for hydrogen gas.
  • the first electrode member 11 includes a material having a relatively high chemical potential such as platinum.
  • the electromotive force generated between the first electrode member 11 and the tubular member 12 is measured via a wire 17 attached to these electrode members.
  • hydrogen gas can be detected.
  • FIG. 6 is a configuration diagram showing still another example of the hydrogen gas sensor of the present invention.
  • a first electrode 11 and a solid electrolyte 13 are arranged in a thin tube 12 such as an injection needle.
  • the thin tube 12 also functions as a second electrode, functions as a reference electrode for hydrogen gas
  • the first electrode member 11 functions as a detection electrode for hydrogen gas.
  • the first electrode member 11 includes a material having a relatively high chemical potential such as platinum
  • the second electrode 12 includes a material having a relatively low chemical potential such as nickel.
  • the electromotive force generated between the first electrode 11 and the thin tube 12 is measured via a wire 17 attached to these electrode members. Can be detected.
  • FIG. 7 is a configuration diagram showing another example of the hydrogen gas sensor 10 of the present invention.
  • the hydrogen gas sensor shown in FIG. 7 employs a configuration in which a tapping screw 12 constitutes a second electrode, a solid electrolyte 13 is filled therein, and a first electrode 11 is inserted. Also in this case, hydrogen gas can be detected by the electromotive force generated between the first electrode 11 and the second electrode 12.
  • the characteristics required for the first electrode 11 and the second electrode (tapping screw) 12 are as described above.
  • FIG. 8 shows a conceptual diagram in which a hydrogen sensor element is incorporated in an electronic circuit and integrated.
  • the form of the tubular member is made porous or meshed in consideration of hydrogen gas permeability. can do.
  • FIG. 9 is a configuration diagram showing an example of the hydrogen gas sensor array of the present invention.
  • the hydrogen gas sensor having the configuration shown in FIG. 10 are arranged in multiple numbers. Since hydrogen gas can be detected by each hydrogen gas sensor, the position of hydrogen gas can be detected by configuring such an array. This can be preferably applied to a hydrogen leak in a large area such as a hydrogen gas station.
  • each hydrogen gas sensor is arranged at high density, a leak detector using each hydrogen gas sensor as a probe can be configured.
  • each hydrogen gas sensor is connected in series as shown in FIG. 10, the output voltage of the entire array can be obtained by adding the electromotive force of each hydrogen gas sensor. And a relatively large detection voltage can be obtained.
  • the hydrogen gas sensor shown in FIGS. 1, 4 and 18 and the hydrogen gas sensor array shown in FIGS. 9 and 10 are appropriately incorporated into an optimal electronic circuit, and a detection voltage is detected through this electronic circuit. .
  • the electromotive force of the hydrogen gas sensor is determined by the difference between the electrostatic potentials of the first electrode and the second electrode. Since the specified constant value is indicated, the driving reliability of the hydrogen gas sensor can be appropriately confirmed by enabling the electromotive force to be measured through the electronic circuit. That is, a self-diagnosis function for the operability of the hydrogen gas sensor can be provided.
  • FIGS. 11 to 13 are block diagrams each showing an example of a hydrogen gas leak alarm control / information transmission system using the hydrogen gas sensor of the present invention.
  • FIG. 11 is a block diagram showing an example of a hydrogen leak alarm system using the hydrogen gas sensor of the present invention.
  • the change in the electromotive force as hydrogen gas detection information from the hydrogen gas sensor 10 is input to an input amplifier 21 having a high input impedance, subjected to impedance conversion and signal level conversion, and then input to a voltage comparator 22.
  • this input signal is compared with the reference voltage of the reference power supply 23, and the result is output via the buffer amplifier 24 in the next stage.
  • a buzzer, a light emitting diode panel, etc. to this output, a hydrogen leak warning system is obtained.
  • FIG. 12 shows an example of a hydrogen gas leakage control system using the hydrogen gas sensor of the present invention.
  • a light emitting diode is used. This shows a system that can operate the relay or solenoid valve connected to the outside while notifying the information on the auto panel.
  • the change in the electromotive force as hydrogen gas detection information from the hydrogen gas sensor 10 is input to the input amplifier 21 having high input impedance, subjected to impedance conversion and signal level conversion, and then input to the voltage comparator 22. Is done. In the voltage comparator 22, this input signal is compared with the reference voltage of the reference power supply 23, and the result is output via the next-stage amplifier 24.
  • a buzzer, a light emitting diode panel, or a transistor / transistor logic output terminal (TTL OUT) for connection to an external control device (Exit control System) on this output, gas leakage information can be displayed and an external relay or electromagnetic relay can be displayed.
  • the valve can be activated.
  • FIG. 13 shows a hydrogen leak information transmission system using the hydrogen gas sensor of the present invention.
  • the hydrogen gas sensor detects an abnormal hydrogen gas present amount exceeding a certain level, a wireless LAN is started by a combi- ter.
  • a combi- ter is an example of a system that sends that information to a remote location using the BBS.
  • the change in the electromotive force as hydrogen gas detection information from the hydrogen gas sensor 10 is input to the input amplifier 21 having high input impedance, subjected to impedance conversion and signal level conversion, and then to the voltage comparator 22. Is done.
  • this input signal is compared with the reference voltage of the reference power supply 23, and the result is output to the next stage via the next-stage amplifier 24.
  • This output is converted to a signal level (Wave Form), sent to a host computer via an RS232C port, etc., which is a typical type of serial communication by a personal computer, and sent to a remote location using a BBS such as a wireless LAN. Transmit hydrogen gas detection information.
  • FIG. 14 is a diagram schematically illustrating the configuration and operation of the voltage comparator in the system shown in FIGS. 11 and 13.
  • the voltage comparator 22 is the most important part of the entire system.
  • the voltage comparator 22 When the voltage of the comparison reference voltage value or more is output from the input amplifier 21 in response to the signal of the preceding stage power, the voltage comparator 22 The output voltage of the voltage comparator 22 is ON (almost the power supply voltage value), and when the output voltage becomes lower than the comparison reference voltage, the output voltage of the voltage comparator 22 which has been ON until now turns OFF (almost 0 V).
  • the circuit used here is generally a voltage comparison using a dedicated IC.
  • this example simplifies the entire circuit, and the power is
  • Schmitt circuit Using Schmidt's inverter as IC (hereinafter simply referred to as Schmitt circuit)! / That is, it is used as an analog voltage comparator using the threshold voltage of the Schmitt circuit as the reference voltage reference value.
  • Schmidt's inverters are usually limited to the power almost digitally used in digital circuits.
  • the main purpose is to shape digital waveforms with noise.
  • this mechanism is used in an analog manner, and this mechanism is employed as the voltage comparator 22 which is the most main part of the electric circuit of this embodiment. That is, in this example, the voltage comparator 22 also includes a Schmitt circuit power, and the threshold voltage at which the off power also turns on and the threshold voltage at which the voltage changes from on to off! / It is used as Therefore, there is an advantage that the external control circuit is prevented from becoming unstable near the threshold voltage, and is useful for stabilizing the circuit.
  • the comparison reference voltage of the voltage comparator 22 becomes the threshold voltage of the Schmitt circuit, the configuration of the device that does not require an external reference voltage power supply or the like is separately provided, and the configuration is simplified. Operation becomes stable and reliable.
  • FIG. 15 is a block diagram showing an example of a hydrogen gas concentration meter using the hydrogen gas sensor of the present invention.
  • the electromotive force as hydrogen gas detection information output from the hydrogen gas sensor 10 is converted into an impedance by the input
  • the data is subjected to the Veno conversion and input to the next-stage Data Table Reference circuit 25.
  • Data Table 26 of the concentration and electromotive force of the hydrogen gas sensor is stored in advance, and the input electromotive force is converted into a concentration based on the table, and the value is converted via the Display Driver 27. Display the density.
  • FIG. 16 is a block diagram for providing a hydrogen leak alarm system or the like (unitl) with a Fan-Safe function (unit2 and unit3) in order to use the hydrogen gas sensor of the present invention more reliably.
  • the change in electromotive force as hydrogen gas detection information from the hydrogen gas sensor 10 is input to the input amplifier 21 having high input impedance, and is input to the voltage comparator 22 after impedance conversion and signal level conversion. Is done.
  • Voltage comparator 22 This input signal is compared with the reference voltage of the reference power supply 23, and the result is output to the logical operation circuit 34 through the buffer / amplifier 24 at the next stage.
  • Unit 2 is a block diagram for providing the hydrogen sensor element, input amplifier, and voltage comparator with the Fai Safe function.
  • the photo sensor 29 is built into the hydrogen gas sensor element and has the function of monitoring contamination from outside the sensor element sensitive part, and the role of monitoring that the sensor becomes malfunctioning due to external contaminants. .
  • the information from the photo sensor 29 is input to the input amplifier 30 having a high input impedance, and is input to the voltage comparator 31 after being subjected to impedance conversion and signal level conversion.
  • this input signal is compared with the reference voltage of the reference power supply 32, and the result is output to the logic operation circuit 34 via the next-stage Output Driver 33.
  • These two signals are calculated by the logical operation circuit 34, and the alarm buzzer 35 is turned off only when it is determined that the photosensor 29, which is based on the hydrogen gas detection information from the Output Buffer 24, is normal, that is, only when both are in a steady state. It does not work.
  • the alarm buzzer 35 Turns ON.
  • Unit 3 is a block diagram for giving the Fai Safe function to the operability of an alarm light-emitting display, an alarm buzzer, and the like.
  • the operability of the luminous display for warning and the buzzer for warning is performed visually when the power is turned on at the start-up of this device or by providing a switch 37 for confirming operability.
  • FIG. 17 shows details of the Fan-Safe function in the detection unit of the hydrogen sensor.
  • the logical operation circuit 34 judges the signal of the hydrogen gas detection unit power through the block circuits of units 2 and 3, so that the fan-safe function of the whole hydrogen leak alarm system can be added.
  • Fan-Safe function is provided by placing equivalent circuits in parallel.
  • the detection section of the hydrogen sensor is provided with a Fan-Safe function, and the signal of the LED 36 from the outside is transmitted through the external protection mesh 37 and is detected by the photo sensor 29 through the translucent mesh 38.
  • this translucent mesh 38 is shielded from light by an external contaminant, the signal from the photosensor 29 is turned off, and the sensor is blocked by the contaminant like hydrogen gas. Can be detected.
  • the hydrogen sensor element is an active element that has a unique spontaneous electromotive force in the absence of hydrogen gas, the operation of the sensor element itself can be checked by detecting the voltage at this time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

 第1の電極及び第2の電極を設け、これら電極間の少なくとも一部に電解質を介在させる。前記第1の電極及び前記第2の電極は、互いに水素ガスに対する化学ポテンシャルが異なる材料からなり、前記第1の電極は相対的に前記化学ポテンシャルの高い材料を含み、前記第2の電極は相対的に前記化学ポテンシャルの低い材料を含む。前記第1の電極は、前記水素ガスに対する検出電極として機能させるとともに、前記第2の電極は、前記水素ガスに対する基準電極として機能させ、これら電極間に発生する起電力値に基づいて前記水素ガスを検出する。

Description

明 細 書
水素ガスセンサー
技術分野
[0001] 本発明は、大気中に漏れた水素ガスの検出あるいは水素濃度量の検知に適する 水素ガスセンサーに関するものである。
背景技術
[0002] 今後の水素エネルギー利用社会にぉ 、て水素爆発の危険性を払拭し安全性が高 ぐ利便性に優れた水素エネルギー利用システムの構築が望まれる。水素ガスセン サ一の仕様は、大気中に漏れた水素量を瞬時に高精度で検出でき、構造がきわめ て単純、信頼性が高いことが求められる。
[0003] 従来の水素ガスセンサーは半導体型、電離型、燃焼型などの検出方法に基づいて いる。これらの測定原理は「示量性の物理量」である"キャリア濃度(半導体型)"、 "ィ オン濃度 (電離型) "、ある 、は"反応熱 (燃焼型または燃焼させてその水蒸気圧を測 定する) "として間接的な検出方法で水素量を検知し、それらを電気的な量に変換し てセンサーとするものであった。このため、水素ガスの検出に要するまでに時間を要 し、遅いものでは 100秒以上を必要としていた。特に、水素漏洩警報システムに用い る水素ガスセンサーは、水素ガスの爆発限界以下の低濃度領域で高い検出感度を 有し、かつ、検出に要する時間が短いことが不可欠である。
[0004] また、従来の水素ガスセンサー(半導体型、電離型、燃焼型)は水素検出の方法が キャリア濃度、イオン濃度、反応熱などを水素ガスの検知信号とするため、高感度の 測定には広い検出面積が必要であった。このため、センサー素子自体の構造、形状 、電極サイズによって検出精度、感度が異なり、形状の小型化にも限界があった。さ らに、従来の水素ガスセンサー(半導体型、電離型、燃焼型)の場合、環境ガスの影 響を受け易い欠点があった。特に、検出ガスに、ガソリンゃノヽイド口カーボン、アルコ ールなど水素元素を含むガスが含まれる場合、これらのガスにも感応するため、水素 ガスの検出における信頼性を低下させていた。
[0005] このような問題に鑑み、上述した型の水素ガスセンサーにカ卩えて、電気化学的な手 法に分類される水素ガスセンサーが開発され実用に供されている。この水素ガスセン サ一は、起電力測定型と電流検出型とに分類される。前記型の水素ガスセンサーは
、例えば特許文献 1及び特許文献 2に開示されているように、一方の電極 (基準電極 または標準電極)を水素の基準ガス圧で作った水素電極とし、もう一方の電極を検出 ガス(測定水素ガス分圧)を調べるための検出電極 (作用電極)とし、この電極間の電 位差をセンサーの出力として検出ガスの水素濃度を検知したものである。
[0006] 前記水素電極では水素が原子状の状態として電極表面に充分に存在し、この時の 状態の電極電位が標準電位となっている。この状態で、前記検出電極に水素ガスが 触れると水素濃度に依存して水素ガスが原子状に解離することにより水素濃度に依 存した電位を呈するようになる。そして、前記電位に基づいた、前記水素電極及び前 記検出電極間の電位差を水素濃度の関数として検出することで水素ガスセンサーと している。すなわち、これらのセンサーの構造は、基準水素ガス圧と比較して検出水 素ガス圧を測定するために、各電極を基準水素ガスと検出ガスに分離 ·絶縁すること が必要であり、 "基準水素ガス圧室"が別個に必要であった。また、基準水素ガス圧 室を作るため素子自体の形状もある程度の"大きざ'が必要となり、使用方法'使用条 件も限定されていた。
[0007] また、前記電流検出型では、電流値は物理量として示量性に分類され、精度の高 い測定には広い面積あるいは体積が必要となる。また、電流を流すための外部電源 をセンサーに供給する必要がある。
[0008] 特許文献 1:特開 2003— 270200号公報
特許文献 2:特公平 5 - 663号公報
発明の開示
発明が解決しょうとする課題
[0009] 本発明は、上述した起電力測定型の電気化学的手法を用いた水素ガスセンサー であって、その構造を簡易化するとともに、高精度かつ瞬時に水素ガスを検出するよ うにすることができる新規な水素ガスセンサーを提供することを目的とする。
課題を解決するための手段
[0010] 上記目的を達成すベぐ本発明は、 第 1の電極及び第 2の電極と、これらの電極と接触する電解質とを具え、 前記第 1の電極及び前記第 2の電極は、互いに水素ガスに対する化学ポテンシャ ルが異なる材料からなり、前記第 1の電極は相対的に前記化学ポテンシャルの高!ヽ 材料を含み、前記第 2の電極は相対的に前記化学ポテンシャルの低 、材料を含み、 前記第 1の電極を前記水素ガスに対する検出電極として機能させるとともに、前記第 2の電極を前記水素ガスに対する基準電極として機能させ、これら電極間に発生する 起電力値に基づいて前記水素ガスを検出することを特徴とする、水素ガスセンサー に関する。
[0011] 本発明では、水素ガスセンサーを構成する 2つの電極を、水素ガスに対して互いに 異なる化学ポテンシャルを有する材料を含むように構成し、相対的に高い化学ポテン シャルを有する材料を含む第 1の電極を検出電極とし、相対的に低 ヽ化学ポテンシ ャルを有する材料を含む第 2の電極を基準電極としている。したがって、前記水素ガ スセンサーを同じ雰囲気中に配置した場合にぉ 、ても、前記雰囲気中に水素ガスが 含まれる場合に、前記水素ガスセンサーは、異なる化学ポテンシャルの材料を含む 電極間において所定の起電力を生じるようになる。したがって、前記水素ガスセンサ 一の、前記第 1の電極及び前記第 2の電極が同一雰囲気内にある場合においても、 これら電極間に前記起電力が生じ、これを検知することによって、前記雰囲気中の水 素ガスを検知することができるようになる。
[0012] 上述した本発明の水素ガスセンサーによれば、上述した従来の起電力測定型の水 素ガスセンサーのように、基準水素ガス圧室などを設ける必要がないため、その構成 を極めて簡略ィ匕し、小型化することができる。また、化学ポテンシャルに基づいて水 素ガス濃度を検出するようにしているので、前記水素ガスの検出を瞬時に行うことが できる。
[0013] なお、本発明の水素ガスセンサーの、 2つの電極間における起電力は以下の関係 式に基づいて生成される。
Figure imgf000005_0001
—FE C l ) ここで、 Fはファラデー定数、 Eは EMF値、 M " H2
/½, H
はそれぞれ金属、水素ガスに対する原子状の水素の化学ポテンシャルである。端子
〔I〕、〔II〕は同種の銅線のため電子の電気化学ポテンシャルは
となる。また、静電ポテンシャルと起電力 Εとの関係
^ -Φ Ε (3) を用いた。ここで、 φ ΐは第 1の電極の静電ポテンシャルを表し、 φ IIは第 2の電極の 静電ポテンシャルを表す。
[0014] このように、本発明の水素ガスセンサーは、両電極に対する原子状水素の濃度差 に起因する化学ポテンシャルの差力 起電力値を導出し、この起電力値に基づ 、て 水素ガス濃度を検出するものである。なお、本発明では、前記第 1の電極を検出電極 として、水素ガスに対する化学ポテンシャルの相対的に高い材料を含むようにし、前 記第 2の電極を基準電極として、水素ガスに対する化学ポテンシャルの相対的に低 い材料を含むようにしている。したがって、水素ガス検知による起電力 Εの変化は、主 として前記第 1の電極の静電ポテンシャルが変化することに起因する。
[0015] 前記起電力値はセンサーの物理サイズや電極構造によらず電極物質の種類のみ に依存するため、センサー素子を非常に小型化することが可能であり、またその構造 を簡単にすることができる。また、上述した反応は、水素ガスが検出電極である第 1の 電極に接触すると瞬時にして生じるようになるため、前記水素ガスの検出を瞬時に行 うことができるようになるものである。
[0016] なお、本発明の水素ガスセンサーは、検出ガス (水素)が存在しない状態で固有の 自発起電力をもつセンサーとなることから、センサー素子の稼働性について自己診 断機能を持たせることができる。
[0017] 本発明の水素ガスセンサーにおいて、前記化学ポテンシャルは水素ガスの吸着解 離活性度合いを意味するようにすることができる。すなわち、前記水素ガスセンサー を構成する第 1の電極及び第 2の電極を、水素ガスの吸着解離活性度が互いに異な る材料を含むようにすることができる。この場合、前記第 1の電極を水素ガスに対する 吸着解離活性度の相対的に高い材料を含むようにし、前記第 2の電極を水素ガスに 対する吸着解離活性度の相対的に低い材料を含むようにする。これによつて、前記 第 1の電極を相対的に化学ポテンシャルの高い材料を含むようにし、前記第 2の電極 を相対的に化学ポテンシャルの低 ヽ材料を含むよう〖こすることができる。
[0018] 具体的に、前記第 1の電極は、 H (—)
2 I 50mol/m3H SO |物質試料(+ )で構
2 4
成したセルでの標準起電力値が 0. 8V以上の値を示す第 1の電極材料を含み、前 記第 2の電極は、同構成でのセルでの標準起電力が 0. 8V未満の値を示す第 2の電 極材料を含むようにすることができる。
[0019] 上記第 1の電極材料の具体例としては、白金、白金合金、パラジウム、パラジウム合 金を例示することができる。前記第 1の電極材料は、例示した材料自身から構成する こともできるし、前記例示した材料を所定の基体上に担持させた状態で使用すること もできる。また、前記第 1の電極材料は、前記第 1の電極が本発明の範疇を逸脱せず 、水素ガスに対する検出電極として機能する限り、任意の態様で使用することができ る。
[0020] 前記第 2の電極材料の具体例としては、ニッケル、ニッケル合金、チタン、チタン合 金、銅、銅合金、鉄、鉄合金、アルミニウム、アルミニウム合金及び有機導電材料を例 示することができる。前記第 2の電極材料は、例示した材料自身から構成することが できるが、本発明の範疇を逸脱せず、水素ガスに対する基準電極として機能する限り 、任意の態様で使用することができる。
[0021] なお、非特許文献 1には、水素ガスの検出電極を Pd— Hカゝら構成した水素ガスセン サ一が開示されているが、このような検出電極では、使用中に前記電極中の Hが経 時的に抜けてしま 、、その機能を十分に発揮することができな 、と 、う問題があった 。これに対して上述した例では、このような水素を含む電極を使用していないので、 上述したような従来の問題を生じることはない。
[0022] 非特許文献 1: A. Macker et al., ASTM Spec Tech Publ. No. 962 (1998/06), p90- 97
[0023] また、前記電解質は、液体及び固体の!/ヽずれの形態のものであっても良!ヽが、好ま しくは固体電解質とする。この場合、水素ガスセンサーの取り扱いが容易になるととも に、特に室温近傍 (0°C)から 120°C程度の温度領域での使用を確実に行うことがで きるようになる。また、マイクロヒーター等を組み込むことによって温度制御を行い、 0 °C以下の低温度領域での水素ガスの検出をも容易に行うことができるようになる。
[0024] 前記固体電解質としては、燐タングステン酸ゃ燐モデブリン酸を例示することができ る。なお、これらの物質は、上述した第 1の電極及び第 2の電極との密着性も良ぐ本 発明の水素ガスセンサーの電解質材料として極めて優れている。
[0025] 前記燐タングステン酸や前記燐モデブリン酸は、通常は粉末であるため、前記固体 電解質とする際には、それらを圧縮成型してペレット化し、固体状にして使う必要があ る。し力しながら、圧縮成型された試料は大変もろぐ長期使用に耐えない。このため 、グラスウールなどを構造補強材とし、これに前記燐タングステンなどの粉末を溶媒( イオン交換水)でとかしたものを流し込み、固化することによって目的とする前記固体 電解質を形成することが好ましい。その作製の手順は以下の通りである。なお、本作 製法は電極と電解質の密着性からも有効な方法である。
(1)水素の固体電解質 (燐タングステン酸など)粉末を溶媒に溶かし、液状にする。
(2)固体電解質が位置する空間 (型)に構造補強材を埋め、電極を組み立てる。
(3)液状にした水素電解質を前記構造補強材に流し込む。
(4)液状の水素電解質が固化したところでセンサーの原型が出来る。
[0026] なお、固体電解質を溶媒に溶かし、液状にしたものに構造補強材を混ぜることで (2 )の操作に置き換えることが出来る。
[0027] なお、本発明の一態様においては、上述した水素ガスセンサーと電圧比較器とを 組み合わせ、水素ガス漏洩警報装置を構成することができる。この場合、前記水素ガ
Figure imgf000008_0001
、て生成された起電力、及び前記電圧比較 器の基準電圧を比較し、前記起電力が前記基準電圧より大きい場合に、所定の警報 機より警報を発するようにすることができる。
[0028] また、本発明の他の態様では、上述した水素ガスセンサーを複数準備し、同一の基 板上に配列して水素ガスセンサーアレイを構成することができる。この場合、水素ガ スプラントなどの配管系統での水素ガス漏れなど、水素ガス漏洩の分布を検知するこ とができる。また、密にアレイ化したセンサーを複数個直列接続することで、複数倍の センサー出力電圧を得ることが可能となる。
[0029] さらに、本発明のその他の態様においては、上述した水素ガスセンサーと、この水 素ガスセンサーからの起電力を検出するための電気回路とを具え、前記起電力の大 きさに依存させて、水素ガス濃度を検出するようにして、水素ガス濃度計を構成する ことちでさる。
発明の効果
[0030] 以上説明したように、本発明の水素ガスセンサーは、その構成電極を水素ガスに対 する化学ポテンシャルが互いに異なる材料力も構成し、水素ガスの検出は両電極上 における水素の化学ポテンシャルの差、すなわち起電力の差として検知されることか ら、水素ガス検知速度は非常に高速であり、水素の希薄濃度領域に対して検出能力 が高い。さらに、この化学ポテンシャルや起電力は「示強性の物理量」であり電極の サイズに依存しないことから、極小サイズのセンサーの作製が可能である。また、前記 両電極を含む前記水素ガスセンサーを同一の雰囲気中に配置することができるため 、基準水素ガス圧室なども不要である。したがって、前記水素ガスセンサーの構造を 簡略ィ匕できるとともに、小型化することができる。また、検出ガス (水素)が存在しない 状態で固有の自発起電力をもつセンサーとなることから、センサー素子の稼働性に つ!ヽて自己診断機能を持たせることができる。
図面の簡単な説明
[0031] [図 1]図 1は、本発明の水素ガスセンサーの一例を示す構成図である。
[図 2]図 2は、図 1に示す水素ガスセンサーを、水素ガスを含む雰囲気中に配置した 時の、電極 11及び 12間に生じる起電力変化を示したものである。
[図 3]図 3は、図 1に示す水素ガスセンサーの、第 1の電極における静電ポテンシャル と水素ガス濃度との相関を示すグラフである。
[図 4]図 4は、本発明の水素ガスセンサーの他の例を示す構成図である。図 4 (a)は 上面図であって、図 4 (b)は側面図である。
[図 5]図 5は、本発明の水素ガスセンサーのその他の例を示す構成図である。
[図 6]図 6は、本発明の水素ガスセンサーのさらに他の例を示す構成図である。
[図 7]図 7は、本発明の水素ガスセンサーの他の例を示す構成図である。 [図 8]図 8は、図 7に示す水素ガスセンサーを集積させた状態を示す図である。
[図 9]図 9は、本発明の水素ガスセンサーアレイの一例を示す構成図である。
[図 10]図 10は、図 9に示すアレイにおける各水素ガスセンサーを直列に接続した場 合の状態を示す図である。
[図 11]図 11は、本発明の水素ガスセンサーを使用した水素漏洩警報システムの一例 を示すブロック図である。
[図 12]図 12は、同じく本発明の水素ガスセンサーを使用した水素漏洩制御システム の一例を示すブロック図である。
[図 13]図 13は、同じく本発明の水素ガスセンサーを使用した水素漏洩情報送信シス テムの一例を示すブロック図である。
[図 14]図 14は、図 11一図 13に示すシステムにおける電圧比較器の構成及び動作を 概略的に説明するための図である。
[図 15]図 15は、本発明の水素ガスセンサーを使用した水素ガス濃度計の例を示す ブロック図である。
[図 16]図 16は、水素漏洩警報システムに Fan-Safe機能を持たせた際のブロック図で ある。
[図 17]図 17は、 Fan-Safe機能を持たせた水素ガスセンサー素子の概略構成図であ る。
発明を実施するための最良の形態
[0032] 以下、本発明の詳細、並びにその他の特徴及び利点を、発明を実施するための最 良の実施の形態に基づいて詳細に説明する。
[0033] 図 1は、本発明の水素ガスセンサーの一例を示す構成図である。なお、以下に示す 総ての図面において、同様又は類似する構成要素に対しては同一の参照符号を用 いている。
図 1に示す水素ガスセンサー 10は、互いに対向するように設けられた、板状の第 1 の電極 11及び第 2の電極 12とを具えるとともに、これら電極間に固体電解質 13が介 在するような構成を採っている。第 1の電極 11は、水素ガスに対する検出電極として 機能し、水素ガスと接触することによって、その静電ポテンシャルが大きく変化する。 第 2の電極 12は、水素ガスに対する基準電極として機能し、水素ガスと接触すること によって、その静電ポテンシャルがほとんど変化しないか、変化するとしても極微小で ある。
[0034] 第 1の電極 11は、相対的に化学ポテンシャルの高い第 1の電極材料力も構成する ことができ、具体的には白金、白金合金、パラジウム、ノラジウム合金などの、相対的 に水素ガスに対する吸着活性度の高い材料カゝら構成することができる。第 1の電極 1 1は、これら材料自身力 構成することもできるが、これらの材料を所定の基体上に担 持させて用いることができる。但し、本発明の範疇を逸脱せず、水素ガスに対する検 出電極として機能する限り、任意の態様で使用することができる。
[0035] 第 2の電極 12は、相対的に化学ポテンシャルの低い材料力も構成することができ、 具体的には、ニッケル、ニッケル合金、チタン、チタン合金、銅、銅合金、鉄、鉄合金 、アルミニウム、アルミニウム合金及び有機導電材料などの、相対的に水素ガスに対 する吸着活性度合いの低い材料から構成することができる。但し、本発明の範疇を 逸脱せず、水素ガスに対する基準電極として機能する限り、任意の態様で使用する ことができる。
[0036] 第 1の電極 11及び第 2の電極 12は板状を呈するが、その具体的な形状は線状、管 状、円盤状、矩形状など種々の形状にできる。
[0037] また、固体電解質 13は、上述したように燐タングステン酸などの、第 1の電極 11及 び第 2の電極 12との密着性に優れた固体電解質から構成することができる。固体電 解質 13は、燐タングステンなどの電解質材料に加えてグラスウールなどの構造補強 材を含むことができる。この場合、固体電解質 13の強度を増大させることができるとと もに、電極 11及び 12との密着性をさらに増大させることができる。
[0038] 図 2は、図 1に示す水素ガスセンサー 10を、水素ガスを含む雰囲気中に配置した 時の、電極 11及び 12間に生じる起電力変化を示したものである。なお、第 1の電極 1 1は白金力も構成し、第 2の電極 12はニッケル力も構成した。図 2から明らかなように 、図 1に示す水素ガスセンサー 10は水素ガスと接触すると瞬時に、具体的には 1秒 未満のコンマ数秒で起電力が変化 (起電力が減少)することが分かる。したがって、 図 1に示す水素ガスセンサー 10は、水素ガスの検知を瞬時に行えることが分かる。 [0039] 図 3は、図 1に示す水素ガスセンサー 10の、第 1の電極 11における静電ポテンシャ ルと水素ガス濃度との相関を示すグラフである。図 3から明らかなように、第 1の電極 1 ェの静電ポテンシャルは、水素ガス濃度に依存して一様に変化 (減少)する。一方、 水素ガスセンサー 10の、第 2の電極 12の静電ポテンシャルは水素ガス濃度にほとん ど依存しない。したがって、水素ガス濃度の変化に伴って、水素ガスセンサー 10に生 じる起電力が変化し、この変化力も水素ガス濃度を検知することができる。この場合、 水素ガス濃度の増大に伴って、水素ガスセンサー 10で生じる起電力が減少する。
[0040] このような観点より、図 1に示す本発明の水素ガスセンサー 10は、特に微小濃度 (コ ンマ数%程度)の水素ガスの検知に優れて 、ることが分かる。
[0041] また、図 1に示す水素ガスセンサー 10の使用環境を 0— 120°Cで変化させたところ、 この温度範囲において水素ガスを十分に検知できることが確認された。
[0042] 図 4は、本発明の水素ガスセンサーの他の例を示す構成図である。図 4に示す水素 ガスセンサー 10では、絶縁性基板 15上に、棒状の第 1の電極 11及び第 2の電極 12 が互いに対向するようにして設けられて!/、る。これら電極はスパッタリングなどの方法 によって作製することができる。また、固体電解質 13は絶縁性基板 15上で、第 1の電 極 11及び第 2の電極 12間で、これら電極に接するようにして設けられている。このよ うな水素ガスセンサー 10においても、第 1の電極 11及び第 2の電極 12を、水素ガス に対して互 、に異なる化学ポテンシャルの材料を含むようにすることにより、図 1に示 す水素ガスセンサーと同様の作用効果を呈するようになる。
[0043] なお、第 1の電極 11を検出電極として使用する場合は、相対的に化学ポテンシャ ルの高い材料を含むようにし、第 2の電極を基準電極として使用する場合は、相対的 に化学ポテンシャルの低 、材料を含むようにする。具体的に使用する材料系につ ヽ ては、図 1に示す水素ガスセンサーと同じである。また、固体電解質 13についても図 1に示す水素ガスセンサーと同じ材料力も構成することができる。
[0044] 図 5は、本発明の水素ガスセンサーのその他の例を示す構成図である。図 5に示す 水素ガスセンサー 10は、ステンレスなど力もなる管状部材 12内に、第 1の電極部材 1 1及び固体電解質 13が配置されている。固体電解質 13は略中央部においてガス透 過性膜 16で分断されており、後方において絞り加工 13Aが施されている。この場合 、管状部材 12は第 2の電極としても機能し、水素ガスに対する基準電極として機能し 、第 1の電極部材 11は水素ガスに対する検出電極として機能する。第 1の電極部材 1 1は、白金などの相対的に化学ポテンシャルの高い材料を含むようにする。
[0045] 図 5に示す水素ガスセンサー 10においては、第 1の電極部材 11及び管状部材 12 間に発生した起電力は、これら電極部材に取り付けられたワイヤ 17を介して計測され 、これによつて水素ガスを検知できるようになる。
[0046] 図 6は、本発明の水素ガスセンサーのさらに他の例を示す構成図である。図 6に示 す水素ガスセンサー 10は、注射針のような細管 12内に、第 1の電極 11及び固体電 解質 13が配置されている。この場合、細管 12は第 2の電極としても機能し、水素ガス に対する基準電極として機能し、第 1の電極部材 11は水素ガスに対する検出電極と して機能する。第 1の電極部材 11は、白金などの相対的に化学ポテンシャルの高い 材料を含むようにし、第 2の電極 12はニッケルなどの相対的に化学ポテンシャルの低 い材料を含むようにする。
[0047] 図 6に示す水素ガスセンサー 10においては、第 1の電極 11及び細管 12間に発生 した起電力は、これら電極部材に取り付けられたワイヤ 17を介して計測され、これに よって水素ガスを検知できるようになる。
[0048] 図 7は、本発明の水素ガスセンサー 10の他の例を示す構成図である。図 7に示す 水素ガスセンサーにおいては、タッピングネジ 12が第 2の電極を構成し、その内部に 固体電解質 13が充填されるとともに、第 1の電極 11が挿入された構成を採っている。 この場合においても、第 1の電極 11及び第 2の電極 12間に生じた起電力により水素 ガスを検知することができる。なお、第 1の電極 11及び第 2の電極 (タッピングネジ) 1 2に要求される特性は上述したようなものである。図 8は、水素センサー素子を電子回 路に組み込み集積ィ匕した概念図を示す。
[0049] なお、図 5などに示すように、第 2の電極を管状部材から構成するような場合は、水 素ガスの透過性を考慮し、この管状部材の形態を多孔質やメッシュ状とすることがで きる。
[0050] 図 9は、本発明の水素ガスセンサーアレイの一例を示す構成図である。図 9に示す アレイ 20においては、絶縁性基板 14上に図 4に示すような構成の水素ガスセンサー 10が複数配列されて 、る。各水素ガスセンサーで水素ガスの検知が可能であること から、このようなアレイを構成することによって、水素ガスの位置検出が可能となる。こ れは、例えば、水素ガスステーションのような広いエリアでの水素漏れに好ましく適用 することができる。
[0051] また、各水素ガスセンサーを高密度に配置すれば、各水素ガスセンサーをプロ一 ブとしたリーク検出器を構成することができる。
[0052] さらに、図 9に示すアレイにおいて、図 10に示すように、各水素ガスセンサーを直列 に接続すれば、アレイ全体としての出力電圧を各水素ガスセンサーの起電力の合算 して得ることができ、比較的大きな検出電圧を得ることができる。
[0053] なお、図 1、 4一 8に示す水素ガスセンサー、及び図 9、 10に示す水素ガスセンサー アレイは、適宜最適な電子回路に組み込み、この電子回路を通じて検出電圧を検知 するようにする。このような電子回路に前記水素ガスセンサーを組み込んだ場合、水 素ガスの存在しない雰囲気では、前記水素ガスセンサーの起電力は、第 1の電極及 び第 2の電極の静電ポテンシャルの差で規定される一定値を示すようになるので、前 記電子回路を通じて前記起電力を測定できるようにすることによって、前記水素ガス センサーの駆動信頼性を適宜確認することができる。すなわち、前記水素ガスセンサ 一の稼動性に対する自己診断機能を持たせることができる。
[0054] 図 11一 13は、それぞれ本発明の水素ガスセンサーを使用した水素ガス漏洩警報' 制御 ·情報送信システムの一例を示すブロック図である。
[0055] 図 11は、本発明の水素ガスセンサーを使用した水素漏洩警報システムの一例を示 すブロック図である。水素ガスセンサー 10からの、水素ガス検知情報としての起電力 の変化は、高入力インピーダンスの入力アンプ 21に入力され、インピーダンス変換、 信号レベル変換された後、電圧比較器 22に入力される。電圧比較器 22では、この 入力信号は基準電源 23の基準電圧と比較され、その結果が次段のバッファーアン プ 24を経て出力される。この出力にブザー、発光ダイオードパネル等を接続すること により、水素漏洩警報システムとなる。
[0056] 図 12は、本発明の水素ガスセンサーを使用した水素ガス漏洩制御システムの一例 で、水素ガスセンサーが一定レベル以上の水素ガスの存在を検知した時、発光ダイ オードパネル等でその情報を知らせると同時に外部に接続されたリレーまたは電磁 弁を作動させることが出来るシステムを示す。
[0057] 水素ガスセンサー 10からの、水素ガス検知情報としての起電力の変化は、高入力 インピーダンスの入力アンプ 21に入力され、インピーダンス変換、信号レベル変換さ れた後、電圧比較器 22に入力される。電圧比較器 22では、この入力信号は基準電 源 23の基準電圧と比較され、その結果が次段のノ ッファーアンプ 24を経て出力され る。この出力にブザー、発光ダイオードパネル又は、外部制御機器 (Exit control System )へ接続するためのトランジスタートランジスタ論理出力端子 (TTL OUT)を 設置することにより、ガス漏洩情報を表示すると同時に外部のリレーや電磁弁を作動 させることが出来る。
[0058] 図 13は、本発明の水素ガスセンサーを使用した水素漏洩情報送信システムで、水 素ガスセンサーが一定レベル以上の異常水素ガス存在量を検知した時、コンビユー ターで、無線 LANを始めとした BBSを使用して遠隔地にその情報を送るシステムの 例を示す。
[0059] 水素ガスセンサー 10からの、水素ガス検知情報としての起電力の変化は、高入力 インピーダンスの入力アンプ 21に入力され、インピーダンス変換、信号レベル変換さ れた後、電圧比較器 22に入力される。電圧比較器 22では、この入力信号は基準電 源 23の基準電圧と比較され、その結果が次段のノ ッファーアンプ 24を経て次段に 出力する。この出力を信号レベル変換 (Wave Form)し、パソコンによるシリアル通信 の代表型式である RS232Cポート等を介してホスト'コンピューターに送られ、無線 LA Nを始めとした BBSを使用して遠隔地にその水素ガス検知情報を送信する。
[0060] 図 14は、図 11一図 13に示すシステムにおける電圧比較器の構成及び動作を概略 的に説明するための図である。電圧比較器 22は、このシステム全体で一番重要な部 分であり、前段力 の信号を受けて比較基準電圧値以上の電圧が入力アンプ 21か ら出力されている時、電圧比較器 22からの出力電圧はオン(ほとんど電源電圧値)で あり、また比較基準電圧以下になると、今までオンだった電圧比較器 22の出力電圧 がオフ(ほとんど 0V)になる。
[0061] 従来はここで使用する回路は専用 ICを使用して電圧比較を行うのが一般的であつ たが、本例は全体の回路を簡素化し、し力も動作を確実なものとするためにデジタル
ICとしてのシュミット'インバーター(以下単にシュミット回路とする)を使用して!/、る。 すなわち、シュミット回路のしき ヽ値電圧を比較電圧基準値としたアナログ電圧比較 器として使用する。
[0062] シュミット'インバーターは普通にデジタル回路で使用される力 ほとんどデジタル 的な作用に限定される。つまり、ノイズの載ったデジタル波形の整形が主な目的にな つている。本実施例ではこの機構をアナログ的に使用し、これを本実施例の電気回 路の最も主要な部分である電圧比較器 22として採用している。すなわち、本例では、 電圧比較器 22をシュミット回路力も構成しており、オフ力もオンに変わるしきい値電圧 とオンからオフに変わるしき!/、値電圧とが異なることをアナログ的に基準電圧として利 用している。そのために、外部制御回路がしきい値電圧付近で不安定になることが避 けられ、回路の安定ィ匕に役立つと 、う利点がある。
[0063] また、電圧比較器 22の比較基準電圧がシュミット回路のしきい値電圧となるため、 外部に基準電圧電源などを別に設ける必要がなぐ装置の構成が簡略化されるととも に、その操作が安定かつ確実になる。
[0064] 図 15は、本発明の水素ガスセンサーを使用した水素ガス濃度計の例を示すブロッ ク図である。
[0065] 図 15に示す水素ガス濃度計では、水素ガスセンサー 10から出力される水素ガス検 知情報としての起電力は、高入力インピーダンスの入力ブッファー ·アンプ 21によつ てインピーダンス変換、信号レべノレ変換されて次段の Data Table Reference回路 25 に入力される。 Data Table Reference回路では、あらかじめ水素ガスセンサーの濃度 と起電力の Data Table 26が記憶されており、入力された起電力をその Tableを基に 濃度に換算し、その値を Display Driver 27を介して濃度表示する。
[0066] 図 16は、本発明の水素ガスセンサーをより信頼性高く使用するために、水素漏洩 警報システム等 (unitl)に Fan- Safe機能 (unit2および unit3)を持たせるためのブロック 図である。 unitlにおいて、水素ガスセンサー 10からの、水素ガス検知情報としての 起電力の変化は、高入力インピーダンスの入力アンプ 21に入力され、インピーダン ス変換、信号レベル変換された後、電圧比較器 22に入力される。電圧比較器 22で は、この入力信号は基準電源 23の基準電圧と比較され、その結果が次段のバッファ 一アンプ 24を経て論理演算回路 34へ出力される。
[0067] unit2は、前述した水素センサー素子,入力アンプ,電圧比較器に Fai Safe機能を 持たせるためのブロック図である。フォトセンサー 29はこの水素ガスセンサー素子の 中に組み込まれ、センサー素子感応部の外部からの汚染を監視する機能を持ち、セ ンサ一が外部汚染物質によって機能不全になることを監視する役割を持つ。
[0068] フォトセンサー 29からの情報は高入力インピーダンスの入力アンプ 30に入力され、 インピーダンス変換、信号レベル変換された後、電圧比較器 31に入力される。電圧 比較器 31では、この入力信号は基準電源 32の基準電圧と比較され、その結果が次 段の Output Driver33を経て論理演算回路 34へ出力される。これら二つの信号は論 理演算回路 34で演算し、 Output Buffer24からの水素ガス検知情報がなぐフォトセ ンサー 29が正常と判断した時のみ、即ち、両方共に定常状態の時のみ警報ブザー 3 5は OFFとなり作動しない。それ以外の全ての時即ち、水素ガスセンサー 10が水素 検知情報を発した時、またはフォトセンサー 29が外部汚染物質を検出した時、およ びそれらの現象が重なった時 ONとなり、警報ブザー 35が ONになる。
[0069] unit3は、警報用発光ディスプレイや警報用ブザー等の稼働性に Fai Safe機能を持 たせるためのブロック図である。警報用発光ディスプレイや警報用ブザー等の稼働性 は本装置立ち上げの電源投入時や稼働性確認用のスィッチ 37を設けることで目視 等により行うものとなっている。
[0070] なお、水素センサーの検出部における Fan-Safe機能の詳細を図 17に示す。この水 素ガス検出部力 の信号を unit2および 3のブロック回路を通して論理演算回路 34で 判断することで,本水素漏洩警報システム全体としての Fan-Safe機能を付加すること ができる。論理演算回路に関しては並列に同等の回路を置くことで, Fan-Safe機能を 持たせている。
[0071] 図 17では、水素センサーの検出部に Fan-Safe機能を持たせ、外部からの LED36 の信号は外部保護 mesh37を透過し、透光 mesh38を通してフォトセンサー 29によつ て検知される。この透光 mesh38が外部汚染物質によって遮光されるとフォトセンサー 29からの信号は OFFになり、本センサーが汚染物質によって水素ガス的に遮蔽され ていることを検知できる。なお,水素センサー素子は水素ガスが存在しない場合に固 有の自発起電力を有する能動素子であることから,この時の電圧を検知することでセ ンサー素子自体の稼働性の動作確認が行える。
以上、本発明を具体例を挙げながら詳細に説明してきたが、本発明は上記内容に 限定されるものではなぐ本発明の範疇を逸脱しない限りにおいてあらゆる変形や変 更が可能である。

Claims

請求の範囲
[1] 第 1の電極及び第 2の電極と、これらの電極と接触する電解質とを具え、
前記第 1の電極及び前記第 2の電極は、互いに水素ガスに対する化学ポテンシャ ルが異なる材料からなり、前記第 1の電極は相対的に前記化学ポテンシャルの高い 材料を含み、前記第 2の電極は相対的に前記化学ポテンシャルの低い材料を含み、 これら電極間に発生する起電力値に基づいて前記水素ガスを検出することを特徵と する、水素ガスセンサ一。
[2] 第 1の電極及び第 2の電極と、これらの電極と接触する電解質とを具え、
前記第 1の電極及び前記第 2の電極は、互いに水素ガスに対する吸着解離の活性 度合いの異なる材料からなり、前記第 1の電極は前記水素ガスに対する吸着解離度 の相対的に高い材料を含み、前記第 2の電極は前記水素ガスに対する吸着解離度 の相対的に低い材料を含み、これら電極間に発生する起電力値に基づいて前記水 素ガスを検出することを特徴とする、水素ガスセンサ一。
[3] 前記第 1の電極は、 H (一)
2 I 50mol/m3H SO |物質試料 (+)で構成したセルでの
2 4
標準起電力値が 0.8V以上の値を示す第 1の電極材料を含み、前記第 2の電極は、 同構成でのセルでの標準起電力力 未満の値を示す第 2の電極材料を含むこと を特徴とする、請求項 1又は 2に記載の水素ガスセンサー。
[4] 前記第 1の電極材料は、白金、白金合金、パラジウム、パラジウム合金等やこれらを 含む材料の少なくとも 1つを含み、前記第 2の電極材料は、ニッケル、ニッケル合金、 チタン、チタン合金、銅、銅合金、鉄、鉄合金、アルミニウム、アルミニウム合金等や 有機導電材料やこれらを含む材料の少なくとも 1つを含むことを特徴とする、請求項 1 〜3のいずれか一に記載の水素ガスセンサー。
[5] 前記第 1の電極及び前記第 2の電極を同一の雰囲気中に配置し、前記水素ガスに 対して同時に接触するようにしたことを特徴とする、請求項 1〜4のいずれか一に記載 の水素ガスセンサ一。
[6] 前記第 1の電極及び前記第 2の電極は板状を呈するとともに、互いに対抗するよう にして配置され、前記電解質は、前記第 1の電極及び前記第 2の電極間に介在させ たことを特徴とする、請求項 1〜5のいずれか一に記載の水素ガスセンサ一。
訂正された用紙 (規則 91)
[7] 前記第 1の電極及び前記第 2の電極は棒状や線状を呈するとともに、絶縁性基板 上に離隔して配置され、前記電解質は、前記第 1の電極及び前記第 2の電極間に介 在させたことを特徴とする、請求項 1〜5のいずれか一に記載の水素ガスセンサー。
[8] 前記第 2の電極は管状を呈し、前記第 1の電極は前記第 2の電極内に配置され、前 記電解質は、前記第 1の電極及び前記第 2の電極間の少なくとも一部に配置された ことを特徴とする、請求項 1〜5のいずれか一に記載の水素ガスセンサ一。
[9] 前記電解質は、固体電解質であることを特徴とする、請求項 1〜8のいずれか一に 記載の水素ガスセンサー。
[10] 前記固体電解質は、グラスウールなどの構造補強材を加えて固化することや多孔 質無機材料あるいは網状無機物質に溶媒に溶かした固体電解質原料を流し込むこ とで構成したことを特徴とする、請求項 9に記載のガスセンサー。
[11] 請求項 1〜: 10のいずれか一に記載の水素ガスセンサ一を具え、それからの水素ガ ス検知情報としての起電力変化と電圧比較器の基準電圧とを比較し、その結果に基 づいて信号を発することを特徴とする、水素ガス漏洩警報システム。
[12] 請求項 1〜: 10のいずれか一に記載の水素ガスセンサ一を具え、それからの水素ガ ス検知情報としての起電力変化と電圧比較器の基準電圧とを比較し、その結果に基 づレ、て信号を発することを特徴とする、水素ガス漏洩制御システム。
[13] 請求項 1〜10のいずれか一に記載の水素ガスセンサーを具え、それからの水素ガ ス検知情報としての起電力変化と電圧比較器の基準電圧とを比較し、その結果に基 づいて信号を発することを特徴とする、水素ガス漏洩情報送信システム。
[14] 前記電圧比較器は、シュミットインバ一タのスレッシュ 'ホールド電圧を基準電圧と することで、この電圧と外部から入力される電圧を比較し、その結果を出力するように 構成したことを特徴とする、請求項 11に記載の水素ガス漏洩警報システム。
[15] 前記電圧比較器は、シュミットインバータのスレッシュ 'ホールド電圧を基準電圧と することで、この電圧と外部から入力される電圧を比較し、その結果を出力するように 構成したことを特徴とする、請求項 11に記載の水素ガス漏洩制御システム。
[16] 前記電圧比較器は、シュミットインバ一タのスレッシュ 'ホールド電圧を基準電圧と することで、この電圧と外部から入力される電圧を比較し、その結果を出力するように
訂正された用紙 (規則 91) 構成したことを特徴とする、請求項 11に記載の水素ガス漏洩情報送信システム。
[17] 請求項 1一 10のいずれか一に記載の水素ガスセンサーを複数準備し、同一の基 板上に配置されてなることを特徴とする、水素ガスセンサーアレイ。
[18] 請求項 1一 10のいずれか一に記載の水素ガスセンサーと、この水素ガスセンサー 力 の起電力を検出するための電気回路とを具え、
前記起電力の大きさに依存させて、水素ガス濃度を検出するようにしたことを特徴と する、水素ガス濃度計。
[19] 請求項 1一 10のいずれか一に記載の水素ガスセンサー素子の中に、外部に設け た LEDからの光信号を検知するフォトセンサーを組み込み、上記の水素ガスセンサ 一検出部の外部からの水素ガス遮蔽汚染物質の存在を検知し、水素ガス検出の信 頼性を高めるための Fan-Safe機能を付加した水素ガスセンサー素子。
[20] 請求項 1一 10のいずれか一に記載の水素ガスセンサー素子の中に、外部に設け た LEDからの光信号を検知するフォトセンサーを組み込み、上記の水素ガスセンサ 一検出部の外部からの水素ガス遮蔽汚染物質の存在を検知し、水素ガス検出の信 頼性を高めるための Fai Safe機能。
PCT/JP2005/002642 2004-02-19 2005-02-18 水素ガスセンサー WO2005080957A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2507428A CA2507428C (en) 2004-02-19 2005-02-18 Hydrogen gas sensor
JP2006510256A JP4048444B2 (ja) 2004-02-19 2005-02-18 水素ガスセンサー
US10/534,644 US8097136B2 (en) 2004-02-19 2005-02-18 Hydrogen gas sensor
EP05719311A EP1717579A4 (en) 2004-02-19 2005-02-18 HYDROGEN GAS SENSOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-043282 2004-02-19
JP2004043282 2004-02-19

Publications (1)

Publication Number Publication Date
WO2005080957A1 true WO2005080957A1 (ja) 2005-09-01

Family

ID=34879292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/002642 WO2005080957A1 (ja) 2004-02-19 2005-02-18 水素ガスセンサー

Country Status (7)

Country Link
US (1) US8097136B2 (ja)
EP (1) EP1717579A4 (ja)
JP (1) JP4048444B2 (ja)
KR (1) KR100833835B1 (ja)
CN (1) CN100445739C (ja)
CA (1) CA2507428C (ja)
WO (1) WO2005080957A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010230620A (ja) * 2009-03-30 2010-10-14 Niigata Univ 高濃度水素ガスセンサー
US8266795B2 (en) * 2006-11-01 2012-09-18 Sensorcon, Inc. Methods of making an electrochemical gas sensor
US8283704B2 (en) 2008-09-12 2012-10-09 National University Corporation Okayama University Gas sensor
JP2021113764A (ja) * 2020-01-20 2021-08-05 国立大学法人東海国立大学機構 水素センサ及び演算装置
WO2022079925A1 (ja) * 2020-10-15 2022-04-21 株式会社新潟Tlo 燃料電池用水素ガス濃度センサ
WO2022259883A1 (ja) * 2021-06-09 2022-12-15 株式会社新潟Tlo 水素ガス濃度センサ
WO2024090472A1 (ja) * 2022-10-27 2024-05-02 株式会社新潟Tlo 水素ガス濃度センサ

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1717579A4 (en) 2004-02-19 2010-01-13 Niigata Tlo Corp HYDROGEN GAS SENSOR
CN102590315A (zh) * 2007-07-19 2012-07-18 郡是株式会社 氢气传感器及其制造方法
CN101261244B (zh) * 2008-04-14 2011-08-10 北京科技大学 一种利用氢传感器测量空气中氢气含量的方法
CA2725522A1 (en) * 2009-03-23 2010-09-30 Electrical Research & Development Association An improved online incipient fault sensor device for detection of incipient fault in oil-filled electrical apparatus such as a transformer
JP2012021938A (ja) * 2010-07-16 2012-02-02 Japan Atomic Energy Agency 環状飽和炭化水素化合物の検知素子及びそれを用いた光学式検知装置
CN102520049A (zh) * 2011-10-31 2012-06-27 哈尔滨工业大学 三电极固体电解质氢气传感器及采用该传感器的氢气浓度测量方法
CN103257161B (zh) * 2013-04-23 2014-09-03 吉林大学 复合金属氧化物为钝化参考电极的埋藏式nasicon基h2传感器及其制备方法
GB2516932B (en) * 2013-08-07 2018-12-26 Nokia Technologies Oy An apparatus and associated methods for water detection
KR101701679B1 (ko) * 2016-08-10 2017-02-01 이성운 수산화나트륨액체 누출사고 감지 시스템
WO2018066687A1 (ja) * 2016-10-07 2018-04-12 国立大学法人電気通信大学 無線センサ装置及び無線センサシステム
CN113237937A (zh) * 2021-04-26 2021-08-10 深圳南方德尔汽车电子有限公司 浓差式氢气传感器及制作方法
CN114202896A (zh) * 2021-11-12 2022-03-18 上海凌逐新能源科技有限公司 一种用于风洞式燃料电池环境试验舱的安全管理方法
CN115436441A (zh) * 2022-09-09 2022-12-06 广东省武理工氢能产业技术研究院 一种柔性薄膜式氢敏传感器及氢泄漏监测防护系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2128751A (en) 1982-10-15 1984-05-02 Nat Res Dev Hydrogen concentration meter
US4661211A (en) 1985-07-10 1987-04-28 Uop Inc. Gas detection with three-component membrane and sensor using said membrane
EP0281247A2 (en) 1987-03-02 1988-09-07 United Kingdom Atomic Energy Authority Gas sensors
EP0432840A2 (en) 1989-12-12 1991-06-19 ENIRICERCHE S.p.A. Solid-state sensor for the determination of the concentration of gases which can react with hydrogen
JP2002340830A (ja) 2001-05-11 2002-11-27 Mitsubishi Heavy Ind Ltd 水素ガス検出装置及びその製造方法
JP2003270200A (ja) 2002-03-20 2003-09-25 Sony Corp 水素ガスセンサー及びそれを用いた水素ガスセンシング方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4024036A (en) * 1975-02-03 1977-05-17 Agency Of Industrial Science & Technology Proton permselective solid-state member and apparatus utilizing said permselective member
CH629905A5 (de) * 1978-07-17 1982-05-14 Cerberus Ag Gas- und/oder brandmeldeanlage.
DE3113904C2 (de) 1981-04-07 1983-02-24 Franz Dipl.-Ing. 7015 Korntal-Münchingen Leitl Radargerät
JPS607358A (ja) 1983-06-27 1985-01-16 Yazaki Corp 常温作動型ガスセンサ−
JPS60135757A (ja) * 1983-12-23 1985-07-19 Hochiki Corp ガスセンサ
US4699509A (en) * 1984-04-21 1987-10-13 Nippon Soken, Inc. Device for measuring contamination of lubricant
JPS62172256A (ja) 1986-01-27 1987-07-29 Figaro Eng Inc プロトン導電体ガス検出装置
JPH03287061A (ja) 1990-04-04 1991-12-17 Tokuyama Soda Co Ltd 水素ガスセンサ素子
JP3311218B2 (ja) * 1995-11-02 2002-08-05 松下電器産業株式会社 炭化水素センサ
US5766433A (en) 1996-02-22 1998-06-16 Akebono Brake Industry Co., Ltd. Solid electrolyte type gas sensor
JPH09236573A (ja) 1996-02-29 1997-09-09 Akebono Brake Res & Dev Center Ltd Co2 ガスセンサー用固体電解質材料とそれを使用した固体電解質の作製方法
JPH1164275A (ja) 1997-08-14 1999-03-05 Hikari Berukomu:Kk 酸化還元電位測定装置
WO2001089021A1 (en) * 2000-05-19 2001-11-22 Korea Institute Of Science And Technology A composite polymer electrolyte, a lithium secondary battery comprising the composite polymer electrolyte and their fabrication methods
DE50107173D1 (de) * 2000-06-26 2005-09-29 Draegerwerk Ag Gasfördervorrichtung für Beatmungs- und Narkosegeräte
EP1199561A1 (en) * 2000-10-16 2002-04-24 Matsushita Electric Industrial Co., Ltd. Hydrocarbon sensor and method for producing the same
JP2002174618A (ja) * 2000-12-07 2002-06-21 Matsushita Electric Ind Co Ltd 固体電解質型ガスセンサ
JP4521797B2 (ja) 2001-01-12 2010-08-11 独立行政法人産業技術総合研究所 定電位電解式水素センサ
US6656336B2 (en) * 2001-01-25 2003-12-02 The Regents Of The University Of California Method for forming a potential hydrocarbon sensor with low sensitivity to methane and CO
US6506296B2 (en) * 2001-03-08 2003-01-14 General Electric Company Micro-fuel cell sensor apparatus and method for modeling the sensor response time
CN2469452Y (zh) 2001-03-28 2002-01-02 耿玉桐 充气式电缆氢气探漏仪
US7235171B2 (en) * 2001-07-24 2007-06-26 Matsushita Electric Industrial Co., Ltd. Hydrogen sensor, hydrogen sensor device and method of detecting hydrogen concentration
JP4100984B2 (ja) 2001-07-24 2008-06-11 松下電器産業株式会社 水素センサー及び水素濃度の検出方法
CN1155820C (zh) * 2002-04-12 2004-06-30 浙江大学 适用于高温高压的电化学氢传感器
EP1717579A4 (en) 2004-02-19 2010-01-13 Niigata Tlo Corp HYDROGEN GAS SENSOR

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2128751A (en) 1982-10-15 1984-05-02 Nat Res Dev Hydrogen concentration meter
US4661211A (en) 1985-07-10 1987-04-28 Uop Inc. Gas detection with three-component membrane and sensor using said membrane
JPS63274857A (ja) * 1985-07-10 1988-11-11 ユ−オ−ピ− インコ−ポレイテツド 水素含有ガスまたは水素反応性ガスの検出法及びその装置
JPH05663B2 (ja) 1985-07-10 1993-01-06 Uop Inc
EP0281247A2 (en) 1987-03-02 1988-09-07 United Kingdom Atomic Energy Authority Gas sensors
EP0432840A2 (en) 1989-12-12 1991-06-19 ENIRICERCHE S.p.A. Solid-state sensor for the determination of the concentration of gases which can react with hydrogen
JP2002340830A (ja) 2001-05-11 2002-11-27 Mitsubishi Heavy Ind Ltd 水素ガス検出装置及びその製造方法
JP2003270200A (ja) 2002-03-20 2003-09-25 Sony Corp 水素ガスセンサー及びそれを用いた水素ガスセンシング方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1717579A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8266795B2 (en) * 2006-11-01 2012-09-18 Sensorcon, Inc. Methods of making an electrochemical gas sensor
US8283704B2 (en) 2008-09-12 2012-10-09 National University Corporation Okayama University Gas sensor
JP2010230620A (ja) * 2009-03-30 2010-10-14 Niigata Univ 高濃度水素ガスセンサー
JP2021113764A (ja) * 2020-01-20 2021-08-05 国立大学法人東海国立大学機構 水素センサ及び演算装置
JP7457317B2 (ja) 2020-01-20 2024-03-28 国立大学法人東海国立大学機構 水素センサ
WO2022079925A1 (ja) * 2020-10-15 2022-04-21 株式会社新潟Tlo 燃料電池用水素ガス濃度センサ
WO2022259883A1 (ja) * 2021-06-09 2022-12-15 株式会社新潟Tlo 水素ガス濃度センサ
WO2024090472A1 (ja) * 2022-10-27 2024-05-02 株式会社新潟Tlo 水素ガス濃度センサ

Also Published As

Publication number Publication date
US8097136B2 (en) 2012-01-17
EP1717579A1 (en) 2006-11-02
CN1839309A (zh) 2006-09-27
CA2507428C (en) 2015-09-08
JPWO2005080957A1 (ja) 2007-10-25
KR100833835B1 (ko) 2008-06-02
CN100445739C (zh) 2008-12-24
KR20060055543A (ko) 2006-05-23
EP1717579A4 (en) 2010-01-13
JP4048444B2 (ja) 2008-02-20
US20060185979A1 (en) 2006-08-24
CA2507428A1 (en) 2005-08-19

Similar Documents

Publication Publication Date Title
WO2005080957A1 (ja) 水素ガスセンサー
JP2007047124A (ja) 水素ガスセンサー
Sberveglieri et al. Silicon hotplates for metal oxide gas sensor elements
US9011778B2 (en) Hydrogen sensitive composite material, hydrogen gas sensor, and sensor for detecting hydrogen and other gases with improved baseline resistance
US5935398A (en) Hydrocarbon sensor
JP4061556B2 (ja) 水素量センサーおよび水素貯蔵装置
US3915830A (en) Solid electrolyte electrochemical cell with self contained reference
US20170038273A1 (en) Device for Detecting a Parameter of a Gas, Method for Operating Such a Device, and Measuring System for Determining a Parameter of a Gas
KR20160063092A (ko) 공존가스 검지센서 모듈 및 공존가스 검출방법
Hunter et al. Development of chemical sensor arrays for harsh environments and aerospace applications
WO2022079925A1 (ja) 燃料電池用水素ガス濃度センサ
KR20110012258A (ko) 전기화학 수소 가스 센서
CA2613430C (en) Method and device for the detection of hydrogen
JPH02145956A (ja) ガス検知装置
JP7039327B2 (ja) ガスセンサおよびガス検知方法
JP2010054233A (ja) 酸素濃度センサおよびその形成方法、並びに高温高圧水中の酸素濃度測定方法
CN117929475A (zh) 一种1r1c集成氢气传感器结构
EP3236249A1 (en) Sensor for sensing hydrogen in liquid and gaseous media
Hoffmann et al. MEMS-Based Hydrogen Sensors: A State of the Art Review
JPH11295267A (ja) 炭化水素センサ
JP2000171433A (ja) 可燃性ガス濃度測定デバイス
JPS5928258B2 (ja) 水素および水素含有還元剤の電気化学的センサ−
JPH0688800A (ja) 炭酸ガスセンサ素子および炭酸ガス濃度測定方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580000795.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2507428

Country of ref document: CA

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067003812

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2005719311

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006185979

Country of ref document: US

Ref document number: 10534644

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006510256

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 1020067003812

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 10534644

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005719311

Country of ref document: EP