WO2005077833A1 - 液体の無害化処理方法及びその装置 - Google Patents

液体の無害化処理方法及びその装置 Download PDF

Info

Publication number
WO2005077833A1
WO2005077833A1 PCT/JP2005/002515 JP2005002515W WO2005077833A1 WO 2005077833 A1 WO2005077833 A1 WO 2005077833A1 JP 2005002515 W JP2005002515 W JP 2005002515W WO 2005077833 A1 WO2005077833 A1 WO 2005077833A1
Authority
WO
WIPO (PCT)
Prior art keywords
seawater
treatment
liquid
microorganisms
detoxification
Prior art date
Application number
PCT/JP2005/002515
Other languages
English (en)
French (fr)
Inventor
Kazuki Nishizawa
Kazuhiko Fujise
Masayuki Tabata
Kiyoshi Sugata
Ryouhei Ueda
Takashi Ueda
Hirokazu Okada
Tomoaki Oomura
Original Assignee
Mitsubishi Heavy Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries, Ltd. filed Critical Mitsubishi Heavy Industries, Ltd.
Priority to JP2005518065A priority Critical patent/JPWO2005077833A1/ja
Priority to EP20050710363 priority patent/EP1717205A1/en
Priority to US10/569,483 priority patent/US20080164217A1/en
Priority to AU2005212085A priority patent/AU2005212085A1/en
Publication of WO2005077833A1 publication Critical patent/WO2005077833A1/ja
Priority to NO20060879A priority patent/NO337935B1/no
Priority to US12/292,454 priority patent/US20090078654A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J4/00Arrangements of installations for treating ballast water, waste water, sewage, sludge, or refuse, or for preventing environmental pollution not otherwise provided for
    • B63J4/002Arrangements of installations for treating ballast water, waste water, sewage, sludge, or refuse, or for preventing environmental pollution not otherwise provided for for treating ballast water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • C02F1/4674Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation with halogen or compound of halogens, e.g. chlorine, bromine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/38Treatment of water, waste water, or sewage by centrifugal separation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/008Originating from marine vessels, ships and boats, e.g. bilge water or ballast water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the present invention is mainly used for removing microorganisms in untreated seawater to make clean treated seawater and storing it in a ballast water tank, or for treating untreated seawater contained in a ballast water tank during voyage. Applied to ballast water treatment performed when converting seawater or untreated seawater from a ballast water tank into clean treated seawater and draining it.
  • the present invention relates to a method and apparatus for detoxifying a liquid for removing microorganisms and converting the liquid into a clean processing liquid.
  • ballast water When navigating a tanker or other vessel without oil, the seawater stored in the ballast water tank, that is, ballast water, is in untreated seawater to avoid marine pollution and pollution; Detoxification treatment has been applied to remove water and make clean treated seawater.
  • a high-voltage pulse is applied to ballast water in a ballast water tank, and a high-voltage pulse is applied directly to harmful microorganisms to discharge inside the ballast water.
  • a shock wave caused by arc discharge between the electrodes to kill or sterilize the harmful microorganisms, or indirectly kill or sterilize the harmful microorganisms by a shock wave caused by arc discharge between the electrodes.
  • a slit plate having a plurality of elongated slits is attached in the cross-sectional direction in the middle of the flow path in the sove, and the untreated liquid is passed through the slits. The microorganisms in the untreated liquid are damaged and killed or sterilized.
  • JP 2003-200156 A large microorganisms are killed by passing untreated liquid through a slit; X is sterilizable, but small bacteria are killed. Or it is difficult to sterilize.
  • the present invention has been made in view of the problems of the related art, and has a reduced facility cost and operating cost, and can eliminate or reduce microorganisms of any size without reducing the strength of a processing liquid container such as a hull. It is a first object of the present invention to provide a method and an apparatus for detoxifying a liquid that can surely perform sterilization.
  • a second object of the present invention is to reduce equipment costs and operating costs and to reliably kill or sterilize microorganisms of any size without causing a decrease in strength on the hull side.
  • the installation space for the detoxification equipment for ballast water has been reduced, and the mounting space for cargo etc. can be increased. It is an object of the present invention to provide a seawater detoxifying apparatus capable of minimizing the remodeling cost of a hull for installing the detoxifying apparatus. Disclosure of the invention
  • the present invention provides a method for detoxifying a liquid, which removes microorganisms in an untreated liquid and converts the microorganism into a purified treatment liquid, wherein the liquid is damaged, and the microorganisms in the liquid are damaged.
  • Mechanical treatment for killing or disinfecting the liquid, and chlorine-containing substance is generated from the liquid and injected into the liquid to chlorinate or kill the microorganisms, or a substance having an oxidizing effect is added to the liquid.
  • One of the oxidizing substance addition treatments is performed, and the treatment liquid is stored in the treatment liquid tank.
  • all or a part of the liquid is introduced into a storage tank, and the liquid is circulated in a circulation path between the storage tank and an electrolytic cell that electrolyzes the liquid to generate a chlorine-containing substance. It is performed by the electrolytic cell circulation system.
  • the present invention also provides a liquid detoxification apparatus configured to remove microorganisms in an untreated liquid including untreated seawater and convert the microorganism into a clean treatment liquid, as an apparatus for performing the method.
  • a mechanical treatment device for applying a mechanical treatment to the liquid to damage or kill microorganisms in the liquid; an oxidizing substance adding means for adding a substance having an oxidizing action to the liquid; or chlorine from the liquid.
  • a liquid detoxification processing apparatus characterized by having a processing liquid tank that stores the processing liquid after processing by the processing means.
  • the chlorination means includes a storage tank for storing all or the liquid of the liquid and an electrolytic tank for electrolyzing the liquid to generate a chlorine-containing substance.
  • a liquid electrolysis apparatus configured to apply a treatment to the liquid by an electrolytic tank circulation method of circulating a circulation path between the liquid electrolyte and the liquid electrolyte.
  • the microorganism is mainly zooplankton and its cyst, Poisonous, pathogenic, or disrupting ecosystems, such as phytoplankton and its cysts, bacteria, fungi, and viruses.
  • the detoxification treatment is to kill, disinfect or remove these microorganisms that mainly cause marine pollution, cause damage to humans and fish and shellfish, and destroy ecosystems.
  • the chlorine-containing substance is preferably composed of chlorine, hypochlorous acid, chlorous acid, chloric acid, or an ion or salt thereof, with hypochlorous acid being most preferred.
  • the substance having an oxidizing action also includes an oxidizing agent such as hydrogen peroxide and ozone.
  • an oxidizing agent such as hydrogen peroxide and ozone.
  • the chlorine-containing substance may be externally added as a chemical.
  • the mechanical treatment is such that a slit plate having a large number of small holes having a diameter of about 0.5 mm is provided in the liquid flow path so that the liquid passes through the small holes.
  • such mechanical treatment damages and kills or kills a wide range of microorganisms, including relatively large microorganisms having crustaceans, and the liquid contains chlorine, Inject or inject chloric acid, chlorous acid, chloric acid or chlorine-containing substances composed of these ions and salts, etc.
  • microorganisms of any size can be obtained.
  • the mechanical treatment by combining the mechanical treatment with the addition of a chlorinating or oxidizing substance, the load of the mechanical treatment is reduced and the pressure loss is reduced, The power required for mechanical treatment can be reduced and the equipment can be made smaller and smaller in capacity.
  • chlorination it is only necessary to kill or kill bacteria with a high killing and disinfecting effect.
  • the injection amount of chlorine-containing substances such as chlorous acid, chlorous acid, and chloric acid can be reduced.
  • the hypochlorous acid when the most suitable hypochlorous acid among the chlorine-containing substances is used, the hypochlorous acid is injected by combining with a mechanical treatment for killing or disinfecting a relatively large and wide range of microorganisms. The amount required is only the amount necessary for removing bacteria, and the injection amount of the hypochlorous acid is smaller than that in the case of removing microorganisms and removing bacteria with the hypochlorous acid as in the prior art. Can be reduced.
  • the treatment by the electrolytic cell circulation method using the liquid electrolysis apparatus is performed as follows.
  • the treatment by the electrolytic cell circulation method is performed either before or after the mechanical treatment.
  • the treatment liquid by the electrolytic cell circulation method is extracted from the middle of the circulation path and injected into the liquid either before or after the mechanical treatment.
  • the chlorine-containing substance, particularly hypochlorous acid, contained in the treatment liquid circulating in the circulation path is fed into the electrolytic cell, so that the ⁇ ⁇ of the electrolytic cell supply liquid is reduced by the hypochlorous acid.
  • the adhesion of scale in the electrolytic cell can be prevented.
  • the treatment liquid such as seawater after the mechanical treatment and the chlorination treatment is subjected to one or both of a treatment with activated carbon and a treatment with a metal catalyst.
  • the treated seawater that has been subjected to the mechanical treatment and the chlorination treatment is subjected to one or both of treatment with activated carbon and treatment with a metal catalyst.
  • metal catalyst examples include Mn, Tc, Re, VIIA group elements, Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt, and the like.
  • Group VIII elements Metals or compounds containing one or more are preferred.
  • H C 1 ⁇ remaining after the chlorination is reduced by the metal catalyst, whereby the treatment liquid after the chlorination can be rendered harmless.
  • the treatment liquid after the mechanical treatment and the chlorination treatment is subjected to a treatment with activated carbon and a treatment to remove a carcinogenic substance which is likely to be generated in the treatment liquid with a metal catalyst
  • the treatment liquid is subjected to the chlorination treatment.
  • Activated carbon can be used to remove carcinogenic substances from the treated liquid, and the residual HC 1 ⁇ after chlorination can be reduced and rendered harmless by using a metal catalyst, and the harmlessness and purification of the treated liquid can be improved.
  • the present invention provides a method for detoxifying a liquid, which removes microorganisms in an untreated liquid and converts the liquid into a clean treatment liquid, wherein the liquid is compared with the liquid by a filtration method or a centrifugal separation method.
  • the present invention provides a method of detoxifying seawater for removing microorganisms in seawater and converting it into clean treated seawater, wherein a relatively large amount of the liquid is removed by a filtration method or a centrifugation method in which the seawater is passed through a filter or the like.
  • a microorganism separation treatment for removing the microorganisms a chlorine treatment for producing a chlorine-containing substance from the seawater and injecting the same into the seawater to kill or sterilize the microorganisms, or an acid for adding a substance having an oxidizing effect to the seawater.
  • the method is characterized in that any one of the treatments of adding a dani substance is performed and the treated seawater is stored in a ballast water tank.
  • the present invention also provides a liquid detoxification apparatus configured to remove microorganisms in an untreated liquid including untreated seawater and convert the microorganism into a clean treatment liquid, as an apparatus for performing the method.
  • a microbial separator for removing the relatively large microorganisms in the liquid by a filtration method or a centrifugal method in which the liquid is passed through a filter or the like; and a chlorine-containing substance generated from the liquid to produce a chlorine-containing substance in the liquid.
  • chlorination means for injecting a chlorine treatment to kill or sterilize the microorganism and oxidizing substance addition means for adding a substance having an oxidizing effect to the liquid; and the mechanical treatment device and the chlorination treatment.
  • Means Proposes a liquid detoxification treatment apparatus characterized in that a treatment liquid tank for accommodating a treatment liquid after treatment by an oxidizing substance addition means is provided.
  • a treatment liquid tank for accommodating a treatment liquid after treatment by an oxidizing substance addition means.
  • the microorganism separation treatment by the filtration method or the centrifugal separation method and the treatment of adding a substance having an oxidizing effect to the treated liquid after the treatment to kill or sterilize the microorganisms are performed.
  • the function of treating microorganisms is improved.
  • the filter mesh as the optimum mesh for removing microorganisms, a relatively large and wide range of microorganisms can be reliably captured and removed, and post-capture processing can be easily performed by backwashing or the like.
  • a mechanical treatment for damaging and killing or sterilizing the microorganisms in the liquid is performed by a mechanical treatment device either in the pre-process or in the post-IT stage of the microorganism separation treatment.
  • the treatment function of the microorganisms can be improved and the load of the chlorination treatment can be reduced.
  • the present invention also relates to a method for detoxifying seawater for removing microorganisms from seawater and converting the treated seawater into clean treated seawater, comprising: a machine for damaging or killing or killing the microorganisms in the seawater.
  • a chlorination treatment for producing a chlorine-containing substance from the seawater and injecting it into the seawater to kill or sterilize the microorganisms
  • an oxidizing substance addition treatment for adding a substance having an oxidizing effect to the seawater.
  • the treated seawater is stored in a ballast water tank.
  • the substance having an oxidizing effect in the oxidizing substance addition treatment includes an oxidizing agent such as hydrogen peroxide and ozone in addition to the chlorine-containing substance.
  • the chlorination is performed by introducing all or a part of the seawater into a storage tank, and converting the seawater into the storage tank and an electrolytic cell that electrolyzes the liquid to generate a chlorine-containing substance. It is performed by an electrolytic cell circulation system in which a circulation circuit is circulated.
  • the seawater is subjected to the mechanical treatment, and the whole or part of the treated seawater conveyed to the ballast water tank is subjected to the chlorination, and the chlorine-containing substance generated by the chlorination is subjected to the chlorination. It is preferable to inject into the seawater either before or after the mechanical treatment.
  • a machine that kills or sterilizes microorganisms over a relatively large area due to turbulence generated by passing seawater through the many holes of a slit plate having many holes.
  • Treatment with oxidizing substances or chlorination which injects chlorine-containing substances into seawater to kill or disinfect bacteria, provides Microorganisms can be surely killed or killed, and by combining mechanical treatment with seawater and chlorination, the pressure loss of mechanical treatment can be reduced and the load can be reduced.
  • hypochlorous acid When hypochlorous acid is used among the chlorine-containing substances in the chlorination, the injection amount of the hypochlorous acid can be reduced by combining with a mechanical treatment for killing or sterilizing a relatively large and wide range of microorganisms. Only the amount necessary to remove small-sized bacteria is required. Compared to the case of removing microorganisms and removing bacteria with the hypochlorous acid, the hypochlorite during the treatment with harmless seawater is used. The injection amount of acid can be reduced.
  • the treatment by the electrolytic cell circulation method is preferably performed as follows. '
  • the treatment by the electrolytic cell circulation method is performed either before or after the mechanical treatment.
  • the chlorine-containing substance, particularly hypophosphorous acid, contained in the treated seawater circulating in the circulation path between the storage tank for the treated seawater and the digestion tank is fed into the electrolytic tank.
  • the amount of seawater supplied to the electrolytic cell with hypochlorous acid scale adhesion to the electrolytic cell can be prevented.
  • the seawater chlorination power source is powered by natural energy such as a solar battery or wind power.
  • the present invention also provides a detoxification treatment of seawater for removing microorganisms in water contained in a ballast water tank and converting the seawater into clean treated seawater: ⁇ method, wherein the microorganisms in the seawater are added to the seawater.
  • Mechanical treatment for damaging and killing or disinfecting the seawater; chlorine treatment for producing a chlorine-containing substance from the seawater and injecting it into the seawater to kill or disinfect the microbes or oxidizing the seawater
  • the substance is characterized by performing either one of the oxidizing substance addition processing and discharging the treated seawater out of the ballast water.
  • the pre-mechanical treatment and the chlorination treatment or the oxidizing substance addition treatment are performed in the ballast water tank. This makes it possible to discharge completely detoxified ballast water into the sea.
  • the present invention also provides a detoxification treatment of seawater for removing microorganisms in water contained in a ballast water tank and converting the seawater into clean treated seawater: ⁇ method, wherein the microorganisms in the seawater are added to the seawater.
  • Mechanical treatment to damage or kill or disinfect the seawater
  • chlorine treatment to generate chlorine-containing substances from the seawater and inject into the seawater to kill or sterilize the microbes;
  • the ballast water tank is ringed after performing either one of the oxidizing substance addition treatments for adding a substance having a ligh effect. According to this invention, even during the navigation of the ship, the treated seawater in the nolast water tank is subjected to the mechanical treatment and the chlorination treatment or the oxidizing substance addition treatment in combination with the treatment.
  • a residual chlorine meter for measuring a residual chlorine amount of the treated liquid after the chlorination treatment is provided, and the chlorination unit measures a residual chlorine amount measured by the residual chlorine meter.
  • the amount of chlorine-containing substance generated in the chlorination is controlled based on the chlorination.
  • the electrolytic current value in chlorination can be controlled based on the measured value of the residual chlorine amount (chlorine concentration) in the processing liquid, and the chlorine-containing substance in the processing liquid can be controlled.
  • the injection amount of (particularly, hypochlorous acid) can be accurately controlled to a target value, and the required sterilization treatment can be performed while minimizing the processing cost of the chlorine-containing substance.
  • the present invention by combining a mechanical treatment for killing or disinfecting a relatively large and wide range of microorganisms with a chlorination treatment for killing or disinfecting small-sized bacteria or an addition treatment of a substance having an oxidizing effect, The killing or killing of microorganisms of any size can be assured.
  • the load of the mechanical treatment can be reduced, the pressure loss can be reduced, and the power required for the mechanical treatment can be reduced.
  • the injection amount of chlorine-containing substances such as chlorine, hypochlorous acid, chlorite, and chloric acid can be reduced. Can be reduced.
  • the mechanical treatment and the chlorination or acid treatment are performed in the ballast water tank.
  • the ballast water completely harmless can be discharged into the sea by performing the addition of the dangling substance.
  • the ballast water can be detoxified even while the ship is navigating. Detoxification at the time of ballast water drainage You can save time.
  • hypochlorous acid which is the most suitable, is used.
  • the injection amount of the hypochlorous acid is only required to remove the bacteria, and the amount of the hypochlorous acid is smaller than when the hypochlorous acid is used to remove the microorganisms and the bacteria. The injection amount can be reduced.
  • hypochlorous acid As a result, the corrosion of the downstream equipment due to the remaining hypochlorous acid can be suppressed, the durability of the equipment can be improved, and marine pollution due to hypochlorous acid can be suppressed.
  • the present invention also provides a detoxification apparatus for seawater that removes microorganisms from seawater and converts the seawater into clean treated seawater.
  • Dani equipment a ballast water tank mounted on a ship, a seawater carry-in path for taking in the seawater and transferring it to the land-based detoxification facility, and a seawater treated by the land-based detoxification facility.
  • the land-based detoxification facility is a chlorination means for producing a chlorine-containing substance from the seawater, injecting the substance into the seawater, and killing or sterilizing the microorganisms.
  • a chlorination means for producing a chlorine-containing substance from the seawater, injecting the substance into the seawater, and killing or sterilizing the microorganisms.
  • one of the remaining treatment means is mounted on the ship, and either the chlorination means or the oxidizing substance addition means constituting the on-site detoxification facility, or the microorganisms in the seawater are damaged.
  • Seawater treated by a mechanical treatment device for subjecting the seawater to mechanical treatment for killing or disinfecting the seawater is introduced into one of the remaining treatment means in the ship through the seawater discharge channel. It is configured to be processed by a mechanical processing device and to be stored in the above-mentioned parast water tank.
  • the land-based detoxification facility generates a chlorine-containing substance from the seawater and injects it into the seawater to kill or sterilize the microorganisms.
  • a microorganism separation treatment means for removing the microorganisms having a relatively large size, wherein either the chlorination treatment means or the oxidizing substance addition means and the treated seawater treated by the microorganism separation treatment means pass through the seawater discharge passage. Then, it is configured to be accommodated in the ballast water tank.
  • a microorganism separation treatment means for removing the relatively large microorganisms in the seawater by centrifugation is installed on land, and the detoxification treatment for killing or sterilizing microorganisms in untreated seawater in the onshore detoxification facility.
  • the treated seawater is stored in the ballast water tank through a seawater discharge path that connects the on-site detoxification facility and a ballast water tank mounted on a ship, so that the chlorination means or the oxidizing substance adding means is used.
  • seawater detoxification equipment such as mechanical treatment equipment and microbial separation treatment means inside the hull, and installation of seawater detoxification equipment on ships And it is possible to reduce the pace, it becomes possible to increase the mounting space, such as cargo.
  • either one of the chlorination means or oxidizing substance addition means or terrestrial detoxification equipment such as mechanical treatment equipment and microorganism separation treatment means installed on land and the ballast water tank on the ship side are connected to the seawater discharge channel.
  • the number of detoxification processing equipment for a single ship Asari can be reduced, and equipment costs can be reduced.
  • one of the chlorination means and the oxidizing substance addition means or detoxification equipment such as mechanical treatment equipment and biological separation treatment equipment will be installed as onshore equipment, so that existing ships will be installed in the hull. It is not necessary to newly install the detoxifying apparatus, and the remodeling of the hull is minimized, so that the cost of installing the hull for installing the detoxifying apparatus can be minimized. And in this invention, it is better to specifically configure as follows.
  • the shore-based harmless dangling equipment is provided with a chlorinating means for generating a chlorine-containing substance from seawater, injecting the same into the seawater, and killing or sterilizing the microorganisms in the seawater.
  • a chlorinating means for generating a chlorine-containing substance from seawater, injecting the same into the seawater, and killing or sterilizing the microorganisms in the seawater.
  • the treated seawater detoxified by either the chlorination means or the oxidizing substance addition means and the mechanical treatment device which is installed on land as a land-based detoxification facility, It can be stored in the ballast water tank through a seawater discharge channel that connects the installation detoxification facility and the ballast water tank in the ship.
  • the shore-installed harmless dangling equipment is provided with a chlorinating means for producing a chlorine-containing substance from seawater, injecting into the seawater and killing or sterilizing the microorganisms, and performing chlorination treatment on the seawater or the seawater.
  • One or both of microbial separation means for removing the relatively large microorganisms in the seawater by a filtration method or a centrifugal separation method in which the microorganisms pass through a filter or the like is mounted on the ship.
  • the treated seawater that has been detoxified by either the chlorination means or the oxidizing substance addition means, which is installed on land as a land-installed detoxification facility, is combined with the land-installed detoxification facility and the ship.
  • a seawater carrying-out path connecting the ballast water tank inside the vessel it is introduced into the mechanical treatment device mounted on the hull or the microorganism separation treatment means, and the treated seawater detoxified by the mechanical treatment device is balassed. Can be stored in the water tank.
  • a hull-side seawater carry-in path is provided in the hull of the ship and opens into the sea and connected to the mechanical treatment device.
  • the mechanical processing device or micro-processing device mounted on the ship can be used. Simultaneous detoxification of seawater treated by either chlorination means or oxidizing substance addition means in land-based detoxification facilities, and seawater inlet passages that open into the sea by biological separation means. And stored in a ballast water tank. Thus, a large amount of seawater can be harmlessly treated by a mechanical treatment device or a microorganism separation treatment means having a simple structure.
  • the microorganisms mainly disturb toxic or pathogenic substances or ecosystems, such as zooplankton and its cysts, phytoplankton and its cysts, bacteria, fungi, and viruses. Things.
  • the detoxification treatment is to kill, disinfect or remove these microorganisms that mainly cause marine pollution, cause damage to humans and fish and shellfish, and destroy the ecosystem.
  • the chlorine-containing substance is preferably composed of chlorine, hypochlorous acid, chlorous acid, chloric acid, or an ion or salt thereof, with hypochlorous acid being most preferred.
  • the substance having an oxidizing action includes an oxidizing agent such as hydrogen peroxide and ozone in addition to the chlorine-containing substance.
  • the chlorine-containing substance may be externally added as a chemical.
  • the mechanical processing device is provided with a slit plate in which a number of small holes having an inner diameter of about 0.5 mm are provided in a liquid flow path.
  • a wide range of microorganisms including relatively large microorganisms having a crust, are damaged and killed or sterilized by passing seawater through the pores.
  • a chlorine-containing substance composed of chlorine, hypochlorous acid, chlorous acid, chloric acid, or ionic salt thereof is injected into seawater, and in the oxidizing substance adding means, The addition of a substance having an acid effect to seawater kills or kills small bacteria.
  • a relatively large and wide range of microorganisms can be killed or sterilized by a mechanical treatment device or a microorganism separation treatment device, and small-sized bacteria can be killed by a chlorination treatment device or an oxidizing substance addition device. Or sterilization combined in a single liquid treatment system to ensure the killing or sterilization of microorganisms of any size. I can do it.
  • the mechanical treatment or the microorganism-separation treatment means with the chlorination treatment or the addition treatment of a substance having an oxidizing effect, the load on the mechanical treatment device is reduced, and the pressure loss is reduced.
  • the required power of the treatment equipment can be reduced, and the equipment can be made smaller and smaller in capacity.
  • Fluthermore in chlorination, it is only necessary to kill or kill bacteria with a high killing and sterilizing effect.
  • the injection amount of chlorine-containing substances such as chloric acid, chlorous acid and chloric acid can be reduced.
  • the amount of hypochlorous acid to be injected is combined with a mechanical treatment for killing or sterilizing a relatively large and wide range of microorganisms. Requires only the amount necessary to remove bacteria, and reduces the amount of hypochlorous acid to be injected as compared to the case of removing microorganisms and removing bacteria with hypochlorous acid as in the prior art. it can.
  • the present invention is characterized in that the detoxification facility installed on land is mounted on a transportation device such as a vehicle so as to be freely movable on land.
  • the onshore detoxification facility can be freely brought close to the ship, and the seawater detoxified by the onshore detoxification facility can be stored in the ballast water tank in the ship, and the seawater transfer line Can be minimized.
  • the power of the seawater transport pump can be reduced, and the cost of detoxifying seawater can be reduced.
  • the harmless shore-installed facilities mounted on the transport device can be freely moved. Harmless treatment of ballast water to each ship can be performed, and the harmless treatment of ballast water can be efficiently performed in a short time.
  • the present invention provides the detoxification processing apparatus for seawater, wherein the detoxification equipment installed on the sea is a floating installation on the sea, which kills or sterilizes microorganisms in the seawater.
  • Detoxification treatment is performed, and the treated seawater is stored in a ballast water tank in the ship through the seawater discharge channel.
  • the marine-installed detoxification facility is a chlorinating means for producing a chlorine-containing substance from the seawater, injecting the chlorinated substance into the seawater, and killing or sterilizing the microorganisms.
  • a chlorinating means for producing a chlorine-containing substance from the seawater, injecting the chlorinated substance into the seawater, and killing or sterilizing the microorganisms.
  • Separation processing means and configured to accommodate the treated seawater treated by either the chlorination treatment means or the oxidizing substance addition means and the microorganism separation treatment means in the ballast water tank through the seawater discharge passage.
  • the marine-installed detoxifying facility may be a chlorinating means for producing a chlorine-containing substance from the seawater, injecting the substance into the seawater, and killing or sterilizing the microorganisms to the seawater.
  • Microbial separation for removing the relatively large microorganisms in the seawater by any one of oxidizing substance adding means for adding a substance having an oxidizing effect to the seawater, or a filtration method or a centrifugation method in which the seawater is passed through a filter or the like.
  • a chlorination treatment means or an oxidizing substance which constitutes the marine-based detoxification facility by introducing the treated seawater in the marine-based detoxification facility into the remaining one of the processing means in the ship through the seawater carrying-out path.
  • Type configured to accommodate the ballast Bokusui tank is subjected to processing by the remaining one of the processing means.
  • any one of the chlorination means or the oxidizing substance addition means, the mechanical treatment apparatus, or the ⁇ organism rescue separation treatment means is provided as a detoxification facility at sea movably suspended on the sea. Floating on the sea, in the offshore detoxification facility Performs detoxification treatment to kill or sterilize microorganisms in untreated seawater, and treats the treated seawater to the ballast through a seawater discharge channel that connects the detoxification equipment installed on the sea to ballast water tanks mounted on ships.
  • the harmless treatment equipment for seawater such as the chlorination means or the oxidizing substance addition means, the mechanical treatment apparatus or the microorganism separation treatment means can be floated on the sea as the marine installation detoxification equipment, There is no need to install it inside a ship. As a result, it is possible to reduce the installation space of the seawater detoxification treatment device on the ship, and it is possible to increase the mounting space for cargo and the like.
  • any one of chlorination means or oxidizing substance addition means movably suspended on the sea detoxification equipment installed on the sea such as mechanical treatment equipment or microorganism separation treatment means, and ballast water tanks on the ship side
  • detoxification equipment installed on the sea such as mechanical treatment equipment or microorganism separation treatment means
  • ballast water tanks on the ship side By changing the seawater discharge route for each ship, one (one set) of detoxification equipment at sea can detoxify the ballast water tanks of multiple vessels, making it harmless at sea
  • the operating rate of the detoxification equipment can be increased, and the number of detoxification equipment installed per ship can be reduced, thereby reducing equipment costs.
  • the offshore detoxification equipment that is movably suspended above the sea can be freely placed in close proximity to the ship. Seawater detoxified by the detoxification equipment installed on the sea can be stored in the ballast water tank in the vessel, making it extremely easy and short-term for any vessel anchored offshore or offshore. Detoxification of ballast water.
  • detoxification equipment such as chlorination means or acid substance addition means or mechanical treatment equipment or microorganism separation treatment means shall be installed separately from the ship as offshore detoxification equipment. Therefore, it is not necessary to install the detoxification processing device in the existing ship even for an existing ship, and the remodeling inside the ship is minimized, and the ship for installing the detoxification processing device is not required. Internal installation costs can be minimized. In the invention to be described, it is preferable to specifically configure as follows.
  • the sea-based detoxification facility is provided with a chlorination step or a seawater treatment method for producing a chlorine-containing substance from the seawater, injecting the seawater into the seawater, and killing or sterilizing the microorganisms in the seawater.
  • a chlorination step or a seawater treatment method for producing a chlorine-containing substance from the seawater, injecting the seawater into the seawater, and killing or sterilizing the microorganisms in the seawater.
  • a mechanical treatment apparatus for applying a mechanical treatment to the seawater to damage and kill or sterilize the microorganisms in the seawater, or a filtration method or a centrifugation method in which the seawater is passed through a filter or the like. It is constituted by one or both of microorganism separation treatment means for removing the relatively large microorganisms in seawater.
  • either the chlorination means or the oxidizing substance addition means of the detoxification equipment installed on the sea floating on the sea and the treated seawater treated by the mechanical treatment apparatus or the microorganism separation treatment means can be used. It can be easily accommodated in a ballast water tank in a ship through the seawater carrying-out path.
  • the sea-based detoxification facility is provided with a chlorination means for producing a chlorine-containing substance from the seawater, injecting the same into the seawater, and killing or sterilizing the microorganisms in the chlorination treatment or the seawater.
  • a chlorination means for producing a chlorine-containing substance from the seawater, injecting the same into the seawater, and killing or sterilizing the microorganisms in the chlorination treatment or the seawater.
  • microorganism separation treatment means for removing the relatively large microorganisms in the seawater by filtration or centrifugation.
  • the seawater treated in the marine detoxification facility is introduced into another mechanical treatment device or microorganism separation treatment means in the ship through the seawater discharge channel, and the chlorine constituting the marine detoxification facility is provided.
  • Either the treatment means or the oxidizing substance addition means and the seawater treated by the mechanical treatment device are introduced into the other mechanical treatment device in the ship through the seawater discharge passage, and the other mechanical treatment device is provided. And can be stored in the above-mentioned palladium water tank.
  • the hull of the vessel is provided with a hull-side seawater carry-in path that opens into the sea and is connected to the other mechanical treatment device.
  • seawater treated by either the chlorination means or the oxidizing substance addition means in the offshore detoxification equipment and the seawater can be opened by other mechanical treatment equipment mounted on the ship.
  • Seawater introduced through the hull-side seawater carrying channel can be simultaneously treated harmlessly and stored in the ballast water tank.
  • a large amount of seawater can be harmlessly treated by a mechanical treatment device having a simple structure.
  • the chlorination unit stores all or a part of the seawater.
  • An electrolytic tank circulation method for circulating the seawater in a circulation path between the storage tank and the electrolytic tank comprising: a storage tank for performing the electrolysis of the seawater to generate a chlorine-containing substance. It is preferable that the liquid electrolysis apparatus is configured to be applied to the liquid, and the treatment by the liquid electrolysis apparatus is performed as follows.
  • the treatment by the electrolytic cell circulation method is performed in either a pre-process or a post-process of the mechanical process.
  • the treatment liquid by the electrolytic cell circulation method is extracted from the middle of the circulation path and injected into the liquid either before or after the mechanical treatment.
  • the chlorine-containing substance, particularly hypochlorous acid, contained in the treatment liquid circulating in the circulation path is fed into the electrolytic cell, and the pH of the electrolytic cell supply liquid is lowered by the hypochlorous acid. Thereby, adhesion of scale in the electrolytic cell can be prevented.
  • one of the chlorination means and the oxidizing substance addition means or the mechanical treatment device is installed on land as a land-based detoxification facility, and the untreated seawater is made harmless in the land-based detoxification facility.
  • the treated seawater is stored in the ballast water tank of the ship from the onshore detoxification facility through the seawater discharge route, so that the seawater such as the chlorination means or the oxidizing substance addition means and the mechanical treatment device is used.
  • There is no need to install detoxification equipment inside the hull and the installation space for the detoxification equipment for seawater on the ship can be reduced, and the space for loading cargo and the like can be increased.
  • harmless treatment equipment such as one of chlorination means or oxidizing substance addition means or mechanical treatment equipment will be installed as land equipment, so that existing ships can be made harmless within the hull. It is not necessary to install a new processing apparatus, and the remodeling inside the hull is minimized, and the cost of installing the hull for installing the detoxification processing apparatus can be minimized.
  • the detoxification facility installed on land is mounted on a transportation device such as a vehicle.
  • the detoxification facility can be freely moved close to the ship, and the detoxified seawater can be stored in the ballast water tank in the ship.
  • the length of the line can be minimized.
  • the power of the seawater transport pump can be reduced, and the cost of detoxifying seawater can be reduced.
  • the detoxification equipment installed on the shore which is mounted on the transport equipment, can be freely moved to each ship.
  • the detoxification treatment of the ballast water can be performed, and the detoxification treatment of the ballast water can be efficiently performed in a short time.
  • detoxification of untreated seawater is performed in the marine detoxification facility in which either one of the chlorination means or the oxidizing substance addition means or the mechanical treatment device is floated on the sea. Since the treated seawater is stored in the ballast water tank in the ship through the seawater discharge channel, the detoxification treatment facility for detoxifying the seawater can be floated on the sea as a detoxification facility at sea, and such detoxification treatment can be performed. There is no need to install equipment inside the hull. This can reduce the installation space for the detoxification equipment for seawater on ships and increase the space for loading cargo and the like.
  • the seawater detoxification equipment floating on the sea and the ballast water tank on the ship's side are connected to each ship by the seawater discharge route, so that one (one set) of the harmless sea installation Detoxification of ballast water tanks of multiple ships by using the detoxification equipment, increasing the operation rate of detoxification equipment installed at sea and reducing the number of harmless effluent treatment equipment installed per ship Therefore, the cost of the apparatus can be reduced.
  • the offshore detoxification equipment that is movably suspended above the sea can be freely placed in close proximity to the ship. Seawater detoxified by the detoxification equipment installed on the sea can be stored in the ballast water tank in the vessel, making it extremely easy and short-term for any vessel anchored offshore or offshore. Detoxification of ballast water.
  • FIG. 1 is a block diagram showing a method for detoxifying ballast water for ships according to a first embodiment of the present invention.
  • FIG. 2 is a diagram corresponding to FIG. 1 showing the second embodiment.
  • FIG. 3 is a diagram corresponding to FIG. 1 showing a third embodiment.
  • FIG. 4 is a diagram corresponding to FIG. 1 showing the fourth embodiment.
  • FIG. 5 is a diagram corresponding to FIG. 1 showing the fifth embodiment.
  • FIG. 6 is a diagram corresponding to FIG. 1 showing the sixth embodiment.
  • FIG. 7 is a diagram corresponding to FIG. 1 showing the seventh embodiment.
  • FIG. 8 is a diagram corresponding to FIG. 1 showing the eighth embodiment.
  • FIG. 9 is a diagram corresponding to FIG. 1 showing the ninth embodiment.
  • FIG. 10 is a block diagram corresponding to FIG. 10 showing the tenth embodiment.
  • FIG. 11 is a diagram corresponding to FIG. 1 showing the eleventh embodiment.
  • FIG. 12 is a diagram corresponding to FIG. 1 showing the 12th embodiment.
  • FIG. 13 is a diagram corresponding to FIG. 1 showing the thirteenth embodiment.
  • FIG. 14 is a diagram corresponding to FIG. 1 showing the 14th embodiment.
  • FIG. 15 is a block diagram corresponding to FIG. 1 showing the 15th embodiment.
  • FIG. 16 is a block diagram corresponding to FIG. 1 showing the 16th embodiment.
  • FIG. 17 is a block diagram corresponding to FIG. 1 showing the 17th embodiment.
  • FIG. 18 is a diagram corresponding to FIG. 1 showing the 18th embodiment.
  • FIG. 19 is a block diagram corresponding to FIG. 1 showing the 19th embodiment.
  • FIG. 20 is a block diagram corresponding to FIG. 1 showing the 20th embodiment.
  • FIG. 21 is a diagram corresponding to FIG. 1 showing the 21st embodiment.
  • FIG. 22 is a diagram corresponding to FIG. 1 showing the 22nd embodiment.
  • FIG. 23 is a diagram corresponding to FIG. 1 showing the 23rd embodiment.
  • FIG. 24 is a block diagram corresponding to FIG. 1 to show the 24th embodiment.
  • FIG. 25 is a block diagram corresponding to FIG. 1 to show the 25th embodiment.
  • FIG. 26 is a diagram corresponding to FIG. 1 showing the 26th embodiment.
  • FIG. 27 is a diagram corresponding to FIG. 1 showing the 27th embodiment.
  • FIG. 28 is a diagram corresponding to FIG. 1 showing the 28th embodiment.
  • FIG. 29 is a block diagram corresponding to FIG. 1 showing the 29th embodiment.
  • FIG. 30 is a block diagram corresponding to FIG. 1 showing the 30th embodiment.
  • FIG. 31 is a diagram corresponding to FIG. 1 showing the 31st embodiment.
  • FIG. 32 is a diagram corresponding to FIG. 1 showing the 32nd embodiment.
  • FIG. 33 is a block diagram corresponding to FIG. 1 showing the 33rd embodiment.
  • FIG. 34 is a diagram corresponding to FIG. 1 showing the 34th embodiment.
  • FIG. 35 is a diagram corresponding to FIG. 1 showing the 35th embodiment.
  • FIG. 36 is a diagram corresponding to FIG. 1 showing the 36th embodiment.
  • FIG. 37 is a block diagram corresponding to FIG. 1 showing the 37th embodiment.
  • FIG. 38 is a block diagram corresponding to FIG. 1 to show the 38th embodiment.
  • FIG. 39 is a diagram corresponding to FIG. 1 showing the 39th embodiment.
  • FIG. 40 is a block diagram corresponding to FIG. 1 showing the 40th embodiment.
  • FIG. 41 is a diagram corresponding to FIG. 1 showing the 41st embodiment.
  • FIG. 42 is a diagram corresponding to FIG. 1 showing the 42nd embodiment.
  • FIG. 43 is a block diagram corresponding to FIG. 1 to show the 43rd embodiment.
  • FIG. 44 is a diagram corresponding to FIG. 1 showing the 44th embodiment.
  • FIG. 45 is a diagram corresponding to FIG. 1 showing the 45th embodiment.
  • FIG. 46 is a block diagram corresponding to FIG. 1 to show the 46th embodiment.
  • FIG. 47 is a block diagram corresponding to FIG. 1 to show the 47th embodiment.
  • FIG. 48 is a system diagram (No. 1) showing main processing in each of the above embodiments.
  • FIG. 49 is a system diagram (No. 2) showing main processing in each of the above embodiments.
  • FIG. 50 is a block diagram showing a detoxification apparatus for ship ballast water according to a forty-eighth embodiment of the present invention.
  • FIG. 51 is a block diagram corresponding to FIG. 50 showing the 49th embodiment.
  • FIG. 52 is a diagram corresponding to FIG. 50 showing the 50th embodiment.
  • FIG. 53 is a diagram corresponding to FIG. 50 showing the 51st embodiment.
  • FIG. 54 is a diagram corresponding to FIG. 50 showing the 52th embodiment.
  • FIG. 55 is a block diagram corresponding to FIG. 50 showing the 53rd embodiment.
  • FIG. 56 is a block diagram corresponding to FIG. 50 showing the 54th embodiment.
  • FIG. 57 is a diagram corresponding to FIG. 50 showing the 55th embodiment.
  • FIG. 58 is a diagram corresponding to FIG. 1 showing the 56th embodiment.
  • FIG. 59 is a configuration diagram of a microorganism separation treatment means. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a block diagram showing a method for detoxifying ballast water for ships according to a first embodiment of the present invention.
  • 2 to 47 are diagrams corresponding to FIG. 1 showing the second to 47th embodiments.
  • FIGS. 48 and 49 are system diagrams (Part 1) and (Part 2) showing the main processing of each of the above embodiments.
  • 1 is a screen for filtering untreated seawater to capture foreign substances such as dust
  • 2 is a pump for conveying seawater to a treatment line 6.
  • Reference numeral 3 denotes a mechanical treatment device that damages and kills or sterilizes microorganisms in seawater that has passed through the above-described screen 2.
  • the mechanical treatment device 3 is provided with a perforated plate having a number of small holes perforated in a seawater flow path, and the seawater is generated by turbulence generated when the seawater passes through the plurality of small holes.
  • a perforated plate treatment device configured to damage and kill or sterilize microorganisms is preferred, but it is not limited to a powerful perforated plate treatment device, and can damage and kill microorganisms in seawater. What is necessary is just to have the function of destroying or sterilizing.
  • a seawater electrolyzer that performs electrolysis (electrolysis) on seawater that has passed through the mechanical treatment device, electrolyzes the seawater, and removes sodium hypochlorite (hereinafter, hypochlorous acid) from the seawater. ).
  • the hypochlorous acid generated in the seawater electrolysis apparatus 4 is injected into the treatment line 6. 5 is the processing that has been performed
  • a ballast water tank that stores seawater.
  • the untreated seawater is conveyed through the treatment line 6 by the pump 2 and introduced into the mechanical treatment device 3 after foreign substances such as dust are captured and removed by the screen 1.
  • the mechanical treatment device 3 when passing the seawater through many small holes, the microorganisms in the seawater are damaged and killed or sterilized.
  • the whole or a part of the seawater subjected to the mechanical treatment in the mechanical treatment device 3 is sent to the seawater electrolysis device 4 via the extraction line 8.
  • the seawater electrolysis apparatus 4 the seawater is electrolyzed to generate hypochlorous acid.
  • the hypochlorous acid is injected into the processing line 6 upstream of the mechanical processing device 3 through an injection line 9 shown by a solid line in the figure, or through an injection line 10 shown by a broken line in the figure. Then, it is injected into the processing line 6 downstream of the mechanical processing device 3.
  • the injection of the hypochlorous acid kills or kills microorganisms remaining in the seawater.
  • the seawater kills or sterilizes the microorganisms in the seawater in the mechanical treatment device 3, and the hypochlorous acid extracted from the seawater in the seawater electrolysis device 4 is poured into the seawater to remove the microorganism. By killing or disinfecting the remaining microorganisms, they will be completely detoxified and stored in the ballast water tank.
  • the microorganism is mainly zooplankton and its cysts, phytoplankton and its cysts, bacteria, fungi, viruses, and other poisonous or pathogenic substances or disrupts the ecosystem. Things.
  • the detoxification treatment of seawater is mainly to kill, disinfect or remove these microorganisms that cause marine pollution, cause damage to humans and fish and shellfish, and destroy ecosystems.
  • hypochlorous acid used in the embodiment is most preferable, but chlorine, chlorous acid, chloric acid, or ions or salts thereof can be used.
  • the substance having an oxidizing action also includes an oxidizing agent such as hydrogen peroxide and ozone in addition to the chlorine-containing substance.
  • an oxidizing agent such as hydrogen peroxide and ozone in addition to the chlorine-containing substance.
  • the chlorine-containing substance can be added as a chemical from the outside.
  • a mechanical treatment device provided with a perforated plate having a large number of small holes is used to kill or kill a relatively large and wide range of microorganisms by turbulence generated through seawater in the small holes of the device 3.
  • the mechanical treatment for disinfection and the chlorination treatment for injecting hypochlorous acid generated in the seawater electrolysis device 4 into seawater to kill or disinfect bacteria microorganisms of all sizes in seawater It is possible to surely kill or sterilize the water, and by combining the mechanical treatment of seawater and the chlorination, the pressure loss of the mechanical treatment device 3 can be reduced, and the load can be reduced.
  • the required power of the mechanical treatment device 3 during the seawater detoxification treatment can be reduced, the device can be reduced in size and capacity, and the seawater of hypochlorous acid generated in the seawater electrolysis device 4 can be further reduced.
  • the amount of hypochlorous acid to be injected can be reduced because it is only necessary to kill or sterilize bacteria having a high treatment effect.
  • hypochlorous acid generated in the seawater electrolysis device 4
  • a relatively large and wide range of microorganisms is killed using the mechanical treatment device 3.
  • the hypochlorous acid needs to be injected only in an amount necessary for removing bacteria, and the hypochlorous acid can be used for removing microorganisms and removing bacteria.
  • the injection amount of the hypochlorous acid at the time of the seawater detoxification treatment can be reduced as compared with the case of performing the treatment.
  • hypochlorous acid is remarkably reduced, so that the corrosion of the downstream equipment due to the hypochlorous acid during the detoxification of seawater can be suppressed, and the durability of the equipment can be improved and the hypochlorous acid can be improved. Marine pollution caused by dumping chloric acid into the sea can be suppressed.
  • a mechanical treatment for killing or disinfecting a relatively large and wide range of microorganisms using a mechanical treatment device 3 and the seawater Hypochlorous acid generated in electrolyzer 4 is injected into seawater in treatment line 6 and the amount of residual chlorine in treated seawater after chlorination to kill or sterilize bacteria (chlorine concentration)
  • the residual chlorine meter 11 for measuring the residual chlorine is provided, and the measured value of the residual chlorine amount by the residual chlorine meter 11 is input to the seawater electrolysis apparatus 4.
  • the residual chlorine meter 11 measures the residual chlorine amount (chlorine concentration) of the treated seawater after the mechanical treatment and the chlorination treatment, and measures the residual chlorine amount.
  • the value is input to the seawater electrolysis device 4, and the seawater electrolysis device 4 controls the electrolysis current value of the seawater electrolysis device 4 based on the measured value of the residual chlorine amount to generate the following value generated by the seawater electrolysis device 4. Controls the amount of chlorite generated.
  • the electrolytic current value in the seawater electrolysis apparatus 4 based on the measured value of the residual chlorine amount (chlorine concentration) of the treated seawater, thereby controlling the amount of hypochlorous acid generated.
  • the amount of hypochlorous acid injected into seawater can be accurately controlled to a target value, and the required sterilization treatment can be performed while minimizing the processing cost of the hypochlorous acid.
  • seawater contained in the ballast water tank 5 in addition to the mechanical treatment and the chlorination treatment in the first embodiment (or without these treatments), seawater contained in the ballast water tank 5 is used.
  • the water is circulated through the seawater electrolyzer 4 through circulation circuits 13 and 14, and the bacteria in the seawater are killed by using the hypochlorous acid generated in the seawater electrolyzer 4 in the seawater electrolyzer 4. Or it has been chlorinated for sterilization.
  • the seawater electrolysis apparatus 4 uses natural energy such as a solar cell or a wind power generator 12 as a power supply.
  • the seawater electrolysis apparatus 4 is configured in the following electrolytic cell circulation system.
  • reference numeral 43 denotes a storage tank
  • reference numeral 44 denotes a pump
  • reference numeral 41 denotes an electrolytic cell
  • reference numeral 2 denotes a power supply device for the electrolytic cell 41
  • seawater for chlorination is extracted through an extraction line 8. It is introduced into the storage tank 43.
  • a circulation path 47 is formed from the storage tank 43 to the pump 44 and the electrolytic bath 41 to return to the storage tank 43, and the seawater in the storage tank 43 is pumped.
  • the circulation path 47 is circulated by 44, hypochlorous acid is generated from the seawater in the electrolytic cell 41, and the hypochlorous acid is injected into the injection line 9 (or The processing line 6 (see FIG. 1) is injected through the injection line 10) shown in FIG.
  • Reference numerals 45 and 46 denote on-off valves.
  • hypochlorous acid is injected through an injection line 9 upstream of the mechanical processing device 3 in the processing line 6 or through an injection line 10. It is injected into the processing line 6 downstream of the mechanical processing device 3.
  • the chlorination by the electrolytic cell circulation method is performed in either the pre-process or the post-process of the mechanical treatment by the mechanical treatment device 3 to generate the hypochlorous acid, and the hypochlorous acid is used.
  • Bacteria in seawater may be killed or sterilized.
  • the hypochlorous acid contained in the treated seawater circulating in the circulation path 47 between the treated seawater storage tank 43 and the electrolytic tank 41 is sent to the electrolytic tank 41. Therefore, by lowering the pH of seawater supplied to the electrolytic cell 41 with the hypochlorous acid, it is possible to prevent the scale from adhering to the electrolytic cell 41.
  • a filter 20 is provided in a processing line 6 instead of the mechanical processing device 3 in the above embodiment.
  • 21 is a backwash line for the filter 20;
  • 22 is an on-off valve for opening and closing the backwash line 21;
  • hypochlorous acid generated from the seawater in the seawater electrolyzer 4 is injected into the injection line 9 (or the upstream side or the downstream side of the filter 20 of the treatment line 6). It is injected via the injection line 10) to kill or kill bacteria.
  • the mesh of the filter 20 as the optimal mesh for removing microorganisms, a relatively large and wide range of microorganisms can be confirmed. They can be actually captured and removed, and the backwashing using the backwashing line 21 can also facilitate the treatment of the captured microorganisms.
  • the other structure is the same as that of the first embodiment, and the same members are denoted by the same reference numerals.
  • a mechanical processing device 3 similar to that of each of the above embodiments is installed on the upstream or downstream of the filter 20 in the processing line 6.
  • the function of treating microorganisms is improved and the downstream flow is improved.
  • the load of chlorination on the side can be reduced.
  • a centrifugal separator (not shown) may be provided instead of the filter 20, and the microorganisms may be centrifuged from the seawater by the centrifugal separator and removed from the seawater.
  • an oxidizing substance adding means may be used to add an oxidizing substance to the seawater.
  • an oxidizing agent such as hydrogen peroxide and ozone can be used in addition to the chlorine-containing substance.
  • a chlorine-containing substance is injected from the chlorine-containing substance injection device 30 into the untreated seawater to perform chlorination to kill or sterilize bacteria
  • the mechanical treatment device 3 is installed in a process before or after the injection to perform a mechanical treatment to damage or kill or sterilize microorganisms in the seawater, and housed in the ballast water tongue 5.
  • the chlorine-containing substance is preferably composed of chlorine, sodium hypochlorite, sodium chlorite, chloric acid, or ions or salts thereof, and most preferably sodium hypochlorite. Ah .
  • the untreated seawater is subjected to chlorination S "by the seawater electrolysis device 4 and then mechanically treated by the mechanical treatment device 3 to the ballast water tank 5. To accommodate.
  • the untreated seawater is subjected to the mechanical treatment by the mechanical treatment device 3 in the reverse order to the eighth embodiment, and then the seawater electrolysis device is performed.
  • Chlorine treatment is performed by 4 and stored in ballast water tank 5.
  • the untreated seawater was subjected to chlorination by a seawater electrolysis device 4 and mechanical treatment by a mechanical treatment device 3, and then to a metal catalyst treatment device 31. , And then a trihalomethane treatment with activated carbon by an activated carbon treatment device 32, which is stored in a ballast water tank 5.
  • metal catalysts include elements of Group Mn, Tc, Re, and VIIA, or Group VIII such as Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, and Pt. Metals or compounds containing one or more of the elements are preferred.
  • the trihalomethane treatment with the activated carbon makes it possible to remove a carcinogenic substance that is easily generated in the treated liquid after the chlorination treatment.
  • the carcinogenic substance is removed from the treated liquid after the chlorination by activated carbon, and the residual HC 1 O after the chlorination is reduced by the metal catalyst. It can be made harmless, and the harmlessness and purification of the treated liquid can be further improved.
  • the treatment with the metal catalyst by the metal catalyst treatment device 31 may be performed. Further, only the activated carbon treatment by the activated carbon treatment device 32 may be performed, or only the treatment with the metal catalyst by the metal catalyst treatment device 31 may be performed.
  • the seawater stored in the ballast water tank 5 is provided with the same chlorine as that of the first embodiment (FIG. 1) by the seawater electrolysis device 4.
  • Treatment and mechanical treatment by the mechanical treatment device 3 are performed to kill or sterilize microorganisms and bacteria in seawater to make them harmless and discharge them into the sea.
  • the seawater contained in the ballast water tank 5 is supplied from the chlorine-containing substance injection device 30 similar to the seventh embodiment (FIG. 7). Chlorine treatment for injecting the substance is performed, and mechanical treatment by the mechanical treatment device 3 is performed before or after the injection of the chlorine-containing substance to kill or sterilize microorganisms and bacteria in seawater to make them harmless. , Drain into the sea.
  • the seawater contained in the ballast water tank 5 is subjected to chlorine treatment by the seawater electrolysis device 4 in the same manner as in the eighth embodiment (FIG. 8). Then, mechanical treatment is performed by the mechanical treatment device 3 to kill or sterilize microorganisms and bacteria in the seawater, render them harmless, and discharge them into the sea.
  • the ninth embodiment (FIG. 9) and the ninth embodiment (FIG. 9) are arranged in the reverse order to the 13th embodiment.
  • the chlorination by the seawater electrolysis device 4 is performed to kill or sterilize microorganisms and bacteria in the seawater to render them harmless, and Draining.
  • the seawater stored in the ballast water tank 5 is treated in the same manner as in the tenth embodiment (FIG. 10), that is, by the seawater electrolysis apparatus 4.
  • treatment with a metal catalyst is performed by the metal catalyst treatment device 31; then, trihalomethane treatment by activated carbon is performed by the activated carbon treatment device 32; Microorganisms and bacteria are killed or sterilized to make them harmless and discharged into the sea.
  • a filter 20 is installed in the processing line in the seawater stored in the ballast water tank 5, similarly to the fifth embodiment (FIG. 5).
  • (21 is a backwash line for the filter 120
  • 22 is an on-off valve for opening and closing the backwash line 21)
  • the seawater is passed through a filter 20 to relatively remove the seawater.
  • Large microorganisms are removed, and hypochlorous acid generated from the seawater is injected in the seawater electrolyzer 4 upstream or downstream of the filter 20 of the treatment line to kill or sterilize bacteria, Harmless seawater is drained into the sea.
  • the mechanical treatment device 3 is installed downstream of the filter 20 to perform mechanical treatment on seawater after the filter 20. Microbes and bacteria in seawater are killed or sterilized to make them harmless and then discharged into the sea.
  • the seawater contained in the ballast water tank 5 is treated with the seawater electrolyzer 4 in the same manner as in the first embodiment (FIG. 11). And mechanical treatment by the mechanical treatment device 3 to kill or disinfect microorganisms and bacteria in the seawater, and then detoxify the seawater by repeating the treatment of circulating the seawater to the ballast water tank 5. ing.
  • the ballast water in the ballast water tank 5 can be detoxified even while the ship is navigating, shortening the detoxification time when draining the ballast water from the ship, or eliminating harmless treatment. Can be eliminated.
  • the same effects can be achieved in the following first to twenty-fifth embodiments.
  • the seawater stored in the ballast water tank 5 is supplied from the chlorine-containing substance injection device 30 to the seawater in the same manner as the 12th embodiment (FIG. 12).
  • Chlorine treatment for injecting the chlorine-containing substance is performed, and microbes and bacteria in seawater are killed by performing mechanical treatment using the mechanical treatment device 3 before or after the chlorine-containing substance injection.
  • it is rendered harmless by repeating a process of circulating the seawater to the ballast water tank 5 after sterilization.
  • the seawater stored in the ballast water tank 5 is subjected to chlorine treatment by the seawater electrolysis device 4 in the same manner as in the above-mentioned thirteenth embodiment (FIG. 13). Then, mechanical treatment by the mechanical treatment device 3 is performed to kill or sterilize microorganisms and bacteria in the seawater, and then the seawater is subjected to the ballast water tank. It is harmless by repeating the process of circulating in step 5.
  • the mechanical treatment by the mechanical treatment device 3 is performed in the same manner as in the 14th embodiment (FIG. 14).
  • chlorination by the seawater electrolysis device 4 is performed to kill or sterilize microorganisms and bacteria in the seawater, and then the process of circulating the seawater to the ballast water tank 5 is repeated. Harmless.
  • the seawater stored in the ballast water tank 5 is treated with chlorine treatment by the seawater electrolysis device 4 in the same manner as in the 15th embodiment (FIG. 15).
  • the treatment with the metal catalyst is performed by the metal catalyst treatment device 31, and then the trihalomethane treatment by the activated carbon is performed by the activated carbon treatment device 32, whereby the seawater is treated.
  • the process of circulating the seawater to the ballast water tank 5 is repeated to achieve harmlessness.
  • the mechanical treatment by the mechanical treatment device 3 is performed in the same manner as in the sixteenth embodiment (FIG. 16).
  • residual chlorine chlorine concentration
  • the electrolysis current value of the seawater electrolysis device 4 based on the measured value of the residual chlorine amount to control the amount of hypochlorous acid generated in the seawater electrolysis device 4
  • seawater electrolysis is performed. After the microorganisms and bacteria are killed or sterilized, the process of circulating the seawater to the ballast water tank 5 is repeated to make the water harmless.
  • a filter 20 is installed in the processing line in the seawater stored in the ballast water tank 5, similarly to the seventeenth embodiment (FIG. 17).
  • (21 is a backwashing line for the filter 120
  • 22 is an on-off valve for opening and closing the backwashing line 21)
  • the seawater is passed through the filter 20 so that a relatively large amount in the seawater is obtained.
  • the wake of the filter 20 is added to the seawater in the same manner as in the 18th embodiment (FIG. 18).
  • a mechanical treatment device 3 in the seawater and mechanically treating the seawater after the filling, the microorganisms and bacteria in the seawater are killed or sterilized. It is rendered harmless by repeating the process of circulating through the ballast water tank 5.
  • untreated seawater is subjected to mechanical treatment by the mechanical treatment device 3 and stored in a ballast water tank 5, and the seawater in the ballast water tank 5
  • the seawater in the ballast water tank 5 is rendered harmless by chlorinating the seawater electrolyzer 4 to kill or sterilize bacteria in seawater.
  • the untreated seawater is mechanically treated by the mechanical treatment device 3 and stored in the ballast water tank 5, and the seawater in the ballast water tank 5 Further, by performing a chlorine treatment for injecting the chlorine-containing substance from the chlorine-containing substance injection device 30, the seawater in the ballast water tank 5 is rendered harmless.
  • the untreated seawater is subjected to mechanical treatment by the mechanical treatment device 3 and stored in a ballast water tank 5, and the seawater in the ballast water tank 5
  • the residual chlorine amount (chlorine concentration) of the treated seawater after the chlorination by the seawater electrolyzer 4 was measured by a residual chlorine meter 11, and the seawater electrolyzer 4 was measured based on the measured value of the residual chlorine amount.
  • the seawater in the ballast water tank 5 is rendered harmless by controlling the electrolysis current value and controlling the amount of hypochlorous acid generated in the seawater electrolysis device 4.
  • the untreated seawater is subjected to a microorganism separation treatment for removing relatively large microorganisms in the seawater by passing the seawater through a filter 120, and the untreated seawater is supplied to the ballast water tank 5.
  • the seawater in the ballast water tank 5 is stored and chlorinated to kill or sterilize bacteria in the seawater by circulating the seawater in the ballast water tank 5 through the seawater electrolysis device 4. It is harmless.
  • untreated seawater is subjected to a microorganism separation treatment for removing relatively large microorganisms in the seawater by passing through a filter 20.
  • mechanical treatment is performed through the mechanical treatment device 3 and stored in the ballast water tank 5, and the seawater in the ballast water tank 5 is circulated through the seawater electrolysis device 4 to kill bacteria in the seawater.
  • seawater in the ballast water tank 5 is rendered harmless by chlorination for sterilization.
  • the seawater in the ballast water tank 5 is chlorinated to circulate the seawater electrolysis device 4 to kill or sterilize bacteria in the seawater.
  • the treated seawater is further mechanically treated by a mechanical treatment device 3 to completely harmlessly discharge the seawater.
  • the seawater in the ballast water tank 5 is subjected to a chlorination treatment for injecting a chlorine-containing substance from a chlorine-containing substance injection device 30. It is mechanically treated by a mechanical treatment device 3 to make it completely harmless and discharge it into the sea.
  • the residual chlorine amount (chlorine concentration) of the treated seawater after the chlorination of the seawater in the ballast water tank 5 by the seawater electrolyzer 4 is retained.
  • the treated seawater is further mechanically treated by a mechanical treatment device 3 to make it completely harmless and discharge it into the sea.
  • the seawater in the ballast water tank 5 is chlorinated to circulate the seawater electrolyzer 4 to kill or sterilize bacteria in the seawater.
  • the treated seawater is subjected to a microorganism separation treatment for removing relatively large microorganisms from the treated seawater by further passing the treated seawater through a filter 20 to completely detoxify the treated seawater and discharge it into the sea.
  • the treated seawater is subjected to a microorganism separation treatment for removing relatively large microorganisms in the seawater by passing through a filter 20, and then the mechanical treatment device 3 Through a mechanical treatment to make it completely harmless and discharge it into the sea.
  • a chlorination treatment for killing or sterilizing bacteria in seawater by circulating seawater in a ballast water tank 5 through the seawater electrolysis device 4 is performed.
  • the treated seawater is subjected to mechanical treatment through a mechanical treatment device 3, followed by treatment with a metal catalyst by a metal catalyst treatment device 31, and then trihalomethane treatment with activated carbon by an activated carbon treatment device 32.
  • the application kills or sterilizes microbes and bacteria in seawater, renders them completely harmless and discharges them into the sea.
  • the seawater in the ballast water tank 5 is subjected to chlorination by the seawater electrolysis device 4 and mechanical treatment by the mechanical treatment device 3, and After killing or disinfecting the microorganisms and bacteria of the present invention, the seawater is harmless by repeating the process of circulating the seawater to the ballast water tank 5.
  • Device 33 Electric power from the natural energy of 3 is used.
  • a solar cell is used as a power source of the seawater electrolysis device 4 for performing chlorination of seawater in the ballast water tank 5 in the twenty-seventh embodiment (FIG. 27).
  • the wind power generator 33 uses the power from natural energy.
  • a solar cell is used as a power source of the seawater electrolysis apparatus 4 for performing chlorination of seawater in the ballast water tank 5 in the 32nd embodiment (FIG. 32).
  • the wind power generator 33 uses the power from natural energy.
  • a part of the untreated seawater is branched from the treated line and introduced into the seawater electrolysis apparatus 4, and the chlorination is performed by the seawater electrolysis apparatus 4. And circulated through the treatment line before being housed in a ballast water tank 5.
  • untreated seawater is introduced into the seawater electrolysis apparatus 4, subjected to the chlorination by the seawater electrolysis apparatus 4, and stored in a ballast water tank 5. ing.
  • the seawater in the ballast water tank 5 is introduced into the seawater electrolysis device 4, and the chlorination is performed by the seawater electrolysis device 4 to the ballast water tank 5. Circulating.
  • a part of the untreated seawater is branched from the treatment line and introduced into the seawater electrolyzer 4, and the chlorination is performed by the seawater electrolyzer 4. After being circulated to the treatment line, the water is discharged into the sea.
  • untreated seawater is The chlorination treatment is performed by the seawater electrolyzer 4 and then discharged into the sea. 1.
  • a part of untreated seawater is branched from the treatment line and introduced into the seawater electrolyzer 4, where the chlorination is performed by the seawater electrolyzer 4.
  • the treated seawater is further treated with a metal catalyst by a metal catalyst treatment device 31 and then subjected to a trihalomethane treatment with activated carbon by an activated carbon treatment device 32 before being discharged into the sea. .
  • the power source of the seawater electrolysis device 4 is a solar cell and the natural energy of the wind power generation device 33. Using electricity by one.
  • FIG. 48 and FIG. 49 show, in a system diagram, main processing of each of the above embodiments.
  • the examples of (1) to (9) refer to the harmless liquid containing seawater as the treatment liquid in general, and the mechanical crushing of the treatment liquid using the mechanical treatment device 3 (mechanical treatment).
  • Various combinations of killing or disinfecting a wide range of microorganisms by the method described above and chlorination for killing or disinfecting bacteria in the treatment liquid using the seawater electrolysis device 4 are employed.
  • hypooxia is an abbreviation for sodium hypochlorite.
  • the untreated liquid is subjected to a combination of the chlorination and the mechanical white-sharpening treatment to obtain a synergistic effect of the two treatments.
  • the untreated liquid is subjected to the chlorination and then mechanically crushed.
  • the untreated liquid is subjected to chlorination for injecting Cl 2 (chlorine) or “hypoxia”, and then to the mechanical crushing treatment.
  • the untreated liquid is subjected to the same electrolytic cell circulation system as in the fourth embodiment.
  • “hya” is produced by the seawater electrolysis apparatus 4 and injected into the untreated solution, and then subjected to the mechanical crushing treatment.
  • the untreated liquid is formed into a "sub-sub” by the seawater electrolysis apparatus 4 using the electrolytic cell circulation system similar to that of the fourth embodiment, and then into the liquid after the "sub-sub” generation. It has been mechanically crushed.
  • the untreated liquid is subjected to a combination of the above-mentioned chlorination and mechanical crushing, followed by trihalomethane treatment with activated carbon.
  • the untreated liquid is subjected to a combination of the above-mentioned chlorination and mechanical crushing, and then subjected to a treatment with a metal catalyst.
  • the untreated liquid is subjected to a combination of the chlorination and the mechanical crushing treatment, and then to a trihalomethane treatment with activated carbon and a treatment with a metal catalyst in this order.
  • seawater is subjected to a combination of the above-mentioned chlorination and mechanical crushing (including post-treatment), and stored in a ballast water tank.
  • seawater stored in a ballast water tank is subjected to a combination of the chlorination and mechanical crushing (including post-treatment), and then discharged into the sea.
  • the seawater stored in the ballast water tank is subjected to the mechanical treatment and the chlorine treatment together and circulated to the ballast water tank.
  • FIG. 50 is a block diagram showing an apparatus for detoxifying marine ballast water according to a 48th embodiment of the present invention.
  • 100 is a ship navigating the sea 102
  • 5 is a ballast water tank installed in the ship
  • 50 is installed on land 101. Harmless dungeon equipment installed on land.
  • the land-based detoxification facility 50 includes a seawater electrolysis device 4 and a mechanical treatment device 3 as chlorination means.
  • the mechanical treatment device 3 is provided with a perforated plate having a number of small holes perforated in a seawater flow path, and the seawater is generated by turbulence generated when the seawater passes through the plurality of small holes.
  • a perforated plate treatment apparatus configured to damage and kill or sterilize microorganisms is preferable, but the present invention is not limited to such perforated plate treatment apparatuses, and can be used to damage microorganisms in seawater and kill relatives. Alternatively, any material having a sterilizing function may be used.
  • the seawater electrolysis device 4 electrolyzes seawater, generates sodium hypochlorite (hereinafter referred to as hypochlorous acid) from the seawater, and injects it into a seawater treatment line (not shown). Details will be described later.
  • hypochlorous acid sodium hypochlorite
  • 200 is a seawater carry-in path connecting the sea and the seawater inlet of the onshore detoxification facility 50 (either the seawater electrolyzer 4 or the mechanical treatment unit 3), and 210 is the preceding statement
  • the untreated seawater that has passed through the seawater carry-in path 200 is subjected to the detoxification treatment in the order of the mechanical treatment device 3 of the detoxification equipment 50 installed on land 3 and the seawater electrolysis device 4.
  • the harmless treatment may be performed in the reverse order of the seawater electrolysis device 4 ⁇ the mechanical treatment device 3.
  • the untreated seawater that has passed through the seawater carrying channel 200 is introduced into the mechanical treatment device 3.
  • the seawater In the mechanical treatment device 3, when passing the seawater through many small holes, the seawater is damaged or killed by sterilizing the creatures in the seawater.
  • the seawater subjected to the mechanical treatment in the mechanical treatment device 3 is sent to a seawater electrolysis device 4 whose details are shown in FIG. It is.
  • the seawater electrolysis device 4 In the seawater electrolysis device 4, the seawater is subjected to an electrolytic treatment to generate hypochlorous acid and inject it into the seawater.
  • the hypochlorite contained in the treated seawater circulating in the circulation path 47 between the storage tank 43 of the treated seawater and the electrolytic cell 41 is electrolyzed. Since the water is fed into the tank 41, the pH of the seawater supplied to the electrolytic tank 41 is reduced by the hypochlorous acid, thereby preventing the scale from adhering to the electrolytic tank 41.
  • the treated seawater subjected to the detoxification treatment by the seawater electrolysis device 4 and the mechanical treatment device 3 is stored in the ballast water tank 5 in the ship through the seawater discharge passage 210.
  • the microorganism is mainly zooplankton and its cysts, phytoplankton and its cysts, bacteria, fungi, viruses, and other poisonous or pathogenic substances or disrupts the ecosystem. Things.
  • hypochlorous acid used in the embodiment is most preferable, but chlorine, chlorous acid, chloric acid, or ions or salts thereof can be used.
  • the substance having an oxidizing action includes an oxidizing agent such as hydrogen peroxide and ozone in addition to the chlorine-containing substance.
  • the chlorine-containing substance can be added as a chemical from the outside.
  • a filter 20, a backwash line 21, and an opening / closing valve 2 for opening and closing the backwash line 21 as shown in FIG. 59 are used as the detoxification equipment 50 on land.
  • a microorganism separation treatment means 0 20 (indicated by a chain line in FIG. 50) consisting of 2 or the like is additionally provided, and the relatively large microorganisms in the sea water are removed by passing the sea water through a filter 20. You can also. Note that a centrifugal separator may be used instead of the filter 20 or the like.
  • seawater electrolysis device 4 and the microorganism separation treatment means 200 may be combined.
  • a relatively large and wide-ranging microorganism is killed by turbulence generated through seawater in the small holes of the mechanical treatment device 3 provided with the perforated plate having a large number of small holes.
  • the combination of mechanical treatment of seawater by the mechanical treatment device 3 and chlorination by the seawater electrolysis device 4 is further combined with a filter 20 and a backwash line.
  • microbial separation treatment means 0 20 shown by a chain spring in Fig. 1 consisting of an on-off valve 22 that opens and closes 1
  • the pressure loss of the mechanical treatment device 3 can be reduced.
  • the load is reduced.
  • the required power of the mechanical treatment device 3 during the seawater detoxification treatment can be reduced, and the size and the capacity of the device can be reduced.
  • the seawater of hypochlorous acid generated by the seawater electrolysis device 4 can be reduced.
  • the amount of hypochlorous acid to be injected can be reduced because it is only necessary to kill or sterilize bacteria having a large treatment effect.
  • chlorination for killing or disinfecting bacteria using the hypochlorous acid generated in the seawater electrolysis device 4 and killing a relatively large and wide range of microorganisms using the mechanical treatment device 3 Alternatively, by combining with a mechanical treatment for sterilization, the injection amount of hypochlorous acid in chlorination is only the amount necessary to remove bacteria, and the removal of microorganisms and the removal of bacteria by hypochlorous acid are required. The amount of hypochlorous acid injected during detoxification of seawater can be reduced as compared with the case of removal.
  • hypochlorous acid As a result, the amount of residual hypochlorous acid is remarkably reduced, the corrosion of downstream equipment by hypochlorous acid during the detoxification of seawater can be suppressed, and the durability of the equipment can be improved, and hypochlorous acid can be improved. Marine pollution caused by dumping into the sea can be suppressed.
  • the on-site detoxification facility 50 is a chlorine treatment for producing a chlorine-containing substance from seawater and injecting it into seawater to kill or sterilize the microorganisms.
  • a seawater electrolysis apparatus 4 for applying water to seawater, and a mechanical treatment apparatus 3 for applying mechanical processing to the seawater to damage or kill or sterilize microorganisms in the seawater is mounted on the ship 100. .
  • the treated seawater detoxified by the seawater electrolyzer 4 installed on land as the onshore detoxification equipment 50 is connected to the onshore detoxification equipment 50 and the ship interior. Introduced into the mechanical treatment device 3 installed in the ship 100 through the seawater discharge passage 210 connecting the ballast water tank 5 to the treatment device 3 and detoxified by the mechanical treatment device 3 Seawater can be stored in the ballast water tank 5.
  • the hull of the vessel 100 is opened in the sea and provided to the mechanical processing device 3.
  • a marine-side seawater loading channel 290 to be connected is provided.
  • the mechanical treatment device 3 mounted on the ship 100 allows the seawater electrolyzer 4 in the detoxification facility 50 on land to be treated by the seawater electrolysis device 4, and the hull opening into the sea.
  • the seawater introduced through the side seawater carrying channel 29 can be simultaneously detoxified and stored in the ballast water tank 5, whereby a large amount of seawater can be detoxified by a mechanical treatment device having a simple structure.
  • the seawater electrolysis device 4 or the mechanical treatment device 3 is installed on land as a land-based detoxification facility 50, A harmless treatment for killing or disinfecting microorganisms in the treated seawater is performed, and the treated seawater is connected to the land-based detoxification facility 50 and the ballast water tank 5 mounted on the ship 100 in a seawater discharge path. Since it is stored in the ballast water tank 5 through 210, it is not necessary to install at least one of the seawater detoxification treatment facilities such as the seawater electrolysis device 4 and the mechanical treatment device 3 in the hull 100. As a result, the installation space for the harmless processing apparatus for seawater in the vessel 100 can be reduced, and the space for loading cargo and the like can be increased.
  • the onshore detoxification equipment 50 such as seawater electrolysis equipment 4 or mechanical treatment equipment 3 installed on land and the ballast water tank 5 on the ship 100 side are connected to the seawater discharge way 210 By reconnecting every 100, detoxification of the ballast water tanks 5 of a plurality of vessels 100 can be performed by one set (one set) of detoxification equipment 50 on land. As a result, the operation rate of the detoxification facility 50 on land can be increased, and the number of detoxification processing devices installed per ship (100) can be reduced, thereby reducing the installation cost.
  • detoxification equipment such as sea ice electrolysis equipment 4 or mechanical treatment equipment 3 will be installed on land. Since it is installed as an upper facility, it is not necessary to install the detoxification equipment inside the hull of existing vessels 100, and the remodeling of the hull is minimized. However, the cost of installing the hull for installing the detoxifying apparatus can be minimized.
  • a microorganism separation treatment means 200 (indicated by a chain line in FIG. 2) may be mounted on the vessel 100. .
  • the seawater electrolysis device 4, the mechanical treatment device 3, the divergent organism separation treatment means 0 20 may be replaced with the land-based detoxification device 50 or Can be replaced for use on board ship 10.
  • the seawater electrolysis device 4 is mounted on a ship 100, and as a land-based detoxification facility 50, any one of the mechanical treatment device 3 and the microorganism separation treatment means 0200 Or it is also possible to install both.
  • the above-mentioned detoxification facility 50 for land installation is mounted on a vehicle 220 so that the land 101 can be freely used. It is configured to be movable.
  • the land-based detoxification facility 50 of the forty-eighth embodiment is mounted on a vehicle 220 so that the land 101 can move freely.
  • the land-based detoxification facility 50 of the 51st embodiment is mounted on a vehicle 220 so that the land 101 can move freely.
  • the land-based detoxification facility 50 of the fifty-third embodiment is mounted on a vehicle 220 so that the land 101 can move freely.
  • the land-based detoxification facility 50 mounted on the vehicle 220 is freely brought close to the ship 100, and In this way, the harmlessly treated seawater can be stored in the ballast water tank 5 in the ship 100, and the length of the seawater transport line such as the seawater discharge pipe 210 can be minimized. to this Thus, the power of a seawater transfer pump (not shown) can be reduced, and the cost of detoxifying seawater can be reduced.
  • the vehicle The detoxification equipment 50 on land installed on 220 can be freely moved to perform the detoxification treatment of ballast water to each ship 100, and the detoxification treatment of the ballast water can be performed. It can be performed efficiently in a short time.
  • 100 is a ship navigating the sea 102
  • 5 is a ballast water tank installed in the ship
  • 230 is a ship at sea (102).
  • the equipment-mounted vessel movably suspended, 60 is a marine detoxification facility mounted on the equipment-mounted vessel 230.
  • the offshore detoxification facility 60 is composed of a seawater electrolysis device 4 and a mechanical treatment device 3 configured in the same manner as in the above-described 48th to 53rd embodiments.
  • 250 is a seawater carrying-in path for taking in seawater and transporting it to the marine detoxification facility 60; 240 is a ballast water tank 5 in the marine detoxification facility 60 and the vessel 100; And a seawater carrying-out path for conveying the treated seawater treated by the harmless dangling equipment 60 installed on the sea to the ballast water tank 5.
  • the detoxification treatment is performed in the order of the mechanical agitation treatment device 3 and the seawater electrolysis device 4 of the untreated detoxification facility 60 on the untreated seawater passing through the seawater inlet channel 250.
  • the harmless processing may be performed in the reverse order of the seawater electrolysis device 4 ⁇ the mechanical treatment device 3.
  • the untreated seawater that has passed through the seawater carrying channel 250 is introduced into the mechanical treatment device 3.
  • the mechanical treatment device 3 In the mechanical stirrer 3, the same mechanical treatment as that in the 48th to 53rd embodiments is performed, and then sent to the seawater electrolyzer 4. Chlorine treatment similar to that of the 53rd embodiment is performed.
  • the treated seawater detoxified by the seawater electrolysis device 4 and the mechanical treatment device 3 is stored in a ballast water tank 5 in the vessel 100 through a seawater carrying-out channel 240. 101 is land.
  • the seawater electrolysis device 4 and the mechanical treatment device 3 constituting the marine detoxification facility 60 are mounted on a device movably suspended above the sea (102).
  • sea-based detoxification facility 60 detoxification facility for killing or sterilizing microorganisms in untreated seawater is carried out in the sea-based detoxification facility 60, and treated seawater is treated with the sea-based detoxification facility 60 and Vessel 1 Since the water is stored in the ballast water tank 5 through a seawater carrying-out path 240 that connects the innermost water tank 5 to the innermost water tank 5, the seawater detoxification processing equipment such as the seawater electrolyzer 4, the mechanical treatment apparatus 3, etc. Can be floated as the offshore detoxification facility 60, and it is not necessary to install it in the vessel 100. As a result, it is possible to reduce the installation space of the seawater detoxification treatment apparatus on the ship 100, and to increase the mounting space for cargo and the like.
  • the seawater electrolysis device 4 and the mechanical treatment device 3 that constitute the offshore detoxification facility 60 movably suspended on the sea (102), and the ballast water tank 5 on the ship 100 side,
  • one (one set) of detoxification equipment 60 at sea is used for harmless treatment of ballast water tanks 5 of multiple ships 100 It can be performed.
  • the operation rate of the detoxification equipment 60 at sea can be increased, and the number of detoxification processing apparatuses installed per vessel 100 can be reduced, thereby reducing the equipment cost.
  • the detoxification equipment 60 which is installed on the sea, is installed so that it can be moved offshore.
  • the movement of 3 makes it possible to freely approach the ship 100 so that the seawater detoxified by the detoxification facility 60 at sea can be stored in the ballast water tank 5 in the ship 100. This makes it possible to detoxify ballast water very easily and in a short period of time, whether on a berth or on a ship anchored offshore.
  • the seawater detoxification equipment 60 may be a seawater electrolysis device 4, a mechanical treatment device 3, and a microorganism separation treatment means 0 for applying the microorganism separation treatment to the seawater. 20 (indicated by a dashed line in FIG. 7).
  • the seawater electrolysis device 4 is installed as the offshore installation detoxification facility 60, and the microorganism separation treatment means 0 20 is installed together with the mechanical treatment device 3 on the ship 1. It is also possible to configure so as to be mounted on 0 0.
  • the seawater electrolysis device 4, the mechanical treatment device 3, and the microbial separation treatment means 0 20 may be replaced with the marine detoxification device 60 or the ship 100. it can.
  • the seawater electrolysis device 4 is mounted on a ship 100, and as the marine-installed detoxification facility 60, any one of the mechanical treatment device 3 and the microorganism separation treatment means 0200 Or it is also possible to install both.
  • the marine-installed detoxification facility 60 comprises a seawater electrolysis device 4 and a mechanical treatment device 3 as in the 54th embodiment, and the mechanical treatment device Another mechanical processing device 3 similar to 3 is mounted on the vessel 100.
  • Seawater is introduced into another mechanical treatment device 3 in the vessel 100 through the seawater discharge channel 240.
  • the treated seawater detoxified again by the other mechanical treatment device 3 can be stored in the ballast water tank 5.
  • the vessel # of the vessel 100 A hull-side seawater carrying channel 29 connected to the mechanical treatment device 3 is provided.
  • the seawater electrolysis device 4 and the mechanical treatment device in the harmless installation 60 at sea are provided by another mechanical treatment device 3 mounted on the ship 100.
  • the treated seawater in step 3 and the seawater introduced through the hull-side seawater carrying-in path 29 opening into the sea can be simultaneously detoxified and stored in the ballasted water tank 5, thereby providing a machine with a simple structure
  • a large amount of seawater can be detoxified by a conventional treatment device.
  • Other configurations are the same as those of the above-mentioned 55th embodiment (FIG. 57), and the same components are denoted by the same reference numerals.
  • the other functions and effects of the 56th embodiment are the same as those of the 54th embodiment.
  • the chlorinating means is configured as a seawater electrolysis apparatus 4 of an electrolytic tank circulation type as shown in FIG. 4, but the present invention is not limited to this, and a chlorine-containing substance is produced from seawater. What is necessary is just to have the chlorination function which inject
  • One of them is a means for adding a substance having an oxidizing effect to the seawater by an oxidizing substance adding means (not shown).
  • an oxidizing agent such as hydrogen peroxide and ozone can be used in addition to the chlorine-containing substance.
  • ADVANTAGE OF THE INVENTION According to this invention, equipment cost and operation cost are reduced, and it is possible to surely kill or sterilize microorganisms of any size without reducing the strength of the processing liquid container such as a hull.
  • Installation space for detoxification equipment for ballast water on ships has been reduced to increase the mounting space for cargo, etc., and also for existing ships, the cost of remodeling the hull for installing such detoxification equipment is minimal. It is possible to provide a method and an apparatus for detoxifying a liquid such as ballast water, which can be suppressed to a minimum.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Public Health (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Physical Water Treatments (AREA)
  • Water Treatment By Sorption (AREA)
  • Filtration Of Liquid (AREA)

Abstract

 本発明は、未処理液体中の微生物を除去して清浄で無害な処理液体に転換するにあたり、液体中の微生物に損傷を与え殺滅又は殺菌する機械的処理と液体から塩素含有物質を生成し液体中に注入して微生物を殺滅又は殺菌する塩素処理とを組み合わせた処理を液体に施すとともに、海水搬入路を通して導入された海水に陸上設置あるいは海上設置の無害化設備にて海水中の微生物を殺滅又は殺菌する無害化処理を施し、処理海水をバラスト水タンクに収容するように構成することにより、設備及び運転コストが低減され、かつ処理液体収容体側の強度低下をもたらすことなく、あらゆる大きさの微生物の殺滅又は殺菌を確実になし得、さらには船舶におけるバラスト水の無害化処理装置の設置スペースを低減して貨物等の搭載スペースを増大可能とし、既存の船舶に対しても無害化処理装置設置のための船体改造コストを最少限に抑制可能としたことを特徴とする。

Description

明 細 書 発明の名称
液体の無害化処理方法及びその装置 技術分野
本発明は、 主として、 未処理の海水中の微生物を除去して清浄な処理海水にし てバラスト水タンクに収容する時、 又はバラスト水タンクに収容した未処理の海 水を航海中に清浄な処理海水にする時、 又はバラスト水タンクより未処理の海水 を清浄な処理海水にして排水する時に行うバラスト水処理に適用され、 未処理の 液体に機械的処理及び塩素処理を施して、 該液体中の微生物を除去して清浄な処 理液体に転換する液体の無害化処理方法及びその装置に関する。 背景技術
タンカー等の船舶において、 オイルを搭載しない状態での航行時に、 バラスト 水タンクに収容する海水即ちバラスト水は、 海洋汚染や公害の発生を回避するた め、 未処理の海水中の; [教生物を除去して清浄な処理海水にするための無害化処理 が施こされている。
かかる海水の無害化処理方法として、 特許第 2 7 9 4 5 3 7号公報、 特開 2 0 0 2 - 1 9 2 1 6 1号公報、 特開 2 0 0 3— 2 0 0 1 5 6号公報の技術が提供さ れている。
特許第 2 7 9 4 5 3 7号公報の技術においては、 バラスト水タンクを空または 底部に水が残った状態にした後、 該バラスト水タンク内に残存する沈澱物を昇温 させ、 有害プランクトンや細菌の死滅温度以上の温度に加熱し、 所定時間保持し ている。
特開 2 0 0 2— 1 9 2 1 6 1号公報の技術においては、 バラスト水タンク内の バラスト水中に高電圧パルスを印加し、 有害微生物に直接高電圧パルスを印加し てその内部で放電を起して、 該有害微生物を殺滅又は殺菌し、 あるいは電極間の アーク放電による衝撃波で間接的に該有害微生物を殺滅又は殺菌している。 特開 2003— 200156号公報の技術においてはソ°イブ内流路の途中に、 複数の細長いスリットを有するスリット板を横断面方向に取り付け、 未処理液体 . を該スリットを通過させることにより、 前記未処理液体の微生物に損傷を与え殺 滅又は殺菌するようにしている。
特許第 2794537号公報の技術にあっては、 パラスト水タンクを空または 底部に水が残った状態とするため、 局部的な応力集中により船体に損傷を与える 危険性がある。 また、 バラスト水タンク底部全体に溜まった沈澱物を昇温させる ように広範囲にバラス 1、水タンクを加熱するので、 加熱 ί乍業に時間と手間が掛か り処理コストが高くなる。
また、 特開 2002— 192161号公報の技術にあっては、 大掛かりな高電 圧パルス印加設備を必要とするため、 設備コスト及び運 コストが高くなる。 さらに、 特開 2003— 200156号公報にあってま、 未処理液体をスリッ トを通過させることにより、サイズの大きな微生物は殺滅; Xは殺菌可能であるが、 サイズの小さな細菌類を殺滅又は殺菌するのは困難である。
また、 前記各先行技術において、 特許第 2794537号公報、 特開 2002 -192161号公報ともに、 バラスト水の無害化処理装置を全て船舶に搭載し ているので、 船体内における該無害化処理装置の設置スペースが大きくなり、 貨 物等の搭載スペースが抑制される。
また特許第 2794537号公報、 特開 2002— 192161号公報の技術 にあっては、 かかる無害化処理装置を既存の船舶に設置するには、 該無害化処理 装置を設置するための船体内の大幅な改造が必要となり、 改造コス卜が嵩む。 従って、 本発明はかかる従来技術の課題に鑑み、 設備コスト及び運転コストが 低減され、 かつ船体等の処理液体収容体側の強度低化を feたらすことなく、 あら ゆる大きさの微生物の殺滅又は殺菌を確実になし得る液体の無害化処理方法及び その装置を提供することを第 1の目的とする。
また本発明の第 2の目的は、 設備コスト及び運転コス卜が低減され、 かつ船体 側の強度低下をもたらすことなく、 あらゆる大きさの微生物の殺滅又は殺菌を確 実になし得、 さらには船舶におけるバラスト水の無害化処理装置の設置スペース を低減して貨物等の搭載スペースを増大可能とし、 力 ^つ既存の船舶に対しても該 無害化処理装置設置のための船体内の改造コストを最少限に抑制可能とした海水 無害化処理装置を提供することにある。 発明の開示
本発明は、 かかる目的を達成するため、 未処理の液体中の微生物を除去して清 浄な処理液体に転換する液体の無害化処理方法において、 前記液体に、 該液体中 の前記微生物に損傷を与え殺滅又は殺菌する機械的処理と、 該液体から塩素含有 物質を生成し該液体中に注入して前記微生物を殺滅又は殺菌する塩素処理または 前記液体に酸化作用を有する物質を添加する酸化物質添加処理のいずれか一方の 処理とを施し、 処理液体を処理液体タンクに収容することを特徴とする。
かかる方法発明において、 好ましくは次のように構成する。
前記塩素処理は、 前記液体の全部または一部を貯留タンクに導入し、 該液体を 前記貯留タンクと該液体を電気分解して塩素含有物質を生成する電解槽との間の 循環路を循環させる電解槽循環方式により行う。
また本発明は、 前記方法を実施する装置として、 未処理の海水を含む未処理の 液体中の微生物を除去して清浄な処理液体に転換するように構成された液体の無 害化処理装置において、 前記液体中の微生物に損傷を与え殺滅又は殺菌する機械 的処理を該液体に施す機械的処理装置と、 前記液体に酸化作用を有する物質を添 加する酸化物質添加手段あるいは前記液体から塩素含有物質を生成し該液体中に 注入して前記微生物を殺滅又は殺菌する塩素処理を該液体に施す塩素処理手段の いずれか 1つと、 前記機械的処理装置及び酸ィヒ物質添加手段あるいは塩素処理手 段による処理後の処理液体を収容する処理液体タンクとを併設したことを特徴と する液体の無害化処理装置を提案する。
かかる液体の無害ィ匕処理装置において、 好ましくは次のように構成する。 前記塩素処理手段は、 前記液体の全部またはー咅 ^を貯留する貯留夕ンクと該液 体を電気分解して塩素含有物質を生成する電解槽とを備えて前記液体を前記貯留 タンクと電解槽との間の循環路を循環させる電解槽循環方式による処理を前記液 体に施すように構成された液体電解装置からなる。
かかる発明において、前記微生物とは、主に動物プランクトン及びそのシスト、 植物プランクトン及びそのシスト、 細菌類、 菌類、 ウィルスなど、 毒を有するも のや病原性のあるもの又は生態系を乱すものである。
また前記無害化処理とは、 主に海洋汚染を起こしたり人間及び魚介類に被害を もたらしたり生態系を破壊するこれら微生物を殺滅又は殺菌又は除去することで ある。
前記塩素含有物質は、 塩素、 次亜塩素酸、 亜塩素酸、 塩素酸またはこれらのィ オンや塩で構成するのが好ましく、 特に次亜塩素酸が最も好適である。
また、 前記酸化作用を有する物質は、 過酸化水素、 オゾン等の酸化剤も含む。 尚、 前記塩素含有物質は、 外部から薬品として添加してもよい。
かかる発明によれば、 前記機械的処理は内径 0 . 5 mm程度の多数の小孔が穿 孔されたスリット板を液体流路中に設けて、 該液体を前記小孔内を通過させるよ うに構成するのが好適であり、 かかる機械的処理によって甲殻を有するような比 較的大きな微生物を含む広範囲の微生物に損傷を与えて殺滅又ま殺菌するととも に、 前記液体に、 塩素、 次亜塩素酸、 亜塩素酸、 塩素酸またはこれらのイオンや 塩等で構成した塩素含有物質を注入する塩素処理や酸化作用を有する物質の添加 処理を施すことによりサイズの小さい細菌類を殺滅又は殺菌するという、 機械的 処理による比較的大きな広範囲の微生物の殺滅又は殺菌と塩素処理によるサイズ の小さい細菌類の殺滅又は殺菌とを 1つの液体処理系で組み合せることにより、 あらゆる大きさの微生物の殺滅又は殺菌を確実になすことができる。
従って、 かかる発明によれば、 比較的大きな広範囲の微生物を殺滅又は殺菌す る機械的処理とサイズの小さい細菌類を殺滅又は殺菌する塩素処理とを組み合わ せることにより、 あらゆる大きさの微生物の殺滅又は殺菌を確実になすことがで きるとともに、 前記機械的処理と塩素処理や酸化作用を有する物質の添加処理と を組み合わせることにより機械的処理の負荷が軽減され圧力損失が減少し、 機械 的処理の所要動力を低減できて装置を小型、 小容量化でき、 さらには塩素処理で は、 殺滅殺菌効果の高い細菌類の殺滅又は殺菌を主体的に行えばよいので塩素、 次亜塩素酸、 亜塩素酸、 塩素酸等の塩素含有物質の注入量を低減できる。
これにより、 液体中の微生物を除去する無害化処理システムの設備コスト及び 運転コストを低減して、 液体中の微生物を確実に除去可能な液体の無害化処理シ 運転コストを低減して、 液体中の微生物を確実に除去可能な液体の無害化処理シ ステムを提供できる。 ― また、 前記塩素含有物質のうち、 最も好適である次亜塩素酸を用いる場合は、 比較的大きな広範囲の微生物を殺滅又は殺菌する機械的処理と組み合わせること により、 該次亜塩素酸の注入量は細菌類を除去するに必要な量だけで済み、 従来 技術のように該次亜塩素酸で微生物の除去と細菌類の除去とを行う場合に比べて 該次亜塩素酸の注入量を低減できる。
これにより、 残留する該次亜塩素酸による後段側機器の腐蝕を抑制でき、 該機 器類の耐久性を向上できるとともに、該次亜塩素酸による海洋汚染を抑制できる。 また、 かかる発明において、 前記液体電解装置を用いての電解槽循環方式によ る処理は、 次のようにして施すのがよい。
•前記電解槽循環方式による処理を機械的処理の前工程またま後工程のいずれ かにおいて施す。
•前記電解槽循環方式による処理液体を、 前記循環路の途中から抽出して前記 機械的処理の前工程または後工程のいずれかにおいて液体中に注入する。
このように構成すれば、 循環路を循環する処理液体中に含有される塩素含有物 質特に次亜塩素酸を電解槽に送り込むので、 該次亜塩素酸によつて電解槽供給液 の ρ Ηを下げることにより、 電解槽におけるスケールの付着を防止できる。
また、 かかる発明において好ましくは、 前記機械的処理及び塩素処理を施した 後の海水等の処理液体に、 活性炭による処理あるいは金属触媒による処理のいず れか一方または双方を施す。
あるいは、 前記機械的処理及び塩素処理を施した後の処理海水に、 活性炭によ る処理あるいは金属触媒による処理のいずれか一方または双方を施す。
このように構成すれば、前記機械的処理及び塩素処理を施した後の処理液体に、 活性炭による処理を施せば、 該活性炭によるトリハロメタン処理によって、 塩素 処理を施した後の処理液体に発生し易い発ガン性物質を除去することが可能とな る。
また、 前記金属触媒としては、 M n, T c , R e , VIIA族元素、 あるいは、 F e, C o , N i, R u , R h , P d , O s , I r , P t等の VIII族元素のうち、 1種以上を含む金属または化合物が好適である。
前記金属触媒を施せば、 塩素処理を施した後に残留する H C 1〇を前記金属触. 媒で還元することにより、 塩素処理後の処理液体を無害化できる。
そして、 前記機械的処理及び塩素処理を施した後の処理液体に、 活性炭による 処理及び金属触媒による処理液体に発生し易い発ガン性物質を除去処理を併せて 施せば、 塩素処理を施した後の処理液体から、 活性炭により発ガン性物質を除去 するとともに、金属触媒により塩素処理後の残留 H C 1〇を還元して無害化でき、 処理液体の無害化、 清浄化をより向上できる。
また本発明は、 未処理の液体中の微生物を除去して清浄な処理液体に転換する 液体の無害化処理方法において、 前記液体をフィルター等に通すろ過法又は遠心 分離法により該液体中の比較的大きな前記微生物を除去する微生物分離処理と、 前記液体から塩素含有物質を生成して該液体中に注入し前記微生物を殺滅又は殺 菌する塩素処理または前記液体に酸ィヒ作用を有する物質を添加する酸化物質添加 処理のいずれか一方の処理とを施し、 処理液体を処理液体夕ンクに収容すること を特徴とする。
あるいは本発明は、 海水中の微生物を除去して清浄な処理海水に転換する海水 の無害化処理方法において、 前記海水をフィルタ一等に通すろ過法又は遠心分離 法により該液体中の比較的大きな前記微生物を除去する微生物分離処理と、 前記 海水から塩素含有物質を生成して該海水中に注入し前記微生物を殺滅又は殺菌す る塩素処理または前記海水に酸化作用を有する物質を添加する酸ィ匕物質添加処理 のいずれか一方の処理とを施し、 処理海水をバラスト水タンクに収容することを 特徴とする。
また本発明は、 前記方法を実施する装置として、 未処理の海水を含む未処理の 液体中の微生物を除去して清浄な処理液体に転換するように構成された液体の無 害化処理装置において、 前記液体をフィル夕一等に通すろ過法又 ^ま遠心分離法に より該液体中の比較的大きな前記微生物を除去する微生物分離装置と、 前記液体 から塩素含有物質を生成し該液体中に注入して前記微生物を殺滅又は殺菌する塩 素処理を施す塩素処理手段または前記液体に酸化作用を有する物質を添加する酸 化物質添加手段のいずれか一方と、 前記機械的処理装置及び塩素処理手段あるい は酸化物質添加手段による処理後の処理液体を収容する処理液体夕ンクとを併設 したことを特徴とする液体の無害化処理装置を提案する。 . かかる発明によれば、 前記ろ過法又は遠心分離法による微生物分離処理と、 該 処理後の処理液体に酸化作用を有する物質を添加し微生物を殺滅又は殺菌する処 理とを併せて施すことにより、 微生物の処理機能が向上する。 また、 フィルター のメッシュを微生物除去の最適メッシュに選定することにより、 比較的大きな広 範囲の微生物を確実に捕獲し除去できて、 逆洗等により捕獲後の処理も簡単にで さる。
かかる発明において、 好ましくは、 前記微生物分離処理の前工程または後 IT程 のいずれかに、 機械的処理装置により、 該液体中の微生物に損傷を与え殺滅又は 殺菌する機械的処理を施す。
このように構成すれば、 前記ろ過法又は遠心分離法による微生物分離処理と他 の機械的処理とを併せて施すことにより、微生物の処理機能が向上するとともに、 塩素処理の負荷を低減できる。
また本発明は、 海水中の微生物を除去して清浄な処理海水に転換する海水の無 害化処理方法において、 前記海水に、 該海水中の前記微生物に損傷を与え殺滅又 は殺菌する機械的処理と、 該海水から塩素含有物質を生成し該海水中に注入して 前記微生物を殺滅又は殺菌する塩素処理または前記海水に酸化作用を有する物質 を添加する酸化物質添加処理のいずれか一方の処理とを施し、 処理海水をバラス ト水タンクに収容することを特徴とする。 '
前記酸化物質添加処理における酸ィ匕作用を有する物質は、 前記塩素含有物質の ほかに、 過酸化水素、 オゾン等の酸化剤も含む。
かかる発明において好ましくは、 前記塩素処理は、 前記海水の全部または一部 を貯留タンクに導入し、 該海水を前記貯留タンクと該液体を電気分解して塩素含 有物質を生成する電解槽との間の循環路を循環させる電解槽循環方式により行う。 また、 かかる発明において、 前記海水に前記機械的処理を施して前記バラスト 水タンクに搬送される処理海水の全部または一部に前記塩素処理を施し、 該塩素 処理により生成された前記塩素含有物質を、 前記機械的処理の前工程または後ェ 程のいずれかにおいて前記海水中に注入するのがよい。 かかる発明によれば、 例えば多数の小孔が穿孔されたスリット板の該多数の小 孔内を海水を通過させることにより発生した乱流によって比較的大きな広範囲の. 微生物を殺滅又は殺菌する機械的処理と、 酸化作用を有する物質の添加処理ある いは塩素含有物質を海水中に注入して細菌類を殺滅又は殺菌する塩素処理とを組 み合わせることにより、 海水中のあらゆる大きさの微生物の殺滅又は殺菌を確実 になすことができるとともに、 海水の機械的処理と塩素処理とを組み合わせるこ とにより機械的処理の圧力損失の減少が可能となり負荷が軽減される。
これにより、 海水無害化処理時における機械的処理の所要動力を低減できて、 装置を小型、 小容量化でき、 さらには酸化作用を有する物質の添加処理あるいは 塩素処理では、 細菌類の殺滅又は殺菌のみを行えばよいので、 過酸化水素、 ォゾ ン、 あるいは塩素、 次亜塩素酸、 亜塩素酸、 塩素酸等の塩素含有物質の注入量を 低減できる。
また、 海水中の微生物を除去する無害化処理システムの設備コスト及び運転コ ストを低減して、 海水中の微生物を確実に除去可能な液体の無害化処理システム を提供できる。
また、塩素処理における前記塩素含有物質のうち、次亜塩素酸を用いる場合は、 比較的大きな広範囲の微生物を殺滅又は殺菌する機械的処理と組み合わせること により、 該次亜塩素酸の注入量はサイズの小さい細菌類を除去するに必要な量だ けで済み、 該次亜塩素酸で微生物の除去と細菌類の除去とを行う場合に比べて、 海水無害ィヒ処理時における該次亜塩素酸の注入量を低減できる。
これにより、 残留する該次亜塩素酸濃度を著しく低減することが可能となり、 海水無害ィ匕処理時における該次亜塩素酸による後段側機器の腐蝕を抑制でき、 該 機器類の耐久性を向上できるとともに、 該次亜塩素酸の海中投棄による海洋汚染 を抑制できる。
また、 かかる発明において、 電解槽循環方式による処理は、 次のようにして施 すのがよい。 '
•前記電解槽循環方式による処理を前記機械的処理の前工程または後工程の ずれかにおいて施す。
•前記電解槽循環方式による処理液体を、 前記循環路の途中から抽出して前言 3 機械的処理の前工程または後工程のいずれかにおい ~T海水中に注入する。
このように構成すれば、 処理海水の貯留タンクと ¾解槽との間の循環路を循環 . する処理海水中に含有される塩素含有物質特に次亜 素酸を電解槽に送り込むの で、 該次亜塩素酸によって電解槽供給海水の Ρ Ηを げることにより、 電解槽に おけるスケールの付着を防止できる。
また、 かかる発明において好ましくは、 前記海水 塩素処理の電源に、 太陽電 池、 風力発電電力等の自然エネルギーによる電力を月いる。
このように構成すれば、 海水の塩素処理の電源に自然エネルギーを利用できる ので、 塩素処理の処理コストを低減できるとともに、 船舶の航行中においても船 舶内の動力を極力使用することなくバラスト水の無 ¾化が可能となる。
また本発明は、 バラスト水タンク内に収容された 水中の微生物を除去して該 海水を清浄な処理海水に転換する海水の無害化処理:^法において、 前記海水に、 該海水中の前記微生物に損傷を与え殺滅又は殺菌する機械的処理と、 該海水から 塩素含有物質を生成し該海水中に注入して前記微生 を殺滅又は殺菌する塩素処 理または前記海水に酸化作用を有する物質を添加す 酸化物質添加処理のいずれ か一方の処理とを施し、 処理海水を前記バラスト水:^ンク外に排出することを特 徴とする。
かかる発明によれば、 船舶への荷積み時にバラス ト水をバラスト水タンクから 海中に戻す前に、 該バラスト水タンク内において前 機械的処理と塩素処理また は酸化物質添加処理とを併せて施すことにより、 完全に無害化したバラスト水を 海中に排水できる。
また本発明は、 バラスト水タンク内に収容された 水中の微生物を除去して該 海水を清浄な処理海水に転換する海水の無害化処理:^法において、 前記海水に、 該海水中の前記微生物に損傷を与え殺滅又は殺菌する機械的処理と、 該海水から 塩素含有物質を生成し該海水中に注入して前記微生^;を殺滅又は殺菌する塩素処 理または前記^水に酸ィヒ作用を有する物質を添加する酸化物質添加処理のいずれ か一方の処理とを施した後、該バラスト水タンクに鐘環させることを特徴とする。 かかる発明によれば、 船舶の航行中においても、 ノ ラスト水タンク内の処理海 水に機械的処理と塩素処理または酸化物質添加処理とを併せて施すことによりパ ラスト水を無害化できるので、バラス卜水排水時の無害化処理時間を短縮できる。 また、 かかる発明において好ましくは、 前記塩素処理を施した後の処理液体の. 残留塩素量を計測する残留塩素計を備え、 前記塩素処理手段は前記残留塩素計に よる残留塩素量の計測値に基づき前記塩素処理における塩素含有物質の生成量を 制御するように構成されてなる。
このように構成すれば、 処理液体中の残留塩素量 (塩素濃度) の計測値に基づ き塩素処理における電解電流値を制御可能となって、 処理液体への塩素含有物質
(特に次亜塩素酸) の注入量を正確に目標値に制御でき、 該塩素含有物質の処理 コストを最少限に抑えて所要の殺菌処理を行うことができる。
本発明によれば、 比較的大きな広範囲の微生物を殺滅又は殺菌する機械的処理 とサイズの小さい細菌類を殺滅又は殺菌する塩素処理あるいは酸化作用を有する 物質の添加処理とを組み合わせることにより、 あらゆる大きさの微生物の殺滅又 は殺菌を確実になすことができる。
また、 前記機械的処理と塩素処理あるいは酸化作用を有する物質の添加処理と を組み合わせることにより、 機械的処理の負荷が軽減され圧力損失の減少が可能 となり機械的処理の所要動力を低減できて装置を小型、 小容量化できる。 さらに は前記塩素処理では、 処理効果の大きい細菌類の殺滅又は殺菌を主体的に行えば よいので、 塩素、 次亜塩素酸、 亜塩素酸、 塩素酸等の塩素含有物質の注入量を低 減できる。
これにより、 液体中の微生物を除去する無害化処理システムの設備コスト及び 運転コストを低減して、 液体中の微生物を確実に除去可能な液体の無害ィヒ処理シ ステムを提供できる。
また本発明によれば、 バラスト水タンク内に収容された海水中の微生物を除去 して処理海水を海中に排水する際には、 該バラスト水タンク内において前記機械 的処理と塩素処理または酸ィ匕物質添加処理とを併せて施すことにより、 完全に無 害ィ匕したバラスト水を海中に排水できる。
また、 バラスト水タンク内の海水を循環させながら前記機械的処理と塩素処理 ま.たは酸ィ匕物質添加処理とを併せて施すことにより、 船舶の航行中においてもバ ラスト水の無害化処理を実施できることとなり、 バラスト水排水時の無害化処理 時間を短縮できる。
また本発明によれば、 前記塩素含有物質のうち、 最も好適である次亜塩素酸を. 用いる場合は、 比較的大きな広範囲の微生物を殺滅又は殺菌する機械的処理と組 み合わせることにより、 該次亜塩素酸の注入量は細菌類を除去するに必要な量だ けで済み、 該次亜塩素酸で微生物の除去と細菌類を除去とを行う場合に比べて該 次亜塩素酸の注入量を低減できる。
これにより、 残留する次亜塩素酸による後段側機器の腐蝕を抑制でき、 機器類 の耐久性を向上できるとともに、 次亜塩素酸による海洋汚染を抑制できる。
また本発明は、 海水中の微生物を除去して清浄な処理海水に転換する海水の無 害化処理装置において、 陸上に設置されて前記海水中の微生物を殺滅又は殺菌す る陸上設置無害ィ匕設備と、 船舶に搭載されたバラスト水タンクと、 前記海水を取 水して前記陸上設置無害化設備に搬送する海水搬入路と、 前記陸上設置無害化設 備にて処理された海水を前記バラスト水タンクに搬送する海水搬出路とを備え、 前記海水搬入路を通して導入された海水に前記陸上設置無害化設備にて該海水中 の微生物を殺滅又は殺菌する無害化処理を施し、 該処理海水を前記海水搬出路を 通して前記バラス卜水タンクに収容するように構成されたことを特徴とする。 かかる発明において、 好ましくは、 前記陸上設置無害化設備を、 前記海水から 塩素含有物質を生成して該海水中に注入し前記微生物を殺滅又は殺菌する塩素処 理を該海水に施す塩素処理手段または前記海水に酸化作用を有する物質を添加す る酸化物質添加手段のいずれか 1つ、 あるいは前記海水中の微生物に損傷を与え 殺滅又は殺菌する機械的処理を該海水に施す機械的処理装置のどちらかにより構 成するとともに、 残る一方の処理手段を前記船舶に搭載し、 前記陸上設置無害化 設備を構成する塩素処理手段または酸化物質添加手段のいずれか、 あるいは前記 海水中の微生物に損傷を与え殺滅又は殺菌する機械的処理を該海水に施す機械的 処理装置での処理海水を前記海水搬出路を通して船舶内の残る一方の処理手段に 導入 ύ 該機械的処理装置による処理を施して前記パラスト水タンクに収容する ように構成する。
また、 かかる発明において、 好ましくは、 前記陸上設置無害化設備を、 前記海 水から塩素含有物質を生成して該海水中に注入し前記微生物を殺滅又は殺菌する 塩素処理を該海水に施す塩素処理手段または前記海水に酸化作用を有する物質を 添加する酸化物質添加手段のいずれか 1つと、 前記海水をフィルタ等に通すろ過. 法又は遠心分離法により該海水中の比較的大きな前記微生物を除去する微生物分 離処理手段とにより構成し、 前記塩素処理手段または酸化物質添加手段のいずれ か及び前記微生物分離処理手段により処理された処理海水を前記海水搬出路を通 して前記バラス卜水タンクに収容するように構成する。
かかる発明によれば、 陸上に設置された陸上設置無害化設備として、 前記塩素 処理手段または酸化物質添加手段のいずれか 1つあるいは機械的処理装置、 ある いは前記海水をフィルタ等に通すろ過法又は遠心分離法により該海水中の比較的 大きな前記微生物を除去する微生物分離処理手段を陸上に設置し、 該陸上設置無 害化設備において未処理海水中の微生物を殺滅又は殺菌する無害化処理を行い、 処理海水を、 該陸上設置無害化設備と船舶に搭載されたバラスト水タンクとを接 続する海水搬出路を通して該バラスト水タンクに収納するので、 前記塩素処理手 段または酸化物質添加手段、 機械的処理装置、 微生物分離処理手段等の海水の無 害化処理設備を船体内に設置する必要がなく、 船舶における海水の無害化処理装 置の設置スペースを低減できて、 貨物等の搭載スペースを増大することが可能と なる。
また、 陸上に設置された塩素処理手段または酸化物質添加手段のいずれか 1つ あるいは機械的処理装置、 微生物分離処理手段等の陸上設置無害化設備と船舶側 のバラスト水タンクとを、海水搬出路を船舶毎に繋ぎ変えることにより、 1台( 1 セット) の陸上設置無害化設備により複数の船舶のバラスト水タンクについての 無害化処理を行うことができ、 陸上設置無害化設備の稼動率を上昇できるととも に船舶 1隻あすこりの無害化処理装置の設置数を少なくできて装置コストを低減で さる。
さらには、 塩素処理手段または酸化物質添加手段のいずれか 1つあるいは機械 的処理装置、 生物分離処理手段等の無害化処理装置を陸上設備として設置する ので、 既存の船舶に対しても船体内に該無害化処理装置を新たに設置するのが不 要となるとともに船体内の改造が最少限で済み、 該無害化処理装置設置のための 船体内設置コストを最少限に抑制できる。 そして、 かかる発明において、 具体的には次のように構成するのがよい。
( 1 ) 前記陸上設置無害ィ匕設備を、 海水から塩素含有物質を生成して該海水中. に注入し前記微生物を殺滅又は殺菌する塩素処理を該海水に施す塩素処理手段ま たは前記海水に酸化作用を有する物質を添加する酸化物質添加手段のいずれか 1 つと、 前記海水中の微生物に損傷を与え殺滅又は殺菌する機械的処理を該海水に 施す機械的処理装置あるいは前記海水をフィルタ等に通すろ過法又は遠心分離法 により該海水中の比較的大きな前記微生物を除去する微生物分離処理手段の一方 または双方により構成する。
このように構成することにより、 陸上設置無害化設備として陸上に設置された 前記塩素処理手段または酸化物質添加手段のいずれか及び前記機械的処理装置に より無害化処理された処理海水を、 該陸上設置無害化設備と船舶内のバラスト水 タンクとを接続する海水搬出路を通して該バラスト水タンクに収容することがで きる。
( 2 ) 前記陸上設置無害ィ匕設備を、 海水から塩素含有物質を生成して該海水中 に注入し前記微生物を殺滅又は殺菌する塩素処理を該海水に施す塩素処理手段ま たは前記海水に酸化作用を有する物質を添加する酸化物質添加手段のいずれか 1 つにより構成し、 海水中の微生物に損傷を与え殺滅又は殺菌する機械的処理を該 海水に施す機械的処理装置あるいは前記海水をフィルタ等に通すろ過法又は遠心 分離法により該海水中の比較的大きな前記微生物を除去する微生物分離処理手段 の一方または双方を前記船舶に搭載する。
このように構成することにより、 陸上設置無害化設備として陸上に設置された 前記塩素処理手段または酸化物質添加手段のいずれかにより無害化処理された処 理海水を、 該陸上設置無害化設備と船舶内のバラスト水タンクとを接続する海水 搬出路を通して、 船体内の搭載された機械的処理装置、 あるいは微生物分離処理 手段に導入し、 該機械的処理装置において無害化処理された処理海水を、 バラス ト水タンクに ¾容することができる。
( 3 ) 前記船舶の船体に、 海中に開口して前記機械的処理装置に接続される船 体側海水搬入路を設ける。
このように構成することにより、 船舶に搭載された機械的処理装置あるいは微 生物分離処理手段によって、 陸上設置無害化設備における塩素処理手段または酸 化物質添加手段のいずれかでの処理海水、 及び海中に開口する船体側海水搬入路. を通して導入された海水を同時に無害化処理してバラスト水タンクに収容するこ とができる。 これにより、 簡単な構造の機械的処理装置あるいは微生物分離処理 手段によって多量の海水を無害ィヒ処理できる。
ここで、 かかる発明において、 前記微生物とは、 主に動物プランクトン及びそ のシスト、 植物プランクトン及びそのシスト、 細菌類、 菌類、 ウィルスなど、 毒 を有するものや病原性のあるもの又は生態系を乱すものである。
また前記無害化処理とは、 主に海洋汚染を起こしたり人間及び魚介類に被害を もたらしたり生態系を破壌するこれら微生物を殺滅又は殺菌又は除去することで ある。
前記塩素含有物質は、 塩素、 次亜塩素酸、 亜塩素酸、 塩素酸またはこれらのィ オンや塩で構成するのが好ましく、 特に次亜塩素酸が最も好適である。
また、前記酸化作用を有する物質は、前記塩素含有物質のほかに、過酸化水素、 オゾン等の酸化剤も含む。
尚、 前記塩素含有物質は、 外部から薬品として添加してもよい。
そして、 かかる発明において、 前記機械的処理装置は、 内径 0 . 5 mm程度の 多数の小孔が穿孔されたスリット板を液体流路中に設けて構成するのが好適であ り、該機械的処理装置においては、海水を前記小孔内を通過させることによって、 甲殻を有するような比較的大きな微生物を含む広範囲の微生物に損傷を与えて殺 滅又は殺菌する。
また、 前記塩素処理手段においては、 塩素、 次亜塩素酸、 亜塩素酸、 塩素酸ま たはこれらのィォンゃ塩等で構成した塩素含有物質を海水に注入し、 酸化物質添 加手段においては酸ィヒ作用を有する物質を海水に添加することにより、 サイズの 小さい細菌類を殺滅又は殺菌する。
従って、 このように構成すれば、 機械的処理装置あるいは微生物分離処理手段 による比較的大きな広範囲の微生物の殺滅又は殺菌と、 塩素処理手段あるいは酸 化物質添加手段によるサイズの小さい細菌類の殺滅又は殺菌とを、 1つの液体処 理系で組み合せることにより、 あらゆる大きさの微生物の殺滅又は殺菌を確実に なすことができる。
また、 前記機械的処理あるいは微生物—分離処理手段と塩素処理や酸化作用を有 . する物質の添加処理とを組み合わせることにより、 機械的処理装置の負荷が軽減 されて圧力損失が減少し、 機械的処理装置の所要動力を低減できて装置を小型、 小容量化でき、 さらには塩素処理では、 殺滅殺菌効果の高い細菌類の殺滅又は殺 菌を主体的に行えばよいので塩素、 次亜塩素酸、 亜塩素酸、 塩素酸等の塩素含有 物質の注入量を低減できる。
これにより、 液体中の微生物を除去する無害ィ匕処理システムの設備コスト及び 運転コストを低減して、 液体中の微生物を確実に除去可能な液体の無害化処理シ ステムを提供できる。
また、 前記塩素含有物質のうち、 最も好適である次亜塩素酸を用いる場合は、 比較的大きな広範囲の微生物を殺滅又は殺菌する機械的処理と組み合わせること により、 該次亜塩素酸の注入量は細菌類を除去するに必要な量だけで済み、 従来 技術のように該次亜塩素酸で微生物の除去と細菌類の除去とを行う場合に比べて 該次亜塩素酸の注入量を低減できる。
これにより、 残留する該次亜塩素酸による後段側機器の腐蝕を抑制でき、 該機 器類の耐久性を向上できるとともに、該次亜塩素酸による海洋汚染を抑制できる。 また本発明は、 前記陸上設置無害化設備を、 車両等の運搬装置に搭載して陸上 を自在に移動可能に構成したことを特徴とする。
かかる発明によれば、 陸上設置無害化設備を船舶に自在に近接させて、 該陸上 設置無害化設備において無害化処理を施した海水を該船舶内のバラスト水タンク に収容可能となり、 海水搬送ラインの長さを最短にできる。 これにより、 海水搬 送用ポンプの動力を低減できて海水の無害化処理コストを低減できる。
また、 かかる発明によれば、 複数の船舶について無害化処理を施した海水を該 船舶内のバラスト水タンクに収容する場合においては、 運搬装置に搭載した陸上 設置無害ィヒ設備を自在に移動させて各船舶へのバラスト水の無害ィ匕処理を行うこ とができ、 該バラスト水の無害化処理を短時間で効率的に行うことができる。 また本発明は、 前記海水の無害化処理装置において、 海上に浮設されて前記海 水中の微生物を殺滅又は殺菌する海上設置無害化設備と、 船舶に搭載されたバラ ス卜水タンクと、 海水を取水して前記海上設置無害化設備に搬送する海水搬入路 と、 前記梅上設置無害化設備と前記船舶内のバラスト水タンクとを接続し前記海 . 上設置無害化設備で処理された海水を前記バラスト水タンクに搬送する海水搬出 路とを備え、 前記海水搬入路を通して導入された海水に前記海上設置無害化設備 にて該海水中の微生物を殺滅又は殺菌する無害化処理を施し、 該処理海水を前記 海水搬出路を通して前記船舶内のバラスト水夕ンクに収容するように構成された ことを特徴とする。
かかる発明において、 好ましくは、 前記海上設置無害化設備を、 前記海水から 塩素含有物質を生成して該海水中に注入し前記微生物を殺滅又は殺菌する塩素処 理を該海水に施す塩素処理手段または前記海水に酸化作用を有する物質を添加す る酸化物質添加手段のいずれか 1つと、 前記液体をフィルタ等に通すろ過法又は 遠心分離法により該液体中の比較的大きな前記微生物を除去する微生物分離処理 手段とにより構成し、 前記塩素処理手段または酸化物質添加手段のいずれか及び 前記微生物分離処理手段により処理された処理海水を前記海水搬出路を通して前 記バラスト水タンクに収容するように構成される。
また、 かかる発明において、 前記海上設置無害化設備を、 前記海水から塩素含 有物質を生成して該海水中に注入し前記微生物を殺滅又は殺菌する塩素処理を該 海水に施す塩素処理手段または前記海水に酸化作用を有する物質を添加する酸化 物質添加手段のいずれか 1つ、 あるいは前記海水をフィルタ等に通すろ過法又は 遠心分離法により該海水中の比較的大きな前記微生物を除去する微生物分離処理 手段により構成するとともに、 前記海上設置無害化設備での処理海水を前記海水 搬出路を通して船舶内の残る一方の処理手段に導入し、 前記海上設置無害化設備 を構成する塩素処理手段または酸化物質添加手段のいずれか、 あるいは前記微生 物分離処理手段での処理海水を前記海水搬出路を通して船舶内の前記残る一方の 処理手段に導入し、 前記残る一方の処理手段による処理を施して前記バラス卜水 タンクに収容するように構成される。
かかる発明によれば、海上に移動可能に浮設された海上設置無害化設備として、 前記塩素処理手段または酸化物質添加手段のいずれか 1つあるいは機械的処理装 置あるいは ί救生物分離処理手段を海上に浮設し、 該海上設置無害化設備において 未処理海水中の微生物を殺滅又は殺菌する無害化処理を行い、 処理海水を、 該海 上設置無害化設備と船舶に搭載されたバラスト水夕ンクとを接続する海水搬出路 . を通して該バラスト水タンクに収納するので、 前記塩素処理手段または酸化物質 添加手段、 機械的処理装置あるいは微生物分離処理手段等の海水の無害化処理設 備を前記海上設置無害化設備として海上に浮設できて、 船舶内に設置する必要が なくなる。 これにより、 船舶における海水の無害化処理装置の設置スペースを低 減できて、 貨物等の搭載スペースを増大することが可能となる。
また、 海上に移動可能に浮設された塩素処理手段または酸化物質添加手段のい ずれか 1つあるいは機械的処理装置あるいは微生物分離処理手段等の海上設置無 害化設備と船舶側のバラスト水タンクとを、 海水搬出路を船舶毎に繋ぎ換えるこ とにより、 1台 (1セット) の海上設置無害化設備により複数の船舶のバラスト 水タンクについての無害化処理を行うことができ、 海上設置無害化設備の稼動率 を上昇できるとともに船舶 1隻あたりの無害化処理装置の設置数を少なくできて 装置コストを低減できる。
また、 沖合いに停泊している船舶に対してバラスト水の無害化処理を行う際に おいても、 海上に移動可能に浮設された海上設置無害化設備を船舶に自在に近接 させて、 該海上設置無害化設備において無害化処理を施した海水を該船舶内のバ ラスト水タンクに収容可能となり、 岸壁あるいは沖合いに停泊している船舶の何 れに対しても、 きわめて容易にかつ短時間でバラスト水の無害化処理を行うこと ができる。
さらには、 塩素処理手段または酸ィヒ物質添加手段のいずれか 1つあるいは機械 的処理装置あるいは微生物分離処理手段等の無害化処理装置を海上設置無害化設 備として船舶とは別個に浮設するので、 既存の船舶に対しても該船舶内に該無害 化処理装置を新たに設置するのが不要となるとともに船舶内の改造が最少限で済 み、 該無害化処理装置設置のための船舶内設置コストを最少限に抑制できる。 そして、 かがる発明において、 具体的には次のように構成するのがよい。
( 1 ) 前記海上設置無害化設備を、 前記海水から塩素含有物質を生成して該海 水中に注入し前記微生物を殺滅又は殺菌する塩素処理を該海水に施す塩素処理手 段または前記海水に酸ィヒ作用を有する物質を添加する酸化物質添加手段のいずれ か 1つと、 前記海水中の微生物に損傷を与え殺滅又は殺菌する機械的処理を該海 水に施す機械的処理装置あるいは前記海水をフィルタ等に通すろ過法又は遠心分. 一 離法により該海水中の比較的大きな前記微生物を除去する微生物分離処理手段の 一方または双方とにより構成する。
このように構成することにより、 海上に浮設された海上設置無害化設備の塩素 処理手段または酸化物質添加手段のいずれか及び前記機械的処理装置あるいは微 生物分離処理手段により処理された処理海水を、 前記海水搬出路を通して船舶内 のバラスト水タンクに容易に収容できる。
( 2 ) 前記海上設置無害化設備を、 前記海水から塩素含有物質を生成して該海 水中に注入し前記微生物を殺滅又は殺菌する塩素処理を該海水に施す塩素処理手 段または前記海水に酸化作用を有する物質を添加する酸化物質添加手段のいずれ か 1つと、 前記海水中の微生物に損傷を与え殺滅又は殺菌する機械的処理を該海 水に施す機械的処理装置あるいは前記海水をフィルタ等に通すろ過法又は遠心分 離法により該海水中の比較的大きな前記微生物を除去する微生物分離処理手段の 一方または双方とにより構成する。
このように構成することにより、 海上設置無害化設備での処理海水を海水搬出 路を通して船舶内の他の機械的処理装置あるいは微生物分離処理手段に導入し、 前記海上設置無害化設備を構成する塩素処理手段または酸化物質添加手段のいず れか及び前記機械的処理装置での処理海水を前記海水搬出路を通して船舶内の前 記他の機械的処理装置に導入し、 前記他の機械的処理装置による処理を施して前 記パラス卜水タンクに収容できる。
( 3 ) 前記船舶の船体に、 海中に開口して前記他の機械的処理装置に接続され る船体側海水搬入路を設ける。
このように構成することにより、 船舶に搭載された他の機械的処理装置によつ て、 海上設置無害化設備における塩素処理手段または酸化物質添加手段のいずれ かでの処理海水、 及び海中に開口する船体側海水搬入路を通して導入された海水 を同時に無害ィヒ処理してバラスト水夕ンクに収容することができる。これにより、 簡単な構造の機械的処理装置によって多量の海水を無害ィヒ処理できる。
以上の発明において、 前記塩素処理手段は、 前記海水の全部または一部を貯留 する貯留タンクと該海水を電気分解して塩素含有物質を生成する電解槽とを備え て前記海水を前記貯留タンクと電解槽との間の循環路を循環させる電解槽循環方. 式による処理を前記液体に施すように構成された液体電解装置で構成し、 該液体 電解装置による処理を次のようにして施すのがよい。
•前記電解槽循環方式による処理を機械的処理の前工程または後工程のいずれ かにおいて施す。
•前記電解槽循環方式による処理液体を、 前記循環路の途中から抽出して前記 機械的処理の前工程または後工程のいずれかにおいて液体中に注入する。
このように構成すれば、 循環路を循環する処理液体中に含有される塩素含有物 質特に次亜塩素酸を電解槽に送り込むので、 該次亜塩素酸によって電解槽供給液 の p Hを下げることにより、 電解槽におけるスケールの付着を防止できる。
本発明によれば、 塩素処理手段または酸化物質添加手段のいずれか 1つあるい は機械的処理装置を陸上設置無害化設備として陸上に設置し、 該陸上設置無害化 設備において未処理海水の無害化処理を行い、 処理海水を、 該陸上設置無害化設 備から海水搬出路を通して船舶のバラスト水タンクに収納するので、 前記塩素処 理手段または酸化物質添加手段、 機械的処理装置等の海水の無害化処理設備を船 体内に設置する必要がなく、 船舶における海水の無害化処理装置の設置スペース を低減できて、 貨物等の搭載スペースを増大することが可能となる。
また、陸上に設置された陸上設置無害化設備と船舶側のバラス卜水タンクとを、 海水搬出路を船舶毎に繋ぎ変えることにより、 1台 (1セット) の陸上設置無害 化設備により複数の船舶のバラスト水タンクについての無害化処理を行うことが でさ、 陸上設置無害化設備の稼動率を上昇できるとともに船舶 1隻あたりの無害 化処理装置の設置数を少なくできて装置コストを低減できる。
さらには、 塩素処理手段または酸化物質添加手段のいずれか 1つあるいは機械 的処理装置等の無害ィ匕処理装置を陸上設備として設置するので、 既存の船舶に対 しても船体内に該無害化処理装置を新たに設置するのが不要となるとともに船体 内の改造が最少限で済み、 該無害化処理装置設置のための船体内設置コストを最 少限に抑制できる。
また本発明によれば、 前記陸上設置無害化設備を、 車両等の運搬装置に搭載し て陸上を自在に移動可能に構成したので、 該陸上設置無害化設備を船舶に自在に 近接させて無害化処理を施した海水を該船舶内のバラスト水タンクに収容可能と. なり、 海水搬送ラインの長さを最短にできる。 これにより、 海水搬送用ポンプの 動力を低減できて海水の無害化処理コストを低減できる。
また、 複数の船舶について無害化処理を施した海水を該船舶内のバラス卜水夕 ンクに収容する場合においては、 運搬装置に搭載した陸上設置無害化設備を自在 に移動させて各船舶へのバラス卜水の無害化処理を行うことができ、 該バラス卜 水の無害化処理を短時間で効率的に行うことができる。
また本発明によれば、 塩素処理手段または酸化物質添加手段のいずれか 1つあ るいは機械的処理装置を海上に浮設した該海上設置無害化設備において未処理海 水の無害化処理を行い、 処理海水を、 海水搬出路を通して該船舶内のバラスト水 タンクに収納するので、 前記海水の無害化を行う無害化処理設備を海上設置無害 化設備として海上に浮設できて、 かかる無害化処理設備を船体内に設置する必要 がなくなる。 これにより、 船舶における海水の無害化処理装置の設置スペースを 低減できて、 貨物等の搭載スペースを増大することが可能となる。
また、 海上に移動可能に浮設された前記海上設置無害化設備と船舶側のバラス ト水タンクとを、海水搬出路を船舶毎に繋ぎ換えることにより、 1台(1セット) の海上設置無害化設備により複数の船舶のバラスト水タンクについての無害化処 理を行うことができ、 海上設置無害化設備の稼動率を上昇できるとともに船舶 1 隻あたりの無害ィヒ処理装置の設置数を少なくできて装置コス卜を低減できる。 また、 沖合いに停泊している船舶に対してバラスト水の無害化処理を行う際に おいても、 海上に移動可能に浮設された海上設置無害化設備を船舶に自在に近接 させて、 該海上設置無害化設備において無害化処理を施した海水を該船舶内のバ ラスト水タンクに収容可能となり、 岸壁あるいは沖合いに停泊している船舶の何 れに対しても、 きわめて容易にかつ短時間でバラスト水の無害化処理を行うこと ができる。
さらには、 前記無害化処理設備を海上設置無害化設備として船舶とは別個に浮 設するので、 既存の船舶に対しても船体内に該無害化処理設備を新たに設置する のが不要となるとともに船体内の改造が最少限で済み、 該無害化処理装置設置の ための船体内設置コストを最少限に抑制できる。 図面の簡単な説明
第 1図は、 本発明の第 1実施例に係る船舶用バラスト水の無害化処理方法を示 すブロック図である。
第 2図は、 第 2実施例を示す第 1図対応図である。
第 3図は、 第 3実施例を示す第 1図対応図である。
第 4図は、 第 4実施例を示す第 1図対応図である。
第 5図は、 第 5実施例を示す第 1図対応図である。
第 6図は、 第 6実施例を示す第 1図対応図である。
第 7図は、 第 7実施例を示す第 1図対応図である。
第 8図は、 第 8実施例を示す第 1図対応図である。
第 9図は 第 9実施例を示す第 1図対応図である。
第 1 0図は、 第 1 0実施例を示す第 1図対応図である。
第 1 1図は、 第 1 1実施例を示す第 1図対応図である。
第 1 2図は、 第 1 2実施例を示す第 1図対応図である。
第 1 3図は、 第 1 3実施例を示す第 1図対応図である。
第 1 4図は、 第 1 4実施例を示す第 1図対応図である。
第 1 5図は、 第 1 5実施例を示す第 1図対応図である。
第 1 6図は、 第 1 6実施例を示す第 1図対応図である。
第 1 7図は、 第 1 7実施例を示す第 1図対応図である。
第 1 8図は、 第 1 8実施例を示す第 1図対応図である。
第 1 9図は、 第 1 9実施例を示す第 1図対応図である。
第 2 0図は、 第 2 0実施例を示す第 1図対応図である。
第 2 1図は、 第 2 1実施例を示す第 1図対応図である。
第 2 2図は、 第 2 2実施例を示す第 1図対応図である。
第 2 3図は、 第 2 3実施例を示す第 1図対応図である。
第 2 4図は、 第 2 4実施例を示す第 1図対応図である。
第 2 5図は、 第 2 5実施例を示す第 1図対応図である。 第 2 6図は、 第 2 6実施例を示す第 1図対応図である。
第 2 7図は、 第 2 7実施例を示す第 1図対応図である。 . 第 2 8図は、 第 2 8実施例を示す第 1図対応図である。
第 2 9図は、 第 2 9実施例を示す第 1図対応図である。
第 3 0図は、 第 3 0実施例を示す第 1図対応図である。
第 3 1図は、 第 3 1実施例を示す第 1図対応図である。
第 3 2図は、 第 3 2実施例を示す第 1図対応図である。
第 3 3図は 第 3 3実施例を示す第 1図対応図である。
第 3 4図は、 第 3 4実施例を示す第 1図対応図である。
第 3 5図は、 第 3 5実施例を示す第 1図対応図である。
第 3 6図は、 第 3 6実施例を示す第 1図対応図である。
第 3 7図は、 第 3 7実施例を示す第 1図対応図である。
第 3 8図は、 第 3 8実施例を示す第 1図対応図である。
第 3 9図は、 第 3 9実施例を示す第 1図対応図である。
第 4 0図は、 第 4 0実施例を示す第 1図対応図である。
第 4 1図は、 第 4 1実施例を示す第 1図対応図である。
第 4 2図は、 第 4 2実施例を示す第 1図対応図である。
第 4 3図は、 第 4 3実施例を示す第 1図対応図である。
第 4 4図は、 第 4 4実施例を示す第 1図対応図である。
第 4 5図は、 第 4 5実施例を示す第 1図対応図である。
第 4 6図は、 第 4 6実施例を示す第 1図対応図である。
第 4 7図は、 第 4 7実施例を示す第 1図対応図である。
第 4 8図は、前記各実施例のうちの主要な処理を示す系統図(その 1 )である。 第 4 9図は、前記各実施例のうちの主要な処理を示す系統図(その 2 )である。 第 5 0図は、 本発明の第 4 8実施例に係る船舶用バラスト水の無害化処理装置 を示すブロック図である。
第 5 1図は、 第 4 9実施例を示す第 5 0図対応図である。
第 5 2図は、 第 5 0実施例を示す第 5 0図対応図である。
第 5 3図は、 第 5 1実施例を示す第 5 0図対応図である。 第 5 4図は、 第 5 2実施例を示す第 5 0図対応図である。
第 5 5図は、 第 5 3実施例を示す第 5 0図対応図である。
第 5 6図は、 第 5 4実施例を示す第 5 0図対応図である。
第 5 7図は、 第 5 5実施例を示す第 5 0図対応図である。
第 5 8図は、 第 5 6実施例を示す第 1図対応図である。
第 5 9図は、 微生物分離処理手段の構成図である。 発明を実施するための最良の形態
以下、 本発明を図に示した実施例を用いて詳細に説明する。 但し、 この実施例 に記載されている構成部品の寸法、 材質、 形状、 その相対配置などは特に特定的 な記載がない限り、 この発明の範囲をそれのみに限定する趣旨ではなく、 単なる 説明例にすぎない。
第 1図は本発明の第 1実施例に係る船舶用バラスト水の無害化処理方法を示す ブロック図である。 第 2図ないし第 4 7図は第 2ないし第 4 7実施例を示す第 1 図対応図である。 第 4 8図及び第 4 9図は前記各実施例のうちの主要な処理を示 す系統図 (その 1 ) 及び (その 2 ) である。
第 1図に示す第 1実施例において、 1は未処理海水を濾過してごみ等の異物を 捕獲するスクリーン、 2は海水を処理ライン 6に搬送するポンプである。 3は前 記スクリーン 2を経た海水中の微生物に損傷を与え殺滅又は殺菌する機械的処理 装置である。
該機械的処理装置 3は、 海水の流路中に多数の小孔が穿孔された多孔板を設置 して、 海水が前記多数の小孔内を通過する際に発生する乱流により該海水中の微 生物に損傷を与えて殺滅又は殺菌するように構成された多孔板式処理装置が好適 であるが、 力 る多孔板式処理装置に限られることなく、 海水中の微生物に損傷 を与えて殺滅又は殺菌する機能を有するものであればよい。
4ほ前記機械的処理装置を経た海水に電解 (電気分解) 処理を施す海水電解装 置で、 該海水を電気分解して、 該海水中から次亜塩素酸ソ一ダ (以下次亜塩素酸 という) を生成するものである。 該海水電解装置 4で生成された次亜塩素酸は前 記処理ライン 6に注入されるようになっている。 5はかかる処理が施された処理 海水を収容するバラスト水タンクである。
かかる第 1実施例において、 未処理海水は前記スクリーン 1でごみ等の異物が. 捕獲され除去された後、 前記ポンプ 2により処理ライン 6を搬送されて機械的処 理装置 3に導入される。
該機械的処理装置 3においては、 前記海水を多数の小孔内を通過させる際に、 該海水中の微生物に損傷を与えて殺滅又は殺菌する。 該機械的処理装置 3でかか る機械的処理が施された海水は、 その全部または一部が抽出ライン 8を介して前 記海水電解装置 4に送り込まれる。 該海水電解装置 4では、 該海水を電解処理し て、 次亜塩素酸を生成する。
この次亜塩素酸は、 図に実線で示す注入ライン 9を介して、 前記処理ライン 6 の前記機械的処理装置 3の上流に注入するか、 あるいは図に破線で示す注入ライ ン 1 0を介して、 前記処理ライン 6の前記機械的処理装置 3の下流に注入する。 該次亜塩素酸の注入により、 海水中の残存微生物が殺滅又は殺菌される。
あるいは、 前記機械的処理装置 3間の循環ライン 1 0 aで海水を循環させなが ら、 機械的処理のみを施すことも可能である。
従って、 前記海水は、 前記機械的処理装置 3において該海水中の微生物を殺滅 又は殺菌し、 前記海水電解装置 4において該海水から抽出された次亜塩素酸を注 入して該海水中の残存微生物を殺滅又は殺菌することにより、 完全に無害化され てバラスト水タンクに収容されることとなる。
かかる実施例において、 前記微生物とは、 主に動物プランクトン及びそのシス ト、 植物プランクトン及びそのシスト、 細菌類、 菌類、 ウィルスなど、 毒を有す るものや病原性のあるもの又は生態系を乱すものである。
また前記海水の無害化処理とは、 主に海洋汚染を起こしたり人間及び魚介類に 被害をもたらしたり生態系を破壊するこれら微生物を殺滅又は殺菌又は除去する ことである。
前記塩素含有物質は、 前記実施例で用いた次亜塩素酸が最も好適であるが、 塩 素、 亜塩素酸、 塩素酸またはこれらのイオンや塩を用いることができる。
また、前記酸化作用を有する物質は、前記塩素含有物質のほかに、過酸化水素、 オゾン等の酸ィ匕剤も含む。 尚、 前記塩素含有物質は、 外部から薬品として添加することもできる。
胁る実施例によれば、 多数の小孔が穿孔された多孔板を備えた機械的処理装 . 置 3の小孔内を海水を通して発生する乱流により比較的大きな広範囲の微生物を 殺滅又は殺菌する機械的処理と、 海水電解装置 4で生成された次亜塩素酸を海水 中に注入して細菌類を殺滅又は殺菌する塩素処理とを組み合わせることにより、 海水中のあらゆる大きさの微生物の殺滅又は殺菌を確実になすことができるとと もに、 海水の機械的処理と塩素処理とを組み合わせることにより機械的処理装置 3の圧力損失の減少が可能となり負荷が軽減される。
これにより、 海水無害化処理時における機械的処理装置 3の所要動力を低減で きて、 該装置を小型、 小容量化でき、 さらには前記海水電解装置 4で生成された 次亜塩素酸の海水中への注入による塩素処理では、 処理効果の大きい細菌類の殺 滅又は殺菌を主体的に行えばよいので、 次亜塩素酸の注入量を低減できる。
また、 前記海水電解装置 4で生成された次亜塩素酸を用いて細菌類を殺滅又は 殺菌する塩素処理を、 前記機械的処理装置 3を用いて比較的大きな広範囲の微生 物を殺滅又は殺菌する機械的処理と組み合わせることにより、 該次亜塩素酸の注 入量が細菌類を除去するに必要な量だけで済み、 該次亜塩素酸で微生物の除去と 細菌類の除去とを行う場合に比べて、 海水無害化処理時における該次亜塩素酸の 注入量を低減できる。
これにより、 残留する該次亜塩素酸が著しく低減し海水無害化処理時における 該次亜塩素酸による後段側機器の腐蝕を抑制でき、 該機器類の耐久性を向上でき るとともに、 該次亜塩素酸の海中投棄による海洋汚染を抑制できる。
第 2図ないし第 4 7図に示される第 2ないし第 4 7実施例において、 前記第 1 実施例と同一の部材は同一の符号で示す。
第 2図に示される第 2実施例においては、 前記第 1実施例と同様な、 機械的処 理装置 3を用いて比較的大きな広範囲の微生物を殺滅又は殺菌する機械的処理、 及び前記海水電解装置 4で生成された次亜塩素酸を処理ライン 6中の海水中に注 入して細菌類を殺滅又は殺菌する塩素処理を施した後における処理海水の残留塩 素量 (塩素濃度) を計測する残留塩素計 1 1を設け、 該残留塩素計 1 1による残 留塩素量の計測値を前記海水電解装置 4に入力するように構成している。 そして、 かかる第 2実施例においては、 残留塩素計 1 1で、 前記機械的処理お よび塩素処理を施した後の処理海水の残留塩素量 (塩素濃度) を計測し、 該残留. 塩素量計測値を前記海水電解装置 4に入力し、 該海水電解装置 4において該残留 塩素量の計測値に基づき該海水電解装置 4の電解電流値を制御して該海水電解装 置 4で生成される次亜塩素酸の生成量を制御する。
従ってかかる第 2実施例によれば、 前記処理海水の残留塩素量 (塩素濃度) の 計測値に基づき海水電解装置 4における電解電流値を制御し次亜塩素酸の生成量 を制御可能となって、 海水への次亜塩素酸の注入量を正確に目標値に制御でき、 該次亜塩素酸での処理コストを最少限に抑えて所要の殺菌処理を行うことができ る。
その他の構成は前記第 1実施例と同様であり、 これと同一の部材は同一の符号 で示す。
第 3図に示される第 3実施例においては、 前記第 1実施例における機械的処理 及び塩素処理に加えて(あるいはこれらの処理を施さずに)、前記バラスト水タン ク 5に収容された海水を循環路 1 3, 1 4を通して前記海水電解装置 4を循環さ せて、 該海水電解装置 4において該海水電解装置 4で生成された次亜塩素酸を用 いて海水中の細菌類を殺滅又は殺菌する塩素処理を施している。
また、かかる第 3実施例においては、前記海水電解装置 4の電源に、太陽電池、 風力発電 1 2等の自然エネルギーによる電力を用いている。
このように構成すれば、 前記海水電解装置 4の電源に自然エネルギーを利用で きるので、 次亜塩素酸を用いての塩素処理の処理コストを低減できるとともに、 船舶の航行中においても船舶内の動力を極力使用することなく、 海水電解装置 4 を用いてのバラスト水の無害化が可能となる。
その他の構成は前記第 1実施例と同様であり、 これと同一の部材は同一の符号 で示す。
第 4図に示される第 4実施例においては、 海水電解装置 4を次のような電解槽 循環方式に構成している。
即ち第 4図において、 4 3は貯留タンク、 4 4はポンプ、. 4 1は電解槽、 2 は該電解槽 4 1用の電源装置であり、 塩素処理用の海水を抽出ライン 8を介して 前記貯留タンク 4 3内に導入している。
そして、 前記貯留タンク 4 3から前記ポンプ 4 4、 前記電解槽 4 1を通って前 · 記貯留タンク 4 3に戻る循環路 4 7を形成し、 前記貯留タンク 4 3内の海水を前 記ポンプ 4 4により該循環路 4 7を循環させ、 前記電解槽 4 1において該海水か ら次亜塩 酸を生成し、 該循環路 4 7途中で該次亜塩素酸を注入ライン 9 (ある いは第 1図に示す注入ライン 1 0 ) を介して前記処理ライン 6 (第 1図参照) に 注入している。 尚、 4 5 , 4 6は開閉弁である。
前記次亜塩素酸は、 前記第 1実施例と同様に、 注入ライン 9を介して前記処理 ライン 6の前記機械的処理装置 3の上流に注入するか、 あるいは注入ライン 1 0 を介して、 前記処理ライン 6の前記機械的処理装置 3の下流に注入する。
さらに、 前記電解槽循環方式による塩素処理を、 前記機械的処理装置 3による 機械的処理の前工程または後工程のいずれかにおいて施して前記次亜塩素酸を生 成し、該次亜塩素酸により海水中の細菌類を殺滅又は殺菌するようにしてもよい。 かかる第 4実施例によれば、 処理海水の貯留タンク 4 3と電解槽 4 1との間の 循環路 4 7を循環する処理海水中に含有される次亜塩素酸を電解槽 4 1に送り込 むので、 該次亜塩素酸によって電解槽 4 1への供給海水の p Hを下げることによ り、 該電解槽 4 1におけるスケールの付着を防止できる。
その他の構成は前記第 1実施例と同様であり、 これと同一の部材は同一の符号 で示す。
第 5図に示される第 5実施例においては、 前記実施例における機械的処理装置 3に代えて、 処理ライン 6にフィルター 2 0を設置している。 2 1は該フィル夕 —2 0の逆洗ライン、 2 2は該逆洗ライン 2 1を開閉する開閉弁である。
そして、 かかる第 5実施例においては、 海水を前記フィルター 2 0を通すこと により該海水中の比較的大きな微生物を除去できる。 前記処理ライン 6のフィル ター 2 0の上流側あるいは下流側には、 前記第 1実施例と同様に、 前記海水電解 装置 4において該海水から生成された次亜塩素酸を、 注入ライン 9 (あるいは注 入ライン 1 0 ) を介して注入し、 細菌類を殺滅又は殺菌している。
このようにかかる第 5実施例によれば、 前記フィルター 2 0のメッシュを微生 物除去の最適メッシュに選定することにより、 比較的大きな広範囲の微生物を確 実に捕獲し除去できて、 逆洗ライン 2 1を用いての逆洗により捕獲後の微生物の 処理も簡単にできる。 一 · その他の構成は前記第 1実施例と同様であり、 これと同一の部材は同一の符号 で示す。
第 6図に示される第 6実施例においては、 前記処理ライン 6のフィルター 2 0 の上流側あるいは下流側に前記各実施例と同様な機械的処理装置 3を設置してい る。
かかる第 6実施例によれば、 前記フィルタ一 2 0によるフィルタ一処理と機械 的処理装置 3による他の機械的処理とを併せて施すことにより、 微生物の処理機 能が向上するとともに、 後流側の塩素処理の負荷を低減できる。
その他の構成は前記第 1実施例と同様であり、 これと同一の部材は同一の符号 で示す。
尚、 前記フィルター 2 0に代えて、 遠心分離装置 (図示省略) を設置し、 該遠 心分離装置により前記海水から微生物を遠心分離して、 該海水から除去するよう にしてもよい。
また、 前記各実施例において、 前記塩素処理に限らず、 酸化物質添加手段 (図 示省略) により、 前記海水に、 酸化作用を有する物質の添加処理を行うこともで きる。 前記酸化作用を有する物質は、 前記塩素含有物質のほかに、 過酸化水素、 オゾン等の酸化剤を用いることができる。
以下の各実施例は、 手段が異なるが、 海水中の微生物や細菌類を殺滅又は殺菌 するという作用効果は同一である。
第 7図に示される第 7実施例においては、 前記未処理海水に塩素含有物質注入 装置 3 0から塩素含有物質を注入して細菌類を殺滅又は殺菌する塩素処理を行い、 該塩素含有物質注入の前工程あるいは後工程に前記機械的処理装置 3を設置して 海水中の微生物に損傷を与えて殺滅又は殺菌する機械的処理を行い、 バラスト水 タング 5に収容する。
前記塩素含有物質は、 塩素、 次亜塩素酸ソーダ、 亜塩素酸ソ一ダ、 塩素酸また はこれらのイオンや塩で構成するのが好ましく、 特に次亜塩素酸ソ一ダが最も好 適であ 。 第 8図に示される第 8実施例においては、 前記未処理海水に前記海水電解装置 4による塩素処 S"を行い、次いで前記機械的処理装置 3による機械的処理を行い、 バラスト水タンク 5に収容する。
また、 第 9図に示される第 9実施例においては、 前記第 8実施例とは逆の順序 で、 未処理海水に前記機械的処理装置 3による機械的処理を行い、 次いで前記海 水電解装置 4による塩素処理を行い、 バラスト水タンク 5に収容する。
第 1 0図に示される第 1 0実施例においては、 前記未処理海水に海水電解装置 4による塩素処理、 及び機械的処理装置 3による機械的処理を行った後、 金属触 媒処理装置 3 1により金属触媒による処理を施し、 次いで活性炭処理装置 3 2に よって活性炭によるトリハロメタン処理を施し、バラスト水タンク 5に収容する。 かかる金属触媒としては M n, T c , R e , VIIA族元素、 あるいは、 F e, C o , N i , R u, R h , P d , O s , I r, P t等の VIII族元素のうち、 1種 以上を含む金属または化合物が好適である。
このようにすれば、 塩素処理を施した後に残留する H C l Oを次の反応式によ り、前記金属触媒で還元することにより、塩素処理後の処理液体を無害化できる。
H C 1
Figure imgf000031_0001
1 +MO n (M:金属)
また、 前記活性炭によるトリハロメタン処理を施せば、 該活性炭によるトリハ ロメタン処理によって、 塩素処理を施した後の処理液体に発生し易い発ガン性物 質を除去することが可能となる。
従って、 かかる第 1 0実施例によれば、 塩素処理を施した後の処理液体から、 活性炭により発ガン性物質を除去するとともに、 金属触媒により塩素処理後の残 留 H C 1 Oを還元して無害化できて、 処理液体の無害化、 清浄化をより向上でき る。
尚、 前記第 1 0実施例において、 活性炭処理装置 3 2による活性炭処理を行つ た後、 金属触媒処理装置 3 1による金属触媒による処理を施してもよい。 また、 前記活性炭処理装置 3 2による活性炭処理のみを行っても、 あるいは金属触媒処 理装置 3 1による金属触媒による処理のみを行ってもよい。
第 1 1図に示される第 1 1実施例においては、 バラスト水タンク 5に収容され た海水に、 前記第 1実施例 (第 1図) と同様な、 前記海水電解装置 4による塩素 処理と機械的処理装置 3による機械的処理とを施して、 海水中の微生物や細菌類 を殺滅又は殺菌して無害化し、 海中に排水している。
第 1 2図に示される第 1 2実施例においては、 バラスト水タンク 5に収容され た海水に、 前記第 7実施例 (第 7図) と同様な、 塩素含有物質注入装置 3 0から 塩素含有物質を注入する塩素処理を行い、 該塩素含有物質注入の前工程あるいは 後工程に前記機械的処理装置 3による機械的処理を行い、 海水中の微生物や細菌 類を殺滅又は殺菌して無害化し、 海中に排水している。
第 1 3図に示される第 1 3実施例においては、 バラスト水夕ンク 5に収容され た海水に、 前記第 8実施例 (第 8図) と同様な、 前記海水電解装置 4による塩素 処理を行い、 次いで前記機械的処理装置 3による機械的処理を行って、 海水中の 微生物や細菌類を殺滅又は殺菌して無害ィ匕し、 海中に排水している。
第 1 4図に示される第 1 4実施例においては、 バラスト水タンク 5に収容され た海水に、 前記第 1 3実施例とは逆の順序で、 前記第 9実施例 (第 9図) と同様 な、 前記機械的処理装置 3による機械的処理を行った後、 前記海水電解装置 4に よる塩素処理を行い、 海水中の微生物や細菌類を殺滅又は殺菌して無害化し、 海 中に排水している。
第 1 5図に示される第 1 5実施例においては、 バラスト水タンク 5に収容され た海水に、 前記第 1 0実施例 (第 1 0図) と同様な処理、 即ち前記海水電解装置 4による塩素処理及び機械的処理装置 3による機械的処理を行った後、 金属触媒 処理装置 3 1により金属触媒による処理を施し、 次いで活性炭処理装置 3 2によ つて活性炭によるトリハロメタン処理を施し、 海水中の微生物や細菌類を殺滅又 は殺菌して無害化し、 海中に排水している。
第 1 6図に示される第 1 6実施例においては、 バラスト水タンク 5に収容され た海水に、 前記第 2実施例 (第 2図) と同様に、.機械的処理装置 3による機械的 処理及び前記海水電解装置 4で生成された次亜塩素酸を海水中に注入する塩素処 理を; した後における処理海水の残留塩素量 (塩素濃度) を残留塩素計 1 1で計 測し、 該残留塩素量の計測値に基づき海水電解装置 4の電解電流値を制御して該 海水電解装置 4で生成される次亜塩素酸の生成量を制御する処理を行つて、 海水 中の微生物や細菌類を殺滅又は殺菌して無害化し、 海中に排水している。 第 1 7図に示される第 1 7実施例においては、 バラスト水タンク 5に収容され た海水に、 前記第 5実施例 (第 5図) と同様に、 処理ラインにフィルター 2 0を. 設置して ( 2 1は該フィルタ一 2 0の逆洗ライン、 2 2は該逆洗ライン 2 1を開 閉する開閉弁)、前記海水をフィル夕一 2 0を通すことにより該海水中の比較的大 きな微生物を除去し、 処理ラインのフィルター 2 0の上流側あるいは下流側に海 水電解装置 4において該海水から生成された次亜塩素酸を注入して細菌類を殺滅 又は殺菌し、 海水を無害ィ匕して海中に排水している。
第 1 8図に示される第 1 8実施例においては、 前記フィルタ一 2 0の後流に前 記機械的処理装置 3を設置して、フィルタ一 2 0後の海水に機械的処理を行って、 海水中の微生物や細菌類を殺滅又は殺菌して無害化し、 海中に排水している。 第 1 9図に示される第 1 9実施例においては、 バラスト水タンク 5に収容され た海水に、 前記第 1 1実施例 (第 1 1図) と同様に、 前記海水電解装置 4による 塩素処理と機械的処理装置 3による機械的処理とを施して、 海水中の微生物や細 菌類を殺滅又は殺菌してから、 該海水を前記バラスト水タンク 5に循環させる処 理を繰り返すことにより無害化している。
このようにすれば、 船舶の航行中においてもバラスト水タンク 5内のバラスト 水の無害化処理を実施できることとなり、 パラスト水を船舶から排水する際の無 害化処理時間を短縮あるいは無害ィヒ処理を不要とすることが可能となる。 以下の 第 1 2〜第 2 5実施例でもこれと同一の作用効果を奏することができる。
第 2 0図に示される第 2 0実施例においては、 バラスト水タンク 5に収容され た海水に、 前記第 1 2実施例 (第 1 2図) と同様に、 塩素含有物質注入装置 3 0 から塩素含有物質を注入する塩素処理を行い、 該塩素含有物質注入の前工程ある いは後工程に前記機械的処理装置 3による機械的処理を行うことにより、 海水中 の微生物や細菌類を殺滅又は殺菌してから、 該海水を前記バラスト水タンク 5に 循環させる処理を繰り返すことにより無害化している。
第 2 1図に示される第 2 1実施例においては、 バラスト水タンク 5に収容され た海水に、 前記第 1 3実施例 (第 1 3図) と同様に、 海水電解装置 4による塩素 処理を行い、 次いで前記機械的処理装置 3による機械的処理を行うことにより、 海水中の微生物や細菌類を殺滅又は殺菌してから、 該海水を前記バラスト水タン ク 5に循環させる処理を繰り返すことにより無害ィ匕している。
第 2 2図に示される第 2 2実施例においては、 バラスト水タンク 5に収容され た海水に、 前記第 1 4実施例 (第 1 4図) と同様に、 機械的処理装置 3による機 械的処理を行った後、 海水電解装置 4による塩素処理を行うことにより、 海水中 の微生物や細菌類を殺滅又は殺菌してから、 該海水を前記バラスト水タンク 5に 循環させる処理を繰り返すことにより無害化している。
第 2 3図に示される第 2 3実施例においては、 バラスト水タンク 5に収容され た海水に、 前記第 1 5実施例 (第 1 5図) と同様に、 海水電解装置 4による塩素 処理及び機械的処理装置 3による機械的処理を行った後、 金属触媒処理装置 3 1 により金属触媒による処理を施し、 次いで活性炭処理装置 3 2によって活性炭に よるトリハロメ夕ン処理を施すことにより、 海水中の微生物や細菌類を殺滅又は 殺菌してから、 該海水を前記バラスト水タンク 5に循環させる処理を繰り返すこ とにより無害ィ匕している。
第 2 4図に示される第 2 4実施例においては、 バラスト水タンク 5に収容され た海水に、 前記第 1 6実施例 (第 1 6図) と同様に、 機械的処理装置 3による機 械的処理及び海水電解装置 4で生成された次亜塩素酸を海水中に注入する塩素処 理を施した後における処理海水の残留塩素量 (塩素濃度) を残留塩素計 1 1で計 測し、 該残留塩素量の計測値に基づき海水電解装置 4の電解電流値を制御して該 海水電解装置 4で生成される次亜塩素酸の生成量を制御する処理を行うことによ り、 海水中の微生物や細菌類を殺滅又は殺菌してから、 該海水を前記バラスト水 タンク 5に循環させる処理を繰り返すことにより無害化している。
第 2 5図に示される第 2 5実施例においては、 バラスト水タンク 5に収容され た海水に、 前記第 1 7実施例 (第 1 7図) と同様に、 処理ラインにフィルター 2 0を設置して ( 2 1は該フィルタ一 2 0の逆洗ライン、 2 2は該逆洗ライン 2 1 を開閉する開閉弁)、前記海水をフィルター 2 0を通すことにより該海水中の比較 的大 な微生物を除去し、 処理ラインのフィルター 2 0の上流側あるいは下流側 に海水電解装置 4において該海水から生成された次亜塩素酸を注入して細菌類を 殺滅又は殺菌する処理を行うことにより、 海水中の微生物や細菌類を殺滅又は殺 菌してから、 該海水を前記バラス卜水タンク 5に循環させる処理を繰り返すこと により無害化している。
第 2 6図に示される第 2 6実施例においては、 バラスト水タンク 5に収容され. た海水に、 前記第 1 8実施例 (第 1 8図) と同様に、 フィルタ一 2 0の後流に機 械的処理装置 3を設置してフィル夕一 2 0後の海水に機械的処理を行うことによ り、 海水中の微生物や細菌類を殺滅又は殺菌してから、 該海水を前記バラス卜水 タンク 5に循環させる処理を繰り返すことにより無害化している。
第 2 7図に示される第 2 7実施例においては、 未処理海水に前記機械的処理装 置 3による機械的処理を施してバラスト水タンク 5に収容し、 該バラスト水タン ク 5内の海水を前記海水電解装置 4を循環させて海水中の細菌類を殺滅又は殺菌 する塩素処理を施すことにより、 該バラスト水タンク 5内の海水を無害化してい る。
第 2 8図に示される第 2 8実施例においては、 未処理海水に前記機械的処理装 置 3による機械的処理を施してバラスト水タンク 5に収容し、 該バラスト水タン ク 5内の海水に、 塩素含有物質注入装置 3 0から塩素含有物質を注入する塩素処 理を行うことにより、 該バラスト水タンク 5内の海水を無害化している。
第 2 9図に示される第 2 9実施例においては、 未処理海水に前記機械的処理装 置 3による機械的処理を施してバラスト水タンク 5に収容し、 該バラスト水タン ク 5内の海水に海水電解装置 4による塩素処理を施した後における処理海水の残 留塩素量 (塩素濃度) を残留塩素計 1 1で計測し、 該残留塩素量の計測値に基づ き海水電解装置 4の電解電流値を制御して該海水電解装置 4で生成される次亜塩 素酸の生成量を制御する処理を行うことにより、 該バラスト水タンク 5内の海水 を無害化している。
第 3 0図に示される第 3 0実施例においては、 未処理海水をフィル夕一 2 0を 通すことにより該海水中の比較的大きな微生物を除去する微生物分離処理を施し てバラスト水タンク 5に収容し、 該バラスト水タンク 5内の海水を前記海水電解 装置 4を循環させて海水中の細菌類を殺滅又は殺菌する塩素処理を施すことによ り、 該バラスト水タンク 5内の海水を無害化している。
第 3 1図に示される第 3 1実施例においては、 未処理海水をフィルター 2 0を 通すことにより該海水中の比較的大きな微生物を除去する微生物分離処理を施し た後、 機械的処理装置 3を通して機械的処理を施してバラスト水タンク 5に収容 一し、 該バラスト水タンク 5内の海水を前記海水電解装置 4を循環させて海水中の 細菌類を殺滅又は殺菌する塩素処理を施すことにより、 該バラスト水夕ンク 5内 の海水を無害化している。
第 3 2図に示される第 3 2実施例においては、 該バラスト水タンク 5内の海水 を前記海水電解装置 4を循環させて海水中の細菌類を殺滅又は殺菌する塩素処理 を施し、 この処理海水にさらに機械的処理装置 3により機械的処理を施して、 完 全に無害ィ匕し海中に排水している。
第 3 3図に示される第 3 3実施例においては、 該バラスト水タンク 5内の海水 に、 塩素含有物質注入装置 3 0から塩素含有物質を注入する塩素処理を施し、 こ の処理海水にさらに機械的処理装置 3により機械的処理を施して、 完全に無害化 し海中に排水している。
第 3 4図に示される第 3 4実施例においては、 該バラスト水夕ンク 5内の海水 に海水電解装置 4による塩素処理を施した後における処理海水の残留塩素量 (塩 素濃度) を残留塩素計 1 1で計測し、 該残留塩素量の計測値に基づき海水電解装 置 4の電解電流値を制御して該海水電解装置 4で生成される次亜塩素酸の生成量 を制御する処理を行い、 この処理海水にさらに機械的処理装置 3により機械的処 理を施して、 完全に無害化し海中に排水している。
第 3 5図に示される第 3 5実施例においては、 該バラスト水タンク 5内の海水 を前記海水電解装置 4を循環させて海水中の細菌類を殺滅又は殺菌する塩素処理 を施し、 この処理海水に、 該処理海水をさらにフィルター 2 0を通すことにより 該海水中の比較的大きな微生物を除去する微生物分離処理を施して、 完全に無害 化し海中に排水している。
第 3 6図に示される第 3 6実施例においては、 処理海水をフィルター 2 0を通 すことにより該海水中の比較的大きな微生物を除去する微生物分離処理を施した 後、 機械的処理装置 3を通して機械的処理を施して、 完全に無害化し海中に排水 している。
第 3 7図に示される第 3 7実施例においては、 バラスト水タンク 5内の海水を 前記海水電解装置 4を循環させて海水中の細菌類を殺滅又は殺菌する塩素処理を 施し、 この処理海水を機械的処理装置 3を通して機械的処理を施した後、 さらに 金属触媒処理装置 3 1により金属触媒による処理を施し、 次いで活性炭処理装置. 3 2によつて活性炭によるトリハロメタン処理を施すことにより、 海水中の微生 物や細菌類を殺滅又は殺菌して、 完全に無害化し海中に排水している。
第 3 8図に示される第 3 8実施例においては、バラスト水タンク 5内の海水に、 前記海水電解装置 4による塩素処理と機械的処理装置 3による機械的処理とを施 して、 海水中の微生物や細菌類を殺滅又は殺菌してから、 該海水を前記バラスト 水タンク 5に循環させる処理を繰り返すことにより無害ィヒするに当たって、 前記 海水電解装置 4の電源に、 太陽電池、 風力発電装置 3 3の自然エネルギーによる 電力を用いている。
第 3 9図に示される第 3 9実施例においては、 前記第 2 7実施例 (第 2 7図) におけるバラスト水タンク 5内の海水の塩素処理を行う海水電解装置 4の電源に、 太陽電池、 風力発電装置 3 3の自然エネルギーによる電力を用いている。
第 4 0図に示される第 4 0実施例においては、 前記第 3 2実施例 (第 3 2図) におけるバラスト水タンク 5内の海水の塩素処理を行う海水電解装置 4の電源に、 太陽電池、 風力発電装置 3 3の自然エネルギーによる電力を用いている。
第 4 1図に示される第 4 1実施例においては、 未処理の海水の一部を処理ライ ノ、 ら分岐して前記海水電解装置 4に導入し、 該海水電解装置 4で前記塩素処理 を施して前記処理ラインに循環させてから、バラスト水タンク 5に収容している。 第 4 2図に示される第 4 2実施例においては、 未処理の海水を前記海水電解装 置 4に導入し、 該海水電解装置 4で前記塩素処理を施して、 バラスト水タンク 5 に収容している。
第 4 3図に示される第 4 3実施例においては、 バラスト水タンク 5内の海水を 前記海水電解装置 4に導入し、 該海水電解装置 4で前記塩素処理を施してバラス ト水タンク 5に循環させている。
第 4 4図に示される第 4 4実施例においては、 未処理海水の一部を処理ライン から分岐して前記海水電解装置 4に導入し、 該海水電解装置 4で前記塩素処理を ; して前記処理ラインに循環させてから、 海中に排水している。
第 4 5図に示される第 4 5実施例においては、 未処理の海水を前記海水電解装 置 4に導入し、 該海水電解装置 4で前記塩素処理を施してから、 海中に排水して いる。 一 . 第 4 6図に示される第 4 6実施例においては、 未処理海水の一部を処理ライン から分岐して前記海水電解装置 4に導入し、 該海水電解装置 4で前記塩素処理を 施して前記処理ラインに循環させ、 この処理海水にさらに金属触媒処理装置 3 1 により金属触媒による処理を施し、 次いで活性炭処理装置 3 2によって活性炭に よるトリハロメタン処理を施してから、 海中に排水している。
第 4 7図に示される第 4 7実施例においては、 前記第 4 3実施例 (第 4 3図) において、 前記海水電解装置 4の電源に、 太陽電池、 風力発電装置 3 3の自然ェ ネルギ一による電力を用いている。
第 4 8図及び第 4 9図は、 前記各実施例のうちの主要な処理を系統図で示した ものである。
第 4 8図において、 (1 ) ないし (9 ) の例は、処理液を海水を含む要無害化液 全般として、 機械的処理装置 3を用いての処理液の機械的破碎 (機械的処理) に よる広範囲の微生物の殺滅又は殺菌と、 海水電解装置 4を用いての処理液中の細 菌類を殺滅又は殺菌する塩素処理とを種々組み合わせている。
尚、 第 4 8図において、 「次亜」 は次亜塩素酸ソーダの略である。
( 1 )においては、第 1図の第 1実施例と同様に、未処理液に前記塩素処理と、 機械白勺破砕処理とを組み合わせて施し、 前記両処理の相乗効果を得ている。
( 2 ) においては、 未処理液に前記塩素処理を施した後、 機械的破碎処理を施 している。
( 3 ) は、 前記(2 ) の逆順序で、未処理液に前記機械的破砕処理を施した後、 塩素処
理を施している。
( 4 ) においては、 前記未処理液に、 C l 2 (塩素) あるいは 「次亜」 を注入 する塩素処理を施し、 次いで前記機械的破碎処理を施している。
( 5 ) は、 前記 (4 ) の逆順序で、 前記未処理液に、 機械的破碎処理を施し、 次いで C 1 2 (塩素) あるいは 「次亜」 を注入している。
( 6 ) においては、 前記未処理液に前記第 4実施例と同様な電解槽循環方式に よる海水電解装置 4による 「次亜」 を生成して未処理液に注入し、 次いで前記機 械的破碎処理を施している。 一
(7) は、 前記 (6) の逆順序で、 前記未処理液に機械的破砕処理を施し、 次 いで前記第 4実施例と同様な電解槽循環方式による海水電解装置 4による「次亜」 を生成して未処理液に注入している。
( 8 ) においては、 前記未処理液に前記第 4実施例と同様な電解槽循環方式に よる海水電解装置 4によって 「次亜」 を生成し、 次いで前記 「次亜」 生成後の液 体に機械的破砕処理を施している。
(9) は、 前記 (6) の逆順序で、 前記未処理液に機械的破碎処理を施し、 次 いで処理液体に前記第 4実施例と同様な電解槽循環方式による海水電解装置 4に よって 「次亜」 を生成している。
(10) においては、 未処理液に前記塩素処理と、 機械的破砕処理とを組み合 わせて施し、 次いで活性炭によるトリハロメタン処理を施す。
(11) においては、 未処理液に前記塩素処理と、 機械的破碎処理とを組み合 わせて施し、 次いで金属触媒による処理を施す。
(12) においては、 未処理液に前記塩素処理と、 機械的破砕処理とを組み合 わせて施し、 次いで活性炭によるトリハロメタン処理及び金属触媒による処理を この順に施す。
次に、 第 49図において、 (1) においては、 海水に前記塩素処理と、機械的破 砕処理(後処理お含む)とを組み合わせて施して、バラスト水タンクに収容する。
(2) においては、 バラスト水タンクに収容された海水に前記塩素処理と、 機 械的破砕処理 (後処理を含む) とを組み合わせて施して、 海中に排水する。
(3) においては、 バラスト水タンクに収容された海水に前記機械的処理と塩 素処理とを併せて施してバラスト水タンクに循環させる。
(4) においては、 前記 (3) において、 前記海水の塩素処理の電源に、 太陽 電池、 風力発電電力等の自然エネルギーによる電力を用いる。
以上の実施例は海水を無害化処理する方法及びその装置であるが、 本発明はこ れに限られることなく、 微生物を含む液体を前記各実施例と同様な方法及び装置 でもって無害ィ匕処理する場合にも広く適用できる。 第 5 0図は本発明の第 4 8実施例に係る船舶用バラスト水の無害化処理装置を 示すブロック図である。
第 5 0図に示す第 4 8実施例において、 1 0 0は海 1 0 2を航行する船舶、 5 は該船舶内に設置されたバラスト水タンク、 5 0は陸上 1 0 1に設置された陸上 設置無害ィ匕設備である。
該陸上設置無害化設備 5 0は、 塩素処理手段としての海水電解装置 4及び機械 的処理装置 3により構成される。
該機械的処理装置 3は、 海水の流路中に多数の小孔が穿孔された多孔板を設置 して、 海水が前記多数の小孔内を通過する際に発生する乱流により該海水中の微 生物に損傷を与えて殺滅又は殺菌するように構成された多孔板式処理装置が好適 であるが、 かかる多孔板式処理装置に限られることなく、 海水中の微生物に損傷 を与えて殺戚又は殺菌する機能を有するものであればよい。
前記海水電解装置 4は、 海水を電気分解して、 該海水中から次亜塩素酸ソーダ (以下次亜塩素酸という) を生成して海水の処理ライン (図示省略) に注入する ものであり、 詳細は後述する。
2 0 0は海中と前記陸上設置無害化設備 5 0の海水入口 (前記海水電解装置 4 あるいは機械的処理装置 3のいずれか一方の海水入口)とを接続する海水搬入路、 2 1 0は前言己陸上設置無害化設備 5 0の海水出口 (前記海水電解装置 4あるいは 機械的処理装置 3のいずれか一方の海水出口) と前記バラスト水タンク 5とを接 続する海水般出路である。
かかる第 4 8実施例においては、 海水搬入路 2 0 0を通った未処理海水が陸上 設置無害化設備 5 0の機械的処理装置 3—海水電解装置 4の順序で無害化処理を 施される場合について説明するが、 前記とは逆の海水電解装置 4→機械的処理装 置 3の順序で無害ィ匕処理してもよい。
第 4 8実施例において、 海水搬入路 2 0 0を通った未処理海水は機械的処理装 置 3に導入される。
該機械的処理装置 3においては、 前記海水を多数の小孔内を通過させる際に、 該海水中の ί教生物に損傷を与えて殺滅又は殺菌する。 該機械的処理装置 3でかか る機械的処理が施された海水は、 詳細を第 4図に示す海水電解装置 4に送り込ま れる。 該海水電解装置 4では、 海水を電解処理して、 次亜塩素酸を生成し海水に 注入する。
前記海水電解装置 4による塩素処理手段によれば、 処理海水の貯留夕ンク 4 3 と電解槽 4 1との間の循環路 4 7を循環する処理海水中に含有される次亜塩素酸 を電解槽 4 1に送り込むので、 該次亜塩素酸によって電解槽 4 1への供給海水の p Hを下げることにより、 該電解槽 4 1におけるスケールの付着を防止できる。 前記海水電解装置 4及び機械的処理装置 3によつて無害化処理が施された処理 海水ま、 海水搬出路 2 1 0を通って船舶内のバラスト水タンク 5に収容される。 かかる実施例において、 前記微生物とは、 主に動物プランクトン及びそのシス ト、 植物プランクトン及びそのシスト、 細菌類、 菌類、 ウィルスなど、 毒を有す るものや病原性のあるもの又は生態系を乱すものである。
前記塩素含有物質は、 前記実施例で用いた次亜塩素酸が最も好適であるが、 塩 素、 亜塩素酸、 塩素酸またはこれらのイオンや塩を用いることができる。
また、前記酸化作用を有する物質は、前記塩素含有物質のほかに、過酸化水素、 オゾン等の酸化剤も含む。
尚、 前記塩素含有物質は、 外部から薬品として添加することもできる。
また、 かかる第 1実施例において、 陸上設置無害化設備 5 0として、 第 5 9図 に示すような、 フィルタ 2 0、 逆洗ライン 2 1、 該逆洗ライン 2 1を開閉する開 閉弁 2 2等からなる微生物分離処理手段 0 2 0 (第 5 0図に鎖線で示す) を追設 して、 前記海水をフィルタ 2 0に通すことにより該海水中の比較的大きな前記微 生物を除去することもできる。 尚、 前記フィルタ 2 0等に代えて、 遠心分離装置 を用いることもできる。
さらには、 かかる実施例において、 前記海水電^^装置 4と前記微生物分離処理 手段 0 2 0とを組み合わせても良い。
以上のように、 かかる実施例においては、 多数の小孔が穿孔された多孔板を備 えた機械的処理装置 3の小孔内を海水を通して発生する乱流により比較的大きな 広範囲の微生物を殺滅又は殺菌する機械的処理と、 海水電解装置 4で生成された 次亜塩素酸を海水中に注入して細菌類を殺滅又は殺菌する塩素処理とを組み合わ せているので、 海水中のあらゆる大きさの微生物の殺滅又は殺菌を確実になすこ とができるとともに、 機械的処理装置 3による海水の機械的処理と海水電解装置 4による塩素処理とを組み合わせ、 さらにはこれに、 フィル夕 2 0、 逆洗ライン. ― 2 1、 該逆洗ライン 2 1を開閉する開閉弁 2 2等からなる微生物分離処理手段 0 2 0 (第 1図に鎖泉で示す) を追設することにより、 該機械的処理装置 3の圧力 損失の減少が可能となり負荷が軽減される。
これにより、 海水無害化処理時における機械的処理装置 3の所要動力を低減で きて、 該装置を小型、 小容量化でき、 さらには前記海水電解装置 4で生成された 次亜塩素酸の海水中への注入による塩素処理では、 処理効果の大きい細菌類の殺 滅又は殺菌を主体的に行えばよいので、 次亜塩素酸の注入量を低減できる。
また、 前記海水電解装置 4で生成された次亜塩素酸を用いて細菌類を殺滅又は 殺菌する塩素処理と、 前記機械的処理装置 3を用いて比較的大きな広範囲の微生 物を殺滅又は殺菌する機械的処理とを組み合わせることにより、 塩素処理におけ る次亜塩素酸の注入量が細菌類を除去するに必要な量だけで済み、 次亜塩素酸で 微生物の除去と細菌類の除去とを行う場合に比べて、 海水無害化処理時における 次亜塩素酸の注入量を低減できる。
これにより、 残留する次亜塩素酸が著しく低減し海水無害化処理時における次 亜塩素酸による後段側機器の腐蝕を抑制でき、 機器類の耐久性を向上できるとと もに、 次亜塩素酸の海中投棄による海洋汚染を抑制できる。
第 5 1図に示す第 4 9実施例においては、 前記陸上設置無害化設備 5 0を、 海 水から塩素含有物質を生成して海水中に注入し前記微生物を殺滅又は殺菌する塩 素処理を海水に施す前記海水電解装置 4で構成し、 海水中の微生物に損傷を与え 殺滅又は殺菌する機械的処理を該海水に施す機械的処理装置 3を船舶 1 0 0に搭 載している。
かかる第 4 9実施例によれば、 陸上設置無害化設備 5 0として陸上に設置され た前記海水電解装置 4により無害化処理された処理海水を、 該陸上設置無害化設 備 5 0と船舶内のバラスト水タンク 5とを接続する海水搬出路 2 1 0を通して、 船舶 1 0 0内に設置された機械的処理装置 3に導入し、 該機械的処理装置 3にお いて無害化処理された処理海水を、バラスト水タンク 5に収容することができる。
その他の構成及び作用効果は前記第 4 8実施例 (第 5 0図) と同一である。 ま た前記第 4 8実施例と同一の部材は同一の符号で示す。
第 5 2図に示す第 5 0実施例においては、前記第 2実施例(第 2図)に加えて、 . 前記船舶 1 0 0の船体に、 海中に開口して前記機械的処理装置 3に接続される船 体側海水搬入路 2 9 0を設けている。
かかる第 5 0実施例によれば、 船舶 1 0 0に搭載された機械的処理装置 3によ つて、 陸上設置無害化設備 5 0における海水電解装置 4での処理海水、 及び海中 に開口する船体側海水搬入路 2 9を通して導入された海水を同時に無害化処理し てバラスト水タンク 5に収容することができ、 これにより、 簡単な構造の機械的 処理装置によって多量の海水を無害化処理できる。
その他の構成は前記第 4 9実施例 (第 5 1図) と同一であり、 これと同一の部 材は同一の符号で示す。 またかかる第 5 0実施例における他の作用効果は前記第 1実施例と同一である。
かかる第 4 8〜第 5 0実施例によれば、 前記海水電解装置 4あるいは機械的処 理装置 3を陸上設置無害化設備 5 0として陸上に設置し、 該陸上設置無害化設備 5 0において未処理海水中の微生物を殺滅又は殺菌する無害ィ匕処理を行い、 処理 海水を、 該陸上設置無害化設備 5 0と船舶 1 0 0に搭載されたバラスト水タンク 5とを接続する海水搬出路 2 1 0を通して該バラスト水タンク 5に収納するので、 前記海水電解装置 4、 機械的処理装置 3等の海水の無害化処理設備の少なくとも 一方を船体 1 0 0内に設置する必要がなくなり、 これによつて該船舶 1 0 0にお ける海水の無害ィ匕処理装置の設置スペースを低減できて、 貨物等の搭載スペース を増大することが可能となる。
また、 陸上に設置された海水電解装置 4あるいは機械的処理装置 3等の陸上設 置無害化設備 5 0と船舶 1 0 0側のバラスト水タンク 5とを、 海水搬出路 2 1 0 を船舶 1 0 0毎に繋ぎ変えることにより、 1合 (1セット) の陸上設置無害化設 備 5 0により複数の船舶 1 0 0のバラスト水タンク 5についての無害化処理を行 うことができる。 これにより、 陸上設置無害化設備 5 0の稼動率を上昇できると ともに船舶 ( 1 0 0 ) 1隻あたりの無害化処理装置の設置数を少なくできて、 装 置コストを低減できる。
さらには、 海氷電解装置 4あるいは機械的処理装置 3等の無害化処理装置を陸 上設備として設置するので、 既存の船舶 1 0 0に対しても船体内に該無害化処理 装置を新たに設置するのが不要となるとともに船体内の改造が最少限で済み、 こ . れによって、 該無害化処理装置設置のための船体内設置コストを最少限に抑制で きる。
また、かかる第 4 9〜第 5 0実施例において、前記機械的処理装置 3とともに、 微生物分離処理手段 0 2 0 (第 2図に鎖線で示す) を前記船舶 1 0 0に搭載する こともできる。
さらに、 か力、る第 4 9〜第 5 0実施例において、 前記海水電解装置 4、 機械的 処理装置 3、 ί散生物分離処理手段 0 2 0を、 前記陸上設置無害化設備 5 0あるい は船舶 1 0搭載用として置き換えることもできる。
すなわち、 第 5 1図において、 前記海水電解装置 4を船舶 1 0 0に搭載し、 陸 上設置無害化設備 5 0として、 前記機械的処理装置 3及び微生物分離処理手段 0 2 0の何れか一方または双方を設置することも可能である。
第 5 3図ないし第 5 5図に示される第 5 1ないし第 5 3実施例においては、 前 記陸上設置無害化設備 5 0を、 車両 2 2 0に搭載して陸上 1 0 1を自在に移動可 能に構成している。
第 5 3図に示される第 5 1実施例においては、 前記第 4 8実施例における陸上 設置無害化設備 5 0を車両 2 2 0に搭載して陸上 1 0 1を自在に移動可能として いる。
第 5 4図に示される第 5 2実施例においては、 前記第 5 1実施例における陸上 設置無害化設備 5 0を車両 2 2 0に搭載して陸上 1 0 1を自在に移動可能として いる。
第 5 5図に示される第 5 3実施例においては、 前記第 5 0実施例における陸上 設置無害化設備 5 0を車両 2 2 0に搭載して陸上 1 0 1を自在に移動可能として いる。
かかる第 5 1ないし第 5 3実施例によれば、 車両 2 2 0に搭載された陸上設置 無害化設備 5 0を船舶 1 0 0に自在に近接させて、 該陸上設置無害化設備 5 0に おいて無害ィヒ処理を施した海水を該船舶 1 0 0内のバラスト水タンク 5に収容可 能となり、 海水搬出管 2 1 0等の海水搬送ラインの長さを最短にできる。 これに より、 図示しない海水搬送用ポンプの動力を低減できて、 海水の無害化処理コス トを低減できる。
また、 かかる第 5 1ないし第 5 3実施例によれば、 複数の船舶 1 0 0について 無害化処理を施した海水を該船舶 1 0 0内のバラスト水タンク 5に収容する場合 においては、車両 2 2 0に搭載した陸上設置無害化設備 5 0を自在に移動させて、 各船舶 1 0 0へのバラス卜水の無害化処理を行うことができることとなり、 該バ ラスト水の無害化処理を短時間で効率的に行うことができる。
その他の構成は前記第 4 8ないし第 5 0実施例と同一であり、 これと同一の部 材は同一の符号で示す。
第 5 6図に示す第 5 4実施例において、 1 0 0は海 1 0 2を航行する船舶、 5 は該船舶内に設置されたバラスト水タンク、 2 3 0は海上 (1 0 2 ) に移動可能 に浮設された装置搭載船、 6 0は該装置搭載船 2 3 0上に搭載された海上設置無 害化設備である。 該海上設置無害化設備 6 0は前記第 4 8〜第 5 3実施例と同一 に構成された海水電解装置 4及び機械的処理装置 3により構成される。
2 5 0は海水を取水して前記海上設置無害化設備 6 0に搬送する海水搬入路、 2 4 0は前記海上設置無害ィ匕設備 6 0と前記船舶 1 0 0内のバラスト水タンク 5 とを接続し該海上設置無害ィ匕設備 6 0で処理された処理海水を前記バラスト水タ ンク 5に搬送する海水搬出路である。
かかる第 5 4実施例においては、 海水搬入路 2 5 0を通った未処理海水海上設 置無害化設備 6 0の機械 ή勺処理装置 3—海水電解装置 4の順序で無害化処理を施 される場合について説明するが、 前記とは逆の海水電解装置 4→機械的処理装置 3の順序で無害ィ匕処理してもよい。
第 5 4実施例において、 海水搬入路 2 5 0を通った未処理海水は機械的処理装 置 3に導入される。 該機械白勺処理装置 3においては、 前記第 4 8〜第 5 3実施例 と同様な機械的処理が施され、 次いで前記海水電解装置 4に送り込まれ該海水電 解装置 4で前記第 4 8〜第 5 3実施例と同様な塩素処理が施される。
前記海水電解装置 4及び機械的処理装置 3によつて無害化処理が施された処理 海水は、 海水搬出路 2 4 0を通って船舶 1 0 0内のバラスト水タンク 5に収容さ れる。 1 0 1は陸上である。 かかる第 5 4実施例によれば、 海上設置無害化設備 6 0を構成する海水電解装 置 4及び機械的処理装置 3を、 海上 ( 1 0 2 ) に移動可能に浮設された装置搭載. 船 2 3 0に搭載し、 該海上設置無害化設備 6 0において未処理海水中の微生物を 殺滅又は殺菌する無害化処理を行い、 処理海水を、 該海上設置無害化設備 6 0と 船舶 1 0 0に内のノ ラスト水タンク 5とを接続する海水搬出路 2 4 0を通して該 バラスト水タンク 5に収納するので、 前記海水電解装置 4、 機械的処理装置 3等 の海水の無害化処理設備を前記海上設置無害化設備 6 0として浮設できて、 船舶 1 0 0内に設置する必要がなくなる。 これにより、 船舶 1 0 0における海水の無 害化処理装置の設置スペースを低減できて、 貨物等の搭載スペースを増大するこ とが可能となる。
また、 海上 (1 0 2 ) に移動可能に浮設された海上設置無害化設備 6 0を構成 する海水電解装置 4及び機械的処理装置 3と船 1 0 0側のバラスト水タンク 5と を、 海水搬出路 2 4を船舶 1 0 0毎に繋ぎ換えることにより、 1台 (1セット) の海上設置無害化設備 6 0により複数の船舶 1 0 0のバラスト水タンク 5につい ての無害ィヒ処理を行うことができる。 これにより、 海上設置無害化設備 6 0の稼 動率を上昇できるとともに船舶 1 0 0 1隻あたりの無害化処理装置の設置数を少 なくできて装置コストを低減できる。
また、 沖合いに停泊している船舶 1 0 0に対してバラスト水の無害化処理を行 う際においても、 海上に移動可能に浮設された海上設置無害化設備 6 0を装置搭 載船 2 3の移動により船舶 1 0 0に自在に近接させて、 該海上設置無害化設備 6 0において無害化処理を施した海水を該船舶 1 0 0内のバラスト水タンク 5に収 容可能となる。 これにより、 岸壁あるいは沖合いに停泊している船舶の何れに対 しても、 きわめて容易にかつ短時間でバラスト水の無害化処理を行うことができ る。
さらには、 前記海水電解装置 4及び機械的処理装置 3等の無害化処理装置を海 上設置無害化設備 6 0として船舶 1 0 0とは別個に浮設するので、 既存の船舶 1 0 0に対しても船体内に該無害ィヒ処理装置を新たに設置するのが不要となるとと もに、 船舶 1 0 0内の改造が最少限で済み、 該無害化処理装置設置のための船舶 1 0 0内設置コス卜を最少限に抑制できる。 また、 かかる第 5 4実施例において、 前記海上設置無害化設備 6 0として、 前 記海水電解装置 4と、 前記機械的処理装置 3及び前記微生物分離処理を該海水に. 施す微生物分離処理手段 0 2 0 (第 7図に鎖線で示す) の何れか一方または双方 とにより構成することもできる。
また、 かかる第 5 4実施例の変形例として、 前記海上設置無害化設備 6 0とし て前記海水電解装置 4を設置し、 前記機械的処理装置 3とともに微生物分離処理 手段 0 2 0を前記船舶 1 0 0 に搭載するように構成することも可能である。
さらに、 かかる第 5 4実施例において、 前記海水電解装置 4、 機械的処理装置 3、 微生物分離処理手段 0 2 0を、 前記海上設置無害化設備 6 0あるいは船舶 1 0 0搭載用として置き換えることもできる。
すなわち、 第 5 6図において、 前記海水電解装置 4を船舶 1 0 0に搭載し、 海 上設置無害化設備 6 0として、 前記機械的処理装置 3及び微生物分離処理手段 0 2 0の何れか一方または双方を設置することも可能である。
第 5 7図に示す第 5 5実施例においては、 海上設置無害化設備 6 0は前記第 5 4実施例と同様に海水電解装置 4及び機械的処理装置 3により構成し、 前記機械 的処理装置 3と同様な他の機械的処理装置 3を船舶 1 0 0に搭載している。
かかる第 5 5実施例においては、 前記第 5 4実施例と同様に、 前記海上設置無 害化設備 6 0の海水電解装置 4及び機械的処理装置 3によつて無害化処理が施さ れた処理海水は、 海水搬出路 2 4 0を通って船舶 1 0 0内の他の機械的処理装置 3に導入される。 そして、 かかる第 5 5実施例においては、 前記他の機械的処理 装置 3において再度無害化 理された処理海水を、 該バラスト水タンク 5に収容 できる。
その他の構成及び作用効^:は前記第 5 4実施例と同一である。 また前記第 5 4 実施例と同一の部材は同一の符号で示す。
第 5 8図に示す第 5 6実旌例においては、 前記第 5 5実施例 (第 5 7図) に加 えて、'前記船舶 1 0 0の船 #:に、 海中に開口して前記他の機械的処理装置 3に接 続される船体側海水搬入路 2 9を設けている。
かかる第 5 6実施例によれば、 船舶 1 0 0に搭載された他の機械的処理装置 3 によって、 海上設置無害化 備 6 0における海水電解装置 4及び機械的処理装置 3での処理海水、 及び海中に開口する船体側海水搬入路 2 9を通して導入された 海水を同時に無害化処理してバラスド水タンク 5に収容することができ、 これに より、 簡単な構造の機械的処理装置によつて多量の海水を無害化処理できる。 その他の構成は前記第 5 5実施例 (第 5 7図) と同一であり、 これと同一の部 材は同一の符号で示す。 またかかる第 5 6実施例における他の作用効果は前記第 5 4実施例と同一である。
尚、 前記各実施例においては、 前記塩素処理手段を第 4図に示すような電解槽 循環方式の海水電解装置 4に構成しているが、 これに限定されず、 海水から塩素 含有物質を生成して該海水中に注入し微生物を殺滅又は殺菌する塩素処理機能を 有するものであればよい。
その 1つに、 酸化物質添加手段 (図示省略) により、 前記海水に、 酸化作用を 有する物質の添加処理を行う手段がある。 前記酸化作用を有する物質としては、 前記塩素含有物質のほ;^に、 過酸化水素、 オゾン等の酸化剤を用いることができ る。 産業上の利用可能性
本発明によれば、 設備コスト及び運転コストが低減され、 かつ船体等の処理液 体収容体側の強度低下をもたらすことなく、 あらゆる大きさの微生物の殺滅又は 殺菌を確実になし得、 さらには船舶におけるバラスト水の無害化処理装置の設置 スペースを低減して貨物等の搭載スペースが増大され、 かつ既存の船舶に対して も該無害ィヒ処理装置設置のための船体内の改造コストを最少限に抑制可能とした バラスト水等の液体の無害化処理方法及び装置を提供できる。

Claims

請 求 の 範 囲
1 . 未処理の液体中の微生物を除去して清净な処理液体に転換する液体の無 害化処理方法において、 前記液体に、 該液体中の前記微生物に損傷を与え殺滅又 は殺菌する機械的処理と、 該液体から塩素含有物質を生成し該液体中に注入して 前記微生物を殺滅又は殺菌する塩素処理または前記液体に酸ィヒ作用を有する物質 を添加する酸ィ匕物質添加処理のいずれか一方の処理とを施し、 処理液体を処理液 体タンクに収容することを特徴とする液体の無害化処理方法。
2 . 前記塩素処理ま、 前記液体の全部または一部を貯留タンクに導入し、 該 液体を前記貯留タンクと該液体を電気分解して塩素含有物質を生成する電解槽と の間の循環路を循環させる電解槽循環方式により行うことを特徴とする請求項 1 記載の液体の無害化処理方法。
3 . 前記機械的処理及び塩素処理を施した後の処理液体に、 活性炭による処 理あるいは金属触媒による処理のいずれか一方または双方を施すことを特徴とす る請求項 1記載の液体の無害化処理方法。
4. 未処理の液体中の微生物を除去して清浄な処理液体に転換する液体の無 害化処理方法において、 前記液体をフィルタ一等に通すろ過法又は遠心分離法に より該液体中の比較的大きな前記微生物を除去する微生物分離処理と、 前記液体 から塩素含有物質を生成して該液体中に注入し前記微生物を殺滅又は殺菌する塩 素処理または前記液体に酸化作用を有する物質を添加する酸化物質添加処理のい ずれか一方の処理とを施し、 処理液体を処理液体夕ンクに収容することを特徴と する液体の無害化処理方法。
5 . 前記微生物分離処理の前工程または後工程のいずれかに、 該液体中の微 生物に損傷を与え殺滅又は殺菌する機械的処理を施すことを特徴とする請求項 4 記載の液体の無害化処理方法。
6 . ' 海水中の微生物を除去して清浄な処理海水に転換する海水の無害化処理 方法において、 前記海水に、 該海水中の前記微生物に損傷を与え殺滅又は殺菌す る機械的処理と、 該海水から塩素含有物質を生成し該海水中に注入して前記微生 物を殺滅又は殺菌する塩素処理または前記海水に酸化作用を有する物質を添加す る酸化物質添加処理のいずれか一方の処理とを施し、 処理海水をバラスト水タン クに収容することを特徴とする液体の無害化処理方法。
7 . 前記塩素処理は、 前記海水の全部または一部を貯留タンクに導入し、 該 海水を前記貯留夕ンクと該液体を電気分解して塩素含有物質を生成する電解槽と の間の循環路を循環させる電解槽循環方式により行うことを特徴とする請求項 6 記載の海水の無害化処理方法。
8 . 前記海水の塩素処理の電源に、 太陽電池、 風力発電電力等の自然エネル ギ一による電力を用いることを特徴とする請求項 6記載の海水の無害化処理方法。
9 . 前記機械的処理及び塩素処理を施した後の処理海水に、 活性炭による処 理あるいは金属触媒による処理のいずれか一方または双方を施すことを特徴とす る請求項 6記載の液体の無害ィ匕処理方法。
1 0 . 海水中の微生物を除去して清浄な処理海水に転換する海水の無害化処理 方法において、
前記海水をフィルタ一等に通すろ過法又は遠心分離法により該液体中の比較的大 きな前記微生物を除去する微生物分離処理と、 前記海水から塩素含有物質を生成 して該海水中に注入し前記微生物を殺滅又は殺菌する塩素処理または前記海水に 酸化作用を有する物質を添加する酸ィ匕物質添加処理のいずれか一方の処理とを施 し、 処理海水をバラスト水タンクに収容することを特徴とする海水の無害化処理 方法。
1 1 . 前記微生物分離処理の前工程または後工程のいずれかに、 該液体中の微 生物に損傷を与え殺滅又は殺菌する機械的処理を施すことを特徴とする請求項 1 0記載の海水の無害化処理方法。
1 2 . 未処理の海水を含む未処理の液体中の微生物を除去して清浄な処理液体 に転換するように構成された液体の無害化処理装置において、 前記液体中の微生 物に損傷を与え殺滅又は殺菌する機械的処理を該液体に施す機械的処理装置と、 前記 体に酸化作用を有する物質を添加する酸化物質添加手段あるいは前記液体 から塩素含有物質を生成し該液体中に注入して前記微生物を殺滅又は殺菌する塩 素処理を該液体に施す塩素処理手段のいずれか 1つと、 前記機械的処理装置及び 酸化物質添加手段あるいは塩素処理手段による処理後の処理液体を収容する処理 液体夕ンクとを併設したことを特徴とする液体の無害化処理装置。
1 3. 前記塩素処理手段は、 前記液体の全部または一部を貯留する貯留タンク一 と該液体を電気分解して塩素含有物質を生成する電解槽とを備えて前記液体を前 記貯留タンクと電解槽との間の循環路を循環させる電解槽循環方式による処理を 前記液体に施すように構成された液体電解装置からなることを特徴とする請求項 1 2記載の液体の無害化処理装置。
1 4. 前記塩素処理を施した後の処理液体の残留塩素量を計測する残留塩素計 を備え、 前記塩素処理手段は前記残留塩素計による残留塩素量の計測値に基づき 前記塩素処理における塩素含有物質の生成量を制御するように構成されてなるこ とを特徴とする請求項 1 2記載の液体の無害化処理装置。
1 5. 未処理の海水を含む未処理の液体中の微生物を除去して清浄な処理液体 に転換するように構成された液体の無害ィヒ処理装置において、 前記液体をフィル 夕一等に通すろ過法又は遠心分離法により該液体中の比較的大きな前記微生物を 除去する微生物分離装置と、 前記液体から塩素含有物質を生成し該液体中に注入 して前記微生物を殺滅又は殺菌する塩素処理を施す塩素処理手段または前記液体 に酸ィヒ作用を有する物質を添加する酸化物質添加手段のいずれか一方と、 前記機 械的処理装置及び塩素処理手段あるいは酸化物質添加手段による処理後の処理液 体を収容する処理液体タンクとを併設したことを特徴とする液体の無害化処理装 置。
1 6. 前記微生物分離装置の前工程または後工程のいずれかに、 前記液体中の 微生物に損傷を与え殺滅又は殺菌する機械的処理を該液体に施す機械的処理装置 を設けたことを特徴とする請求項 1 5載の液体の無害化処理装置。
1 7 . バラスト水タンク内に収容された海水中の微生物を除去して該海水を清 浄な処理海水に転換する海水の無害化処理方法において、 前記海水に、 該海水中 の前記微生物に損傷を与え殺滅又は殺菌する機械的処理と、 該海水から塩素含有 物質を生成し該海水中に注入して前記微生物を殺滅又は殺菌する塩素処理または 前記海水に酸化作用を有する物質を添加する酸化物質添加処理のいずれか一方の 処理とを施し、 処理海水を前記バラスト水タンク外に排出することを特徴とする 海水の無害化処理方法。
1 8 . バラスト水タンク内に収容された海水中の微生物を除去して該海水を清 浄な処理海水に転換する海水の無害化処理方法において、 前記海水に、 該海水中. の前記微生物に損傷を与え殺滅又は殺菌する機械的処理と、 該海水から塩素含有 物質を生成し該海水中に注入して前記微生物を殺滅又は殺菌する塩素処理または 前記海水に酸化作用を有する物質を添加する酸化物質添加処理のいずれか一方の 処理とを施した後、 該バラスト水タンクに循環させることを特徴とする海水の無 害化処理方法。
1 9 . 前記海水の塩素処理の電源に、 太陽電池、 風力発電電力等の自然エネル ギ一による電力を用いることを特徴とする請求項 1 7または 1 8の何れかの項に 記載の海水の無害化処理方法。
2 0 . 前記塩素処理は、 前記バラスト水タンク内の海水の全部または一部を貯 留タンクに導入し、 該海水を前記貯留タンクと該液体を電気分解して塩素含有物 質を生成する電解槽との間の循環路を循環させる電解槽循環方式により行うこと を特徴とする請求項 1 7または 1 8の何れかの項に記載の海水の無害化処理方法。
2 1 . 前記機械的処理及び塩素処理を施した後の処理海水に、 活性炭による処 理あるいは金属触媒による処理のいずれか一方または双方を施すことを特徴とす る請求項 1 7または 1 8の何れかの項に記載の海水の無害化処理方法。
2 2 . バラスト水タンク内に収容された梅水中の微生物を除去して該海水を清 浄な処理海水に転換する海水の無害ィ匕処理方法において、 前記海水に、 フィルタ —等に通すろ過法又は遠心分離法により該海水中の比較的大きな前記微生物を除 去する微生物分離処理と、 前記海水から塩素含有物質を生成して該海水中に注入 し前記微生物を殺滅又は殺菌する塩素処理または前記海水に酸ィヒ作用を有する物 質を添加する酸ィヒ物質添加処理のいずれか一方の処理とを施し、 処理海水を前記 バラスト水タンク外に排出することを特微とする海水の無害化処理方法。
2 3 . バラスト水タンク内に収容された海水中の微生物を除去して該海水を清 浄な処理海水に転換する海水の無害化処理方法において、 前記海水に、 フィルタ 一等に通すろ過法又は遠心分離法により詨海水中の比較的大きな前記微生物を除 去する微生物分離処理と、 前記海水から塩素含有物質を生成して該海水中に注入 し前記微生物を殺滅又は殺菌する塩素処理または前記海水に酸ィ匕作用を有する物 質を添加する酸化物質添加処理のいずれか一方の処理とを施した後、 前記バラス ト水タンクに循環ぎせることを特徴とする海水の無害化処理方法。
2 4. 前記微生物分離処理の前工程または後工程のいずれかに、 該海水中の前 記微生物に損傷を与え殺滅又は殺菌する機械的処理を施すことを特徴とする請求 項 2 2又は 2 3の何れかの項に記載の海水の無害化処理方法。
2 5 . 前記バラスト水タンク内の海水の全部または一部を貯留タンクに導入し て、 前記貯留タンクと該液体を電気分解して塩素含有物質を生成する電解槽との 間の循環路を該海水を循環させる電解槽循環方式による処理を前記バラスト水タ ンク内の海水を循環させながら施し、 この処理海水に前記微生物分離処理を施す ことを特徴とする請求項 2 2又は 2 3の何れかの項に記載の海水の無害ィヒ処理方 法。
2 6 . 前記塩素含有物質は、 塩素、 次亜塩素酸、 亜塩素酸、 塩素酸またはこれ らのイオンや塩であることを特徴とする請求項 2 2又は 2 3の何れかの項に記載 の海水の無害化処理方法。
2 7 . バラスト水タンク内に収容された海水中の微生物を除去して該海水を清 浄な処理海水に転換するように構成された海水の無害化処理装置において、 前記 海水中の微生物に損傷を与え殺滅又は殺菌する機械的処理を該海水に施す機械的 処理装置と、 前記海水から塩素含有物質を生成し該海水中に注入して前記微生物 を殺滅又は殺菌する塩素処理を施す塩素処理手段または前記海水に酸化作用を有 する物質を添加する酸化物質添加手段のいずれか一方とを備え、 前記各手段によ る処理後の処理液体を前記バラスト水タンク外に排出するように構成されてなる ことを特徴とする海水の無害化処理装置。
2 8 . バラスト水タンク内に収容された海水中の微生物を除去して該海水を清 浄な処理海水に転換するように構成された海水の無害化処理装置において、 前記 海水中の微生物に損傷を与え殺滅又は殺菌する機械的処理を該海水に施す機械的 処理装置と、 前記海水から塩素含有物質を生成し該海水中に注入して前記微生物 を殺滅又は殺菌する塩素処理を施す塩素処理手段または前記海水に酸化作用を有 する物質を添加する酸化物質添加手段のいずれか一方とを備え、 前記各手段によ る処理後の処理液体を前記バラスト水タンクに循環するように構成されてなるこ とを特徴とする海水の無害化処理装置。
2 9 . 前記塩素処理手段は、 前記海水の全部または一部を貯留する貯留タンク. と該海水を電気分解して塩素含有物質を生成する電解槽とを備えて前記海水を前 記貯留タンクと電解槽との間の循環路を循環させる電解槽循環方式による処理を 前記液体に施すように構成された液体電解装置からなることを特徴とする請求項
2 7または 2 8の何れかの項に記載の海水の無害化処理装置。
3 0 . 前記液体電解装置は、 海水中の微生物に損傷を与え殺滅又は殺菌する機 械的処理を該液体に施す機械的処理装置の前工程側または後工程側のいずれか一 方に配設されてなることを特徴とする請求項 2 9記載の液体の無害化処理装置。
3 1 . 前記液体電解装置は、 前記バラスト水タンク内の海水を循環させる循環 路に設置されて前記電解槽循環方式による処理を海水に施すように構成されてな ることを特徴とする請求項 2 9記載の液体の無害化処理装置。
3 2 . 前記バラスト水タンク内の海水中の残留塩素量を計測する残留塩素計を 備え、 前記塩素処理手段は前記残留塩素計による残留塩素量の計測値に基づき前 記電解槽循環方式における塩素含有物質の生成量を制御するように構成されてな ることを特徴とする請求項 2 9記載の海水の無害化処理装置。
3 3 . バラスト水タンク内に収容された海水中の微生物を除去して該海水を清浄 な処理海水に転換するように構成された海水の無害化処理装置において、 前記海 水をフィル夕一等に通すろ過法又は遠心分離法により該海水中の比較的大きな前 記微生物を除去する微生物分離装置と、 前記海水から塩素含有物質を生成し該海 水中に注入して前記微生物を殺滅又は殺菌する塩素処理を施す塩素処理手段また は前記海水に酸化作用を有する物質を添加する酸化物質添加手段のいずれか一方 とを備え、 前記各手段による処理後の処理液体を前記バラスト水タンク外に排出 するように構成されてなることを特徴とする海水の無害化処理装置。
3 4. バラスト水タンク内に収容された海水中の微生物を除去して該海水を清 浄な処理海水に転換するように構成された海水の無害化処理装置において、 前記 海水をフィルタ一等に通すろ過法又は遠心分離法により該海水中の比較的大きな 前記微生物を除去する微生物分離装置と、 前記海水から塩素含有物質を生成し該 海水中に注入して前記微生物を殺滅又は殺菌する塩素処理を施す塩素処理手段ま たは前記海水に酸化作用を有する物質を添加する酸ィ匕物質添加手段のいずれか一 方とを備え、 前記各手段による処理後の処理液体を前記バラスト水タンクに循環. するように構成されてなることを特徴とする海水の無害化処理装置。
3 5 . 前記微生物分離装置の前工程または後工程のいずれかに、 前記海水中の 微生物に損傷を与え殺滅又は殺菌する機械 β勺処理を該海水に施す機械的処理装置 を設けたことを特徵とする請求項 3 3またぼ 3 4の何れかの項に記載の海水の無 害化処理装置。
3 6 . 海水中の微生物を除去して清浄な処理海水に転換する海水の無害化処理 装置において、 陸上に設置されて前記海水^の微生物を殺滅又は殺菌する陸上設 置無害化設備と、 船舶に搭載されたパラス卜水タンクと、 前記海水を取水して前 記陸上設置無害化設備に搬送する海水搬入洛と、 前記陸上設置無害化設備にて処 理された海水を前記バラスト水タンクに搬迭する海水搬出路とを備え、 前記海水 搬入路を通して導入された海水に前記陸上設置無害化設備にて該海水中の微生物 を殺滅又は殺菌する無害化処理を施し、 該処理海水を前記海水搬出路を通して前 記バラスト水タンクに収容するように構成ざれたことを特徴とする海水の無害化 処理装置。
3 7 . 前記陸上設置無害化設備を、 前記海水から塩素含有物質を生成して該海 水中に注入し前記微生物を殺滅又は殺菌する塩素処理を該海水に施す塩素処理手 段または前記海水に酸化作用を有する物質を添加する酸化物質添加手段のいずれ か 1つと、 前記海水中の微生物に損傷を与え殺滅又は殺菌する機械的処理を該海 水に施す機械的処理装置とにより構成し、 Iff記塩素処理手段または酸化物質添加 手段のいずれか及び前記機械的処理装置に^り処理された処理海水を前記海水搬 出路を通して前記バラスト水タンクに収容するように構成されたことを特徴とす る請求項 3 6記載の海水の無害化処理装置。,
3 8 . 前記陸上設置無害化設備を、 前記海水から塩素含有物質を生成して該海 水中に注入し前記微生物を殺滅又は殺菌する塩素処理を該海水に施す塩素処理手 段または前記海水に酸化作用を有する物質を添加する酸ィヒ物質添加手段のいずれ か 1つと、 前記液体をフィルタ等に通すろ過法又は遠心分離法により該液体中の 比較的大きな前記微生物を除去する微生物分離処理装置とにより構成し、 前記塩 素処理手段または酸化物質添加手段のいずれか及び前記微生物分離処理装置によ り処理された処理海水を前記海水搬出路を通して前記バラスト氷タンクに収容す . るように構成されたことを特徴とする請求項 3 6記載の海水の無害化処理装置。
3 9 . 前記陸上設置無害化設備を、 前記海水から塩素含有物質を生成して該海 水中に注入し前記微生物を殺滅又は殺菌する塩素処理を該海水に施す塩素処理手 段または前記海水に酸化作用を有する物質を添加する酸化物質添加手段のいずれ か 1つ、 あるいは前記海水中の微生物に損傷を与え殺滅又は殺菌する機械的処理 を該海水に施す機械的処理装置のどちらかにより構成するとともに、 残る一方の 処理手段を前記船舶に搭載し、 前記陸上設置無害化設備を構成する塩素処理手段 または酸ィ匕物質添加手段のいずれか、 あるいは機械的処理装置での処理海水を前 記海水搬出路を通して船舶内の残る一方の処理手段に導入し、 所定処理を施して 前記バラスト水タンクに収容するように構成されたことを特徴とする請求項 3 6 記載の海水の無害化処理装置。
4 0 . 前記陸上設置無害化設備を、 前記海水から塩素含有物質を生成して該海 水中に注入し前記微生物を殺滅又は殺菌する塩素処理を該海水に施す塩素処理手 段または前記海水に酸ィ匕作用を有する物質を添加する酸化物質添加手段のいずれ か 1つ、 あるいは前記海水をフィルタ等に通すろ過法又は遠心分離法により該海 水中の比較的大きな前記微生物を除去する微生物分離処理手段のどちらかにより 構成するとともに、 残る一方の処理手段を前記船舶に搭載し、 前記陸上設置無害 化設備を構成する塩素処理手段または酸化物質添加手段のいずれか、 あるいは前 記微生物分離処理手段での処理海水を前記海水搬出路を通して船舶内の残る一方 の処理手段に導入し、 該処理手段による処理を施して前記バラスト水タンクに収 容するように構成されたことを特徴とする請求項 3 6記載の海水の無害化処理装 置。
4 1 . 前記船舶の船体に、 海中に開口して前記機械的処理装置又は前記微生物 分離装置に接続される ίΗ本側海水搬入路を設け、 前記機械的処理装置又は微生物 分離装置は前記陸上設置無害化設備における塩素処理手段または酸ィ匕物質添加手 段のいずれかでの処理海水及び前記船体側海水搬入路を通して導入された海水に 前記機械的処理又は微生物分離を施すように構成されたことを特徴とする請求項 4 0記載の海水の無害化処理装置。
4 2 . 前記陸上設置無害化設備を、 車両等の運搬装置に搭載して陸上を自在に. 移動可能に構成したことを特徴とする請求項 3 6項に記載の海水の無害化処理装 置。
4 3 . 海水中の微生物を除去して清浄な処理海水に転換する海水の無害化処理 装置において、
海上に浮設されて前記海水中の微生物を殺滅又は殺菌する海上設置無害化設備と、 船舶に搭載されたバラスト水タンクと、 海水を取水して前記海上設置無害化設備 に搬送する海水搬入路と、 前記海上設置無害化設備と前記船舶内のバラスト水夕 ンクとを接続し前記海上設置無害化設備で処理された海水を前記バラス卜水タン クに搬送する海水搬出路とを備え、
前記海水搬入路を通して導入された海水に前記海上設置無害ィ匕設備にて該海水 中の微生物を殺滅又は殺菌する無害化処理を施し、 該処理海水を前記海水搬出路 を通して前記船舶内のバラスト水タンクに収容するように構成されたことを特徴 とする海水の無害化処理装置。
4 4. 前記海上設置無害 ί匕設備を、 前記海水から塩素含有物質を生成して該海 水中に注入し前記微生物を殺滅又は殺菌する塩素処理を該海水に施す塩素処理手 段または前記海水に酸化作用を有する物質を添加する酸化物質添加手段のいずれ か 1つと、 前記海水中の微生物に損傷を与え殺滅又は殺菌する機械的処理を該海 水に施す機械的処理装置とにより構成し、 前記塩素処理手段または酸化物質添加 手段のいずれか及び前記機械的処理装置により処理された処理海水を前記海水搬 出路を通して前記バラスト水タンクに収容するように構成されたことを特徵とす る請求項 4 3記載の海水の無害化処理装置。
4 5 . 前記海上設置無害 ί匕設備を、 前記海水から塩素含有物質を生成して該海 水中に注入し前記微生物を殺滅又は殺菌する塩素処理を該海水に施す塩素処理手 段または前記海水に酸化作用を有する物質を添加する酸化物質添加手段のいずれ か 1つと、 前記液体をフィフレタ等に通すろ過法又は遠心分離法により該液体中の 比較的大きな前記微生物を除去する微生物分離処理手段とにより構成し、 前記塩 素処理手段または酸化物質添加手段のいずれか及び前記微生物分離処理手段によ り処理された処理海水を前記海水搬出路を通して前記バラスト水タンクに収容す る _ように構成されたことを特徴とする請求項 4 3記載の海水の無害化処理装置。
4 6 . 前記海上設置無害化設備を、 前記海水から塩素含有物質を生成して該海 水中に注入し前記微生物を殺滅又は殺菌する塩素処理を該海水に施す塩素処理手 段または前記海水に酸化作用を有する物質を添加する酸化物質添加手段のいずれ か 1つ、 あるいは前記海水中の微生物に損傷を与え殺滅又は殺菌する機械的処理 を該海水に施す機械的処理手段により構成するとともに、 前記海上設置無害化設 備での処理海水を前記海水搬出路を通して船舶内の残る一方の処理手段に導入し、 前記海上設置無害化設備を構成する塩素処理手段または酸化物質添加手段のいず れか、 あるいは前記機械的処理装置での処理海水を前記海水搬出路を通して船舶 内の前記残る一方の処理手段に導入し、 前記残る一方の処理手段による処理を施 して前記/ ラスト水タンクに収容するように構成されたことを特徴とする請求項 4 3載の海水の無害化処理装置。
4 7 . 前記海上設置無害化設備を、 前記海水から塩素含有物質を生成して該海 水中に注入し前記微生物を殺滅又は殺菌する塩素処理を該海水に施す塩素処理手 段または前記海水に酸ィ匕作用を有する物質を添加する酸ィ匕物質添加手段のいずれ か 1つ、 あるいは前記海水をフィルタ等に通すろ過法又は遠心分離法により該海 水中の比較的大きな前記微生物を除去する微生物分離処理手段により構成すると ともに、 前記海上設置無害化設備での処理海水を前記海水搬出路を通して船舶内 の残る一方の処理手段に導入し、 前記海上設置無害化設備を構成する塩素処理手 段または酸化物質添加手段のいずれか、 あるいは前記微生物分離処理手段での処 理海水を前記海水搬出路を通して船舶内の前記残る一方の処理手段に導入し、 前 記残る一方の処理手段による処理を施して前記バラス卜水タンクに収容するよう に構成されたことを特徴とする請求項 4 3記載の海水の無害化処理装置。
4 8 . 前記船舶の船体に、 海中に開口して前記機械的処理装置に接続される船 体側海水搬入路を設け、 前記機械的処理装置は前記海上設置無害化設備における 塩素処理手段または酸化物質添加手段のいずれかでの処理海水及び前記船体側海 水搬入路を通して導入された海水に前記機械的処理を施すように構成されたこと を特徴とする請求項 4 7記載の海水の無害化処理装置。
4 9 . 前記船舶の船体に、 海中に開口して前記微生物分離処理装置に接続され る 本側海水搬入路を設け、 前記処理手段は前記海上設置無害化設備における塩 · 素処理手段または酸化物質添加手段のいずれかでの処理海水及び前記船体側海水 搬入路を通して導入された海水に微生物分離処理を施すように構成されたことを 特徴とする請求項 4 7記載の海水の無害化処理装置。
5 0 . 前記塩素処理手段は、 前記海水の全部または一部を貯留する貯留タンク と該海水を電気分解して塩素含有物質を生成する電解槽とを備えて前記海水を前 記貯留タンクと電解槽との間の循環路を循環させる電解槽循環方式による処理を 前記液体に施すように構成された液体電解装置からなることを特徴とする請求項 3 7記載の海水の無害化処理装置。
PCT/JP2005/002515 2004-02-13 2005-02-10 液体の無害化処理方法及びその装置 WO2005077833A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2005518065A JPWO2005077833A1 (ja) 2004-02-13 2005-02-10 液体の無害化処理方法及びその装置
EP20050710363 EP1717205A1 (en) 2004-02-13 2005-02-10 Method of liquid detoxification and apparatus therefor
US10/569,483 US20080164217A1 (en) 2004-02-13 2005-02-10 Method of Liquid Detoxification and Apparatus Therefor
AU2005212085A AU2005212085A1 (en) 2004-02-13 2005-02-10 Method of liquid detoxification and apparatus therefor
NO20060879A NO337935B1 (no) 2004-02-13 2006-02-23 Fremgangsmåte for detoksifisering av ballastvann og apparatur for utøvelse av fremgangsmåten.
US12/292,454 US20090078654A1 (en) 2004-02-13 2008-11-19 Method of liquid detoxification and apparatus therefor

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2004037273 2004-02-13
JP2004-037273 2004-02-13
JP2004135389 2004-04-30
JP2004-135389 2004-04-30
JP2004-170514 2004-06-08
JP2004170514 2004-06-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/292,454 Division US20090078654A1 (en) 2004-02-13 2008-11-19 Method of liquid detoxification and apparatus therefor

Publications (1)

Publication Number Publication Date
WO2005077833A1 true WO2005077833A1 (ja) 2005-08-25

Family

ID=34864929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/002515 WO2005077833A1 (ja) 2004-02-13 2005-02-10 液体の無害化処理方法及びその装置

Country Status (8)

Country Link
US (2) US20080164217A1 (ja)
EP (1) EP1717205A1 (ja)
JP (3) JPWO2005077833A1 (ja)
KR (1) KR100814658B1 (ja)
CN (1) CN100393632C (ja)
AU (1) AU2005212085A1 (ja)
NO (1) NO337935B1 (ja)
WO (1) WO2005077833A1 (ja)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006248510A (ja) * 2005-02-09 2006-09-21 Toshiba Corp バラスト水浄化装置及び当該装置を搭載した船舶
JP2007090214A (ja) * 2005-09-28 2007-04-12 Japan Organo Co Ltd 船舶用バラスト水の製造方法及び製造装置
JP2007130563A (ja) * 2005-11-09 2007-05-31 Mitsui Eng & Shipbuild Co Ltd バラスト水の利用システム
JP2007152264A (ja) * 2005-12-07 2007-06-21 Jfe Engineering Kk バラスト水処理装置及び処理方法
JP2007216181A (ja) * 2006-02-20 2007-08-30 Jfe Engineering Kk バラスト水処理装置及び処理方法
JP2007229577A (ja) * 2006-02-28 2007-09-13 Mitsubishi Heavy Ind Ltd 液体の無害化処理方法とその装置及びこの装置をそなえた船舶
JP2007229575A (ja) * 2006-02-28 2007-09-13 Mitsubishi Heavy Ind Ltd 液体の無害化処理方法とその装置及びこの装置をそなえた船舶
EP1945575A1 (en) * 2005-09-14 2008-07-23 Korea Ocean Research and Development Institute Electrolytic sterilizing apparatus for ship ballast water
JP2008212901A (ja) * 2007-03-07 2008-09-18 National Maritime Research Institute 船舶用バラスト水処理装置
WO2008139573A1 (ja) * 2007-05-08 2008-11-20 Mitsui Engineering & Shipbuilding Co., Ltd. バラスト水の利用システム
JP2009142797A (ja) * 2007-12-18 2009-07-02 Spring:Kk 水中の微生物を殺減する装置及び水中の微生物を殺減する方法
JP2009274028A (ja) * 2008-05-15 2009-11-26 Mhi Environment Engineering Co Ltd 海水処理装置及びその処理方法
JP2010528832A (ja) * 2007-06-01 2010-08-26 セバーン トレント デ ノラ,エルエルシー バラストタンク循環管理システム
JP2010536540A (ja) * 2007-08-15 2010-12-02 シーメンス ウォーター テクノロジース コーポレイション バラスト水を処理するための方法及びシステム
JP2011173058A (ja) * 2010-02-24 2011-09-08 Sanyo Electric Co Ltd バラスト水処理装置
JP2011189250A (ja) * 2010-03-12 2011-09-29 Sumitomo Heavy Industries Marine & Engineering Co Ltd バラスト水処理システム及びバラスト水処理方法
JP2011528982A (ja) * 2008-07-24 2011-12-01 サムスン ヘビー インダストリーズ カンパニー リミテッド バラスト水処理装置および方法
JP2012020218A (ja) * 2010-07-13 2012-02-02 Panasonic Corp バラスト水処理システム及びバラスト水処理方法
JP2012505069A (ja) * 2008-08-18 2012-03-01 シーメンス ウォーター テクノロジース コーポレイション 船上装備品の生物付着を防除するための方法及びシステム
JP2012519075A (ja) * 2009-03-02 2012-08-23 チェスター ソーン, バラスト水処理用電解装置及び同装置の処理システム
JPWO2011065434A1 (ja) * 2009-11-27 2013-04-18 鶴見曹達株式会社 船舶のバラスト水の処理方法
JP2013525091A (ja) * 2010-04-07 2013-06-20 アクア エング カンパニーリミテッド 高効率電気分解装置を用いたバラスト水処理システム
JPWO2011108032A1 (ja) * 2010-03-05 2013-06-20 国立大学法人東北大学 バラスト水処理装置と該装置を使用したバラスト水無害化処理システム及びその方法
TWI412498B (zh) * 2006-09-27 2013-10-21 Tg Corp Method of handling ballast water in ships
CN103755105A (zh) * 2014-01-29 2014-04-30 中国海洋石油总公司 一种海上生活污水的处理系统以及处理方法
WO2014064942A1 (ja) * 2012-10-25 2014-05-01 パナソニック株式会社 バラスト水処理方法及びそれに用いるバラスト水処理装置
JP2015016761A (ja) * 2013-07-10 2015-01-29 栗田工業株式会社 バラスト水の処理システムおよびバラスト水の処理方法
WO2015122435A1 (ja) * 2014-02-13 2015-08-20 三菱重工環境・化学エンジニアリング株式会社 海水電解システム及び電解液注入方法
JP2015150502A (ja) * 2014-02-14 2015-08-24 パナソニックIpマネジメント株式会社 遠心式固液分離装置とそれを用いた水処理装置
JPWO2016174890A1 (ja) * 2015-04-30 2018-02-22 株式会社クラレ バラスト水処理装置及びバラスト水処理方法

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100738987B1 (ko) * 2006-03-07 2007-07-13 한국해양연구원 선박 밸러스트수 처리를 위한 해수에서의 아염소산염과염소를 이용한 이산화염소 제조 장치 및 방법
PL2089324T3 (pl) 2006-10-20 2012-09-28 Oceansaver As Sposób i urządzenie do uzdatniania wody balastowej
EP1975130A3 (de) * 2007-03-27 2011-03-30 JOWA GERMANY GmbH Verfahren zum Entkeimen des Ballatswassers von Schiffen
US7833411B2 (en) * 2007-07-31 2010-11-16 Mitsui Engineering & Shipbuilding Co., Ltd. Ballast water treatment apparatus
JP4509156B2 (ja) * 2007-09-13 2010-07-21 三菱重工業株式会社 船舶
FR2933011B1 (fr) * 2008-06-26 2011-11-11 Degremont Procede de desinfection d'un ouvrage de filtration pour pretraitement d'eau salee,et installation pour sa mise en oeuvre.
KR101060008B1 (ko) 2008-12-01 2011-08-29 삼성중공업 주식회사 선박평형수 공급장치 및 그것이 설치된 선박
GB0901434D0 (en) 2009-01-29 2009-03-11 Univ Strathclyde Ballast water treatment system
WO2010124027A2 (en) * 2009-04-21 2010-10-28 Chester Sohn Water treatment system
KR101129619B1 (ko) * 2009-06-03 2012-03-28 삼성중공업 주식회사 밸러스트 수처리 시스템 및 이를 포함한 선박
CN102161544A (zh) * 2010-02-24 2011-08-24 三洋电机株式会社 压舱水处理装置
DE202010000339U1 (de) * 2010-03-09 2010-06-24 Blum, Holger Rohrleitungssystem sowie Ballastwasser-Behandlungsanlage unter Verwendung desselben
US20120012538A1 (en) * 2010-07-13 2012-01-19 Q5 Innovations Inc. Method of treatment of ballast water
JP2012086200A (ja) * 2010-10-22 2012-05-10 Panasonic Corp バラスト水処理システム及びバラスト水処理方法
WO2012164070A1 (en) * 2011-06-01 2012-12-06 Desmi Ocean Guard A/S De-ballast filtration
KR101118055B1 (ko) * 2011-07-26 2012-02-24 (주)케이티마린 선박평형수의 인라인 처리 장치
KR101349314B1 (ko) * 2011-11-22 2014-01-13 주식회사 파나시아 선박용 밸러스트수 처리장치 및 처리방법
JP5705761B2 (ja) * 2012-01-31 2015-04-22 三菱重工業株式会社 海水電解式塩素注入装置
WO2013178296A1 (en) 2012-06-01 2013-12-05 Desmi Ocean Guard A/S De-ballast filtration
KR101394224B1 (ko) * 2012-12-27 2014-05-14 주식회사 파나시아 개량된 사이드스트림관을 이용하는 전기분해 밸러스트수 처리시스템
KR101296207B1 (ko) * 2013-02-22 2013-08-13 (주)케이티마린 생물막 생성 억제를 위한 순환형 배관이 설치된 선박평형수의 인라인 처리장치
JP6150105B2 (ja) * 2013-03-12 2017-06-21 パナソニックIpマネジメント株式会社 バラスト水の処理方法及びそれに用いるバラスト水の処理装置
KR101398617B1 (ko) * 2013-03-13 2014-05-22 (주)케이티마린 선박평형수 인라인 처리장치의 전처리장치
CN103588331B (zh) * 2013-10-15 2015-10-14 福建省感创精密机械有限公司 一种去除餐饮废水中寄生虫的装置
JP2015202492A (ja) * 2014-04-15 2015-11-16 シーバス神戸株式会社 バラスト水処理装置用海水浄化サイクロンセパレーター
JP6383989B2 (ja) * 2015-04-17 2018-09-05 三菱重工環境・化学エンジニアリング株式会社 次亜塩素酸供給装置
US10940930B2 (en) * 2015-05-18 2021-03-09 Sunrui Marine Environment Engineering Co., Ltd. Online antifouling ship ballast water treatment system and ship ballast water treatment method
KR102041742B1 (ko) * 2015-10-28 2019-11-06 주식회사 쿠라레 밸러스트수 처리 장치 및 밸러스트수 처리 방법
CN105585182A (zh) * 2016-03-03 2016-05-18 金晨光 一种压舱水处理设备
EP3630598B1 (en) 2017-05-29 2024-04-17 Bawat A/S A system and a method for heat treatment of water of a vessel
US20210323846A1 (en) * 2017-07-18 2021-10-21 Reinerio Linares Water activator transducer
JP6529706B1 (ja) * 2017-08-31 2019-06-12 株式会社クラレ バラスト水処理方法
WO2020167645A1 (en) * 2019-02-11 2020-08-20 ElectroSea, LLC Self-treating electrolytic biocide generating system with retro-fitting features for use on-board a watercraft
CN110902771A (zh) * 2019-11-15 2020-03-24 沪东中华造船(集团)有限公司 一种船用冷却水防海生物处理系统
WO2021230458A1 (ko) * 2020-05-12 2021-11-18 (주)테크윈 선박평형수의 처리방법
JP2022000003A (ja) * 2020-06-19 2022-01-04 三菱重工業株式会社 生体の核酸抽出方法及び水処理システム
CN112354211A (zh) * 2020-11-18 2021-02-12 山东斯瑞药业有限公司 一种多功能的雄烯二酮发酵油相连续萃取装置
KR102367677B1 (ko) * 2020-11-19 2022-02-28 주식회사 테크로스 밸러스트수 재처리 장치 및 방법
KR102545927B1 (ko) * 2021-12-23 2023-06-21 한국해양과학기술원 해양 재생 에너지를 이용한 부유식 해상 액화 수소 생산 시스템 및 생산 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63100995A (ja) * 1986-10-17 1988-05-06 Ebara Infilco Co Ltd 紫外線殺菌方法
JPH04322788A (ja) * 1991-02-25 1992-11-12 Mitsubishi Heavy Ind Ltd 船舶のバラスト水殺菌方法および殺菌装置
JPH0691283A (ja) * 1992-09-14 1994-04-05 Hitachi Kiden Kogyo Ltd 水域の浄化方法
JP2001170638A (ja) * 1999-12-14 2001-06-26 Sanyo Electric Co Ltd 水処理装置
JP2003200156A (ja) * 2001-10-30 2003-07-15 Kaiyo Kaihatsu Gijutsu Kenkyusho:Kk 液中微生物殺減装置
JP2004025040A (ja) * 2002-06-26 2004-01-29 Hitachi Ltd 浄化装置および浄化水供給システム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4761208A (en) * 1986-09-29 1988-08-02 Los Alamos Technical Associates, Inc. Electrolytic method and cell for sterilizing water
NO307416B1 (no) * 1995-01-30 2000-04-03 Frank Woehni Fremgangsmåte for desinfisering av avløpsvann
US5932112A (en) * 1996-11-27 1999-08-03 Browning Transport Management, Inc. Method and apparatus for killing microorganisms in ship ballast water
JPH1137666A (ja) * 1997-07-15 1999-02-12 Mitsubishi Heavy Ind Ltd 海水冷却型発電プラントの塩素発生装置
JP3583608B2 (ja) * 1998-03-10 2004-11-04 荏原実業株式会社 電気分解殺菌装置及び電気分解殺菌方法
JP2001000974A (ja) * 1999-06-23 2001-01-09 Konica Corp バラスト水の処理方法、及び船舶
US6627073B2 (en) * 1999-12-16 2003-09-30 Sanyo Electric Co, Ltd. Water treatment device
JP2001293474A (ja) * 2000-04-12 2001-10-23 Nippon Mitsubishi Oil Corp 海水の浄化方法及び海水の浄化装置
US6500345B2 (en) * 2000-07-31 2002-12-31 Maritime Solutions, Inc. Apparatus and method for treating water
EP1349812B1 (en) * 2000-11-06 2007-05-30 Larry Russell Ballast water treatment for exotic species control
US20030015481A1 (en) * 2001-06-28 2003-01-23 Eidem Ola Magne Method and apparatus for treating/disinfecting ballast water in ships
NO20020093D0 (no) * 2002-01-09 2002-01-09 Optimarin As Fremgangsmåte for å skille ulike partikler og organismer med lav egenvekt fra v¶sker i en hydrosyklon med et filter
JP2003275770A (ja) * 2002-03-26 2003-09-30 Rikujo Yoshoku Kogaku Kenkyusho:Kk 海水殺菌装置
JP4186523B2 (ja) * 2002-06-26 2008-11-26 株式会社日立製作所 排水浄化装置および排水浄化システム
DE20302516U1 (de) * 2003-02-15 2003-12-11 Hamann Ag Anlage zur Entfernung und Deaktivierung von Organismen im Ballastwasser

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63100995A (ja) * 1986-10-17 1988-05-06 Ebara Infilco Co Ltd 紫外線殺菌方法
JPH04322788A (ja) * 1991-02-25 1992-11-12 Mitsubishi Heavy Ind Ltd 船舶のバラスト水殺菌方法および殺菌装置
JPH0691283A (ja) * 1992-09-14 1994-04-05 Hitachi Kiden Kogyo Ltd 水域の浄化方法
JP2001170638A (ja) * 1999-12-14 2001-06-26 Sanyo Electric Co Ltd 水処理装置
JP2003200156A (ja) * 2001-10-30 2003-07-15 Kaiyo Kaihatsu Gijutsu Kenkyusho:Kk 液中微生物殺減装置
JP2004025040A (ja) * 2002-06-26 2004-01-29 Hitachi Ltd 浄化装置および浄化水供給システム

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006248510A (ja) * 2005-02-09 2006-09-21 Toshiba Corp バラスト水浄化装置及び当該装置を搭載した船舶
JP2009507638A (ja) * 2005-09-14 2009-02-26 韓国海洋研究院 船舶用のバラスト水の電解消毒装置
EP1945575A4 (en) * 2005-09-14 2010-03-03 Korea Ocean Res Dev Inst ELECTROLYTIC STERILIZATION APPARATUS FOR BOAT BALLAST WATER
JP4723647B2 (ja) * 2005-09-14 2011-07-13 韓国海洋研究院 船舶用のバラスト水の電解消毒装置
EP1945575A1 (en) * 2005-09-14 2008-07-23 Korea Ocean Research and Development Institute Electrolytic sterilizing apparatus for ship ballast water
JP2007090214A (ja) * 2005-09-28 2007-04-12 Japan Organo Co Ltd 船舶用バラスト水の製造方法及び製造装置
JP2007130563A (ja) * 2005-11-09 2007-05-31 Mitsui Eng & Shipbuild Co Ltd バラスト水の利用システム
JP2007152264A (ja) * 2005-12-07 2007-06-21 Jfe Engineering Kk バラスト水処理装置及び処理方法
JP2007216181A (ja) * 2006-02-20 2007-08-30 Jfe Engineering Kk バラスト水処理装置及び処理方法
JP2007229575A (ja) * 2006-02-28 2007-09-13 Mitsubishi Heavy Ind Ltd 液体の無害化処理方法とその装置及びこの装置をそなえた船舶
JP2007229577A (ja) * 2006-02-28 2007-09-13 Mitsubishi Heavy Ind Ltd 液体の無害化処理方法とその装置及びこの装置をそなえた船舶
TWI412498B (zh) * 2006-09-27 2013-10-21 Tg Corp Method of handling ballast water in ships
JP2008212901A (ja) * 2007-03-07 2008-09-18 National Maritime Research Institute 船舶用バラスト水処理装置
WO2008139573A1 (ja) * 2007-05-08 2008-11-20 Mitsui Engineering & Shipbuilding Co., Ltd. バラスト水の利用システム
JP2010528832A (ja) * 2007-06-01 2010-08-26 セバーン トレント デ ノラ,エルエルシー バラストタンク循環管理システム
US8968575B2 (en) 2007-08-15 2015-03-03 Evoqua Water Technologies Llc Method and system for treating ballast water
JP2016047518A (ja) * 2007-08-15 2016-04-07 エヴォクア ウォーター テクノロジーズ エルエルシーEvoqua Water Technologiesllc バラスト水を処理するための方法及びシステム
JP2010536540A (ja) * 2007-08-15 2010-12-02 シーメンス ウォーター テクノロジース コーポレイション バラスト水を処理するための方法及びシステム
JP2009142797A (ja) * 2007-12-18 2009-07-02 Spring:Kk 水中の微生物を殺減する装置及び水中の微生物を殺減する方法
JP2009274028A (ja) * 2008-05-15 2009-11-26 Mhi Environment Engineering Co Ltd 海水処理装置及びその処理方法
JP2011528982A (ja) * 2008-07-24 2011-12-01 サムスン ヘビー インダストリーズ カンパニー リミテッド バラスト水処理装置および方法
JP2017080743A (ja) * 2008-08-18 2017-05-18 エヴォクア ウォーター テクノロジーズ エルエルシーEvoqua Water Technologies LLC 船上装備品の生物付着を防除するための方法及びシステム
JP2012505069A (ja) * 2008-08-18 2012-03-01 シーメンス ウォーター テクノロジース コーポレイション 船上装備品の生物付着を防除するための方法及びシステム
JP2015120152A (ja) * 2008-08-18 2015-07-02 エヴォクア ウォーター テクノロジーズ エルエルシーEvoqua Water Technologiesllc 船上装備品の生物付着を防除するための方法及びシステム
JP2012519075A (ja) * 2009-03-02 2012-08-23 チェスター ソーン, バラスト水処理用電解装置及び同装置の処理システム
JPWO2011065434A1 (ja) * 2009-11-27 2013-04-18 鶴見曹達株式会社 船舶のバラスト水の処理方法
JP2011173058A (ja) * 2010-02-24 2011-09-08 Sanyo Electric Co Ltd バラスト水処理装置
JPWO2011108032A1 (ja) * 2010-03-05 2013-06-20 国立大学法人東北大学 バラスト水処理装置と該装置を使用したバラスト水無害化処理システム及びその方法
JP5551585B2 (ja) * 2010-03-05 2014-07-16 国立大学法人東北大学 バラスト水処理装置と該装置を使用したバラスト水無害化処理システム及びその方法
JP2011189250A (ja) * 2010-03-12 2011-09-29 Sumitomo Heavy Industries Marine & Engineering Co Ltd バラスト水処理システム及びバラスト水処理方法
JP2013525091A (ja) * 2010-04-07 2013-06-20 アクア エング カンパニーリミテッド 高効率電気分解装置を用いたバラスト水処理システム
JP2012020218A (ja) * 2010-07-13 2012-02-02 Panasonic Corp バラスト水処理システム及びバラスト水処理方法
WO2014064942A1 (ja) * 2012-10-25 2014-05-01 パナソニック株式会社 バラスト水処理方法及びそれに用いるバラスト水処理装置
JPWO2014064942A1 (ja) * 2012-10-25 2016-09-08 パナソニックIpマネジメント株式会社 バラスト水処理方法及びそれに用いるバラスト水処理装置
US10287200B2 (en) 2012-10-25 2019-05-14 Panasonic Intellectual Property Management Co., Ltd. Method for treating ballast water and device for treating ballast water used therefor
JP2015016761A (ja) * 2013-07-10 2015-01-29 栗田工業株式会社 バラスト水の処理システムおよびバラスト水の処理方法
CN103755105A (zh) * 2014-01-29 2014-04-30 中国海洋石油总公司 一种海上生活污水的处理系统以及处理方法
WO2015122435A1 (ja) * 2014-02-13 2015-08-20 三菱重工環境・化学エンジニアリング株式会社 海水電解システム及び電解液注入方法
JP2015150502A (ja) * 2014-02-14 2015-08-24 パナソニックIpマネジメント株式会社 遠心式固液分離装置とそれを用いた水処理装置
KR20160122785A (ko) * 2014-02-14 2016-10-24 파나소닉 아이피 매니지먼트 가부시키가이샤 원심식 고액 분리 장치와 그것을 이용한 수 처리 장치
US10118840B2 (en) 2014-02-14 2018-11-06 Panasonic Intellectual Property Management Co., Ltd. Centrifugal solid-liquid separation device and water treatment device using same
KR101980952B1 (ko) 2014-02-14 2019-05-21 파나소닉 아이피 매니지먼트 가부시키가이샤 원심식 고액 분리 장치와 그것을 이용한 수 처리 장치
JPWO2016174890A1 (ja) * 2015-04-30 2018-02-22 株式会社クラレ バラスト水処理装置及びバラスト水処理方法

Also Published As

Publication number Publication date
JP2010179304A (ja) 2010-08-19
AU2005212085A1 (en) 2005-08-25
EP1717205A1 (en) 2006-11-02
JP2012210627A (ja) 2012-11-01
CN1842495A (zh) 2006-10-04
CN100393632C (zh) 2008-06-11
US20090078654A1 (en) 2009-03-26
US20080164217A1 (en) 2008-07-10
KR100814658B1 (ko) 2008-03-18
JP5693524B2 (ja) 2015-04-01
NO337935B1 (no) 2016-07-11
JPWO2005077833A1 (ja) 2007-10-18
NO20060879L (no) 2006-07-13
KR20060056383A (ko) 2006-05-24

Similar Documents

Publication Publication Date Title
WO2005077833A1 (ja) 液体の無害化処理方法及びその装置
JP4723647B2 (ja) 船舶用のバラスト水の電解消毒装置
JP5475775B2 (ja) バラスト水処理装置および方法
JP5386690B2 (ja) 液体の無害化処理装置及びこの装置をそなえた船舶
KR101803368B1 (ko) 배출 물질 제어 시스템 및 방법
KR20100057644A (ko) 밸러스트 수 처리 방법 및 시스템
KR20090116658A (ko) 밸러스트수 처리시스템
KR101923094B1 (ko) 수중 저온 플라즈마 발생 장치를 적용한 선박 평형수 처리 시스템
KR101118055B1 (ko) 선박평형수의 인라인 처리 장치
KR100928069B1 (ko) 선박용 밸러스트 수 전처리 필터 및 그 처리 방법
JP2009274028A (ja) 海水処理装置及びその処理方法
KR101122294B1 (ko) 밸러스트수의 여과 및 살균 장치
JP5593439B2 (ja) バラスト水及びフィルタ処理用の方法並びにシステム
ES2445190T3 (es) Sistema de tratamiento de residuos
KR101028360B1 (ko) 가상 전극을 이용한 밸러스트수 처리장치
JP2013193000A (ja) バラスト水処理システム及びバラスト水処理方法
KR20150055929A (ko) 담수지역에서 사용가능한 전기분해 방식 선박평형수 처리장치
JP2019530564A (ja) バラスト水処理及び中和
WO2016028231A1 (en) Ballast water treatment system and method of ballast water treatment
MX2009004448A (es) Sistema de tratamiento de agua de lastre de embarcaciones, plataformas petroleras marinas y buques en general, mediante proceso en un reactor electroquimico.
KR101163344B1 (ko) 전기분해 유닛을 이용한 선박의 발라스트 수 처리방법
KR102333211B1 (ko) 간접 전기 분해 방식의 밸러스트수 처리 장치
KR20110053066A (ko) 밸러스트수 광분해유닛 및 이를 이용한 밸러스트수 처리장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580000930.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005212085

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2005710363

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067003782

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2005212085

Country of ref document: AU

Date of ref document: 20050210

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005212085

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 1020067003782

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2005518065

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2005710363

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10569483

Country of ref document: US