WO2005075820A1 - マグナス型風力発電装置 - Google Patents

マグナス型風力発電装置 Download PDF

Info

Publication number
WO2005075820A1
WO2005075820A1 PCT/JP2004/008321 JP2004008321W WO2005075820A1 WO 2005075820 A1 WO2005075820 A1 WO 2005075820A1 JP 2004008321 W JP2004008321 W JP 2004008321W WO 2005075820 A1 WO2005075820 A1 WO 2005075820A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating cylinder
magnus
rotating
type wind
power generator
Prior art date
Application number
PCT/JP2004/008321
Other languages
English (en)
French (fr)
Inventor
Nobuhiro Murakami
Jun Ito
Original Assignee
Mekaro Akita Co.,Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mekaro Akita Co.,Ltd filed Critical Mekaro Akita Co.,Ltd
Priority to CN2004800252079A priority Critical patent/CN1846056B/zh
Priority to AU2004315175A priority patent/AU2004315175B2/en
Priority to CA2552297A priority patent/CA2552297C/en
Priority to BRPI0418484-0A priority patent/BRPI0418484A/pt
Priority to US10/569,581 priority patent/US7504740B2/en
Priority to EP04745875.7A priority patent/EP1715181B1/en
Priority to JP2005517614A priority patent/JP3962755B2/ja
Publication of WO2005075820A1 publication Critical patent/WO2005075820A1/ja
Priority to HK06113010.3A priority patent/HK1092515A1/xx

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0601Rotors using the Magnus effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/201Rotors using the Magnus-effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/40Use of a multiplicity of similar components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a Magnus-type wind power generator that drives the power generation mechanism by rotating the horizontal rotation shaft by the Magnus lift generated by the interaction between the rotation of each rotating cylinder and wind power.
  • Patent Document 1 US Pat. No. 4,366,386
  • Patent Document 2 Russian Patent No. 2189494C2
  • a Magnus-type wind power generator as disclosed in Patent Document 1 generates a Magnus lift by rotating a rotating cylinder and generates electricity by rotating a horizontal rotating shaft. It is necessary to increase the rotation speed of the rotating cylinder to increase the Magnus lift. In order to rotate the rotating cylinder at high speed, a lot of energy is consumed and the power generation efficiency deteriorates.
  • the Magnus-type wind power generator described in Patent Document 2 uses a Savonius rotor that rotates by wind power to rotate the rotating cylinder, so that the transmission mechanism for the rotating cylinder can be omitted, and the rotating cylinder can be omitted. It is not necessary to provide a drive motor or the like for rotating the Since the rotor cannot rotate at a speed higher than the wind speed and cannot increase the rotation speed of the rotating cylinder, it cannot generate a large Magnus lift and is not suitable for efficient power generation.
  • the present invention is to solve such a problem at once, and to provide a Magnus-type wind power generator capable of efficiently generating power from a low wind speed range to a relatively high wind speed range.
  • a Magnus-type wind power generator includes a horizontal rotating shaft that transmits a rotating torque to a power generation mechanism, and a required number of radial rotating shafts from the horizontal rotating shaft.
  • a rotating motor provided to rotate the rotating cylinders around the axes of the rotating cylinders, and the horizontal rotation is performed by a Magnus lift generated by an interaction between the rotation of the rotating cylinders and wind power.
  • the mutual movement between the rotation of each rotating cylinder and wind force is generated by generating air flow on the outer peripheral surface of the rotating cylinder, independent of the movement of air on the surface of the rotating cylinder rotating with the natural wind or the rotating cylinder.
  • a Magnus-type wind power generator according to claim 2 of the present invention is the Madanas-type wind power generator according to claim 1, wherein the air flow means is provided on the outer peripheral surface of the rotating cylinder at least. Both are means for generating a flow component of air parallel to the axis of the rotating cylinder.
  • a Magnus-type wind power generator according to claim 3 of the present invention is the Magnus-type wind power generator according to claim 1 or 2, wherein the air flow means is provided on an outer peripheral surface of the rotating cylinder. It is a means for generating a flow component of air in a direction parallel to the axis of the rotating cylinder and away from the horizontal rotation axis.
  • the air flow means generates the air flow on the outer peripheral surface of the rotating cylinder in a direction away from the horizontal rotation axis force, thereby increasing the Magnus lift generated in the rotating cylinder.
  • a Magnus-type wind power generator according to claim 4 of the present invention is the Magnus-type wind power generator according to claim 1 or 2, wherein the air flow means is provided on an outer peripheral surface of the rotating cylinder.
  • the air flow means generates an air flow on the outer peripheral surface of the rotating cylinder toward the horizontal rotation axis, thereby increasing the Magnus lift generated in the rotating cylinder.
  • a Magnus-type wind power generator according to claim 5 of the present invention is the Magnus-type wind power generator according to claims 1 to 4, wherein the air flow means is formed on an outer peripheral surface of the rotating cylinder.
  • the fin member is provided.
  • the air around the rotating cylinder is caused to flow by the fin members, and the Magnus lift generated in the rotating cylinder can be increased.
  • the Magnus-type wind power generator according to claim 6 of the present invention is the Madanas-type wind power generator according to claim 5, wherein the fin member as the air flow means is formed of the rotating cylinder. It is a spiral ridge formed on the outer peripheral surface.
  • the spiral ridge allows air to flow uniformly and stably over the wide surface of the rotating cylinder, thereby increasing the Magnus lift and reducing wind noise.
  • a Magnus-type wind power generator according to claim 7 of the present invention is the Magnus-type wind power generator according to any one of claims 1 to 7, wherein the rotating circle is provided at a tip of the rotating cylinder.
  • the end cap having a larger diameter than the pillar is provided. According to this feature, it has been experimentally proved that attaching the end cap increases the Magnus effect when the airflow is given, and according to the experiment, when the end cap is provided, It can be seen that the method of flowing air in the horizontal rotation axis direction has a greater Magnus effect than the method of flowing air in the radial direction.
  • a Magnus-type wind power generator according to claim 8 of the present invention is the Magnus-type wind power generator according to claim 6 or 7, wherein the ridge is formed of a multi-row spiral. As a special floor.
  • the Magnus-type wind power generator according to claim 9 of the present invention is the Magnus-type wind power generator according to claims 1 to 8, wherein a plurality of dimples are provided on an outer peripheral surface of the rotating cylinder. It is characterized by being formed.
  • the dimple may have any shape as long as it is uneven to disturb the surface flow.
  • a Magnus-type wind power generator according to claim 10 of the present invention is the Magnus-type wind power generator according to claim 6, wherein a dimple or a protrusion is formed on the outer surface of the tip of the ridge. It is characterized by that.
  • the dimples or protrusions disturb the surface flow (boundary layer) on the outer surface of the tip of the ridge, suppress separation, increase circulation, and increase the Magnus lift in a kappa manner.
  • a Magnus-type wind power generator according to claim 11 of the present invention is the Magnus-type wind power generator according to any one of claims 1 to 10, wherein the rotating cylinder is arranged with respect to a horizontal rotating shaft. It is characterized by being supported so as to be able to expand and contract in the radial direction.
  • the rotating cylinder is expandable and contractible, power can be generated by expanding and contracting the rotating cylinder in accordance with the direction and wind speed of natural wind.
  • the wind area can be maximized to increase the lift of the rotating cylinder, and at high winds.
  • a Magnus-type wind power generator according to claim 12 of the present invention is the Magnus-type wind power generator according to any one of claims 1 to 11, wherein the number of the rotating cylinders is smaller than the required number. It is characterized in that each of the rotating cylinders can be simultaneously driven to rotate by using a number of the driving motors.
  • FIG. 1 is a front view showing a Magnus-type wind power generator according to Embodiment 1 of the present invention.
  • FIG. 2 is an explanatory diagram of Magnus lift.
  • FIG. 3 is a sectional view taken along line AA of the rotating cylinder in FIG. 1.
  • FIG. 4 is a front view showing a rotating cylinder provided with a ridge.
  • FIG. 5 is a front view showing a rotating cylinder provided with a composite according to a second embodiment.
  • FIG. 6 is a front view showing a rotating cylinder in which a ridge is provided with a dimple in a composite in Example 3.
  • FIG. 7 is a front view showing a rotating cylinder provided with concave streaks according to a fourth embodiment.
  • FIG. 8 is a front view showing a rotating cylinder provided with two protrusions in Example 5.
  • FIG. 9 is a perspective view showing a rotating cylinder provided with two protrusions.
  • FIG. 10 is a front view showing a rotating cylinder in a sixth embodiment.
  • FIG. 11 is a perspective view showing an end cap according to a seventh embodiment.
  • FIG. 12 is a front view showing a Magnus-type wind power generator according to an eighth embodiment.
  • FIG. 13 is a longitudinal sectional side view showing a rotating body of a Magnus-type wind power generator according to Embodiment 9.
  • FIG. 14 is a longitudinal sectional rear view taken along line BB of the rotating body in FIG. 13.
  • FIG. 1 is a front view showing a Magnus-type wind power generator according to Embodiment 1 of the present invention.
  • FIG. 3 is an explanatory view of the Magnus lift
  • FIG. 3 is a sectional view taken along line AA of the rotating cylinder in FIG. 1
  • FIG. 4 is a front view showing the rotating cylinder provided with a ridge.
  • Reference numeral A in Fig. 1 denotes a Magnus-type wind power generator to which the present invention is applied, and the Madanas-type wind power generator A is provided with a vertical motor ( (Not shown), a power generating mechanism 2 is provided which is pivotally supported in the horizontal direction so as to be rotatable in the horizontal direction.
  • the power generating mechanism 2 has a horizontal rotating shaft 3 which is rotatably supported in the vertical direction.
  • One end of the horizontal rotating shaft 3 is connected to a generator (not shown) disposed inside the power generating mechanism 2, and the other end of the horizontal rotating shaft 3 is fixed to the rotating body 4.
  • each driving motor 15 is arranged inside the rotating body 4, and six rotating cylinders 5 are radially arranged around the rotating body 4.
  • the base of each rotating cylinder 5 is connected to each driving motor 15 disposed inside the rotating body 4,
  • the rotating cylinder 5 is rotatably supported so that it can be rotated by the drive of each drive motor 15.
  • a disc-shaped end cap 16 having a diameter larger than the diameter of the rotating cylinder 5 is attached to the tip end surface of the rotating cylinder 5.
  • a fin member as an air flow means in this embodiment that is, a spiral ridge 6 is wound around a body of the rotary cylinder 5, and the ridge 6 is formed around the shaft.
  • the ridges 6 can be explained as follows. Article 6 is fixed so as to form a right-handed right-handed spiral when viewed from the end face of the rotating cylinder 5
  • the wind direction is detected by an anemoscope (not shown), and a control circuit (not shown) controls a vertical motor (not shown).
  • the power generating mechanism 2 is turned in accordance with the wind direction so that the wind comes in from the front side of the rotating body 4. Then, by driving the respective drive motors 15 inside the rotating body 4, the respective rotating cylinders 5 are rotated.
  • the spiral ridge 6 is applied to the rotating column 5, so that when the rotating column 5 rotates, the spiral ridge 6 generates an air flow F. .
  • a flow component V of air flow parallel to the axis of the rotating cylinder 5 is generated on the outer peripheral surface of the rotating cylinder 5, apart from the natural wind ⁇ the surface movement of the rotating cylinder 5 that rotates with the rotating cylinder 5. It can be done.
  • the air flow around the outer periphery of the rotating cylinder 5 By generating the air flow F on the peripheral surface, a three-dimensional air flow formed by natural wind and the movement of air on the surface of the rotating cylinder 5 rotating with the rotating cylinder 5 is formed.
  • the Magnus lift Y generated by the interaction between the rotation of each rotating cylinder 5 and wind power is increased (see Fig. 3).
  • the air flow F given by the air flow means here does not need to be entirely parallel to the rotating cylinder 5, but at least a vector component V parallel to the rotating cylinder 5 is sufficiently effective. It is considered that the reasons why the Magnus lift Y increases are that the phenomenon that the differential pressure between the negative pressure and the positive pressure applied to the rotating cylinder 5 increases, the phenomenon that the lift generating surface expands, etc. occur. Can be
  • the use of the end cap 16 improves the Magnus effect. That is, by providing the end cap 16 on the tip end surface of the rotating cylinder 5, the end cap 16 has a favorable effect on the airflow F, and the Magnus lift Y is improved. As will be described later, according to experiments, when the end cap 16 is provided, the method that flows air in the horizontal rotation axis direction has a greater Magnus effect than the method that flows air in the radial direction. I can help you.
  • the rotating cylinder 5 and the rotating body 4 are rotated about the horizontal rotating shaft 3 by the Magnus lift Y generated on each rotating cylinder 5, and the horizontal rotating shaft A generator (not shown) connected to one end of the power generator 3 is driven to generate electric power.
  • the tonnolek value (rotating torque) of the horizontal rotating shaft 3 that drives the generator (not shown) is increased, and the Magnus-type wind power
  • the power generation efficiency of device A can be increased.
  • a generator not shown
  • a part of the generated power is supplied to a drive motor 15 for rotating the rotating column 5 and can be used as auxiliary power.
  • the rotating cylinder 5 of the Magnus-type wind turbine generator A in the present embodiment, and the peripheral speed ratio ⁇ ⁇ ⁇ ⁇ and the lift coefficient Cy of the rotating cylinder and the ideal fluid in the other inventions will be described with reference to Table 1.
  • Table 1 This is a graph showing the relationship between the peripheral speed ratio ⁇ and the lift coefficient Cy, where d is the diameter of the rotating cylinder (m), n is the number of revolutions per second (r / s) of the rotating cylinder, and u is the wind speed (mZs).
  • the lift coefficient Cy is the lift Y It is the value obtained by dividing the kinetic energy of the wind around (1/2) pu 2 by the projected area dl of the rotating cylinder (l is the length of the rotating cylinder).
  • the peripheral speed ratio ⁇ is used to minimize the change in the experimental results due to differences in the diameter d, the number of rotations n, and the wind speed u. , 1 and the density p of the fluid.
  • the graph (a) shows the rotating cylinder of the Magnus-type wind power generator A of the present invention.
  • 5 is a graph showing the relationship between the peripheral speed ratio ⁇ of 5 and the lift coefficient Cy
  • the graph (mouth) shows the relationship between the peripheral speed ratio ⁇ of the rotating cylinder of the Magnus-type wind power generator of ITAM ( Russia) and the lift coefficient Cy.
  • the graph (c) shows the relationship between the peripheral speed ratio of the NACA4415 blades (propeller blades with an attack angle of 12 degrees), which is often used in propeller wind turbine type wind turbines.
  • 6 is a graph showing a relationship between a conversion factor corresponding to a peripheral speed ratio ⁇ ) and a lift coefficient Cy.
  • the graph of the rotating cylinder 5 of the present invention (a) Is the ideal It draws a curve that is close to the graph of fluid (ideally flowing, lossless fluid that does not need to consider friction and separation).
  • the lift coefficient Cy of the graph (a) of the rotating cylinder 5 of the present invention is higher than the lift coefficient Cy of the graph (mouth) of the rotating cylinder of ITAM.
  • the rotating column 5 of the Magnus-type wind turbine generator A of the present invention can generate the Magnus lift Y most efficiently in a state where the rotating speed n of the rotating column is relatively low.
  • the horizontal rotating shaft 3 can be rotated with a high Magnus lift Y even when the rotating column 5 has a low rotation speed n.
  • the power consumption of the drive motor 15 for rotationally driving the motor can be reduced, and power can be efficiently generated.
  • the end cap 16 of the Magnus-type wind turbine generator A in the present embodiment, the torque value N (rotation torque) of the horizontal rotating shaft 3 in the generator structure 2, and the peripheral speed ratio ⁇ are shown in Tables 2 and 3. This is explained using Table 3.
  • the direction of rotation of the rotating cylinder 5 that causes the air flowing on the outer peripheral surface of the rotating cylinder 5 to flow toward the horizontal rotating shaft 3 is referred to as forward rotation
  • the air flowing on the outer peripheral surface of the rotating cylinder 5 is the horizontal rotating shaft.
  • the direction of rotation of the rotating cylinder 5 flowing away from 3 is called reverse rotation.
  • Table 2 is a graph showing the relationship between the peripheral speed ratio ⁇ and the tonnolec value N when the rotating cylinder 5 having a diameter of 70 ⁇ is positively rotated.
  • the graph (a) shows a spiral ridge.
  • 6 is a graph showing the relationship between the peripheral speed ratio ⁇ and the torque value N of the rotating cylinder 5 not provided with the end caps 16 and the end cap 16, and the graph (b) shows the rotating cylinder 5 provided with the spiral ridge 6.
  • the graph (b) of the normal rotation of the rotary cylinder 5 provided with the spiral ridge 6 and the graph (c) the graph (b) of the rotary cylinder 5 without the end cap 16 is provided.
  • the torque value N is improved due to the Magnus effect generated near the end cap 16 in the rotating cylinder 5, and the end cap 16 is provided, so that the vicinity of the end face of the rotating cylinder 5 is improved.
  • a large Magnus lift Y is generated. That is, the torque value N of the rotating cylinder 5 provided with the end cap 16 is higher than the tonnolek value N of the rotating cylinder 5 provided with the end cap 16 without the end cap 16 (b). I'm in love.
  • Table 3 is a graph showing the relationship between the peripheral speed ratio ⁇ and the tonnolec value N when the rotating cylinder 5 is rotated in the reverse direction, and the graph (a) shows the spiral ridge 6 and the end cap 16 This is a graph showing the relationship between the peripheral speed ratio ⁇ of the rotating cylinder 5 not provided and the torque value N.
  • the graph) shows the peripheral speed ratio ⁇ and the torque value of the rotating cylinder 5 provided with the spiral ridge 6.
  • the graph (f) shows the relationship between N and the peripheral speed ratio ⁇ when the end cap 16 having a diameter of 140 ⁇ is attached to the rotating cylinder 5 provided with the spiral ridge 6.
  • the graph (e) of reverse rotation of the rotating cylinder 5 provided with the spiral ridge 6 and the graph (f) the graph (e) of the rotating cylinder 5 without the end cap 16 is provided.
  • the torque value N is improved due to the Magnus effect generated near the end cap 16 in the rotating cylinder 5, and the end cap 16 is provided, so that the vicinity of the end face of the rotating cylinder 5 is improved.
  • a large Magnus lift Y is generated.
  • the torque value of the rotating cylinder 5 provided with the end cap 16 is higher than the torque value N of the graph (e) of the rotating cylinder 5 not provided with the end cap 16 so that the tonnole value N in the graph (f) without the end cap 16 is set. I'm in love.
  • the graph (b-g) of the rotating cylinder 5 provided with the air flowing means such as the ridge 6 is better than the rotating cylinder 5 provided with no air flowing means. It can be seen from the graph (a) that the tonnolec value N is increased. From the experimental results, the natural wind ⁇ rotates with the rotating cylinder 5. Apart from the movement of air on the surface of the rotating cylinder 5, the outer circumference of the rotating cylinder 5 By generating an air flow on the surface, it is possible to find a new principle that the Magnus lift Y generated by the interaction between the rotation of each rotating cylinder 5 and the wind increases, and the Magnus-type wind power generator A in this embodiment can be found.
  • the torque value N of the horizontal rotating shaft 3 that drives the power generation mechanism 2 is increased, and the power generation efficiency of the Magnus-type wind power generator A is significantly increased from a low wind speed range to a relatively high wind speed range. Succeeded. In addition, it has been experimentally proved that attaching the end cap 16 when the air flow is applied increases the Magnus effect.
  • Table 4 is used for the ridge 6 of the Magnus-type wind turbine generator A in the present embodiment, the tonnolec value N (rotation torque) of the horizontal rotating shaft 3 in the power generation mechanism 2, and the wind speed u.
  • Table 4 is a graph showing the relationship between the wind speed u and the torque value N when the rotating cylinder 5 is rotated at a rotation speed of 1080 [miiT 1 ] .
  • the graph (h) is provided with a spiral ridge 6.
  • 7 is a graph showing the relationship between the wind speed u of the rotating cylinder 5 and the torque value N
  • the graph (i) shows the relationship between the wind speed u and the torque value N of the rotating cylinder 5 provided with the spiral ridge 6. It is a graph shown.
  • Wind is u [m / s]
  • Table 5 describes the wind speed and the generated power output W.
  • Table 5 is a graph showing the relationship between the wind speed and the power output W of the Magnus-type wind turbine generator A in this example having a diameter of 2 m of the wind turbine and the probe-type wind turbine generator. Is a graph showing the wind speed and the power output W of the propeller-type wind power generator of the present embodiment, and a graph (k) is a graph showing the wind speed and the power output W of the Magnus-type wind power generator A in the present embodiment. Is a daraf showing the Rayleigh distribution of wind speed when the annual average wind speed is 6 m (observation site: Akita Prefecture).
  • FIG. 5 is a front view showing the rotating cylinder 5b provided with the complex 9b in Example 2.
  • a large number of coating materials 8b made of a synthetic resin or a weather-resistant lightweight alloy are provided on the surface.
  • a fin member as an air flow means that is, a composite body 9b formed by combining with a spiral ridge 6b is provided on the surface of the coating material 8b with irregularities.
  • the surface area of the rotating cylinder 5b is increased, and the surface flow (boundary layer) is disturbed by the plurality of dimples 7b.
  • the air flow can be smoothly flown to the surface of the rotating cylinder 5b by the spiral ridge 6b, and the air flow component V of the air flow F generated on the outer peripheral surface of the rotating cylinder 5b can be generated.
  • the circulation is increased by suppressing the separation, and the Magnus lift Y generated on the rotating cylinder 5b is increased.
  • a large number of dimples 7b are formed directly on the surface of the rotating cylinder 5b without using the covering material 8b, and the ridge 6b is wound around the surface of the rotating cylinder 5b on which the dimples 7b are formed. It may be turned.
  • the starch 5b mentioned here may have any shape as long as it is unevenness for disturbing a surface flow.
  • FIG. 6 is a front view showing a rotating cylinder 5c in which a dent 7c is provided on a ridge 6c of a composite 9c in Example 3, and a coating material 8c in which a large number of dents 7c are provided with irregularities.
  • a complex 9c formed by a combination of a large number of dimples 7c provided with irregularities is integrally coated on the outer peripheral surface of the rotating cylinder 5c.
  • a large number of dimples 7c are formed on the top surface 10c of the spiral ridge 6c, and Since the surface flow (boundary layer) force S is disturbed by a plurality of dimples 7c, the Magnus lift Y generated in the rotating cylinder 5c increases.
  • the ridge 6c allows air to flow smoothly to the surface of the rotating cylinder 5c, and the air flow F generated on the outer peripheral surface of the rotating cylinder 5c A flow component V can be generated.
  • a hemispherical projection may be protruded from the top surface 10c as the outer surface of the tip of the projection 6c of the composite 9c. While disturbing the surface flow on the outer surface of the tip of 6c, suppressing separation and increasing circulation, the Magnus lift Y generated on the rotating cylinder 5c is additionally increased.
  • FIG. 7 is a front view showing a rotary cylinder 5d provided with a concave strip 17d according to the fourth embodiment.
  • the outer peripheral surface of the shaft of the rotary cylinder 5d has a spiral-like shape as air flow means in the present embodiment.
  • a concave ridge 17d is formed in a concave shape.
  • the concave ridge 17d is formed so as to form a right-handed right spiral when viewed from the distal end face of the rotating cylinder 5d, and is formed on the distal end face of the rotating cylinder 5d.
  • the rotating cylinder 5d when rotating the rotating cylinder 5d, when the concave strip 17d of the rotating cylinder 5d forms a right-handed right spiral shape when viewed from the tip end direction of the rotating cylinder 5d, the rotating cylinder 5d Is rotated counterclockwise, and the spiral winding direction of the concave strip 17d is opposite to the rotation direction of the rotating cylinder 5d.
  • the air flowing on the outer peripheral surface of the rotating cylinder 5d can flow toward the horizontal rotation axis side, so that the air flow F can be generated on the outer peripheral surface of the rotating cylinder 5d, and the axis of the rotating cylinder 5d can be moved.
  • a parallel air flow component V is generated, and the Magnus lift Y generated in the rotating cylinder 5d is increased, and the end cap 16d provided on the tip end surface of the rotating cylinder 5d causes the vicinity of the end cap 16d to be increased.
  • a large Magnus lift Y is generated near the end cap 16d of the rotating cylinder 5d so as to affect the air flow.
  • FIG. 8 is a front view showing a rotating cylinder 5e provided with two ridges 6e in the fifth embodiment.
  • FIG. 9 is a perspective view showing a rotating column 5e provided with two ridges 6e.
  • a fin member as an air flow means that is, two spiral ridges 6e are The double helical ridge 6e is attached to the shaft outer peripheral surface of the rotating cylinder 5e, and is fixed so as to form a right-handed right helical shape when viewed from the distal end surface of the rotating cylinder 5e.
  • an end cap 16e is attached to the tip surface of the rotating cylinder 5e.
  • the protruding ridge 6e provided on the rotating cylinder 5e is not limited to two spirals, and is provided with a large number of protruding ridges 6e that can be composed of three or four or more spirals. This allows more air to flow smoothly to the surface of the rotating cylinder 5e with the ridges 6e without increasing the diameter of the spiral, so that air flow F can be generated on the outer peripheral surface of the rotating cylinder 5e. As a result, an air flow component V parallel to the axis of the rotating cylinder 5e is generated, and the Magnus effect generated in the rotating cylinder 5e is improved, and the Magnus lift Y is increased.
  • FIG. 10 is a front view showing the rotating cylinder 5f according to the sixth embodiment.
  • An end cap 16f is attached to the tip of the rotating cylinder 5f, and the outer peripheral surface of the shaft near the tip of the rotating cylinder 5f.
  • a fin member as an air flow means in this embodiment that is, two ridges 6f are attached.
  • the end cap 16f is provided at the tip of the rotating cylinder 5f and the ridge 6f is provided near the tip of the rotating cylinder 5f, thereby increasing the Magnus lift Y generated near the tip of the rotating cylinder 5f. You can do it.
  • FIG. 11 is a perspective view showing the end cap 16g according to the seventh embodiment.
  • a disk-shaped end cap 16g is attached to the tip end of the rotating cylinder 5g, and the rotating cylinder 5g of the end cap 16g is attached.
  • a plurality of fins 6g as air flow means in the present embodiment are provided on the inner surface facing the surface. The fins 6g are mounted so as to spread radially outward, and are curved to allow air near the rotating cylinder 5g to flow. It is.
  • FIG. 12 is a front view showing a Magnus-type wind power generator A according to the eighth embodiment.
  • the rotating cylinder 25 of the Magnus-type wind power generator A has an inner cylinder 39 fixed to a rotating body 24.
  • An outer cylinder 40 is slidably attached to the outer periphery of the inner cylinder 39.
  • the outer cylinder 40 is driven by a telescopic motor (not shown) driven by the control of a control circuit (not shown). It is slid in the radial direction with respect to the horizontal rotation shaft 23.
  • the rotating cylinder 25 since the rotating cylinder 25 is expandable and contractible, the rotating cylinder 25 can be expanded and contracted in accordance with the direction of natural wind and the wind speed. In normal operation, the outer cylinder 40 of the rotating cylinder 25 is slid outward and the rotating cylinder 25 is extended to maximize the wind receiving area of the rotating cylinder 25, and the magnetism generated in the rotating cylinder 25 is increased. Since the lift Y can be increased, the Magnus-type wind turbine A can generate power efficiently.
  • the outer cylinder 40 of the rotating cylinder 25 is slid inward to shrink the rotating cylinder 25, so that the wind receiving area of the rotating cylinder 25 can be reduced. Collapse or The rotation column 25 can be prevented from being damaged. Further, in a strong wind, by stopping the drive of the drive motor 35 for rotating the rotating cylinder 25, the Magnus lift Y generated on the rotating cylinder 25 is eliminated, and the rotation of the rotating body 24 can be stopped. The destruction of the power generator A is prevented.
  • the outer cylinder 40 provided with the ridges 26 exists on the tip side of the rotating cylinder 25, so that the maximum torque can be obtained.
  • FIG. 13 is a longitudinal sectional side view showing the rotating body 41 of the Magnus-type wind power generation device according to the ninth embodiment
  • FIG. 14 is a BB longitudinal sectional back view showing the rotating body 41 in FIG.
  • six rotating cylinders 43 are arranged on the outer periphery of the rotating body 41 on the front side of the horizontal rotating shaft 42 connected to the power generating mechanism, and inside the rotating body 41,
  • One drive motor 44 for rotating the rotating cylinder 43 is arranged.
  • the drive motor 44 is connected to a large-diameter bevel gear 45.
  • the bevel gear 45 is arranged at the center of the rotating body 41 and has six rotating cylinders 43. It is connected to a small-diameter bevel gear 46 provided in the vehicle.
  • the driving motor 44 is driven, the six rotating cylinders 43 can be rotated, and each rotating cylinder 43 can be rotated by using a smaller number of driving motors 44 than the number of rotating cylinders 43. Power for driving the motor 44 can be saved, and the power generation efficiency of the Magnus-type wind power generator can be increased.
  • a spiral ridge is provided as air flow means applied to the rotating cylinder.
  • the present invention is not limited to this. It is clear that the air flow may be applied by any method as long as the surface that generates lift is formed.
  • the end cap force of the disk shape is provided on the tip end surface of the rotating cylinder, but the present invention is not limited to this, and maintains the pressure difference between the positive pressure side and the negative pressure side. Any shape is acceptable as long as it works.
  • the force S provided with six rotating cylinders on the rotating body is not limited to this, and two, three, or more required number of rotating cylinders are required.
  • a rotating cylinder may be provided.
  • the Magnus-type wind power generation device of the present invention can be used from large-scale wind power generation to small-scale wind power generation for home use, and greatly contributes to the wind power generation industry. Furthermore, if the Magnus-type lift generation mechanism of the present invention is used for a rotor ship, a rotor vehicle, and the like, it is considered that the kinetic efficiency of a vehicle is also improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

【課題】 低風速域から比較的高風速域にかけて効率よく発電できるマグナス型風力発電装置を提供すること。 【解決手段】 発電機構部2に回転トルクを伝達する水平回転軸3と、この水平回転軸3から放射状に配設された回転円柱5と、各々の回転円柱5をこれら回転円柱5の軸周りに回転駆動する駆動モータ15とを備え、各々の回転円柱5の回転と風力との相互作用で生じるマグナス揚力により水平回転軸3を回転させて発電機構部2を駆動するマグナス型風力発電装置Aであって、回転円柱5の外周表面に空気流動を発生させてマグナス揚力を増大させる空気流動手段6が設けられている。

Description

明 細 書
マグナス型風力発電装置
技術分野
[0001] 本発明は、各回転円柱の回転と風力との相互作用で生じるマグナス揚力により前 記水平回転軸を回転させて発電機構部を駆動させるマグナス型の風力発電装置に 関する。
背景技術
[0002] 効率型風力発電装置として、サボ二ウス風車を用いたものが実用化されているが、 サボ二ウス風車の翼は風速以上に回転することができず、発電能力も小さレ、ことから 、大電力発電には不向きであり、一方、比較的発電能力の高い実用的風力発電装 置としてプロペラ型風車を用いたものがある力 風車効率を比較的低風速域で高め ることができないとレ、う問題がある。
[0003] これら方式の他には、水平回転軸に対して放射状に所要数配設した回転円柱にマ グナス揚力を発生させ、水平回転軸を回転させて発電を行うマグナス型風力発電装 置もすでに公知である(例えば、特許文献 1、 2参照)。
[0004] 特許文献 1:米国特許第 4366386号明細書
特許文献 2:ロシア連邦特許第 2189494C2号明細書
発明の開示
発明が解決しょうとする課題
[0005] 特許文献 1に示すようなマグナス型風力発電装置は、回転円柱を回転させることで マグナス揚力を発生させ、水平回転軸を回転させて発電を行っているため、発電量 を上げるためには、回転円柱の回転速度を上げてマグナス揚力を強める必要がある 。し力、し、回転円柱を高速で回転させるためには、多くのエネルギーが消費されてし まい発電効率が悪くなる。
[0006] また、特許文献 2に記載のマグナス型風力発電装置は、風力により回転するサボ二 ウスロータを用いて回転円柱を回転させているので、回転円柱の伝動機構を省略で き、かつ回転円柱を回転させるための駆動モータ等を設ける必要がなレ、が、サボユウ スロータは風速以上に回転することができず、回転円柱の回転速度を上げることがで きないため、大きなマグナス揚力を発生できず、効率のよい発電には不向きとなる。
[0007] 本発明は、このような問題を一挙に解決し、低風速域から比較的高風速域にかけ て効率よく発電できるマグナス型風力発電装置を提供するものである。
課題を解決するための手段
[0008] 上記課題を解決するために、本発明の請求項 1に記載のマグナス型風力発電装置 は、発電機構部に回転トルクを伝達する水平回転軸と、該水平回転軸から放射状に 所要数配設された回転円柱と、該各回転円柱をこれら回転円柱の軸周りに回転駆動 する駆動モータとを備え、前記各回転円柱の回転と風力との相互作用で生じるマグ ナス揚力により前記水平回転軸を回転させて発電機構部を駆動するマグナス型風力 発電装置であって、前記回転円柱の外周表面に空気流動を発生させてマグナス揚 力を増大させる空気流動手段が、所定位置に設けられていることを特徴としている。 本発明は、 自然風や回転円柱と伴に回転する回転円柱の表層の空気の動きとは 別に、回転円柱の外周表面に空気流動を発生させることにより、各回転円柱の回転 と風力との相互作用で生じるマグナス揚力が増大するという発明者が見出した新しい 原理に基づいており、発電機構部を駆動する水平回転軸の回転トルクを増大させ、 風力発電装置の発電効率を低風速域から比較的高風速域にかけて格段に上昇させ ることに成功した。
[0009] 本発明の請求項 2に記載のマグナス型風力発電装置は、請求項 1に記載のマダナ ス型風力発電装置であって、前記空気流動手段は、前記回転円柱の外周表面に少 なくとも該回転円柱の軸と平行な空気の流れ成分を発生させる手段であることを特徴 としている。
この特徴によれば、 自然風と、回転円柱と伴に回転する回転円柱の表層の空気の 動きとで形成されるマグナス揚力に対して、更に回転円柱の軸と平行の空気流の成 分を与えることにより、三次元的な空気流が形成され、実験で確認されるように、マグ ナス揚力、すなわち回転円柱に加わる力が増大する。ここで、空気流動手段で与え られる空気の流れは、全てが回転円柱と平行である必要はなぐ少なくとも回転円柱 と平行なベクトル成分があれば十分効果がある。 [0010] 本発明の請求項 3に記載のマグナス型風力発電装置は、請求項 1または 2に記載 のマグナス型風力発電装置であって、前記空気流動手段は、前記回転円柱の外周 表面に該回転円柱の軸と平行、かつ前記水平回転軸から離れる方向に向けて空気 の流れ成分を発生させる手段であることを特徴としている。
この特徴によれば、空気流動手段によって、回転円柱の外周表面に、水平回転軸 力 離れる方向に向けて空気の流れを発生させることで、回転円柱に生じるマグナス 揚力が増大されるようになる。
[0011] 本発明の請求項 4に記載のマグナス型風力発電装置は、請求項 1または 2に記載 のマグナス型風力発電装置であって、前記空気流動手段は、前記回転円柱の外周 表面に該回転円柱の軸と平行、かつ前記水平回転軸に向けて空気の流れ成分を発 生させる手段であることを特徴としてレ、る。
この特徴によれば、空気流動手段によって、回転円柱の外周表面に、水平回転軸 に向けて空気の流れを発生させることで、回転円柱に生じるマグナス揚力が増大さ れるようになる。
[0012] 本発明の請求項 5に記載のマグナス型風力発電装置は、請求項 1ないし 4に記載 のマグナス型風力発電装置であって、前記空気流動手段は、前記回転円柱の外周 表面に形設されたフィン部材であることを特徴としている。
この特徴によれば、回転円柱の回転時に、回転円柱の周りの空気がフィン部材で 流動されるようになり、回転円柱に生じるマグナス揚力を増大できる。
[0013] 本発明の請求項 6に記載のマグナス型風力発電装置は、請求項 5に記載のマダナ ス型風力発電装置であって、前記空気流動手段としてのフィン部材は、前記回転円 柱の外周表面に形設されたスパイラル状の突条であることを特徴としている。
この特徴によれば、回転円柱の回転時に、スパイラル状の突条によって空気を均一 かつ安定させて回転円柱の広い表面に流すことができ、マグナス揚力を増大できると ともに、風切り音が低減されるようになる。
[0014] 本発明の請求項 7に記載のマグナス型風力発電装置は、請求項 1ないし 7のいず れかに記載のマグナス型風力発電装置であって、前記回転円柱の先端に該回転円 柱より大径のエンドキャップが設けられてレ、ることを特徴としてレ、る。 この特徴によれば、前記空気流を与えた場合に、エンドキャップを取り付ける方が、 マグナス効果が高まることが実験的に証明できており、また、実験によれば、エンドキ ヤップを設けた場合、水平回転軸方向に空気を流す本方式が、それと逆に放射方向 に空気を流す方式に比較してマグナス効果が増大していることが分かる。
[0015] 本発明の請求項 8に記載のマグナス型風力発電装置は、請求項 6または 7に記載 のマグナス型風力発電装置であって、前記突条は、多条スパイラルで構成されてい ることを特 ί敷としてレ、る。
この特徴によれば、多条スパイラルを設けることで、スパイラルの径を大きくしなくて も、より多くの空気を滑らかに回転円柱の表面に流すことができ、マグナス効果が向 上する。
[0016] 本発明の請求項 9に記載のマグナス型風力発電装置は、請求項 1ないし 8に記載 のマグナス型風力発電装置であって、前記回転円柱の外周表面には、複数のデン プルが形成されてレ、ることを特徴としてレ、る。
この特徴によれば、回転円柱が軸周りに回転する際、複数のデンプノレが回転円柱 の表層流 (境界層)を力べ乱し、剥離を抑えて循環を増し、回転円柱に生じるマグナス 揚力を付カ卩的に増大させることができる。ここでデンプルとは表層流とかく乱させるた めの凹凸であればどのような形状でもよい。
[0017] 本発明の請求項 10に記載のマグナス型風力発電装置は、請求項 6に記載のマグ ナス型風力発電装置であって、前記突条の先端外表面にデンプル又は突起が形設 されてレ、ることを特徴としてレ、る。
この特徴によれば、デンプル又は突起が突条の先端外表面の表層流 (境界層)を 力べ乱し、剥離を抑えて循環を増し、マグナス揚力が付カ卩的に増える。
[0018] 本発明の請求項 11に記載のマグナス型風力発電装置は、請求項 1ないし 10のい ずれかに記載のマグナス型風力発電装置であって、前記回転円柱は、水平回転軸 に対し径方向に伸縮自在に支持されてレ、ることを特徴としてレ、る。
この特徴によれば、回転円柱が伸縮自在となっていることで、自然風の向きや風速 に応じて回転円柱を伸縮させて発電できるようになり、通常時には、回転円柱を伸ば して受風面積を最大にして回転円柱の揚力を増大させることができ、かつ強風時に は、回転円柱を縮めることで、受風面積を小さくでき、支台の倒壊や回転円柱の破損 を防ぐことができる。
[0019] 本発明の請求項 12に記載のマグナス型風力発電装置は、請求項 1ないし 11のい ずれかに記載のマグナス型風力発電装置であって、前記回転円柱の所要数よりも少 ない数の前記駆動モータを用いて該各回転円柱を同時に回転駆動できるようになつ ていることを特徴としている。
この特徴によれば、駆動モータを駆動させるための電力を節約できるので、風力発 電装置の発電効率を上げることができる。
図面の簡単な説明
[0020] [図 1]本発明の実施例 1におけるマグナス型風力発電装置を示す正面図である。
[図 2]マグナス揚力の説明図である。
[図 3]図 1における回転円柱を示す A— A断面図である。
[図 4]突条が設けられた回転円柱を示す正面図である。
[図 5]実施例 2における複合体が設けられた回転円柱を示す正面図である。
[図 6]実施例 3における複合体における突条にデンプルが設けられた回転円柱を示 す正面図である。
[図 7]実施例 4における凹条が設けられた回転円柱を示す正面図である。
[図 8]実施例 5における 2条の突条が設けられた回転円柱を示す正面図である。
[図 9]2条の突条が設けられた回転円柱を示す斜視図である。
[図 10]実施例 6における回転円柱を示す正面図である。
[図 11]実施例 7におけるエンドキャップを示す斜視図である。
[図 12]実施例 8におけるマグナス型風力発電装置を示す正面図である。
[図 13]実施例 9におけるマグナス型風力発電装置の回転体を示す縦断側面図であ る。
[図 14]図 13における回転体を示す B— B縦断背面図である。
符号の説明
[0021] A マグナス型風力発電装置
1 支台 発電機構部 水平回転軸
回転体
、 5b、 5c 回転円柱
d、 5e 回転円柱
f、 5g 回転円柱
、 6b、 6c、 突条 (空気流動手段、フィン部材)e、 6f 突条 (空気流動手段、フィン部材)g フィン (空気流動手段)b、 7c デンプル
b、 8c 被覆材
b、 9c 複合体
0c 天面 (先端外表面)
5 駆動モータ
6、 16d エンドキャップ
6e、 16f エンドキャップ
6g エンドキャップ
7d 凹条 (空気流動手段)
9 内筒
0 外筒
1 支台
3 水平回転軸
4 回転体
5 回転円柱
6 突条 (空気流動手段、フィン部材)5 駆動モータ
9 内筒
外筒 41 回転体
42 水平回転軸
43 回転円柱
44 駆動モータ
45、 46 傘歯車
発明を実施するための最良の形態
[0022] 本発明の実施例を以下に説明する。
実施例 1
[0023] 本発明の実施例に係るマグナス型風力発電装置を図面に基づいて説明すると、先 ず図 1は、本発明の実施例 1におけるマグナス型風力発電装置を示す正面図であり 、図 2は、マグナス揚力の説明図であり、図 3は、図 1における回転円柱を示す A— A 断面図であり、図 4は、突条が設けられた回転円柱を示す正面図である。
[0024] 一般的なマグナス揚力の発生メカニズムについて説明すると、図 2に示すように、回 転円柱 Cの正面側に当たった空気の流れは、図 2のような回転円柱 Cの回転方向と 空気流の向きでは、回転円柱 Cの回転とともに上方に流れるようになり、このとき回転 円柱 Cの上方側を流れる空気が、回転円柱 Cの下方側を流れる空気の速度よりも速 く流れるので、回転円柱 Cの上方側の負圧と下方側の正圧とで空気圧に差が生じる マグナス効果が生じるようになり、回転円柱 Cには、空気の流れと直角をなす方向に マグナス揚力 Yが発生するようになっている。
0
[0025] 図 1の符号 Aは、本発明の適用されたマグナス型風力発電装置であり、このマダナ ス型風力発電装置 Aは、地面に立設された支台 1の上部に、鉛直モータ(図示略)を 中心に水平方向に旋回自在に軸支される発電機構部 2が配置されており、この発電 機構部 2は、垂直方向に回転自在に軸支された水平回転軸 3を有し、この水平回転 軸 3の一端は、発電機構部 2の内部に配設された発電機(図示略)に連結されるとと もに、水平回転軸 3の他端は回転体 4に固着される。
[0026] 図 1に示すように、回転体 4の内部には、 6つの駆動モータ 15が配置されるとともに 、回転体 4の外周には、 6本の回転円柱 5が放射状に配置されており、各々の回転円 柱 5の基部は、回転体 4内部に配設された各々の駆動モータ 15に連結され、各々の 回転円柱 5が各々の駆動モータ 15の駆動によって回転できるように軸支される。また 、回転円柱 5の先端面には、回転円柱 5の直径よりも大きな直径を有する円盤状のェ ンドキャップ 16が取り付けられている。
[0027] 回転円柱 5の軸外周面には、本実施例における空気流動手段としてのフィン部材、 すなわちスパイラル状の突条 6がー体に卷き回して形設されており、この突条 6は合 成樹脂等の材質、若しくは耐候性軽量合金等の材質などで製作することができ、この 突条 6について説明すると、図 4に示すように、所要幅、所要高さの 1条の突条 6が、 回転円柱 5の先端面から見たときに右ネジ状の右螺旋状をなすように固着されている
[0028] 図 1に示すマグナス型風力発電装置 Aを用いて発電する際には、先ず風向計(図 示略)によって風向きを検出し、制御回路(図示略)が鉛直モータ(図示略)を駆動さ せて、回転体 4の正面側から風が当たるように、風向きに合わせて発電機構部 2を旋 回させる。そして、回転体 4内部の各々の駆動モータ 15を駆動させることで、各々の 回転円柱 5を回転させる。
[0029] 回転円柱 5の回転方向と突条 6の卷き方について詳述すると、図 1及び図 3に示す ように、回転円柱 5の先端部方向から見たときに、回転円柱 5のスパイラル状の突条 6 の卷き方が右ネジ状の右螺旋状をなす場合、回転円柱 5の回転方向は左回りとなつ ている。突条 6のスパイラルの卷き方向が回転円柱 5の回転方向に対して逆向きとな つているため、回転円柱 5の外周表面を流れる空気を水平回転軸 3側に向けて流す こと力 Sできる。尚、突条 6のスパイラルの卷き方向が回転円柱 5の回転方向と同じ向き になっている場合には、回転円柱 5の外周表面を流れる空気を水平回転軸 3から離 れる方向(放射方向)に向けて流すことができる。
[0030] 図 4に示すように、スパイラル状の突条 6が回転円柱 5に施されることにより、回転円 柱 5の回転時に、スパイラル状の突条 6によって、空気の流れ Fが発生する。この際、 回転円柱 5の外周表面に、自然風ゃ回転円柱 5と伴に回転する回転円柱 5の表層の 空気の動きとは別に、回転円柱 5の軸と平行な空気の流れ成分 Vを発生させることが できる。
[0031] 図 3及び図 4に示すように、回転円柱 5の外周の空気流、すなわち回転円柱 5の外 周表面に空気流動 Fを発生させることで、 自然風と、回転円柱 5と伴に回転する回転 円柱 5の表層の空気の動きとで形成される三次元的な空気流が形成される。
[0032] 後述する実験で確認されるように、各々の回転円柱 5の回転と風力との相互作用で 生じるマグナス揚力 Yが増大される(図 3参照)。ここで言う空気流動手段で与えられ る空気の流れ Fは、全てが回転円柱 5と平行である必要はなぐ少なくとも回転円柱 5 と平行なベクトル成分 Vがあれば十分効果がある。考察であるが、マグナス揚力 Yが 高まる理由として、回転円柱 5に加わる負圧と正圧との差圧が高まる現象や、揚力発 生面が拡大する現象等が発生してレ、ると考えられる。
[0033] また、エンドキャップ 16を利用すると、マグナス効果が向上する点も実験的に証明 されている。すなわちエンドキャップ 16が回転円柱 5の先端面に設けられることによつ て、このエンドキャップ 16が空気流 Fに好影響を与え、マグナス揚力 Yの向上が見ら れる。また、後述するように、実験によればエンドキャップ 16を設けた場合、水平回転 軸方向に空気を流す本方式が、それと逆に放射方向に空気を流す方式に比較して マグナス効果が増大してレ、ることが分力る。
[0034] 図 1に示すように、各々の回転円柱 5に発生したマグナス揚力 Yによって、回転円 柱 5及び回転体 4は、水平回転軸 3を中心として回転されるようになり、水平回転軸 3 の一端に連結された発電機(図示略)が駆動されて発電を行うことができるようになつ ている。そして、スパイラル状の突条 6が回転円柱 5に設けられることによって、発電 機(図示略)を駆動する水平回転軸 3のトノレク値(回転トルク)が増大されるようになり、 マグナス型風力発電装置 Aの発電効率を上げることができるようになつている。発電 機(図示略)によって発電が開始されると、この発電された電力の一部を、回転円柱 5 を回転させるための駆動モータ 15に供給させ、補助電力として利用できる。
[0035] 次に、本実施例に用いられる回転円柱 5を風洞実験室内にて実証実験を行った。
本実施例におけるマグナス型風力発電装置 Aの回転円柱 5と、他の発明における回 転円柱及び理想流体における周速比 Θと揚力係数 Cyに関して表 1を用いて説明す ると、表 1は、周速比 Θと揚力係数 Cyとの関係を示すグラフであり、回転円柱の直径( m)を dとし、回転円柱の毎秒の回転数 (r/s)を nとし、風速(mZs)を uとすると、回 転円柱の周速比 Θは、 θ = π dnZuで表され、揚力係数 Cyは、揚力 Yを単位体積 あたりの風の運動エネルギー(1/2) p u2と、回転円柱の投影面積 dl (lは回転円柱 の長さ)との積で割った値であり、理想流体では Cy= 2 Θで表される。周速比 Θは 、直径 d、回転数 n、風速 uの違いによってできるだけ実験結果が変化しなようにする ためのものであり、揚力係数 Cyも実験結果ができるだけ風速 uや回転円柱の寸法 d、 1や流体の密度 pによって変わらないようにするために用いられるものである。
[表 1]
Figure imgf000012_0001
0 0. 5 1 1. 5 2 周速比 Θ
[0037] 表 1に示すように、グラフ(ィ)は、本発明のマグナス型風力発電装置 Aの回転円柱
5の周速比 Θと揚力係数 Cyとの関係を示すグラフであり、グラフ(口)は、 ITAM (ロシ ァ)のマグナス型風力発電装置の回転円柱の周速比 Θと揚力係数 Cyとの関係を示 すグラフであり、グラフ(ハ)は、プロペラ風車型の風力発電装置に採用されることの 多い NACA4415の翼(迎角 12度のプロペラ翼)に係る周速比 Θ (回転円柱の周速 比 Θに対応する換算値)と揚力係数 Cyとの関係を示すグラフである。
[0038] ITAMの回転円柱のグラフ(口)及び NACA4415の翼のグラフ(ハ)と、本発明の 回転円柱 5のグラフ(ィ)を比較した場合、本発明の回転円柱 5のグラフ (ィ)は、理想 流体 (摩擦や剥離を考慮する必要がない、理想的に流動する損失の生じない流体) のグラフに近い曲線を描くようになつている。
[0039] 特に、本発明の回転円柱 5のグラフ(ィ)と、 ITAMの回転円柱のグラフ(口)とを比 ベてみると、周速比 Θが低い状態(Θ = 1. 5以下)において、本発明の回転円柱 5の グラフ(ィ)の揚力係数 Cyの方力 ITAMの回転円柱のグラフ(口)の揚力係数 Cyの 方よりも高くなつている。
[0040] このことは、回転円柱の回転数 nが比較的低い状態において、本発明のマグナス型 風力発電装置 Aの回転円柱 5が、最も効率よくマグナス揚力 Yを発生させることが可 能であることを示しており、本発明のマグナス型風力発電装置 Aは、回転円柱 5が低 い回転数 nであっても高いマグナス揚力 Yで水平回転軸 3を回転させることができる ので、回転円柱 5を回転駆動させるための駆動モータ 15の消費電力を節約でき、効 率よく発電できるようになってレ、る。
[0041] 次に、本実施例におけるマグナス型風力発電装置 Aのエンドキャップ 16と、発電機 構部 2における水平回転軸 3のトルク値 N (回転トルク)と、周速比 Θに関して表 2及び 表 3を用いて説明する。以下、本実施例において回転円柱 5の外周表面を流れる空 気を水平回転軸 3に向けて流す回転円柱 5の回転方向を正回転と称し、回転円柱 5 の外周表面を流れる空気を水平回転軸 3から離れる方向に向けて流す回転円柱 5の 回転方向を逆回転と称する。
[0042] 表 2は、直径が 70 Φの回転円柱 5を正回転させたときの周速比 Θとトノレク値 Nの関 係を示すグラフであり、グラフ(a)は、スパイラル状の突条 6やエンドキャップ 16が設 けられていない回転円柱 5の周速比 Θとトルク値 Nの関係を示すグラフであり、グラフ (b)は、スパイラル状の突条 6が設けられた回転円柱 5の周速比 Θとトルク値 Nの関 係を示すグラフであり、グラフ )は、スパイラル状の突条 6が設けられた回転円柱 5 に直径が 140 Φのエンドキャップ 16を取り付けたときの周速比 Θとトルク値 Nの関係 を示すグラフであり、グラフ(d)は、スパイラル状の突条 6が設けられた回転円柱 5に 直径が 200 Φのエンドキャップ 16を取り付けたときの周速比 Θとトルク値 Nの関係を 示すグラフである。
[0043] [表 2] Cd) 突条有リ 正回転
エンドキャップ (2000 )有り
(c) 突条有リ 正回転
エンドキャップ (1400 )有り
Cb) 突条有リ 正回転
エンドキャップ無し
(a) 突条無し
エンドキャップ無し
Figure imgf000014_0001
0. 00 0. 20 0. 40 0. 60 0. 80 1. 00 1 . 20
周速比 Θ
[0044] スパイラル状の突条 6が設けられていない回転円柱 5のグラフ(a)と、スパイラル状 の突条 6が設けられた回転円柱 5の正回転のグラフ(b)を比較すると、突条 6によって 回転円柱 5に生じるマグナス揚力 Yが増大されるため、突条 6が設けられた回転円柱 5のグラフ(b)のトルク値 Nの方が、突条 6が設けられていない回転円柱 5のグラフ(a) のトルク値 Nよりも高くなつている。
[0045] また、スパイラル状の突条 6が設けられた回転円柱 5の正回転のグラフ(b)及びダラ フ(c)において、エンドキャップ 16が設けられていない回転円柱 5のグラフ(b)と、回 転円柱 5に直径が 140 Φのエンドキャップ 16を取り付けたときのグラフ(c)を比較する と、エンドキャップ 16には、回転円柱 5におけるエンドキャップ 16近傍に発生するマ グナス効果によるトルク値 Nの向上が見られ、エンドキャップ 16が設けられることによ つて、回転円柱 5の先端面近傍に大きなマグナス揚力 Yが発生している。すなわちェ ンドキャップ 16が設けられた回転円柱 5のグラフ(c)のトルク値 Nの方力 エンドキヤッ プ 16が設けられていない回転円柱 5のグラフ(b)のトノレク値 Nよりも高くなるようになつ ている。
[0046] 正回転時において、回転円柱 5に直径が 140 Φのエンドキャップ 16を取り付けたと きのグラフ(c)と、回転円柱 5に直径が 200 Φのエンドキャップ 16を取り付けたときの グラフ(d)を比較すると、直径の大きいエンドキャップ 16を取り付けた回転円柱 5のグ ラフ(d)のトルク値 Nの方が、直径の小さいエンドキャップ 16を取り付けた回転円柱 5 のグラフ(c)のトルク値 Nよりも高くなるようになつている。この表 2に示すように、突条 6 が設けられた回転円柱 5にエンドキャップ 16を取り付けることによって、より大きなマグ ナス揚力 Yが発生することが分かる。
[0047] 表 3は、回転円柱 5を逆回転させたときの周速比 Θとトノレク値 Nの関係を示すグラフ であり、グラフ(a)は、スパイラル状の突条 6やエンドキャップ 16が設けられていない 回転円柱 5の周速比 Θとトルク値 Nの関係を示すグラフであり、グラフ )は、スパイラ ル状の突条 6が設けられた回転円柱 5の周速比 Θとトルク値 Nの関係を示すグラフで あり、グラフ(f)は、スパイラル状の突条 6が設けられた回転円柱 5に直径が 140 Φの エンドキャップ 16を取り付けたときの周速比 Θとトルク値 Nの関係を示すグラフであり 、グラフ(g)は、スパイラル状の突条 6が設けられた回転円柱 5に直径が 200 Φのェン ドキャップ 16を取り付けたときの周速比 Θとトルク値 Nの関係を示すグラフである。
[0048] [表 3]
Figure imgf000016_0001
0. 00 0. 20 0. 40 0. 60 0. 80 1. 00 1 . 20
周速比 Θ
[0049] スパイラル状の突条 6が設けられていない回転円柱 5のグラフ(a)と、スパイラル状 の突条 6が設けられた回転円柱 5の逆回転のグラフ(e)を比較すると、突条 6によって 回転円柱 5に生じるマグナス揚力 Yが増大されるため、突条 6が設けられた回転円柱 5のグラフ(e)のトルク値 Nの方が、突条 6が設けられていない回転円柱 5のグラフ(a) のトルク値 Nよりも高くなつている。
[0050] また、スパイラル状の突条 6が設けられた回転円柱 5の逆回転のグラフ(e)及びダラ フ(f)において、エンドキャップ 16が設けられていない回転円柱 5のグラフ(e)と、回 転円柱 5に直径が 140 Φのエンドキャップ 16を取り付けたときのグラフ(f)を比較する と、エンドキャップ 16には、回転円柱 5におけるエンドキャップ 16近傍に発生するマ グナス効果によるトルク値 Nの向上が見られ、エンドキャップ 16が設けられることによ つて、回転円柱 5の先端面近傍に大きなマグナス揚力 Yが発生している。すなわちェ ンドキャップ 16が設けられた回転円柱 5のグラフ(f)のトノレク値 Nの方力 エンドキヤッ プ 16が設けられていない回転円柱 5のグラフ(e)のトルク値 Nよりも高くなるようになつ ている。
[0051] 逆回転時において、回転円柱 5に直径が 140 Φのエンドキャップ 16を取り付けたと きのグラフ(f)と、回転円柱 5に直径が 200 Φのエンドキャップ 16を取り付けたときの グラフ(g)を比較すると、直径の大きいエンドキャップ 16を取り付けた回転円柱 5のグ ラフ(g)のトルク値 Nの方が、直径の小さいエンドキャップ 16を取り付けた回転円柱 5 のグラフ(f)のトノレク値 Nよりも高くなるようになつている。この表 3に示すように、突条 6 が設けられた回転円柱 5にエンドキャップ 16を取り付けることによって、より大きなマグ ナス揚力 Yが発生することが分かる。
[0052] また、表 2及び表 3に示すように、突条 6などの空気流動手段を設けた回転円柱 5の グラフ(b— g)方が、空気流動手段を設けてない回転円柱 5のグラフ(a)よりもトノレク値 Nが増大されることが分かり、この実験結果から自然風ゃ回転円柱 5と伴に回転する 回転円柱 5の表層の空気の動きとは別に、回転円柱 5の外周表面に空気流動を発生 させることにより、各回転円柱 5の回転と風力との相互作用で生じるマグナス揚力 Yが 増大するという新しい原理を見出すことができ、本実施例におけるマグナス型風力発 電装置 Aにおレ、て、発電機構部 2を駆動する水平回転軸 3のトルク値 Nを増大させ、 マグナス型風力発電装置 Aの発電効率を低風速域から比較的高風速域にかけて格 段に上昇させることに成功した。また、空気流を与えた場合に、エンドキャップ 16を取 り付ける方が、マグナス効果が高まることが実験的にも証明されたことになる。
[0053] 更に、表 2と表 3とを比較した場合、回転円柱 5を正回転させたグラフ(b— d)と、回 転円柱 5を逆回転させたグラフ(e— g)を比較すると、回転円柱 5の外周表面を流れる 空気を水平回転軸 3に向けて流すように回転円柱 5を正回転させる方が、トルク値 N が増大されており、この実験結果によれば、エンドキャップ 16を設けた場合、水平回 転軸 3の方向に空気を流す方式が、それと逆に水平回転軸 3から離れる方向(放射 方向)に空気を流す方式と比較してマグナス効果が増大してレ、ることが分かる。
[0054] 次に、本実施例におけるマグナス型風力発電装置 Aの突条 6と、発電機構部 2にお ける水平回転軸 3のトノレク値 N (回転トルク)と、風速 uに関して表 4を用いて説明する 。表 4は、回転円柱 5を回転数 1080 [miiT1]で回転させたときの風速 uとトルク値 Nの 関係を示すグラフであり、グラフ (h)は、スパイラル状の突条 6が設けられていない回 転円柱 5の風速 uとトルク値 Nの関係を示すグラフであり、グラフ(i)は、スパイラル状 の突条 6が設けられた回転円柱 5の風速 uとトルク値 Nの関係を示すグラフである。
[0055] [表 4]
Figure imgf000018_0001
風 is u [m/ s ]
[0056] すなわち、回転円柱 5に沿って空気流動を付加する手段としての突条 6が設けられ ていない回転円柱 5のグラフ(h)と、突条 6が設けられた回転円柱 5のグラフ(i)を比 較すると、突条 6が設けられていない回転円柱 5のグラフ(h)のトルク値 Nは、風速 u に係らずほぼ一定であるのに対し、突条 6が設けられた回転円柱 5のグラフ(i)のトノレ ク値 Nは、風速 uが高速になるに伴って増大されるようになっており、風力が効率よく マグナス揚力 Yに換えられてレ、ることが分かる。
[0057] このことは、 自然風における風速が低速の通常時から風速が高速の強風時に渡つ て、本発明のマグナス型風力発電装置 Aの回転円柱 5が、最も効率よくマグナス揚力 Yを発生させることが可能であることを示しており、そのため水平回転軸 3の回転効率 を向上させることができ、エネルギー損失の少なレ、マグナス型風力発電装置 Aの製 作が可能となっているとともに、 自然風における低速域から高速域に渡って発電でき ることを示してレ、る。
[0058] また表 4に示すように、突条 6が設けられていない回転円柱 5のグラフ(h)において 、風速 uが 20mになったときに、逆マグナス効果が発生してトルク値 Nがマイナスを示 すようになっているが、グラフ(i)に示す突条 6が設けられた回転円柱 5では逆マダナ ス効果の影響を受け難ぐトルク値 Nが増大されることを示している。
[0059] 次に、本実施例におけるマグナス型風力発電装置 Aを屋外にて実証実験を行い、 その実験結果を用いて、本実施例におけるマグナス型風力発電装置 Aと、プロペラ 型風力発電装置との風速と発電された発電出力 Wに関して表 5を用いて説明する。 表 5は、風車の直径が 2mの本実施例におけるマグナス型風力発電装置 Aと、プロべ ラ型風力発電装置の風速と発電出力 Wの関係を示すグラフであり、グラフ①は、従 来型のプロペラ型風力発電装置の風速と発電出力 Wを示すグラフであり、グラフ(k) は、本実施例におけるマグナス型風力発電装置 Aの風速と発電出力 Wを示すグラフ であり、グラフ(1)は、年間平均風速を 6mとしたときの風速のレイリー分布を示すダラ フである(観測地:秋田県)。
[0060] [表 5]
Figure imgf000020_0001
風速 [ m/ s ]
[0061] 年間平均風速のレイリー分布のグラフ(1)における風速相対度数(%)の最も高い風 速 5m付近において、従来型のプロペラ型風力発電装置のグラフ (j)の発電出力 Wと 、本実施例におけるマグナス型風力発電装置 Aのグラフ(k)の発電出力 Wを比較す ると、マグナス型風力発電装置 Aのグラフ(k)の発電出力 Wの方が、プロペラ型風力 発電装置のグラフ (j)の発電出力 Wよりも高くなつている。
[0062] このことは、年間を通じて平均して発生することが最も多い風速が低速域(5m以下 )の自然風において、本実施例におけるマグナス型風力発電装置 A力 プロペラ型 風力発電装置よりも高い効率で発電できること示しており、本実施例のマグナス型風 力発電装置 Aを用いれば、従来のプロペラ型風力発電装置に比べて、より多くの年 間発電量を確保できるようになつている。
実施例 2
[0063] 次に、実施例 2に係る回転円柱 5bの空気流動手段について、図 5を参照して説明 する。尚、前述した構成と同一構成で重複する説明を省略する。
[0064] 図 5は、実施例 2における複合体 9bが設けられた回転円柱 5bを示す正面図であり 、合成樹脂製や耐候性軽量合金製などで構成された被覆材 8bの表面に、多数のデ ンプル 7bが凹凸設され、この被覆材 8bの表面に所要リードで一体に卷き回される本 実施例における空気流動手段としてのフィン部材、すなわちスパイラル状の突条 6bと の組み合わせによる複合体 9bが、回転円柱 5bの軸外周面に一体に被覆されている
[0065] 図 5に示すように、デンプル 7bが回転円柱 5bの表面に設けられることで、回転円柱 5bの表面積が増えるとともに、複数のデンプル 7bで表層流 (境界層)がかく乱される ようになり、空気の流れをスパイラル状の突条 6bによって滑らかに回転円柱 5bの表 面に流すことができ、回転円柱 5bの外周表面に発生する空気流動 Fの空気の流れ 成分 Vを発生させることで剥離を抑えて循環が増し、回転円柱 5bに生じるマグナス揚 力 Yが増大されるようになってレ、る。
[0066] 尚、被覆材 8bを用いることなく回転円柱 5bの表面に直接、多数のデンプル 7bを凹 凸設して、デンプル 7bが凹凸設された回転円柱 5bの表面に突条 6bを卷き回すもの であってもよい。また、ここで言うデンプノレ 5bとは表層流をかく乱させるための凹凸で あればどのような形状であってもよい。
実施例 3
[0067] 次に、実施例 3に係る回転円柱 5cの空気流動手段について、図 6を参照して説明 する。尚、前述した構成と同一構成で重複する説明を省略する。
[0068] 図 6は、実施例 3における複合体 9cにおける突条 6cにデンプル 7cが設けられた回 転円柱 5cを示す正面図であり、多数のデンプル 7cが凹凸設された被覆材 8cと、この 被覆材 8cの表面に設けられた本実施例における空気流動手段としてのフィン部材、 すなわちスパイラル状の突条 6cと、スパイラル状の突条 6cの本実施例における先端 外表面としての天面 10cに凹凸設された多数のデンプル 7cの組み合わせによる複 合体 9cが、回転円柱 5cの軸外周面に一体に被覆されている。
[0069] 図 6に示すように、被覆材 8cに凹凸設された多数のデンプル 7cの他に、スパイラル 状の突条 6cの天面 10cに、多数のデンプル 7cが形成されることによって、かつ複数 のデンプル 7cで表層流 (境界層)力 Sかく乱されるため、回転円柱 5cに生じるマグナス 揚力 Yが増えるようになっている。また、突条 6cによって、空気を滑らかに回転円柱 5 cの表面に流すことができ、回転円柱 5cの外周表面に発生する空気流動 Fの空気の 流れ成分 Vを発生させることができる。
[0070] 尚、この複合体 9cの突条 6cにおける先端外表面としての天面 10cには、デンプル 7cの他に、半球形状の突起を突設することもでき、デンプノレ 7cまたは突起が突条 6c の先端外表面の表層流を力べ乱するとともに、剥離を抑えて循環を増大させ、回転円 柱 5cに生じるマグナス揚力 Yが付加的に増大されるようになる。
実施例 4
[0071] 次に、実施例 4に係る回転円柱 5dの空気流動手段について、図 7を参照して説明 する。尚、前述した構成と同一構成で重複する説明を省略する。
[0072] 図 7は、実施例 4における凹条 17dが設けられた回転円柱 5dを示す正面図であり、 回転円柱 5dの軸外周面には、本実施例における空気流動手段としてのスパイラノレ 状の凹条 17dが凹設されており、この凹条 17dは、回転円柱 5dの先端面から見たと きに右ネジ状の右螺旋状をなすように形成されるとともに、回転円柱 5dの先端面に は、エンドキャップ 16dが取り付けられている。
[0073] また、回転円柱 5dの回転させる場合には、回転円柱 5dの先端部方向から見たとき に、回転円柱 5dの凹条 17dが右ネジ状の右螺旋状をなす場合、回転円柱 5dの回転 方向は左回りとなっており、凹条 17dのスパイラル卷き方向は回転円柱 5dの回転方 向に対して逆向きとなっている。
[0074] そのため回転円柱 5dの外周表面を流れる空気を水平回転軸側に向けて流すこと ができるので、回転円柱 5dの外周表面に空気流動 Fを発生させることができ、回転 円柱 5dの軸と平行な空気の流れ成分 Vを発生させ、回転円柱 5dに生じるマグナス 揚力 Yが増大されるようになっており、かつ回転円柱 5dの先端面に設けられたエンド キャップ 16dによって、エンドキャップ 16d近傍の空気の流れに影響を与えるようにし 、回転円柱 5dのエンドキャップ 16d近傍に大きなマグナス揚力 Yが発生させるように なっている。
実施例 5
[0075] 次に、実施例 5に係る回転円柱 5eの空気流動手段について、図 8及び図 9を参照 して説明する。尚、前述した構成と同一構成で重複する説明を省略する。
[0076] 図 8は、実施例 5における 2条の突条 6eが設けられた回転円柱 5eを示す正面図で あり、図 9は、 2条の突条 6eが設けられた回転円柱 5eを示す斜視図であり、本実施例 における空気流動手段としてのフィン部材、すなわち 2条のスパイラル状の突条 6eが 、回転円柱 5eの軸外周面に取り付けられており、この二重螺旋をなす突条 6eは、回 転円柱 5eの先端面から見たときに右ネジ状の右螺旋状をなすように固着されるととも に、回転円柱 5eの先端面には、エンドキャップ 16eが取り付けられている。
[0077] 尚、回転円柱 5eに設けられる突条 6eは 2条のスパイラルに限ることなぐ 3条ゃ 4条 、若しくはそれ以上の多条スパイラルで構成されてもよぐ多数の突条 6eを設けること でスパイラルの径を大きくしなくても、より多くの空気を突条 6eで滑らかに回転円柱 5e の表面に流すことができるので、回転円柱 5eの外周表面に空気流動 Fを発生させる ことができ、回転円柱 5eの軸と平行な空気の流れ成分 Vが発生して、回転円柱 5eに 生じるマグナス効果が向上し、マグナス揚力 Yが増大されるようになっている。
実施例 6
[0078] 次に、実施例 6に係る回転円柱 5fの空気流動手段について、図 10を参照して説明 する。尚、前述した構成と同一構成で重複する説明を省略する。
[0079] 図 10は、実施例 6における回転円柱 5fを示す正面図であり、回転円柱 5fの先端部 には、エンドキャップ 16fが取り付けられており、回転円柱 5fの先端部近傍の軸外周 面には、本実施例における空気流動手段としてのフィン部材、すなわち 2つの突条 6f が取り付けられている。回転円柱 5fの先端部にエンドキャップ 16fが設けられるととも に、突条 6fが回転円柱 5fの先端部近傍に設けられることによって、回転円柱 5fの先 端部近傍に生じるマグナス揚力 Yを増大することができるようになつている。
実施例 7
[0080] 次に、実施例 7に係る回転円柱 5gの空気流動手段について、図 11を参照して説 明する。尚、前述した構成と同一構成で重複する説明を省略する。
[0081] 図 11は、実施例 7におけるエンドキャップ 16gを示す斜視図であり、回転円柱 5gの 先端面には円盤状のエンドキャップ 16gが取り付けられており、このエンドキャップ 16 gの回転円柱 5gを向く内面には、本実施例における空気流動手段としての複数のフ イン 6gが設けられている。このフィン 6gは外方に向かって放射状に広がるように取り 付けられているとともに、回転円柱 5g近傍の空気を流動させるために湾曲して形成さ れている。
[0082] 図 11に示す回転円柱 5gを正回転させると、エンドキャップ 16g近傍の空気は、ェン ドキャップ 16gに設けられたフィン 6gによって回転円柱 5g側に引き込まれるように流 動されるので、回転円柱 5g表面に空気流動が発生し、回転円柱 5gに生じるマグナス 揚力 Yを増大させることができる。また、回転円柱 5gを逆回転したときは、エンドキヤッ プ 16g近傍の空気が外方に放出されるように流動されるので、回転円柱 5g表面に空 気流動が発生し、回転円柱 5gに生じるマグナス揚力 Yを増大させることができる。 実施例 8
[0083] 次に、実施例 8に係るマグナス型風力発電装置 Aについて、図 12を参照して説明 する。尚、前述した構成と同一構成で重複する説明を省略する。
[0084] 図 12は、実施例 8におけるマグナス型風力発電装置 Aを示す正面図であり、マグ ナス型風力発電装置 Aの回転円柱 25は、回転体 24に対して固着された内筒 39と、 この内筒 39の外周に摺動自在に取り付けられた外筒 40で構成されており、外筒 40 は制御回路(図示略)の制御に応じて駆動される伸縮モータ(図示略)によって、水平 回転軸 23に対して径方向にスライドされるようになってレ、る。
[0085] 外筒 40の軸外周面には、図 4に示した実施例 1における空気流動手段としてのフィ ン部材、すなわち突条 26が固着されるとともに、回転体 24に固定された内筒 39の軸 外周面には、図 5に示した実施例 2における多数のデンプノレ 7bが凹凸設される。尚、 図 6から図 11に示したその他の実施例 3— 7における空気流動手段を、内筒 19また は外筒 20に設けることもできるようになつている。
[0086] 図 12に示すように、回転円柱 25が伸縮自在となっていることで、 自然風の向きや 風速に応じて回転円柱 25を伸縮させることができるようになつており、風速が低速の 通常時においては、回転円柱 25の外筒 40を外方にスライドさせ、回転円柱 25を伸 ばすことで回転円柱 25の受風面積を最大にすることができ、回転円柱 25に生じるマ グナス揚力 Yを増大させることができるので、マグナス型風力発電装置 Aが効率よく 発電できるようになつている。
[0087] また、風速が高速となる強風時には、回転円柱 25の外筒 40を内方にスライドさせ、 回転円柱 25を縮めることで、回転円柱 25の受風面積を小さくでき、支台 21の倒壊や 回転円柱 25の破損を防ぐことができるようになっている。更に強風時には、回転円柱 25を回転させる駆動モータ 35の駆動を停止させることで、回転円柱 25に生じるマグ ナス揚力 Yが無くなり、回転体 24の回転を停止できるようになつており、マグナス型風 力発電装置 Aの破壊が防止されるようになっている。特に本実施例においては、突 条 26を備えた外筒 40が回転円柱 25の先端側に存在するため、トルクを最大限獲得 できることになる。
実施例 9
[0088] 次に、実施例 9に係るマグナス型風力発電装置について、図 13及び図 14を参照し て説明する。尚、前述した構成と同一構成で重複する説明を省略する。
[0089] 図 13は、実施例 9におけるマグナス型風力発電装置の回転体 41を示す縦断側面 図であり、図 14は、図 13における回転体 41を示す B— B縦断背面図である。図 13に 示すように、発電機構部に連結された水平回転軸 42の正面側の回転体 41の外周に は、 6本の回転円柱 43が配置されており、回転体 41の内部には、回転円柱 43を回 転させるための 1個の駆動モータ 44が配置されている。
[0090] 駆動モータ 44は大径の傘歯車 45に連結されており、図 14に示すように、この傘歯 車 45は回転体 41の中心に配置されているとともに、 6本の回転円柱 43に設けられた 小径の傘歯車 46に連結されるようになっている。駆動モータ 44を駆動させると、 6本 の回転円柱 43を回転させることができ、回転円柱 43の本数よりも少ない個数の駆動 モータ 44を用いて各回転円柱 43を回転させることができるため、駆動モータ 44を駆 動させるための電力を節約できるようになり、マグナス型風力発電装置の発電効率を 上げることができるようになつている。
[0091] 以上、本発明の実施例を図面により説明してきたが、具体的な構成はこれら実施例 に限られるものではなぐ本発明の要旨を逸脱しない範囲における変更や追加があ つても本発明に含まれる。
[0092] 例えば、上記実施例では、回転円柱に施される空気流動手段として、スパイラル状 の突条が設けられているが、本発明はこれに限定されるものではなぐ回転円柱の表 面に揚力を発生させる面が形成されていれば、どのような方法で空気流動を与えて もよいことは明らかである。 [0093] 更に、上記実施例では、円盤状のエンドキャップ力 回転円柱の先端面に設けられ ているが、本発明はこれに限定されるものではなぐ正圧側と負圧側の圧力差を維持 する働きをすれば、どのような形状でもよい。
[0094] 尚、上記実施例では、 6本の回転円柱が回転体に設けられていた力 S、本発明はこ れに限定されるものではなぐ 2本や 3本、若しくはそれ以上の所要本数の回転円柱 を設けてもよい。
産業上の利用可能性
[0095] 本発明のマグナス型風力発電装置によれば、大型風力発電から家庭用の小型風 力発電に及んで活用できるようになり、風力発電業界に多大に貢献するようになる。 更に、本発明のマグナス型の揚力発生メカニズムを、ロータ船、ロータビークル等に 利用すれば、乗物における運動効率も向上すると考えられる。

Claims

請求の範囲
[1] 発電機構部に回転トルクを伝達する水平回転軸と、該水平回転軸から放射状に所 要数配設された回転円柱と、該各回転円柱をこれら回転円柱の軸周りに回転駆動す る駆動モータとを備え、前記各回転円柱の回転と風力との相互作用で生じるマダナ ス揚力により前記水平回転軸を回転させて発電機構部を駆動するマグナス型風力発 電装置であって、前記回転円柱の外周表面に空気流動を発生させてマグナス揚力 を増大させる空気流動手段が、所定位置に設けられていることを特徴とするマグナス 型風力発電装置。
[2] 前記空気流動手段は、前記回転円柱の外周表面に少なくとも該回転円柱の軸と平 行な空気の流れ成分を発生させる手段である請求項 1に記載のマグナス型風力発 電装置。
[3] 前記空気流動手段は、前記回転円柱の外周表面に該回転円柱の軸と平行、かつ 前記水平回転軸から離れる方向に向けて空気の流れ成分を発生させる手段である 請求項 1または 2に記載のマグナス型風力発電装置。
[4] 前記空気流動手段は、前記回転円柱の外周表面に該回転円柱の軸と平行、かつ 前記水平回転軸に向けて空気の流れ成分を発生させる手段である請求項 1または 2 に記載のマグナス型風力発電装置。
[5] 前記空気流動手段は、前記回転円柱の外周表面に形設されたフィン部材である請 求項 1ないし 4に記載のマグナス型風力発電装置。
[6] 前記空気流動手段としてのフィン部材は、前記回転円柱の外周表面に形設された スパイラル状の突条である請求項 5に記載のマグナス型風力発電装置。
[7] 前記回転円柱の先端に該回転円柱より大径のエンドキャップが設けられている請 求項 1なレ、し 7のレ、ずれかに記載のマグナス型風力発電装置。
[8] 前記突条は、多条スパイラルで構成されている請求項 6または 7に記載のマグナス 型風力発電装置。
[9] 前記回転円柱の外周表面には、複数のデンプルが形成されている請求項 1ないし
8に記載のマグナス型風力発電装置。
[10] 前記突条の先端外表面にデンプル又は突起が形設されている請求項 6に記載の マグナス型風力発電装置。
[11] 前記回転円柱は、水平回転軸に対し径方向に伸縮自在に支持されている請求項 1 なレ、し 10のレ、ずれかに記載のマグナス型風力発電装置。
[12] 前記回転円柱の所要数よりも少ない数の前記駆動モータを用いて該各回転円柱を 同時に回転駆動できるようになつている請求項 1ないし 11のいずれかに記載のマグ ナス型風力発電装置。
PCT/JP2004/008321 2004-02-09 2004-06-14 マグナス型風力発電装置 WO2005075820A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN2004800252079A CN1846056B (zh) 2004-02-09 2004-06-14 马格纳斯型风力发电装置
AU2004315175A AU2004315175B2 (en) 2004-02-09 2004-06-14 Magnus type wind power generator
CA2552297A CA2552297C (en) 2004-02-09 2004-06-14 Magnus type wind power generator
BRPI0418484-0A BRPI0418484A (pt) 2004-02-09 2004-06-14 gerador de força do vento do tipo magnus
US10/569,581 US7504740B2 (en) 2004-02-09 2004-06-14 Magnus type wind power generator
EP04745875.7A EP1715181B1 (en) 2004-02-09 2004-06-14 Magnus type wind power generator
JP2005517614A JP3962755B2 (ja) 2004-02-09 2004-06-14 マグナス型風力発電装置
HK06113010.3A HK1092515A1 (en) 2004-02-09 2006-11-27 Magnus type wind power generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004031897 2004-02-09
JP2004-031897 2004-02-09

Publications (1)

Publication Number Publication Date
WO2005075820A1 true WO2005075820A1 (ja) 2005-08-18

Family

ID=34836070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/008321 WO2005075820A1 (ja) 2004-02-09 2004-06-14 マグナス型風力発電装置

Country Status (11)

Country Link
US (1) US7504740B2 (ja)
EP (1) EP1715181B1 (ja)
JP (1) JP3962755B2 (ja)
KR (1) KR100724045B1 (ja)
CN (1) CN1846056B (ja)
AU (1) AU2004315175B2 (ja)
BR (1) BRPI0418484A (ja)
CA (1) CA2552297C (ja)
HK (1) HK1092515A1 (ja)
RU (1) RU2330988C2 (ja)
WO (1) WO2005075820A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2274708A1 (es) * 2005-09-14 2007-05-16 Pedro M. Marrero O'Shanahan Rotor de aerogenerador que barre una zona de seccion en forma de corona circular.
WO2009004828A1 (ja) * 2007-06-29 2009-01-08 Mecaro Co., Ltd. マグナス型風力発電装置
JP2017089636A (ja) * 2015-11-04 2017-05-25 株式会社Ihi 回転部材とこれを備える流体発電装置

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100281874A1 (en) * 2007-01-09 2010-11-11 Rolls-Royce Corporation Airflow vectoring member
TR200701584A2 (tr) * 2007-03-14 2008-10-21 Mehmeto�Lu �Iyar Magnus efekti ile güçlendirilmiş rüzgar türbini düzeneği
US20090148290A1 (en) * 2007-06-06 2009-06-11 Garver Theodore M Wind turbine and method of operating same
EP2188523A2 (en) * 2007-07-10 2010-05-26 California Wind Systems Lateral wind turbine
CN101790638A (zh) 2007-08-02 2010-07-28 乔尔·S·道格拉斯 马格努斯力流体流能量采集机
DE102007059285A1 (de) 2007-12-08 2009-06-10 Nordex Energy Gmbh Rotorblatt für Windenergieanlagen
EP2075459A3 (en) * 2007-12-29 2010-11-24 Vyacheslav Stepanovich Klimov Multiple rotor windmill and method of operation thereof
TR200800142A2 (tr) * 2008-01-09 2009-07-21 Suat Mehmeto�Lu Necdet Enerji tüketmeden üretim yapan magnus efektine dayalı rüzgar düzeneği
FI123862B (fi) * 2008-12-08 2013-11-29 Waertsilae Finland Oy Vesialus
US8492921B2 (en) * 2009-01-26 2013-07-23 Joel S Douglas Rotary magnus energy harvester
WO2010135197A1 (en) * 2009-05-21 2010-11-25 Egen Llc Fluid flow energy harvester surface modifications
TWM379657U (en) * 2009-10-28 2010-05-01 Uzu-Kuei Hsu Wind-powered electric generator
JP5467424B2 (ja) * 2009-11-10 2014-04-09 n−tech株式会社 複合型風力発電装置
GB2476801A (en) * 2010-01-08 2011-07-13 Stephen Martin Redcliffe Surface features for increasing the efficiency of wind turbine Flettner rotors.
DE102010008061A1 (de) * 2010-02-16 2011-12-15 Erwin Becker Umlaufrollenwindturbine und Verfahren zur Stromerzeugung aus Windenergie
FR2966889B1 (fr) * 2010-10-28 2014-08-08 IFP Energies Nouvelles Installation comportant des rotors a effet magnus a energie d'entrainement optimisee.
US20140008916A1 (en) * 2011-07-22 2014-01-09 Atsushi Shimizu Vertical axis type magnus wind turbine generator
US9394046B2 (en) 2011-11-16 2016-07-19 Ecological Energy Company Fluid interface device as well as apparati and methods including same
EP2716905A1 (en) * 2012-10-05 2014-04-09 E.R. Energie Rinnovabili S.R.L. Rotating blade bodies for turbines using the Magnus effect with rotation axis of the turbine at right angle to the direction of the fluid
US9273666B2 (en) * 2013-09-01 2016-03-01 Hamid Reza Kheirandish Magnus type wind power generator
ES2794565T3 (es) * 2015-07-01 2020-11-18 Challenergy Inc Dispositivo generador de empuje tipo Magnus
US9371818B1 (en) 2015-08-10 2016-06-21 Mark T. Monto Cyclonic aeolian vortex turbine
CN105402083B (zh) * 2015-12-23 2018-01-02 华中科技大学 一种阶梯马格努斯型风力叶片及风力机
US10118696B1 (en) 2016-03-31 2018-11-06 Steven M. Hoffberg Steerable rotating projectile
CN107128470B (zh) * 2017-05-18 2023-07-04 中国海洋大学 一种套用在船舶烟囱外的马格努斯风帆
US10598187B2 (en) * 2017-08-22 2020-03-24 Asia Vital Components Co., Ltd. Heat-dissipation fan with cylindrical fan blades
US11712637B1 (en) 2018-03-23 2023-08-01 Steven M. Hoffberg Steerable disk or ball
US11519384B2 (en) 2018-08-01 2022-12-06 Mark Monto Venturi vortex and flow facilitating turbine
TWI710501B (zh) * 2019-06-27 2020-11-21 周中奇 馬格努斯轉子
CN112594110A (zh) * 2020-12-01 2021-04-02 西北工业大学 一种基于马格努斯效应的垂直轴海流能发电装置
DE202022100015U1 (de) 2022-01-03 2022-01-14 Chandrashekhar Azad Auf maschinellem Lernen und künstlicher Intelligenz basierendes intelligentes System zur Steuerung des Mühlenbetriebs, um den Stromverbrauch zu senken

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB205636A (en) 1923-02-07 1923-10-25 Fred Gomersall Improvements in or relating to vehicle wheels
CH124470A (de) 1924-12-22 1928-02-01 E Noeggerath Jacob Rotoreinrichtung mit mindestens einer umlaufenden Walze.
DE2734938A1 (de) 1977-08-03 1979-02-22 Rudolf Cammann Windkraftmaschine
JPS5489143A (en) * 1977-12-26 1979-07-14 Takehiro Nishi Fluid energy absorbing apparatus
JPS5540257A (en) * 1978-09-13 1980-03-21 Takehiro Nishi Windmill improve dynamic lift by means of guide vane
JPS55123379A (en) * 1979-03-15 1980-09-22 Takehiro Nishi Basket type magnus wind mill
JPS5540257B2 (ja) 1977-01-13 1980-10-16
US4366386A (en) 1981-05-11 1982-12-28 Hanson Thomas F Magnus air turbine system
DE3246694A1 (de) 1982-12-16 1984-06-20 Erich Dipl.-Ing. 3000 Hannover Krebs Windkraftanlage
JPH06316295A (ja) * 1993-05-06 1994-11-15 Masahisa Shimizu 垂直水平二重回転推進機
JP2000506949A (ja) * 1996-03-13 2000-06-06 サイル ソシエタ ア レスポンサビリタ リミタータ 風力、液力、加圧の環境内で使用する流体動力学的エネルギーを変換する方法およびタービン
JP2002061563A (ja) * 2000-08-18 2002-02-28 Kunji Masako 制風構造の風車
RU2189494C2 (ru) 1993-07-23 2002-09-20 Военно-морская академия им. адмирала флота Советского Союза Н.Г.Кузнецова Ветроустановка с роторами магнуса
JP2003206846A (ja) * 2002-01-10 2003-07-25 Mitsubishi Heavy Ind Ltd 径方向伸縮式風車及びその運転方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1697574A (en) 1924-12-12 1929-01-01 Savonius Sigurd Johannes Rotor adapted to be driven by wind or flowing water
GB250636A (en) * 1924-12-15 1926-04-15 Victor Mann Wind turbine
BE334865A (ja) 1924-12-22
US1744924A (en) 1925-04-13 1930-01-28 Charles E Sargent Wind motor
SU10198A1 (ru) 1927-04-05 1929-06-29 А.А. Баграков Приспособление дл регулировки ветр ного двигател с вращаемыми вокруг своих осей цилиндрами
US1990573A (en) * 1930-12-05 1935-02-12 Harold J Stone Transportation vehicle
US2344515A (en) * 1941-01-17 1944-03-21 Henry P Massey Means and method for increasing the magnus effect
US3120275A (en) * 1961-03-18 1964-02-04 Bolkow Entwicklungen Kg Rotor construction
GB1212035A (en) * 1968-04-30 1970-11-11 Hawker Siddeley Aviation Ltd Improvements in or relating to devices for producing aerodynamic lift
GB2006885B (en) 1977-08-12 1982-03-31 Gray R Apparatus for generating power from fluid ie air flow
US4446379A (en) * 1983-02-17 1984-05-01 Borg John L Magnus effect power generator
DE3800070A1 (de) * 1988-01-05 1989-07-13 Michael Dipl Phys Hermann Fluidischer energiewandler
SU1663225A1 (ru) 1989-04-18 1991-07-15 Военно-морская академия им.Маршала Советского Союза Гречко А.А. Ротор ветродвигател с горизонтальной осью вращени
SU1724922A1 (ru) * 1989-08-22 1992-04-07 В.М.Швыркунов Ветродвигатель
IT1316016B1 (it) * 2000-11-22 2003-03-26 David Terracina Generatore eolico con pale a profilo modificato terminalmente per laproduzione di energia, e una sua applicazione a mezzi navali con
US7071578B1 (en) 2002-01-10 2006-07-04 Mitsubishi Heavy Industries, Ltd. Wind turbine provided with a controller for adjusting active annular plane area and the operating method thereof

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB205636A (en) 1923-02-07 1923-10-25 Fred Gomersall Improvements in or relating to vehicle wheels
CH124470A (de) 1924-12-22 1928-02-01 E Noeggerath Jacob Rotoreinrichtung mit mindestens einer umlaufenden Walze.
JPS5540257B2 (ja) 1977-01-13 1980-10-16
DE2734938A1 (de) 1977-08-03 1979-02-22 Rudolf Cammann Windkraftmaschine
JPS5489143A (en) * 1977-12-26 1979-07-14 Takehiro Nishi Fluid energy absorbing apparatus
JPS5540257A (en) * 1978-09-13 1980-03-21 Takehiro Nishi Windmill improve dynamic lift by means of guide vane
JPS55123379A (en) * 1979-03-15 1980-09-22 Takehiro Nishi Basket type magnus wind mill
US4366386A (en) 1981-05-11 1982-12-28 Hanson Thomas F Magnus air turbine system
DE3246694A1 (de) 1982-12-16 1984-06-20 Erich Dipl.-Ing. 3000 Hannover Krebs Windkraftanlage
JPH06316295A (ja) * 1993-05-06 1994-11-15 Masahisa Shimizu 垂直水平二重回転推進機
RU2189494C2 (ru) 1993-07-23 2002-09-20 Военно-морская академия им. адмирала флота Советского Союза Н.Г.Кузнецова Ветроустановка с роторами магнуса
JP2000506949A (ja) * 1996-03-13 2000-06-06 サイル ソシエタ ア レスポンサビリタ リミタータ 風力、液力、加圧の環境内で使用する流体動力学的エネルギーを変換する方法およびタービン
JP2002061563A (ja) * 2000-08-18 2002-02-28 Kunji Masako 制風構造の風車
JP2003206846A (ja) * 2002-01-10 2003-07-25 Mitsubishi Heavy Ind Ltd 径方向伸縮式風車及びその運転方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1715181A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2274708A1 (es) * 2005-09-14 2007-05-16 Pedro M. Marrero O'Shanahan Rotor de aerogenerador que barre una zona de seccion en forma de corona circular.
WO2009004828A1 (ja) * 2007-06-29 2009-01-08 Mecaro Co., Ltd. マグナス型風力発電装置
JP2017089636A (ja) * 2015-11-04 2017-05-25 株式会社Ihi 回転部材とこれを備える流体発電装置

Also Published As

Publication number Publication date
EP1715181B1 (en) 2013-07-31
AU2004315175B2 (en) 2008-06-26
AU2004315175A1 (en) 2005-08-18
JP3962755B2 (ja) 2007-08-22
EP1715181A4 (en) 2009-08-12
CA2552297C (en) 2010-08-10
EP1715181A1 (en) 2006-10-25
CN1846056B (zh) 2010-04-07
KR100724045B1 (ko) 2007-06-04
US7504740B2 (en) 2009-03-17
US20070046029A1 (en) 2007-03-01
BRPI0418484A (pt) 2007-06-19
JPWO2005075820A1 (ja) 2007-10-18
RU2006132397A (ru) 2008-03-27
CN1846056A (zh) 2006-10-11
KR20060035626A (ko) 2006-04-26
RU2330988C2 (ru) 2008-08-10
HK1092515A1 (en) 2007-02-09
CA2552297A1 (en) 2005-08-18

Similar Documents

Publication Publication Date Title
WO2005075820A1 (ja) マグナス型風力発電装置
TWI226919B (en) Straight blade type turbine
US9273666B2 (en) Magnus type wind power generator
US7726935B2 (en) Wind turbine rotor projection
JP2009008041A (ja) マグナス型風力発電装置
JP4280798B2 (ja) 自転羽根式垂直軸型風車
US10774807B2 (en) Omni multi axes-vertical axis wind turbine (M-VAWT)
JP2007085327A (ja) マグナス型風力発電装置
CN103649530B (zh) 可变直径及角度的垂直轴涡轮
US9879651B2 (en) Vane device for a turbine apparatus
CN106460771A (zh) 萨伏纽斯转子
JPWO2018194105A1 (ja) 垂直軸型タービン
TW201716687A (zh) 多層葉片式風力發電裝置
JPS5928754B2 (ja) 垂直軸風車の翼体
JP2009008040A (ja) マグナス型風力発電装置
WO2006087779A1 (ja) マグナス型風力発電装置
JP4719221B2 (ja) マグナス型風力発電装置
JP3200632U (ja) 液体内駆動プロペラ型ファン
TWI299769B (en) Magnus type wind power generation system
US20160222942A1 (en) Wind Turbine Having a Wing-Shaped Turbine Blade
JP2011007146A (ja) マグナス型風力発電装置
JP6391129B1 (ja) 発電装置
CN105849406A (zh) 用于流体动力学装置的叶轮组和推进装置
TWM518272U (zh) 多層葉片式風力發電裝置
CN207920771U (zh) 一种立轴风力发电机组

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480025207.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2005517614

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020057024446

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004745875

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007046029

Country of ref document: US

Ref document number: 10569581

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 12006500610

Country of ref document: PH

WWP Wipo information: published in national office

Ref document number: 1020057024446

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004315175

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2552297

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2004315175

Country of ref document: AU

Date of ref document: 20040614

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 826/MUMNP/2006

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2006132397

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2004745875

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10569581

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0418484

Country of ref document: BR