WO2005080479A1 - Verfahren zur nachvernetzung wasserabsorbierender polymere - Google Patents

Verfahren zur nachvernetzung wasserabsorbierender polymere Download PDF

Info

Publication number
WO2005080479A1
WO2005080479A1 PCT/EP2005/001673 EP2005001673W WO2005080479A1 WO 2005080479 A1 WO2005080479 A1 WO 2005080479A1 EP 2005001673 W EP2005001673 W EP 2005001673W WO 2005080479 A1 WO2005080479 A1 WO 2005080479A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
weight
solution
base polymer
solutions
Prior art date
Application number
PCT/EP2005/001673
Other languages
English (en)
French (fr)
Inventor
Ulrich Riegel
Thomas Daniel
Matthias Weismantel
Mark Elliott
Dieter Hermeling
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34853736&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2005080479(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to BRPI0507793A priority Critical patent/BRPI0507793B1/pt
Priority to AT05715387T priority patent/ATE506393T1/de
Priority to US10/588,671 priority patent/US7981969B2/en
Priority to EP05715387.6A priority patent/EP1720934B2/de
Priority to KR1020067019589A priority patent/KR101096371B1/ko
Priority to JP2007500113A priority patent/JP4395531B2/ja
Priority to DE502005011278T priority patent/DE502005011278D1/de
Publication of WO2005080479A1 publication Critical patent/WO2005080479A1/de
Priority to US13/171,107 priority patent/US8258223B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/245Differential crosslinking of one polymer with one crosslinking type, e.g. surface crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/04Acids, Metal salts or ammonium salts thereof
    • C08F20/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/14Water soluble or water swellable polymers, e.g. aqueous gels

Definitions

  • the present invention relates to a method for post-crosslinking water-absorbing polymers.
  • Post-crosslinking means the gel or post-crosslinking of water-absorbing hydrogels.
  • Hydrophilic, highly swellable hydrogels are in particular polymers of (co) polymerized hydrophilic monomers, graft (co) polymers of one or more hydrophilic monomers on a suitable graft base, crosslinked cellulose or starch ethers, crosslinked carboxymethyl cellulose, partially crosslinked polyalkylene oxide or in aqueous Liquid-swellable natural products, such as guar derivatives.
  • Such hydrogels are used as products absorbing aqueous solutions for the production of diapers, tampons, sanitary napkins and other hygiene articles, but also as water-retaining agents in agricultural horticulture.
  • Hydrophilic, highly swellable hydrogels are hydrogels with a CRC value [g / g] of preferably greater than 15, in particular greater than 20, particularly preferably greater than 25, in particular greater than 30, particularly preferably greater than 35.
  • the CRC value [g / g] of the invention Crosslinked swellable hydrogel-forming polymers can be measured by the methods given in the description.
  • hydrophilic, highly swellable hydrogels are generally surface or gel cross-linked. This postcrosslinking is preferably carried out in the aqueous gel phase or as postcrosslinking of the ground and sieved polymer particles.
  • Crosslinkers suitable for this purpose are compounds which contain at least two groups which can form covalent bonds with the carboxyl groups of the hydrophilic polymer.
  • Suitable compounds are, for example, di- or polyglycidyl compounds, such as phosphonic acid diglycidyl esters, alkoxysilyl compounds, polyaziridines, polyamines or polyamidoamines, it being also possible to use the compounds mentioned in mixtures with one another (see, for example, EP-A-0 083022, EP-A- 0543303 and EP-A-0 530438).
  • Polyfunctional alcohols are also known as crosslinkers.
  • US 4,666,983 and US 5,385,983 teach the use of hydrophilic polyalcohols and the use of polyhydroxy surfactants.
  • the reaction will then be high Temperatures of 120 to 250 ° C carried out.
  • the process has the disadvantage that the esterification reaction leading to crosslinking proceeds slowly even at these temperatures.
  • crosslinking agents in DE-A-198075022 are oxazolidone and its derivatives, in WO-A-03/031482 morpholine-2,3-dione and its derivatives, in DE-A-19854573 2-oxotetrahydro-1, 3-oxazine and its derivatives, described in DE-A-19854574 N-acyl-2-oxazolidones and in DE-A-19807 992 bis- and poly-2-oxazolidinones as suitable crosslinking agents.
  • ⁇ -hydroxyalkylamides are described as crosslinkers in US Pat. No. 6,239,230. These are also well suited for use in hygiene articles. The disadvantage of these connections lies in the relatively high amounts required and the associated costs.
  • EP-A-0372981 teaches the joint use of a postcrosslinker and a polyvalent metal ion.
  • a solution of glycerin, aluminum sulfate and water is used.
  • EP-A-1 165631, EP-A-1 169 372, WO-A-02/20068 and WO-A-02/22717 also describe the joint use of a postcrosslinker and a polyvalent metal ion.
  • the use of a solution and the sole use of water as the solvent is expressly preferred.
  • DE-A-19846412 describes the production of an acidic hydrogel which, after neutralization and drying, is treated with a postcrosslinker and a polyvalent cation.
  • postcrosslinker and polyvalent cation are dosed in a common solution.
  • a disadvantage of the abovementioned methods is the high amount of postcrosslinker and polyvalent cation required for a high SFC value of the postcrosslinked polymer, in particular the high amount of postcrosslinker used.
  • Another considerable disadvantage is the high tendency of the base polymer to cake when the solution containing the postcrosslinker and the polyvalent cation is mixed in, which can lead to the mixer becoming blocked relatively quickly.
  • the post-crosslinked water-absorbing polymers should have a high liquid transfer rate (SFC).
  • SFC liquid transfer rate
  • the process should manage with a low application rate of postcrosslinker and polyvalent cation.
  • the amount of use of the expensive postcrosslinker should be low.
  • Another object was to provide a method in which the tendency of the base polymer to cure during post-crosslinking is reduced, post-crosslinking being understood to mean both the mixing in of the solution and the thermal post-crosslinking.
  • the object was to solve a superabsorbent polymer with a fine particle size distribution, i.e. without coarse components with particle sizes over 600 ⁇ m, and yet with high permeability and absorption capacity.
  • a base polymer A prepared on the basis of a monomer bearing at least 50% neutralized acid groups is mixed with a first aqueous solution B of at least one surface postcrosslinker and a second aqueous solution C of at least one polyvalent cation and is treated thermally, solutions B and C being metered in at least partially simultaneously via separate nozzles.
  • the dosing of solution B is started at the time t B ⁇ and ended at the time t B2 and the dosing of solution C is started at the time t C ⁇ and ended at the time t C2 .
  • the relative overlap of the doses is the quotient of the period during which both solutions B and C are dosed simultaneously and the period during which at least one solution was dosed, expressed in%.
  • the doses can be staggered in time, start at the same time, end at the same time or in such a way that one dosing is embedded in the other in time. Solutions B and C are dosed simultaneously when the dosing overlap is at least 95%.
  • the process according to the invention leads to optimal results if the aqueous solutions B and C are applied to the base polymer A at the same time, but not mixed, i.e. The particles of the base polymer A are treated as soon as possible separately with both solutions.
  • the aqueous solution B can typically also contain a cosolvent.
  • the cosolvent itself is not a postcrosslinker, ie the compounds which can be used as cosolvent can form at most one bond to at most one carboxyl group.
  • Suitable cosolvents are alcohols which are not polyols. CrC 6 alcohols, such as methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol, tert-butanol or 2-methyl-1-propanol, ketones, such as acetone, or carboxylic acid esters, such as ethyl acetate.
  • Preferred cosolvents are C 1 -C 3 alcohols, n-propanol and isopropanol are particularly preferred.
  • the concentration of the cosolvent in aqueous solution B, based on solution B, is frequently from 15 to 50% by weight, preferably from 15 to 40% by weight, particularly preferably from 20 to 35% by weight.
  • concentration of the cosolvents which are only miscible with water it is advantageous to adjust the aqueous solution B so that only one phase is present, if necessary by lowering the concentration of the cosolvent.
  • the aqueous solution B preferably contains at least two different postcrosslinkers.
  • the aqueous solution B particularly preferably contains at least one postcrosslinker which is not a polyol and at least one polyol.
  • the usable in the inventive method postcrosslinkers are, for example, ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, Polyethylenglykoldiglycidy- ether, propylene glycol diglycidyl ether, Dipropylenglykoldiglycidylether, Polypropylengly- koldiglycidylether, glycerol diglycidyl ether, Polyglycerindiglycidylether, epichlorohydrin, ethylenediamine, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene pylenglykol, dipropylene glycol, tripropylene glycol, polypropylene glycol, Butylene glycol, 1,3-propanediol, 1,4-butanediol, bisphenol A, glycerin, trimethylolpropane, pentaerythritol, sorbitol, diethanolamine
  • 2-oxazolidones such as 2- Oxazolidinone or N-hydroxyethyl-2-oxazolidinone
  • diols such as ethylene glycol and propylene glycol
  • 2-oxazolidinone and propylene glycol and N-hydroxyethyi-2-oxazolidinone and propylene glycol is very particularly preferred.
  • the concentration of the at least one postcrosslinker in aqueous solution B, based on solution B, is, for example, 1 to 30% by weight, preferably 3 to 20% by weight, particularly preferably 5 to 15% by weight.
  • the amount used, based on base polymer A, is, for example, 0.01 to 1% by weight, preferably 0.05 to 0.5% by weight, particularly preferably 0.1 to 0.25% by weight.
  • the polyvalent cations which can be used in the process according to the invention are, for example, divalent cations, such as the cations of zinc, magnesium, calcium and strontium, trivalent cations, such as the cations of aluminum, iron, chromium, rare earths and manganese, tetravalent cations, such as the cations of Titanium and zirconium. Chloride, bromide, sulfate, hydrogen sulfate, carbonate, hydrogen carbonate, nitrate, phosphate, hydrogen phosphate, dihydrogen phosphate and carboxylate, such as acetate and lactate, are possible as counterions. Aluminum sulfate is preferred.
  • the aqueous solution C usually contains no cosolvent.
  • the concentration of the at least one polyvalent cation in the aqueous solution C, based on the solution C, is, for example, 0.1 to 12% by weight, preferably 0.5 to 8% by weight, particularly preferably 1.5 to 6% by weight .-%.
  • the amount used based on base polymer A is, for example, 0.001 to 0.5% by weight, preferably 0.005 to 0.2% by weight, particularly preferably 0.02 to 0.1% by weight.
  • the ratio of solution B to solution C is typically from 10: 1 to 1:10, preferably from 5: 1 to 1: 5, particularly preferably from 4: 1 to 1: 1.
  • the total amount of solutions B and C, based on base polymer A, is usually between 2.5 and 6.5% by weight, preferably between 3 and 5% by weight.
  • a surfactant is added to the base polymer A as a deagglomeration aid, for example sorbitan monoesters such as sorbitan monocoat and sorbitan monolaurate.
  • the deagglomeration aid can be metered in separately or added to one of solutions B or C.
  • the deagglomeration aid is preferably added to one of solutions B or C, particularly preferably to solution B.
  • the amount of deagglomeration aid based on base polymer A is, for example, 0 to 0.01% by weight, preferably 0 to 0.005% by weight, particularly preferably 0 to 0.002% by weight.
  • the deagglomeration aid is preferably metered in such a way that the surface tension of an aqueous extract of the swollen base polymer A and / or the swollen water-absorbing polymer at 23 ° C. is at least 0.060 N / m, preferably at least 0.062 N / m, particularly preferably at least 0.065 N / m ,
  • the surface tension of the aqueous extract is advantageously at most 0.072 N / m.
  • the spray nozzles that can be used in the method according to the invention are not subject to any restriction. Such nozzles can be supplied with the liquid to be sprayed under pressure. The liquid to be sprayed can be divided up by relaxing it in the nozzle bore after a certain minimum speed has been reached. Furthermore, single substance nozzles, such as slot nozzles or swirl chambers (full cone nozzles) can also be used for the purpose according to the invention (for example from Düsen-Schlick GmbH, DE, or from Spraying Systems Kunststoff GmbH, DE).
  • full cone nozzles with an opening angle of the spray cone of 60 to 180 °, particularly preferably 90 to 120 ° are preferred.
  • the mean droplet diameter which is established during spraying is expediently ⁇ 1000 ⁇ m, preferably ⁇ 200 ⁇ m, preferably ⁇ 100 ⁇ m, and expediently> 10 ⁇ m, preferably> 20 ⁇ m, preferably> 50 ⁇ m.
  • the throughput per spray nozzle is advantageously 0.1 to 10 m 3 / h, often 0.5 to 5 m 3 / h.
  • the average flight length of the drops (until they hit the substrate) is typically 0.1 to 2 m on an industrial scale, frequently 0.2 to 1 m, preferably 0.3 to 0.5 m.
  • the drops are too large, the distribution on base polymer A is not optimal and the amount of solutions B and C required to achieve a certain effect is disproportionately high.
  • the drops are too small, the tendency to cake in the mixer increases, possibly because the capture cross-section increases over the sum of the drops and thus increases the probability that drops with solutions B and C already mix in front of the substrate.
  • the polymer powder is thermally dried, and the crosslinking reaction can take place both before and during the drying. It is preferred to spray on a solution of the crosslinking agent in reaction mixers or mixing and drying systems such as Lödige mixers, BEPEX® mixers, NAUTA® mixers, SCHUGGKD mixers or PROCESSALL®. Fluid bed dryers can also be used. Solutions B and C are particularly preferably applied to base polymer A in a high-speed mixer, for example of the Schuggi-Flexomix® or Turbolizer® type, and thermally aftertreated in a reaction dryer, for example of the Nara-Paddle-Dryer® type or in a disk dryer. Preferred for post-crosslinking and Drying is the temperature range from 30 to 200 ° C, in particular 100 to 200 ° C, particularly preferably 160 to 190 ° C.
  • Drying can take place in the mixer itself, by heating the jacket or by blowing in warm air.
  • a downstream dryer such as a tray dryer, a rotary kiln or a heatable screw is also suitable.
  • an azeotropic distillation can also be used as the drying process.
  • the preferred residence time at this temperature in the reaction mixer or dryer is less than 120 minutes, particularly preferably less than 90 minutes, most preferably less than 60 minutes.
  • the hydrophilic, highly swellable hydrogels (base polymer A) to be used in the process according to the invention are in particular polymers of crosslinked (co) polymerized hydrophilic monomers, polyaspartic acid, graft (co) polymers of one or more hydrophilic monomers on a suitable graft base, crosslinked cellulose or starch ether or in aqueous liquids swellable natural products, such as guar derivatives.
  • the polymer to be crosslinked is preferably a polymer which contains structural units which are derived from acrylic acid or its esters, or which have been obtained by graft copolymerization of acrylic acid or acrylic acid esters onto a water-soluble polymer matrix.
  • hydrogels are known to the person skilled in the art and are described, for example, in US Pat. No. 4,286,082, DE-C-2706 135, US-A-4340706, DE-C-37 13 601, DE-C-2840010, DE-A-4344548, DE- A-4020780, DE-A-40 15085, DE-A-39 17846, DE-A-3807289, DE-A-3533337, DE-A-3503458, DE-A-42 44548, DE-A-42 19607, DE-A-4021 847, DE-A-3831 261, DE-A-35 11 086, DE-A-31 18 172, DE-A-3028043, DE-A-44 18 881, EP-A-0 801 483, EP-A-0455985, EP-A-0467073, EP-A-0 312 952, EP-A-0205874, EP-A-0499774, DE-A 26 12 846, DE-A-4020780, EP-A -0205674, US
  • Hydrophilic monomers suitable for producing these swellable hydrogel-forming polymers are, for example, polymerizable acids, such as acrylic acid, methacrylic acid, vinylsulfonic acid, vinylphosphonic acid, maleic acid including its anhydride, fumaric acid, itaconic acid, 2-acrylamido-2-methylpropanesulfonic acid, 2-acrylamido-2-methylpropanephosphonic acid and their amides, hydroxyalkyl esters and esters and amides containing amino groups or ammonium groups and the alkali metal and / or ammonium salts of the monomers containing acid groups.
  • water-soluble N-vinylamides such as N-vinylformamide or diallyldimethylammonium chloride are also suitable.
  • Preferred hydrophilic monomers are compounds of the general formula I.
  • R 1 is hydrogen, CrC-alkyl, such as methyl or ethyl, or carboxyl,
  • R 2 -COOR 4 hydroxysulfonyl or phosphonyl, a phosphonyl group esterified with a C 1 -C 4 -alkanol or a group of the formula II
  • R 3 is hydrogen, -CC 4 -alkyl, such as methyl or ethyl,
  • R 4 is hydrogen, dd-aminoalkyl, dC ⁇ hydroxyalkyl, alkali metal or ammonium ion and
  • R 5 represents a sulfonyl group, a phosphonyl group or a carboxyl group or their alkali metal or ammonium salts.
  • Examples of -C-C 4 alkanols are methanol, ethanol, n-propanol, isopropanol or n-butanol.
  • Preferred hydrophilic monomers are monomers bearing acid groups, preferably partially neutralized, i.e. 50 to 100%, preferably 60 to 90%, particularly preferably 70 to 80%, of the acid groups are neutralized.
  • hydrophilic monomers are acrylic acid and methacrylic acid, and their alkali metal or ammonium salts, for example sodium acrylate, potassium acrylate or ammonium acrylate.
  • Suitable graft bases for hydrophilic hydrogels which can be obtained by graft copolymerization of olefinically unsaturated acids or their alkali metal or ammonium salts, can be of natural or synthetic origin. Examples are starch, cellulose or cellulose derivatives and other polysaccharides and oligosaccharides, polyalkylene oxides, in particular polyethylene oxides and polypropylene oxides, and hydrophilic polyesters.
  • Suitable polyalkylene oxides have, for example, the formula III
  • R 6 , R 7 independently of one another hydrogen, CrC ⁇ 2 alkyl, such as methyl ethyl, n-propyl or isopropyl, C 2 -C 2 alkenyl, such as ethenyl, n-propenyl or isopropenyl, C 7 -C 2 o- Aralkyl, such as, for example, phenylmethyl, 1-phenylethyl or 2-phenylethyl, or aryl, such as, for example, 2-methylphenyl, 4-methylphenyl or 4-ethylphenyl,
  • R 8 is hydrogen or methyl
  • n is an integer from 1 to 10,000.
  • R 6 and R 7 are preferably hydrogen, -CC 4 alkyl, C 2 -C 6 alkenyl or phenyl.
  • Preferred hydrogels are in particular polyacrylates, polymethacrylates and the graft polymers described in US Pat. Nos. 4,931, 497, 5,011, 892 and 5,041, 496.
  • the swellable hydrogel-forming polymers are preferably cross-linked, i.e. they contain compounds with at least two double bonds which are polymerized into the polymer network.
  • Suitable crosslinkers are, in particular, N, N'-methylenebisacrylamide and N, N'-methylenebismethacrylamide, esters of unsaturated mono- or polycarboxylic acids of polyols, such as diacrylate or triacrylate, for example butanediol or ethylene glycol diacrylate or methacrylate, and trimethylolpropane triaverbylate and allyl acrylate and Solutions such as allyl (meth) acrylate, triallyl cyanurate, maleic acid diallyl ester, polyallyl ester, tetraallyloxyethane, triallyl amine, tetraallyl ethylenediamine, allyl ester of phosphoric acid and vinylphosphonic acid derivatives, as described for example in EP-A-0 343 427.
  • Hydrogels which are prepared using polyallyl ethers as crosslinking agents and by acidic homopolymerization of acrylic acid can also be used in the process according to the invention.
  • Suitable crosslinkers are pentaerythritol tri- and tetraallyl ether, polyethylene glycol diallyl ether, ethylene glycol dialyl ether, glycerol di and triallyl ether, polyallyl ether based on sorbitol, and ethoxylated variants thereof.
  • base polymer which can be used in the process according to the invention are described in "Modern Superabsorbent Polymer Technology", FL Buchholz and AT Graham, Wiley-VCH, 1998, pages 77 to 84.
  • the water-absorbing polymer is preferably a polymeric acrylic acid or a polyacrylate.
  • This water-absorbing polymer can be prepared by a process known from the literature. Polymers which contain crosslinking comonomers in amounts of 0.001 to 10 mol%, preferably 0.01 to 1 mol% are preferred, but very particularly preferred are polymers which have been obtained by radical polymerization and in which a polyfunctional ethylenically unsaturated radical crosslinker is used was, which can also carry at least one free hydroxyl group (such as pentaerythritol triallyl ether, trimethylolpropane diallyl ether, glycerol diacrylate).
  • the swellable hydrogel-forming polymers can be produced by polymerization processes known per se. Polymerization in aqueous solution by the so-called gel polymerization method is preferred. For example, 15 to 50% by weight aqueous solutions of one or more hydrophilic monomers and, if appropriate, a suitable graft base in the presence of a radical initiator, preferably without mechanical mixing, using the Trommsdorff-Norrish effect (Makromol. Chem. 1, 169 (1947 )), polymerized.
  • the polymerization reaction can be carried out in the temperature range between 0 and 150.degree. C., preferably between 10 and 100.degree. C., both under normal pressure and under elevated or reduced pressure.
  • the polymerization can also be carried out in a protective gas atmosphere, preferably under nitrogen and / or water vapor; high-energy electromagnetic radiation or the usual chemical polymerization initiators can be used to initiate the polymerization, for example organic peroxides, such as benzoyl peroxide, tert-butyl hydroperoxide, methyl ethyl ketone peroxide, Cumene hydroperoxide, azo compounds such as azodiisobutyronitrile and inorganic peroxo compounds such as (NH 4 ) 2 S 2 O 8 or K 2 S 2 O 8 or H 2 O 2 .
  • organic peroxides such as benzoyl peroxide, tert-butyl hydroperoxide, methyl ethyl ketone peroxide, Cumene hydroperoxide, azo compounds such as azodiisobutyronitrile and inorganic peroxo compounds such as (NH 4 ) 2 S 2 O 8 or K 2 S 2 O 8 or H 2 O 2
  • reducing agents such as sodium bisulfite and iron (II) sulfate or redox systems which contain an aliphatic and aromatic sulfinic acid, such as benzenesulfinic acid and toluenesulfinic acid or derivatives of these acids, such as Mannich adducts of sulfinic acids, aldehydes and amino compounds as described in DE-A-13 01 566 can be used.
  • the quality properties of the polymers can be improved further by reheating the polymer gels for several hours in the temperature range from 50 to 130 ° C., preferably from 70 to 100 ° C.
  • the gels obtained are, for example, 0 to 100 mol%, preferably 5 and 90 mol%, in particular between 25 and 80 mol%, very particularly preferably between 30 and 55 mol% and between 70 and 75 mol%, based neutralized to the monomer used, it being possible to use the customary neutralizing agents, preferably alkali metal hydroxides or oxides, but particularly preferably sodium hydroxide, sodium carbonate and sodium hydrogen carbonate.
  • the pH of the neutralized base polymer is usually between 5 and 7.5, preferably between 5.6 and 6.2.
  • the neutralization is usually achieved by mixing in the neutralizing agent as an aqueous solution or preferably also as a solid.
  • the neutralization is preferably carried out before the polymerization in the monomer solution.
  • the polymer gel can also be neutralized or subsequently neutralized.
  • the gel is typically mechanically comminuted, for example using a meat grinder, and the neutralizing agent is sprayed on, sprinkled on or poured on, and then carefully mixed in.
  • the gel mass obtained can be minced several times for homogenization.
  • the neutralized gel mass is dried with a belt or roller dryer until the residual moisture content is preferably below 10% by weight, in particular below 5% by weight.
  • the dried hydrogel is then ground and sieved, it being possible to use roller mills, pin mills or vibrating mills for the grinding.
  • the particles typically have a grain size of 100 to 1000 ⁇ m.
  • the CRC value [g / g] of the base polymer A can be measured according to the methods given in the description and is preferably at least 27, in particular at least 29, particularly preferably at least 31, and at most 39, preferably at most 35.
  • the AUL 0.3 psi value [g / g] of base polymer A can be measured by the methods given in the description and is preferably at least 14, in particular at least 17, particularly preferably at least 21, and at most 27, preferably at most 23.
  • the crosslinked water-absorbing polymers according to the invention usually have a grain size of 100 to 1000 ⁇ m.
  • the CRC value [g / g] of the post-crosslinked water-absorbing polymers according to the invention can be measured by the methods given in the description and is preferably at least 20, in particular at least 24, particularly preferably at least 25, in particular at least 26, particularly preferably at least 30.
  • the AUL 0.7 psi value [g / g] of the post-crosslinked water-absorbing polymers according to the invention can be measured by the methods given in the description and is preferably at least 15, in particular at least 21, particularly preferably at least 22, in particular at least 23, in particular preferably at least 25.
  • the SFC value [cm 3 s / g] of the post-crosslinked water-absorbing polymers according to the invention can be measured by the methods given in the description and is preferably at least 80, in particular at least 100, particularly preferably at least 120, in particular at least 130, particularly preferably at least 135.
  • the present invention furthermore relates to the water-absorbing polymers which can be obtained by the process according to the invention.
  • the present invention also relates to water-absorbing polymers with a CRC value of at least 20, in particular at least 24, particularly preferably at least 25, in particular at least 26, particularly preferably at least 30, and an AUL 0.7 psi value of at least 15, in particular at least 21 , particularly preferably at least 22, in particular at least 23, particularly preferably at least 25, an SFC value of at least 80, in particular at least 100, particularly preferably at least 120, in particular at least 130, particularly preferably at least 135, and with a proportion of at least 80% by weight. %, preferably at least 90% by weight, particularly preferably at least 95% by weight, of particles with a grain size of 150 to 600 ⁇ m, preferably of 150 to 500 ⁇ m.
  • the dried hydrogel is tested using the test methods described below:
  • the measurements should be carried out at an ambient temperature of 23 + 2 ° C and a relative humidity of 50 + 10%.
  • the swellable hydrogel-forming polymer is mixed well before the measurement.
  • This method determines the free swellability of the hydrogel in the tea bag.
  • 0.2000 ⁇ 0.0050 g of dried hydrogel (grain frac- tion 106 - 850 ⁇ m) in a 60 x 85 mm tea bag which is then sealed.
  • the tea bag is placed in an excess of 0.9% by weight saline solution (at least 0.83 l saline solution / 1 g polymer powder) for 30 minutes.
  • the tea bag is then centrifuged at 250 G for 3 minutes. The amount of liquid held by the hydrogel is determined by weighing the centrifuged tea bag.
  • centrifuge retention capacity can also be determined according to test method No. 441.2-02 "Centrifuge retention capacity" recommended by EDANA (European Disposables and Nonwovens Association).
  • the measuring cell for determining the AUL 0.7 psi is a plexiglass cylinder with an inner diameter of 60 mm and a height of 50 mm, which has a glued-on stainless steel sieve bottom with a mesh size of 36 ⁇ m on the underside.
  • the measuring cell also includes a plastic plate with a diameter of 59 mm and a weight, which can be placed together with the plastic plate in the measuring cell.
  • the weight of the plastic plate and the total weight are 1344 g.
  • the weight of the empty plexiglass cylinder and the plastic plate is determined and noted as W 0 .
  • a ceramic filter plate with a diameter of 120 mm, a height of 10 mm and a porosity 0 is placed and so much 0.9% by weight sodium filled chloride solution that the liquid surface is flush with the filter plate surface without the surface of the filter plate is wetted.
  • a round filter paper with a diameter of 90 mm and a pore size ⁇ 20 ⁇ m (S&S 589 black tape from Schleicher & Schüll) is placed on the ceramic plate.
  • the plexiglass cylinder containing swellable hydrogel-forming polymer is now placed with the plastic plate and weight on the filter paper and left there for 60 minutes.
  • the complete unit is removed from the Petri dish from the filter paper and then the weight is removed from the Plexiglas cylinder.
  • the plexiglass cylinder containing swollen hydrogel is weighed out together with the plastic plate and the weight is recorded as W b .
  • AUL absorption under pressure
  • Absorption under pressure can also be determined according to test method No. 442.2-02 "Absorption under pressure" recommended by EDANA (European Disposables and Nonwovens Association).
  • the measurement is carried out analogously to the AUL 0.3 psi.
  • the weight of the plastic plate and the weight together are 576 g.
  • the liquid transmission of a swollen gel layer under a pressure load of 0.3 psi (2070 Pa) is, as described in EP-A-0640330, determined as the gel layer permeability of a swollen gel layer made of superabsorbent polymer, which is described in the aforementioned patent application on page 19 and the apparatus described in FIG. 8 was modified in such a way that the glass frit (40) is no longer used, the stamp (39) is made of the same plastic material as the cylinder (37) and now contains 21 holes of the same size distributed over the entire bearing surface. The procedure and evaluation of the measurement remains unchanged compared to EP-A-0 640330. The flow is recorded automatically.
  • the method determines the speed at which the swellable hydrogel-forming polymer flows through a funnel.
  • 100 ⁇ 0.01 g of dried hydrogel are weighed into a closable metal funnel.
  • the weight of the swellable hydrogel-forming polymer is noted as Wi.
  • the funnel complies with DIN 53492.
  • the funnel outlet tube has a height of 145.0 ⁇ 0.5 mm and an inner diameter of 10.00 ⁇ 0.01 mm.
  • the angle of inclination of the funnel wall with respect to the horizontal is 20 °.
  • the metal funnel is grounded. On- the funnel is then opened and the time measured until the funnel is empty. The time is noted as t.
  • the measurement is carried out twice.
  • the deviation of both measured values may be a maximum of 5%.
  • the flow rate (FLR) is calculated as follows:
  • the density of the swellable hydrogel-forming polymer is determined after pouring out.
  • the measurement is carried out with a cylindrical pygnometer according to DIN 53466.
  • the pygnometer has a volume of 100.0 ⁇ 0.5 ml, an inner diameter of 45.0 + 0.1 mm and a height of 63.1 ⁇ 0.1 mm.
  • the pygnometer is weighed empty. The weight is noted as ⁇ N ⁇ .
  • To determine the ASG approx. 100 g of dried hydrogel are weighed into a lockable metal funnel.
  • the funnel complies with DIN 53492.
  • the funnel outlet pipe has a height of 145.0 + 0.5 mm and an inner diameter of 10.00 + 0.01 mm.
  • the angle of inclination of the funnel wall with respect to the horizontal is 20 °.
  • the metal funnel and the pygnometer are grounded.
  • the funnel is then emptied into the pynometer, excess swellable hydrogel-forming polymer overflowing.
  • the excess swellable hydrogel-forming polymer is wiped off using a spatula.
  • the filled pygnometer is weighed and the weight noted as W 2 .
  • the measurement is carried out twice.
  • the deviation of both measured values may not exceed 5%.
  • the distribution weight (ASG) is calculated as follows:
  • ASG [g / cm 3 ] [Wa-W ⁇ / V
  • the pouring weight can also be determined according to test method No. 460.2-02 "Density" recommended by EDANA (European Disposables and Nonwovens Association). Surface tension of the aqueous extract
  • hydrogel-forming polymer 0.50 g is weighed into a small beaker and 40 ml of 0.9% by weight saline solution are added. The contents of the beaker are stirred for 3 minutes at 500 U / m with a magnetic stir bar, then allowed to sit for 2 minutes. Finally, the surface tension of the protruding aqueous phase is measured using a K10-ST digital tensiometer or a comparable device with a platinum plate (Kruess).
  • the grain size distribution can be determined according to test method No. 420.2-02 "Particle Size Distribution - Sieve Fractionation" recommended by EDANA (European Disposables and Nonwovens Association). Only a 500 ⁇ m sieve is required.
  • the content of extractable constituents of the hydrogel-forming polymer can be determined according to test method No. 470.2-02 "Determination of extractable polymer content by potentiometric titration" recommended by EDANA (European Disposables and Nonwovens Association).
  • the pH of the hydrogel-forming polymer can be determined according to test method No. 400.2-02 "Determination of pH” recommended by EDANA (European Disposables and Nonwovens Association).
  • the weight W1 must be corrected for this moisture content.
  • a base polymer was produced according to the continuous kneading process described in WO-A-01/38402.
  • Polyethylene glycol 400 diacrylate was used as the crosslinking agent in an amount of 1.00% by weight, based on acrylic acid monomer, and the crosslinking agent was continuously added to the monomer stream.
  • the initiation was also carried out by continuously adding aqueous solutions of the initiators sodium persulfate, hydrogen peroxide and ascorbic acid.
  • the polymer was dried on a belt dryer, ground and then sieved to a particle size of 150 to 500 ⁇ m.
  • the base polymer produced in this way had the following properties:
  • this base polymer was sprayed with the two surface post-crosslinking solutions and then tempered. Spraying was carried out in a Schuggi® Flexomix Type 100 D mixer with gravimetric metering of the base polymer and continuous mass flow controlled liquid metering via two-component nozzles. Two separate nozzles were installed in the Flexo mix, and each of the two solutions was fed separately to its nozzle.
  • the post-crosslinking solution B contained 5.0% by weight of 2-oxazolidinone, 23.6% by weight of isopropanol, 5.0% by weight of 1,2-propanediol, and 66.4% by weight of water and was sprayed in a dosage of 2.42% by weight based on polymer via a separate two-component nozzle.
  • the post-crosslinking solution C contained 23.0% by weight of aluminum sulfate in water and was sprayed in a dosage of 1.08% by weight, based on the polymer, through a two-component nozzle.
  • the wet polymer was transferred directly from the Schuggi mixer to a NARA NPD 1.6 W reaction dryer (GMF Gouda B.V., Nl).
  • the throughput rate of base polymer A was 60 kg / h (dry) and the product temperature of the steam-heated dryer at the dryer outlet was approximately 178 ° C.
  • the dryer was followed by a cooler, which quickly cooled the product to approx. 50 ° C.
  • the exact residence time in the dryer can be precisely specified by the throughput rate of the polymer through the dryer and the weir height (here 70%).
  • the end product obtained had the following properties:
  • a base polymer was produced in a List ORP 250 pilot plant reactor according to the continuous kneading process described in WO 01/38402.
  • Trimethylolpropane-18 EO triacrylate was used as the crosslinker in an amount of 1.10% by weight, based on acrylic acid monomer, and the crosslinker was continuously added to the monomer stream.
  • the initiation was also carried out by continuously adding aqueous solutions of the initiators sodium persulfate, hydrogen peroxide and ascorbic acid.
  • the amounts of initiator, based on acrylic acid were 0.145% by weight sodium persulfate, 0.0009% by weight hydrogen peroxide and 0.003% by weight ascorbic acid.
  • the polymer was dried on a belt dryer, ground and then sieved to a particle size of 150 to 500 ⁇ m.
  • the base polymer produced in this way had the following properties:
  • this basic polymer was sprayed with the two surface post-crosslinking solutions and then tempered. Spraying was carried out in a Schuggi® Flexomix Type 100 D mixer with gravimetric injection Base polymer and continuous mass flow controlled liquid dosing via two-component nozzles. Two separate nozzles were installed in the Flexo mix, and each of the two solutions was fed separately to its nozzle.
  • the postcrosslinking solution B contained 2.5% by weight of 2-oxazolidinone, 28.15% by weight of isopropanol, 2.5% by weight of 1,2-propanediol, 0.7% by weight of sorbitan monococoate, and 66.15% by weight .-% water and was sprayed in a dosage of 3.5 wt .-% based on the polymer via a separate two-component nozzle.
  • the post-crosslinking solution C contained 26.8% by weight of aluminum sulfate in water and was sprayed in a dosage of 1.6% by weight, based on the polymer, through a two-component nozzle.
  • the moist polymer was transferred directly from the Schuggi mixer to a NARA NPD 1.6 W reaction dryer (Gouda, the Netherlands).
  • the throughput rate of the base polymer was 60 kg / h (dry) and the product temperature of the steam-heated dryer at the dryer outlet was approximately 179 ° C.
  • the dryer was followed by a cooler, which quickly cooled the product to approx. 50 ° C.
  • the exact residence time in the dryer can be precisely specified by the throughput rate of the polymer through the dryer and the weir height (here 70%).
  • the end product obtained has the following properties:
  • Example 2 The experiment from Example 1 was repeated, but the two solutions for surface postcrosslinking were mixed together before spraying. A short time after At the start of surface rewetting in the pilot plant, the Schuggi mixer was completely blocked and the test had to be stopped.
  • Example 2 The experiment from Example 2 was repeated, but the two surface rewetting solutions were mixed together in a separate tank before spraying. Shortly after the start of surface post-crosslinking in the pilot plant, the Schuggi mixer quickly became blocked and the test had to be stopped.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Absorbent Articles And Supports Therefor (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung wasserabsorbierender Polymere, wobei ein auf Basis eines zu mindestens 50% neutralisierter Säuregruppen tragenden Monomeren hergestelltes Grundpolymer A mit einer ersten wässrigen Lösung B mindestens eines Oberflächennachvernetzers und einer zweiten wässrigen Lösung C mindestens eines polyvalenten Kations vermischt und thermisch behandelt wird, wobei die Lösungen B und C über getrennte Düsen zumindest teilweise gleichzeitig dosiert werden, wodurch ein wasserabsorbierendes Polymer mit hoher Flüssigkeitsweiterleitung erhalten wird.

Description

Verfahren zur Nachvernetzung wasserabsorbierender Polymere
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zur Nachvernetzung wasserabsorbierender Polymere.
Unter Nachvernetzung wird die Gel- bzw. Nachvernetzung von wasserabsorbierenden Hydrogelen verstanden.
Hydrophile, hochquellfähige Hydrogele sind insbesondere Polymere aus (co)polymerisierten hydrophilen Monomeren, Pfropf(co)polymere von einem oder mehreren hydrophilen Monomeren auf einer geeigneten Pfropfgrundlage, vernetzte Cellu- lose- oder Stärkeether, vernetzte Carboxymethylcellulose, teilweise vernetztes Polyal- kylenoxid oder in wässrigen Flüssigkeiten quellbare Naturprodukte, wie beispielsweise Guarderivate. Solche Hydrogele werden als wässrige Lösungen absorbierende Produkte zur Herstellung von Windeln, Tampons, Damenbinden und anderen Hygieneartikeln, aber auch als wasserzurückhaltende Mittel im landwirtschaftlichen Gartenbau verwendet.
Hydrophile, hochquellfähige Hydrogele sind Hydrogele mit einem CRC-Wert [g/g] von bevorzugt größer 15, insbesondere größer 20, besonders bevorzugt größer 25, insbesondere größer 30, insbesondere bevorzugt größer 35. Der CRC-Wert [g/g] der erfindungsgemäßen vernetzten quellbaren hydrogelbildenden Polymere kann nach den in der Beschreibung angegebenen Methoden gemessen werden.
Zur Verbesserung der Anwendungseigenschaften, wie beispielsweise Flüssigkeitsweiterleitung (SFC) in der Windel und Absorption unter Druck (AUL), werden hydrophile, hochquellfähige Hydrogele im allgemeinen Oberflächen- oder gelnachvemetzt. Diese Nachvernetzung erfolgt bevorzugt in wässriger Gelphase oder als Nachvernetzung der gemahlenen und abgesiebten Polymerpartikel.
Dazu geeignete Vernetzer sind Verbindungen, die mindestens zwei Gruppen enthalten, die mit den Carboxylgruppen des hydrophilen Polymeren kovalente Bindungen bilden können. Geeignete Verbindungen sind beispielsweise Di- oder Polyglycidylverbindun- gen, wie Phosphonsäurediglycidylester, Alkoxysilylverbindungen, Polyaziridine, Polya- mine oder Polyamidoamine, wobei die genannten Verbindungen auch in Mischungen untereinander verwendet werden können (siehe beispielsweise die EP-A-0 083022, EP-A-0543303 und EP-A-0 530438).
Als Vernetzer sind auch polyfunktionelle Alkohole bekannt. Beispielsweise lehren die US-4,666,983 sowie US-5,385,983 die Verwendung von hydrophilen Polyalkoholen bzw. die Verwendung von Polyhydroxytensiden. Die Reaktion wird hiernach bei hohen Temperaturen von 120 bis 250°C durchgeführt. Das Verfahren hat den Nachteil, daß die zur Vernetzung führende Veresterungsreaktion selbst bei diesen Temperaturen nur langsam abläuft.
Desweiteren sind als Vernetzer in DE-A-198075022-Oxazolidon und dessen Derivate, in WO-A-03/031482 Morpholin-2,3-dion und dessen Derivate, in DE-A-19854573 2-Oxotetrahydro-1 ,3-oxazin und dessen Derivate, in DE-A-19854574 N-Acyl-2- Oxazolidone und in DE-A-19807 992 Bis- und Poly-2-oxazolidinone als geeignete Vernetzer beschrieben.
Weiterhin sind als Vernetzer ß-Hydroxyalkylamide in US-6,239,230 beschrieben. Auch diese sind gut geeignet für den Einsatz in Hygieneartikeln. Der Nachteil dieser Verbindungen liegt in den notwendigen relativ hohen Einsatzmengen und den damit zusammenhängenden Kosten.
EP-A-0372981 lehrt die gemeinsame Verwendung eines Nachvernetzers und eines polyvalenten Metallions. In den Beispielen wird eine Lösung aus Glycerin, Aluminiumsulfat und Wasser verwendet.
In EP-A-1 165631 , EP-A-1 169 372, WO-A-02/20068 und WO-A-02/22717 wird ebenfalls die gemeinsame Verwendung eines Nachvernetzers und eines polyvalenten Metallions beschrieben. Dabei wird die Verwendung einer Lösung und die alleinige Verwendung von Wasser als Lösungsmittel ausdrücklich bevorzugt.
DE-A-19846412 beschreibt die Herstellung eines sauren Hydrogels, dass nach Neutralisation und Trocknung mit einem Nachvernetzer und einem polyvalenten Kation behandelt wird. In den Beispielen werden Nachvernetzer und polyvalentes Kation in einer gemeinsamen Lösung dosiert.
Nachteilig bei den obengenannten Verfahren ist die für eine hohen SFC-Wert des nachvernetzten Polymers notwendige hohe Einsatzmenge an Nachvernetzer und poly- valentem Kation, insbesondere die hohe Einsatzmenge an Nachvernetzer. Ein weiterer erheblicher Nachteil ist die hohe Verbackungsneigung des Grundpolymers beim Einmischen der den Nachvernetzer und das polyvalente Kation enthaltenden Lösung, wel- ehe relativ schnell zum Verstopfen des Mischers führen kann.
Keines der oben genannten Verfahren offenbart eine Lehre wie Produkte mit feiner Korngrößenverteilung und dennoch sehr hoher Permeabilität hergestellt werden können. Solche feinkörnigen Superabsorber ermöglichen insbesondere die Herstellung sehr dünner Windeln ohne oder mit geringem Zellstoffanteil. Es bestand daher die Aufgabe ein Verfahren zur Nachvernetzung bereitzustellen, dass die obengenannten Nachteile vermeidet. Insbesondere sollen die nachvernetzten wasserabsorbierenden Polymere eine hohe Flüssigkeitsweiterleitung (SFC) aufweisen. Das Verfahren soll mit einer geringen Aufwandmenge an Nachvernetzer und polyva- lentem Kation auskommen. Insbesondere soll die Einsatzmenge des teuren Nachvernetzers niedrig sein.
Eine weitere Aufgabe bestand darin ein Verfahren bereitzustellen, bei dem die Verba- ckungsneigung des Grundpolymers während der Nachvernetzung vermindert ist, wobei unter Nachvernetzung sowohl das Einmischen der Lösung als auch die thermische Nachvernetzung zu verstehen ist.
Insbesondere war die Aufgabe zu lösen ein superabsorbierendes Polymer mit feiner Korngrößenverteilung, d.h. ohne grobe Bestandteile mit Partikelgrößen über 600 μm, und dennoch mit hoher Permeabilität und Absorptionskapazität zur Verfügung zu stellen.
Überraschenderweise wurde nun gefunden, dass die Aufgabe durch ein Verfahren gelöst wird, wobei ein auf Basis eines zu mindestens 50% neutralisierter Säuregruppen tragenden Monomeren hergestelltes Grundpolymer A mit einer ersten wässrigen Lösung B mindestens eines Oberflächennachvernetzers und einer zweiten wässrigen Lösung C mindestens eines polyvalenten Kations vermischt und thermisch behandelt wird, wobei die Lösungen B und C über getrennte Düsen zumindest teilweise gleichzeitig dosiert werden.
Wird beispielsweise die Dosierung von Lösung B zum Zeitpunkt tBι gestartet und zum Zeitpunkt tB2 beendet sowie die Dosierung von Lösung C zum Zeitpunkt tCι gestartet und zum Zeitpunkt tC2 beendet, so bedeutet teilweise gleichzeitig für den Fall tBι < tCι, dass tCι < tB2 ist, und für den Fall tB1 > tCι, dass tBι < tC2 ist, wobei die relative Überlap- pung der Dosierungen typischerweise mindestens 5%, vorzugsweise mindestens 25%, besonders bevorzugt mindestens 50%, ganz besonders bevorzugt mindestens 95%, beträgt. Die relative Überlappung der Dosierungen ist dabei der Quotient aus dem Zeitraum, während dem beide Lösungen B und C gleichzeitig dosiert werden, und dem Zeitraum, während dem mindestens eine Lösung dosiert wurde, angegeben in %.
Ist beispielsweise tBι = 0 Minuten, tB2 = 15 Minuten, tCι = 5 Minuten und tC2 = 20 Minuten, so beträgt die relative Überlappung der Dosierungen (15-5)/(20-0) = 50%.
Dabei können die Dosierungen zeitlich versetzt erfolgen, gleichzeitig beginnen, gleich- zeitig enden oder so erfolgen, dass die eine Dosierung in die andere zeitlich eingebettet ist. Die Lösungen B und C werden gleichzeitig dosiert, wenn die Überlappung der Dosierungen mindestens 95% beträgt.
Das erfindungsgemäße Verfahren führt zu optimalen Ergebnissen, wenn die wässrigen Lösungen B und C gleichzeitig, aber unvermischt, auf das Grundpolymer A aufgebracht werden, d.h. die Partikel des Grundpolymers A werden möglichst zeitnah mit beiden Lösungen getrennt behandelt.
Die wässrige Lösung B kann neben dem mindestens einen Nachvernetzer typischer- weise noch ein Cosolvens enthalten. Das Cosolvens selbst ist kein Nachvernetzer, d.h., die als Cosolvenz einsetzbaren Verbindungen können maximal eine Bindung zu maximal einer Carboxylgruppe ausbilden. Geeignete Cosolventien sind Alkohole, die keine Polyole sind CrC6-Alkohole, wie Methanol, Ethanol, n-Propanol, Isopropanol, n- Butanol, sec-Butanol, tert-Butanol oder 2-Methyl-1 -Propanol, Ketone, wie Aceton, oder Carbonsäureester, wie Essigsäureethylester. Bevorzugte Cosolventien sind C1-C3- Alkohole, insbesondere bevorzugt sind n-Propanol und Isopropanol.
Häufig beträgt die Konzentration des Cosolvens in der wässrigen Lösung B, bezogen auf die Lösung B, von 15 bis 50 Gew.-%, vorzugsweise von 15 bis 40 Gew.-%, beson- ders bevorzugt von 20 bis 35 Gew.-%. Bei Cosolventien, die mit Wasser nur begrenzt mischbar sind, wird man vorteilhaft die wässrige Lösung B so einstellen, dass nur eine Phase vorliegt, gegebenenfalls durch Erniedrigung der Konzentration des Cosolvens.
Vorzugsweise enthält die wässrige Lösung B mindestens zwei voneinander verschie- dene Nachvernetzer. Besonders bevorzugt enthält die wässrige Lösung B mindestens einen Nachvernetzer, der kein Polyol ist, und mindestens ein Polyol.
Die im erfindungsgemäßen Verfahren einsetzbaren Nachvernetzer sind beispielsweise Ethylenglykoldiglycidylether, Diethylenglykoldiglycidylether, Polyethylenglykoldiglycidy- lether, Propylenglykoldiglycidylether, Dipropylenglykoldiglycidylether, Polypropylengly- koldiglycidylether, Glycerindiglycidylether, Polyglycerindiglycidylether, Epichlorhydrin, Etylendiamin, Ethylenglykol, Diethylenglykol, Triethylenglykol, Polyethylenglykol, Pro- pylenglykol, Dipropylenglykol, Tripropylenglykol, Polypropylenglykol, Butylenglykol, 1 ,3- Propandiol, 1 ,4-Butandiol, Bisphenol A, Glycerin, Trimethylolpropan, Pentaerythrit, Sorbitol, Diethanolamin, Triethanolamin, Etylendiamin, Ethylencarbonat, Propylencar- bonat, 2-Oxazolidone, wie 2-Oxazolidinon oder N-Hydroxyethyl-2-oxazolidinon, Morpholin-2,3-dione, wie N-2-Hydroxyethyl-morphoIin-2,3-dion, N-Methyl-morpholin- 2,3-dion , N-Ethyl-morpholin-2,3-dion und/oder N-tert.-Butyl-morpholin-2,3-dion, 2- Oxotetrahydro-1 ,3-oxazin, N-Acyl-2-oxazolidone, wie N-AcetyI-2-oxazolidon, bicycli- sehe Amidacetale, wie 5-Methyl-1 -aza-4,6-dioxa-bicyclo[3.3.0]octan, 1 -Aza-4,6-dioxa- bicyclo[3.3.0]octan und/oder 5-lsopropyl-1-aza-4,6-dioxa-bicyclo[3.3.0]octan, und/oder Bis- und Poly-2-oxazolidinone. Vorzugsweise werden 2-OxazoIidone, wie 2- Oxazolidinon oder N-Hydroxyethyl-2-oxazoIidinon, und Diole, wie Ethylenglykol und Propylenglykol, verwendet. Ganz besonders bevorzugt ist die Verwendung von 2- Oxazolidinon und Propylenglykol sowie N-Hydroxyethyi-2-oxazolidinon und Propylenglykol.
Die Konzentration des mindestens einen Nachvernetzers in der wässrigen Lösung B, bezogen auf die Lösung B, beträgt beispielsweise 1 bis 30 Gew.-%, vorzugsweise 3 bis 20 Gew.-%, besonders bevorzugt 5 bis 15 Gew.-%. Die Einsatzmenge bezogen auf Grundpolymer A beträgt beispielsweise 0,01 bis 1 Gew.-%, vorzugsweise 0,05 bis 0,5 Gew.-%, besonders bevorzugt 0,1 bis 0,25 Gew-%.
Die im erfindungsgemäßen Verfahren einsetzbaren polyvalenten Kationen sind beispielsweise zweiwertige Kationen, wie die Kationen von Zink, Magnesium, Kalzium und Strontium, dreiwertige Kationen, wie die Kationen von Aluminium, Eisen, Chrom, Sel- tenerden und Mangan, vierwertige Kationen, wie die Kationen von Titan und Zirkonium. Als Gegenion sind Chlorid, Bromid, Sulfat, Hydrogensulfat, Carbonat, Hydrogencarbo- nat, Nitrat, Phosphat, Hydrogenphosphat, Dihydrogenphosphat und Carboxylat, wie Acetat und Lactat, möglich. Aluminiumsulfat ist bevorzugt.
Die Wässrige Lösung C enthält üblicherweise kein Cosolvens.
Die Konzentration des mindestens einen polyvalenten Kations in der wässrigen Lösung C, bezogen auf die Lösung C, beträgt beispielsweise 0,1 bis 12 Gew.-%, vorzugsweise 0,5 bis 8 Gew.-%, besonders bevorzugt 1 ,5 bis 6 Gew.-%. Die Einsatzmenge bezogen auf Grundpolymer A beträgt beispielsweise 0,001 bis 0,5 Gew.-%, vorzugsweise 0,005 bis 0,2 Gew.-%, besonders bevorzugt 0,02 bis 0,1 Gew-%.
Das Verhältnis von Lösung B zu Lösung C beträgt typischerweise von 10:1 bis 1 :10, vorzugsweise von 5:1 bis 1 :5, besonders bevorzugt von 4:1 bis 1 :1.
Die Gesamtmenge der Lösungen B und C bezogen auf Grundpolymer A beträgt üblicherweise zwischen 2,5 bis 6,5 Gew.-%, vorzugsweise zwischen 3 und 5 Gew.-%.
In einer bevorzugten Ausführungsform wird dem Grundpolymer A ein Tensid als Deagglomerationshilfsmittel, beispielsweise Sorbitanmonoester, wie Sorbitanmonoco- coat und Sorbitanmonolaurat, zugesetzt. Das Deagglomerationshilfsmittel kann getrennt dosiert oder einer der Lösungen B oder C zugesetzt werden. Vorzugsweise wird das Deagglomerationshilfsmittel einer der Lösungen B oder C zugesetzt, besonders bevorzugt der Lösung B.
Die Einsatzmenge des Deagglomerationshilfsmittels bezogen auf Grundpolymer A beträgt beispielsweise 0 bis 0,01 Gew.-%, vorzugsweise 0 bis 0,005 Gew.-%, besonders bevorzugt 0 bis 0,002 Gew-%. Vorzugsweise wird das Deagglomerationshilfsmittel so dosiert, dass die Oberflächenspannung eines wässrigen Extrakts des gequollenen Grundpolymers A und/oder des gequollenen wasserabsorbierenden Polymers bei 23°C mindestens 0,060 N/m, vorzugsweise mindestens 0,062 N/m, besonders bevorzugt mindestens 0,065 N/m, beträgt. Die Oberflächenspannung des wässrigen Extrakts beträgt vorteilhaft höchstens 0,072 N/m.
Die im erfindungsgemäßen Verfahren einsetzbaren Sprühdüsen unterliegen keiner Beschränkung. Derartigen Düsen kann die zu versprühende Flüssigkeit unter Druck zugeführt werden. Die Zerteilung der zu versprühenden Flüssigkeit kann dabei dadurch erfolgen, dass sie nach Erreichen einer bestimmten Mindestgeschwindigkeit in der Düsenbohrung entspannt wird. Ferner können für den erfindungsgemäßen Zweck auch Einstoffdüsen, wie beispielsweise Schlitzdüsen oder Drallkammern (Vollkegeldüsen) verwendet werden (beispielsweise von Düsen-Schlick GmbH, DE, oder von Spraying Systems Deutschland GmbH, DE).
Erfindungsgemäß bevorzugt sind Vollkegeldüsen mit einem Öffnungswinkel des Sprühkegels von 60 bis 180°, besonders bevorzugt 90 bis 120°. Der sich beim Versprühen einstellende mittlere Tropfendurchmesser ist erfindungsgemäß zweckmäßig <1000 μm, vorzugsweise <200 μm, bevorzugt <100 μm, sowie zweckmäßig >10 μm, vorzugsweise >20 μm, bevorzugt >50 μm. Der Durchsatz je Sprühdüse beträgt zweckmäßig 0,1 bis 10 m3/h, häufig 0,5 bis 5 m3/h. Die mittlere Fluglänge der Tropfen (bis sie auf das Substrat stossen) beträgt großtechnisch typisch 0,1 bis 2 m, häufig 0,2 bis 1 m, vorzugsweise 0,3 bis 0,5 m.
Bei zu großen Tropfen ist die Verteilung auf dem Grundpolymer A nicht optimal und die notwendige Einsatzmenge an Lösung B und C zur Erzielung einer bestimmen Wirkung ist unverhältnismäßig hoch. Bei zu kleinen Tropfen nimmt dagegen die Verbackungs- neigung im Mischer zu, möglicherweise weil der Einfangquerschnitt über die Summe der Tropfen zunimmt und damit die Wahrscheinlichkeit steigt, dass sich Tropfen mit Lösung B und C bereits vor dem Substrat mischen.
Im Anschluß an das Aufsprühen wird das Polymerpulver thermisch getrocknet, wobei die Vernetzungsreaktion sowohl vor als auch während der Trocknung stattfinden kann. Bevorzugt ist das Aufsprühen einer Lösung des Vernetzers in Reaktionsmischern oder Misch- und Trocknungsanlagen wie beispielsweise Lödige-Mischer, BEPEX®- Mischer, NAUTA®-Mischer, SCHUGGKD-Mischer oder PROCESSALL®. Überdies können auch Wirbelschichttrockner eingesetzt werden. Besonders bevorzugt werden die Lösungen B und C in einem Hochgeschwindigkeitsmischer, beispielsweise vom Typ Schuggi-Flexomix® oder Turbolizer®, auf das Grundpolymer A aufgebracht und in einem Reaktionstrockner, beispielsweise vom Typ Nara-Paddle-Dryer® oder einem Scheibentrockner, thermisch nachbehandelt. Bevorzugt zur Nachvernetzung und Trocknung ist dabei der Temperaturbereich von 30 bis 200°C, insbesondere 100 bis 200°C, besonders bevorzugt 160 bis 190°C.
Die Trocknung kann im Mischer selbst erfolgen, durch Beheizung des Mantels oder Einblasen von Warmluft. Ebenso geeignet ist ein nachgeschalteter Trockner wie ein Hordentrockner, ein Drehrohrofen, oder eine beheizbare Schnecke. Es kann aber auch beispielsweise eine azeotrope Destillation als Trocknungsverfahren benutzt werden. Die bevorzugte Verweilzeit bei dieser Temperatur im Reaktionsmischer oder Trockner beträgt unter 120 Minuten, besonders bevorzugt unter 90 Minuten, am meisten bevor- zugt unter 60 Minuten.
Die im erfindungsgemäßen Verfahren einzusetzenden hydrophilen, hochquellfähigen Hydrogele (Grundpolymer A) sind insbesondere Polymere aus vernetzten (co)polymerisierten hydrophilen Monomeren, Polyasparaginsäure, Pfropf(co)polymere von einem oder mehreren hydrophilen Monomeren auf eine geeignete Pfropfgrundlage, vernetzte Cellulose- oder Stärkeether oder in wässrigen Flüssigkeiten quellbare Naturprodukte, wie beispielsweise Guarderivate. Bevorzugt handelt es sich bei dem zu vernetzenden Polymer um ein Polymer, das Struktureinheiten enthält, die sich von Ac- rylsäure oder deren Estern ableiten, oder die durch Pfropfcopolymerisation von Acryl- säure oder Acrylsäureestern auf eine wasserlösliche Polymermatrix erhalten wurden. Diese Hydrogele sind dem Fachmann bekannt und beispielsweise in der US- 4286 082, DE-C-2706 135, US-A-4340706, DE-C-37 13 601 , DE-C-2840010, DE-A-4344548, DE-A-4020780, DE-A-40 15085, DE-A-39 17846, DE-A-3807289, DE-A-3533337, DE-A-3503458, DE-A-42 44548, DE-A-42 19607, DE-A-4021 847, DE-A-3831 261 , DE-A-35 11 086, DE-A-31 18 172, DE-A-3028043, DE-A-44 18 881 , EP-A-0 801 483, EP-A-0455985, EP-A-0467073, EP-A-0 312 952, EP-A-0205874, EP-A-0499774, DE-A 26 12 846, DE-A-4020780, EP-A-0205674, US-A-5 145906, EP-A-0530438, EP-A-0 670 073, US-A-4057521, US-A- 062 817, US-A-4525527, US-A-4295 987, US-A-5011 892, US-A-4076663 oder US-A-4931 497 beschrieben.
Zur Herstellung dieser quellbaren hydrogelbildenden Polymere geeignete hydrophile Monomere sind beispielsweise polymerisationsfähige Säuren, wie Acrylsäure, Methac- rylsäure, Vinylsulfonsäure, Vinylphosphonsäure, Maleinsäure einschließlich deren Anhydrid, Fumarsäure, Itaconsäure, 2-Acrylamido-2-methylpropansuIfonsäure, 2- Acrylamido-2-methylpropanphosphonsäure sowie deren Amide, Hydroxyalkylester und aminogruppen- oder ammoniumgruppenhaltige Ester und Amide sowie die Alkalimetall- und/oder Ammoniumsalze der Säuregruppen enthaltenden Monomeren. Des weiteren eignen sich wasserlösliche N-Vinylamide wie N-Vinylformamid oder auch Diallyldimethyl-ammoniumchlorid. Bevorzugte hydrophile Monomere sind Verbindungen der allgemeinen Formel I
Figure imgf000009_0001
worin
R1 Wasserstoff, CrC -AlkyI, wie beispielsweise Methyl oder Ethyl, oder Carboxyl,
R2 -COOR4, Hydroxysulfonyl oder Phosphonyl, eine mit einem Cι-C4-Alkanol veresterte Phosphonylgruppe oder eine Gruppe der Formel II
Figure imgf000009_0002
R3 Wasserstoff, Cι-C4-Alkyl, wie beispielsweise Methyl oder Ethyl,
R4 Wasserstoff, d-d-Aminoalkyl, d-C^Hydroxyalkyl, Alkalimetall- oder Ammoniumion und
R5 eine Sulfonylgruppe, eine Phosphonylgruppe oder eine Carboxylgruppe oder jeweils deren Alkalimetall- oder Ammoniumsalze, bedeuten.
Beispiele für Cι-C4-Alkanole sind Methanol, Ethanol, n-Propanol, Isopropanol oder n- Butanol.
Bevorzugte hydrophile Monomere sind Säuregruppen tragende Monomere, vorzugs- weise teilneutralisiert, d.h. 50 bis 100%, bevorzugt 60 bis 90%, besonders bevorzugt 70 bis 80%, der Säuregruppen sind neutralisiert.
Besonders bevorzugte hydrophile Monomere sind Acrylsäure und Methacrylsäure, sowie deren Alkalimetall- oder Ammoniumsalze, beispielsweise Natriumacrylat, Kaliu- macrylat oder Ammoniumacrylat.
Geeignete Pfropfgrundlagen für hydrophile Hydrogele, die durch Pfropfcopolymerisati- on olef inisch ungesättigter Säuren oder ihrer Alkalimetall- oder Ammoniumsalze erhältlich sind, können natürlichen oder synthetischen Ursprungs sein. Beispiele sind Stärke, Cellulose oder Cellulosederivate sowie andere Polysaccharide und Oligosaccharide, Polyalkylenoxide, insbesondere Polyethylenoxide und Polypropylenoxide, sowie hydrophile Polyester.
Geeignete Polyalkylenoxide haben beispielsweise die Formel III
Figure imgf000010_0001
worin
R6, R7 unabhängig voneinander Wasserstoff, CrCι2-Alkyl, wie beispielsweise Methyl Ethyl, n-Propyl oder Isopropyl, C2-Cι2-Alkenyl, wie beispielsweise Ethenyl, n- Propenyl oder Isopropenyl, C7-C2o-Aralkyl, wie beispielsweise Phenylmethyl, 1 -Phenylethyl oder 2-Phenylethyl, oder Aryl, wie beispielsweise 2- Methylphenyl, 4-Methylphenyl oder 4-Ethylphenyl,
R8 Wasserstoff oder Methyl und
n eine ganze Zahl von 1 bis 10000 bedeuten.
R6 und R7 bedeuten bevorzugt Wasserstoff, Cι-C4-Alkyl, C2-C6-Alkenyl oder Phenyl.
Bevorzugte Hydrogele sind insbesondere Polyacrylate, Polymethacrylate sowie die in der US-4,931 ,497, US-5,011 ,892 und US-5,041 ,496 beschriebene Pfropfpolymere.
Die quellbaren hydrogelbildenden Polymere sind bevorzugt vernetzt, d.h. sie enthalten Verbindungen mit mindestens zwei Doppelbindungen, die in das Polymernetzwerk ein- polymerisiert sind. Geeignete Vernetzer sind insbesondere N,N'-Methylenbisacrylamid und N,N'-Methylenbismethacrylamid, Ester ungesättigter Mono- oder Polycarbonsäu- ren von Polyolen, wie Diacrylat oder Triacrylat, beispielsweise Butandiol- oder Ethy- lenglykoldiacrylat bzw. -methacrylat sowie Trimethylolpropantriacrylat und Allylverbin- dungen wie Allyl(meth)acrylat, Triallylcyanurat, Maleinsäurediallylester, Polyallylester, Tetraallyloxyethan, Triallylamin, Tetraallylethylendiamin, Allylester der Phosphorsäure sowie Vinylphosphonsäurederivate, wie sie beispielsweise in EP-A-0 343 427 be- schrieben sind. Weiterhin einsetzbar im erfindungsgemäßen Verfahren sind auch Hydrogele, die unter Verwendung von Polyallylethern als Vernetzer und durch saure Homopolymerisation von Acrylsäure hergestellt werden. Geeignete Vernetzer sind Pentaerythritoltri- und -tetraallylether, Polyethylenglykoldiallylether, Ethylenglykoldial- lylether, Glyceroldi- und Triallylether, Polyallylether auf Basis Sorbitol, sowie ethoxilier- te Varianten davon.
Die bevorzugten Herstellverfahren für das im erfindungsgemaßen Verfahren einsetzbare Grundpolymer werden in "Modern Superabsorbent Polymer Technology", F.L. Buchholz and A.T. Graham, Wiley-VCH, 1998, Seiten 77 bis 84 beschrieben. Besonders bevorzugt sind Grundpolymere, die im Kneter, wie beispielsweise in WO-A-01/38402 beschrieben, oder auf einem Bandreaktor, wie beispielsweise in EP-A-0 955086 beschrieben, hergestellt werden.
Das wasserabsorbierende Polymer ist bevorzugt eine polymere Acrylsäύre oder ein Polyacrylat. Die Herstellung dieses wasserabsorbierenden Polymeren kann nach einem aus der Literatur bekannten Verfahren erfolgen. Bevorzugt sind Polymere, die vernetzende Comonomere in Mengen von 0,001 bis 10 Mol-%, vorzugsweise 0,01 bis 1 Mol-% enthalten, ganz besonders bevorzugt sind jedoch Polymere, die durch radikalische Polymerisation erhalten wurden und bei denen ein mehrfunktioneller ethylenisch ungesättigter Radikalvernetzer verwendet wurde, der zusätzlich noch mindestens eine freie Hydroxylgruppe tragen kann (wie beispielsweise Pentaerythritoltriallylether, Tri- methylolpropandiallylether, Glycerindiacrylat).
Die quellbaren hydrogelbildenden Polymere können durch an sich bekannte Polymeri- sationsverfahren hergestellt werden. Bevorzugt ist die Polymerisation in wässriger Lösung nach dem Verfahren der sogenannten Gelpolymerisation. Dabei werden beispielsweise 15 bis 50 gew.-%ige wässrige Lösungen eines oder mehrerer hydrophiler Monomere und gegebenenfalls einer geeigneten Pfropfgrundlage in Gegenwart eines Radikalinitiators, bevorzugt ohne mechanische Durchmischung unter Ausnutzung des Trommsdorff-Norrish-Effektes (Makromol. Chem. 1 , 169 (1947)), polymerisiert. Die Polymerisationsreaktion kann im Temperaturbereich zwischen 0 und 150°C, vorzugsweise zwischen 10 und 100°C, sowohl bei Normaldruck als auch unter erhöhtem oder erniedrigtem Druck durchgeführt werden. Wie üblich kann die Polymerisation auch in einer Schutzgasatmosphäre, vorzugsweise unter Stickstoff und/oder Wasserdampf, ausgeführt werden, zur Auslösung der Polymerisation können energiereiche elektromagnetische Strahlen oder die üblichen chemischen Polymerisationsinitiatoren herangezogen werden, beispielsweise organische Peroxide, wie Benzoylperoxid, tert - Butylhydroperoxid, Methylethylketonperoxid, Cumolhydroperoxid, Azoverbindungen wie Azodiisobutyronitril sowie anorganische Peroxoverbindungen wie (NH4)2S2O8 oder K2S2O8 oder H2O2. Sie können gegebenenfalls in Kombination mit Reduktionsmitteln wie Natriumhydrogensulfit und Eisen(ll)-sulfat oder Redoxsystemen, welche als reduzierende Komponente eine aliphatische und aromatische Sulfinsäure, wie Benzolsul- finsäure und Toluolsulfinsäure oder Derivate dieser Säuren enthalten, wie Mannichad- dukte aus Sulf insäuren, Aldehyden und Aminoverbindungen, wie sie in der DE-A-13 01 566 beschrieben sind, verwendet werden. Durch mehrstündiges Nachheizen der Polymergele im Temperaturbereich 50 bis 130°C, vorzugsweise 70 bis 100°C, können die Qualitätseigenschaften der Polymere noch verbessert werden.
Die erhaltenen Gele werden beispielsweise zu 0 bis 100 Mol-%, bevorzugt 5 und 90 Mol-%, insbesondere zwischen 25 und 80 Mol-%, ganz besonders bevorzugt zwischen 30 und 55 Mol-% und zwischen 70 und 75 Mol-%, bezogen auf eingesetztes Monomer neutralisiert, wobei die üblichen Neutralisationsmittel verwendet werden können, be- vorzugt Alkalimetallhydroxide oder -oxide, besonders bevorzugt jedoch Natriumhydroxid, Natriumcarbonat und Natriumhydrogencarbonat. Der pH-Wert des neutralisierten Grundpolymers beträgt üblicherweise zwischen 5 und 7,5, vorzugsweise zwischen 5,6 und 6,2.
Üblicherweise wird die Neutralisation durch Einmischung des Neutralisationsmittels als wässrige Lösung oder bevorzugt auch als Feststoff erreicht. Die Neutralisation wird vorzugsweise vor der Polymerisation in der Monomerlösung durchgeführt. Es kann aber auch das Polymergel neutralisiert oder nachneutralisiert werden. Hierzu wird das Gel typischerweise mechanisch zerkleinert, beispielsweise mittels eines Fleischwolfes und das Neutralisationsmittel wird aufgesprüht, übergestreut oder aufgegossen, und dann sorgfältig untergemischt. Dazu kann die erhaltene Gelmasse noch mehrmals zur Homogenisierung gewolft werden.
Die neutralisierte Gelmasse wird mit einem Band- oder Walzentrockner getrocknet bis der Restfeuchtegehalt vorzugsweise unter 10 Gew.-%, insbesondere unter 5 Gew.-% liegt. Das getrocknete Hydrogel wird hiernach gemahlen und gesiebt, wobei zur Mahlung üblicherweise Walzenstühle, Stiftmühlen oder Schwingmühlen eingesetzt werden können. Typischerweise weisen die Partikel eine Korngröße von 100 bis 1000μm auf. Vorzugzweise haben mindestens 80 Gew.-%, bevorzugt mindestens 90 Gew.-%, besonders bevorzugt mindestens 95 Gew.-%, der Partikel eine Korngröße von 150 bis 600 μm, vorzugsweise 150 bis 500 μm.
Der CRC-Wert [g/g] des Grundpolymers A kann nach den in der Beschreibung ange- gebenen Methoden gemessen werden und ist bevorzugt mindestens 27, insbesondere mindestens 29, besonders bevorzugt mindestens 31 , und höchstens 39, bevorzugt höchstens 35.
Der AUL-0,3psi-Wert [g/g] des Grundpolymers A kann nach den in der Beschreibung angegebenen Methoden gemessen werden und ist bevorzugt mindestens 14, insbesondere mindestens 17, besonders bevorzugt mindestens 21, und höchstens 27, bevorzugt höchstens 23.
Die erfindungsgemäß nachvemetzten wasserabsorbierenden Polymere weisen übli- cherweise eine Korngröße von 100 bis 1000 μm auf. Vorzugzweise haben mindestens 80 Gew.-%, bevorzugt mindestens 90 Gew.-%, besonders bevorzugt mindestens 95 Gew.-%, der Partikel eine Korngröße von 150 bis 600 μm, vorzugsweise 150 bis 500 μm.
Der CRC-Wert [g/g] der erfindungsgemäßen nachvernetzten wasserabsorbierenden Polymere kann nach den in der Beschreibung angegebenen Methoden gemessen werden und ist bevorzugt mindestens 20, insbesondere mindestens 24, besonders bevorzugt mindestens 25, insbesondere mindestens 26, insbesondere bevorzugt mindestens 30.
Der AUL-0,7psi-Wert [g/g] der erfindungsgemäßen nachvernetzten wasserabsorbie- renden Polymere kann nach den in der Beschreibung angegebenen Methoden gemessen werden und ist bevorzugt mindestens 15, insbesondere mindestens 21 , besonders bevorzugt mindestens 22, insbesondere mindestens 23, insbesondere bevorzugt mindestens 25.
Der SFC-Wert [cm3s/g] der erfindungsgemäßen nachvernetzten wasserabsorbierenden Polymere kann nach den in der Beschreibung angegebenen Methoden gemessen werden und ist bevorzugt mindestens 80, insbesondere mindestens 100, besonders bevorzugt mindestens 120, insbesondere mindestens 130, insbesondere bevorzugt mindestens 135.
Ein weiterer Gegenstand der vorliegenen Erfindung sind die wasserabsorbierenden Polymere, die nach dem erfindungsgemäßen Verfahren erhältlich sind.
Gegenstand der vorliegenden Erfindung sind auch wasserabsorbierende Polymere mit einem CRC-Wert von mindestens 20, insbesondere mindestens 24, besonders bevorzugt mindestens 25, insbesondere mindestens 26, insbesondere bevorzugt mindestens 30, einem AUL-0,7psi-Wert von mindestens 15, insbesondere mindestens 21 , besonders bevorzugt mindestens 22, insbesondere mindestens 23, insbesondere bevorzugt mindestens 25, einem SFC-Wert von mindestens 80, insbesondere mindestens 100, besonders bevorzugt mindestens 120, insbesondere mindestens 130, insbesondere bevorzugt mindestens 135, und mit einem Anteil von mindestens 80 Gew.-%, vorzugsweise mindestens 90 Gew.-%, besonders bevorzugt mindestens 95 Gew.-%, an Partikeln mit einer Korngröße von 150 bis 600 μm, vorzugsweise von 150 bis 500 μm.
Zur Bestimmung der Güte der Nachvernetzung wird das getrocknete Hydrogel mit den Testmethoden geprüft, die nachfolgend beschrieben sind:
Methoden:
Die Messungen sollten, wenn nicht anders angegeben, bei einer Umgebungstemperatur von 23 + 2 °C und einer relativen Luftfeuchte von 50 + 10 % durchgeführt werden. Das Quellbare hydrogelbildende Polymer wird vor der Messung gut durchmischt.
Zentrifuαenretentionskapazität (CRC Centrifuαe Retention Capacitv)
Bei dieser Methode wird die freie Quellbarkeit des Hydrogels im Teebeutel bestimmt. Zur Bestimmung der CRC werden 0,2000 ± 0,0050 g getrocknetes Hydrogel (Kornfrak- tion 106 - 850 μm) in einem 60 x 85 mm großen Teebeutel eingewogen, der anschließend verschweißt wird. Der Teebeutel wird für 30 Minuten in einen Überschuss von 0,9 gew.-%iger Kochsalzlösung gegeben (mindestens 0,83 I Kochsalzlösung/1 g Polymerpulver). Anschließend wird der Teebeutel 3 Minuten lang bei 250 G zentrifugiert. Die Bestimmung der vom Hydrogel festgehaltenen Flüssigkeitsmenge geschieht durch Auswägen des zentrifugierten Teebeutels.
Die Zentrifugenretentionskapazität kann auch nach der von der EDANA (European Disposables and Nonwovens Association) empfohlenen Testmethode Nr.441.2-02 "Centrifuge retention capacity" bestimmt werden.
Absorption unter Druck (AUL Absorbencv Under Load) 0.7 psi (4830 Pa)
Die Messzelle zur Bestimmung der AUL 0,7 psi ist ein Plexiglas-Zylinder mit einem Innendurchmesser von 60 mm und einer Höhe von 50 mm, der an der Unterseite einen angeklebten Edelstahl-Siebboden mit einer Maschenweite von 36 μm besitzt. Zu der Messzelle gehört weiterhin eine Plastikplatte mit einem Durchmesser von 59 mm und ein Gewicht, welches zusammen mit der Plastikplatte in die Messzelle hineingestellt werden kann. Das Gewicht der Plastikplatte und das Gewicht betragen zusammen 1344 g. Zur Durchführung der Bestimmung der AUL 0,7 psi wird das Gewicht des leeren Plexiglas-Zylinders und der Plastikplatte ermittelt und als W0 notiert. Dann werden 0,900 ± 0,005 g quellbares hydrogelbildendes Polymer (Korngrößenverteilung 150 - 800 μm) in den Plexiglas-Zylinder eingewogen und möglichst gleichmäßig auf dem Edelstahl-Siebboden verteilt. Anschließend wird die Plastikplatte vorsichtig in den Ple- xiglas-Zylinder hineingelegt und die gesamte Einheit gewogen; das Gewicht wird als Wa notiert. Nun wird das Gewicht auf die Plastikplatte in dem Plexiglas-Zylinder gestellt. In die Mitte der Petrischale mit einem Durchmesser von 200 mm und einer Höhe von 30 mm wird eine keramische Filterplatte mit einem Durchmesser von 120 mm, einer Höhe von 10 mm und einer Porosität 0 gelegt und soviel 0,9 gew.-%ige Natrium- chloridlösung eingefüllt, dass die Flüssigkeitsoberfläche mit der Filterplattenoberfläche abschließt, ohne dass die Oberfläche der Filterplatte benetzt wird. Anschließend wird ein rundes Filterpapier mit einem Durchmesser von 90 mm und einer Porengröße < 20 μm (S&S 589 Schwarzband von Schleicher & Schüll) auf die keramische Platte gelegt. Der quellbares hydrogelbildendes Polymer enthaltende Plexiglas-Zylinder wird mit Plastikplatte und Gewicht nun auf das Filterpapier gestellt und dort für 60 Minuten belassen. Nach dieser Zeit wird die komplette Einheit aus der Petrischale vom Filterpapier herausgenommen und anschließend das Gewicht aus dem Plexiglas-Zylinder entfernt. Der gequollenes Hydrogel enthaltende Plexiglas-Zylinder wird zusammen mit der Plastikplatte ausgewogen und das Gewicht als Wb notiert.
Die Absorption unter Druck (AUL) wird wie folgt berechnet: AUL 0,7 psi [g/g] = [Wb-Wa]/[Wa-Wo]
Die Absorption unter Druck kann auch nach der von der EDANA (European Dispo- sables and Nonwovens Association) empfohlenen Testmethode Nr. 442.2-02 "Absorp- tion under pressure" bestimmt werden.
Absorption unter Druck (AUL Absorbencv Under Load) 0.3 psi (2070 Pa)
Die Messung wird analog der AUL 0.3 psi durchgeführt. Das Gewicht der Plastikplatte und das Gewicht betragen zusammen 576 g.
Flüssiαkeitsweiterleitung (SFC Saline Flow Conductivitv)
Die Flüssigkeitsweiterleitung einer gequollenen Gelschicht unter Druckbelastung von 0,3 psi (2070 Pa) wird, wie in EP-A-0640330 beschrieben, als Gel-Layer-Permeability einer gequollenen Gelschicht aus superabsorbierendem Polymer bestimmt, wobei die in zuvor genannter Patentanmeldung auf Seite 19 und in Figur 8 beschriebene Apparatur dahingehend modifiziert wurde, dass die Glasfritte (40) nicht mehr verwendet wird, der Stempel (39) aus gleichem Kunststoffmaterial besteht wie der Zylinder (37) und jetzt über die gesamte Auflagefläche gleichmäßig verteilt 21 gleichgroße Bohrungen enthält. Die Vorgehensweise sowie Auswertung der Messung bleibt unverändert gegenüber EP-A-0 640330. Der Durchfluss wird automatisch erfasst.
Die Flüssigkeitsweiterleitung (SFC) wird wie folgt berechnet:
SFC [cm3s/g] = (Fg(t=0)xL0)/(dxAxWP), wobei Fg(t=0) der Durchfluss an NaCI-Lösung in g/s ist, der anhand einer linearen Regressionsanalyse der Daten Fg(t) der Durchflussbestimmungen durch Extrapolation ge- gen t=0 erhalten wird, L0 die Dicke der Gelschicht in cm, d die Dichte der NaCI-Lösung in g/cm3, A die Fläche der Gelschicht in cm2 und WP der hydrostatische Druck über der Gelschicht in dyn/cm2 darstellt.
Fließqeschwindiαkeit (FLR Flow Rate)
Bei der Methode wird die Geschwindigkeit ermittelt, mit der das quellbare hydrogelbil- dende Polymer durch einen Trichter fließt. Zur Bestimmung der FLR werden 100 ± 0,01 g getrocknetes Hydrogel in einen verschließbaren Metalltrichter eingewogen. Das Gewicht des quellbaren hydrogelbildenden Polymeren wird als Wi, notiert. Der Trichter entspricht DIN 53492. Das Auslauf röhr des Trichters hat eine Höhe von 145,0 ± 0,5 mm und einen Innendurchmesser von 10,00 ± 0,01 mm. Der Neigungswinkel der Trichterwand gegenüber der Horizontalen beträgt 20°. Der Metalltrichter wird geerdet. An- schließend wird der Trichter geöffnet und die Zeit gemessen bis der Trichter entleert ist. Die Zeit wird als t notiert.
Die Messung wird doppelt durchgeführt. Die Abweichung beider Messwerte darf maxi- mal 5% betragen.
Die Fließgeschwindigkeit (FLR) wird wie folgt berechnet:
FLR [g/s] =W1/t Die Fließgeschwindigkeit kann auch nach der von der EDANA (European Disposables and Nonwovens Association) empfohlenen Testmethode Nr. 450.2-02 "Flowrate" bestimmt werden.
, Ausschüttgewicht (ASG)
Bei der Methode wird die Dichte des quellbaren hydrogelbildenden Polymeren nach dem Ausschütten ermittelt. Die Messung wird mit einem zylindrischen Pygnometer entsprechend DIN 53466 durchgeführt. Das Pygnometer hat ein Volumen von 100,0 ± 0,5 ml, einen Innendurchmesser von 45,0 + 0,1 mm und eine Höhe von 63,1 ± 0,1 mm. Das Pygnometer wird leer gewogen. Das Gewicht wird als \N^ notiert. Zur Bestimmung des ASG werden ca. 100 g getrocknetes Hydrogel in einen verschließbaren Metalltrichter eingewogen. Der Trichter entspricht DIN 53492. Das Auslauf rohr des Trichters hat eine Höhe von 145,0 + 0,5 mm und einen Innendurchmesser von 10,00 + 0,01 mm. Der Neigungswinkel der Trichterwand gegenüber der Horizontalen beträgt 20°. Der Metalltrichter und das Pygnometer werden geerdet. Anschließend wird der Trichter in das Pynometer entleert, wobei überschüssiges quellbares hydrogelbildendes Polymer überläuft. Das überstehende quellbares hydrogelbildendes Polymer wird mittels eines Spatels abgestrichen. Das gefüllte Pygnometer wird gewogen und das Gewicht als W2 notiert.
Die Messung wird doppelt durchgeführt. Die Abweichung beider Messwerte darf maximal 5% betragen. Das Ausschüttgewicht (ASG) wird wie folgt berechnet:
ASG [g/cm3] = [Wa-W^/V Das Ausschüttgewicht kann auch nach der von der EDANA (European Disposables and Nonwovens Association) empfohlenen Testmethode Nr. 460.2-02 "Density" bestimmt werden. Oberflächenspannung des wässrigen Extraktes
Es werden 0,50 g hydrogelbildendes Polymer in ein kleines Becherglas eingewogen und mit 40 ml einer 0,9 gew.%-igen Kochsalzlösung versetzt. Der Inhalt des Becher- glases wird 3 Minuten bei 500 U/m mit einem Magnetrührstab gerührt, dann lässt man 2 Minuten absitzen. Schliesslich wird die Oberflächenspannung der überstehenden wässrigen Phase mit einem Digital-Tensiometer K10-ST oder einem vergleichbaren Gerät mit Platinplatte gemessen (Fa. Kruess).
Korngrößenverteilung
Die Korngrößenverteilung kann nach der von der EDANA (European Disposables and Nonwovens Association) empfohlenen Testmethode Nr. 420.2-02 "Particle Size Distribution - Sieve Fractionation" bestimmt werden. Es wird lediglich zusätzlich ein 500 μm Sieb benötigt.
Alternativ kann eine photographische Methode verwendet werden, die zuvor gegen einen Siebstandard kalibriert wurde.
Extrahierbare 16h
Der Gehalt an extrahierbaren Bestandteilen des hydrogelbildenden Polymeren kann nach der von der EDANA (European Disposables and Nonwovens Association) empfohlenen Testmethode Nr. 470.2-02 "Determination of extractable polymer content by potentiometric titration" bestimmt werden.
Der pH-Wert des des hydrogelbildenden Polymeren kann nach der von der EDANA (European Disposables and Nonwovens Association) empfohlenen Testmethode Nr. 400.2-02 "Determination of pH" bestimmt werden.
Free Swell Rate (FSR)
Zur Bestimmung der Quellgeschwindigkeit werden 1 ,00 g (= W1 ) des trockenen hydrogelbildenden Polymeren in ein 25 ml Becherglas eingewogen und gleichmässig auf dessen Boden verteilt. Dann werden 20 ml einer 0,9 gew.%-igen Kochsalzlösung mittels eines Dispensers in ein zweites Becherglas dosiert und der Inhalt dieses Glases wird dem ersteh zügig hinzugefügt und eine Stopuhr gestartet. Sobald der letzte Trop- fen Salzlösung absorbiert wurde, was man am Verschwinden der Reflexion auf der Flüssigkeitsoberfläche erkennt, wird die Stopuhr angehalten. Die genaue Flüssigkeitsmenge, die aus dem zweiten Becherglas ausgegossen und durch das Polymer im ers- ten Becherglas absorbiert wurde, wird durch Rückwägung des zweiten Becherglases genau bestimmt (=W2). Die für die Absorption benötigte Zeitspanne, die mit der Stopuhr gemessen wurde, wird als t bezeichnet.
Daraus errechnet sich die Quellgeschwindigkeit (FSR) wie folgt:
FSR [g/gs] = W2/(W1xt)
Wenn der Feuchtegehalt des hydrogelbildenden Polymeren jedoch mehr als 3 Gew.-% beträgt, so ist das Gewicht W1 um diesen Feuchtegehalt zu korrigieren.
Beispiele
Beispiel 1 :
Ein Grundpolymer wurde gemäß dem in der WO-A-01/38402 beschriebenen kontinuierlichen Kneterverfahren hergestellt. Dazu wurde Acrylsäure mit Natronlauge kontinuierlich neutralisiert und mit Wasser verdünnt, so dass der Neutralisationsgrad der Ac- rylsäure 73 Mol-% und der Feststoffgehalt (= Natriumacrylat und Acrylsäure) dieser Lösung ca. 37,3 Gew.-% betrug. Als Vernetzer wurde Polyethylenglykol-400-diacrylat in einer Menge von 1 ,00 Gew.-% bezogen auf Acrylsäuremonomer eingesetzt und der Vernetzer wurde dem Monomerstrom kontinuierlich zugemischt. Die Initiation erfolgte ebenfalls durch kontinuierliche Zumischung wässriger Lösungen der Initiatoren Natri- umpersulfat, Wasserstoffperoxid und Ascorbinsäure.
Das Polymer wurde auf einem Bandtrockner getrocknet, gemahlen und dann auf eine Korngröße von 150 bis 500 μm abgesiebt.
Das so hergestellte Grundpolymer wies folgende Eigenschaften auf:
CRC = 32,8 g/g AUL 0.3 psi = 21 ,3 g/g FLR = 10,6 g/s ASG = 0,67 g/cm3
Extrahierbare (16 h) = 9,2 Gew.-% pH = 6.1
Partikelgrößenverteilung
> 600 m < 0,1 Gew.-% > 500 μm = 2 Gew.-%
> 150 μm = 96,7 Gew.-% > 45μm = 1,1 Gew.-% < 45 μm < 0,1 Gew.-%
In einer Pilotanlage wurde dieses Grundpolymer mit den beiden Oberflächen- nachvemetzungslösungen besprüht und anschliessend getempert. Das Aufsprühen erfolgte in einem Mischer Schuggi®-Flexomix Type 100 D mit gravimetrischer Eindo- sierung des Grundpolymers und kontinuierlicher Massenfluss-kontrollierter Flüssig- keitsdosierung über Zweistoffdüsen. Es wurden dabei zwei getrennte Düsen im Flexo- mix installiert, und jede der beiden Lösungen wurde getrennt ihrer Düse zugeführt.
Die Nachvernetzungslösung B enthielt 5,0 Gew.-% 2-Oxazolidinon, 23,6 Gew.-% I- sopropanol, 5,0 Gew.-% 1,2-Propandiol, und 66,4 Gew.-% Wasser und wurde in einer Dosierung von 2,42 Gew.-% bezogen auf Polymer über eine separate Zweistoffdüse aufgesprüht.
Die Nachvernetzungslösung C enthielt 23,0 Gew.-% Aluminiumsulfat in Wasser und wurde in einer Dosierung von 1 ,08 Gew.-% bezogen auf Polymer über eine Zweistoff- Düse aufgesprüht.
Das feuchte Polymer wurde direkt aus dem Schuggi-Mischer fallend in einen Reaktionstrockner NARA NPD 1.6 W (GMF Gouda B.V., Nl) überführt. Die Durchsatzrate an Grundpolymer A betrug 60 kg/h (trocken) und die Produkttemperatur des mit Dampf beheizten Trockners am Trocknerausgang betrug ca. 178°C. Dem Trockner war ein Kühler nachgeschaltet, der das Produkt rasch auf ca. 50°C abkühlte. Die genaue Verweilzeit im Trockner kann durch die Durchsatzrate des Polymers durch den Trockner sowie die Wehrhöhe (hier 70%) exakt vorgegeben werden.
Das erhaltene Endprodukt wies folgende Eigenschaften auf:
CRC = 25,6 g/g AUL 0.7 psi = 22,8 g/g SFC = 137 10"7 cm3s/g FSR = 0,29 g/gs
Partikelgrößenverteilung
> 600 μm = 0,6 Gew.-% > 500μm = 3,0 Gew.-%
> 400 μm = 31 ,3 Gew.-%
> 300 μm = 33,4 Gew.-% > 150 μm = 30,3 Gew.-% > 106μm = 1 ,3 Gew.-% < 106μm < 0,1 Gew.-%
Beispiel 2:
Ein Grundpolymer wurde gemäß dem in der WO 01/38402 beschriebenen kontinuierlichen Kneterverfahren in einem List ORP 250 Technikumsreaktor hergestellt. Dazu wurde Acrylsäure mit Natronlauge kontinuierlich neutralisiert und mit Wasser verdünnt, so dass der Neutralisationsgrad der Acrylsäure 72 Mol-% und der Feststoffgehalt (= Natriumacrylat und Acrylsäure) dieser Lösung ca. 38,8 Gew.-% betrug. Als Vernetzer wurde Trimethylolpropan-18 EO-Triacrylat in einer Menge von 1 ,10 Gew.-% bezogen auf Acrylsäuremonomer eingesetzt und der Vernetzer wurde dem Monomerstrom kon- tinuieriich zugemischt. Die Initiation erfolgte ebenfalls durch kontinuierliche Zumi- schung wässriger Lösungen der Initiatoren Natriumpersulfat, Wasserstoffperoxid und Ascorbinsäure. Die Initiatormengen, bezogen auf Acrylsäure, betrugen 0,145 Gew.-% Natriumpersulfat, 0,0009 Gew.-% Wasserstoffperoxid und 0,003 Gew.-% Ascorbinsäure.
Das Polymer wurde auf einem Bandtrockner getrocknet, gemahlen und dann auf eine Korngröße von 150 bis 500 μm abgesiebt.
Das so hergestellte Grundpolymer wies folgende Eigenschaften auf:
CRC = 33,5 g/g
AUL 0.3 psi = 15,4 g/g
Extrahierbare (16 h) = 10,0 Gew.-% pH = 6.0
Partikelgrößenverteilung
> 600 μm = 0,1 Gew.-% > 500 μm = 4,7 Gew.-%
> 150μm = 92,1 Gew.-%
> 45 m = 2,9 Gew.-%
< 45μm = 0,2 Gew.-%
In einer Pilotanlage wurde dieses Grundpolymer mit den beiden Oberflächen- nachvernetzungslösungen besprüht und anschliessend getempert. Das Aufsprühen erfolgte in einem Mischer Schuggi®-Flexomix Type 100 D mit gravimetrischer Eindo- sierung des Grundpolymers und kontinuierlicher Massenfluss-kontrollierter Flüssigkeitsdosierung über Zweistoffdüsen. Es wurden dabei zwei getrennte Düsen im Flexo- mix installiert, und jede der beiden Lösungen wurde getrennt ihrer Düse zugeführt.
Die Nachvernetzungslösung B enthielt 2,5 Gew.-% 2-Oxazolidinon, 28,15 Gew.-% Isopropanol, 2,5 Gew.-% 1 ,2-Propandiol, 0,7 Gew.% Sorbitanmonococoate, und 66,15 Gew.-% Wasser und wurde in einer Dosierung von 3,5 Gew.-% bezogen auf das Polymer über eine separate Zweistoffdüse aufgesprüht.
Die Nachvernetzungslösung C enthielt 26,8 Gew.-% Aluminiumsulfat in Wasser und wurde in einer Dosierung von 1 ,6 Gew.% bezogen auf Polymer über eine Zweistoff- Düse aufgesprüht.
Das feuchte Polymer wurde direkt aus dem Schuggi-Mischer fallend in einen Reakti- onstrockner NARA NPD 1.6 W (Fa. Gouda, Niederlande) überführt. Die Durchsatzrate Grundpolymer betrug 60 kg/h (trocken) und die Produkttemperatur des mit Dampf beheizten Trockners am Trocknerausgang betrug ca. 179°C. Dem Trockner war ein Kühler nachgeschaltet, der das Produkt rasch auf ca. 50°C abkühlte. Die genaue Verweilzeit im Trockner kann durch die Durchsatzrate des Polymers durch den Trockner sowie die Wehrhöhe (hier 70%) exakt vorgegeben werden.
Das erhaltene Endprodukt besitzt folgende Eigenschaften:
CRC = 26,1 g/g AUL 0.7 psi = 23,2 g/g SFC = 120 10_7 cm3s/g FLR = 11 ,2 g s ASG = 0,70 g/cm3
Partikelgrößenverteilung
> 600 μm = 0,1 Gew.-%
> 500 μm = 2,0 Gew.-%
> 300 μm = 65,3 Gew.-% > 150 μm = 28,4 Gew.-%
< 150 μm = 4,2 Gew.-%
Beispiel 3 (Vergleichsbeispiel):
Der Versuch aus Beispiel 1 wurde wiederholt, jedoch wurden die beiden Lösungen zur Oberflächennachvernetzung vor dem Aufdüsen zusammen-gemischt. Kurze Zeit nach Beginn der Oberflächennachvemetzung in der Pilotanlage kam es zu einer vollständigen Blockade des Schuggi-Mischers und der Versuch musste abgebrochen werden.
Beispiel 4 (Vergleichsbeispiel):
Der Versuch aus Beispiel 2 wurde wiederholt, jedoch wurden die beiden Lösungen zur Oberflächennachvemetzung vor dem Aufdüsen in einem separaten Tank zusammengemischt. Kurze Zeit nach Beginn der Oberflächennach-vernetzung in der Pilotanlage kam es zu einer schnell fortschreitenden Verstopfung des Schuggi-Mischers und der Versuch musste abgebrochen werden.

Claims

Patentansprüche
1. Verfahren zur Herstellung wasserabsorbierender Polymere, wobei ein Grundpolymer A mit einer ersten wässrigen Lösung B mindestens eines Oberflächen- nachvernetzers und einer zweiten wässrigen Lösung C mindestens eines polyvalenten Kations vermischt und thermisch behandelt wird, dadurch gekennzeichnet, dass das Grundpolymer A auf Basis zu mindestens 50% neutralisierter Säuregruppen tragender Monomere hergestellt wird und die Lösungen B und C über getrennte Düsen zumindest teilweise gleichzeitig dosiert werden.
2. Verfahren gemäß Anspruch 1 , dadurch gekennzeichnet, dass die Lösungen B und C über getrennte Düsen gleichzeitig dosiert werden.
3. Verfahren gemäß einem der Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Lösung B ein Cosolvens enthält.
4. Verfahren gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Lösung B des Oberflächennachvernetzers ein Oxazolidon enthält.
5. Verfahren gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Lösung B mindestens zwei voneinander verschiedene Oberflächennachver- netzer enthält.
6. Verfahren gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Lösung B mindestens einen Oberflächennachvernetzer, der kein Polyol ist, und mindestens ein Polyol enthält.
7. Verfahren gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass man dem Grundpolymer A ein Deagglomerationshilfsmittels zusetzt.
8. Verfahren gemäß Anspruch 7, dadurch gekennzeichnet, dass das Deagglomerationshilfsmittel Sorbitanmonococoat und/oder Sorbitanmonolaurat ist.
9. Verfahren gemäß Anspruch 7 oder 8, dadurch gekennzeichnet, dass man das Deagglomerationshilfsmittel einer der beiden wässrigen Lösungen B oder C zusetzt.
10. Verfahren gemäß einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass man das Deagglomerationshilfsmittel so dosiert, dass die Oberflächenspannung eines wässrigen Extrakts des gequollenen wasserabsorbierenden Polymers nach Zusatz des Deagglomerationshilfsmittels mindestens 0,065 N/m beträgt.
11. Verfahren gemäß einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Konzentration des mindestens einen Oberflächennachvernetzers in der Lösung B, bezogen auf die Lösung B, höchstens 30 Gew.-% beträgt.
12. Verfahren gemäß einem der Ansprüche 1 bis 11 , dadurch gekennzeichnet, dass die Konzentration des mindestens einen Oberflächennachvernetzers auf dem Grundpolymer A, bezogen auf das Grundpolymer A, von 0,1 Gew.-% bis 1 Gew.- % beträgt.
13. Verfahren gemäß einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die Konzentration des mindestens einen polyvalenten Kations in der Lösung C, bezogen auf die Lösung C, höchstens 12 Gew.-% beträgt.
14. Verfahren gemäß einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die Konzentration des mindestens einen polyvalenten Kations auf dem Grundpolymer A, bezogen auf das Grundpolymer A, von 0,001 Gew.-% bis 0,5 Gew.-% beträgt.
15. Verfahren gemäß einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass die Konzentration des mindestens einen polyvalenten Kations auf dem Grundpolymer A, bezogen auf das Grundpolymer A, von 0,02 Gew.-% bis 0,1 Gew.-% beträgt.
16. Verfahren gemäß einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass das Verhältnis von Lösung B zu Lösung C von 10:1 bis 1:10 beträgt.
17. Verfahren gemäß einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass die Gesamtmenge der Lösungen B und C zwischen 2,5 bis 6,5 Gew.-%, bezogen auf Grundpolymer A, beträgt.
18. Verfahren gemäß einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass das Grundpolymer A eine teilneutralisierte, vernetzte Polyacrylsäure ist.
19. Verfahren gemäß einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass das Grundpolymer A einen pH-Wert zwischen 5,6 und 6,2 aufweist.
20. Verfahren gemäß einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, dass die Lösungen B und C auf das Grundpolymer A aufgesprüht werden und der mittlere Tropfendurchmesser der versprühten Tropfen zwischen 50 und 100 μm be- trägt.
21. Wasserabsorbierendes Polymer, erhältlich gemäß einem Verfahren der Ansprüche 1 bis 20, wobei das Polymer eine Flüssigkeitsweiterleitung von mindestens 80x10"7cm3s/g und zu mindestens 80 Gew.-% eine Korngröße zwischen 150 und 600 μm aufweist.
22. Polymer gemäß Anspruch 21 , wobei das Polymer zu mindestens 80 Gew.-% eine Korngröße zwischen 150 und 500 μm aufweist.
23. Polymer gemäß Anspruch 21 oder 22, wobei das Polymer zu mindestens 95 Gew.-% die bevorzugte Korngröße aufweist.
24. Polymer gemäß einem der Ansprüche 21 bis 23, wobei das Polymer eine Flüssigkeitsweiterleitung von mindestens 100x10'7cm3s/g aufweist.
25. Polymer gemäß einem der Ansprüche 21 bis 24, wobei das Polymer eine Flüssigkeitsweiterleitung von mindestens 120x10"7cm3s/g aufweist.
26. Polymer gemäß einem der Ansprüche 21 bis 25, wobei das Polymer eine Zentri- fugenretentionskapazität von mindestens 24 g/g und eine Absorption unter Druck bei 4830 Pa von mindestens 21 g/g aufweist.
PCT/EP2005/001673 2004-02-24 2005-02-18 Verfahren zur nachvernetzung wasserabsorbierender polymere WO2005080479A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
BRPI0507793A BRPI0507793B1 (pt) 2004-02-24 2005-02-18 processo para a produção de um polímero absorvente de água, e, polímero absorvente de água
AT05715387T ATE506393T1 (de) 2004-02-24 2005-02-18 Verfahren zur nachvernetzung wasserabsorbierender polymere
US10/588,671 US7981969B2 (en) 2004-02-24 2005-02-18 Postcrosslinking of water-absorbing polymers
EP05715387.6A EP1720934B2 (de) 2004-02-24 2005-02-18 Verfahren zur nachvernetzung wasserabsorbierender polymere
KR1020067019589A KR101096371B1 (ko) 2004-02-24 2005-02-18 수-흡수성 중합체의 제2 가교결합 방법
JP2007500113A JP4395531B2 (ja) 2004-02-24 2005-02-18 吸水性ポリマーを後架橋する方法
DE502005011278T DE502005011278D1 (de) 2004-02-24 2005-02-18 Verfahren zur nachvernetzung wasserabsorbierender polymere
US13/171,107 US8258223B2 (en) 2004-02-24 2011-06-28 Postcrosslinking of water-absorbing polymers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004009438A DE102004009438A1 (de) 2004-02-24 2004-02-24 Verfahren zur Oberflächennachvernetzung wasserabsorbierender Polymere
DE102004009438.1 2004-02-24

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/588,671 A-371-Of-International US7981969B2 (en) 2004-02-24 2005-02-18 Postcrosslinking of water-absorbing polymers
US13/171,107 Division US8258223B2 (en) 2004-02-24 2011-06-28 Postcrosslinking of water-absorbing polymers

Publications (1)

Publication Number Publication Date
WO2005080479A1 true WO2005080479A1 (de) 2005-09-01

Family

ID=34853736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/001673 WO2005080479A1 (de) 2004-02-24 2005-02-18 Verfahren zur nachvernetzung wasserabsorbierender polymere

Country Status (11)

Country Link
US (2) US7981969B2 (de)
EP (1) EP1720934B2 (de)
JP (1) JP4395531B2 (de)
KR (1) KR101096371B1 (de)
CN (1) CN100584877C (de)
AT (1) ATE506393T1 (de)
BR (1) BRPI0507793B1 (de)
DE (2) DE102004009438A1 (de)
TW (1) TWI357913B (de)
WO (1) WO2005080479A1 (de)
ZA (1) ZA200607943B (de)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006042704A2 (de) * 2004-10-20 2006-04-27 Basf Aktiengesellschaft Feinteilige wasserabsorbierende polymerpartikel mit hoher flüssigkeitstransport- und absorptionsleistung
WO2007065834A1 (de) * 2005-12-05 2007-06-14 Basf Se Verfahren zur herstellung wasserabsorbierender polymere mit hoher absorptionskapazität und hoher permeabilität
WO2008009598A1 (de) * 2006-07-19 2008-01-24 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel mit hoher permeabilität durch polymerisation von tropfen einer monomerlösung
WO2008009580A1 (de) 2006-07-19 2008-01-24 Basf Se Verfahren zur herstellung nachvernetzter wasserabsorbierender polymerpartikel mit hoher absorption durch polymerisation von tropfen einer monomerlösung
WO2008037673A1 (de) * 2006-09-25 2008-04-03 Basf Se Verfahren zum klassieren wasserabsorbierender polymerpartikel
EP1934267A1 (de) * 2005-09-30 2008-06-25 Nippon Shokubai Co., Ltd. Absorptionsmittel für wässrige flüssigkeiten und herstellungsverfahren dafür
WO2008092842A1 (de) * 2007-01-29 2008-08-07 Basf Se VERFAHREN ZUR HERSTELLUNG WEIßER UND FARBSTABILER WASSERABSORBIERENDER POLYMERPARTIKEL MIT HOHEM ABSORPTIONSVERMÖGEN UND HOHER FLÜSSIGKEITSLEITFÄHIGKEIT
DE102008000237A1 (de) 2007-02-06 2008-08-07 Basf Se Phenol-Imidazolderivate zur Stabilisierung von polymerisationsfähigen Verbindungen
JP2009543919A (ja) * 2006-07-19 2009-12-10 ビーエーエスエフ ソシエタス・ヨーロピア モノマー溶液の液滴の重合による、高い透過性を有する吸水性ポリマー粒子の製造方法
WO2011042468A2 (de) 2009-10-09 2011-04-14 Basf Se Verfahren zur nachbefeuchtung oberflächennachvernetzter wasserabsorbierender polymerpartikel
WO2011042429A1 (de) 2009-10-09 2011-04-14 Basf Se Verfahren zur nachbefeuchtung oberflächennachvernetzter wasserabsorbierender polymerpartikel
WO2012045705A1 (de) 2010-10-06 2012-04-12 Basf Se Verfahren zur herstellung thermisch oberflächennachvernetzter wasserabsorbierender polymerpartikel
WO2012052365A1 (en) 2010-10-21 2012-04-26 Basf Se Water-absorbing polymeric particles and method for the production thereof
WO2012102407A1 (ja) 2011-01-28 2012-08-02 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂粉末の製造方法
US8314173B2 (en) * 2007-01-29 2012-11-20 Basf Se Method for producing white and color-stable water-absorbing polymer particles having high absorbency and high saline flow conductivity
WO2013117496A1 (de) * 2012-02-06 2013-08-15 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel
WO2014041969A1 (ja) 2012-09-11 2014-03-20 株式会社日本触媒 ポリアクリル酸(塩)系吸水剤の製造方法及びその吸水剤
WO2014041968A1 (ja) 2012-09-11 2014-03-20 株式会社日本触媒 ポリアクリル酸(塩)系吸水剤の製造方法及びその吸水剤
WO2015093594A1 (ja) 2013-12-20 2015-06-25 株式会社日本触媒 ポリアクリル酸(塩)系吸水剤及びその製造方法
EP3009474A1 (de) * 2014-10-16 2016-04-20 Evonik Degussa GmbH Herstellverfahren für wasserlösliche Polymere
US9803033B2 (en) 2009-04-30 2017-10-31 Basf Se Method for removing metal impurities
EP2826807B1 (de) 2012-04-25 2018-02-28 LG Chem, Ltd. Superabsorbierendes polymer und verfahren zur herstellung davon
KR20180022883A (ko) 2015-07-01 2018-03-06 가부시키가이샤 닛폰 쇼쿠바이 입자상 흡수제
DE102019216910A1 (de) 2018-11-12 2020-05-14 Basf Se Verfahren zur Oberflächennachvernetzung von Superabsorbern

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004038015A1 (de) * 2004-08-04 2006-03-16 Basf Ag Verfahren zur Nachvernetzung wasserabsorbierender Polymere mit zyklischen Carba-maten und/oder zyklischen Harnstoffen
EP1965841A1 (de) * 2005-12-28 2008-09-10 Basf Se Herstellungsverfahren für ein wasserabsorbierendes material
CN101516531B (zh) 2006-09-25 2014-05-21 巴斯夫欧洲公司 吸水性聚合物颗粒的分级方法
WO2009080611A2 (en) * 2007-12-19 2009-07-02 Basf Se Process for producing surface-crosslinked superabsorbents
CN102056968B (zh) * 2008-06-13 2013-07-03 巴斯夫欧洲公司 连续热二次表面交联吸水性聚合物颗粒的方法
EP2358820A1 (de) * 2008-11-21 2011-08-24 Basf Se Gemisch von oberflächennachvernetzten superabsorbern mit unterschiedlicher oberflächennachvernetzung
EP2471846B1 (de) 2009-08-27 2016-12-21 Nippon Shokubai Co., Ltd. Wasserabsorbierendes harz auf basis von polyacrylsäure(salz) und verfahren zu seiner herstellung
WO2011099586A1 (ja) 2010-02-10 2011-08-18 株式会社日本触媒 吸水性樹脂粉末の製造方法
US9272068B2 (en) 2010-03-12 2016-03-01 Nippon Shokubai Co., Ltd. Process for producing water-absorbing resin
WO2011136238A1 (ja) 2010-04-26 2011-11-03 株式会社日本触媒 ポリアクリル酸(塩)、ポリアクリル酸(塩)系吸水性樹脂及びその製造方法
CN102858816B (zh) 2010-04-26 2016-06-08 株式会社日本触媒 聚丙烯酸(盐)、聚丙烯酸(盐)系吸水性树脂及其制造方法
JP6073292B2 (ja) * 2011-05-06 2017-02-01 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 吸水性ポリマー粒子の製造法
US20130260032A1 (en) * 2012-03-30 2013-10-03 Basf Se Process for Thermal Postcrosslinking in a Drum Heat Exchanger with an Inverse Screw Helix
US9375507B2 (en) 2013-04-10 2016-06-28 Evonik Corporation Particulate superabsorbent polymer composition having improved stability
US9302248B2 (en) 2013-04-10 2016-04-05 Evonik Corporation Particulate superabsorbent polymer composition having improved stability
KR101604272B1 (ko) 2013-05-09 2016-03-25 주식회사 엘지화학 고흡수성 수지의 제조방법
JP6737571B2 (ja) * 2014-07-11 2020-08-12 住友精化株式会社 吸水性樹脂及び吸収性物品
EP3262106A1 (de) * 2015-02-25 2018-01-03 Basf Se Verfahren zur herstellung von oberflächennachvernetzten wasserabsorbierenden polymerpartikeln durch polymerisierung von tropfen einer monomerlösung
KR101919985B1 (ko) * 2015-06-10 2018-11-19 주식회사 엘지화학 내파쇄성 고흡수성 수지 및 그 제조방법
EP3497141B1 (de) * 2016-08-10 2020-11-25 Basf Se Verfahren zur herstellung von superabsorbern

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5599335A (en) * 1994-03-29 1997-02-04 The Procter & Gamble Company Absorbent members for body fluids having good wet integrity and relatively high concentrations of hydrogel-forming absorbent polymer
DE19846412A1 (de) * 1998-10-08 2000-04-13 Basf Ag Hydrophile hochquellfähige Hydrogele sowie Verfahren zu ihrer Herstellung und Verwendung
US6620889B1 (en) * 1999-03-05 2003-09-16 Stockhausen Gmbh & Co. Kg Powdery, crosslinked absorbent polymers, method for the production thereof, and their use
EP1516884A2 (de) * 2003-09-19 2005-03-23 Nippon Shokubai Co., Ltd. Wasserabsorbierendes Harz mit behandelten Oberflächen und Verfahren zu seiner Herstellung

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3623977A (en) * 1970-06-25 1971-11-30 Fmc Corp Sewage treatment process
JPS6018690B2 (ja) 1981-12-30 1985-05-11 住友精化株式会社 吸水性樹脂の吸水性改良方法
JPS58180233A (ja) * 1982-04-19 1983-10-21 Nippon Shokubai Kagaku Kogyo Co Ltd 吸収剤
CA2004864A1 (en) 1988-12-08 1990-06-08 Kinya Nagasuna Method for production of absorbent resin excelling in durability
ES2097235T3 (es) 1991-09-03 1997-04-01 Hoechst Celanese Corp Polimero superabsorbente que tiene propiedades de absorcion mejoradas.
DE4138408A1 (de) * 1991-11-22 1993-05-27 Cassella Ag Hydrophile, hochquellfaehige hydrogele
US5385983A (en) * 1992-11-12 1995-01-31 The Dow Chemical Company Process for preparing a water-absorbent polymer
JP3482575B2 (ja) * 1994-10-12 2003-12-22 能美防災株式会社 レンジフード及び排煙ダクト内火災の消火装置
US5884841A (en) * 1997-04-25 1999-03-23 Ratnik Industries, Inc. Method and apparatus for making snow
DE19807502B4 (de) 1998-02-21 2004-04-08 Basf Ag Verfahren zur Nachvernetzung von Hydrogelen mit 2-Oxazolidinonen, daraus hergestellte Hydrogele und deren Verwendung
US6503979B1 (en) 1998-02-26 2003-01-07 Basf Aktiengesellschaft Method for cross-linking hydrogels with bis- and poly-2-oxazolidinones
DE19854573A1 (de) 1998-11-26 2000-05-31 Basf Ag Verfahren zur Nachvernetzung von Hydrogelen mit 2-Oxo-tetrahydro-1,3-oxazinen
DE19854574A1 (de) * 1998-11-26 2000-05-31 Basf Ag Verfahren zur Nachvernetzung von Hydrogelen mit N-Acyl-2-Oxazolidinonen
DE19909838A1 (de) * 1999-03-05 2000-09-07 Stockhausen Chem Fab Gmbh Pulverförmige, vernetzte, wässrige Flüssigkeiten sowie Blut absorbierende Polymere, Verfahren zu ihrer Herstellung und ihre Verwendung
US6239230B1 (en) * 1999-09-07 2001-05-29 Bask Aktiengesellschaft Surface-treated superabsorbent polymer particles
DE10043706A1 (de) * 2000-09-04 2002-04-25 Stockhausen Chem Fab Gmbh Pulverförmige, vernetzte, wässrige Flüssigkeiten sowie Blut absorbierende Polymere, Verfahren zu ihrer Herstellung und ihre Verwendung
DE10043710B4 (de) 2000-09-04 2015-01-15 Evonik Degussa Gmbh Verwendung pulverförmiger an der Oberfläche nachvernetzter Polymerisate und Hygieneartikel
US6720389B2 (en) 2000-09-20 2004-04-13 Nippon Shokubai Co., Ltd. Water-absorbent resin and production process therefor
JP4315680B2 (ja) * 2000-12-29 2009-08-19 ビーエーエスエフ ソシエタス・ヨーロピア 吸収性組成物
US6902637B2 (en) * 2001-01-23 2005-06-07 Trw Inc. Process for preparing free-flowing particulate phase stabilized ammonium nitrate
WO2003002623A1 (de) 2001-06-28 2003-01-09 Basf Aktiengesellschaft Saure hochquellfähige hydrogele
WO2003022316A1 (de) * 2001-09-07 2003-03-20 Basf Aktiengesellschaft Super-absorbierende hydrogele bestimmter teilchengroessenverteilung
KR20040040487A (ko) 2001-10-05 2004-05-12 바스프 악티엔게젤샤프트 모르폴린 2,3-디온에 의한 하이드로겔의 가교결합 방법
DE10239074A1 (de) 2002-08-26 2004-03-11 Basf Ag Wasserabsorbierendes Mittel und Verfahren zu seiner Herstellung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5599335A (en) * 1994-03-29 1997-02-04 The Procter & Gamble Company Absorbent members for body fluids having good wet integrity and relatively high concentrations of hydrogel-forming absorbent polymer
DE19846412A1 (de) * 1998-10-08 2000-04-13 Basf Ag Hydrophile hochquellfähige Hydrogele sowie Verfahren zu ihrer Herstellung und Verwendung
US6620889B1 (en) * 1999-03-05 2003-09-16 Stockhausen Gmbh & Co. Kg Powdery, crosslinked absorbent polymers, method for the production thereof, and their use
EP1516884A2 (de) * 2003-09-19 2005-03-23 Nippon Shokubai Co., Ltd. Wasserabsorbierendes Harz mit behandelten Oberflächen und Verfahren zu seiner Herstellung

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006042704A3 (de) * 2004-10-20 2006-08-10 Basf Ag Feinteilige wasserabsorbierende polymerpartikel mit hoher flüssigkeitstransport- und absorptionsleistung
WO2006042704A2 (de) * 2004-10-20 2006-04-27 Basf Aktiengesellschaft Feinteilige wasserabsorbierende polymerpartikel mit hoher flüssigkeitstransport- und absorptionsleistung
EP2263704A1 (de) * 2004-10-20 2010-12-22 Basf Se Feinteilige wasserabsorbierende Polymerpartikel mit hoher Flüssigkeitstransport- und Absorptionsleistung
EP2258409A1 (de) * 2004-10-20 2010-12-08 Basf Se Feinteilige wasserabsorbierende Polymerpartikel mit hoher Flüssigkeitstransport- und Absorptionsleistung
US7759422B2 (en) 2004-10-20 2010-07-20 Basf Aktiengesellschaft Fine-grained water-absorbent particles with a high fluid transport and absorption capacity
EP1934267A4 (de) * 2005-09-30 2009-05-27 Nippon Catalytic Chem Ind Absorptionsmittel für wässrige flüssigkeiten und herstellungsverfahren dafür
EP1934267A1 (de) * 2005-09-30 2008-06-25 Nippon Shokubai Co., Ltd. Absorptionsmittel für wässrige flüssigkeiten und herstellungsverfahren dafür
US7816301B2 (en) 2005-09-30 2010-10-19 Nippon Shokubai Co., Ltd. Aqueous-liquid-absorbing agent and its production process
WO2007065834A1 (de) * 2005-12-05 2007-06-14 Basf Se Verfahren zur herstellung wasserabsorbierender polymere mit hoher absorptionskapazität und hoher permeabilität
JP2009543919A (ja) * 2006-07-19 2009-12-10 ビーエーエスエフ ソシエタス・ヨーロピア モノマー溶液の液滴の重合による、高い透過性を有する吸水性ポリマー粒子の製造方法
CN101489596B (zh) * 2006-07-19 2013-05-15 巴斯夫欧洲公司 通过聚合单体溶液液滴生产具有较高吸收的后固化的吸水性聚合物颗粒的方法
JP2009543915A (ja) * 2006-07-19 2009-12-10 ビーエーエスエフ ソシエタス・ヨーロピア モノマー溶液の液滴の重合による、高い吸収性を有する後架橋された吸水性ポリマー粒子の製造方法
TWI414542B (zh) * 2006-07-19 2013-11-11 Basf Ag 藉由聚合單體溶液微滴製備具高滲透性之吸水聚合物珠粒之方法
JP2014205856A (ja) * 2006-07-19 2014-10-30 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 高い透過性を有する吸水性ポリマー粒子
US8202957B2 (en) 2006-07-19 2012-06-19 Basf Se Method for producing post-cured water-absorbent polymer particles with a higher absorption by polymerising droplets of a monomer solution
WO2008009580A1 (de) 2006-07-19 2008-01-24 Basf Se Verfahren zur herstellung nachvernetzter wasserabsorbierender polymerpartikel mit hoher absorption durch polymerisation von tropfen einer monomerlösung
RU2463310C2 (ru) * 2006-07-19 2012-10-10 Басф Се Способ получения водопоглощающих полимерных частиц с высокой проницаемостью путем полимеризации капель мономерного раствора
RU2480481C2 (ru) * 2006-07-19 2013-04-27 Басф Се Способ получения дополнительно сшитых водопоглощающих полимерных частиц с высоким поглощением путем полимеризации капель мономерного раствора
WO2008009598A1 (de) * 2006-07-19 2008-01-24 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel mit hoher permeabilität durch polymerisation von tropfen einer monomerlösung
US8124229B2 (en) 2006-07-19 2012-02-28 Basf Se Method for producing water-absorbent polymer particles with a higher permeability by polymerising droplets of a monomer solution
US8389658B2 (en) 2006-07-19 2013-03-05 Basf Se Method for producing post-cured water-absorbent polymer particles with a higher absorption by polymerizing droplets of a monomer solution
US7967148B2 (en) 2006-09-25 2011-06-28 Basf Se Method for grading water-absorbent polymer particles
WO2008037673A1 (de) * 2006-09-25 2008-04-03 Basf Se Verfahren zum klassieren wasserabsorbierender polymerpartikel
US8314173B2 (en) * 2007-01-29 2012-11-20 Basf Se Method for producing white and color-stable water-absorbing polymer particles having high absorbency and high saline flow conductivity
WO2008092842A1 (de) * 2007-01-29 2008-08-07 Basf Se VERFAHREN ZUR HERSTELLUNG WEIßER UND FARBSTABILER WASSERABSORBIERENDER POLYMERPARTIKEL MIT HOHEM ABSORPTIONSVERMÖGEN UND HOHER FLÜSSIGKEITSLEITFÄHIGKEIT
DE102008000237A1 (de) 2007-02-06 2008-08-07 Basf Se Phenol-Imidazolderivate zur Stabilisierung von polymerisationsfähigen Verbindungen
US9803033B2 (en) 2009-04-30 2017-10-31 Basf Se Method for removing metal impurities
WO2011042429A1 (de) 2009-10-09 2011-04-14 Basf Se Verfahren zur nachbefeuchtung oberflächennachvernetzter wasserabsorbierender polymerpartikel
WO2011042468A2 (de) 2009-10-09 2011-04-14 Basf Se Verfahren zur nachbefeuchtung oberflächennachvernetzter wasserabsorbierender polymerpartikel
WO2012045705A1 (de) 2010-10-06 2012-04-12 Basf Se Verfahren zur herstellung thermisch oberflächennachvernetzter wasserabsorbierender polymerpartikel
WO2012052365A1 (en) 2010-10-21 2012-04-26 Basf Se Water-absorbing polymeric particles and method for the production thereof
US9567414B2 (en) 2011-01-28 2017-02-14 Nippon Shokubai Co., Ltd. Method for producing polyacrylic acid (salt)-based water absorbent resin powder
WO2012102407A1 (ja) 2011-01-28 2012-08-02 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂粉末の製造方法
WO2013117496A1 (de) * 2012-02-06 2013-08-15 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel
EP2826807B1 (de) 2012-04-25 2018-02-28 LG Chem, Ltd. Superabsorbierendes polymer und verfahren zur herstellung davon
WO2014041969A1 (ja) 2012-09-11 2014-03-20 株式会社日本触媒 ポリアクリル酸(塩)系吸水剤の製造方法及びその吸水剤
KR20150056571A (ko) 2012-09-11 2015-05-26 가부시키가이샤 닛폰 쇼쿠바이 폴리아크릴산(염)계 흡수제의 제조 방법 및 그 흡수제
KR20150056572A (ko) 2012-09-11 2015-05-26 가부시키가이샤 닛폰 쇼쿠바이 폴리아크릴산(염)계 흡수제의 제조 방법 및 그 흡수제
WO2014041968A1 (ja) 2012-09-11 2014-03-20 株式会社日本触媒 ポリアクリル酸(塩)系吸水剤の製造方法及びその吸水剤
US10059817B2 (en) 2012-09-11 2018-08-28 Nippon Shokubai Co., Ltd. Method for producing polyacrylic acid (salt)-based water absorbing agent, and water absorbing agent
US9518180B2 (en) 2012-09-11 2016-12-13 Nippon Shokubai Co., Ltd. Method for producing polyacrylic acid (salt)-based water absorbing agent, and water absorbing agent
WO2015093594A1 (ja) 2013-12-20 2015-06-25 株式会社日本触媒 ポリアクリル酸(塩)系吸水剤及びその製造方法
KR20160102217A (ko) 2013-12-20 2016-08-29 가부시키가이샤 닛폰 쇼쿠바이 폴리아크릴산(염)계 흡수제 및 그의 제조 방법
US10646612B2 (en) 2013-12-20 2020-05-12 Nippon Shokubai Co., Ltd. Polyacrylic acid (salt) water absorbent, and method for producing same
EP4252728A2 (de) 2013-12-20 2023-10-04 Nippon Shokubai Co., Ltd. Wasserabsorbierendes mittel auf der basis von polyacrylsäure und/oder einem salz davon
EP3009474B1 (de) 2014-10-16 2017-09-13 Evonik Degussa GmbH Herstellverfahren für wasserlösliche Polymere
US9873785B2 (en) 2014-10-16 2018-01-23 Evonik Degussa Gmbh Production method for water-soluble polymers
EP3009474A1 (de) * 2014-10-16 2016-04-20 Evonik Degussa GmbH Herstellverfahren für wasserlösliche Polymere
KR20180022883A (ko) 2015-07-01 2018-03-06 가부시키가이샤 닛폰 쇼쿠바이 입자상 흡수제
US10532341B2 (en) 2015-07-01 2020-01-14 Nippon Shokubai Co., Ltd. Particulate water absorbing agent
DE102019216910A1 (de) 2018-11-12 2020-05-14 Basf Se Verfahren zur Oberflächennachvernetzung von Superabsorbern

Also Published As

Publication number Publication date
EP1720934B1 (de) 2011-04-20
KR101096371B1 (ko) 2011-12-20
KR20070032299A (ko) 2007-03-21
TW200602391A (en) 2006-01-16
EP1720934B2 (de) 2018-04-11
BRPI0507793A (pt) 2007-07-17
JP2007523254A (ja) 2007-08-16
CN100584877C (zh) 2010-01-27
DE102004009438A1 (de) 2005-09-15
US7981969B2 (en) 2011-07-19
JP4395531B2 (ja) 2010-01-13
US20070161759A1 (en) 2007-07-12
DE502005011278D1 (de) 2011-06-01
CN1922243A (zh) 2007-02-28
BRPI0507793B1 (pt) 2016-07-26
US20110257341A1 (en) 2011-10-20
ZA200607943B (en) 2008-06-25
EP1720934A1 (de) 2006-11-15
TWI357913B (en) 2012-02-11
ATE506393T1 (de) 2011-05-15
US8258223B2 (en) 2012-09-04

Similar Documents

Publication Publication Date Title
EP1720934B1 (de) Verfahren zur nachvernetzung wasserabsorbierender polymere
EP1824908B1 (de) Unlösliche metallsulfate in wasserabsorbierenden polymerpartikeln
EP1682194B1 (de) Blut und/oder körperflüssigkeiten absorbierende polymerpartikel
EP1123329B1 (de) Hydrophile, hochquellfähige hydrogele sowie verfahren zu ihrer herstellung und verwendung
EP1123330B1 (de) Verfahren zur herstellung von wasserquellbaren hydrophilen polymeren, die polymere sowie deren verwendung
EP1735375B1 (de) Quellbare hydrogelbildende polymere mit hoher permeabilität
EP1824889B1 (de) Verfahren zur nachvernetzung wasserabsorbierender polymerpartikel
EP2185630B1 (de) Wasserabsorbierende polymergebilde mit verbesserter farbstabilität
EP2411422B2 (de) Verfahren zur herstellung oberflächennachvernetzter wasserabsorbierender polymerpartikel
EP1696974B1 (de) Quellbare hydrogelbildende polymere mit geringem feinstaubanteil
EP2673011B2 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel mit hoher anquellgeschwindigkeit
DE102004051242A1 (de) Feinteilige wasserabsorbierende Polymerpartikel mit hoher Flüssigkeitstransport- und Absorptionsleistung
EP1651683A1 (de) Verfahren zur nachvernetzung von hydrogelen mit bicyclischen amidacetalen
EP2625207A1 (de) Verfahren zur herstellung thermisch oberflächennachvernetzter wasserabsorbierender polymerpartikel
EP1960440B1 (de) Verfahren zur herstellung wasserabsorbierender polymere mit hoher absorptionskapazität und hoher permeabilität
EP2780044B1 (de) Verfahren zur herstellung thermisch oberflächennachvernetzter wasserabsorbierender polymerpartikel
DE102004005417A1 (de) Quellbare hydrogelbildende Polymere mit geringem Feinstaubanteil
DE102004035671A1 (de) Blut und/oder Körperflüssigkeiten absorbierende Polymerpartikel
DE10360394A1 (de) Quellbare hydrogelbildende Polymere mit geringem Feinstaubanteil

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007161759

Country of ref document: US

Ref document number: 10588671

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005715387

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007500113

Country of ref document: JP

Ref document number: 200580005988.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006/07943

Country of ref document: ZA

Ref document number: 1020067019589

Country of ref document: KR

Ref document number: 200607943

Country of ref document: ZA

WWP Wipo information: published in national office

Ref document number: 2005715387

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067019589

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10588671

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0507793

Country of ref document: BR