WO2005075976A2 - Vorrichtung und verfahren zur kopplung von kapillaren trennverfahren und massenspektrometrie - Google Patents

Vorrichtung und verfahren zur kopplung von kapillaren trennverfahren und massenspektrometrie Download PDF

Info

Publication number
WO2005075976A2
WO2005075976A2 PCT/EP2005/000712 EP2005000712W WO2005075976A2 WO 2005075976 A2 WO2005075976 A2 WO 2005075976A2 EP 2005000712 W EP2005000712 W EP 2005000712W WO 2005075976 A2 WO2005075976 A2 WO 2005075976A2
Authority
WO
WIPO (PCT)
Prior art keywords
capillary
capillaries
metal foil
monolithic
sorbent
Prior art date
Application number
PCT/EP2005/000712
Other languages
English (en)
French (fr)
Other versions
WO2005075976A3 (de
Inventor
Dieter Lubda
Ulrich Tallarek
Erdmann Rapp
Original Assignee
Merck Patent Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent Gmbh filed Critical Merck Patent Gmbh
Priority to US10/588,457 priority Critical patent/US20080315083A1/en
Priority to EP05701173A priority patent/EP1711807A2/de
Priority to JP2006551770A priority patent/JP2007520711A/ja
Publication of WO2005075976A2 publication Critical patent/WO2005075976A2/de
Publication of WO2005075976A3 publication Critical patent/WO2005075976A3/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7233Mass spectrometers interfaced to liquid or supercritical fluid chromatograph
    • G01N30/724Nebulising, aerosol formation or ionisation
    • G01N30/7266Nebulising, aerosol formation or ionisation by electric field, e.g. electrospray
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0404Capillaries used for transferring samples or ions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/16Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission
    • H01J49/165Electrospray ionisation
    • H01J49/167Capillaries and nozzles specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/60Construction of the column
    • G01N30/6052Construction of the column body
    • G01N30/6073Construction of the column body in open tubular form
    • G01N30/6078Capillaries

Definitions

  • the present invention relates to capillaries which are at least partially covered with metal foil and to their use in the coupling of
  • cHPLC capillary HPLC
  • CE capillary electrophoresis
  • CEC capillary electrochromatography
  • pCEC pressurized CEC with MS (mass spectrometry).
  • inventive cladding with metal foil enables the capillaries to be coupled directly to a mass spectrometer without the use of further transition pieces, such as spray needles or empty capillary pieces.
  • Liquid chromatography is a very widespread method for separating analyte mixtures. Further separation processes, especially for smaller sample volumes, are electrophoretic processes such as capillary electrophoresis (CE) or capillary isotachophoresis as well as the combination of electrophoretic and chromatographic processes such as in capillary electrochromatography (CEC) and pCEC. These processes can be carried out in separation columns or separation capillaries or in miniaturized planar systems such as
  • Microchips are carried out.
  • the subsequent analysis has so far often been carried out spectroscopically.
  • attempts are now being made to combine and couple the separation methods mentioned with mass spectrometric analysis methods, in particular ESI-MS (Eiectrospray Ionization Mass Spectrometry).
  • ESI-MS Esctrospray Ionization Mass Spectrometry
  • An interface usually consists of a spray needle or an empty capillary that is attached to the separation column or separation capillary.
  • Figures 1 and 2 show different possibilities according to the state of the art.
  • Figure 1 shows variants in which the electrical contact for generating the electrospray is ensured by an additional carrier liquid (sheath liquid, 3) flowing around the capillary column (5) or the quartz capillary (fused silica FS, 6).
  • spraying is carried out directly from the capillary chromatographic bed.
  • Figure 1) is sprayed directly from an open quartz glass capillary (open tubular fused silica (OT-FS, 6)), which serves as a transfer line from the separation column to the mass spectrometer.
  • OT-FS open tubular fused silica
  • Figure 2 shows options without the use of carrier liquid, which are explained in more detail below: a) The electrical contact takes place via an OT-FS capillary, which is connected via a T-piece (8) between the separating capillary (5) and OT-FS ESI needle (11) is coupled and feeds the "make up" flow (10) there. b) The electrical contact is made via an electrode which is coupled via a T-piece (8) between the separating capillary (5) and the OT-FS-ESI needle (11). The connecting piece (9) itself can also serve as the electrode. c) The electrical contact is made directly via an open stainless steel capillary
  • OT-SS (OT-SS, 7), which is coupled to the separating capillary (5) via a connecting piece (9).
  • the spray end can also be sharpened on the outside.
  • the electrical contact is made via an OT-FS-ESI needle with an electrically conductive coating at the rear end (13), which is coupled there to the separating capillary (5) via a connecting piece (9).
  • the electrical contact takes place at the column inlet, that is, far above (“upstream”) the spray end of the FS capillary column (16) packed in the integrated ESI tip (14).
  • the electrical contact takes place via an electrically conductive coating at the spray end of the FS capillary column (16) packed in the integrated ESI tip (15).
  • Variants 2a to d react to changing conductivities of the mobile phase (e.g. with gradient elution).
  • Electrode redox processes in the capillaries can lead to gas development and thus bubble formation, which in turn can lead to electrospray instabilities.
  • Variant 2e is particularly badly affected.
  • Figures 2f and 2g show shapes in which filled or unfilled spray needles are provided with a conductive coating on the tip. This means that the voltage applied to the electrospray tip is independent of the conductivity of the mobile phase.
  • the redox processes take place outside the capillary. While the variant according to figure
  • FIG. 2g again has the problem of the additional dead volume (7), this is avoided in Figure 2f.
  • the embodiment according to Figure 2f thus shows very advantageous properties with regard to spray behavior and sensitivity, but is complicated to manufacture and has only a short service life.
  • the capillary must first be packed and provided with a sintered inlet frit (17), then the capillary can be provided with a conductive coating at the tip. This must be done without destroying the separating material in the capillary. So far, the coating has been used e.g. sprayed or evaporated. The resulting layers are very thin and only show limited durability. Methods of making more durable layers would attack the release material or the frit. As soon as the coating becomes defective, the entire capillary column must be replaced, since the coating is applied directly to the capillary column. This variant is therefore both complex to manufacture and not very durable.
  • the object of the present invention was therefore to develop a possibility for the direct connection of the separation columns or separation capillaries for carrying out chromatographic and / or electrophoretic separation processes with MS devices. Both dead volumes and the dilution of the sample with carrier liquids should be avoided. Furthermore, the connection should be simple to manufacture and have a long service life. It has been found that these requirements are met by a column or capillary which is at least partially covered with metal foil at one end. The use of a capillary with monolithic sorbent is particularly advantageous.
  • the preferred direct sheathing of the separation capillary eliminates the need for an additional spray needle or an empty capillary. Dead volumes are avoided in this way. It has been found that covering the capillaries with metal foil is sufficient. A complex coating by spraying or sputtering is not necessary. The sheath is very durable and can be replaced at any time without great effort, without having to discard the entire separation capillary.
  • the present invention therefore relates to a capillary which is at least partially coated with metal foil at one end.
  • the metal foil is a gold foil.
  • the capillary is filled with sorbent.
  • the sorbent is a monolithic sorbent.
  • the sorbent is an inorganic monolithic sorbent.
  • the end of the capillary covered with metal foil is tapered both on the outside and on the inside and forms a fine tip.
  • the end of the capillary covered with metal foil tapers on the outside, the outer diameter of the capillary decreasing towards the end and the inside diameter of the capillary tube remaining the same.
  • the present invention also relates to a device for coupling capillary separation methods to mass spectrometric analysis devices, at least comprising a capillary for carrying out the separations and a mass spectrometric analysis device, characterized in that the capillary is at least partially encased in metal foil at the end directed towards the mass spectrometric analysis device.
  • the capillary is filled with a monolithic sorbent.
  • the present invention also relates to a method for the direct coupling of devices for carrying out capillary separations with mass spectrometric analysis devices, characterized in that the coupling takes place via a capillary which is at least partially coated with metal foil at the end directed towards the mass spectrometric analysis device.
  • the present invention also relates to the use of capillaries, which are at least partially coated with metal foil at one end, for producing electrospray for introducing analytes into an ESI-MS device.
  • Figures 1 and 2 show different possibilities of an interface according to the state of the art.
  • Figure 3 shows three different embodiments of a capillary according to the invention. The dimensions and dimensions of the capillary columns can be found in Table 1. a) Partially packed capillary column. The electrical contact is made via a gold foil (22), which is directly on the spray end of the integrated ESI
  • Tip (14) packed FS capillary column (16) is attached b) Monolithic capillary column (19). The electrical contact is made via a gold foil (22), which is attached directly to the spray end of the right-angle cut (20) monolithic FS capillary column. c) Monolithic capillary column (19). The electrical contact is made via a gold foil (22), which is attached directly to the spray end of the monolithic FS capillary column (21), which is sharpened there on the outside.
  • capillary separation processes are understood to mean chromatographic, electrophoretic, isotachophoretic and / or electrochromatographic separations or separation processes, in particular liquid chromatographic processes such as HPLC, micro- or nano-HPLC, and also CE (capillary electrophoresis), CEC (capillary electrochromatography) or pEC (pressurized CEC).
  • liquid chromatographic processes such as HPLC, micro- or nano-HPLC, and also CE (capillary electrophoresis), CEC (capillary electrochromatography) or pEC (pressurized CEC).
  • chromatographic, electrophoretic, isotachophoretic and / or electrochromatographic processes are also included, which are carried out on miniaturized systems, such as planar microstructured systems or chips.
  • capillaries are columns or tubes in which the capillary separation processes mentioned above can be carried out.
  • capillary pieces, tubes or needles which can be attached to other tubes or capillaries fall under the term capillary.
  • the capillaries are typically made of glass, fused silica, glass coated with plastic (e.g. polyimide) or fused silica, other ceramic or glass-like materials, plastic (e.g. fluoropolymers, polyolefins, polyketones, such as in particular polyether ketones (preferably PEEK), acrylates, polyamides or polyimides ) or fiber-reinforced plastic.
  • plastic e.g. fluoropolymers, polyolefins, polyketones, such as in particular polyether ketones (preferably PEEK), acrylates, polyamides or polyimides
  • the capillaries are made of plastic coated fused silica.
  • Capillaries also include tube-like or channel-like structures in microstructured components, such as, for example, planar microchips, which protrude from the component at least at one end in the form of a tube, a needle or a capillary.
  • Both the cross section of the cavity in the capillary and the outer cross section of the capillary are preferably round.
  • the cross section can also have any other shape, e.g. an oval, square, rectangular or polygonal.
  • the inner diameter of the capillary is typically between 1 ⁇ m and 5 mm, preferably between 10 and 100 ⁇ m.
  • the preferred diameters vary depending on the type of capillary and the flow rate desired for the separation.
  • the inside diameter preferably remains above that
  • the entire length of the capillary is constant.
  • the inside diameter changes in particular towards the end of the capillary, ie, for example, becomes smaller as in the case of a conical course and the capillary ends like a tip.
  • This embodiment is also referred to below as internally tapered 0 or inner cone.
  • the diameter of the capillary narrows by a factor of 2-10 over a length of 1-2 mm.
  • the outer diameter of the capillaries is also constant. In a preferred embodiment, however, the end of the capillary covered with metal foil 5 is pointed, ie the outer diameter decreases towards the end of the capillary, so that a tip is formed.
  • This embodiment is also referred to as tapered on the outside or outer cone.
  • different configurations of the capillary end can be advantageous.
  • an inner and outer tapered end has proven to be advantageous. This additional effort is not necessary for capillaries filled with monolithic sorbents.
  • a very good spray is also shown with capillaries with constant inside and outside diameter.
  • ID inner diameters
  • OD outer diameters
  • Tip-ID 5-30 ⁇ m (optimally 8-15 ⁇ m at flow rates of 100-350 nl / min)
  • Tip-OD Capillaries filled with sorbents as low as possible:
  • Tip-ID 10-25 ⁇ m (at flow rates ⁇ 500 nl / min)
  • Tip-OD as low as possible - with monolithic sorbent, constant inside diameter: ID: 50-100 ⁇ m (at flow rates> 500 nl / min) OD: as little as possible or preferably sharpen the capillaries on the outside.
  • ID 10-50 ⁇ m (at flow rates ⁇ 500 nl / min) OD: as small as possible or preferably sharpen the capillaries on the outside.
  • IDs ⁇ 50 ⁇ m are advantageous when using capillaries with monolithic sorbents, since the optimal flow rates for these monolithic capillaries also correspond to those for micro- and nanoelectrospray.
  • Another advantage for the ionization efficiency is that the monolithic sorbents directly in capillaries with inside and / or outside
  • Synthesize cone An outer cone can also be easily created subsequently on the capillary filled with monolithic sorbent.
  • the length of the capillaries according to the invention varies depending on the type of
  • the capillary can be a short needle or tip e.g. act on top of other capillaries or columns. Then the length is typically 1 cm to 20 cm.
  • the capillary can also be a separating capillary. Then the length is typically between 2 and 200 cm.
  • the dimensions of the capillaries according to the invention correspond to the dimensions customary in the prior art.
  • the capillaries according to the invention can be empty, completely or partially coated on the inside or completely or partially filled with sorbent.
  • the capillaries according to the invention are preferably filled with sorbent. If the capillary is filled with particulate sorbents, it usually also has a frit, sieve or filter at the end to fix the sorbent in the capillary.
  • a sorbent is a material on which capillary separations can be carried out. Typically, this is a solid phase made of inorganic and / or organic, particulate or monolithic materials.
  • suitable organic materials are particles or monolithic materials which are produced, for example, by radical, ionic or thermal polymerization. It can be, for example, poly (meth) acrylic acid derivatives, polystyrene derivatives, polyesters, polyamides or polyethylenes.
  • the monomers to be used accordingly are known to the person skilled in the art in the field of organic polymers. For example, these are monoethylenically or polyethylenically unsaturated monomers, such as vinyl
  • Monomers vinyl aromatic and vinyl aliphatic monomers, e.g. Styrene and substituted styrenes, vinyl acetates or vinyl propionates, acrylic monomers such as methacrylates and other alkyl acrylates, ethoxymethylacrylate and higher analogues and the corresponding methacrylic acid esters or their amides, such as acrylamide or acrylonitrile.
  • acrylic monomers such as methacrylates and other alkyl acrylates, ethoxymethylacrylate and higher analogues and the corresponding methacrylic acid esters or their amides, such as acrylamide or acrylonitrile.
  • monoethylenically and polyethylenically unsaturated monomers can be found, for example, in EP 0 366252 or US 5,858,296.
  • inorganic materials e.g. particulate or monolithic materials made of glass, ceramic, inorganic oxides, such as aluminum oxide, zirconium dioxide or titanium dioxide, or preferably of silica materials (silica gel).
  • the sorbent can consist of organic / inorganic hybrid materials. These are, for example, inorganic materials that are provided with an organic coating. Furthermore, it can be inorganic / organic copolymers. For example, in the case of the silica-based materials, instead of the tetraalkoxysilanes which produce purely inorganic materials, organoalkoxysilanes with one to three organic radicals can be used.
  • Particulate sorbents can consist of uniformly or irregularly shaped porous or non-porous particles.
  • Monolithic sorbents consist of porous moldings.
  • the pore distribution can be mono-, bi-, tri- or polymodal. They are typically materials with a mono- or bimodal pore distribution. All sorbents can also be modified with separation effectors to produce certain separation properties.
  • Capillaries with monolithic sorbents are particularly preferably used according to the invention. It has been found that a particularly uniform and fine electrospray can be produced from capillaries with monolithic sorbents.
  • WO 99/38006 and WO 99/50654 disclose processes for the production of capillaries which are filled with monolithic silica material.
  • WO 95/03256 and particularly WO 98/29350 also disclose processes for the production of inorganic monolithic moldings by a sol-gel process.
  • a MS device suitable according to the invention is a mass spectrometer into which the sample is applied in the form of an electrospray. Typically, it is a mass spectrometer with an ESI and / or nano ESI source.
  • a metal foil is a foil made of conductive metal or metal alloys.
  • the thickness of the film is generally over 10 ⁇ m, typically between 20 and 100 ⁇ m.
  • the preferred thickness is between 10 and 50 ⁇ m, for example.
  • Suitable metals are those that can be produced and processed as films in the appropriate thickness and that are electrically conductive. Examples include: - Gold - Aluminum - Platinum
  • Alloys made of and / or with one or more of these metals are also suitable, as are other alloys such as e.g. Stainless steels.
  • gold foil is preferably used.
  • Alfa Aesar Gold Foil has proven to be well suited; 25 x 25 mm, 0.025 mm thick, Premion®, 99.985% (metals basis) proven.
  • the capillary has a covering with metal foil at one end, which covers the outside of the capillary from the end of the capillary over a length of at least 3 mm, typically between 5 mm and 10 cm.
  • the capillary can be completely enclosed by the film or only partially. Typically at least 1/6 of the circumference of the capillary is covered. Preferably, up to half of the circumference of the capillary is covered.
  • the embodiments shown in Figure 3 have, for example, a casing in which half of the circumference is covered with film. It is important that there is contact between the liquid phase in the capillary and the metal foil.
  • the distance of the metal foil from the end of the capillary ie the liquid outlet or the cavity of the capillary, should therefore not be more than approx. 50 ⁇ m.
  • the film must not noticeably change the geometry at the exit of the capillary. Otherwise a stable and even spray cannot be produced.
  • the shape of the metal foil can be optimally selected.
  • the shape of the metal foil can be square, rectangular, triangular, round, oval, polygonal etc. In order to produce an optimal electrospray, shapes have proven to be advantageous in which the film tapers towards the capillary tip, so that the tip of the film reaches the tip of the capillary.
  • FIG. 3 A possible embodiment is shown in Figure 3.
  • the film is also tapered towards the end and placed around the capillary like a boat, so that the tip of the metal film (23) is directly at the edge of the capillary end comes to rest.
  • the film is preferably bent slightly around the end of the capillary so that it covers the thickness of the wall of the capillary and extends as far as the inner cavity.
  • FIG 3 shows three possible embodiments of the capillary according to the invention. In this case gold foil was used to make contact.
  • SV denotes the side view of the capillaries, FV the view of the capillary tip from the front.
  • Figure 3a) shows an embodiment in which an internally and externally tapered capillary (shaped according to a nano ESI needle) is filled with particulate sorbent (16).
  • the gold foil (22) encloses half of the end of the capillary and tapers to the tip of the capillary (23), so that it lies directly at the end of the capillary but not noticeably in protrudes into the cavity or channel of the capillary. So the geometry of the outlet opening is not affected.
  • FIG. 3b shows a capillary with monolithic sorbent (19), the end of which is cut off smoothly and does not taper to a point (20).
  • the gold foil (22) surrounds half of the end of the capillary and is slightly bent around the edge of the capillary (23) so that it lies directly against the opening of the capillary but does not protrude strongly into the cavity or channel of the capillary. So the geometry of the outlet opening is not affected. More detailed information on the dimensions of the capillary and the gold foil can be found in Table 1.
  • Figure 3c shows a capillary with monolithic sorbent (19), the end of which tapers to the outside (21).
  • the gold foil (22) encloses half of the end of the capillary and tapers to the tip of the capillary (23) so that it lies directly at the end of the capillary but does not protrude noticeably into the cavity or channel of the capillary. So the geometry of the outlet opening is not affected.
  • the capillary coated with metal foil according to the invention is used in a known manner for the separation of analytes if a prior separation of the analytes is desired. It can also be used for an offline nano ESI measurement, ie a measurement without prior separation. For coupling with the MS device, as with others
  • Spray needles are also applied to the metal foil to create an electrospray.
  • a stable spray can be generated at flow rates between 50 nl / min and 5 ⁇ l / min.
  • the suitable flow rates for tip inner diameters of approx. 10 ⁇ m are between 50-1000 nl / min, preferably between 200-300 nl / min.
  • the suitable flow rates are between 0.5-5 ⁇ l / min, preferably between 1 -2 ⁇ l / min.
  • even higher flow rates i.e. > 5 ⁇ l / min, e.g. 10-20 ⁇ l / min.
  • capillaries with monolithic sorbents show a higher flow rate variance.
  • the distance between the capillary and the inlet of the MS device should be approx. 3-10 mm.
  • the distance should be approx. 7-25 mm.
  • Voltages between 1600 and 2300 V are generally suitable for the Nano ESI mode. Voltages between 2800-5500 V are generally suitable for normal ESI mode.
  • Suitable eluents are known from the prior art for this type of application.
  • the solvent should preferably be over 98% consist of a mixture of deionized water and methanol, ethanol, propanol and / or acetonitrile.
  • Electrolytic additives (acids, bases, buffers) should also be of a volatile nature (e.g. formic acid, acetic acid, ammonia, sec. & Tert. Amines, ammonium formate, ammonium acetate, ammonium hydrogen carbonate).
  • the capillaries according to the invention are characterized by a very long shelf life. If the metal foil is still damaged, it can simply be removed and replaced with a new foil. It is not necessary to replace the separating capillary. In the case of capillaries with monolithic sorbents, if necessary, the damaged end of the capillary can simply be cut off (and possibly re-pointed) and the newly created end can be covered again with the same metal foil.
  • the capillary according to the invention is thus simple to manufacture and use. Damaged parts can be replaced without having to replace the entire capillary.
  • the capillaries according to the invention have a very long service life. A stable spray can be created. Even random ones
  • the capillary according to the invention thus represents a valuable improvement for coupling chromatographic, electrophoretic, electrochromatographic and / or isotachophoretic separation processes with MS.
  • capillaries according to the invention were compared with fused silica needles from New Objective. As far as can be ascertained, the needles from New Objective are coated with gold or a gold alloy. More detailed data on the capillaries used and the test procedure can be found in Table 2.
  • Figure 4a shows the capillary used according to the invention. It consists of fused silica (11), has the same geometry as the capillaries of the prior art and is finished with an arrow-shaped gold foil (Alfa Aesar Gold Foil; 25 x 0.57 mm, 0.025 mm thick, Premion®, 99.985% (metals basis)) coated, ie the electrical contact is made over a gold foil, which is attached directly to the spray end of the ESI tip of the OT-FS needle, which is tapered inside and outside (22).
  • Alfa Aesar Gold Foil 25 x 0.57 mm, 0.025 mm thick, Premion®, 99.985% (metals basis)
  • Figure 4b shows a prior art capillary, the rear end of which is sputtered with gold (13), i.e. the electrical contact is made via a conductive coating (metal vapor deposition) at the blunt rear end of the OT-FS-ESI needle.
  • Figure 4c shows a prior art capillary, the tip of which is sputtered with gold (18), i.e. the electrical contact is made via an electrically conductive coating (metal vapor deposition) at the spray end of the ESI tip of the OT-FS needle, which is tapered inside and outside.
  • an electrically conductive coating metal vapor deposition
  • Figure 5 shows a comparison of the spray properties of the three capillaries (a, b and c according to Figure 4).
  • the y axis shows the
  • FIG. 6 shows the structure of the three capillaries according to the invention, the spray properties of which were compared.
  • Figure 7 shows a comparison of the spray properties of the three capillaries (a, b and c according to Figure 6). The test conditions are shown in Table 3. The y-axis shows the total ion current (Total

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

Die vorliegende Erfindung betrifft Kapillaren, die zumindest teilweise mit Metallfolie ummantelt sind sowie deren Einsatz bei der Kopplung von Verfahren wie HPLC, CE (Kapillarelektrophorese), CEC (Kapillarelektrochromatographie) oder pCEC (pressurized CEC) mit MS (Massenspektrometrie). Durch die erfindungsgemässe Ummantelung mit Metallfolie ist eine direkte Kopplung der Kapillaren an ein Massenspektrometer ohne Verwendung weiterer Übergangsstücke, wie Spraynadeln oder Leerkapillarstücken, möglich.

Description

Vorrichtung und Verfahren zur Kopplung von kapillaren Trennverfahren und Massenβpektrometrie
Die vorliegende Erfindung betrifft Kapillaren, die zumindest teilweise mit Metallfolie ummantelt sind sowie deren Einsatz bei der Kopplung von
Verfahren wie cHPLC (kapillare HPLC), CE (Kapillarelektrophorese), CEC (Kapillarelektrochromatographie) oder pCEC (pressurized CEC) mit MS (Massenspektrometrie). Durch die erfindungsgemäße Ummantelung mit Metallfolie ist eine direkte Kopplung der Kapillaren an ein Massenspektrometer ohne Verwendung weiterer Übergangsstücke, wie Spraynadeln oder Leerkapillarstücke, möglich.
Die Flüssigchromatographie, insbesondere die HPLC, ist ein sehr weit verbreitetes Verfahren zur Trennung von Analytgemischen. Weitere Trennverfahren, vor allem für kleinere Probenvolumina, sind elektrophoretische Verfahren wie Kapillarelektrophorese (CE) oder auch Kapillarisotachophorese sowie die Kombination von elektrophoretischen und chromatographischen Verfahren wie in der Kapillarelektrochromatographie (CEC) und pCEC . Diese Verfahren können in Trennsäulen bzw. Trennkapillaren oder auch in miniaturisierten planaren Systemen wie
Mikrochips durchgeführt werden. Die anschließende Analyse erfolgt bislang häufig spektroskopisch. Um diese Einschränkung sowohl bezüglich der erforderlichen Menge des Analyten wie auch bezüglich der Anforderungen an die Eigenschaften der Analyten zu beheben, wird nun vermehrt eine Kombination und Kopplung der genannten Trennmethoden mit massenspektrometrischen Analysenmethoden, insbesondere ESI-MS (Eiectrospray Ionisation Mass Spectrometry), versucht. Diese Kombination eröffnet die Möglichkeit, eine große Anzahl von Proben schnell, mit großer Empfindlichkeit und Genauigkeit zu analysieren und ist somit gerade für biologische Anwendungen z.B. im Bereich der Genom- und Proteomanalyse von großem Interesse. Das zentrale Problem der Kombination von chromatographischen und/oder elektrophoretischen Trennverfahren mit massenspektrometrischen Analysenmethoden in das Einbringen der relevanten Teile der Probe in das Massenspektrometer. Im Idealfall sollte dazu kein zusätzlicher manuell auszuführender Arbeitsschritt notwendig sein. Daher wurden entsprechende Übergangsstücke, sogenannte Interfaces, entwickelt, die den direkten Eintrag der Probe in das Massenspektrometer ermöglichen.
Ein Überblick über verschiedene Interface-Konstruktionen findet sich z.B. in c.J. Herring und J. Qin, Rapid Communications in Mass Spectrometry, 13, 1-7 (1999).
Zumeist besteht ein Interface aus einer Spraynadel oder einer Leerkapillare, die an die Trennsäule bzw. Trennkapillare angesetzt wird. Die Abbildungen 1 und 2 zeigen verschiedene Möglichkeiten nach dem Stand der Technik. Abbildung 1 zeigt Varianten, in denen der elektrische Kontakt zur Erzeugung des Elektrosprays über eine zusätzliche die Kapillarsäule (5) oder die Quarzkapillare (fused silica FS, 6) umfließende Trägerflüssigkeit (Sheath liquid, 3) gewährleistet wird. In Abbildung 1a) wird direkt aus dem kapillarchromatographischen Bett gesprüht. In Abbildung 1 ) wird direkt aus einer offenen Quarzglaskapillare (open tubular fused silica (OT-FS, 6)) gesprüht, welche als Transferleitung von der Trennsäule zum Massenspektrometer dient. Mit Hilfe eines die beiden innenliegenden Kapillaren umströmenden Vernebelungsgases (4) kann auch bei höheren Flussraten ein sehr stabiler Spray erzeugt werden. Nachteil ist jedoch die Verdünnung der Probe mit der Trägerflüssigkeit und die damit verbundene stark verringerte Nachweisempfindiichkeit.
Abbildung 2 zeigt Möglichkeiten ohne Einsatz von Trägerflüssigkeit, die im folgenden einzeln näher erläutert werden: a) Der elektrische Kontakt erfolgt über eine OT-FS-Kapillare, welche über ein T-Stück (8) zwischen Trennkapillare (5) und OT-FS-ESI-Nadel (11) angekoppelt ist und dort den "Make up"-Fluss (10) zuspeist. b) Der elektrische Kontakt erfolgt über eine Elektrode, welche über ein T- Stück (8) zwischen Trennkapillare (5) und OT-FS-ESI-Nadel (11 ) angekoppelt ist. Als Elektrode kann auch das Verbindungsstück (9) selbst dienen. c) Der elektrische Kontakt erfolgt direkt über eine offene Edelstahlkapillare
(OT-SS, 7), welche über ein Verbindungsstück (9) an die Trennkapillare (5) angekoppelt ist. Das Spray-Ende kann auch außen angespitzt sein. d) Der elektrische Kontakt erfolgt über eine OT-FS-ESI-Nadel mit einer elektrisch leitenden Beschichtung am hinteren Ende (13), welche dort über ein Verbindungsstück (9) an die Trennkapillare (5) angekoppelt ist. e) Der elektrische Kontakt findet am Säuleneinlass statt, also weit oberhalb („flussaufwärts") des Spray-Endes der in die integrierte ESI-Spitze (14) gepackten FS Kapillarsäule (16). f) Der elektrische Kontakt erfolgt über eine elektrisch leitende Beschichtung am Spray-Ende der in die integrierte ESI-Spitze (15) gepackten FS Kapillarsäule (16). g) Der elektrische Kontakt erfolgt über eine elektrisch leitende Beschichtung am Spray-Ende einer OT-FS-ESI-Nadel (18), welche über ein Verbindungsstück (9) an die Trennkapillare (5) angekoppelt ist. Nachteilig an den Varianten 2a bis d und g ist, dass durch die sich anschließende Leerkapillare ein zusätzliches Totvolumen (7) erzeugt wird, das die Qualität der vorher durchgeführten Trennung verschlechtert. In Abbildung 2e wird der elektrische Kontakt schon am Einlass der Trennkapillare hergestellt, wodurch die tatsächliche Spannung, die letztendlich an der Elektrospray-Spitze anliegt, noch stärker als bei den
Varianten 2a bis d auf sich verändernde Leitfähigkeiten der mobilen Phase (z.B. bei Gradientenelution) reagiert.
Zudem kann es durch Elektroden-Redoxprozesse in den Kapillaren zur Gasentwicklung und damit zur Blasenbildung kommen, was wiederum zu Elektrosprayinstabilitäten führen kann. Davon ist wiederum Variante 2e besonders stark betroffen. Abbildung 2f und 2g zeigen Formen, bei denen gefüllte oder nicht gefüllte Spraynadeln an der Spitze mit einer leitfähigen Beschichtung versehen sind. Dadurch ist die Spannung, die an der Elektrospray-Spitze anliegt, unabhängig von der Leitfähigkeit der mobilen Phase. Die Redoxprozesse finden außerhalb der Kapillare statt. Während die Variante nach Abbildung
2g wieder das Problem des zusätzlichen Totvolumens (7) aufweist, wird dies in Abbildung 2f vermieden. Die Ausführungsform nach Abbildung 2f zeigt damit zwar sehr vorteilhafte Eigenschaften bezüglich des Sprühverhaltens und der Empfindlichkeit, ist aber kompliziert in der Herstellung und hat eine nur geringe Lebensdauer. Die Kapillare muss erst gepackt und mit einer gesinterten Einlass-Fritte (17) versehen werden, anschließend kann die Kapillare an der Spitze mit einem leitfähigen Überzug versehen werden. Dies muss erfolgen, ohne das Trennmaterial in der Kapillare zu zerstören. Bisher wird die Beschichtung daher z.B. aufgesprüht oder aufgedampft. Die so entstehenden Schichten sind sehr dünn und zeigen nur eine bedingte Haltbarkeit. Verfahren zur Herstellung haltbarerer Schichten würden das Trennmaterial oder die Fritte angreifen. Sobald die Beschichtung fehlerhaft wird, muss die gesamte Kapillarsäule ausgetauscht werden, da die Beschichtung direkt auf die Kapillarsäule aufgebracht ist. Somit ist diese Variante sowohl aufwendig in der Herstellung wie auch wenig dauerhaft.
Aufgabe der vorliegenden Erfindung war daher die Entwicklung einer Möglichkeit zur direkten Verbindung der Trennsäulen bzw. Trennkapillaren zur Durchführung chromatographischer und/oder elektrophoretischer Trennverfahren mit MS Geräten. Dabei sollten sowohl Totvolumina wie auch die Verdünnung der Probe mit Trägerflüssigkeiten vermieden werden. Weiterhin sollte die Verbindung einfach in der Herstellung und von langer Lebensdauer sein. Es wurde gefunden, dass diese Anforderungen von einer Säule oder Kapillare erfüllt werden, die an einem Ende zumindest teilweise mit Metallfolie ummantelt ist. Besonders vorteilhaft ist die Verwendung einer Kapillare mit monolithischem Sorbens.
Durch die bevorzugte direkte Ummantelung der Trennkapiilare entfällt die Notwendigkeit einer zusätzlichen Sprühnadel oder einer Leerkapillare. Auf diese Weise werden Totvolumina vermieden. Es wurde gefunden, dass das Belegen der Kapillaren mit Metallfolie ausreicht. Eine aufwendige Beschichtung durch Besprühen oder Sputtem ist nicht notwendig. Die Ummantelung ist sehr haltbar und kann jederzeit ohne großen Aufwand ausgetauscht werden, ohne die gesamte Trennkapillare verwerfen zu müssen.
Gegenstand der vorliegenden Erfindung ist daher eine Kapillare, die an einem Ende zumindest teilweise mit Metallfolie ummantelt ist.
In einer bevorzugten Aüsführungsform ist die Metallfolie eine Goldfolie.
In einer bevorzugten Ausführungsform ist die Kapillare mit Sorbens gefüllt.
In einer bevorzugten Ausführungsform ist das Sorbens ein monolithisches Sorbens.
In einer besonders bevorzugten Ausführungsform ist das Sorbens ein anorganisches monolithisches Sorbens.
In einer bevorzugten Ausführungsform ist, im Fall von Kapillaren, die leer sind oder mit partikulären Sorbenzien gefüllt sind, das mit Metallfolie ummantelte Ende der Kapillare sowohl außen als auch innen verjüngt und bildet eine feine Spitze. In einer weiteren bevorzugten Ausführungsform ist, im Fall von Kapillaren, die mit monolithischen Sorbenzien gefüllt sind, das mit Metallfolie ummantelte Ende der Kapillare außen verjüngt, wobei sich der äußere Durchmesser der Kapillare zum Ende hin verkleinert und der Innendurchmesser des Kapillarrohres gleich bleibt.
Gegenstand der vorliegenden Erfindung ist auch eine Vorrichtung zur Kopplung von kapillaren Trennverfahren mit massenspektrometrischen Analysengeräten, zumindest aufweisend eine Kapillare zur Durchführung der Trennungen und ein massenspektrometrisches Analysengerät, dadurch gekennzeichnet, dass die Kapillare an dem zum massenspektrometrischen Analysengerät gerichteten Ende zumindest teilweise mit Metallfolie ummantelt ist.
In einer bevorzugten Ausführungsform ist die Kapillare mit einem monolithischen Sorbens gefüllt.
Gegenstand der vorliegenden Erfindung ist auch ein Verfahren zur direkten Kopplung von Geräten zur Durchführung kapillarer Trennungen mit massenspektrometrischen Analysengeräten , dadurch gekennzeichnet, dass die Kopplung über eine Kapillare erfolgt, die an dem zum massenspektrometrischen Analysengerätgerichteten Ende zumindest teilweise mit Metallfolie ummantelt ist.
Gegenstand der vorliegenden Erfindung ist auch die Verwendung von Kapillaren, die an einem Ende zumindest teilweise mit Metallfolie ummantelt sind, zur Erzeugung von Elektrospray zur Einbringung von Analyten in ein ESI-MS Gerät.
Die Abbildungen 1 und 2 zeigen verschiedene Möglichkeiten eines Interfaces nach dem Stand der Technik. Abbildung 3 zeigt drei verschiedene Ausführungsformen einer erfindungsgemäßen Kapillare. Die Maße und Dimensionen der Kapillarsäulen sind der Tabelle 1 zu entnehmen. a) Partikulär gepackte Kapillarsäule. Der elektrische Kontakt erfolgt über eine Goldfolie (22), welche direkt am Spray-Ende der in die integrierte ESI-
Spitze (14) gepackten FS Kapillarsäule (16) angebracht ist b) Monolithische Kapillarsäule(19). Der elektrische Kontakt erfolgt über eine Goldfolie (22), welche direkt am Spray-Ende der rechtwinklig abgeschnittenen (20) monolithischen FS Kapillarsäule angebracht ist. c) Monolithische Kapillarsäule (19). Der elektrische Kontakt erfolgt über eine Goldfolie (22), welche direkt am Spray-Ende der dort außen angespitzten monolithischen FS Kapillarsäule (21) angebracht ist.
Nähere Erläuterungen zu den Abbildungen 4 bis 7 finden sich in den Beispielen 1 und 2.
In den Zeichnungen sind die Kennzahlen 1 bis 22 den folgenden Begriffen zuzuordnen:
(1) Edelstahlkapillare (SS)
(2) Hochspannungsquelle (HV) (3) „Sheath liquid"
(4) „Sheath gas"
(5) Kapillarsäule
(6) Offene Quarzglaskapillare (OT-FS) als Transferleitung
(7) Totvolumen (8) T-Stück
(9) Verbindungsstück
(10) „Make up" Fluss
(11) OT-FS ESI Nadel
(12) OT-SS ESI Nadel (13) „Distel end coated" OT-FS ESI Nadel
(14) Integrierte ESI Nadel
(15) „Tip end coated" integrierte ESI Nadel (16) In den Tip gepackte Kapillarsäule
(17) Gesinterte Einlass-Fritte
(18) „Tip end coated" OT-FS ESI Nadel
(19) Monolithische Kapillarsäule (20) Rechtwinklig abgeschnittenes Ende
(21) Integrierte ESI Nadel (außen angespitzt)
(22) Direkt an der ESI-Spitze angebrachte Goldfolie
(23) Pfeilspitze der Goldfolie
Unter kapillaren Trennverfahren werden erfindungsgemäß chromatographische, elektrophoretische, isotachophoretische und/oder elektrochromatographische Trennungen bzw. Trennverfahren verstanden, insbesondere flüssigchromatographische Verfahren wie HPLC, mikro- oder nano-HPLC, sowie CE (Kapillarelektrophorese), CEC (Kapillarelektrochromatographie) oder pCEC (pressurized CEC). Weiterhin zählen auch chromatographische, elektrophoretische, isotachophoretische und/oder elektrochromatographische Verfahren dazu, die auf miniaturisierten Systemen, wie planaren mikrostrukturierten Systemen oder Chips, durchgeführt werden.
Als Kapillaren gelten erfindungsgemäß Säulen oder Rohre, in denen die oben genannten kapillaren Trennverfahren durchgeführt werden können. Genauso fallen erfindungsgemäß Kapillarstücke, Rohre oder Nadeln, die an andere Rohre oder Kapillaren angesetzt werden können, unter den Begriff Kapillare.
Die Kapillaren sind typischerweise aus Glas, fused Silica, mit Kunststoff (z.B. Polyimid) überzogenem Glas oder fused Silica, anderen keramischen oder glasartigen Materialien, Kunststoff (z.B. Fluorpolymere, Polyolefine, Polyketone, wie insbesondere Polyetherketone (bevorzugt PEEK), Acrylate, Polyamide oder Polyimide) oder faserverstärktem Kunststoff. In bevorzugten Ausführungsformen bestehen die Kapillaren aus mit Kunststoff überzogenem fused Silica. Als Kapillare gelten weiterhin röhr- oder kanalartige Strukturen in mikrostrukturierten Bauteilen, wie z.B. planaren Mikrochips, die zumindest an einem Ende in Form eines Rohres, einer Nadel oder einer Kapillare aus dem Bauteil herausragen.
Sowohl der Querschnitt des in der Kapillare befindlichen Hohlraums wie auch der äußere Querschnitt der Kapillare sind bevorzugt rund geformt. Der Querschnitt kann jedoch auch jede andere Form aufweisen, z.B. eine ovale, quadratische, rechteckige oder polygonale.
10 Der Innendurchmesser der Kapillare beträgt typischerweise zwischen 1 μm und 5 mm, bevorzugt zwischen 10 und 100 μm. Die bevorzugten Durchmesser variieren je nach Art der Kapillare und der für die Trennung gewünschten Flussrate. Bevorzugt bleibt der Innendurchmesser über die
^ gesamte Länge der Kapillare konstant. Es sind jedoch auch Ausführungsformen möglich, in denen sich der Innendurchmesser insbesondere zum Ende der Kapillare hin ändert, d.h. z.B. wie bei einem konischen Verlauf kleiner wird und die Kapillare wie zu einer Spitze ausläuft. Diese Ausführungsform wird im folgenden auch als innen verjüngt 0 oder Innen-Konus bezeichnet. Zumeist verjüngt sich dabei der Durchmesser der Kapillare auf einer Länge von 1-2 mm um den Faktor 2- 10. Typischerweise ist auch der äußere Durchmesser der Kapillaren konstant. In einer bevorzugten Ausführungsform ist jedoch das mit Metallfolie 5 ummantelte Ende der Kapillare angespitzt, d.h. der äußere Durchmesser verringert sich zum Ende der Kapillare hin, so dass eine Spitze entsteht. Diese Ausführungsform wird im weiteren auch als außen verjüngt oder Außen-Konus bezeichnet. 0 Je nach Art der Kapillare können verschiedene Ausgestaltungen des Kapillarendes vorteilhaft sein. Bei leeren oder mit partikulären Sorbenzien gefüllten Kapillaren hat sich ein innen und außen verjüngtes Ende als vorteilhaft erwiesen. Bei Kapillaren, die mit monolithischen Sorbenzien gefüllt sind, ist dieser zusätzliche Aufwand nicht notwendig. Bei Verwendung von monolithischen Sorbenzien zeigt sich auch bei Kapillaren mit konstantem Innen- und Außendurchmesser ein sehr gutes Spray-
Verhalten. In einigen Fällen kann es hier vorteilhaft sein, die Kapillare außen anzuspitzen und so einen Außenkonus zu erzeugen.
Von besonderer Bedeutung ist der Innen- und Außendurchmesser an dem Ende der Kapillare, an dem der Elektrospray erzeugt wird. Dieses Ende wird im weiteren auch Tip genannt.
Im folgenden sind für verschiedene Arten von Kapillaren und bestimmte Flussraten bevorzugte Innendurchmesser (ID) und Außendurchmesser (OD) angegeben:
Leer-Kapillaren:
Tip-ID: 5-30 μm (optimal sind 8-15 μm bei Flussraten von 100-350 nl/min) Tip-OD: so gering wie möglich mit Sorbenzien gefüllte Kapillaren:
- Gepackt mit partikulären Sorbenzien, das Ende der Kapillare innen und außen verjüngt: Tip-ID: 10-25 μm (bei Flussraten < 500 nl/min) Tip-OD: so gering wie möglich - mit monolithischem Sorbens, Innendurchmesser gleichbleibend: ID: 50-100 μm (bei Flussraten > 500 nl/min) OD: so gering wie möglich oder bevorzugt Kapillaren außen anspitzen. ID: 10-50 μm (bei Flussraten < 500 nl/min) OD: so gering wie möglich oder bevorzugt Kapillaren außen anspitzen. Prinzipiell sind bei Einsatz von Kapillaren mit monolithischen Sorbenzien IDs < 50 μm von Vorteil, da die optimalen Flussraten für diese monolithischen Kapillaren auch denen für Mikro- und Nanoelektrospray entsprechen. Vorteilhaft für die lonisierungs-Effizienz ist auch, die monolithischen Sorbenzien direkt in Kapillaren mit Innen und/oder Außen-
Konus zu synthetisieren. Ein Aussenkonus kann problemlos auch nachträglich an der mit monolithischem Sorbens gefüllten Kapillare erzeugt werden.
Die Länge der erfindungsgemäßen Kapillaren variiert je nach Art der
Kapillare. Es kann sich bei der Kapillare um eine kurze Nadel oder Spitze z.B. zum Aufsatz auf andere Kapillaren oder Säulen handeln. Dann liegt die Länge typischerweise bei 1 cm bis 20 cm. Genauso kann es sich bei der Kapillare um eine Trennkapillare handeln. Dann liegt die Länge typischerweise zwischen 2 und 200 cm.
Ansonsten entsprechend die Dimensionen der erfindungsgemäßen Kapillaren den im Stand der Technik üblichen Dimensionen.
Die erfindungsgemäßen Kapillaren können leer, auf der Innenseite ganz oder teilweise beschichtet oder ganz oder teilweise mit Sorbens gefüllt sein. Bevorzugt sind die erfindungsgemäßen Kapillaren mit Sorbens gefüllt. Wenn die Kapillare mit partikulären Sorbenzien gefüllt ist, weist sie zudem in der Regel am Ende eine Fritte, ein Sieb oder einen Filter auf, um das Sorbens in der Kapillare zu fixieren.
Ein Sorbens ist ein Material auf dem kapillare Trennungen durchgeführt werden können. Typischerweise handelt es sich dabei um eine Festphase aus anorganischen und/oder organischen, partikulären oder monolithischen Materialien. Als organische Materialien kommen z.B. Partikel oder monolithische Materialien in Betracht, die z.B. durch radikalische, ionische oder thermische Polymerisation erzeugt werden. Es kann sich beispielsweise um Poly(meth)acrylsäurederivate, Polystyrolderivate, Polyester, Polyamide oder Polyethylene handeln. Die entsprechend einzusetzenden Monomeren sind dem Fachmann auf dem Gebiet der organischen Polymere bekannt. Beispielsweise sind dies monoethylenisch oder polyethylenisch ungesättigte Monomere, wie Vinyl-
Monomere, vinylaromatische und vinylaliphatische Monomeren, z.B. Styrol und substituierte Styrole, Vinylacetate oder Vinylpropionate, acrylische Monomere, wie Methacrylate und andere Alkylacrylate, Ethoxymethylacrylat und höhere Analoga und die entsprechenden Methacylsäureester oder deren Amide, wie Acrylamid oder Acrylnitril. Weitere monoethylenisch und polyethylenisch ungesättigten Monomere finden sich beispielsweise in EP 0 366252 oder US 5,858,296.
Als anorganische Materialien kommen z.B. partikuläre oder monolithische Materialien aus Glas, Keramik, anorganischen Oxiden, wie Aluminiumoxid, Zirkoniumdioxid oder Titandioxid oder bevorzugt aus Silika-Materialien (Kieselgel) in Betracht.
Weiterhin kann das Sorbens aus organisch/anorganischen Hybridmaterialien bestehen. Dies sind beispielsweise anorganische Materialien, die mit einer organischen Beschichtung versehen sind. Weiterhin kann es sich um anorganisch/organische Mischpolymerisate handeln. Beispielsweise können im Falle der Materialien auf Silika-Basis statt der rein anorganische Materialien erzeugenden Tetraalkoxysilane Organoalkoxysilane mit ein bis drei organischen Resten eingesetzt werden.
Partikuläre Sorbenzien können aus gleichmäßig oder ungleichmäßig geformten porösen oder unporösen Partikeln bestehen. Monolithische Sorbenzien bestehen aus porösen Formkörpern. Die Porenverteilung kann mono-, bi-, tri- oder polymodal sein. Typischerweise handelt es sich um Materialien mit einer mono- oder bimodalen Porenverteilung. Alle Sorbenzien können zudem mit Separationseffektoren modifiziert sein, um bestimmte Trenneigenschaften hervorzurufen.
Besonders bevorzugt werden erfindungsgemäß Kapillaren mit monolithischen Sorbenzien, besonders bevorzugt mit anorganischen monolithischen Sorbenzien eingesetzt. Es wurde gefunden, dass aus Kapillaren mit monolithischen Sorbenzien ein besonders gleichmäßiger und feiner Elektrospray erzeugt werden kann.
Bevorzugt werden daher monolithische Materialien mit Makroporen mit einem mittleren Durchmesser von über 0,1 μm, bevorzugt zwischen 1 μm und 10 μm, eingesetzt. In einer besonders bevorzugten Ausführungsform enthalten diese Materialien zusätzlich Mesoporen mit einem Durchmesser zwischen 2 und 100 nm. WO 99/38006 und WO 99/50654 offenbaren Verfahren zur Herstellung von Kapillaren, die mit monolithischem Silika- Material gefüllt sind. Auch in WO 95/03256 und besonders in WO 98/29350 werden Verfahren zur Herstellung anorganischer monolithischer Formkörper nach einem Sol-Gel Prozeß offenbart.
Ein Grund für den besonders stabilen und feinen Elektrospray bei Einsatz der monolithischen Materialien könnte deren besondere Porenstruktur sein, da der Effekt besonders bei monolithischen Materialien mit makroporösen Durchflussporen beobachtet wird.
Ein erfindungsgemäß geeignetes MS-Gerät ist ein Massenspektrometer, in das die Probe in Form eines Elektrosprays aufgegeben wird. Typischerweise handelt es sich also um ein Massenspektrometer mit ESI- und/oder nano ESI-Quelle. Als Metallfolie wird erfindungsgemäß eine Folie aus leitendem Metall oder Metallegierungen bezeichnet. Die Dicke der Folie beträgt aus Gründen der Verarbeitbarkeit in der Regel über 10 μm, typischerweise zwischen 20 und 100 μm. Bei Gold liegt die bevorzugte Dicke z.B. zwischen 10 und 50 μm. Geeignete Metalle sind solche, die sich als Folie in der geeigneten Dicke herstellen und verarbeiten lassen und elektrisch leitend sind. Beispiele hierfür sind: - Gold - Aluminium - Platin
- Titan
- Palladium
- Silber
Weiterhin sind Legierungen aus und/oder mit einem oder mehreren dieser Metalle geeignet sowie andere Legierungen wie z.B. Edelstahle.
Erfindungsgemäß wird bevorzugt Goldfolie eingesetzt. Als gut geeignet hat sich Alfa Aesar Gold Foil; 25 x 25 mm, 0.025 mm dick, Premion®, 99.985% (metals basis) erwiesen.
Länge und Breite der für die Ummantelung eingesetzten Metallfolie sind von der jeweiligen Kapillare und auch dem eingesetzten MS-Gerät abhängig. In der Regel weist die Kapillare an einem Ende eine Ummantelung mit Metallfolie auf, die die Kapillaraußenseite vom Ende der Kapillare ausgehend auf einer Länge von mindestens 3 mm, typischerweise zwischen 5 mm und 10 cm bedeckt. Dabei kann die Kapillare vollständig von der Folie umschlossen werden oder aber nur zu einem Teil. Typischerweise ist mindestens 1/6 des Umfangs der Kapillare bedeckt. Bevorzugt ist bis die Hälfte des Umfangs der Kapillare bedeckt. Die in Abbildung 3 gezeigten Ausführungsformen weisen z.B. eine Ummantelung auf, bei der die Hälfte des Umfangs mit Folie bedeckt ist. Wichtig ist, dass der Kontakt der Flüssigphase in der Kapillare zu der Metallfolie gegeben ist. Typischerweise sollte daher der Abstand der Metallfolie vom Ende der Kapillare, d.h. dem Flüssigkeitsauslass bzw. dem Hohlraum der Kapillare, nicht mehr als ca. 50 μm betragen. Andererseits darf gerade bei kleinen Durchmessern am Ende der Kapillare die Folie die Geometrie am Ausgang der Kapillare nicht merklich verändern. Sonst kann kein stabiler und gleichmäßiger Spray erzeugt werden. Um diese Anforderungen zu gewährleisten, kann die Form der Metallfolie optimal gewählt werden. Die Form der Metallfolie kann quadratisch, rechteckig, dreieckig, rund, oval, polygonal etc. sein. Um einen optimalen Elektrospray zu erzeugen haben sich Formen als vorteilhaft erwiesen, bei denen die Folie zum Kapillar-Tip hin spitz zuläuft, so dass die Spitze der Folie die Spitze der Kapillare erreicht.
Eine mögliche Ausführungsform zeigt Abbildung 3. Hier wird bei einer am Ende zugespitzten Kapillare (14, 21) die Folie zum Ende hin auch zugespitzt und wie ein Schiffchen um die Kapillare gelegt, so dass die Spitze der Metallfolie (23) direkt am Rand des Kapillarendes zu liegen kommt. Bei Kapillaren, deren Durchmesser sich zum Ende hin nicht verändert (20), wird die Folie bevorzugt leicht um das Ende der Kapillare herumgeknickt, so dass sie die Dicke der Wand der Kapillare bedeckt und bis an den inneren Hohlraum heranreicht.
Die Fixierung der Metallfolie erfolgt z.B. durch Erwärmen, Kleben oder mithilfe einer Fixierung, z.B. in Form eines Kunststoffmantels oder -ringes. Abbildung 3 zeigt drei mögliche Ausführungsformen der erfindungsgemäßen Kapillare. In diesem Fall wurde zur Kontaktlegung jeweils Goldfolie verwendet. SV bezeichnet die Seitenansicht der Kapillaren, FV die Ansicht der Kapillarspitze von vorne. In Abbildung 3a) wird eine Ausführungsform gezeigt, bei der eine innen und außen zugespitzte Kapillare (geformt entsprechend einer nano ESI Nadel) mit partikulärem Sorbens gefüllt ist (16). Die Goldfolie (22) umschließt die Hälfte des Endes der Kapillare und läuft zur Spitze der Kapillare hin spitz zu (23), so dass sie direkt am Ende der Kapillare anliegt aber nicht merklich in den Hohlraum bzw. Kanal der Kapillare hereinragt. So wird die Geometrie der Austrittsöffnung nicht beeinträchtigt.
' Genauere Angaben zur Dimension der Kapillare und der Goldfolie finden sich in Tabelle 1. In Abbildung 3b) wird eine Kapillare mit monolithischem Sorbens (19) gezeigt, deren Ende glatt abgeschnitten ist und nicht spitz zuläuft (20). Die Goldfolie (22) umschließt die Hälfte des Endes der Kapillare und ist leicht um den Rand der Kapillare herumgeknickt (23), so dass sie direkt an der Öffnung der Kapillare anliegt aber nicht stark in den Hohlraum bzw. Kanal der Kapillare hereinragt. So wird die Geometrie der Austrittsöffnung nicht beeinträchtigt. Genauere Angaben zur Dimension der Kapillare und der Goldfolie finden sich in Tabelle 1.
Abbildung 3c) zeigt eine Kapillare mit monolithischem Sorbens (19), deren Ende außen spitz zuläuft (21). Die Goldfolie (22) umschließt die Hälfte des Endes der Kapillare und läuft zur Spitze der Kapillare hin spitz zu (23), so dass sie direkt am Ende der Kapillare anliegt aber nicht merklich in den Hohlraum bzw. Kanal der Kapillare hereinragt. So wird die Geometrie der Austrittsöffnung nicht beeinträchtigt.
Genauere Angaben zur Dimension der Kapillare und der Goldfolie finden sich in Tabelle 1.
Figure imgf000017_0001
Tabelle 1 Die erfindungsgemäß mit Metallfolie ummantelte Kapillare wird, sofern eine vorherige Auftrennung der Analyten gewünscht wird, auf bekannte Weise zur Auftrennung von Analyten eingesetzt. Sie kann genauso für eine Offline Nano ESI Messung eingesetzt werden, d.h. eine Messung ohne vorherige Trennung. Zur Kopplung mit dem MS-Gerät wird wie bei anderen
Spraynadeln auch an die Metallfolie Spannung angelegt, so dass ein Elektrospray entsteht. Mit den erfindungsgemäßen Kapillaren kann ein stabiler Spray bei Flussraten zwischen 50 nl/min und 5 μl/min erzeugt werden. Dabei liegen für Tip-Innendurchmesser von ca. 10 μm die geeigneten Flussraten zwischen 50-1000 nl/min, bevorzugt zwischen 200- 300 nl/min. Für Tip-Innendurchmesser von ca. 100 μm liegen die geeigneten Flussraten zwischen 0,5-5 μl/min, bevorzugt zwischen 1 -2 μl/min. Bei Ausführungsformen mit monolithischen Sorbenzien können bei Innendurchmessern von ca. 100 μm sogar höhere Flussraten, d.h. > 5 μl/min, z.B. 10-20 μl/min, erzeugt werden. Zudem zeigen Kapillaren mit monolithischen Sorbenzien eine höhere Flussratenvarianz. Bei Flussraten von <500nl/min sollte der Abstand der Kapillare zum Eingang des MS-Gerätes ca. 3-10 mm betragen. Bei Flussraten >500n!/min sollte der Abstand bei ca. 7-25 mm liegen.
Welcher MS-Modus und welche Spannung optimal sind, ist abhängig vom Tip-ID, Tip OD, der Flussrate, dem Abstand Tip <→ Orifice (Eingang MS- Gerät) und auch von der Art des zu versprühenden Laufmittels (z.B. Dielektrizitätskonstante, Leitfähigkeit, Oberflächenspannung, Viskosität, Dampfdruck). Alle diese Parameter müssen aufeinander abgestimmt werden.
Für den Nano ESI-Mode sind in der Regel Spannungen zwischen 1600 und 2300 V geeignet. Für den Normal ESI-Mode sind in der Regel Spannungen zwischen 2800-5500 V geeignet.
Geeignete Laufmittel sind aus dem Stand der Technik für diese Art von Anwendung bekannt. Bevorzugt sollte das Laufmittel zu über 98% aus einem Gemisch aus entionisiertem Wasser und Methanol, Ethanol, Propanol und/oder Acetonitril bestehen. Elektrolytische Zusätze (Säuren, Basen, Puffer) sollten auch von flüchtiger Natur sein (z.B. Ameisensäure, Essigsäure, Ammoniak, sek. & tert. Amine, Ammoniumformiat, Ammoniumacetat, Ammoniumhydrogencarbonat).
Die erfindungsgemäßen Kapillaren zeichnen sich durch eine sehr lange Haltbarkeit aus. Sollte die Metallfolie dennoch beschädigt sein, kann sie einfach entfernt und durch eine neue Folie ersetzt werden. Dabei ist es nicht notwendig, die Trennkapillare mit auszutauschen. Bei Kapillaren mit monolithischen Sorbenzien kann falls nötig einfach das beschädigte Ende der Kapillare abgeschnitten (und gegebenenfalls neu angespitzt) werden und das neu erzeugte Ende wieder mit derselben Metallfolie ummantelt werden.
Somit ist die erfindungsgemäße Kapillare einfach herzustellen und zu verwenden. Beschädigte Teile können ausgetauscht werden, ohne die gesamte Kapillare erneuern zu müssen. Wie aus Beispiel 1 ersichtlich ist, haben die erfindungsgemäßen Kapillaren eine sehr lange Lebensdauer. Es kann ein stabiler Spray erzeugt werden. Auch zufällige
Spannungsüberschläge (electrical arcing) und mehrere Pausen haben kaum Einfluss auf die Stabilität.
Weitere Vorteile, insbesondere der bevorzugten Ausführungsformen, gegenüber dem Stand der Technik sind:
- Da der Spray bevorzugt direkt aus der Trennkapillare erzeugt wird, entstehen keine zusätzlichen Totvolumina durch aufgesetzte Spraynadeln.
- Es finden keine Elektroden-Redoxprozesse in der Kapillare statt. - Am Ende der Kapillare (ESI-Tip) ist die Feldstärke konstant.
- Es findet keine Verdünnung mit Trägerflüssigkeit statt. - Es können sehr niedrige Flussraten verwendet werden, so das kleinere Tropfen entstehen und zudem das Kapillarende näher an den Eingang des MS-Gerätes herangeführt werden kann. Somit können die lonisierungseffizienz und die lonen-Sampling-Rate deutlich erhöht werden.
Somit stellt die erfindungsgemäße Kapillare eine wertvolle Verbesserung zur Kopplung von chromatographischen, elektrophoretischen, elektrochromatographischen und/oder isotachophoretischen Trennverfahren mit MS dar.
Auch ohne weitere Ausführungen wird davon ausgegangen, daß ein Fachmann die obige Beschreibung im weitesten Umfang nutzen kann. Die bevorzugten Ausführungsformen und Beispiele sind deswegen lediglich als beschreibende, keineswegs als in irgendeiner Weise limitierende Offenbarung aufzufassen.
Die vollständige Offenbarung aller vor- und nachstehend aufgeführten Anmeldungen, Patente und Veröffentlichungen, insbesondere der korrespondierenden Anmeldung DE 102004 005 888.1 , eingereicht am 05.02.2004, ist durch Bezugnahme in diese Anmeldung eingeführt.
Beispiele
1. Stabilität des Elektrospravs
Zum Vergleich der Stabilität und Lebensdauer der erfindungsgemäßen Vorrichtung und Kapillare mit bekannten und kommerziell erhältlichen Systemen wurden erfindungsgemäße Kapillaren mit Fused Silica Nadeln der Firma New Objective verglichen. Soweit feststellbar sind die Nadeln der Firma New Objective mit Gold oder einer Goldlegierung bedampft. Nähere Daten zu den eingesetzten Kapillaren und der Versuchsdurchführung finden sich in Tabelle 2.
Figure imgf000021_0001
Tabelle 2
Abbildung 4a zeigt die eingesetzte erfindungsgemäße Kapillare. Sie besteht aus fused Silica (11 ), besitzt die gleiche Geometrie wie die Kapillaren des Standes der Technik und ist am Ende mit einer pfeilförmigen Goldfolie (Alfa Aesar Gold Foil; 25 x 0,57 mm, 0,025 mm dick, Premion®, 99,985% (metals basis)) ummantelt, d.h. der elektrische Kontakt erfolgt über eine Goldfolie, welche direkt am Spray-Ende der dort innen und außen verjüngten ESI-Spitze der OT-FS-Nadel angebracht ist (22).
Abbildung 4b zeigt eine Kapillare nach dem Stand der Technik, deren hinteres Ende mit Gold besputtert ist (13), d.h. der elektrische Kontakt erfolgt über eine leitenden Beschichtung (Metallbedampfung) am stumpfen hinteren Ende OT-FS-ESI-Nadel.
Abbildung 4c zeigt eine Kapillare nach dem Stand der Technik, deren Spitze mit Gold besputtert ist (18), d.h. der elektrische Kontakt erfolgt über eine elektrisch leitende Beschichtung (Metallbedampfung) am Spray-Ende der dort innen und außen verjüngten ESI-Spitze der OT-FS-Nadel.
Abbildung 5 zeigt im Vergleich die Sprayeigenschaften der drei Kapillaren (a, b und c entsprechend Abbildung 4). Die y-Achse zeigt den
Gesamtionenstrom (Total Ion Current) in cps (counts per second), die x- Achse die Zeit in Stunden (h). Es zeigt sich, dass die Kapillaren a) und b) über 48 Stunden einen stabilen Spray erzeugen, wohingegen die Kapillare c) bereits nach 8 Stunden Unregelmäßigkeiten zeigt. Die erfindungsgemäße Kapillare a) wurde nach diesem Versuch noch weitere 2000 Stunden verwendet und zeigte noch immer keinen Qualitätsverlust.
2. Vergleich monolithische/partikuläre Sorbenzien Abbildung 6 zeigt den Aufbau der drei erfindungsgemäßen Kapillaren, deren Sprayeigenschaften verglichen wurden. a) Monolithische Kapillarsäule (19). Der elektrische Kontakt erfolgt über eine Goldfolie (22), welche direkt am Spray-Ende der dort außen angespitzten (21 ) monolithischen FS Kapillarsäule angebracht ist. b) Monolithische Kapillarsäule (19). Der elektrische Kontakt erfolgt über eine Goldfolie (22), welche direkt am Spray-Ende der rechtwinklig abgeschnittenen (20) monolithischen FS Kapillarsäule angebracht ist. c) Partikulär gepackte Kapillarsäule (19). Der elektrische Kontakt erfolgt über eine Goldfolie (22), welche direkt am Spray-Ende der in die integrierte ESI-Spitze (14) gepackten FS Kapillarsäule angebracht ist. Nähere Daten zu den eingesetzten Kapillaren und derVersuchsdurchführung finden sich in Tabelle 3.
Figure imgf000023_0001
Tabelle 3
Abbildung 7 zeigt im Vergleich die Sprayeigenschaften der drei Kapillaren (a, b und c entsprechend Abbildung 6). Die Versuchsbedingungen sind der Tabelle 3 zu entnehmen. Die y-Achse zeigt den Gesamtionenstrom (Total
Ion Current) in cps (counts per second), die x-Achse die Zeit in Stunden (h). Es zeigt sich, dass eine monolithische Kapillare (Abbildung 6b) und c)) auch ohne sich innen verjüngenden Durchmesser ähnlich gute Sprayeigenschaften hat wie die mit partikulärem Sorbens gefüllte Spraynadel (Abbildung 6a)). Alle drei Ausführungsformen (Abbildung 6a)- c)) zeigen bessere Sprayeigenschaften als der Stand der Technik (s. Abbildung 5b) und c)). Die Unterschiede zwischen den drei Kapillarsäulen liegen im mit ihnen möglichen Flussratenbereich (Abhängig vom Tip OD/ID) in dem ein stabiler Elektrospray möglich ist. Dies wirkt sich auch auf die lonisierungseffizienz und die lonen-Sampling-Rate aus, die beide bei kleineren Flussraten höher liegen. Zudem wird mit zunehmender Flussrate (ohne geeigneten zusätzlichen Sheath flow) die mögliche Zusammensetzung der mobilen Phase zunehmend eingeschränkt

Claims

Ansprüche
1. Kapillare, dadurch gekennzeichnet, dass die Kapillare zumindest an einem Ende mit Metallfolie ummantelt ist.
2. Kapillare nach Anspruch 1 , dadurch gekennzeichnet, dass die Metallfolie eine Goldfolie ist.
3. Kapillare nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Kapillare mit Sorbens gefüllt ist.
4. Kapillare nach Anspruch 3, dadurch gekennzeichnet, dass das Sorbens ein monolithisches Sorbens ist.
5. Kapillare nach Anspruch 4, dadurch gekennzeichnet, dass das Sorbens ein anorganisches monolithisches Sorbens ist.
6. Kapillare nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass das mit Metallfolie ummantelte Ende der Kapillare außen angespitzt ist.
7. Kapillare nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Kapillare leer ist oder mit partikulärem Sorbens gefüllt ist und das mit Metallfolie ummantelte Ende innen und außen verjüngt ist.
8. Vorrichtung zur Kopplung von kapillaren Trennverfahren mit massenspektrometrischen Analysengeräten zumindest aufweisend eine Kapillare zur Durchführung der Trennungen und ein massenspektrometrisches Analysengerät, dadurch gekennzeichnet, dass die Kapillare zumindest an dem zum massenspektrometrischen Analysengerät gerichteten Ende mit Metallfolie ummantelt ist.
9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass die Kapillare mit einem monolithischen Sorbens gefüllt ist.
10. Verfahren zur direkten Kopplung von Geräten zur Durchführung kapillarer Trennungen mit massenspektrometrischen Analysengeräten, dadurch gekennzeichnet, dass die Kopplung über eine Kapillare erfolgt, die zumindest an dem zum massenspektrometrischen Analysengerät gerichteten Ende mit Metallfolie ummantelt ist.
11. Verwendung von Kapillaren, die zumindest an einem Ende mit Metallfolie ummantelt sind, zur Erzeugung von Elektrospray zur Einbringung von Analyten in ein ESI-MS Gerät.
PCT/EP2005/000712 2004-02-05 2005-01-25 Vorrichtung und verfahren zur kopplung von kapillaren trennverfahren und massenspektrometrie WO2005075976A2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/588,457 US20080315083A1 (en) 2004-02-05 2005-01-25 Device and Method for Coupling Capillary Separation Methods and Mass Spectrometry
EP05701173A EP1711807A2 (de) 2004-02-05 2005-01-25 Vorrichtung und verfahren zur kopplung von kapillaren trennverfahren und massenspektrometrie
JP2006551770A JP2007520711A (ja) 2004-02-05 2005-01-25 キャピラリー分離法および定量分析計を連結させるためのデバイスおよび方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004005888.1 2004-02-05
DE102004005888A DE102004005888A1 (de) 2004-02-05 2004-02-05 Vorrichtung und Verfahren zur Kopplung von kapillaren Trennverfahren und Massenspektrometrie

Publications (2)

Publication Number Publication Date
WO2005075976A2 true WO2005075976A2 (de) 2005-08-18
WO2005075976A3 WO2005075976A3 (de) 2005-12-15

Family

ID=34801672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/000712 WO2005075976A2 (de) 2004-02-05 2005-01-25 Vorrichtung und verfahren zur kopplung von kapillaren trennverfahren und massenspektrometrie

Country Status (5)

Country Link
US (1) US20080315083A1 (de)
EP (1) EP1711807A2 (de)
JP (1) JP2007520711A (de)
DE (1) DE102004005888A1 (de)
WO (1) WO2005075976A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008087866A1 (ja) * 2007-01-17 2008-07-24 Shimadzu Corporation イオン化用エミッタ、イオン化装置及びイオン化用エミッタの製造方法
WO2019145117A1 (de) 2018-01-27 2019-08-01 Friedrich-Schiller-Universität Jena (FSU) Verfahren zur bestimmung von verunreinigungen in polyalkylenethern oder polyalkylenaminen und dessen verwendung

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008089143A1 (en) * 2007-01-12 2008-07-24 Board Of Regents, The University Of Texas System Interfacing low-flow separation techniques
US8895918B2 (en) * 2011-06-03 2014-11-25 Purdue Research Foundation Ion generation using modified wetted porous materials
CN102522311A (zh) * 2011-10-20 2012-06-27 中国科学院上海有机化学研究所 一种纳喷雾电极及其制作方法和应用
US9196468B2 (en) * 2012-05-18 2015-11-24 Dh Technologies Development Pte. Ltd. Method and system for introducing make-up flow in an electrospray ion source system
BE1021813B1 (fr) * 2014-02-13 2016-01-19 Analis Sa Interface ce-ms
US9786478B2 (en) 2014-12-05 2017-10-10 Purdue Research Foundation Zero voltage mass spectrometry probes and systems
EP3254297B1 (de) 2015-02-06 2024-04-03 Purdue Research Foundation Sonden, systeme und kartuschen
US20190019662A1 (en) * 2017-07-14 2019-01-17 Purdue Research Foundation Electrophoretic mass spectrometry probes and systems and uses thereof
CN107702949A (zh) * 2017-08-15 2018-02-16 杭州臻盛科技有限公司 顶空取样针以及取样方法
US10978287B2 (en) * 2017-09-14 2021-04-13 Shimadzu Corporation ESI sprayer and ionizer
WO2019053850A1 (ja) * 2017-09-14 2019-03-21 株式会社島津製作所 液体クロマトグラフ
DE102018103609B4 (de) 2018-02-19 2021-06-02 Bruker Daltonik Gmbh Flüssigkeitsanschluss-Einrichtung für die Ionisierung durch Elektrosprühen
CN113075114B (zh) * 2019-12-17 2022-07-01 北京大学 一种用于单细胞分析的有机质谱流式分析方法
GB202211210D0 (en) * 2022-08-01 2022-09-14 Micromass Ltd Electrospray device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3926271A (en) * 1975-02-03 1975-12-16 Rupprecht Georg Microbalance
WO1982001578A1 (en) * 1980-11-03 1982-05-13 Aircraft Co Hughes Metallic clad capillary tubing
US4726822A (en) * 1984-10-22 1988-02-23 Honeywell Inc. Fast response thermochromatographic capillary columns

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5922112U (ja) * 1982-08-03 1984-02-10 丹野 直弘 芯管入同軸型ガラス毛細管電極
US6297499B1 (en) * 1997-07-17 2001-10-02 John B Fenn Method and apparatus for electrospray ionization
JP2001074697A (ja) * 1999-09-07 2001-03-23 Jeol Ltd エレクトロスプレー・イオン源
DE10028447A1 (de) * 2000-06-14 2001-12-20 Merck Patent Gmbh Verfahren zur Herstellung von monolithischen Chromatographiesäulen
US6525313B1 (en) * 2000-08-16 2003-02-25 Brucker Daltonics Inc. Method and apparatus for an electrospray needle for use in mass spectrometry
EP1336097A4 (de) * 2000-10-13 2006-02-01 Fluidigm Corp Probeninjektionssystem auf der basis einer mikrofluidischen einrichtung für analytische einrichtungen
JP2004532392A (ja) * 2001-02-20 2004-10-21 アドヴィオン バイオサイエンシィズ インコーポレイテッド 親和性吸着剤を有するマイクロチップ電子噴霧装置およびカラムならびにそれらの使用法
JP2003331776A (ja) * 2002-05-10 2003-11-21 Hitachi Ltd イオン源および質量分析装置および質量分析方法
JP4613002B2 (ja) * 2003-10-29 2011-01-12 株式会社日立ハイテクノロジーズ エレクトロスプレイ用カラム一体型チップの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3926271A (en) * 1975-02-03 1975-12-16 Rupprecht Georg Microbalance
WO1982001578A1 (en) * 1980-11-03 1982-05-13 Aircraft Co Hughes Metallic clad capillary tubing
US4726822A (en) * 1984-10-22 1988-02-23 Honeywell Inc. Fast response thermochromatographic capillary columns

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1711807A2 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008087866A1 (ja) * 2007-01-17 2008-07-24 Shimadzu Corporation イオン化用エミッタ、イオン化装置及びイオン化用エミッタの製造方法
US8153992B2 (en) 2007-01-17 2012-04-10 Shimadzu Corporation Ionization emitter, ionization apparatus, and method for manufacturing ionization emitter
WO2019145117A1 (de) 2018-01-27 2019-08-01 Friedrich-Schiller-Universität Jena (FSU) Verfahren zur bestimmung von verunreinigungen in polyalkylenethern oder polyalkylenaminen und dessen verwendung
DE102018000650A1 (de) 2018-01-27 2019-08-01 Friedrich-Schiller-Universität Jena Verfahren zur Bestimmung von Verunreinigungen in Polyalkylenethern oder Polyalkylenaminen und dessen Verwendung

Also Published As

Publication number Publication date
JP2007520711A (ja) 2007-07-26
EP1711807A2 (de) 2006-10-18
DE102004005888A1 (de) 2005-08-25
WO2005075976A3 (de) 2005-12-15
US20080315083A1 (en) 2008-12-25

Similar Documents

Publication Publication Date Title
WO2005075976A2 (de) Vorrichtung und verfahren zur kopplung von kapillaren trennverfahren und massenspektrometrie
DE112005000696B4 (de) Kapillar-Emitter für die Elektrospray-Massenspektrometrie
DE102004053064B4 (de) Ionisierung durch Tröpfchenaufprall
DE4415480C2 (de) Vorrichtung und Verfahren zur massenspektrometrischen Untersuchung von Substanzgemischen durch Kopplung kapillarelektrophoretischer Separation (CE) mit Elektrospray-Ionisierung (ESI)
DE69934128T2 (de) Gas-verwirbelungs-übergangsstück für die elektrospray massenspektrometrie
DE112006001329B4 (de) Leitfähige Leitungen für chemische Analysen
EP1697736B1 (de) Vorrichtung zur probenvorbereitung
DE112008003547T5 (de) Probenanregungsvorrichtung und -verfahren zur spektroskopischen Analyse
DE602005004968T2 (de) Kolonne mit konischem Zwischenstück
DE102007015714A1 (de) Vorrichtung zum Erzeugen von Ionen aus einer Elektrospray-Anordnung
DE602004013195T2 (de) Planare elektrosprühquellen auf grundlage einer kalligraphiefeder und herstellung davon
DE102017205545A1 (de) Probezerstäuber mit einstellbarer leitung und verwandte verfahren
CN210897196U (zh) 一种电喷雾离子源及质谱装置
CN112051341A (zh) 液相质谱取样与电喷雾的组合装置
EP1077774B1 (de) Verwendung von porösen perlen für die spitze für eine nano-elektrospray vorrichtung
DE112016000855T5 (de) Verfahren zum Herstellen einer Sprühvorrichtung für hüllenlose CE-MS, Sprühvorrichtung für hüllenlose CE-MS und hüllenlose CE-MS Vorrichtung
DE60126264T2 (de) Heliumionisierungsdetektor
DE102013019441B4 (de) Zerstäubersystem und dessen Verwendung
DE102013009177B4 (de) Skimmertyp-Verbindungsstruktur
DE10007498B4 (de) Elektrosprühvorrichtung
DE102004033993B4 (de) Ionenquelle für ein Massenspektrometer
DE102007048357A1 (de) Elektrosprayionisation- Massenspektrometerschnittstelle
DE10213390C1 (de) Kopplung Kapillarelektrophorese (CE) mit Massenspektrometrie (MS) unter Bewahrung bester Separation
DE10125849A1 (de) Elektrosprayvorrichtung
US20070221838A1 (en) Add-on device with sample injection tip for mass spectrometer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005701173

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10588457

Country of ref document: US

Ref document number: 2006551770

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2005701173

Country of ref document: EP