WO2005078830A1 - 蓄電デバイス - Google Patents

蓄電デバイス Download PDF

Info

Publication number
WO2005078830A1
WO2005078830A1 PCT/JP2004/018907 JP2004018907W WO2005078830A1 WO 2005078830 A1 WO2005078830 A1 WO 2005078830A1 JP 2004018907 W JP2004018907 W JP 2004018907W WO 2005078830 A1 WO2005078830 A1 WO 2005078830A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage device
positive electrode
chemical formula
polymer
power storage
Prior art date
Application number
PCT/JP2004/018907
Other languages
English (en)
French (fr)
Inventor
Kentaro Nakahara
Jiro Iriyama
Shigeyuki Iwasa
Masahiro Suguro
Masaharu Satoh
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to US10/597,517 priority Critical patent/US20080226986A1/en
Priority to JP2005517909A priority patent/JP4720999B2/ja
Publication of WO2005078830A1 publication Critical patent/WO2005078830A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1399Processes of manufacture of electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a power storage device having a small internal resistance.
  • Patent Document 1 JP 2002-304996 A
  • Patent Document 1 has a problem that the internal resistance of the power storage device increases. This is because Schottky-type internal resistance is generated between a metal current collector such as aluminum or stainless steel and a nitroxynole polymer as an organic semiconductor. As a result, the energy loss due to the internal resistance increases.
  • An object of the present invention is to provide a power storage device using a nitroxylinole polymer as a positive electrode active material and having a small internal resistance.
  • the electricity storage device of the present invention contains, in a positive electrode, a nitroxynole polymer having a nitroxyl cation partial structure represented by the following chemical formula (I) in an oxidized state and a nitroxyl radical partial structure represented by the following chemical formula (II) in a reduced state:
  • a power storage device that uses a reaction represented by the following reaction formula (B) for transferring electrons between the two states as a positive electrode reaction, in which a conductive auxiliary layer mainly composed of carbon is provided on an aluminum electrode. It is characterized in that an integrally formed positive electrode current collector is used.
  • the conductive auxiliary layer sandwiched between the positive electrode, which contains a nitroxyl polymer as the active material, and the aluminum electrode has the effect of reducing the potential barrier between the organic polymer compound and the metal current collector. Internal resistance decreases.
  • a power storage device with low internal resistance can be provided by using a positive electrode current collector in which a conductive auxiliary layer containing carbon as a main component is integrally formed on an aluminum electrode. .
  • FIG. 1 is a schematic diagram showing a configuration of a power storage device described in a first embodiment.
  • FIG. 2 is an enlarged view of a positive electrode current collector in a general view showing a configuration of the power storage device described in the first embodiment.
  • FIG. 1 there is shown a schematic view of a power storage device as a first embodiment of the present invention.
  • FIG. 2 shows a schematic diagram of a positive electrode current collector in the first embodiment.
  • a power storage device has a configuration as shown in FIG. 1, for example.
  • the power storage device shown in FIG. 1 has a configuration in which a negative electrode 3 and a positive electrode 5 are overlapped via a separator 4 containing an electrolyte, and as a positive electrode current collector 6, as shown in FIG.
  • An electrode in which a conductive auxiliary layer 8 is integrally formed on a plate 9 is used.
  • the conductive auxiliary layer 8 in the first embodiment is a layer composed of acetylene black and a binder, and is thinly applied on an aluminum plate to be integrally formed.
  • the negative electrode metal current collector 1 and the positive electrode metal current collector 7 in the first embodiment are formed of a stainless steel plate, and have a coin-shaped shape with a polypropylene insulating packing 2 interposed therebetween.
  • the negative electrode 3 is made of lithium metal
  • the positive electrode active material is a nitroxyl polymer represented by the following chemical formula (1) or poly (2,2,6,6-tetramethylpiperidinium).
  • Nonoxy meta-tallylate (PTMA) is used.
  • the positive electrode 5 is formed by combining a positive electrode active material, PTMA, with a conductivity-imparting agent mainly composed of acetylene black and a binder mainly composed of polyvinylidene fluoride.
  • a porous separator made of polypropylene is used as the separator 4 in the first embodiment.
  • the electrolyte in the first embodiment includes ethylene carbonate containing 1 M LiPF as a supporting salt.
  • the polymer was precipitated in hexane, separated by filtration, and dried under reduced pressure to obtain 18 g of poly (2,2,6,6-tetramethylpiperidine methacrylate) (yield 90%).
  • 10 g of the obtained poly (2,2,6,6-tetramethylpiperidine methacrylate) was dissolved in 100 ml of dry dichloromethane.
  • 100 ml of a solution of 15.2 g (0.088 mol) of m-chloroperbenzoic acid in dichloromethane was added dropwise over 1 hour while stirring at room temperature.
  • An electrode plate in which a positive electrode containing a nitroxyl polymer is applied and formed on a positive electrode current collector in which a conductive auxiliary layer containing carbon as a main component and an aluminum plate are integrated, is used as a metal current collector for a positive electrode. It was placed on top, dried in vacuum at 80 ° C overnight, punched out into a circular shape with a diameter of 12 mm, and molded as an electrode for a power storage device. Next, the obtained electrode was immersed in the electrolytic solution, and the electrolytic solution was impregnated into the voids in the electrode. Electrolyte contains Limol electrolyte salt of ImolZl An EC / DEC mixed solution was used.
  • a porous film separator impregnated with the electrolytic solution was also laminated on the electrode impregnated with the electrolytic solution. Further, a lithium metal plate serving as a negative electrode was laminated, and a current collector for a negative electrode covered with an insulating packing was overlapped. Pressure was applied to the laminate thus produced by a caulking machine to obtain a coin-type power storage device.
  • the shape of the coin-shaped power storage device can be changed to a conventionally known shape.
  • An example of the shape of the electricity storage device is a force S obtained by sealing a laminated body or a wound body of electrodes with a metal case, a resin case, a laminated film, or the like.
  • examples of the external appearance include a cylindrical type, a square type, a coin type, and a sheet type.
  • the conductive auxiliary layer formed by coating can be constituted by a conductive auxiliary layer formed by a vapor deposition method.
  • the conductive auxiliary layer mainly composed of a carbon material
  • the conductive auxiliary layer can be thinly formed on the aluminum electrode, so that the energy density of the power storage device can be increased. It has a synergistic effect.
  • the conductive auxiliary layer in the present invention is a layer for assisting charge transfer between the positive electrode and aluminum, and contains a carbon material as a main component.
  • the main component in the present invention means that the component accounts for more than 50% of the total weight of the layer.
  • the carbon material include activated carbon, graphite, carbon black, furnace black, amorphous carbon, and the like.
  • the thickness of the conductive auxiliary layer in the present invention is not particularly limited, but is preferably thinner from the viewpoint of increasing the energy density of the electricity storage device.
  • the thickness of the layer is generally about 31000 microns, but is preferably 50 microns or less from the viewpoint of increasing the energy density of the electricity storage device. More preferably, it is 20 microns or less.
  • the coating method it is difficult to uniformly produce an electrode of 1 micron or less while maintaining mechanical strength.
  • the conductive auxiliary layer in the present invention is formed by an evaporation method, the conductive auxiliary layer can be formed thin.
  • the thickness of the layer is generally about 11 to 500 nanometers. From the viewpoint of increasing the energy density, it is preferably 100 nm or less, more preferably 20 nm or less.
  • the weight of the carbon material in the weight of the conductive auxiliary layer is determined from the viewpoint of increasing conductivity.
  • a conductive auxiliary may be added for the purpose of increasing conductivity, and a binder may be added for the purpose of increasing mechanical strength.
  • the positive electrode active material PTMA can be composed of a conventionally known nitroxyl polymer.
  • the nitroxyle polymer according to the present invention is a generic name of a polymer compound having a nitroxyl structure as represented by the following chemical formula (3), and the nitroxyl structure is represented by the following reaction formula (A).
  • reaction formula (A) As shown in the figure, the state of chemical formulas (I) and (III) can be obtained by transferring electrons.
  • the electricity storage device of the present invention uses the reaction between the chemical formulas (I) and (II) as the electrode reaction of the positive electrode, and causes the electricity storage effect to function by accumulating and releasing electrons.
  • the power storage device is a device having at least a positive electrode and a negative electrode, and capable of extracting electrochemically stored energy in the form of electric power.
  • the positive electrode refers to an electrode having a high oxidation-reduction potential
  • the opposite of the negative electrode means an electrode having a low oxidation-reduction potential.
  • the nitroxyl structure in the oxidation state is represented by the following chemical formula (5). Cyclic nitroxyl structures are preferred. In the reduced state, the nitroxyl moiety of formula (5) has a nitroxyl radical structure of formula (II). R-R
  • an alkyl group particularly preferably a linear alkyl group.
  • an alkyl group having 14 to 14 carbon atoms is particularly preferable, and a methyl group is particularly preferable.
  • the atoms constituting the ring members in the group are selected from the group consisting of carbon, oxygen, nitrogen and sulfur.
  • Adjacent CH, — CH— may be replaced by _ ⁇ —, —NH— or —S—
  • Particularly preferable cyclic nitroxynole structures are 2,2,6,6-tetramethylpiperidinoxyl cation represented by chemical formula (6) and 2,2,5,5 represented by chemical formula (7) in an oxidized state.
  • -It is selected from the group consisting of tetramethylpyrrolidinoxyl cation and 2,2,5,5-tetramethylpyrrolinoxyl cation represented by the chemical formula (8).
  • the cyclic nitroxynole structure represented by the above chemical formula (5) forms a part of the polymer as a side chain or a part of the main chain. That is, it exists in the side chain or a part of the main chain of the polymer as a structure in which at least one hydrogen bonded to the element forming the cyclic structure has been removed. It is preferable that it is present in the side chain because of ease of synthesis and the like.
  • a residue X ′ obtained by removing hydrogen from CH—, _CH or NH— constituting a ring member in the group X in the chemical formula (5) main
  • R R has the same meaning as in the chemical formula (5).
  • the main chain polymer used at this time is not particularly limited, and any polymer may be used. It suffices that a residue having a cyclic nitroxylate structure represented by the chemical formula (9) is present in the side chain. Specifically, the following polymers may be obtained by adding a residue of the chemical formula (9) to the polymer, or a polymer in which some atoms or groups of the polymer are substituted by the residues of the chemical formula (9). be able to. In any case, the residue of the chemical formula (9) may be bonded via an appropriate divalent group instead of directly.
  • polyethylene-based polymers such as polyethylene, polypropylene, polybutene, polydecene, polydodecene, polyheptene, polyisobutene, and polyoctadecene; gen-based polymers such as polybutadiene, polychloroprene, polyisoprene, and polyisobutene; poly (meth) acrylic acid; (Meth) acrylonitrile; poly (meth) acrylamide polymers such as poly (meth) acrylinamide, polymethyl (meth) acrylamide, polydimethyl (meth) acrylamide, polyisopropynole (meth) acrylamide; polymethyl (meth) atalylate, polyethyl Polyalkyl (meth) atalylates such as (meth) acrylate and polybutyl (meth) acrylate; fluorocarbons such as polyvinylidene fluoride and polytetrafluoroethylene; Poly
  • Polyamine-based polymers such as polyethylene, trimethyleneamine, etc .; Polyamide-based polymers such as nylon, polyglycine, polyalanine, etc .; Polyimine-based polymers such as ethylene and polybenzoyl imino ethylene; polyimide-based polymers such as polyesterimide, polyetherimide, polybenzimide, and polypyrrolimide; polyarylene, polyarylenealkylene, polyarylenealkenylene, Polyphenol, phenolic resin, cellulose, polybenzoimidazole, polybenzothiazole, polybenzoxazine, polybenzoxazole, olicarborane, polydibenzofuran, polyoxoisoindoline, polyfurantetracarboxylic diimide, polyoxa Diazole, polyoxindole, polyphthalazine, polyphthalide, polycyanurate, polyisocyanurate, polypirazine, polypiperidine, polypyrazinoquinoxane, polypyrazo
  • the polyalkylene polymer the poly (meth) acrylic acid, the poly (meth) acrylamide polymer, the polyalkyl (meth) ataryle, in that the main chain has excellent electrochemical resistance.
  • polystyrene-based polymers are preferred.
  • the main chain is a carbon chain having the largest number of carbon atoms in a polymer compound.
  • the polymer is selected so that it can contain a unit represented by the following chemical formula (10) in an oxidized state.
  • R has the same meaning as in the chemical formula (5).
  • R is hydrogen or a methyl group.
  • Y is not particularly limited, but has _CO COO -CONR _0 _S—, a substituent And C11-C18 alkylene group, C11-C18 arylene group which may have a substituent, and a divalent group obtained by bonding two or more of these groups. I can do it.
  • R represents an alkyl group having 118 carbon atoms.
  • Y is a force having the same meaning as the chemical formula (10), particularly —COO— and —CONR—.
  • the residue of the chemical formula (9) may not be present in all side chains.
  • all of the units constituting the polymer may be units represented by the chemical formula (10), or some may be units represented by the chemical formula (10).
  • the amount contained in the polymer varies depending on the purpose, the structure of the polymer, and the production method, but it is usually 1% by weight or more, particularly preferably 10% by weight or more, if it is present even in a small amount. If there is no particular restriction on the polymer synthesis and it is desired to obtain as large a charge storage effect as possible, it is preferably at least 50% by weight, particularly preferably at least 80% by weight.
  • the residue represented by the chemical formula (9) (or the one before being oxidized to a radical) by a polymer reaction is obtained. ⁇ ⁇ -residue).
  • the molecular weight of the nitroxyl polymer in the present invention is not particularly limited, but preferably has a molecular weight that does not dissolve in the electrolyte. This depends on the combination with the type of the organic solvent in the electrolyte. Generally, the weight average molecular weight is at least 1,000, preferably at least 10,000, especially at least 100,000. In the present invention, since the power S can be mixed with the positive electrode as a powder, the molecular weight may be very large. Generally, the weight average molecular weight is 5,000 or less. Further, the polymer containing the residue represented by the chemical formula (9) may be cross-linked, whereby the durability to the electrolyte can be improved.
  • the content of the nitroxyl polymer in the positive electrode which is 50% by weight, can be arbitrarily adjusted.
  • the main function of the nitroxylinole polymer in the positive electrode is its role as an active material that contributes to electricity storage. Therefore, the entire amount of the positive electrode active material of a conventional power storage device, for example, a conventional battery, can be replaced with the nitroxyl polymer specified in the present invention.
  • a sufficient effect can be obtained if the content is 10% by weight or more based on the whole weight of the positive electrode. Further, if it is desired to obtain the largest possible electricity storage effect, the content is 50% by weight or more, particularly 80% by weight or more, and preferably 100% by weight.
  • the content of the conductive additive contained in the positive electrode which is 30% by weight, can be arbitrarily adjusted.
  • the content of the conductive additive contained in the positive electrode is high, sufficient conductivity can be obtained even when the positive electrode is directly formed by coating or pressing on aluminum metal. Therefore, the effect of the conductive auxiliary layer in the present invention appears more remarkably when the content of the conductivity-imparting agent contained in the positive electrode is lower.
  • the effect of the conductive auxiliary layer according to the present invention becomes large when the content of the conductivity-imparting agent contained in the positive electrode is 50% by weight or less, and becomes particularly remarkable when the content is 40% by weight or less.
  • a positive electrode can be formed by combining a positive electrode active material that is only PTMA with a different type of positive electrode active material.
  • a different kind of positive electrode active material component a conventionally known material for an electrode of a power storage device can be used.
  • Such materials include, for example, carbon materials such as activated carbon, graphite, carbon black, and acetylene black; metal oxides such as LiMn ⁇ , LiCoO, LiNiO, and LiV ⁇ (0 ⁇ x ⁇ 2); and polyacetylene.
  • Examples include conductive polymers such as len, polyphenylene, polyaniline, and polypyrrole, and disulfide compounds.
  • a power storage device can be configured by replacing the conductivity-providing agent containing acetylene black as a main component with a conventionally known conductivity-imparting material.
  • Conventionally known conductivity-imparting agents include, for example, activated carbon, graphite, carbon black, furnace black, and metal powder.
  • the electricity storage device can be configured by replacing the binder using tetrafluoroethylene with a conventionally known solder.
  • Conventionally known binders include, for example, polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, styrene-butadiene copolymer rubber, and resin binders such as polypropylene, polyethylene, and polyimide.
  • binders include, for example, polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, styrene-butadiene copolymer rubber, and resin binders such as polypropylene, polyethylene, and polyimide.
  • the type of side chain to which the cyclic nitroxyl structure is added, or the type of the side chain having no cyclic nitroxyl structure it may also function as a binder.
  • the use of the conventional binder is unnecessary or the amount of the conventional binder used can be reduced.
  • a conventional active material it is also possible to use a polymer having a cyclic nitroxynole structure as the binder, in which case the amount corresponding to the binder will also function as the active material, so that a higher capacity can be achieved.
  • the main chain of the polymer is made of a conductive polymer such as polyacetylene or polyaniline and a cyclic nitroxynole structure is present in the side chain, the polymer having a cyclic nitroxyl structure can also serve as a conductive auxiliary.
  • the conventional conductive auxiliary it is not necessary to use the conventional conductive auxiliary, or the amount of the conventional conductive auxiliary used can be reduced.
  • a conventional active material may be used as it is, and a polymer having a cyclic nitroxyl structure may be used as a conductive auxiliary, in which case an amount equivalent to the conductive auxiliary will also function as the active material. Therefore, it is possible to achieve a high-capacity dani that much.
  • the nitroxynocation structure is considered to have a function of inactivating impurities such as water and alcohol contained in the electrolyte, for example, and also has a function of suppressing performance degradation of the electricity storage device.
  • the polymer having a cyclic nitroxyl structure is particularly effective because it has low solubility in an electrolyte containing an organic solvent or the like and high durability.
  • a negative electrode that uses lithium metal can be replaced with a conventionally known negative electrode to form a power storage device.
  • Conventionally known negative electrodes include, for example, activated carbon, graphite, carbon materials such as carbon black and acetylene black, lithium alloys, lithium ion occluded carbon, various other simple metals and alloys, polyacetylene, polyphenylene, and polyacrylene.
  • Conductive polymers such as diphosphorus and polypyrrole, polyvinylidene fluoride, polytetrafluoroethylene, vinylidene fluoride-hexafluoropropylene copolymer, styrene-butadiene copolymer rubber, polypropylene, polyethylene, polyimide, etc.
  • the material of the metal current collector for the negative electrode using stainless steel can be replaced with a conventionally known material to form a power storage device.
  • Conventionally known materials for a negative electrode metal current collector include, for example, nickel, aluminum, copper, gold, silver, titanium, and aluminum alloy. Further, as the shape, a foil / flat plate or a mesh shape can be used.
  • the power storage device can be configured by replacing the material of the positive electrode metal current collector using stainless steel with a conventionally known material.
  • Conventionally known materials for the positive electrode metal current collector include, for example, nickel, aluminum, copper, gold, silver, titanium, and aluminum alloy. Further, as the shape, a foil / flat plate or a mesh shape can be used. Further, the aluminum used for the positive electrode current collector can be used instead of the positive electrode metal current collector without using the positive electrode metal current collector.
  • an EC / DEC mixed solution containing LiPF electrolyte salt of ImolZl is used.
  • the electrolyte state and are not performing charge carrier transport between the negative electrode 3 and the positive electrode 5, generally has an electrolyte ion conductivity at room temperature 10- 5 10- / cm.
  • an electrolytic solution obtained by dissolving an electrolyte salt in a solvent can be used.
  • Such solvents include, for example, ethylene carbonate, propylene carbonate, dimethinolecarbonate, ethynolecarbonate, methinoleethynolecarbonate, ⁇ -butyrolataton, tetrahydrofuran, dioxolan, sulfolane, dimethylformamide, dimethylacetamide, dimethylmethyl-2.
  • Organic solvents such as pyrrolidone, or aqueous sulfuric acid and water. In the present invention, these solvents can be used alone or in combination of two or more.
  • the electrolyte salt for example, LiPF LiCIO LiBF LiCF SO
  • a solid electrolyte may be used as the electrolyte used in the present invention.
  • organic solid electrolyte materials include polyvinylidene fluoride, vinylidene fluoride, vinylidene fluoride-based copolymers such as xafluoropropylene copolymer, atarilonitrile-methyl methacrylate copolymer, and the like.
  • An acryl nitrile-based polymer such as an acrylonitrile-methyl acrylate copolymer, and a polyethylene oxide may be used.
  • These polymer materials may be used in the form of a gel containing an electrolytic solution, or only the polymer material containing an electrolyte salt may be used as it is.
  • an inorganic solid electrolyte as an inorganic solid electrolyte,
  • the electricity storage device can be configured by replacing the material of the separator using a porous film made of polypropylene with a conventionally known material.
  • the Conventionally known materials for the separator include, for example, polyethylene and the like.
  • the polymer was precipitated in hexane, separated by filtration, and dried under reduced pressure to obtain 18 g of poly (2,2,6,6-tetramethylpiperidine methacrylate) (yield 90%).
  • 10 g of the obtained poly (2,2,6,6-tetramethylpiperidine methacrylate) was dissolved in 100 ml of dry dichloromethane.
  • 100 ml of a solution of 15.2 g (0.088 mol) of m-chloroperbenzoic acid in dichloromethane was added dropwise over 1 hour while stirring at room temperature.
  • a porous film separator made of polypropylene also impregnated with the electrolytic solution was laminated on the electrode impregnated with the electrolytic solution. Further, a lithium metal plate serving as a negative electrode was laminated, and a metal current collector for a negative electrode (stainless steel plate) covered with insulating packing (made of polypropylene) was overlaid. Pressure was applied to the laminate thus produced with a press to obtain a coin-type power storage device.
  • a coin-type power storage device was obtained in the same manner as in Example 1, except that the synthesized polyatalylate of the chemical formula (17) was used as the positive electrode active material.
  • a coin-type power storage device was obtained in the same manner as in Example 1, except that the synthesized polymethallate of the formula (18) was used as the positive electrode active material.
  • a coin-type power storage device was obtained in the same manner as in Example 1, except that the synthesized polymethalate of the chemical formula (19) was used as the positive electrode active material.
  • a coin-type power storage device was obtained in the same manner as in Example 1, except that a graphite electrode plate was used as the negative electrode.
  • a coin-type power storage device was obtained in the same manner as in Example 1, except that the amount of acetylene black mixed with the positive electrode active material was 156 mg. ⁇ Example 7>
  • a coin-type power storage device was obtained in the same manner as in Example 1, except that the amount of acetylene black mixed with the positive electrode active material was 350 mg.
  • a coin-type power storage device was obtained in the same manner as in Example 1, except that the amount of acetylene black mixed with the positive electrode active material was changed to 933 mg.
  • a coin-type power storage device was obtained in the same manner as in Example 1, except that the amount of acetylene black mixed with the positive electrode active material was changed to 1400 mg.
  • a coin-type power storage device was obtained in the same manner as in Example 1, except that the amount of acetylene black mixed with the positive electrode active material was 2100 mg.
  • a coin-type power storage device was obtained in the same manner as in Example 1, except that the thickness of the conductive auxiliary layer formed on the aluminum plate was 30 ⁇ m.
  • a coin-type power storage device was obtained in the same manner as in Example 1, except that the thickness of the conductive auxiliary layer formed on the aluminum plate was changed to 5 ⁇ m.
  • Amorphous carbon was vapor-deposited on the aluminum electrode using a carbon vapor-deposition device to form a conductive auxiliary layer.
  • the thickness of the conductive auxiliary layer was 30 nanometers. Thereafter, the same procedure as in Example 1 was performed to obtain a coin-type power storage device.
  • An electrode plate formed by directly applying a positive electrode containing the polymetha- talate of the chemical formula (16) on an aluminum plate was placed on a metal current collector for a positive electrode (stainless steel plate). After drying overnight, it was punched out into a circular shape with a diameter of 12 mm and molded as an electrode for a power storage device. Thereafter, the same procedure as in Example 1 was performed to obtain a coin-type power storage device.
  • a coin-type power storage device was obtained in the same manner as in Comparative Example 1, except that the synthesized polyatalylate of the formula (17) was used as the positive electrode active material.
  • a coin-type power storage device was obtained in the same manner as in Comparative Example 1, except that the synthesized polymethallate of the formula (18) was used as the positive electrode active material.
  • a coin-type power storage device was obtained in the same manner as in Comparative Example 1, except that the synthesized polymethacrylate of the chemical formula (19) was used as the positive electrode active material.
  • a coin-type power storage device was obtained in the same manner as in Comparative Example 1, except that a graphite electrode plate was used as the negative electrode.
  • a coin-type power storage device was obtained in the same manner as in Comparative Example 1, except that the amount of acetylene black mixed with the positive electrode active material was changed to 156 mg.
  • a coin-type power storage device was obtained in the same manner as in Comparative Example 1, except that the amount of acetylene black mixed with the positive electrode active material was changed to 350 mg.
  • a coin-type power storage device was obtained in the same manner as in Comparative Example 1, except that the amount of acetylene black mixed with the positive electrode active material was changed to 933 mg.
  • Comparative Example 1 except that the amount of acetylene black mixed with the positive electrode active material was 1400 mg. And a coin-type power storage device was obtained.
  • a coin-type power storage device was obtained in the same manner as in Comparative Example 1, except that the amount of acetylene black mixed with the positive electrode active material was 2100 mg.
  • the open-circuit potential of the electric storage device manufactured in Example 1 was 2.9V.
  • the obtained electricity storage device was charged at a constant current of 0.113 mA, and was terminated when the voltage rose to 4.0 V.
  • the storage device after charging was disassembled and the positive electrode was analyzed, a decrease in radical concentration was observed, confirming the formation of the corresponding 2,2,6,6-tetramethylpiperidinoxyl cation. This cation is stabilized by electrolyte anion PF
  • Discharge was performed immediately after the voltage rose to 0V. Discharging was performed at the same constant current of 0.113 mA as at the time of charging. Discharging was terminated when the voltage reached 3.0 V. At the time of discharging, a voltage flat portion was observed around 3.5 V. It was found that this voltage plateau corresponds to the potential difference between the reduction reaction that changes nitroxyl cation to nitroxyl radical occurring at the positive electrode and the lithium metal ionization reaction occurring at the negative electrode. That is, this is a result indicating that the power storage device according to the first embodiment operates as a chemical battery.
  • the average discharge voltage in Example 1 was 3.50V.
  • Example 1 Comparing Example 1 with Comparative Example 1, the average discharge voltage of the electric storage device was improved by using a positive electrode current collector in which a conductive auxiliary layer containing carbon as a main component was integrally formed on an aluminum electrode. Is increased, that is, the internal resistance is reduced. Comparing Example 24 with Comparative Example 2-14, in any of the positive electrode active materials of chemical formulas (17) to (19), a conductive auxiliary layer mainly containing carbon was integrally formed on an aluminum electrode. Use current collector for positive electrode As a result, the average discharge voltage of the power storage device increases, that is, the internal resistance decreases.
  • Example 5 shows that, even when graphite is used as the negative electrode active material, a positive electrode current collector in which a conductive auxiliary layer containing carbon as a main component is integrally formed on an aluminum electrode is used. This indicates that the average discharge voltage of the power storage device increases, that is, the internal resistance decreases. Comparing Example 6-8 with Comparative Example 6-8, when the proportion of the conductivity-imparting agent in the positive electrode was 10% by weight and 40% by weight, the conductive auxiliary layer containing carbon as a main component was replaced with an aluminum electrode. It can be seen that by using the positive electrode current collector integrally formed above, the effect of increasing the average discharge voltage of the power storage device, that is, the effect of reducing the internal resistance, is remarkably exhibited.
  • Comparing Example 9 with Comparative Example 9 when the proportion of the conductivity-imparting agent occupying in the positive electrode was 50% by weight, a conductive auxiliary layer mainly composed of carbon was integrally formed on the aluminum electrode. It can be seen that the use of the positive electrode current collector increases the average discharge voltage of the power storage device, that is, the effect of reducing the internal resistance is slightly reduced. Further, comparing Example 10 with Comparative Example 10, when the proportion of the conductive additive in the positive electrode was 60% by weight, the conductive auxiliary layer mainly composed of carbon was integrated on the aluminum electrode. It can be seen that by using the formed positive electrode current collector, the average discharge voltage of the power storage device is increased, that is, the effect of reducing the internal resistance is reduced.
  • Example 1 When Examples 1, 11, and 12 are compared with Comparative Example 1, when the thickness of the conductive auxiliary layer is 5, 10, and 20 microns, the conductive auxiliary layer mainly composed of carbon is integrated on the aluminum electrode. It can be seen that the use of the formed positive electrode current collector increases the average discharge voltage of the power storage device, that is, the same effect of reducing the internal resistance can be seen. In addition, comparing Example 13 with Comparative Example 1, even when the conductive auxiliary layer was formed by an evaporation method, a positive electrode current collector in which a conductive auxiliary layer containing carbon as a main component was integrally formed on an aluminum electrode. It can be seen that the use of GaN has the effect of increasing the average discharge voltage of the power storage device, that is, reducing the internal resistance.
  • the power storage device has a small internal resistance and can be used as a power storage device requiring a high output.
  • Examples of applications of the present invention include electric double-layer capacitors, lead-acid batteries, nickel-metal hydride batteries, and lithium-ion secondary batteries, which have conventionally been used as backup power supplies for personal computers and servers, auxiliary power supplies for electric vehicles, and portable power supplies. Power supply for equipment and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 本発明は、ニトロキシル高分子を含有する正極を用いた蓄電デバイスにおいて、内部抵抗の小さな蓄電デバイスを提供することを目的とする。上記目的を達成するために、本発明では、ニトロキシル高分子を含有する正極を用いた蓄電デバイスにおいて、炭素を主成分とする導電補助層をアルミニウム電極上に一体化形成した正極用集電体を用いる。

Description

明 細 書
蓄電デバイス
技術分野
[0001] 本発明は、内部抵抗の小さな蓄電デバイスに関する。
背景技術
[0002] 正極活物質として、ニトロキシル高分子を利用する蓄電デバイスが提案されている 。例えば、特許文献 1の図 1に記載されている従来の蓄電デバイスでは、ニトロキシル 高分子を活物質とする正極を、アルミニウムもしくはステンレスとレ、つた正極用金属集 電体の上に直接塗布、もしくは圧着させて蓄電デバイスを構築している。
特許文献 1 :特開 2002 - 304996号公報
発明の開示
発明が解決しょうとする課題
[0003] し力 ながら、この特許文献 1に開示された蓄電デバイスには、蓄電デバイスの内 部抵抗が高くなるという問題点がある。この原因は、アルミニウムもしくはステンレスと いった金属集電体と、有機半導体であるニトロキシノレ高分子との間に、ショットキー型 の内部抵抗が生じることに起因する。そのため、内部抵抗に起因するエネルギーの 損失が大きくなつてしまう。本発明の目的は、正極活物質としてニトロキシノレ高分子を 用いた蓄電デバイスにおいて、内部抵抗の小さな蓄電デバイスを提供することにある 課題を解決するための手段
[0004] [発明の特徴]
本発明の蓄電デバイスは、酸化状態において下記化学式 (I)で示されるニトロキシ ルカチオン部分構造をとり、還元状態において下記化学式 (II)で示されるニトロキシ ルラジカル部分構造をとるニトロキシノレ高分子を正極中に含有し、その 2つの状態間 で電子の授受を行う下記反応式 (B)で示される反応を正極の電極反応として用いる 蓄電デバイスであって、炭素を主成分とする導電補助層をアルミニウム電極上に一 体化形成した正極用集電体を用いることを特徴としている。 [0005] [化 1]
+ e -
Β
+ NOHH 一 e
( I ) ( Π )
[0006] [作用]
ニトロキシル高分子を活物質と ΝΟΙする正極と、アルミニウム電極との間に挟まれた導電 補助層が、有機高分子化合物と金属集電体とのポテンシャル障壁を小さくする効果 があるため、蓄電デバイスの内部抵抗が小さくなる。
発明の効果
[0007] 本発明によれば、炭素を主成分とする導電補助層をアルミニウム電極上に一体化 形成した正極用集電体を用いることで、内部抵抗の小さな蓄電デバイスを提供するこ とができる。
図面の簡単な説明
[0008] [図 1]第 1の実施の形態に挙げた蓄電デバイスの構成を示す概観図である。
[図 2]第 1の実施の形態に挙げた蓄電デバイスの構成を示す概観図における、正極 用集電体の拡大図である。
符号の説明
[0009] 1 負極用金属集電体
2 絶縁パッキン
3 負極
4 セノ レータ
5 正極
6 正極用集電体
7 正極用金属集電体
8 導電補助層
9 アルミニウム 発明を実施するための最良の形態
[0010] [構造]
次に、本発明の実施の形態について図面を参照して詳細に説明する。
[0011] 図 1を参照すると、本発明の第 1の実施の形態として蓄電デバイスの概観図が示さ れている。
[0012] 図 2には、第 1の実施の形態における、正極用集電体の概観図が示されている。
[0013] 本発明による蓄電デバイスは、例えば図 1に示すような構成を有している。図 1に示 された蓄電デバイスは負極 3と正極 5とを電解質を含むセパレータ 4を介して重ね合 わせた構成を有しており、正極用集電体 6として、図 2に示すようにアルミニウム 9板上 に導電補助層 8を一体化形成した電極を用いている。第 1の実施の形態における導 電補助層 8は、アセチレンブラックとバインダーからなる層であり、アルミニウム板上に 薄ぐ塗布され一体化形成されている。アセチレンブラックとバインダーとの混合重量 比は、アセチレンブラック/バインダー = 88/12である。第 1の実施の形態における 負極用金属集電体 1および正極用金属集電体 7はステンレス板からなっており、ポリ プロピレン製の絶縁パッキン 2を挟んだコイン型の形状を有している。第 1の実施の形 態における負極 3としてはリチウム金属を使用し、正極活物質としては、下記化学式( 1)で示されるニトロキシル高分子、ポリ(2, 2, 6, 6—テトラメチルピペリジノキシ メタ タリレート)(PTMA)を用いている。正極活物質である PTMAは、アセチレンブラック を主成分とする導電性付与剤およびポリフッ化ビニリデンを主成分とするバインダー と複合化させて正極 5を形成している。それらの含有率は重量比で、 PTMAZ導電 性付与剤/バインダー = 5/3Z2の割合である。第 1の実施の形態におけるセパレ ータ 4としては、ポリプロピレン製の多孔質セパレータを用いている。第 1の実施の形 態における電解液としては、支持塩として 1Mの LiPFを含む、エチレンカーボネート
6
(EC)およびジェチルカーボネート(DEC)の混合溶媒(混合体積比 ECZDEC = 3 /7)を用いている。 [0014] [化 2]
Figure imgf000005_0001
[0015] [製法]
次に図 1を参照して、第 1の実施の形態の製造方法を説明する。
[0016] 還流管を付けた 100mlナスフラスコ中に、 2, 2, 6, 6—テトラメチルピペリジン メタ タリレート モノマー 20g (0. 089mol)を入れ、乾燥テトラヒドロフラン 80mlに溶解さ せた。そこへ、ァゾビスイソブチロニトリル (AIBN) O. 29g (0. 00178mol) (モノマー /AIBN = 50/1)を加え、アルゴン雰囲気下 75— 80°Cで攪拌した。 6時間反応後、 室温まで放冷した。へキサン中でポリマーを析出させて濾別し、減圧乾燥してポリ(2 , 2, 6, 6-テトラメチルピペリジン メタタリレート) 18g (収率 90%)を得た。次に、得ら れたポリ(2, 2, 6, 6—テトラメチルピペリジン メタタリレート) 10gを乾操ジクロロメタン 100mlに溶解させた。ここへ m-クロ口過安息香酸 15· 2g (0. 088mol)のジクロロメ タン溶液 100mlを室温にて攪拌しながら 1時間かけて滴下した。さらに 6時間攪拌後 、沈殿した m—クロ口安息香酸を濾別して除き、濾液を炭酸ナトリウム水溶液および水 で洗浄後、ジクロロメタンを留去した。残った固形分を粉砕し、得られた粉末をジェチ ルカーボネート(DEC)で洗浄し、減圧下乾燥させて、下記化学式(2)で示されるポリ (2, 2, 6, 6—テトラメチルピペリジノキシ メタタリレート) (PTMA) 7. 2gを得た(収率 68. 2%、茶褐色粉末)。得られた高分子の構造は IRで確認した。また、 GPCにより 測定した結果、重量平均分子量 Mw = 89000、分散度 MwZMn = 3. 30とレ、う値 が得られた。 ESRスペクトルにより求めたスピン濃度は 2. 26 X 1021spin/gであった 。これはポリ(2, 2, 6, 6—テトラメチルピペリジン メタタリレート)の N—H基力 N-O ラジカルへ 90%転化されると仮定した場合のスピン濃度と一致する c
[0017] [化 3]
Figure imgf000006_0001
[0018] 小型ホモジナイザ容器に純水 20gを測り取り、テフロン (登録商標)粒子およびセル ロースからなるバインダー 272mgをカ卩えて 3分間攪拌し完全に溶解させた。そこにァ セチレンブラック 2. Ogをカ卩え、 15分間攪拌してスラリーを得た。得られたスラリーを厚 さ 20ミクロンのアルミニウム板上に薄く塗布し、 100°Cで乾燥させて導電補助層を作 製した。導電補助層の厚みは 10ミクロンであった。このようにして、炭素を主成分とす る導電補助層とアルミニウム板とが一体化された正極用集電体が得られた。
[0019] 次に、小型ホモジナイザ容器に N—メチルピロリドン 20gを測り取り、ポリフッ化ビニリ デン 400mgをカ卩えて 30分間攪拌し完全に溶解させた。そこに、合成した化学式(2) のポリメタタリレート 1. Ogを加え 5分間攪拌した。全体がオレンジ色で均一になったら 、アセチレンブラック 600mgを加え 15分間攪拌した。できたサンプルを脱泡してスラ リーを得た。得られたスラリーを、炭素を主成分とする導電補助層とアルミニウム板と が一体化された正極用集電体上に薄ぐ塗布し、 125°Cで乾燥させて正極を作製した
[0020] 炭素を主成分とする導電補助層とアルミニウム板とが一体化された正極用集電体 上に、ニトロキシル高分子を含む正極が塗布形成された電極板を、正極用金属集電 体上におき、真空中 80°Cで一晩乾燥した後、直径 12mmの円形に打ち抜ぬき、蓄 電デバイス用電極として成型した。次に、得られた電極を電解液に浸して、電極中の 空隙に電解液を染み込ませた。電解液としては、 ImolZlの LiPF電解質塩を含む EC/DEC混合溶液を用いた。次に、電解液を含浸させた電極上に同じく電解液を 含浸させた多孔質フィルムセパレータを積層した。さらに負極となるリチウム金属板を 積層し、絶縁パッキンで被覆された負極用集電体を重ね合わせた。こうして作られた 積層体を、かしめ機によって圧力を加え、コイン型蓄電デバイスを得た。
[0021] [本発明の他の実施の形態]
上記第 1の実施の形態において、コイン型であった蓄電デバイスの形状を、従来公 知の形状にすることができる。蓄電デバイス形状の例としては、電極の積層体あるい は卷回体を、金属ケース、樹脂ケース、あるいはラミネートフィルム等によって封止し たもの力 S挙げられる。また外観としては、円筒型、角型、コイン型、およびシート型等 が挙げられる。
[0022] 上記第 1の実施の形態において、塗布形成された導電補助層を、蒸着法により形 成された導電補助層で構成することができる。炭素材料を主成分とする導電補助層 を蒸着法により形成した場合は、導電補助層をアルミニウム電極上に薄ぐ塗布形成 することができるので、蓄電デバイスのエネルギー密度を高めることができるとレ、う相 乗的な効果を奏する。本発明における導電補助層とは、正極とアルミニウムとの電荷 移動を補助するための層であり、炭素材料を主成分としている。本発明における主成 分とは、層全体の重量に占める成分の重量が 50%を越える成分であるという意味で ある。炭素材料としては、活性炭やグラフアイト、カーボンブラック、ファーネスブラック 、アモルファス炭素等が挙げられる。
[0023] 本発明における導電補助層の厚みは特に制限されないが、蓄電デバイスのェネル ギー密度を高めるといった観点から薄い方が好ましい。本発明における導電補助層 を、塗布形成法によって作製する場合、層の厚みは一般的に 3 1000ミクロン程度 であるが、蓄電デバイスのエネルギー密度を高めるといった観点から 50ミクロン以下 であることが好ましぐさらに 20ミクロン以下であることが好ましい。ただし塗布形成法 を用いた場合は、機械的強度を保ちつつ 1ミクロン以下の電極をムラなく作製すること が困難である。一方、本発明における導電補助層を、蒸着法によって作製すると、導 電補助層を薄く形成することができる。導電補助層を、真空蒸着法によって作製する 場合、層の厚みは一般に 1一 500ナノメートル程度である力 蓄電デバイスのェネル ギー密度を高めるといった観点から 100ナノメートノレ以下であることが好ましぐさらに 20ナノメートル以下であることが好ましレ、。
[0024] 導電補助層重量中に占める炭素材料の重量は、導電性を高めると言った観点から
\
高い方が好ましい。一般には 50重量%以上であり、好ましくは 66重量%以上である 。導電性を高める目的で導電性補助剤を加えたり、機械的強度を高める目的でバイ ンダーを加えたりしても良い。
/
[0025] 上記第 1の実施の形態にお \ *いて、正極活物質である PTMAを、従来公知のニトロ キシル高分子で構成することができる。本発明におけるニトロキシノレ高分子とは、代 表的構造として下記化学式(3)で示されるような、ニトロキシル構造を有する高分子 化合物の総称であるが、ニトロキシル構造は、下記反応式 (A)で示されるように、電 子の授受により化学式 (I)一 (III)の状態を取りうる。
[0026] [化 4]
( 3
[0027] [化 5]
+ e \
A
( Π ) π
[0028] 本発明における蓄電デバイスは、化学式 (I)と(II)の間の反応を正極の電極反応と して用い、それに伴う電子の蓄積と放出により蓄電効果を機能させるものである。ここ で蓄電デバイスとは、少なくとも正極と負極を有し、電気化学的に蓄えられたェネル ギーを電力の形で取り出すことのできるデバイスである。蓄電デバイスにおいて正極 とは、酸化還元電位が高い電極のことであり、負極とは逆に酸化還元電位が低い方 の電極のことである。
[0029] 本発明において、酸化状態おけるニトロキシル構造としては下記化学式(5)で示さ れる環状ニトロキシル構造が好ましい。還元状態においては、化学式(5)のニトロキ シノレ部分が式 (II)のニトロキシルラジカル構造となっている。 R一 Rは、それぞれ独
1 4
立にアルキル基を表し、特に直鎖状のアルキル基が好ましい。また、ラジカルの安定 性の点で炭素数は 1一 4のアルキル基が好ましぐ特にメチル基が好ましい。基 に おいて環員を構成する原子は、炭素、酸素、窒素、および硫黄からなる群より選ばれ る。基 Xとしては化学式(5)が 5— 7員環を形成するような 2価の基を表し、具体的に は、 -CH CH一、 -CH CH CH一、一 CH CH CH CH一、一 CH = CH—、 -CH
2 2 2 2 2 2 2 2 2
= CHCH―、 -CH = CHCH CH―、— CH CH = CHCH—が挙げられ、その中で
2 2 2 2 2
、隣接しなレ、— CH—は、 _〇—、—NH—または— S—によって置き換えられていてもよく
2
、― CH =は _N=によって置き換えられていてもよい。また、環を構成する原子に結 合した水素原子は、アルキル基、ハロゲン原子、 =〇等により置換されていてもよい。
[0030] [化 6]
Figure imgf000009_0001
[0031] 特に好ましい環状ニトロキシノレ構造は酸化状態において、化学式 (6)で示される 2 , 2, 6, 6—テトラメチルピペリジノキシルカチオン、化学式(7)で示される 2, 2, 5, 5- テトラメチルピロリジノキシルカチオン、および化学式(8)で示される 2, 2, 5, 5—テト ラメチルピロリノキシルカチオンからなる群より選ばれるものである。
[0032] [化 7]
Figure imgf000009_0002
[0033] [化 8]
Figure imgf000010_0001
[0034] [化 9]
8
Figure imgf000010_0002
[0035] ただし、本発明において、上記の化学式(5)で示される環状ニトロキシノレ構造は、 側鎖もしくは主鎖の一部としてポリマーの一部を構成している。すなわち、環状構造 を形成する元素に結合する少なくとも 1つの水素を取った構造としてポリマーの側鎖 もしくは主鎖の一部に存在している。合成等の容易さから側鎖に存在している方が好 ましい。側鎖に存在するときは、下記化学式(9)に示すように、化学式(5)の基 X中の 環員を構成する CH—、 _CH =または NH—から水素を取った残基 X'によって主
2
鎖ポリマーに結合している。
[0036] [化 10]
Figure imgf000010_0003
[0037] (式中、 R Rは前記化学式(5)と同義である。 )
1 4
[0038] このとき用いられる主鎖ポリマーとしては特に制限はなぐどのようなものであっても 、化学式(9)の環状ニトロキシノレ構造を有する残基が側鎖に存在していればよい。具 体的には、次に挙げるポリマーに、化学式(9)の残基が付加したもの、またはポリマ 一の一部の原子または基が、化学式(9)の残基によって置換されたものを挙げること ができる。いずれの場合も、化学式(9)の残基が直接ではなぐ適当な 2価の基を中 間に介して結合していてもよレ、。例えば、ポリエチレン、ポリプロピレン、ポリブテン、 ポリデセン、ポリドデセン、ポリヘプテン、ポリイソブテン、ポリオクタデセン等のポリア ノレキレン系ポリマー;ポリブタジエン、ポリクロ口プレン、ポリイソプレン、ポリイソブテン 等のジェン系ポリマー;ポリ(メタ)アクリル酸;ポリ(メタ)アクリロニトリル;ポリ(メタ)ァク リノレアミド、ポリメチル (メタ)アクリルアミド、ポリジメチル (メタ)アクリルアミド、ポリイソプ ロピノレ (メタ)アクリルアミド等のポリ(メタ)アクリルアミド類ポリマー;ポリメチル (メタ)ァ タリレート、ポリェチル (メタ)アタリレート、ポリブチル (メタ)アタリレート等のポリアルキ ル(メタ)アタリレート類;ポリフッ化ビニリデン、ポリテトラフルォロエチレン等のフッ素 系ポリマー;ポリスチレン、ポリブロモスチレン、ポリクロロスチレン、ポリメチルスチレン 等のポリスチレン系ポリマー;ポリビニルアセテート、ポリビニルアルコール、ポリ塩化 ビュル、ポリビュルメチルエーテル、ポリビュルカルバゾール、ポリビュルピリジン、ポ リビニルピロリドン等のビエル系ポリマー;ポリエチレンオキサイド、ポリプロピレンォキ サイド、ポリブテンオキサイド、ポリオキシメチレン、ポリアセトアルデヒド、ポリメチルビ ニルエーテル、ポリプロピルビュルエーテル、ポリブチルビュルエーテル、ポリベンジ ルビニルエーテル等のポリエーテル系ポリマー;ポリメチレンスルフイド、ポリエチレン スノレフイド、ポリエチレンジスルフイド、ポリプロピレンスルフイド、ポリフエ二レンスルフ イド、ポリエチレンテトラフルフイド、ポリエチレントリメチレンスルフイド等のポリスルフィ ド系ポリマー;ポリエチレンテレフタレート、ポリエチレンアジペート、ポリエチレンイソフ タレート、ポリエチレンナフタレート、ポリエチレンパラフエ二レンジアセテート、ポリエ チレンイソプロピリデンジベンゾエート等のポリエステル類;ポリトリメチレンエチレンゥ レタン等のポリウレタン類;ポリエーテルケトン、ポリアリルエーテルケトン等のポリケト ン系ポリマー;ポリオキシイソフタロイル等のポリ無水物系ポリマー;ポリエチレンァミン 、ポリへキサメチレンァミン、ポリエチレントリメチレンァミン等のポリアミン系ポリマー; ナイロン、ポリグリシン、ポリアラニン等のポリアミド系ポリマー;ポリアセチノレイミノエチ レン、ポリべンゾィルイミノエチレン等のポリイミン系ポリマー;ポリエステルイミド、ポリ エーテルイミド、ポリべンズイミド、ポリピロメルイミド等のポリイミド系ポリマー;ポリアリレ ン、ポリアリレンアルキレン、ポリアリレンアルケニレン、ポリフエノール、フエノール樹脂 、セルロース、ポリべンゾイミダゾール、ポリべンゾチアゾール、ポリベンゾキサジン、ポ リベンゾキサゾール、オリカルボラン、ポリジベンゾフラン、ポリオキソイソインドリン、ポ リフランテトラカルボキシル酸ジイミド、ポリオキサジァゾール、ポリオキシンドール、ポ リフタラジン、ポリフタライド、ポリシァヌレート、ポリイソシァヌレート、ポリピぺラジン、ポ リピペリジン、ポリピラジノキノキサン、ポリピラゾール、ポリピリダジン、ポリピリジン、ポ リピロメリチミン、ポリキノン、ポリピロリジン、ポリキノキサリン、ポリトリァジン、ポリトリア ゾール等のポリア口マティック系ポリマー;ポリジシロキサン、ポリジメチルシロキサン等 のシロキサン系ポリマー;ポリシラン系ポリマー;ポリシラザン系ポリマー;ポリホスファ ゼン系ポリマー;ポリチアジル系ポリマー;ポリアセチレン、ポリピロール、ポリア二リン 等の共役系ポリマーを挙げることができる。なお、(メタ)アクリルとはメタクリルまたはァ クリルを意味する。
[0039] この中で、主鎖が電気化学的な耐性に優れてレ、る点で、ポリアルキレン系ポリマー 、ポリ(メタ)アクリル酸、ポリ(メタ)アクリルアミド類ポリマー、ポリアルキル (メタ)アタリレ ート類、ポリスチレン系ポリマーが好ましい。主鎖とは、高分子化合物中で、最も炭素 数の多い炭素鎖のことである。この中でも、酸化状態で下記化学式(10)で示される 単位を含むことができるように、ポリマーが選ばれることが好ましい。
[0040] [化 11]
Figure imgf000012_0001
ここで、 R は前記化学式(5)と同義である。 Rは、水素またはメチル基である。
1 4 5
Yは特に限定はなレ、が、 _CO COO -CONR _0 _S—、置換基を有し ていてもよい炭素数 1一 18のアルキレン基、置換基を有していてもよい炭素数 1一 18 のァリーレン基、およびこれらの基の 2つ以上を結合させた 2価の基を挙げることがで きる。 Rは、炭素数 1一 18のアルキル基を表す。化学式(10)で表される単位で、特
6
に好ましいものは、次の化学式(11)一(14)で表されるものである。
[化 12]
Figure imgf000013_0001
Figure imgf000013_0002
[0044] [化 14]
Figure imgf000014_0001
[0045] [化 15]
Figure imgf000014_0002
[0046] 化学式(11)一(14)において、 Yとしては、上記化学式(10)と同義である力 特に —COO—および— CONR—のレ、ずれかが好ましレ、。
6
[0047] 本発明において、化学式(9)の残基が、側鎖のすべてに存在しなくても良い。例え ばポリマーを構成する単位のすべてが化学式(10)で示される単位であっても、また は一部が化学式(10)で示される単位であってもレ、ずれでもよレ、。ポリマー中にどの 程度含まれるかは、 目的、ポリマーの構造、製造方法に異なるが、わずかでも存在し ていれば良ぐ通常 1重量%以上、特に 10重量%以上が好ましい。ポリマー合成に 特に制限が無ぐまたできるだけ大きな蓄電作用を得たい場合には、 50重量%以上 、特に 80重量%以上が好ましい。
[0048] このようなポリマーを合成するには、例えば下記化学式(15)で示されるモノマーを 単独重合またはアルキルアタリレート等の共重合しうるモノマーとの共重合によりポリ マーを得た後、一 NH—部分を酸化することで、酸化状態において化学式(10)で示さ れる単位を有するポリマーを得ることができる。
[0049] [化 16]
Figure imgf000015_0001
H2C=C
Figure imgf000015_0002
[0050] また、例えば、メタクリル酸等を重合してベースとなるポリマーを合成した後に、高分 子反応により化学式(9)で示される残基(あるいは Ν〇ラジカルに酸化される前の一 Ν Η—を有する残基)を導入しても良レ、。
[0051] 本発明におけるニトロキシル高分子の分子量は特に制限はないが、電解質に溶け ないだけの分子量を有していることが好ましぐこれは電解質中の有機溶媒の種類と の組み合わせにより異なる。一般には、重量平均分子量 1, 000以上であり、好ましく は 10, 000以上、特に 100, 000以上である。本発明では、粉体として正極に混合す ること力 Sできるので、分子量はレ、くら大きくてもよい。一般的には重量平均分子量 5, 0 00, 000以下である。また、化学式(9)で示される残基を含むポリマーは、架橋して レ、てもよく、それにより電解質に対する耐久性を向上させることができる。
[0052] 上記第 1の実施の形態において、 50重量%であった正極中におけるニトロキシル 高分子の含有率は、任意に調整することができる。正極中におけるニトロキシノレ高分 子の主要な機能は、蓄電に寄与する活物質としての役割である。従って、従来の蓄 電デバイス、例えば従来の電池の正極活物質の全量を本発明で規定するニトロキシ ル高分子に置き換えることができる。正極重量全体に対して、 10重量%以上であれ ば十分に効果が見られる。さらに、できるだけ大きな蓄電作用を得たい場合には、 50 重量%以上、特に 80重量%以上であり、 100重量%とすることも好ましい。 [0053] 上記第 1の実施の形態において、 30重量%であった正極中に含まれる導電性付 与剤の含有率は、任意に調整することができる。ただし正極中に含まれる導電性付 与剤の含有率が高い場合は、アルミニウム金属上に塗布もしくは圧着により直接的に 正極を形成した場合でも、十分な導電性を得ることができる。そのため本発明におけ る導電補助層の効果は、正極中に含まれる導電性付与剤の含有率が低い方がより 顕著に現れる。本発明による導電補助層の効果は、正極中に含まれる導電性付与 剤の含有率が 50重量%以下のときに大きくなり、特に 40重量%以下の場合により顕 著になる。
[0054] 上記第 1の実施の形態において、 PTMAのみであった正極活物質を、異種正極活 物質と組み合わせて正極を構成することができる。異種正極活物質成分としては蓄 電デバイス電極材料として従来高知のものが利用できる。このようなものとして、例え ば、活性炭やグラフアイト、カーボンブラック、アセチレンブラック等の炭素材料、 LiM n〇、 LiCoO 、 LiNiO、あるいは Li V〇 (0<x< 2)等の金属酸化物やポリアセチ
2 2 2 2 5
レン、ポリフエ二レン、ポリア二リン、ポリピロール等の導電性高分子、ジスルフイド化合 物等が挙げられる。
[0055] 上記第 1の実施の形態において、アセチレンブラックを主成分としていた導電性付 与剤を、従来公知の導電性付与剤材料に置き換えて蓄電デバイスを構成することが できる。従来公知の導電性付与剤としては、例えば、活性炭やグラフアイト、カーボン ブラック、ファーネスブラック、金属粉末等が挙げられる。
[0056] 上記第 1の実施の形態において、テトラフルォロエチレンを用いていたバインダー を、従来公知のノくインダ一に置き換えて蓄電デバイスを構成することができる。従来 公知のバインダーとしては、例えば、ポリフッ化ビニリデン、ビニリデンフロライド-へキ サフルォロプロピレン共重合体、スチレン一ブタジエン共重合ゴム、ポリプロピレン、ポ リエチレン、ポリイミド等の樹脂バインダー等が挙げられる。環状ニトロキシル構造を 有するポリマーの主鎖の種類、環状ニトロキシル構造が付加されてレ、る側鎖の種類、 または環状ニトロキシル構造を有していない側鎖の種類等によっては、バインダーの 機能を兼ねることができる。その場合、従来のバインダーの使用が不要であったり、 従来のバインダーの使用量を減らすことができる。あるいは、従来の活物質をそのま ま使用し、バインダーとして環状ニトロキシノレ構造を有するポリマーを用いても良ぐ その場合にはバインダーに相当する量が活物質としても機能することになるので、そ れだけ高容量化を図ることができる。また、ポリマーの主鎖がポリアセチレン、ポリア二 リン等の導電性ポリマーからなり、その側鎖に環状ニトロキシノレ構造が存在する場合 には、環状ニトロキシル構造を有するポリマーが導電補助剤を兼ねることができる。こ の場合、従来の導電補助剤の使用が不要であったり、従来の導電補助剤の使用量 を減らすことができる。あるいは、従来の活物質をそのまま使用し、導電補助剤として 環状ニトロキシル構造を有するポリマーを用レ、ても良ぐその場合には導電補助剤に 相当する量が活物質としても機能することになるので、それだけ高容量ィ匕を図ること ができる。また、ニトロキシノレカチオン構造は、例えば電解質中に含まれる水、アルコ ール等の不純物を不活性化する働きもあると考えられ、蓄電デバイスの性能劣化を 抑制する働きもしている。いずれの場合も、環状ニトロキシル構造を有するポリマーは 、有機溶媒等を含む電解質に対する溶解性が低ぐ耐久性が高いために特に効果 が大きい。
[0057] 上記第 1の実施の形態において、リチウム金属を用いていた負極を、従来公知の負 極に置き換えて蓄電デバイスを構成することができる。従来公知の負極としては、例 えば、活性炭やグラフアイト、カーボンブラック、アセチレンブラック等の炭素材料、リ チウム合金、リチウムイオン吸蔵炭素、その他各種の金属単体や合金、ポリアセチレ ン、ポリフエ二レン、ポリア二リン、ポリピロール等の導電性高分子、ポリフッ化ビニリデ ン、ポリテトラフルォロエチレン、ビニリデンフロライド一へキサフルォロプロピレン共重 合体、スチレン一ブタジエン共重合ゴム、ポリプロピレン、ポリエチレン、ポリイミド等の 樹脂バインダー、その他ジスルフイド化合物や触媒効果を示す化合物、イオン導電 性高分子等が挙げられる。
[0058] 上記第 1の実施の形態において、ステンレスを用いていた負極用金属集電体の材 質を、従来公知の材質に置き換えて蓄電デバイスを構成することができる。従来公知 の負極用金属集電体材質としては、例えば、ニッケルやアルミニウム、銅、金、銀、チ タン、アルミニウム合金等の材質が挙げられる。また、形状としては、箔ゃ平板、メッシ ュ状のものを用いることができる。 [0059] 上記第 1の実施の形態において、ステンレスを用いていた正極用金属集電体の材 質を、従来公知の材質に置き換えて蓄電デバイスを構成することができる。従来公知 の正極用金属集電体材質としては、例えば、ニッケルやアルミニウム、銅、金、銀、チ タン、アルミニウム合金等の材質が挙げられる。また、形状としては、箔ゃ平板、メッシ ュ状のものを用いることができる。また、正極用金属集電体を用いずに、正極用集電 体に使用したアルミニウムを正極用金属集電体の代わりに使用することもできる。
[0060] 上記第 1の実施の形態において、 ImolZlの LiPF電解質塩を含む EC/DEC混
6
合溶液を使用していた電解質を、従来公知の電解質に置き換えて蓄電デバイスを構 成すること力 Sできる。電解質は、負極 3と正極 5との間の荷電担体輸送を行うものであ り、一般には室温で 10— 5 10— /cmの電解質イオン伝導性を有している。従来公 知の電解質としては、例えば電解質塩を溶剤に溶解した電解液を利用することがで きる。このような溶剤としては、例えばエチレンカーボネート、プロピレンカーボネート 、ジメチノレカーボネート、ジェチノレカーボネート、メチノレエチノレカーボネート、 γ—ブ チロラタトン、テトラヒドロフラン、ジォキソラン、スルホラン、ジメチルホルムアミド、ジメ チルァセトアミド、 Ν—メチルー 2—ピロリドン等の有機溶媒、もしくは硫酸水溶液や水な どが挙げられる。本発明ではこれらの溶剤を単独もしくは 2種類以上混合して用いる こともできる。また、電解質塩としては、例えば LiPF LiCIO LiBF LiCF SO
6 4 4 3 3
LiN (CF SO ) LiN (C F SO ) LiC (CF SO ) LiC (C F SO ) 等が挙げら
3 2 2 2 5 2 2 3 2 3 2 5 2 3 れる。また、本発明に用いられる電解質としては固体電解質を用いても良い。これら 固体電解質のうち、有機固体電解質材料としては、ポリフッ化ビニリデン、フッ化ビニ リデン キサフルォロプロピレン共重合体等のフッ化ビニリデン系重合体や、アタリ ロニトリル—メチルメタタリレート共重合体、アクリロニトリル—メチルアタリレート共重合 体等のアクリル二トリル系重合体、さらにポリエチレンオキサイドなどが挙げられる。こ れらの高分子材料は、電解液を含ませてゲル状にして用いても、また電解質塩を含 有させた高分子物質のみをそのまま用いても良い。一方、無機固体電解質としては、
CaF Agl LiF βアルミナ、ガラス素材等が挙げられる。
2
[0061] 上記第 1の実施の形態において、ポリプロピレン製の多孔質フィルム用いていたセ パレータの材質を、従来公知の材質に置き換えて蓄電デバイスを構成することができ る。従来公知のセパレータの材質としては、例えば、ポリエチレン等の材質が挙げら れる。
実施例
[0062] 次に具体的な実施例を用いて、実施の形態の製造方法を説明する。
[0063] <環状ニトロキシル構造含有ポリマーの合成例 >
還流管を付けた 100mlナスフラスコ中に、 2, 2, 6, 6—テトラメチルピペリジン メタ タリレート モノマー 20g (0. 089mol)を入れ、乾燥テトラヒドロフラン 80mlに溶解さ せた。そこへ、ァゾビスイソブチロニトリル (AIBN) O. 29g (0. 00178mol) (モノマー /AIBN = 50/1)を加え、アルゴン雰囲気下 75— 80°Cで攪拌した。 6時間反応後、 室温まで放冷した。へキサン中でポリマーを析出させて濾別し、減圧乾燥してポリ(2 , 2, 6, 6-テトラメチルピペリジン メタタリレート) 18g (収率 90%)を得た。次に、得ら れたポリ(2, 2, 6, 6—テトラメチルピペリジン メタタリレート) 10gを乾操ジクロロメタン 100mlに溶解させた。ここへ m-クロ口過安息香酸 15· 2g (0. 088mol)のジクロロメ タン溶液 100mlを室温にて攪拌しながら 1時間かけて滴下した。さらに 6時間攪拌後 、沈殿した m—クロ口安息香酸を濾別して除き、濾液を炭酸ナトリウム水溶液および水 で洗浄後、ジクロロメタンを留去した。残った固形分を粉砕し、得られた粉末をジェチ ルカーボネート(DEC)で洗浄し、減圧下乾燥させて、下記化学式(16)で示されるポ リ(2, 2, 6, 6—テトラメチルピペリジノキシ メタタリレート) (PTMA) 7. 2gを得た(収 率 68. 2%、茶褐色粉末)。得られた高分子の構造は IRで確認した。また、 GPCによ り測定した結果、重量平均分子量 Mw = 89000、分散度 MwZMn = 3. 30とレ、う値 が得られた。 ESRスペクトルにより求めたスピン濃度は 2. 26 X 1021spin/gであった 。これはポリ(2, 2, 6, 6—テトラメチルピペリジン メタタリレート)の N—H基力 N-O ラジカルへ 90%転化されると仮定した場合のスピン濃度と一致する。 [0064] [化 17]
Figure imgf000020_0001
[0065] 同様の方法で、下記化学式(17)で示されるポリ(2, 2, 6, 6—テトラメチルピベリジ ノキシ アタリレート) [重量平均分子量 Mw= 74000、分散度 Mw/Mn= 2. 45、ス ピン濃度: 2. 23 X 1021spin/g (N_H基が N_〇ラジカルへ 84%転化されると仮定 した場合のスピン濃度と一致) ]、化学式(18)で示されるポリ(2, 2, 5, 5—テトラメチ ルピロリジノキシ メタタリレート) [重量平均分子量 Mw= 52000、分散度 MwZMn = 3. 57、スピン濃度: 1. 96 X 1021spinZg (N_H基が N—0ラジカルへ 74%転化さ れると仮定した場合のスピン濃度と一致) ]、化学式(19)で示されるポリ(2, 2, 5, 5- テトラメチルピロリノキシ メタタリレート) [重量平均分子量 Mw= 33000、分散度 Mw /Mn = 4. 01、スピン濃度: 2. 09 X 1021spinZg (N_H基が N—0ラジカルへ 78% 転化されると仮定した場合のスピン濃度と一致) ]を合成した。
[0066] [化 18]
Figure imgf000020_0002
[0067] [化 19]
Figure imgf000021_0001
[0068] [化 20]
Figure imgf000021_0002
[0069] <実施例 1 >
小型ホモジナイザ容器に純水 20gを測り取り、テフロン (登録商標)粒子およびセル ロースからなるバインダー 272mgをカ卩えて 3分間攪拌し完全に溶解させた。そこにァ セチレンブラック 2. Ogをカ卩え、 15分間攪拌してスラリーを得た。得られたスラリーを厚 さ 20ミクロンのアルミニウム板上に薄く塗布し、 100°Cで乾燥させて導電補助層を作 製した。導電補助層の厚みは 10ミクロンであった。このようにして、炭素を主成分とす る導電補助層とアルミニウム板とが一体化された正極用集電体が得られた。
[0070] 次に、小型ホモジナイザ容器に N—メチルピロリドン 20gを測り取り、ポリフッ化ビニリ デン 400mgをカ卩えて 30分間攪拌し完全に溶解させた。そこに、正極活物質として合 成した化学式(16)のポリメタタリレート 1. Ogを加え 5分間攪拌した。全体がオレンジ 色で均一になったら、アセチレンブラック 600mgを加え 15分間攪拌した。できたサン プノレを脱泡してスラリーを得た。得られたスラリーを、炭素を主成分とする導電補助層 とアルミニウム板とが一体化された正極用集電体上に塗布し、 125°Cで乾燥させて正 極を作製した。正極の厚みは 80ミクロンであった。
[0071] 炭素を主成分とする導電補助層とアルミニウム板とが一体化された正極用集電体 上に、化学式(16)のポリメタタリレートを含む正極が塗布形成された電極板を、正極 用金属集電体 (ステンレス板)上におき、真空中 80°Cで一晩乾燥した後、直径 12m mの円形に打ち抜ぬき、蓄電デバイス用電極として成型した。次に、得られた電極を 電解液に浸して、電極中の空隙に電解液を染み込ませた。電解液としては、 lmol/ 1の LiPF電解質塩を含む ECZDEC混合溶液(混合体積比 EC/DEC = 3Z7)を
6
用いた。次に、電解液を含浸させた電極上に同じく電解液を含浸させた多孔質フィ ルムセパレータ(ポリプロピレン製)を積層した。さらに負極となるリチウム金属板を積 層し、絶縁パッキン (ポリプロピレン製)で被覆された負極用金属集電体 (ステンレス 板)を重ね合わせた。こうして作られた積層体を、力 め機によって圧力を加え、コィ ン型蓄電デバイスを得た。
[0072] <実施例 2 >
正極活物質として合成した化学式(17)のポリアタリレートを使用する以外は、実施 例 1と同様の方法で実施し、コイン型蓄電デバイスを得た。
[0073] <実施例 3 >
正極活物質として合成した化学式(18)のポリメタタリレートを使用する以外は、実 施例 1と同様の方法で実施し、コイン型蓄電デバイスを得た。
[0074] <実施例 4 >
正極活物質として合成した化学式(19)のポリメタタリレートを使用する以外は、実 施例 1と同様の方法で実施し、コイン型蓄電デバイスを得た。
[0075] ぐ実施例 5 >
負極としてグラフアイト電極板を使用する以外は、実施例 1と同様の方法で実施し、 コイン型蓄電デバイスを得た。
[0076] ぐ実施例 6 >
正極活物質に混合するアセチレンブラックの量を 156mgとする以外は、実施例 1と 同様の方法で実施し、コイン型蓄電デバイスを得た。 [0077] <実施例 7 >
正極活物質に混合するアセチレンブラックの量を 350mgとする以外は、実施例 1と 同様の方法で実施し、コイン型蓄電デバイスを得た。
[0078] ぐ実施例 8 >
正極活物質に混合するアセチレンブラックの量を 933mgとする以外は、実施例 1と 同様の方法で実施し、コイン型蓄電デバイスを得た。
[0079] ぐ実施例 9 >
正極活物質に混合するアセチレンブラックの量を 1400mgとする以外は、実施例 1 と同様の方法で実施し、コイン型蓄電デバイスを得た。
[0080] <実施例 10 >
正極活物質に混合するアセチレンブラックの量を 2100mgとする以外は、実施例 1 と同様の方法で実施し、コイン型蓄電デバイスを得た。
[0081] <実施例 11 >
アルミニウム板上に形成する導電補助層の厚みを 30ミクロンとする以外は、実施例 1と同様の方法で実施し、コイン型蓄電デバイスを得た。
[0082] <実施例 12 >
アルミニウム板上に形成する導電補助層の厚みを 5ミクロンとする以外は、実施例 1 と同様の方法で実施し、コイン型蓄電デバイスを得た。
[0083] <実施例 13 >
アルミニウム電極上に、カーボン蒸着装置を用いてアモルファス状の炭素を蒸着さ せ、導電補助層を作製した。導電補助層の厚みは 30ナノメートノレであった。それ以 降は、実施例 1と同様の方法で実施し、コイン型蓄電デバイスを得た。
[0084] ぐ比較例 1 >
小型ホモジナイザ容器に N—メチルピロリドン 20gを測り取り、ポリフッ化ビニリデン 4 OOmgをカ卩えて 30分間攪拌し完全に溶解させた。そこに、正極活物質として合成し た化学式(16)のポリメタタリレート 1. Ogを加え 5分間攪拌した。全体がオレンジ色で 均一になったら、アセチレンブラック 600mgを加え 15分間攪拌した。できたサンプル を脱泡してスラリーを得た。得られたスラリーを、アルミニウム板上に直接塗布し、 125 °Cで乾燥させて正極を作製した。正極の厚みは 80ミクロンであった。
[0085] アルミニウム板上に、化学式(16)のポリメタタリレートを含む正極を直接塗布形成し た電極板を、正極用金属集電体 (ステンレス板)上におき、真空中 80°Cで一晩乾燥 した後、直径 12mmの円形に打ち抜ぬき、蓄電デバイス用電極として成型した。それ 以降は、実施例 1と同様の方法で実施し、コイン型蓄電デバイスを得た。
[0086] ぐ比較例 2 >
正極活物質として合成した化学式(17)のポリアタリレートを使用する以外は、比較 例 1と同様の方法で実施し、コイン型蓄電デバイスを得た。
[0087] ぐ比較例 3 >
正極活物質として合成した化学式(18)のポリメタタリレートを使用する以外は、比 較例 1と同様の方法で実施し、コイン型蓄電デバイスを得た。
[0088] ぐ比較例 4 >
正極活物質として合成した化学式(19)のポリメタタリレートを使用する以外は、比 較例 1と同様の方法で実施し、コイン型蓄電デバイスを得た。
[0089] <比較例 5 >
負極としてグラフアイト電極板を使用する以外は、比較例 1と同様の方法で実施し、 コイン型蓄電デバイスを得た。
[0090] <比較例 6 >
正極活物質に混合するアセチレンブラックの量を 156mgとする以外は、比較例 1と 同様の方法で実施し、コイン型蓄電デバイスを得た。
[0091] <比較例 7 >
正極活物質に混合するアセチレンブラックの量を 350mgとする以外は、比較例 1と 同様の方法で実施し、コイン型蓄電デバイスを得た。
[0092] ぐ比較例 8 >
正極活物質に混合するアセチレンブラックの量を 933mgとする以外は、比較例 1と 同様の方法で実施し、コイン型蓄電デバイスを得た。
[0093] ぐ比較例 9 >
正極活物質に混合するアセチレンブラックの量を 1400mgとする以外は、比較例 1 と同様の方法で実施し、コイン型蓄電デバイスを得た。
[0094] <比較例 10 >
正極活物質に混合するアセチレンブラックの量を 2100mgとする以外は、比較例 1 と同様の方法で実施し、コイン型蓄電デバイスを得た。
[0095] 本実施例 1において作製した蓄電デバイスの開放電位は 2. 9Vであった。次に、得 られた蓄電デバイスに対し、 0. 113mAの定電流で充電を行レ、、電圧が 4. 0Vまで 上昇した時点で充電を終了した。充電後の蓄電デバイスを分解し、正極を分析する とラジカル濃度の減少が観測され、対応する 2, 2, 6, 6—テトラメチルピペリジノキシ ルカチオンの生成が確認された。このカチオンは電解質ァニオン PF—によって安定
6
化されている。
[0096] 同様にして蓄電デバイスを作製し、 0. 113mAの定電流で充電を行い、電圧が 4.
0Vまで上昇した直後に放電を行った。放電は、充電時と同じ 0. 113mAの定電流で 行レ、、電圧が 3. 0Vに達した時点で放電を終了した。放電時において、 3. 5V付近 に電圧平坦部が認められた。この電圧平坦部は、正極で起こっているニトロキシルカ チオンからニトロキシルラジカルに変化する還元反応と、負極で起こっているリチウム メタルのイオン化反応との間の電位差に相当することが分かった。すなわちこれは、 本実施例 1による蓄電デバイスが、化学電池として動作していることを示す結果であ る。本実施例 1における平均放電電圧は、 3. 50Vであった。
[0097] 同様にして実施例 2— 13、比較例 1一 10において作製した蓄電デバイスの充放電 挙動を測定した。表 1に実施例 1一実施例 13および比較例 1一 10における、 0. 113 mAの定電流放電時の平均放電電圧についてまとめる。正極活物質および負極活 物質が同じ種類の場合、平均放電電圧が高いほど蓄電デバイスの内部抵抗が小さく
、平均放電電圧が低いほど内部抵抗が大きいことになる。
[0098] 実施例 1と比較例 1とを比較すると、炭素を主成分とする導電補助層をアルミニウム 電極上に一体化形成した正極用集電体を用いることで、蓄電デバイスの平均放電電 圧が高くなる、すなわち内部抵抗が小さくなることが分かる。実施例 2 4と比較例 2 一 4とを比較すると、化学式(17)—(19)のいずれの正極活物質においても、炭素を 主成分とする導電補助層をアルミニウム電極上に一体化形成した正極用集電体を用 いることで、蓄電デバイスの平均放電電圧が高くなる、すなわち内部抵抗が小さくな ること力 S分力る。実施例 5と比較例 5とを比較すると、負極活物質としてグラフアイトを 用いた場合でも、炭素を主成分とする導電補助層をアルミニウム電極上に一体化形 成した正極用集電体を用いることで、蓄電デバイスの平均放電電圧が高くなる、すな わち内部抵抗が小さくなることが分かる。実施例 6— 8と比較例 6— 8とを比較すると、 正極中に占める導電性付与剤の割合が 10重量% 40重量%の場合には、炭素を 主成分とする導電補助層をアルミニウム電極上に一体化形成した正極用集電体を用 いることで、蓄電デバイスの平均放電電圧が高くなる、すなわち内部抵抗が小さくな る効果が顕著に現れることが分かる。実施例 9と比較例 9とを比較すると、正極中に占 める導電性付与剤の割合が 50重量%の場合には、炭素を主成分とする導電補助層 をアルミニウム電極上に一体化形成した正極用集電体を用いることで、蓄電デバイス の平均放電電圧が高くなる、すなわち内部抵抗が小さくなる効果が若干小さくなるこ とが分かる。また、実施例 10と比較例 10とを比較すると、正極中に占める導電性付 与剤の割合が 60重量%の場合には、炭素を主成分とする導電補助層をアルミニウム 電極上に一体化形成した正極用集電体を用いることで、蓄電デバイスの平均放電電 圧が高くなる、すなわち内部抵抗が小さくなる効果がより小さくなることが分かる。実 施例 1、 11、 12と比較例 1とを比較すると、導電補助層の厚みが 5ミクロン、 10ミクロン 、 20ミクロンのときに、炭素を主成分とする導電補助層をアルミニウム電極上に一体 化形成した正極用集電体を用いることで、蓄電デバイスの平均放電電圧が高くなる、 すなわち内部抵抗が小さくなる効果が同じように見られることが分かる。また、実施例 13と比較例 1とを比較すると、導電補助層を蒸着法にて形成した場合でも、炭素を主 成分とする導電補助層をアルミニウム電極上に一体化形成した正極用集電体を用い ることで、蓄電デバイスの平均放電電圧が高くなる、すなわち内部抵抗が小さくなる 効果が見られることが分かる。
[表 1] 導電性付与剤 平均 正極 負極 導電補助層 導電補助層 具体例 の正極中に 放電 活物質 活物質 の形成方法 の厚み 占める割合 電圧 実施例 1 化学式 16 リチウム金属 30重量% 塗布形成 10ミクロン 3.50V 実施例 2 化学式 17 リチウム金属 30重量% 塗布形成 10ミクロン 3.47V 実施例 3 化学式 18 リチウム金属 30重量% 塗布形成 10ミクロン 3.46V 実施例 4 化学式 19 リチウム金属 30重量% 塗布形成 10ミクロン 3.55V 実施例 5 化学式 16 ク'ラファイ卜 30重量% 塗布形成 10ミクロン 3.40V 実施例 6 化学式 16 リチウム金属 10重量% 塗布形成 10ミクロン 3.45V 実施例 7 化学式 16 リチウム金属 20重量% 塗布形成 10ミクロン 3.47V 実施例 8 化学式 16 リチウム 員 40重量% 塗布形成 10ミクロン 3.51V 実施例 9 化学式 16 リチウム金属 50重量% 塗布形成 10ミクロン 3.55V 実施例 10 化学式 16 リチウム金属 60重量% 塗布形成 10ミクロン 3.56V 実施例 11 化学式 16 リチウム金属 30重量% 塗布形成 30ミクロン 3.51V 実施例 12 化学式 16 リチウム金属 30重量% 塗布形成 5ミクロン 3.49V 実施例 13 化学式 16 リチウム金属 30重量% 蒸着形成 30ナノメートル 3.49V 比較例 1 化学式 16 リチウム金属 30重量% 3.45V 比較例 2 化学式 17 リチウム金属 30重量% 3.42V 比較例 3 化学式 18 リチウム金属 30重量% ― 3.41V 比較例 4 化学式 19 リチウム金属 30重量% - - 3.49V 比較例 5 化学式 16 ク'ラファイ卜 30重量% 3.34V 比較例 6 化学式 16 リチウム金属 丄0重量% - ― 3.20V 比較例 7 化学式 16 リチウム金属 20重量% 3.23V 比較例 8 化学式 16 リチウム金属 40重量% - 3.32V 比較例 9 化学式 16 リチウム金属 50重量% - - 3.50V 比較例 10 化学式 16 リチウム金属 60重量% - - 3.55V 産業上の利用可能性
本発明による蓄電デバイスは、内部抵抗が小さいので、高い出力を必要とする蓄電 デバイスとして利用することができる。本発明の活用例としては、従来、電気二重層キ ャパシタゃ鉛蓄電池、ニッケル水素電池、リチウムイオン二次電池等が用いられてい た、パソコンやサーバーのバックアップ電源、電気自動車用の補助電源、携帯機器 用電源等が挙げられる。

Claims

請求の範囲 酸化状態において下記化学式 (I)で示されるニトロキシルカチオン部分構造をとり、 還元状態において下記化学式 (II)で示されるニトロキシノレラジカル部分構造をとる二 トロキシノレ高 / α分子を正極中に含有し、その 2つの状態間で電子の授受を行う下記反 応式 (B)で示される反応を正極の電極反応として用いる蓄電デバイスにおレ、て、炭 一 素を主成分とする導電補 e e助層をアルミニウム電極上に一体化形成した正極用集電体 を用いることを特徴とする蓄 Λ電デバイス。
[化 1]
Figure imgf000028_0001
[2] 前記正極中にさらに導電性付与剤を含有し、前記正極における該導電性付与剤 の含有率が 50重量%以下であることを特徴とする請求項 1記載の蓄電デバイス。
[3] 前記導電性付与剤の含有率が 40重量%以下であることを特徴とする請求項 2記載 の蓄電デバイス。
[4] 前記ニトロキシル高分子が、酸化状態において下記化学式(5)で示される環状ニト 口キシル構造を含む高分子化合物であることを特徴とする請求項 1一 3いずれか記載 の蓄電デバイス。
[化 2]
Figure imgf000028_0002
〔化学式(5)中、 R Rはそれぞれ独立にアルキル基を表し、 Xは化学式(5)が 5—
1 4
7員環を形成するような 2価の基を表す。ただし Xが、ポリマーの側鎖もしくは主鎖の 一部を構成している。〕
前記ニトロキシル高分子が、酸化状態において、下記化学式 (6)で示される 2, 2, 6, 6—テトラメチルピペリジノキシルカチオン、下記化学式(7)で示される 2, 2, 5, 5 テトラメチルピロリジノキシルカチオン、および下記化学式(8)で示される 2, 2, 5, 5 テトラメチルピロリノキシノレカチオンからなる群より選ばれる少なくとも一つの環状ニト 口キシル構造の環状構造を形成する元素に結合する少なくとも 1つの水素を取った 残基を側鎖に含む高分子化合物であることを特徴とする請求項 4記載の蓄電デバィ ス。
[化 3]
Figure imgf000029_0001
4]
Figure imgf000029_0002
5]
Figure imgf000029_0003
PCT/JP2004/018907 2004-02-16 2004-12-17 蓄電デバイス WO2005078830A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/597,517 US20080226986A1 (en) 2004-02-16 2004-12-17 Power Storage Device
JP2005517909A JP4720999B2 (ja) 2004-02-16 2004-12-17 蓄電デバイス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-038740 2004-02-16
JP2004038740 2004-02-16

Publications (1)

Publication Number Publication Date
WO2005078830A1 true WO2005078830A1 (ja) 2005-08-25

Family

ID=34857819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/018907 WO2005078830A1 (ja) 2004-02-16 2004-12-17 蓄電デバイス

Country Status (3)

Country Link
US (1) US20080226986A1 (ja)
JP (1) JP4720999B2 (ja)
WO (1) WO2005078830A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005228705A (ja) * 2004-02-16 2005-08-25 Nec Corp 蓄電デバイス
WO2007009363A1 (fr) * 2005-07-15 2007-01-25 Fudan University Supercondensateur électrochimique utilisant un matériau composite à radical libre de polymère organique/carbone comme électrode positive
JP2007227147A (ja) * 2006-02-23 2007-09-06 Nec Corp 金属リチウム二次電池
JP2007227186A (ja) * 2006-02-24 2007-09-06 Osaka Univ 分子結晶性二次電池
WO2007141913A1 (ja) * 2006-06-06 2007-12-13 Nec Corporation ポリラジカル化合物製造方法及び電池
JP2008081557A (ja) * 2006-09-26 2008-04-10 Sumitomo Seika Chem Co Ltd (メタ)アクリル酸系架橋共重合体の製造方法および該架橋共重合体を用いた二次電池の電極
FR2912554A1 (fr) * 2007-02-12 2008-08-15 Arkema France Electrode comprenant au moins un nitroxyde et des nanotubes de carbone
WO2010140512A1 (ja) * 2009-06-02 2010-12-09 日本電気株式会社 蓄電デバイス
WO2011034117A1 (ja) * 2009-09-18 2011-03-24 日本電気株式会社 高分子ラジカル材料・活性炭・導電性材料複合体、導電性材料複合体の製造方法、及び蓄電デバイス
JP2012009276A (ja) * 2010-06-24 2012-01-12 Toyota Motor Corp リチウムイオン二次電池およびその製造方法
US10844145B2 (en) 2016-06-02 2020-11-24 Evonik Operations Gmbh Method for producing an electrode material
US11001659B1 (en) 2016-09-06 2021-05-11 Evonik Operations Gmbh Method for the improved oxidation of secondary amine groups

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150397A1 (ja) * 2009-06-26 2010-12-29 トヨタ自動車株式会社 正電極板、電池、車両、電池搭載機器、及び、正電極板の製造方法
KR101256065B1 (ko) * 2011-06-02 2013-04-18 로베르트 보쉬 게엠베하 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지
FR2982082B1 (fr) * 2011-11-02 2013-11-22 Fabien Gaben Procede de fabrication de batteries en couches minces entierement solides
FR2982083B1 (fr) * 2011-11-02 2014-06-27 Fabien Gaben Procede de realisation de films minces d'electrolyte solide pour les batteries a ions de lithium
FR3080957B1 (fr) 2018-05-07 2020-07-10 I-Ten Electrodes mesoporeuses pour dispositifs electrochimiques en couches minces

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002117854A (ja) * 2000-10-06 2002-04-19 Nec Corp 二次電池およびその製造方法
JP2002117855A (ja) * 2000-10-06 2002-04-19 Nec Corp 二次電池およびその製造方法
JP2002170568A (ja) * 2000-12-01 2002-06-14 Nec Corp 電 池
JP2002304996A (ja) * 2001-04-03 2002-10-18 Nec Corp 蓄電デバイス
JP2003022809A (ja) * 2001-07-09 2003-01-24 Nec Corp 電池および電池用電極
JP2003242980A (ja) * 2002-02-18 2003-08-29 Nec Corp 電極活物質、電極および電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5621607A (en) * 1994-10-07 1997-04-15 Maxwell Laboratories, Inc. High performance double layer capacitors including aluminum carbon composite electrodes
US6090506A (en) * 1996-08-02 2000-07-18 Fuji Photo Film Co. Ltd. Nonaqueous secondary battery
US6136476A (en) * 1999-01-29 2000-10-24 Hydro-Quebec Corporation Methods for making lithium vanadium oxide electrode materials
US6627252B1 (en) * 2000-05-12 2003-09-30 Maxwell Electronic Components, Inc. Electrochemical double layer capacitor having carbon powder electrodes
US7632317B2 (en) * 2002-11-04 2009-12-15 Quallion Llc Method for making a battery
JP4569735B2 (ja) * 2003-09-24 2010-10-27 三菱瓦斯化学株式会社 安定ラジカルを持つ高分子化合物の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002117854A (ja) * 2000-10-06 2002-04-19 Nec Corp 二次電池およびその製造方法
JP2002117855A (ja) * 2000-10-06 2002-04-19 Nec Corp 二次電池およびその製造方法
JP2002170568A (ja) * 2000-12-01 2002-06-14 Nec Corp 電 池
JP2002304996A (ja) * 2001-04-03 2002-10-18 Nec Corp 蓄電デバイス
JP2003022809A (ja) * 2001-07-09 2003-01-24 Nec Corp 電池および電池用電極
JP2003242980A (ja) * 2002-02-18 2003-08-29 Nec Corp 電極活物質、電極および電池

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4530133B2 (ja) * 2004-02-16 2010-08-25 日本電気株式会社 蓄電デバイス
JP2005228705A (ja) * 2004-02-16 2005-08-25 Nec Corp 蓄電デバイス
WO2007009363A1 (fr) * 2005-07-15 2007-01-25 Fudan University Supercondensateur électrochimique utilisant un matériau composite à radical libre de polymère organique/carbone comme électrode positive
JP2007227147A (ja) * 2006-02-23 2007-09-06 Nec Corp 金属リチウム二次電池
JP2007227186A (ja) * 2006-02-24 2007-09-06 Osaka Univ 分子結晶性二次電池
WO2007141913A1 (ja) * 2006-06-06 2007-12-13 Nec Corporation ポリラジカル化合物製造方法及び電池
JP5493356B2 (ja) * 2006-06-06 2014-05-14 日本電気株式会社 ポリラジカル化合物製造方法及び電池
US8728662B2 (en) 2006-06-06 2014-05-20 Nec Corporation Process for producing polyradical compound and battery cell
JP2008081557A (ja) * 2006-09-26 2008-04-10 Sumitomo Seika Chem Co Ltd (メタ)アクリル酸系架橋共重合体の製造方法および該架橋共重合体を用いた二次電池の電極
FR2912554A1 (fr) * 2007-02-12 2008-08-15 Arkema France Electrode comprenant au moins un nitroxyde et des nanotubes de carbone
WO2008104683A1 (fr) * 2007-02-12 2008-09-04 Arkema France Electrode comprenant au moins un nitroxyde et des nanotubes de carbone
WO2010140512A1 (ja) * 2009-06-02 2010-12-09 日本電気株式会社 蓄電デバイス
US8617744B2 (en) 2009-06-02 2013-12-31 Nec Corporation Electricity storage device
JP5516578B2 (ja) * 2009-06-02 2014-06-11 日本電気株式会社 蓄電デバイス
WO2011034117A1 (ja) * 2009-09-18 2011-03-24 日本電気株式会社 高分子ラジカル材料・活性炭・導電性材料複合体、導電性材料複合体の製造方法、及び蓄電デバイス
JP2012009276A (ja) * 2010-06-24 2012-01-12 Toyota Motor Corp リチウムイオン二次電池およびその製造方法
US10844145B2 (en) 2016-06-02 2020-11-24 Evonik Operations Gmbh Method for producing an electrode material
US11001659B1 (en) 2016-09-06 2021-05-11 Evonik Operations Gmbh Method for the improved oxidation of secondary amine groups

Also Published As

Publication number Publication date
JPWO2005078830A1 (ja) 2008-01-10
US20080226986A1 (en) 2008-09-18
JP4720999B2 (ja) 2011-07-13

Similar Documents

Publication Publication Date Title
JP4687848B2 (ja) 蓄電デバイス
US9647269B2 (en) Electrode active material and secondary battery
JP4637293B2 (ja) 二次電池およびその導電補助層用カーボンインキ
JP5239160B2 (ja) ポリラジカル化合物の製造方法
JP5332251B2 (ja) 高分子ラジカル材料・導電性材料複合体、その製造方法及び蓄電デバイス
WO2010140512A1 (ja) 蓄電デバイス
JP4720999B2 (ja) 蓄電デバイス
JP5066805B2 (ja) 蓄電デバイス
JP4721000B2 (ja) 蓄電デバイス
US8475956B2 (en) Polyradical compound-conductive material composite, method for producing the same, and battery using the same
JP4830207B2 (ja) 電池
JP4530133B2 (ja) 蓄電デバイス
WO2018135624A1 (ja) ラジカルポリマーを用いた電極及び二次電池
JP4826699B2 (ja) 蓄電デバイス
JP7115318B2 (ja) ラジカルポリマーを用いた電極及び二次電池
JP4737365B2 (ja) 電極活物質、電池および重合体
JP5034147B2 (ja) 二次電池
JP2015060636A (ja) 二次電池
JP2004227895A (ja) 携帯端末用電源

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10597517

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005517909

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase